Cancer active targeting by nanoparticles: a comprehense

Journal of Cancer Research and Clinical Oncology 141, 769-784 DOI: 10.1007/s00432-014-1767-3

Citation Report

#	Article	IF	CITATIONS
1	Preparation of poly(β-L-malic acid)-based charge-conversional nanoconjugates for tumor-specific uptake and cellular delivery. International Journal of Nanomedicine, 2015, 10, 1941.	6.7	10
2	Aptamer-Functionalized Nanoparticles as "Smart Bombsâ€: The Unrealized Potential for Personalized Medicine and Targeted Cancer Treatment. Targeted Oncology, 2015, 10, 467-485.	3.6	12
3	Magnetic Resonance-Guided Drug Delivery. Magnetic Resonance Imaging Clinics of North America, 2015, 23, 643-655.	1.1	13
4	Preclinical imaging and translational animal models of cancer for accelerated clinical implementation of nanotechnologies and macromolecular agents. Journal of Controlled Release, 2015, 219, 313-330.	9.9	10
5	Addressing challenges of heterogeneous tumor treatment through bispecific protein-mediated pretargeted drug delivery. Journal of Controlled Release, 2015, 220, 715-726.	9.9	19
6	Effective photothermal chemotherapy with docetaxel-loaded gold nanospheres in advanced prostate cancer. Journal of Drug Targeting, 2015, 23, 568-576.	4.4	13
7	Overexpression of caveolinâ€1 in inflammatory breast cancer cells enables IBCâ€specific gene delivery and prodrug conversion using histoneâ€targeted polyplexes. Biotechnology and Bioengineering, 2016, 113, 2686-2697.	3.3	11
8	Ultra-small lipid–polymer hybrid nanoparticles for tumor-penetrating drug delivery. Nanoscale, 2016, 8, 14411-14419.	5.6	100
10	Exploitation of nanoparticle–protein corona for emerging therapeutic and diagnostic applications. Journal of Materials Chemistry B, 2016, 4, 4376-4381.	5.8	32
11	Cancer-targeted tri-block copolymer nanoparticles as payloads of metal complexes to achieve enhanced cancer theranosis. Journal of Materials Chemistry B, 2016, 4, 4517-4525.	5.8	22
12	Folate-conjugated gold nanoparticle as a new nanoplatform for targeted cancer therapy. Journal of Cancer Research and Clinical Oncology, 2016, 142, 2217-2229.	2.5	119
13	Scintillating Nanoparticles as Energy Mediators for Enhanced Photodynamic Therapy. ACS Nano, 2016, 10, 3918-3935.	14.6	296
14	Oligonucleotide-based theranostic nanoparticles in cancer therapy. Nanomedicine, 2016, 11, 1287-1308.	3.3	35
15	From Diagnosis to Treatment. Thoracic Surgery Clinics, 2016, 26, 215-228.	1.0	9
16	Targeted Drug Delivery with Polymers and Magnetic Nanoparticles: Covalent and Noncovalent Approaches, Release Control, and Clinical Studies. Chemical Reviews, 2016, 116, 5338-5431.	47.7	1,333
17	Folate-based single cell screening using surface enhanced Raman microimaging. Nanoscale, 2016, 8, 17304-17313.	5.6	40
18	Ligand-Dependent Morphology and Optical Properties of Lead Sulfide Quantum Dot Superlattices. Journal of Physical Chemistry C, 2016, 120, 25061-25067.	3.1	23
19	Targeted imaging of EGFR overexpressed cancer cells by brightly fluorescent nanoparticles conjugated with cetuximab. Nanoscale, 2016, 8, 15027-15032.	5.6	70

#	Article	IF	CITATIONS
20	Statistical detection of nanoparticles in cells by darkfield microscopy. Physica Medica, 2016, 32, 938-943.	0.7	4
21	Enhanced selective sonosensitizing efficacy of ultrasound-based anticancer treatment by targeted gold nanoparticles. Nanomedicine, 2016, 11, 3053-3070.	3.3	70
22	Antibody-targeted nanoparticles for cancer treatment. Immunotherapy, 2016, 8, 941-958.	2.0	53
23	Targeting Nanomedicines to Prostate Cancer: Evaluation of Specificity of Ligands to Two Different Receptors In Vivo. Pharmaceutical Research, 2016, 33, 2388-2399.	3.5	24
24	Zebrafish as a model system for characterization of nanoparticles against cancer. Nanoscale, 2016, 8, 862-877.	5.6	74
25	Ultrasmall inorganic nanoparticles: State-of-the-art and perspectives for biomedical applications. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 1663-1701.	3.3	238
26	Rational design of liposomal drug delivery systems, a review: Combined experimental and computational studies of lipid membranes, liposomes and their PEGylation. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 2334-2352.	2.6	146
27	Facile and rapid detection of respiratory syncytial virus using metallic nanoparticles. Journal of Nanobiotechnology, 2016, 14, 13.	9.1	28
28	Nanoparticles: Novel vehicles in treatment of Glioblastoma. Biomedicine and Pharmacotherapy, 2016, 77, 98-107.	5.6	92
29	Biocompatible polymersomes-based cancer theranostics: Towards multifunctional nanomedicine. International Journal of Pharmaceutics, 2017, 519, 287-303.	5.2	85
30	Double Sequential Encrypted Targeting Sequence: A New Concept for Bone Cancer Treatment. Chemistry - A European Journal, 2017, 23, 7174-7179.	3.3	20
31	Radiolabelled Polymeric Materials for Imaging and Treatment of Cancer: Quo Vadis?. Advanced Healthcare Materials, 2017, 6, 1601115.	7.6	38
32	Magnetic targeting with superparamagnetic iron oxide nanoparticles for in vivo glioma. Nanotechnology Reviews, 2017, 6, 449-472.	5.8	16
33	PEGylated doxorubicin nanoparticles mediated by HN-1 peptide for targeted treatment of oral squamous cell carcinoma. International Journal of Pharmaceutics, 2017, 525, 21-31.	5.2	20
34	Chitosan nanoparticle-mediated co-delivery of shAtg-5 and gefitinib synergistically promoted the efficacy of chemotherapeutics through the modulation of autophagy. Journal of Nanobiotechnology, 2017, 15, 28.	9.1	29
35	Folate/ N -acetyl glucosamine conjugated mesoporous silica nanoparticles for targeting breast cancer cells: A comparative study. Colloids and Surfaces B: Biointerfaces, 2017, 156, 203-212.	5.0	47
36	Targeted nanotechnologies for cancer intervention: a patent review (2010-2016). Expert Opinion on Therapeutic Patents, 2017, 27, 1005-1019.	5.0	19
37	Serum Protein Adsorption Enhances Active Leukemia Stem Cell Targeting of Mesoporous Silica Nanoparticles. ACS Applied Materials & amp; Interfaces, 2017, 9, 18566-18574.	8.0	36

#	Article	IF	CITATIONS
38	Coreâ \in 'shell drug carriers: liposomes, polymersomes, and niosomes. , 2017, , 63-105.		10
39	Effect of trastuzumab on the micellization properties, endocytic pathways and antitumor activities of polyurethane-based drug delivery system. Chinese Journal of Polymer Science (English Edition), 2017, 35, 909-923.	3.8	11
40	Validation of HPLC Method for Quantitative Determination of Gefitinib in Polymeric Nanoformulation. Pharmaceutical Chemistry Journal, 2017, 51, 159-163.	0.8	11
41	Nanomaterial-Enabled Cancer Therapy. Molecular Therapy, 2017, 25, 1501-1513.	8.2	110
42	Revisiting the value of competition assays in folate receptor-mediated drug delivery. Biomaterials, 2017, 138, 35-45.	11.4	56
43	Remote Control of Cellular Functions: The Role of Smart Nanomaterials in the Medicine of the Future. Advanced Healthcare Materials, 2017, 6, 1700002.	7.6	36
44	A computational study suggests that replacing PEG with PMOZ may increase exposure of hydrophobic targeting moiety. European Journal of Pharmaceutical Sciences, 2017, 103, 128-135.	4.0	17
45	Nanogels for intracellular delivery of biotherapeutics. Journal of Controlled Release, 2017, 259, 16-28.	9.9	116
46	Nanoparticles for radiooncology: Mission, vision, challenges. Biomaterials, 2017, 120, 155-184.	11.4	87
47	Functionalization of carboxylated lignin nanoparticles for targeted and pH-responsive delivery of anticancer drugs. Nanomedicine, 2017, 12, 2581-2596.	3.3	96
48	The Current Role of Cell-Penetrating Peptides in Cancer Therapy. Advances in Experimental Medicine and Biology, 2017, 1030, 279-295.	1.6	41
49	Form Follows Function: Nanoparticle Shape and Its Implications for Nanomedicine. Chemical Reviews, 2017, 117, 11476-11521.	47.7	464
50	AlEgens for biological process monitoring and disease theranostics. Biomaterials, 2017, 146, 115-135.	11.4	206
51	Light-switchable systems for remotely controlled drug delivery. Journal of Controlled Release, 2017, 267, 67-79.	9.9	59
52	Robust manufacturing of lipid-polymer nanoparticles through feedback control of parallelized swirling microvortices. Lab on A Chip, 2017, 17, 2805-2813.	6.0	18
53	Complex effects of tumor microenvironment on the tumor disposition of carrier-mediated agents. Nanomedicine, 2017, 12, 2021-2042.	3.3	12
54	Tumor-Targeted Accumulation of Ligand-Installed Polymeric Micelles Influenced by Surface PEGylation Crowdedness. ACS Applied Materials & Interfaces, 2017, 9, 44045-44052.	8.0	17
55	A strategy for actualization of active targeting nanomedicine practically functioning in a living body. Biomaterials, 2017, 141, 136-148.	11.4	9

#	Article	IF	CITATIONS
56	Positron emission tomography and nanotechnology: A dynamic duo for cancer theranostics. Advanced Drug Delivery Reviews, 2017, 113, 157-176.	13.7	153
57	Surface functionalization of polymeric nanoparticles for tumor drug delivery: approaches and challenges. Expert Opinion on Drug Delivery, 2017, 14, 201-214.	5.0	106
58	Biological Identity of Nanoparticles In Vivo : Clinical Implications of the Protein Corona. Trends in Biotechnology, 2017, 35, 257-264.	9.3	313
59	Dendrimers as Nanocarriers for Nucleic Acid and Drug Delivery in Cancer Therapy. Molecules, 2017, 22, 1401.	3.8	474
60	Nanoparticles for tumor targeting. , 2017, , 221-267.		6
61	Lipid-Based Nanoparticles for Targeted Drug Delivery of Anticancer Drug. , 2017, , 287-321.		2
62	Targeted Therapeutic Nanoparticles: An Immense Promise to Fight against Cancer. Journal of Drug Delivery, 2017, 2017, 1-24.	2.5	93
63	Skin Cancer and Its Treatment: Novel Treatment Approaches with Emphasis on Nanotechnology. Journal of Nanomaterials, 2017, 2017, 1-20.	2.7	61
64	Gallium-68 Labeled Iron Oxide Nanoparticles Coated with 2,3-Dicarboxypropane-1,1-diphosphonic Acid as a Potential PET/MR Imaging Agent: A Proof-of-Concept Study. Contrast Media and Molecular Imaging, 2017, 2017, 1-13.	0.8	31
65	Superparamagnetic reconstituted high-density lipoprotein nanocarriers for magnetically guided drug delivery. International Journal of Nanomedicine, 2017, Volume 12, 1453-1464.	6.7	29
66	Big Potential from Small Agents: Nanoparticles for Imaging-Based Companion Diagnostics. ACS Nano, 2018, 12, 2106-2121.	14.6	117
67	One-step esterification of nanocellulose in a BrĄ̃nsted acid ionic liquid for delivery to glioblastoma cancer cells. New Journal of Chemistry, 2018, 42, 5237-5242.	2.8	28
68	PEGylated dendritic polyglycerol conjugate targeting NCAM-expressing neuroblastoma: Limitations and challenges. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 1169-1179.	3.3	10
69	Lapatinib nano-delivery systems: a promising future for breast cancer treatment. Expert Opinion on Drug Delivery, 2018, 15, 495-507.	5.0	33
70	Selective apoptosis induction in cancer cells using folate-conjugated gold nanoparticles and controlling the laser irradiation conditions. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 1026-1038.	2.8	42
71	Current state and prospects of nano-delivery systems for sorafenib. International Journal of Polymeric Materials and Polymeric Biomaterials, 2018, 67, 1105-1115.	3.4	22
72	Engineering the Delivery System for CRISPR-Based Genome Editing. Trends in Biotechnology, 2018, 36, 173-185.	9.3	260
73	Design and evaluation of clickable gelatin-oleic nanoparticles using fattigation-platform for cancer therapy. International Journal of Pharmaceutics, 2018, 545, 101-112.	5.2	32

#	Article	IF	CITATIONS
74	Vesicle-based drug carriers. , 2018, , 1-55.		5
75	A review of nanoparticle photosensitizer drug delivery uptake systems for photodynamic treatment of lung cancer. Photodiagnosis and Photodynamic Therapy, 2018, 22, 147-154.	2.6	113
76	Tailoring Porous Silicon for Biomedical Applications: From Drug Delivery to Cancer Immunotherapy. Advanced Materials, 2018, 30, e1703740.	21.0	127
77	Bridging the Knowledge of Different Worlds to Understand the Big Picture of Cancer Nanomedicines. Advanced Healthcare Materials, 2018, 7, 1700432.	7.6	30
78	Galectin-1-based tumour-targeting for gold nanostructure-mediated photothermal therapy. International Journal of Hyperthermia, 2018, 34, 19-29.	2.5	16
79	An overview of nanosomes delivery mechanisms: trafficking, orders, barriers and cellular effects. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 669-679.	2.8	29
80	Nanocarrier based approaches for targeting breast cancer stem cells. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 885-898.	2.8	26
81	Chemokine-mimetic plerixafor derivative for tumor-specific delivery of nanomaterials. Nano Research, 2018, 11, 2159-2172.	10.4	5
82	Targeted drug delivery to melanoma. Advanced Drug Delivery Reviews, 2018, 127, 208-221.	13.7	99
83	Functionalizing PLGA and PLGA Derivatives for Drug Delivery and Tissue Regeneration Applications. Advanced Healthcare Materials, 2018, 7, 1701035.	7.6	173
84	Surface Modification of Cisplatin-Complexed Gold Nanoparticles and Its Influence on Colloidal Stability, Drug Loading, and Drug Release. Langmuir, 2018, 34, 154-163.	3.5	27
85	Vascular targeted nanotherapeutic approach for obesity treatment. International Journal of Nanomedicine, 2018, Volume 13, 7915-7929.	6.7	18
87	Macromolecular Drug Carriers for Targeted Glioblastoma Therapy: Preclinical Studies, Challenges, and Future Perspectives. Frontiers in Oncology, 2018, 8, 624.	2.8	50
88	A Promising Biocompatible Platform: Lipid-Based and Bio-Inspired Smart Drug Delivery Systems for Cancer Therapy. International Journal of Molecular Sciences, 2018, 19, 3859.	4.1	45
89	Ectopic high endothelial venules in pancreatic ductal adenocarcinoma: A unique site for targeted delivery. EBioMedicine, 2018, 38, 79-88.	6.1	20
91	Building Block Based Construction of Membrane-Organelle Double Targeted Nanosystem for Two-Drug Delivery. Bioconjugate Chemistry, 2018, 29, 3677-3685.	3.6	12
92	Site-Specific Labeling of Cyanine and Porphyrin Dye-Stabilized Nanoemulsions with Affibodies for Cellular Targeting. Journal of the American Chemical Society, 2018, 140, 13550-13553.	13.7	14
93	Polymer Selfâ€Assembled BMSCs with Cancer Tropism and Programmed Homing. Advanced Healthcare Materials, 2018, 7, e1800118.	7.6	5

#	ARTICLE	IF	CITATIONS
94	Recent Advances in Bioimaging for Cancer Research. , 0, , .		5
95	Stimuli-Responsive Nano-Architecture Drug-Delivery Systems to Solid Tumor Micromilieu: Past, Present, and Future Perspectives. ACS Nano, 2018, 12, 10636-10664.	14.6	320
96	Liposomes Aid Curcumin's Combat with Cancer in a Breast Tumor Model. Oncomedicine, 2018, 3, 94-109.	1.1	10
97	Crosslinked poly-γ-glutamic acid based nanosystem for drug delivery. Journal of Drug Delivery Science and Technology, 2018, 48, 478-489.	3.0	5
98	Synthetic Cargo Internalization Receptor System for Nanoparticle Tracking of Individual Cell Populations by Fluorine Magnetic Resonance Imaging. ACS Nano, 2018, 12, 11178-11192.	14.6	18
99	Aggregation-Induced Emission: A Trailblazing Journey to the Field of Biomedicine. ACS Applied Bio Materials, 2018, 1, 1768-1786.	4.6	219
100	Particles and Nanoparticles in Pharmaceutical Products. AAPS Advances in the Pharmaceutical Sciences Series, 2018, , .	0.6	3
101	Moving Liposome Technology from the Bench to the Oncological Patient: Towards Performance-by-Design. AAPS Advances in the Pharmaceutical Sciences Series, 2018, , 171-211.	0.6	0
102	Oral administration of edelfosine encapsulated lipid nanoparticles causes regression of lung metastases in pre-clinical models of osteosarcoma. Cancer Letters, 2018, 430, 193-200.	7.2	23
103	Advances in targeted nanotherapeutics: From bioconjugation to biomimicry. Nano Research, 2018, 11, 4999-5016.	10.4	60
104	Biomedical Applications of Magnetic Nanomaterials. , 2018, , 345-389.		9
105	PEI-NIR Heptamethine Cyanine Nanotheranostics for Tumor Targeted Gene Delivery. Bioconjugate Chemistry, 2018, 29, 2561-2575.	3.6	12
106	Silicaâ€Coated Plasmonic Metal Nanoparticles in Action. Advanced Materials, 2018, 30, e1707003.	21.0	161
107	Precision medicine and drug targeting. , 2018, , 155-166.		1
108	Nanotechnology and Glycosaminoglycans: Paving the Way Forward for Ovarian Cancer Intervention. International Journal of Molecular Sciences, 2018, 19, 731.	4.1	5
109	Application of active targeting nanoparticle delivery system for chemotherapeutic drugs and traditional/herbal medicines in cancer therapy: a systematic review. International Journal of Nanomedicine, 2018, Volume 13, 3921-3935.	6.7	284
110	Targeted Nanotheranostics for Selective Drug Delivery in Cancer. , 2018, , 245-277.		5
111	Ultrasmall noble metal nanoparticles: Breakthroughs and biomedical implications. Nano Today, 2018, 21, 106-125.	11.9	127

ARTICLE IF CITATIONS # Cerasomes and Bicelles: Hybrid Bilayered Nanostructures With Silica-Like Surface in Cancer 112 3.6 25 Theranostics. Frontiers in Chemistry, 2018, 6, 127. Punica granatum fabricated platinum nanoparticles: A therapeutic pill for breast cancer. AIP 0.4 Conference Proceedings, 2018, , . Peptide nanosponges designed for rapid uptake by leukocytes and neural stem cells. RSC Advances, 114 7 3.6 2018, 8, 16052-16060. Tumor heterogeneity and nanoparticle-mediated tumor targeting: the importance of delivery system 5.8 personalization. Drug Delivery and Translational Research, 2018, 8, 1508-1526. Silicaâ€Coated Magnetite Nanoparticles Carrying a Highâ€Density Polymer Brush Shell of Hydrophilic 116 3.9 15 Polymer. Macromolecular Rapid Communications, 2018, 39, e1800226. Focus on Fundamentals: Achieving Effective Nanoparticle Targeting. Trends in Molecular Medicine, 6.7 2018, 24, 598-606. Design of targeting peptides for nanodrugs for treatment of infectious diseases and cancer., 2018,, 118 1 343-381. Targeted cancer drug delivery with aptamer-functionalized polymeric nanoparticles. Journal of Drug 4.4 78 Targeting, 2019, 27, 292-299. Fluorescence Guidance in Surgical Oncology: Challenges, Opportunities, and Translation. Molecular 120 2.6 54 Imaging and Biology, 2019, 21, 200-218. Pretargeted delivery of PEG-coated drug carriers to breast tumors using multivalent, bispecific antibody against polyethylene glycol and HER2. Nanomedicine: Nanotechnology, Biology, and Medicine, 3.3 2019, 21, 102076. A Multifunctional Lipid-Based Nanodevice for the Highly Specific Codelivery of Sorafenib and Midkine 122 4.6 45 siRNA to Hepatic Cancer Cells. Molecular Pharmaceutics, 2019, 16, 4031-4044. Assisted delivery of anti-tumour platinum drugs using DNA-coiling gold nanoparticles bearing lumophores and intercalators: towards a new generation of multimodal nanocarriers with enhanced action. Chemical Science, 2019, 10, 9244-9256. Hyaluronan-modified nanoparticles for tumor-targeting. Expert Opinion on Drug Delivery, 2019, 16, 124 5.0 27 915-936. Recent advances in the targeting of systemically administered non-viral gene delivery systems. Expert Opinion on Drug Delivery, 2019, 16, 1037-1050. 5.0 Antifolate SERS-active nanovectors: quantitative drug nanostructuring and selective cell targeting 126 12 5.6 for effective theranostics. Nanoscale, 2019, 11, 15224-15233. Aptamer-conjugated functionalized nano-biomaterials for diagnostic and targeted drug delivery 127 applications., 2019, , 469-494. Drug formulation and nanomedicine approaches to targeting lymphatic cancer metastases. 128 3.3 15 Nanomedicine, 2019, 14, 1605-1621. Transferrin-decorated thymoquinone-loaded PEG-PLGA nanoparticles exhibit anticarcinogenic effect 129 in non-small cell lung carcinoma <i>via</i> the modulation of miR-34a and miR-16. Biomaterials 5.4 Science, 2019, 7, 4325-4344.

#	Article	IF	CITATIONS
130	Tumor Targeting Strategies of Smart Fluorescent Nanoparticles and Their Applications in Cancer Diagnosis and Treatment. Advanced Materials, 2019, 31, e1902409.	21.0	173
131	Hyaluronic Acid-Coated Nanomedicine for Targeted Cancer Therapy. Pharmaceutics, 2019, 11, 301.	4.5	107
132	Rekindling RNAi Therapy: Materials Design Requirements for In Vivo siRNA Delivery. Advanced Materials, 2019, 31, e1903637.	21.0	187
133	Recent advances and challenges of repurposing nanoparticle-based drug delivery systems to enhance cancer immunotherapy. Theranostics, 2019, 9, 7906-7923.	10.0	100
134	Active Cellular and Subcellular Targeting of Nanoparticles for Drug Delivery. Pharmaceutics, 2019, 11, 543.	4.5	72
135	Nanotargeted agents: an emerging therapeutic strategy for breast cancer. Nanomedicine, 2019, 14, 1771-1786.	3.3	40
136	Biodegradable polymers and constructs: A novel approach in drug delivery. European Polymer Journal, 2019, 120, 109191.	5.4	181
137	Current strategies for different paclitaxel-loaded Nano-delivery Systems towards therapeutic applications for ovarian carcinoma: A review article. Journal of Controlled Release, 2019, 311-312, 125-137.	9.9	64
138	Innovative approaches for cancer treatment: current perspectives and new challenges. Ecancermedicalscience, 2019, 13, 961.	1.1	450
139	Tumor homing peptide modified liposomes of capecitabine for improved apoptotic activity and HER2 targeted therapy in breast cancer: <i>in vitro</i> studies. RSC Advances, 2019, 9, 24987-24994.	3.6	13
140	Advancing Cancer Immunotherapies with Nanotechnology. Advanced Therapeutics, 2019, 2, 1800128.	3.2	45
141	Suppression of Tumor Growth and Metastases by Targeted Intervention in Urokinase Activity with Cyclic Peptides. Journal of Medicinal Chemistry, 2019, 62, 2172-2183.	6.4	12
142	Functionalized Superparamagnetic Iron Oxide Nanoparticles (SPIONs) as Platform for the Targeted Multimodal Tumor Therapy. Frontiers in Oncology, 2019, 9, 59.	2.8	69
143	Are Nanocarriers Effective for the Diagnosis and Treatment of Pancreatic Cancer?. , 2019, , 159-174.		2
144	Engineered Mesenchymal Stem Cells for Targeting Solid Tumors: Therapeutic Potential beyond Regenerative Therapy. Journal of Pharmacology and Experimental Therapeutics, 2019, 370, 231-241.	2.5	48
145	A Perspective Review on the Role of Nanomedicine in the Modulation of TNF-TNFR2 Axis in Breast Cancer Immunotherapy. Journal of Oncology, 2019, 2019, 1-13.	1.3	27
146	<p>Modified methods of nanoparticles synthesis in pH-sensitive nano-carriers production for doxorubicin delivery on MCF-7 breast cancer cell line</p> . International Journal of Nanomedicine, 2019, Volume 14, 3615-3627.	6.7	18
147	Preparation and Characterization of Dentin Phosphophorynâ€Derived Peptideâ€Functionalized Lignin Nanoparticles for Enhanced Cellular Uptake. Small, 2019, 15, e1901427	10.0	57

#	ARTICLE	IF	CITATIONS
148	Recent advances in photodynamic therapy for cancer and infectious diseases. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2019, 11, e1560.	6.1	113
149	Dual drug loaded PLGA nanospheres for synergistic efficacy in breast cancer therapy. Materials Science and Engineering C, 2019, 103, 109716.	7.3	30
150	Oligo Hyaluronan oated Silica/Hydroxyapatite Degradable Nanoparticles for Targeted Cancer Treatment. Advanced Science, 2019, 6, 1900716.	11.2	51
151	<p>Monoclonal antibody therapy of solid tumors: clinical limitations and novel strategies to enhance treatment efficacy</p> . Biologics: Targets and Therapy, 2019, Volume 13, 33-51.	3.2	115
152	Organotropic drug delivery: Synthetic nanoparticles and extracellular vesicles. Biomedical Microdevices, 2019, 21, 46.	2.8	64
153	Combination Chemotherapy of L1210 Tumors in Mice with Pretubulysin and Methotrexate Lipo-Oligomer Nanoparticles. Molecular Pharmaceutics, 2019, 16, 2405-2417.	4.6	7
154	Design of 5-fluorouracil (5-FU) loaded, folate conjugated peptide linked nanoparticles, a potential new drug carrier for selective targeting of tumor cells. MedChemComm, 2019, 10, 559-572.	3.4	19
155	Copper sulfide: An emerging adaptable nanoplatform in cancer theranostics. International Journal of Pharmaceutics, 2019, 562, 135-150.	5.2	55
156	Multifunctional nanocrystals for cancer therapy: a potential nanocarrier. , 2019, , 91-116.		196
157	Delivering Combination Chemotherapies and Targeting Oncogenic Pathways via Polymeric Drug Delivery Systems. Polymers, 2019, 11, 630.	4.5	26
158	A pH-Responsive Multifunctional Nanocarrier in the Application of Chemo-Photodynamic Therapy. Journal of Nanomaterials, 2019, 2019, 1-12.	2.7	5
159	Nanoparticle based induction heating at low magnitudes of magnetic field strengths for breast cancer therapy. Journal of Magnetism and Magnetic Materials, 2019, 483, 169-177.	2.3	17
160	A Highly Efficient Tumorâ€īargeting Nanoprobe with a Novel Cell Membrane Permeability Mechanism. Advanced Materials, 2019, 31, e1807456.	21.0	39
161	Evolution of Nanoparticle-Mediated Photodynamic Therapy: From Superficial to Deep-Seated Cancers. Molecules, 2019, 24, 520.	3.8	72
162	Effective lung-targeted RNAi in mice with peptide-based delivery of nucleic acid. Scientific Reports, 2019, 9, 19926.	3.3	20
163	UVC-Emitting LuPO4:Pr3+ Nanoparticles Decrease Radiation Resistance of Hypoxic Cancer Cells. Radiation Research, 2019, 193, 82.	1.5	7
164	<p>Smart Targeting To Improve Cancer Therapeutics</p> . Drug Design, Development and Therapy, 2019, Volume 13, 3753-3772.	4.3	91
165	Functionalized Upconversion Nanoparticles for Targeted Labelling of Bladder Cancer Cells. Biomolecules, 2019, 9, 820.	4.0	13

#	Article	IF	CITATIONS
166	Inhibitor-conjugated harmonic nanoparticles targeting fibroblast activation protein. RSC Advances, 2019, 9, 31659-31669.	3.6	6
168	Nanotheranostics for Cancer Applications. Bioanalysis, 2019, , .	0.1	3
169	Therapeutic Opportunities in Neuroblastoma Using Nanotechnology. Journal of Pharmacology and Experimental Therapeutics, 2019, 370, 625-635.	2.5	16
170	Emerging transporter-targeted nanoparticulate drug delivery systems. Acta Pharmaceutica Sinica B, 2019, 9, 49-58.	12.0	51
171	Engineered beta-cyclodextrin-based carrier for targeted doxorubicin delivery in breast cancer therapy in vivo. Journal of Industrial and Engineering Chemistry, 2019, 70, 145-151.	5.8	25
172	Nanotechnology in Targeted Drug Delivery and Therapeutics. , 2019, , 357-409.		17
173	External stimulus responsive inorganic nanomaterials for cancer theranostics. Advanced Drug Delivery Reviews, 2019, 138, 18-40.	13.7	79
174	Active Targeting of Cancer Cells by Nanobody Decorated Polypeptide Micelle with Bio-orthogonally Conjugated Drug. Nano Letters, 2019, 19, 247-254.	9.1	72
175	Cancerâ€Targeting Nanoparticles for Combinatorial Nucleic Acid Delivery. Advanced Materials, 2020, 32, e1901081.	21.0	146
176	Multifunctional nanomedicines for targeting epidermal growth factor receptor in colorectal cancer. Cellular and Molecular Life Sciences, 2020, 77, 997-1019.	5.4	32
177	Three-dimensional tumor models: Promoting breakthroughs in nanotheranostics translational research. Applied Materials Today, 2020, 19, 100552.	4.3	27
178	Role of Ultrasound and Photoacoustic Imaging in Photodynamic Therapy for Cancer. Photochemistry and Photobiology, 2020, 96, 260-279.	2.5	44
179	Luminescent gold nanoclusters for <i>in vivo</i> tumor imaging. Analyst, The, 2020, 145, 348-363.	3.5	41
180	3D cultures for modeling nanomaterial-based photothermal therapy. Nanoscale Horizons, 2020, 5, 400-430.	8.0	34
181	Active Targeting of Dendritic Polyglycerols for Diagnostic Cancer Imaging. Small, 2020, 16, e1905013.	10.0	19
182	Enhanced radiosensitivity of LNCaP prostate cancer cell line by gold-photoactive nanoparticles modified with folic acid. Photodiagnosis and Photodynamic Therapy, 2020, 29, 101602.	2.6	18
184	Metal–Organic Framework Preserves the Biorecognition of Antibodies on Nanoscale Surfaces Validated by Single-Molecule Force Spectroscopy. ACS Applied Materials & Interfaces, 2020, 12, 3011-3020.	8.0	12
185	3D printed nanomaterial-based electronic, biomedical, and bioelectronic devices. Nanotechnology, 2020, 31, 172001.	2.6	52

#	Article	IF	CITATIONS
186	Active targeting and transport. , 2020, , 19-36.		10
187	Clinical application of photodynamic therapy for malignant airway tumors in China. Thoracic Cancer, 2020, 11, 181-190.	1.9	6
188	Incorporation of Ru(II) Polypyridyl Complexes into Nanomaterials for Cancer Therapy and Diagnosis. Advanced Materials, 2020, 32, e2003294.	21.0	45
189	Folate receptor-Î ² targeted cholesterol-chitosan nanocarrier for treatment of rheumatoid arthritis: An animal study. Journal of Drug Delivery Science and Technology, 2020, 60, 101946.	3.0	5
190	The influence of nanoparticulate drug delivery systems in drug therapy. Journal of Drug Delivery Science and Technology, 2020, 60, 101961.	3.0	39
191	Mesoporous Silica Nanoparticles as Theranostic Antitumoral Nanomedicines. Pharmaceutics, 2020, 12, 957.	4.5	29
192	Transporter-Targeted Nano-Sized Vehicles for Enhanced and Site-Specific Drug Delivery. Cancers, 2020, 12, 2837.	3.7	20
193	Nanocarrier centered therapeutic approaches: Recent developments with insight towards the future in the management of lung cancer. Journal of Drug Delivery Science and Technology, 2020, 60, 102070.	3.0	12
194	Aptamer-Mediated Nanotheranostics for Cancer Treatment: A Review. ACS Applied Nano Materials, 2020, 3, 9542-9559.	5.0	30
195	In silico modelling of cancer nanomedicine, across scales and transport barriers. Npj Computational Materials, 2020, 6, .	8.7	62
196	Mechanistic Understanding From Molecular Dynamics Simulation in Pharmaceutical Research 1: Drug Delivery. Frontiers in Molecular Biosciences, 2020, 7, 604770.	3.5	54
197	Moving Beyond the Pillars of Cancer Treatment: Perspectives From Nanotechnology. Frontiers in Chemistry, 2020, 8, 598100.	3.6	24
198	Development of Innovative Formulations for Breast Cancer Chemotherapy. Cancers, 2020, 12, 3281.	3.7	0
199	Ligand-Targeted Delivery of Photosensitizers for Cancer Treatment. Molecules, 2020, 25, 5317.	3.8	50
200	A Novel Method to Construct Dual-targeted Magnetic Nanoprobes by Modular Assembling. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 605, 125339.	4.7	2
201	Engineered Drug Delivery Systems: Insights of Biointerface. , 2020, , 1-30.		3
202	Fantastic Voyage of Nanomotors into the Cell. ACS Nano, 2020, 14, 9423-9439.	14.6	144
203	Engineering Intelligent Nanosystems for Enhanced Medical Imaging. Advanced Intelligent Systems, 2020, 2, 2000087.	6.1	30

#	Article	IF	CITATIONS
204	MUC1 Aptamer apped Mesoporous Silica Nanoparticles for Navitoclax Resistance Overcoming in Tripleâ€Negative Breast Cancer. Chemistry - A European Journal, 2020, 26, 16318-16327.	3.3	16
205	Strategies for Precise Engineering and Conjugation of Antibody Targeted-nanoparticles for Cancer Therapy. Current Medical Science, 2020, 40, 463-473.	1.8	11
206	Nanotherapeutics for Antimetastatic Treatment. Trends in Cancer, 2020, 6, 645-659.	7.4	49
207	Polyethylenimine-graft-poly (maleic anhydride-alt-1-octadecene) coated Fe ₃ O ₄ magnetic nanoparticles: promising targeted pH-sensitive system for curcumin delivery and MR imaging. International Journal of Polymeric Materials and Polymeric Biomaterials, 2021, 70, 1344-1353.	3.4	7
208	New Design Strategies for Controlling the Rate of Hydrophobic Drug Release from Nanoemulsions in Blood Circulation. Molecular Pharmaceutics, 2020, 17, 3773-3782.	4.6	6
209	Poly-Î ³ -glutamic acid derived nanopolyplexes for up-regulation of gamma-glutamyl transpeptidase to augment tumor active targeting and enhance synergistic antitumor therapy by regulating intracellular redox homeostasis. Biomaterials Science, 2020, 8, 5955-5968.	5.4	4
210	Particle Size of Xâ€ray Pumped UVCâ€Emitting Nanoparticles Defines Intracellular Localization and Biological Activity Against Cancer Cells. Particle and Particle Systems Characterization, 2020, 37, 2000201.	2.3	1
211	Applications and Limitations of Dendrimers in Biomedicine. Molecules, 2020, 25, 3982.	3.8	192
212	Gene Therapy for Hepatocellular Carcinoma: Highlighting the Journey from Theory to Clinical Applications. Advanced Therapeutics, 2020, 3, 2000087.	3.2	16
213	Retooling Cancer Nanotherapeutics' Entry into Tumors to Alleviate Tumoral Hypoxia. Small, 2020, 16, e2003000.	10.0	36
214	Reconstruction of X-Ray Fluorescence Computed Tomography From Sparse-View Projections via L1-Norm Regularized EM Algorithm. IEEE Access, 2020, 8, 211576-211584.	4.2	7
215	Fancy-Shaped Gold–Platinum Nanocauliflowers for Improved Proton Irradiation Effect on Colon Cancer Cells. International Journal of Molecular Sciences, 2020, 21, 9610.	4.1	15
216	<p>Enteric-Coated Strategies in Colorectal Cancer Nanoparticle Drug Delivery System</p> . Drug Design, Development and Therapy, 2020, Volume 14, 4387-4405.	4.3	26
217	Aptamer-Conjugated Multifunctional Polymeric Nanoparticles as Cancer-Targeted, MRI-Ultrasensitive Drug Delivery Systems for Treatment of Castration-Resistant Prostate Cancer. BioMed Research International, 2020, 2020, 1-12.	1.9	30
218	Going even smaller: Engineering subâ€5 nm nanoparticles for improved delivery, biocompatibility, and functionality. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2020, 12, e1644.	6.1	18
219	A novel nanoparticle-based theranostic agent targeting LRP-1 enhances the efficacy of neoadjuvant radiotherapy in colorectal cancer. Biomaterials, 2020, 255, 120151.	11.4	27
220	Protein Corona-Enabled Systemic Delivery and Targeting of Nanoparticles. AAPS Journal, 2020, 22, 83.	4.4	43
221	Docetaxel gold complex nanoflowers: A chemo-biological evaluation for their use as nanotherapeutics. Colloids and Surfaces B: Biointerfaces, 2020, 194, 111172.	5.0	5

#	Article	IF	CITATIONS
222	Nanotechnology-Based Histone Deacetylase Inhibitors for Cancer Therapy. Frontiers in Cell and Developmental Biology, 2020, 8, 400.	3.7	21
223	Immune cell engineering: opportunities in lung cancer therapeutics. Drug Delivery and Translational Research, 2020, 10, 1203-1227.	5.8	3
225	Biogenic silver, gold and copper nanoparticles - A sustainable green chemistry approach for cancer therapy. Sustainable Chemistry and Pharmacy, 2020, 16, 100247.	3.3	49
226	Lactoferrin's Anti-Cancer Properties: Safety, Selectivity, and Wide Range of Action. Biomolecules, 2020, 10, 456.	4.0	111
227	Mitigating off-target effects in CRISPR/Cas9-mediated in vivo gene editing. Journal of Molecular Medicine, 2020, 98, 615-632.	3.9	66
229	pH-responsive high stability polymeric nanoparticles for targeted delivery of anticancer therapeutics. Communications Biology, 2020, 3, 95.	4.4	163
230	Targeting Activated Hepatic Stellate Cells Using Collagen-Binding Chitosan Nanoparticles for siRNA Delivery to Fibrotic Livers. Pharmaceutics, 2020, 12, 590.	4.5	21
231	Recent advances in multifunctional nanoengineered biomaterials. , 2020, , 91-106.		1
232	Polymers in medicine. , 2020, , 281-323.		1
233	Advanced engineered nanoparticulate platforms to address key biological barriers for delivering chemotherapeutic agents to target sites. Advanced Drug Delivery Reviews, 2020, 167, 170-188.	13.7	112
233 234	Advanced engineered nanoparticulate platforms to address key biological barriers for delivering chemotherapeutic agents to target sites. Advanced Drug Delivery Reviews, 2020, 167, 170-188. Phenyl boronic acid-modified lipid nanocarriers of niclosamide for targeting triple-negative breast cancer. Nanomedicine, 2020, 15, 1551-1565.	13.7 3.3	112 18
233 234 235	Advanced engineered nanoparticulate platforms to address key biological barriers for delivering chemotherapeutic agents to target sites. Advanced Drug Delivery Reviews, 2020, 167, 170-188. Phenyl boronic acid-modified lipid nanocarriers of niclosamide for targeting triple-negative breast cancer. Nanomedicine, 2020, 15, 1551-1565. Recent advances in dendrimer-based nanoplatform for cancer treatment: A review. European Polymer Journal, 2020, 126, 109546.	13.7 3.3 5.4	112 18 76
233 234 235 236	Advanced engineered nanoparticulate platforms to address key biological barriers for delivering chemotherapeutic agents to target sites. Advanced Drug Delivery Reviews, 2020, 167, 170-188.Phenyl boronic acid-modified lipid nanocarriers of niclosamide for targeting triple-negative breast cancer. Nanomedicine, 2020, 15, 1551-1565.Recent advances in dendrimer-based nanoplatform for cancer treatment: A review. European Polymer Journal, 2020, 126, 109546.Probing and Enhancing Ligand-Mediated Active Targeting of Tumors Using Sub-5 nm Ultrafine Iron Oxide Nanoparticles. Theranostics, 2020, 10, 2479-2494.	13.7 3.3 5.4 10.0	112 18 76 49
233 234 235 236 237	Advanced engineered nanoparticulate platforms to address key biological barriers for delivering chemotherapeutic agents to target sites. Advanced Drug Delivery Reviews, 2020, 167, 170-188. Phenyl boronic acid-modified lipid nanocarriers of niclosamide for targeting triple-negative breast cancer. Nanomedicine, 2020, 15, 1551-1565. Recent advances in dendrimer-based nanoplatform for cancer treatment: A review. European Polymer Journal, 2020, 126, 109546. Probing and Enhancing Ligand-Mediated Active Targeting of Tumors Using Sub-5 nm Ultrafine Iron Oxide Nanoparticles. Theranostics, 2020, 10, 2479-2494. HER2 targeted biological macromolecule modified liposomes for improved efficacy of capecitabine in breast cancer. International Journal of Biological Macromolecules, 2020, 150, 631-636.	13.7 3.3 5.4 10.0 7.5	 112 18 76 49 14
233 234 235 236 237 238	Advanced engineered nanoparticulate platforms to address key biological barriers for delivering chemotherapeutic agents to target sites. Advanced Drug Delivery Reviews, 2020, 167, 170-188. Phenyl boronic acid-modified lipid nanocarriers of niclosamide for targeting triple-negative breast cancer. Nanomedicine, 2020, 15, 1551-1565. Recent advances in dendrimer-based nanoplatform for cancer treatment: A review. European Polymer Journal, 2020, 126, 109546. Probing and Enhancing Ligand-Mediated Active Targeting of Tumors Using Sub-5 nm Ultrafine Iron Oxide Nanoparticles. Theranostics, 2020, 10, 2479-2494. HER2 targeted biological macromolecule modified liposomes for improved efficacy of capecitabine in breast cancer. International Journal of Biological Macromolecules, 2020, 150, 631-636. Nanocomplexes loaded with miR-128-3p for enhancing chemotherapy effect of colorectal cancer through dual-targeting silence the activity of PI3K/AKT and MEK/ERK pathway. Drug Delivery, 2020, 27, 323-333.	 13.7 3.3 5.4 10.0 7.5 5.7 	 112 18 76 49 14 17
233 234 235 236 237 238	Advanced engineered nanoparticulate platforms to address key biological barriers for delivering chemotherapeutic agents to target sites. Advanced Drug Delivery Reviews, 2020, 167, 170-188.Phenyl boronic acid-modified lipid nanocarriers of niclosamide for targeting triple-negative breast cancer. Nanomedicine, 2020, 15, 1551-1565.Recent advances in dendrimer-based nanoplatform for cancer treatment: A review. European Polymer Journal, 2020, 126, 109546.Probing and Enhancing Ligand-Mediated Active Targeting of Tumors Using Sub-5 nm Ultrafine Iron Oxide Nanoparticles. Theranostics, 2020, 10, 2479-2494.HER2 targeted biological macromolecule modified liposomes for improved efficacy of capecitabine in breast cancer. International Journal of Biological Macromolecules, 2020, 150, 631-636.Nanocomplexes loaded with miR-128-3p for enhancing chemotherapy effect of colorectal cancer through dual-targeting silence the activity of PI3K/AKT and MEK/ERK pathway. Drug Delivery, 2020, 27, 323-333.Nanocarriers for the Delivery of Medical, Veterinary, and Agricultural Active Ingredients. ACS Nano, 2020, 14, 2678-2701.	 13.7 3.3 5.4 10.0 7.5 5.7 14.6 	 112 18 76 49 14 17 113
 233 234 235 236 237 238 239 240 	Advanced engineered nanoparticulate platforms to address key biological barriers for delivering chemotherapeutic agents to target sites. Advanced Drug Delivery Reviews, 2020, 167, 170-188. Phenyl boronic acid-modified lipid nanocarriers of niclosamide for targeting triple-negative breast cancer. Nanomedicine, 2020, 15, 1551-1565. Recent advances in dendrimer-based nanoplatform for cancer treatment: A review. European Polymer Journal, 2020, 126, 109546. Probing and Enhancing Ligand-Mediated Active Targeting of Tumors Using Sub-5 nm Ultrafine Iron Oxide Nanoparticles. Theranostics, 2020, 10, 2479-2494. HER2 targeted biological macromolecule modified liposomes for improved efficacy of capecitabine in breast cancer. International Journal of Biological Macromolecules, 2020, 150, 631-636. Nanocomplexes loaded with miR-128-3p for enhancing chemotherapy effect of colorectal cancer through dual-targeting silence the activity of PI3K/AKT and MEK/ERK pathway. Drug Delivery, 2020, 27, 323-333. Nanocarriers for the Delivery of Medical, Veterinary, and Agricultural Active Ingredients. ACS Nano, 2020, 14, 2678-2701. Lightä&Triggered Cancer Cell Specific Targeting and Liposomal Drug Delivery in a Zebrafish Xenograft Model. Advanced Healthcare Materials, 2020, 9, e1901489.	 13.7 3.3 5.4 10.0 7.5 5.7 14.6 7.6 	 112 18 76 49 49 14 17 113 27

#	Article	IF	CITATIONS
242	Recent advances in the combination delivery of drug for leukemia and other cancers. Expert Opinion on Drug Delivery, 2020, 17, 213-223.	5.0	16
243	Folic acid directly modified low molecular weight of polyethyleneimine for targeted pDNA delivery. Journal of Drug Delivery Science and Technology, 2020, 56, 101522.	3.0	4
244	Nanomedicine in osteosarcoma therapy: Micelleplexes for delivery of nucleic acids and drugs toward osteosarcoma-targeted therapies. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 148, 88-106.	4.3	21
245	Preparation, characterization and in vitro evaluation of resveratrol-loaded nanospheres potentially useful for human breast carcinoma. Journal of Drug Delivery Science and Technology, 2020, 57, 101748.	3.0	4
246	Nanomedicine advances in cancer therapy. , 2020, , 219-253.		16
247	Intestinal OCTN2- and MCT1-targeted drug delivery to improve oral bioavailability. Asian Journal of Pharmaceutical Sciences, 2020, 15, 158-172.	9.1	19
248	Molecular approaches for targeted drug delivery towards cancer: A concise review with respect to nanotechnology. Journal of Drug Delivery Science and Technology, 2020, 57, 101682.	3.0	22
249	Site-Specific Antibody Conjugation Strategy to Functionalize Virus-Based Nanoparticles. Bioconjugate Chemistry, 2020, 31, 1408-1416.	3.6	27
250	Advances in living cell-based anticancer therapeutics. Biomaterials Science, 2020, 8, 2344-2365.	5.4	22
251	Harnessing the Formation of Natural Killer–Tumor Cell Immunological Synapses for Enhanced Therapeutic Effect in Solid Tumors. Advanced Materials, 2020, 32, e2000020.	21.0	29
252	Overview of stimuli-responsive mesoporous organosilica nanocarriers for drug delivery. Pharmacological Research, 2020, 155, 104742.	7.1	33
253	Tumor Targeted Nanocarriers for Immunotherapy. Molecules, 2020, 25, 1508.	3.8	26
254	Inorganic Porous Nanoparticles for Drug Delivery in Antitumoral Therapy. Biotechnology Journal, 2021, 16, e2000150.	3.5	43
255	Emergence in protein derived nanomedicine as anticancer therapeutics: More than a tour de force. Seminars in Cancer Biology, 2021, 69, 77-90.	9.6	25
256	Lactoferrin coated or conjugated nanomaterials as an active targeting approach in nanomedicine. International Journal of Biological Macromolecules, 2021, 167, 1527-1543.	7.5	31
257	Milk exosomes: A biogenic nanocarrier for small molecules and macromolecules to combat cancer. American Journal of Reproductive Immunology, 2021, 85, e13349.	1.2	30
258	Nanoparticles in cancer immunotherapies: An innovative strategy. Biotechnology Progress, 2021, 37, e3070.	2.6	14
259	Challenges in the development of nanoparticleâ€based imaging agents: Characterization and biology. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2021, 13, e1665.	6.1	23

#	Article	IF	CITATIONS
260	Glyco-nanoparticles: New drug delivery systems in cancer therapy. Seminars in Cancer Biology, 2021, 69, 24-42.	9.6	48
261	Surface-decoration strategies in nanomedicine for cancer treatment. , 2021, , 131-152.		0
262	Magnetically responsive delivery into tumor environment. , 2021, , 59-87.		0
263	Nanomedicines for Endometriosis: Lessons Learned from Cancer Research. Small, 2021, 17, e2004975.	10.0	30
264	Folic acid modified TPGS as a novel nano-micelle for delivery of nitidine chloride to improve apoptosis induction in Huh7 human hepatocellularâ€,carcinoma. BMC Pharmacology & Toxicology, 2021, 22, 1.	2.4	33
265	Passive Diffusion vs Active pH-Dependent Encapsulation of Tyrosine Kinase Inhibitors Vandetanib and Lenvatinib into Folate-Targeted Ferritin Delivery System. International Journal of Nanomedicine, 2021, Volume 16, 1-14.	6.7	4
266	Hybrid Nanosystems for Biomedical Applications. ACS Nano, 2021, 15, 2099-2142.	14.6	100
267	Measurement of dose enhancement factor for Xoft Axxent electronic brachytherapy device using nanoparticle-embedded alginate film and radiochromic film. Journal of Cancer Research and Therapeutics, 2023, .	0.9	0
268	Nanomaterials for T-cell cancer immunotherapy. Nature Nanotechnology, 2021, 16, 25-36.	31.5	191
269	Organic nanocarriers for targeted delivery of anticancer agents. , 2021, , 467-497.		1
270	Therapeutic Approaches to Employ Monoclonal Antibody for Cancer Treatment. Advances in Medical Diagnosis, Treatment, and Care, 2021, , 42-88.	0.1	0
271	Supramolecular agents for combination of photodynamic therapy and other treatments. Chemical Science, 2021, 12, 7248-7268.	7.4	82
272	Active targeting of cancer cells by CD44 binding peptide-functionalized oil core-based nanocapsules. RSC Advances, 2021, 11, 24487-24499.	3.6	3
273	Graphene oxide loaded with tumor-targeted peptide and anti-cancer drugs for cancer target therapy. Scientific Reports, 2021, 11, 1725.	3.3	39
274	Development of lignin-based nanoparticles: fabrication methods and functionalization approaches. , 2021, , 227-270.		0
275	Tumor grafted – chick chorioallantoic membrane as an alternative model for biological cancer research and conventional/nanomaterial-based theranostics evaluation. Expert Opinion on Drug Metabolism and Toxicology, 2021, 17, 947-968.	3.3	28
276	Targeted drug delivery strategies for precision medicines. Nature Reviews Materials, 2021, 6, 351-370.	48.7	388
277	Mechanism of cellular uptake and cytotoxicity of paclitaxel loaded lipid nanocapsules in breast cancer cells. International Journal of Pharmaceutics, 2021, 597, 120217.	5.2	23

#	Article	IF	Citations
278	DR5 antibody conjugated lipid-based nanocarriers of gamma-secretase inhibitor for the treatment of triple negative breast cancer. Chemistry and Physics of Lipids, 2021, 235, 105033.	3.2	15
279	Functionalizing Liposomes with Dual Aptamers for Targeting of Breast Cancer Cells and Cancer Stem Cells. Biomedical Science Letters, 2021, 27, 1-11.	0.3	1
280	Therapeutic strategies to overcome taxane resistance in cancer. Drug Resistance Updates, 2021, 55, 100754.	14.4	103
281	Nanotechnology based solutions for anti-leishmanial impediments: a detailed insight. Journal of Nanobiotechnology, 2021, 19, 106.	9.1	32
282	Prospects of Delivering Natural Compounds by Polymer-Drug Conjugates in Cancer Therapeutics. Anti-Cancer Agents in Medicinal Chemistry, 2022, 22, 1699-1713.	1.7	4
283	Nanotechnology Based Approach for Hepatocellular Carcinoma Targeting. Current Drug Targets, 2021, 22, 779-792.	2.1	13
284	Magnetism, Ultrasound, and Light-Stimulated Mesoporous Silica Nanocarriers for Theranostics and Beyond. Journal of the American Chemical Society, 2021, 143, 6025-6036.	13.7	52
285	Nanomedicine in cancer therapy: promises and hurdles of polymeric nanoparticles. Exploration of Medicine, 0, , .	1.5	4
286	Metallic nanoparticles as drug delivery system for the treatment of cancer. Expert Opinion on Drug Delivery, 2021, 18, 1261-1290.	5.0	69
287	Design of liposomes as drug delivery system for therapeutic applications. International Journal of Pharmaceutics, 2021, 601, 120571.	5.2	406
288	Tailoring nanoparticles for targeted drug delivery: From organ to subcellular level. View, 2021, 2, 20200131.	5.3	18
289	Nano―and Microscale Drug Delivery Approaches for Therapeutic Immunomodulation. ChemNanoMat, 2021, 7, 773-788.	2.8	5
290	Cell surface nucleolin as active bait for nanomedicine in cancer therapy: a promising option. Nanotechnology, 2021, 32, 322001.	2.6	17
291	Chitosan-Based Nanoparticles of Targeted Drug Delivery System in Breast Cancer Treatment. Polymers, 2021, 13, 1717.	4.5	74
292	Cargo Encapsulation in Uniform, Length-Tunable Aqueous Nanofibers with a Coaxial Crystalline and Amorphous Core. Macromolecules, 2021, 54, 5784-5796.	4.8	22
293	Organic optical agents for image-guided combined cancer therapy. Biomedical Materials (Bristol), 2021, 16, 042009.	3.3	5
294	Development of Fe3O4 core–TiO2 shell nanocomposites and nanoconjugates as a foundation for neuroblastoma radiosensitization. Cancer Nanotechnology, 2021, 12, 12.	3.7	9
295	Development of Polymer-Assisted Nanoparticles and Nanogels for Cancer Therapy: An Update. Gels, 2021, 7, 60.	4.5	31

#	Article	IF	CITATIONS
296	Recent advances in liposome formulations for breast cancer therapeutics. Cellular and Molecular Life Sciences, 2021, 78, 5225-5243.	5.4	41
297	Eradication of large established tumors by drug-loaded bacterial particles via a neutrophil-mediated mechanism. Journal of Controlled Release, 2021, 334, 52-63.	9.9	1
298	The Combination of Morphology and Surface Chemistry Defines the Immunological Identity of Nanocarriers in Human Blood. Advanced Therapeutics, 2021, 4, 2100062.	3.2	19
299	Dual-responsive nanohybrid based on degradable silica-coated gold nanorods for triple-combination therapy for breast cancer. Acta Biomaterialia, 2021, 128, 435-446.	8.3	41
300	Iron Oxide Nanoparticles as Theranostic Agents in Cancer Immunotherapy. Nanomaterials, 2021, 11, 1950.	4.1	16
301	Ligand Ratio Plays a Critical Role in the Design of Optimal Multifunctional Gold Nanoclusters for Targeted Gastric Cancer Therapy. ACS Nanoscience Au, 2021, 1, 47-60.	4.8	7
302	Smallâ€Molecule Prodrug Nanoassemblies: An Emerging Nanoplatform for Anticancer Drug Delivery. Small, 2021, 17, e2101460.	10.0	87
303	Comparison between Fluorescence Imaging and Elemental Analysis to Determine Biodistribution of Inorganic Nanoparticles with Strong Light Absorption. ACS Applied Materials & Interfaces, 2021, 13, 40392-40400.	8.0	5
304	Nanotherapeutics for treating coronavirus diseases. Journal of Drug Delivery Science and Technology, 2021, 64, 102634.	3.0	8
305	Folate receptor-targeted nanoprobes for molecular imaging of cancer: Friend or foe?. Nano Today, 2021, 39, 101173.	11.9	16
306	Stimulus-responsive liposomes for biomedical applications. Drug Discovery Today, 2021, 26, 1794-1824.	6.4	53
307	Insight of nanomedicine strategies for a targeted delivery of nanotherapeutic cues to cope with the resistant types of cancer stem cells. Journal of Drug Delivery Science and Technology, 2021, 64, 102681.	3.0	9
308	Advancement in design of nanostructured lipid carriers for cancer targeting and theranostic application. Biochimica Et Biophysica Acta - General Subjects, 2021, 1865, 129936.	2.4	22
309	Hyaluronic acid-based drug nanocarriers as a novel drug delivery system for cancer chemotherapy: A systematic review. DARU, Journal of Pharmaceutical Sciences, 2021, 29, 439-447.	2.0	20
310	Radiation nanosensitizers in cancer therapy—From preclinical discoveries to the outcomes of early clinical trials. Bioengineering and Translational Medicine, 2022, 7, e10256.	7.1	26
311	Developing Actively Targeted Nanoparticles to Fight Cancer: Focus on Italian Research. Pharmaceutics, 2021, 13, 1538.	4.5	6
312	A simple, fast, and orientation-controllable technology for preparing antibody-modified liposomes. International Journal of Pharmaceutics, 2021, 607, 120966.	5.2	5
313	Triple negative breast cancer and non-small cell lung cancer: Clinical challenges and nano-formulation approaches. Journal of Controlled Release, 2021, 337, 27-58.	9.9	44

#	Article	IF	CITATIONS
314	Understanding MNPs Behaviour in Response to AMF in Biological Milieus and the Effects at the Cellular Level: Implications for a Rational Design That Drives Magnetic Hyperthermia Therapy toward Clinical Implementation. Cancers, 2021, 13, 4583.	3.7	33
315	Evolutionary computational platform for the automatic discovery of nanocarriers for cancer treatment. Npj Computational Materials, 2021, 7, .	8.7	12
316	Nanoparticles: Properties and its 3D printing applications. Materials Today: Proceedings, 2021, , .	1.8	0
317	Folic acid-doxorubicin polymeric nanocapsules: A promising formulation for the treatment of triple-negative breast cancer. European Journal of Pharmaceutical Sciences, 2021, 165, 105943.	4.0	7
318	Acid-sensitive and L61-crosslinked hyaluronic acid nanogels for overcoming tumor drug-resistance. International Journal of Biological Macromolecules, 2021, 188, 11-23.	7.5	14
319	A recombinant antibody fragment directed to the thymic stromal lymphopoietin receptor (CRLF2) efficiently targets pediatric Philadelphia chromosome-like acute lymphoblastic leukemia. International Journal of Biological Macromolecules, 2021, 190, 214-223.	7.5	2
320	Review on combination strategy of immune checkpoint blockade, photodynamic therapy and nanomedicine against solid tumor. Materials and Design, 2021, 209, 109958.	7.0	8
321	Nanoparticle-based theranostics in cancer. , 2021, , 1-24.		0
322	Black Phosphorus Nanosheets Induced Oxidative Stress <i>In Vitro</i> and Targeted Photo-thermal Antitumor Therapy. ACS Applied Bio Materials, 2021, 4, 1704-1719.	4.6	14
323	Nanolipoprotein particles for co-delivery of cystine-knot peptides and Fab–based therapeutics. Nanoscale Advances, 0, , .	4.6	0
324	Nanopolymeric systems to improve brain cancer treatment outcomes. , 2021, , 355-394.		0
325	A novel hemocompatible core@shell nanosystem for selective targeting and apoptosis induction in cancer cells. Inorganic Chemistry Frontiers, 2021, 8, 2697-2712.	6.0	7
326	Applications of Laser in Dentistry. , 2020, , 161-177.		2
327	Imaging of Renal Cancer. , 2020, , 73-97.		2
328	Implications of Nanotechnology in Cancer Diagnostics and Therapeutics. Nanotechnology in the Life Sciences, 2020, , 271-291.	0.6	1
329	Cancer Nanomedicine: Special Focus on Cancer Immunotherapy. , 2021, , 465-508.		2
330	Biomedical Applications of Anisotropic Gold Nanoparticles. Nanostructure Science and Technology, 2017, , 399-426.	0.1	3
332	Magnetic hybrid materials interact with biological matrices. ChemistrySelect, 2022, 7, 1443-1500.	1.5	1

#	Article	IF	Citations
333	Nanomedicine in Melanoma: Current Trends and Future Perspectives. , 0, , 143-159.		5
334	Targeted photodynamic therapy treatment of <i>in vitro</i> A375 metastatic melanoma cells. Oncotarget, 2019, 10, 6079-6095.	1.8	19
335	Strategies for Conjugation of Biomolecules to Nanoparticles as Tumor Targeting Agents. Current Pharmaceutical Design, 2019, 25, 3917-3926.	1.9	14
336	Gold Nanoparticles; Potential Nanotheranostic Agent in Breast Cancer: A Comprehensive Review with Systematic Search Strategy. Current Drug Metabolism, 2020, 21, 579-598.	1.2	11
337	Engineering of Exosomes: Steps Towards Green Production of Drug Delivery System. Current Drug Targets, 2019, 20, 1537-1549.	2.1	21
338	Nanoparticle Therapy for Prostate Cancer: Overview and Perspectives. Current Topics in Medicinal Chemistry, 2019, 19, 57-73.	2.1	33
339	Cellular and Molecular Targeted Drug Delivery in Central Nervous System Cancers: Advances in Targeting Strategies. Current Topics in Medicinal Chemistry, 2020, 20, 2762-2776.	2.1	4
340	Possible Enhancement of Photodynamic Therapy (PDT) Colorectal Cancer Treatment when Combined with Cannabidiol. Anti-Cancer Agents in Medicinal Chemistry, 2021, 21, 137-148.	1.7	19
341	Inhalable Nanostructures for Lung Cancer Treatment: Progress and Challenges. Current Nanomedicine, 2019, 9, 4-29.	0.6	4
342	"Green―Synthesis of Cytotoxic Silver Nanoparticles Based on Secondary Metabolites of Lavandula Angustifolia Mill Acta Naturae, 2019, 11, 47-53.	1.7	14
343	Nano-oncology: Clinical Application for Cancer Therapy and Future Perspectives. Nanotechnology in the Life Sciences, 2021, , 49-95.	0.6	0
344	Nanoengineering with RAFT polymers: from nanocomposite design to applications. Polymer Chemistry, 2021, 12, 6198-6229.	3.9	17
345	Cell membrane camouflaged cerium oxide nanocubes for targeting enhanced tumor-selective therapy. Journal of Materials Chemistry B, 2021, 9, 9524-9532.	5.8	9
346	Delivery of small interfering RNAs by nanovesicles for cancer therapy. Drug Metabolism and Pharmacokinetics, 2022, 42, 100425.	2.2	11
347	Starch coatedgold nanoparticles using hygrophila auriculata L for controlled released of anticancer drug doxorubicin. International Journal of Pharma and Bio Sciences, 2017, 8, .	0.1	0
348	SERS-Active Nanovectors for Single-Cell Cancer Screening and Theranostics. Springer Theses, 2018, , 113-135.	0.1	0
349	Nanotechnology: The Future for Cancer Treatment. , 2019, , 389-418.		1
350	Open-Channel Separation Techniques for the Characterization of Nanomaterials and Their Bioconjugates for Drug Delivery Applications. , 2019, , 113-150.		0

#	Article	IF	CITATIONS
351	Stromal Barriers Within the Tumor Microenvironment and Obstacles to Nanomedicine. , 2019, , 57-89.		3
352	Recent Advances in the au NP Treatment Strategies of Lung Cancers. , 2019, , 701-729.		1
353	CANCER DIAGNOSTICS, IMAGING AND TREATMENT BY NANOSCALE STRUCTURES TARGETING. Biotechnologia Acta, 2019, 12, 12-24.	0.2	1
354	Engineered polymeric nanovehicles for drug delivery. Frontiers of Nanoscience, 2020, 16, 201-232.	0.6	2
355	Nanoscale delivery of phytochemicals targeting CRISPR/Cas9 for cancer therapy. Phytomedicine, 2021, 94, 153830.	5.3	2
356	Exploring near-infrared absorbing nanocarriers to overcome cancer drug resistance. , 2020, 3, 302-333.		4
357	Targeted Nanomedicine in Chemoprevention. , 2020, , 55-67.		0
358	Nanodrug Delivery Formulations for Curcumin Absorption. Food Chemistry, Function and Analysis, 2020, , 324-348.	0.2	0
359	Combination of Phytochemicals with Nanotechnology for Targeting GI Cancer Therapy. , 2020, , 141-167.		1
360	Ligand Nanoparticle Conjugation Approach for Targeted Cancer Chemotherapy. , 2020, , 377-403.		1
361	Innovatory role of nanomaterials as bio-tools for treatment of cancer. Reviews in Inorganic Chemistry, 2021, 41, 61-75.	4.1	0
362	Nanoparticle-based targeted gene therapy for lung cancer. American Journal of Cancer Research, 2016, 6, 1118-34.	1.4	20
363	Doxorubicin Loaded DNA Aptamer Linked Myristilated Chitosan Nanogel for Targeted Drug Delivery to Prostate Cancer. Iranian Journal of Pharmaceutical Research, 2017, 16, 35-49.	0.5	8
364	Quantifying and controlling bond multivalency for advanced nanoparticle targeting to cells. Nano Convergence, 2021, 8, 38.	12.1	16
365	Nanoparticle-Based Drug Delivery Systems for Photodynamic Therapy of Metastatic Melanoma: A Review. International Journal of Molecular Sciences, 2021, 22, 12549.	4.1	14
366	Modulating undruggable targets to overcome cancer therapy resistance. Drug Resistance Updates, 2022, 60, 100788.	14.4	15
367	Exosome-based rare earth nanoparticles for targeted <i>in situ</i> and metastatic tumor imaging with chemo-assisted immunotherapy. Biomaterials Science, 2022, 10, 744-752.	5.4	5
368	Combining Nanocarrier-Assisted Delivery of Molecules and Radiotherapy. Pharmaceutics, 2022, 14, 105.	4.5	4

#	Article	IF	CITATIONS
369	Spacer length and serum protein adsorption affect active targeting of trastuzumab-modified nanoparticles. Biomaterials and Biosystems, 2022, 5, 100032.	2.2	3
370	Transferrin Receptor-Targeted Nanocarriers: Overcoming Barriers to Treat Clioblastoma. Pharmaceutics, 2022, 14, 279.	4.5	39
371	Active targeting via ligand-anchored pH-responsive strontium nanoparticles for efficient nucleic acid delivery into breast cancer cells. Journal of Pharmaceutical Investigation, 2022, 52, 243-257.	5.3	14
372	Biomaterial-assisted biotherapy: A brief review of biomaterials used in drug delivery, vaccine development, gene therapy, and stem cell therapy. Bioactive Materials, 2022, 17, 29-48.	15.6	42
373	An Overview of Nanotechnologies for Drug Delivery to the Brain. Pharmaceutics, 2022, 14, 224.	4.5	34
374	Targeted Delivery Methods for Anticancer Drugs. Cancers, 2022, 14, 622.	3.7	41
375	Multifunctional cyclodextrin nanoparticles: A promising theranostic tool for strategic targeting of cancer. , 2022, , 485-515.		2
376	Application of Nanoparticles in the Treatment of Lung Cancer With Emphasis on Receptors. Frontiers in Pharmacology, 2021, 12, 781425.	3.5	8
377	New challenges in the use of nanomedicine in cancer therapy. Bioengineered, 2022, 13, 759-773.	3.2	40
378	Smart Drug Delivery Strategies for Cancer Therapy. Frontiers in Nanotechnology, 2022, 3, .	4.8	2
379	Pharmaceutical nanoformulation strategies to spatiotemporally manipulate oxidative stress for improving cancer therapies — exemplified by polyunsaturated fatty acids and other ROS-modulating agents. Drug Delivery and Translational Research, 2022, 12, 2303-2334.	5.8	7
380	Enhancing the anticancer effect of paclitaxel by using polymeric nanoparticles decorated with colorectal cancer targeting CPKSNNGVC-peptide. Journal of Drug Delivery Science and Technology, 2022, 68, 103125.	3.0	6
381	GMT8 aptamer conjugated PEGylated Ag@Au core-shell nanoparticles as a novel radiosensitizer for targeted radiotherapy of glioma. Colloids and Surfaces B: Biointerfaces, 2022, 211, 112330.	5.0	13
382	Disulfiram-loaded metal organic framework for precision cancer treatment via ultrasensitive tumor microenvironment-responsive copper chelation and radical generation. Journal of Colloid and Interface Science, 2022, 615, 517-526.	9.4	7
384	Liposomal Targeting Modifies Endosomal Escape: Design and Mechanistic Implications. ACS Biomaterials Science and Engineering, 2022, 8, 1067-1073.	5.2	3
385	Recent Progress in Nanostructured Smart Drug Delivery Systems for Cancer Therapy: A Review. ACS Applied Bio Materials, 2022, 5, 971-1012.	4.6	133
386	Pathophysiologic and Pharmacologic Considerations to Improve the Design and Application of Antibody–Drug Conjugates. Cancer Research, 2022, 82, 1858-1869.	0.9	4
387	Cancer Chemotherapy <i>via</i> Natural Bioactive Compounds. Current Drug Discovery Technologies, 2022, 19, .	1.2	11

#	ARTICLE	IF	CITATIONS
388	comprehensive review on targeting and recent advances. Journal of Nanobiotechnology, 2022, 20, 109.	9.1	42
389	Application of unlaminated EBT3 film dosimeter for quantification of dose enhancement using silver nanoparticle-embedded alginate film. Biomedical Physics and Engineering Express, 2022, 8, 035014.	1.2	2
390	Role of Moringa oleifera on Green Synthesis of Metal/Metal Oxide Nanomaterials. Journal of Nanomaterials, 2022, 2022, 1-10.	2.7	15
391	Quantification of Available Ligand Density on the Surface of Targeted Liposomal Nanomedicines at the Single-Particle Level. ACS Nano, 2022, 16, 6886-6897.	14.6	20
392	TARGETED DRUG DELIVERY SYSTEM; NANOPARTICLE BASED COMBINATION OF CHITOSAN AND ALGINATE FOR CANCER THERAPY: A REVIEW. International Journal of Applied Pharmaceutics, 0, , 69-76.	0.3	2
393	Smart Nanocarriers as an Emerging Platform for Cancer Therapy: A Review. Molecules, 2022, 27, 146.	3.8	58
394	AS1411 and EpDT3-conjugated silver nanotriangle-mediated photothermal therapy for breast cancer and cancer stem cells. Nanomedicine, 2021, 16, 2503-2519.	3.3	4
395	A brightly red emissive AIEgen and its antibody conjugated nanoparticles for cancer cell targeting imaging. Materials Chemistry Frontiers, 2022, 6, 1317-1323.	5.9	6
396	Polymersomes Based Versatile Nanoplatforms for Controlled Drug Delivery and Imaging. Advanced Pharmaceutical Bulletin, 2023, 13, 218-232.	1.4	3
397	Research Progress of Nanomaterial Mechanics for Targeted Treatment of Muscle Strains in Sports Rehabilitation Training. Applied Bionics and Biomechanics, 2022, 2022, 1-9.	1.1	1
398	Amalgamation of Nanotechnology for Delivery of Bioactive Constituents in Solid Tumors. Current Drug Delivery, 2022, 19, .	1.6	2
399	Receptor-Targeted Surface-Engineered Nanomaterials for Breast Cancer Imaging and Theranostic Applications. Critical Reviews in Therapeutic Drug Carrier Systems, 2022, 39, 1-44.	2.2	14
400	The Promise of Nanotechnology in Personalized Medicine. Journal of Personalized Medicine, 2022, 12, 673.	2.5	27
401	Peptide-functionalised magnetic silk nanoparticles produced by a swirl mixer for enhanced anticancer activity of ASC-J9. Colloids and Surfaces B: Biointerfaces, 2022, 216, 112549.	5.0	19
402	Artificial Intelligence as a Putative Tool for Newer Drug Development Approach in Cancer Nanomedicine. , 2022, , 53-68.		0
403	Enhanced permeability and retention effect: A key facilitator for solid tumor targeting by nanoparticles. Photodiagnosis and Photodynamic Therapy, 2022, 39, 102915.	2.6	34
404	Synergistic co-administration of docetaxel and curcumin to chemoresistant cancer cells using PEGylated and RIPL peptide-conjugated nanostructured lipid carriers. Cancer Nanotechnology, 2022, 13, .	3.7	5
405	Nano-Based Approved Pharmaceuticals for Cancer Treatment: Present and Future Challenges. Biomolecules, 2022, 12, 784.	4.0	48

#	Article	IF	CITATIONS
406	Immunogenic Cell Death Activates the Tumor Immune Microenvironment to Boost the Immunotherapy Efficiency. Advanced Science, 2022, 9, .	11.2	140
407	A Cancer Cell Membraneâ€Derived Biomimetic Nanocarrier for Synergistic Photothermal/Gene Therapy by Efficient Delivery of CRISPR/Cas9 and Gold Nanorods. Advanced Healthcare Materials, 2022, 11, .	7.6	20
408	A State-of-the-art Review on Keratin Biomaterial as Eminent Nanocarriers for Drug Delivery Applications. Letters in Drug Design and Discovery, 2023, 20, 245-263.	0.7	1
410	Nanoarchitectonics horizons: materials for life sciences. Nanoscale, 2022, 14, 10630-10647.	5.6	14
411	Iron Oxide Nanoparticles: The precise strategy for targeted delivery of genes, oligonucleotides and peptides in cancer therapy. Journal of Drug Delivery Science and Technology, 2022, 74, 103585.	3.0	7
412	Galangin/β-Cyclodextrin Inclusion Complex as a Drug-Delivery System for Improved Solubility and Biocompatibility in Breast Cancer Treatment. Molecules, 2022, 27, 4521.	3.8	28
413	Biomimetic nanotherapeutics: Employing nanoghosts to fight melanoma. European Journal of Pharmaceutics and Biopharmaceutics, 2022, 177, 157-174.	4.3	12
414	An update on dual targeting strategy for cancer treatment. Journal of Controlled Release, 2022, 349, 67-96.	9.9	18
415	Recent Pharmaceutical Developments in the Treatment of Cancer Using Nanosponges. , 0, , .		0
416	Facile Construction of a Two-in-One Injectable Micelleplex-Loaded Thermogel System for the Prolonged Delivery of Plasmid DNA. Biomacromolecules, 2022, 23, 3477-3492.	5.4	6
417	A comprehensive review on different approaches for tumor targeting using nanocarriers and recent developments with special focus on multifunctional approaches. Journal of Pharmaceutical Investigation, 2022, 52, 539-585.	5.3	12
418	Ligand conjugated lipidâ€based nanocarriers for cancer theranostics. Biotechnology and Bioengineering, 2022, 119, 3022-3043.	3.3	2
419	miRacle of microRNA-Driven Cancer Nanotherapeutics. Cancers, 2022, 14, 3818.	3.7	17
420	Poly(methacrylate citric acid) as a Dual Functional Carrier for Tumor Therapy. Pharmaceutics, 2022, 14, 1765.	4.5	2
421	Industrialization $\hat{a} \in \mathbb{M}$ s eye view on theranostic nanomedicine. Frontiers in Chemistry, 0, 10, .	3.6	0
422	Hetero-Multivalent Targeted Liposomal Drug Delivery to Treat <i>Pseudomonas aeruginosa</i> Infections. ACS Applied Materials & Interfaces, 2022, 14, 40724-40737.	8.0	5
423	Hollow Nanomaterials in Advanced Drug Delivery Systems: From Single―to Multiple Shells. Advanced Materials, 2023, 35, .	21.0	18
424	Ultrasound Triggering of Liposomal Nanodrugs for Cancer Therapy: A Review. Nanomaterials, 2022, 12, 3051.	4.1	10

#	Article	IF	CITATIONS
425	Renal cell carcinoma management: A step to nano-chemoprevention. Life Sciences, 2022, 308, 120922.	4.3	8
426	Stem cell membrane-coated abiotic nanomaterials for biomedical applications. Journal of Controlled Release, 2022, 351, 174-197.	9.9	29
427	Nonordered dendritic mesoporous silica nanoparticles as promising platforms for advanced methods of diagnosis and therapies. Materials Today Chemistry, 2022, 26, 101144.	3.5	8
428	Folate receptor-mediated targeted breast cancer nanomedicine. , 2022, , 153-169.		0
429	Current status of nanomedicine for breast cancer treatment. , 2022, , 65-110.		0
430	Surface functionalization of nanoparticles: Structure determines function. , 2023, , 203-248.		1
431	Macrophage-Targeted Punicalagin Nanoengineering to Alleviate Methotrexate-Induced Neutropenia: A Molecular Docking, DFT, and MD Simulation Analysis. Molecules, 2022, 27, 6034.	3.8	17
432	Recent advances in nano-drug delivery systems for synergistic antitumor immunotherapy. Frontiers in Bioengineering and Biotechnology, 0, 10, .	4.1	3
433	Monoclonal antibody as a targeting mediator for nanoparticle targeted delivery system for lung cancer. Drug Delivery, 2022, 29, 2959-2970.	5.7	16
434	Nanoparticles Design for Theranostic Approach in Cancer Disease. Cancers, 2022, 14, 4654.	3.7	3
435	Drug delivery challenges and formulation aspects of proteolysis targeting chimera (PROTACs). Drug Discovery Today, 2023, 28, 103387.	6.4	13
436	Interfacial engineered iron oxide nanoring for T2-weighted magnetic resonance imaging-guided magnetothermal-chemotherapy. Frontiers in Bioengineering and Biotechnology, 0, 10, .	4.1	0
437	Analysis of HDACi-Coupled Nanoparticles: Opportunities and Challenges. Methods in Molecular Biology, 2023, , 129-144.	0.9	1
438	Cobalt Ferrite Nanoparticle's Safety in Biomedical and Agricultural Applications: A Review of Recent Progress. Current Medicinal Chemistry, 2023, 30, 1756-1775.	2.4	4
439	Nanotherapeutics Plus Immunotherapy in Oncology: Who Brings What to the Table?. Pharmaceutics, 2022, 14, 2326.	4.5	2
440	Multifunctional nanoparticles for targeting liver cancer stem cells and efficient endocytosis. Chemical Papers, 2023, 77, 1395-1403.	2.2	1
441	CD44 and CD221 directed magnetic cubosomes for the targeted delivery of helenalin to rhabdomyosarcoma cells. Nano Research, 0, , .	10.4	2
442	Organ-restricted delivery through stimuli-responsive nanocarriers for lung cancer therapy. Life Sciences, 2022, 310, 121133.	4.3	11

		CITATION REF	ORT	
#	Article		IF	Citations
443	Nanoparticles for MRI-guided radiation therapy: a review. Cancer Nanotechnology, 202	2, 13, .	3.7	11
444	Delivery of Theranostic Nanoparticles to Various Cancers by Means of Integrin-Binding I International Journal of Molecular Sciences, 2022, 23, 13735.	Peptides.	4.1	6
445	Recent Advances in Biodegradable Polymers and Their Biological Applications: A Brief Re Polymers, 2022, 14, 4924.	?view.	4.5	12
446	Aggregation-Induced Emission Luminogens for Enhanced Photodynamic Therapy: From Targeting to Tumor Targeting. Biosensors, 2022, 12, 1027.	Organelle	4.7	1
447	Advancements in Polymeric Nanocarriers to Mediate Targeted Therapy against Triple-Ne Cancer. Pharmaceutics, 2022, 14, 2432.	gative Breast	4.5	7
448	Intranasal delivery of nanoliposomal SN-38 for treatment of diffuse midline glioma. Jour Neurosurgery, 2022, , 1-10.	nal of	1.6	2
449	Engineering poly- and micelleplexes for nucleic acid delivery – A reflection on their en escape. Journal of Controlled Release, 2023, 353, 518-534.	dosomal	9.9	15
450	Folic acid-poly(N-isopropylacrylamide-maltodextrin) nanohydrogels as novel thermo-/pH polymer for resveratrol breast cancer targeted therapy. European Polymer Journal, 2023	-responsive , 182, 111721.	5.4	8
451	CRISPR/Cas9 targeting liposomes knocked down multidrug resistance proteins in brain cells as a model to predict potential pharmacoresistance. Colloids and Surfaces B: Bioin 222, 113103.	endothelial terfaces, 2023,	5.0	8
452	Microfluidic preparation and optimization of sorafenib-loaded poly(ethylene) Tj ETQq1 Interface Science, 2023, 633, 383-395.	1 0.784314 rgBT /Overlock	10 Tf 50 3 9.4	387 Td (gl) 3
453	Inhaled platelet vesicle-decoyed biomimetic nanoparticles attenuate inflammatory lung Frontiers in Pharmacology, 0, 13, .	injury.	3.5	4
454	Chlorotoxin and Lung Cancer: A Targeting Perspective for Drug Delivery. Pharmaceutics	, 2022, 14, 2613.	4.5	2
455	Recent advances in developing active targeting and multi-functional drug delivery syste bioorthogonal chemistry. Signal Transduction and Targeted Therapy, 2022, 7, .	ms via	17.1	30
456	Emerging theranostics to combat cancer: a perspective on metal-based nanomaterials. Development and Industrial Pharmacy, 2022, 48, 585-601.	Drug	2.0	8
457	Near-infrared upconversion multimodal nanoparticles for targeted radionuclide therapy cancer lymphatic metastases. Frontiers in Immunology, 0, 13, .	of breast	4.8	3
458	Nanoparticles and convergence of artificial intelligence for targeted drug delivery for ca therapy: Current progress and challenges. Frontiers in Medical Technology, 0, 4, .	ncer	2.5	13
459	Mechanistic investigation into selective cytotoxic activities of gold nanoparticles functi with epidermal growth factor variants. Analytical Sciences, 0, , .	onalized	1.6	0
460	Advances in Lung Cancer Treatment Using Nanomedicines. ACS Omega, 2023, 8, 10-41		3.5	42

#	Article	IF	CITATIONS
461	Nanomicelles for GLUT1-targeting hepatocellular carcinoma therapy based on NADPH depletion. Drug Delivery, 2023, 30, .	5.7	3
462	Highlights of New Strategies to Increase the Efficacy of Transition Metal Complexes for Cancer Treatments. Molecules, 2023, 28, 273.	3.8	9
463	Polymeric micellesâ \in "mediated photodynamic therapy. , 2023, , 105-139.		0
464	Aptamer-functionalized PLGA nanoparticles for targeted cancer therapy. , 2023, , 219-235.		0
465	Bioconjugation studies of an EGF-R targeting ligand on dendronized iron oxide nanoparticles to target head and neck cancer cells. International Journal of Pharmaceutics, 2023, 635, 122654.	5.2	5
466	Pharmacokinetics and tumor delivery of nanoparticles. Journal of Drug Delivery Science and Technology, 2023, 83, 104404.	3.0	3
467	Nanotechnology in the Management of Hormonal Cancer. , 2022, , 13-48.		0
468	Artificial intelligence aids in development of nanomedicines for cancer management. Seminars in Cancer Biology, 2023, 89, 61-75.	9.6	86
469	Endosomal escape for cell-targeted proteins. Going out after going in. Biotechnology Advances, 2023, 63, 108103.	11.7	12
470	Nanoparticles for Drug and Gene Delivery in Pediatric Brain Tumors' Cancer Stem Cells: Current Knowledge and Future Perspectives. Pharmaceutics, 2023, 15, 505.	4.5	7
471	Insight on nano drug delivery systems with targeted therapy in treatment of oral cancer. Nanomedicine: Nanotechnology, Biology, and Medicine, 2023, 49, 102662.	3.3	12
472	Endothelial-Specific Targeting of RhoA Signaling via CD31 Antibody-Conjugated Nanoparticles. Journal of Pharmacology and Experimental Therapeutics, 2023, 385, 35-49.	2.5	6
473	Folic acid-modified biocompatible Pullulan/poly(acrylic acid) nanogels for targeted delivery to MCF-7 cancer cells. European Journal of Pharmaceutics and Biopharmaceutics, 2023, 184, 189-201.	4.3	5
474	Genetically engineered cellular nanoparticles for biomedical applications. Biomaterials, 2023, 296, 122065.	11.4	9
475	Nanoparticles for diagnosis and treatment of renal diseases. , 2023, , 95-130.		0
476	Complex formulation strategies to overcome the delivery hurdles of lapatinib in metastatic breast cancer. Journal of Drug Delivery Science and Technology, 2023, 82, 104315.	3.0	1
477	Immunogenic cell death in cancer immunotherapy. BMB Reports, 2023, 56, 275-286.	2.4	7
478	Natural and synthetic nanovectors for cancer therapy. Nanotheranostics, 2023, 7, 236-257.	5.2	71

#	Article	IF	CITATIONS
479	In vivo active-targeting fluorescence molecular imaging with adaptive background fluorescence subtraction. Frontiers in Oncology, 0, 13, .	2.8	2
480	Current progress in PLGA-based nanoparticles for treatment of cancer diseases. , 2023, , 153-177.		0
481	Development of glycan-targeted nanoparticles as a novel therapeutic opportunity for gastric cancer treatment. Cancer Nanotechnology, 2023, 14, .	3.7	0
482	The role of acoustofluidics and microbubble dynamics for therapeutic applications and drug delivery. Biomicrofluidics, 2023, 17, .	2.4	3
483	Hybrid Organic Polymer/Inorganic Nano-materials for Biomedical Applications: Where we are and Where to go?. Current Nanoscience, 2024, 20, 188-205.	1.2	0
484	Strategies for Cancer Targeting: Novel Drug Delivery Systems Opportunities and Future Challenges. Biological and Medical Physics Series, 2023, , 1-42.	0.4	0
485	Polysaccharide-based nanogels for biomedical applications: A comprehensive review. Journal of Drug Delivery Science and Technology, 2023, 84, 104447.	3.0	10
486	Advances in lipid-based carriers for cancer therapeutics: Liposomes, exosomes and hybrid exosomes. Cancer Letters, 2023, 565, 216220.	7.2	9
487	Tackling the tumor microenvironment – how can complex tumor models <i>in vitro</i> aid oncology drug development?. Expert Opinion on Drug Discovery, 2023, 18, 753-768.	5.0	1
488	Study on method of organ section retention and tracking through deep learning in automated diagnostic and therapeutic robotics. International Journal of Computer Assisted Radiology and Surgery, 0, , .	2.8	0
489	Statistical Experimental Approach in Designing pH-Sensitive Oxaliplatin Lipid Nanoparticles for Application in Colorectal Cancer Therapy. BioNanoScience, 0, , .	3.5	0
490	Nanotechnological biorefining of lignins and their applications. , 2023, , 291-305.		0
491	Tumor microenvironment remodeling in oral cancer: Application of plant derived-natural products and nanomaterials. Environmental Research, 2023, 233, 116432.	7.5	7
492	Recent advances in nanoparticle-based approaches for the treatment of brain tumors: Opportunities and challenges. European Polymer Journal, 2023, 193, 112111.	5.4	22
493	Smart Nanocarrier-Based Cancer Therapeutics. Cancer Treatment and Research, 2023, , 207-235.	0.5	0
494	The role of clinical imaging in oncology drug development: progress and new challenges. British Journal of Radiology, 2023, 96, .	2.2	0
495	Surface Functionalization of Gold Nanoparticles for Targeting the Tumor Microenvironment to Improve Antitumor Efficiency. ACS Applied Bio Materials, 2023, 6, 2944-2981.	4.6	7
496	Biotin onjugated Poly(Acrylic Acid)â€Grafted Ultrasmall Gadolinium Oxide Nanoparticles for Enhanced Tumor Imaging. European Journal of Inorganic Chemistry, 2023, 26, .	2.0	0

		CITATION REPORT		
#	Article		IF	CITATIONS
497	Recent Advances in Polycaprolactones for Anticancer Drug Delivery. Pharmaceutics, 2023,	15, 1977.	4.5	7
498	Immune modulation during anti-cancer radio(immuno)therapy. International Review of Cel Molecular Biology, 2023, , .	and	3.2	0
499	Targeted Drug Delivery Systems for Curcumin in Breast Cancer Therapy. International Jourr Nanomedicine, 0, Volume 18, 4275-4311.	ial of	6.7	4
500	Nanotechnology advances for improved targeting of solid tumors. , 2023, , 173-200.			0
501	Gold nanoparticle-based drug nanocarriers as a targeted drug delivery system platform for therapeutics: a systematic review. Gold Bulletin, 2023, 56, 121-134.	cancer	2.4	2
502	Theranostic Polymeric Nanoparticles for Cancer. BioNanoScience, 0, , .		3.5	0
503	Isothermal calorimetry calscreener in the metabolism gauge of human malignant neoplasti burgeoning nexus in cancer biochemical metrology and diagnostics. Bulletin of the Nationa Centre, 2023, 47, .	c cells: a 1 Research	1.8	0
504	Neutrophil membrane-based nanotherapeutics: Propitious paradigm shift in the manageme Life Sciences, 2023, 331, 122021.	nt of cancer.	4.3	3
505	Recent advances in formulation and application of molecular polymer brushes in biomedici Therapeutic, diagnostic, and theranostics capabilities. Nano Today, 2023, 53, 102010.	ne:	11.9	3
506	Cancer therapy by histone deacetylase inhibitors based nanomedicines. AIP Conference Pro 2023, , .	oceedings,	0.4	0
507	Cancer treatment therapies: traditional to modern approaches to combat cancers. Molecul Reports, 2023, 50, 9663-9676.	ar Biology	2.3	2
508	Vesicular drug delivery systems: a novel approach in current nanomedicine. , 2024, , 135-1	59.		0
509	Macromolecular design of pH sensitive, folic acid functionalized double hydrophilic block c nanogels as methotrexate carriers to breast cancer cells. Journal of Drug Delivery Science a Technology, 2023, 89, 105045.	opolymer nd	3.0	0
510	Improving Cancer Targeting: A Study on the Effect of Dual-Ligand Density on Targeting of 0 Differential Expression of Target Biomarkers. International Journal of Molecular Sciences, 20 13048.	Cells Having 023, 24,	4.1	0
511	Recent advances in codelivery of curcumin and siRNA as anticancer therapeutics. European Journal, 2023, 198, 112444.	Polymer	5.4	1
512	Unlocking the potential of milk whey protein components in colorectal cancer prevention a therapy. Critical Reviews in Food Science and Nutrition, 0, , 1-38.	and	10.3	2
513	Aptamers and antisense oligonucleotide-based delivery. , 2024, , 63-78.			0
514	Fundamentals of a targeted drug delivery system. , 2024, , 289-309.			0

#	Article	IF	CITATIONS
515	Caffeine-folic acid-loaded-chitosan nanoparticles combined with methotrexate as a novel HepG2 immunotherapy targeting adenosine A2A receptor downstream cascade. BMC Complementary Medicine and Therapies, 2023, 23, .	2.7	0
516	Application of Nanoparticles in Cancer Treatment: A Concise Review. Nanomaterials, 2023, 13, 2887.	4.1	1
517	Nanotechnology development in surgical applications: recent trends and developments. European Journal of Medical Research, 2023, 28, .	2.2	1
518	Emerging frontiers in nanomedicine targeted therapy for prostate cancer. Cancer Treatment and Research Communications, 2023, 37, 100778.	1.7	0
519	Potential application of nanotechnology in the treatment and overcoming of pancreatic cancer resistance. , 2024, , 37-71.		0
520	Iron Oxide Nanoparticles: A Mighty Pioneering Diagnostic Tool But Is It Really Safe for Carcinoma and Neurodegenerative Diseases?. , 0, , .		0
521	Targeting the oral tumor microenvironment by nanoparticles: A review of progresses. Journal of Drug Delivery Science and Technology, 2024, 91, 105248.	3.0	0
522	Multi-functionalization of reduced graphene oxide nanosheets for tumor theragnosis: Synthesis, characterization, enzyme assay, in-silico study, radiolabeling and in vivo targeting evaluation. DARU, Journal of Pharmaceutical Sciences, 0, , .	2.0	0
523	Advancement in magnetic hyperthermia-based targeted therapy for cancer treatment. Biointerphases, 2023, 18, .	1.6	0
524	A New Era in Cancer Treatment: Harnessing ZIF-8 Nanoparticles for PD-1 Inhibitor Delivery. Journal of Materials Chemistry B, 0, , .	5.8	0
525	Nanoparticle Targeting Strategies In Cancer Therapy. Recent Advances in Biotechnology, 2023, , 223-238.	0.1	0
526	Advances in Nanotechnology for Enhanced Leukemia Therapy: A Systematic Review of In Vivo Studies. , 2023, 2, 86-99.		0
527	Nanomaterials in Cancer Therapy. Advances in Medical Diagnosis, Treatment, and Care, 2023, , 217-248.	0.1	0
528	Efficient and highly biocompatible 8-arm PEG-Chlorin e6 nanosystems for 2-photon photodynamic therapy of adrenergic disorders. Materials Advances, 2024, 5, 1736-1745.	5.4	0
529	Overcoming colloidal nanoparticle aggregation in biological milieu for cancer therapeutic delivery: Perspectives of materials and particle design. Advances in Colloid and Interface Science, 2024, 325, 103094.	14.7	0
530	Inorganic Nanoparticles Change Cancer-Cell-Derived Extracellular Vesicle Secretion Levels and Cargo Composition, Resulting in Secondary Biological Effects. ACS Applied Materials & amp; Interfaces, 2024, 16, 66-83.	8.0	0
531	Addressing the diagnosis and therapeutics of malignant tumor cells. , 2024, , 99-116.		0
532	Starch-based nanomaterials safety aspects: Perspectives and future trends. , 2024, , 269-284.		0

#	Article	IF	CITATIONS
533	Overcoming drug resistance with specific nano scales to targeted therapy: Focused on metastatic cancers. Pathology Research and Practice, 2024, 255, 155137.	2.3	0
534	Nanomedicines in Treatment of Cancer. Learning Materials in Biosciences, 2023, , 183-211.	0.4	0
535	Moving beyond traditional therapies: the role of nanomedicines in lung cancer. Frontiers in Pharmacology, 0, 15, .	3.5	0
537	Recent status and trends of nanotechnology in cervical cancer: a systematic review and bibliometric analysis. Frontiers in Oncology, 0, 14, .	2.8	0
538	Choice of Nanoparticles for Plasmonic Photothermal-Assisted Multimodal Cancer Therapy. Materials Horizons, 2024, , 27-67.	0.6	0
539	Molecular Imaging for Lung Cancer: Exploring Small Molecules, Peptides, and Beyond in Radiolabeled Diagnostics. Pharmaceutics, 2024, 16, 404.	4.5	0
540	Advances in self-assembled nanotechnology in tumor therapy. Colloids and Surfaces B: Biointerfaces, 2024, 237, 113838.	5.0	0