Trainable COSFIRE filters for vessel delineation with ap

Medical Image Analysis 19, 46-57

DOI: 10.1016/j.media.2014.08.002

Citation Report

#	Article	IF	Citations
1	Comparative study of retinal vessel segmentation methods., 2015,,.		1
2	A supervised method using convolutional neural networks for retinal vessel delineation. , 2015, , .		5
3	QUARTZ: Quantitative Analysis of Retinal Vessel Topology and size – An automated system for quantification of retinal vessels morphology. Expert Systems With Applications, 2015, 42, 7221-7234.	7.6	57
4	Multiscale Blood Vessel Delineation Using B-COSFIRE Filters. Lecture Notes in Computer Science, 2015, , 300-312.	1.3	14
5	Topology adaptive vessel network skeleton extraction with novel medialness measuring function. Computers in Biology and Medicine, 2015, 64, 40-61.	7.0	8
6	Automated Vessel Segmentation Using Infinite Perimeter Active Contour Model with Hybrid Region Information with Application to Retinal Images. IEEE Transactions on Medical Imaging, 2015, 34, 1797-1807.	8.9	337
7	Biologically-Inspired Supervised Vasculature Segmentation in SLO Retinal Fundus Images. Lecture Notes in Computer Science, 2015, , 325-334.	1.3	36
8	Robust and Fast Vessel Segmentation via Gaussian Derivatives in Orientation Scores. Lecture Notes in Computer Science, 2015, , 537-547.	1.3	18
9	An Automatic Cognitive Graph-Based Segmentation for Detection of Blood Vessels in Retinal Images. Mathematical Problems in Engineering, 2016, 2016, 1-15.	1.1	12
10	A Morphological Hessian Based Approach for Retinal Blood Vessels Segmentation and Denoising Using Region Based Otsu Thresholding. PLoS ONE, 2016, 11, e0158996.	2.5	81
11	Automatic glaucoma assessment from angio-OCT images. , 2016, , .		7
12	Detection and counting of pothole using image processing techniques. , 2016, , .		27
13	Increased generalization capability of trainable COSFIRE filters with application to machine vision. , 2016, , .		4
14	Construction of retinal vascular trees via curvature orientation prior., 2016,,.		2
15	Automated blood vessel segmentation based on de-noising auto-encoder and neural network. , 2016, , .		12
16	Supervised vessel delineation in retinal fundus images with the automatic selection of B-COSFIRE filters. Machine Vision and Applications, 2016, 27, 1137-1149.	2.7	81
17	Automatic retinal vessel extraction algorithm based on contrast-sensitive schemes., 2016,,.		23
18	Registration of retinal sequences from new video-ophthalmoscopic camera. BioMedical Engineering OnLine, 2016, 15, 57.	2.7	22

#	ARTICLE	IF	Citations
19	Automatic coronary artery segmentation based on multi-domains remapping and quantile regression in angiographies. Computerized Medical Imaging and Graphics, 2016, 54, 55-66.	5.8	3
20	Novel segmentation algorithm for identification of cell membrane staining in HER2 images. Pattern Recognition Letters, 2016, 84, 225-231.	4.2	6
21	Automated Artery-Vein Classification in Fundus Color Images. Communications in Computer and Information Science, 2016, , 228-237.	0.5	1
22	Automatic labeling of portal and hepatic veins from MR images prior to liver transplantation. International Journal of Computer Assisted Radiology and Surgery, 2016, 11, 2153-2161.	2.8	31
23	Robust Retinal Vessel Segmentation via Locally Adaptive Derivative Frames in Orientation Scores. IEEE Transactions on Medical Imaging, 2016, 35, 2631-2644.	8.9	300
24	A survey on curvilinear object segmentation in multiple applications. Pattern Recognition, 2016, 60, 949-970.	8.1	35
25	DeepVessel: Retinal Vessel Segmentation viaÂDeep Learning and Conditional RandomÂField. Lecture Notes in Computer Science, 2016, , 132-139.	1.3	236
26	A method for blood vessel segmentation in retinal images using morphological reconstruction. , 2016, , \cdot		5
27	A vascular bifurcations detection method based on Transfer Learning model. , 2016, , .		2
28	Inhibition-augmented trainable COSFIRE filters for keypoint detection and object recognition. Machine Vision and Applications, 2016, 27, 1197-1211.	2.7	5
29	B-COSFIRE filter and VLM based retinal blood vessels segmentation and denoising. , 2016, , .		14
30	A new supervised retinal vessel segmentation method based on robust hybrid features. Biomedical Signal Processing and Control, 2016, 30, 1-12.	5.7	111
31	Leveraging Multiscale Hessian-Based Enhancement With a Novel Exudate Inpainting Technique for Retinal Vessel Segmentation. IEEE Journal of Biomedical and Health Informatics, 2016, 20, 1129-1138.	6.3	105
32	A quantum mechanics-based algorithm for vessel segmentation in retinal images. Quantum Information Processing, 2016, 15, 2303-2323.	2.2	5
33	Segmenting Retinal Blood Vessels With Pub _newline? Deep Neural Networks. IEEE Transactions on Medical Imaging, 2016, 35, 2369-2380.	8.9	713
34	A Cross-Modality Learning Approach for Vessel Segmentation in Retinal Images. IEEE Transactions on Medical Imaging, 2016, 35, 109-118.	8.9	454
35	A Discriminatively Trained Fully Connected Conditional Random Field Model for Blood Vessel Segmentation in Fundus Images. IEEE Transactions on Biomedical Engineering, 2017, 64, 16-27.	4.2	370
36	Vessel segmentation from abdominal magnetic resonance images: adaptive and reconstructive approach. International Journal for Numerical Methods in Biomedical Engineering, 2017, 33, e2811.	2.1	48

#	Article	IF	Citations
37	Accurate vessel segmentation using maximum entropy incorporating line detection and phase-preserving denoising. Computer Vision and Image Understanding, 2017, 155, 162-172.	4.7	47
38	Convolutional neural network transfer for automated glaucoma identification. Proceedings of SPIE, 2017, , .	0.8	48
39	Automatic parameters selection of Gabor filters with the imperialism competitive algorithm with application to retinal vessel segmentation. Biocybernetics and Biomedical Engineering, 2017, 37, 246-254.	5 . 9	36
40	Segmentation and feature extraction of retinal vascular morphology. Proceedings of SPIE, 2017, , .	0.8	0
41	Use of Gabor filters and deep networks in the segmentation of retinal vessel morphology. Proceedings of SPIE, 2017, , .	0.8	4
42	Selective Search and Intensity Context Based Retina Vessel Image Segmentation. Journal of Medical Systems, 2017, 41, 47.	3.6	10
43	Value of graph topology in vascular biometrics. IET Biometrics, 2017, 6, 117-125.	2.5	10
44	An unsupervised coarse-to-fine algorithm for blood vessel segmentation in fundus images. Expert Systems With Applications, 2017, 78, 182-192.	7.6	91
45	Retinal vessel delineation using a brain-inspired wavelet transform and random forest. Pattern Recognition, 2017, 69, 107-123.	8.1	99
46	Computer aided solution for segmenting the neuron line in hippocampal microscope images. , 2017, , .		O
47	Blood vessel segmentation in color fundus images based on regional and Hessian features. Graefe's Archive for Clinical and Experimental Ophthalmology, 2017, 255, 1525-1533.	1.9	30
48	Contrast normalization steps for increased sensitivity of a retinal image segmentation method. Signal, Image and Video Processing, 2017, 11, 1509-1517.	2.7	37
49	Computerised approaches for the detection of diabetic retinopathy using retinal fundus images: a survey. Pattern Analysis and Applications, 2017, 20, 927-961.	4.6	46
50	Multi-level deep supervised networks for retinal vessel segmentation. International Journal of Computer Assisted Radiology and Surgery, 2017, 12, 2181-2193.	2.8	140
51	Assistive lesion-emphasis system: an assistive system for fundus image readers. Journal of Medical Imaging, 2017, 4, 024503.	1.5	4
52	Radial Peripapillary Capillary Density Measurement Using Optical Coherence Tomography Angiography in Early Glaucoma. Journal of Glaucoma, 2017, 26, 438-443.	1.6	76
53	Augmenting data when training a CNN for retinal vessel segmentation: How to warp?. , 2017, , .		26
54	A review of feature-based retinal image analysis. Expert Review of Ophthalmology, 2017, 12, 207-220.	0.6	24

#	Article	IF	Citations
55	Segmentation of optic disc and blood vessels in retinal images using wavelets, mathematical morphology and Hessian-based multi-scale filtering. Biomedical Signal Processing and Control, 2017, 36, 39-49.	5.7	86
56	Recent Advancements in Retinal Vessel Segmentation. Journal of Medical Systems, 2017, 41, 70.	3.6	100
57	Development of automatic retinal vessel segmentation method in fundus images via convolutional neural networks., 2017, 2017, 681-684.		19
58	Multiâ€level deep neural network for efficient segmentation of blood vessels in fundus images. Electronics Letters, 2017, 53, 1096-1098.	1.0	37
59	Identification of milling inserts in situ based on a versatile machine vision system. Journal of Manufacturing Systems, 2017, 45, 48-57.	13.9	12
60	Detection of Curved Lines with B-COSFIRE Filters: A Case Study on Crack Delineation. Lecture Notes in Computer Science, 2017, , 108-120.	1.3	17
61	Blood vessel segmentation in retinal images using echo state networks., 2017,,.		3
62	Delineation of line patterns in images using B-COSFIRE filters. , 2017, , .		12
63	A Novel Method for Low-Contrast and High-Noise Vessel Segmentation and Location in Venipuncture. IEEE Transactions on Medical Imaging, 2017, 36, 2216-2227.	8.9	7
64	Automatic blood vessels segmentation based on different retinal maps from OCTA scans. Computers in Biology and Medicine, 2017, 89, 150-161.	7.0	71
65	A thresholding based technique to extract retinal blood vessels from fundus images. Future Computing and Informatics Journal, 2017, 2, 103-109.	0.6	70
66	Classification of Artery and Vein in Retinal Fundus Images Based on the Context-Dependent Features. Lecture Notes in Computer Science, 2017, , 198-213.	1.3	2
67	Cerebral vascular enhancement using a weighted 3D symmetry filter., 2017,,.		0
68	Improving dense conditional random field for retinal vessel segmentation by discriminative feature learning and thin-vessel enhancement. Computer Methods and Programs in Biomedicine, 2017, 148, 13-25.	4.7	66
69	Segment 2D and 3D Filaments by Learning Structured and Contextual Features. IEEE Transactions on Medical Imaging, 2017, 36, 596-606.	8.9	39
70	Color-blob-based COSFIRE filters for object recognition. Image and Vision Computing, 2017, 57, 165-174.	4.5	30
71	Performance comparison of publicly available retinal blood vessel segmentation methods. Computerized Medical Imaging and Graphics, 2017, 55, 2-12.	5.8	28
72	Illumination Correction by Dehazing for Retinal Vessel Segmentation. , 2017, , .		17

#	Article	IF	CITATIONS
73	A fluid-dynamic based approach to reconnect the retinal vessels in fundus photography. , 2017, 2017, 360-364.		2
74	Automatic diabetic retinopathy detection and classification system. , 2017, , .		21
75	Boosting Sensitivity of a Retinal Vessel Segmentation Algorithm with Convolutional Neural Network. , 2017, , .		34
76	Retinal vessel enhancement based on the Gaussian function and image fusion. AIP Conference Proceedings, 2017, , .	0.4	1
77	Retinal blood vessel segmentation based on the Gaussian matched filter and U-net., 2017,,.		26
78	Patch-based fully convolutional neural network with skip connections for retinal blood vessel segmentation. , 2017, , .		38
79	Extracting retinal vascular networks using deep learning architecture., 2017,,.		7
80	Blood vessel detection from fundus image using Markov random field based image segmentation. , 2017, , .		6
81	Retina Image Vessel Segmentation Using a Hybrid CGLI Level Set Method. BioMed Research International, 2017, 2017, 1-11.	1.9	15
82	Inhibition-augmented COSFIRE model of shape-selective neurons. IBM Journal of Research and Development, 2017, 61, 10:1-10:9.	3.1	2
83	A Curvature Based Approach for the Automated Screening of Retinopathy of Prematurity in Preterm Infants. , 2017, , .		1
84	Automatic Detection of Blood Vessel in Retinal Images Using Vesselness Enhancement Filter and Adaptive Thresholding. International Journal of Healthcare Information Systems and Informatics, 2017, 12, 14-29.	0.9	6
85	Retinal Vessel Segmentation via Structure Tensor Coloring and Anisotropy Enhancement. Symmetry, 2017, 9, 276.	2.2	11
87	Reconnection of Interrupted Curvilinear Structures via Cortically Inspired Completion for Ophthalmologic Images. IEEE Transactions on Biomedical Engineering, 2018, 65, 1151-1165.	4.2	10
88	Joint Segment-Level and Pixel-Wise Losses for Deep Learning Based Retinal Vessel Segmentation. IEEE Transactions on Biomedical Engineering, 2018, 65, 1912-1923.	4.2	309
89	An Unsupervised Approach for Extraction of Blood Vessels from Fundus Images. Journal of Digital Imaging, 2018, 31, 857-868.	2.9	24
90	Fusion of Domain-Specific and Trainable Features for Gender Recognition From Face Images. IEEE Access, 2018, 6, 24171-24183.	4.2	33
91	Unsupervised Morphological Approach for Retinal Vessel Segmentation. Advances in Intelligent Systems and Computing, 2018, , 743-752.	0.6	3

#	Article	IF	CITATIONS
92	Multiple Features Decomposition for Subcutaneous Vein Extraction and Measurement. IEEE Access, 2018, 6, 11265-11277.	4.2	3
93	Curvature Integration in a 5D Kernel for Extracting Vessel Connections in Retinal Images. IEEE Transactions on Image Processing, 2018, 27, 606-621.	9.8	18
94	Automatic 2-D/3-D Vessel Enhancement in Multiple Modality Images Using a Weighted Symmetry Filter. IEEE Transactions on Medical Imaging, 2018, 37, 438-450.	8.9	91
95	Image recommendation based on a novel biologically inspired hierarchical model. Multimedia Tools and Applications, 2018, 77, 4323-4337.	3.9	6
96	Retinal blood vessel segmentation for macula detachment surgery monitoring instruments. International Journal of Circuit Theory and Applications, 2018, 46, 1166-1180.	2.0	5
97	A vessel segmentation method for serialized cerebralvascular DSA images based on spatial feature point set of rotating coordinate system. Computer Methods and Programs in Biomedicine, 2018, 161, 55-72.	4.7	4
98	Retinal blood vessel segmentation using fully convolutional network with transfer learning. Computerized Medical Imaging and Graphics, 2018, 68, 1-15.	5 . 8	158
99	Retinal vessel segmentation using neural network. IET Image Processing, 2018, 12, 669-678.	2.5	61
100	Detection of Curvilinear Structure in Images by a Multi-Centered Hough Forest Method. IEEE Access, 2018, 6, 22684-22694.	4.2	2
101	Diverse lesion detection from retinal images by subspace learning over normal samples. Neurocomputing, 2018, 297, 59-70.	5.9	9
103	Retina-Inspired Filter. IEEE Transactions on Image Processing, 2018, 27, 3484-3499.	9.8	9
104	Using direction and score information for retina based person verification. Expert Systems With Applications, 2018, 94, 1-10.	7.6	7
105	A pixel processing approach for retinal vessel extraction using modified Gabor functions. Progress in Artificial Intelligence, 2018, 7, 1-14.	2.4	3
106	A Skeletal Similarity Metric for Quality Evaluation of Retinal Vessel Segmentation. IEEE Transactions on Medical Imaging, 2018, 37, 1045-1057.	8.9	38
107	Optimizing the trainable B-COSFIRE filter for retinal blood vessel segmentation. PeerJ, 2018, 6, e5855.	2.0	16
108	Retinal Vessel Segmentation via A Coarse-to-fine Convolutional Neural Network. , 2018, , .		7
109	Curvilinear Structure Enhancement by Multiscale Top-Hat Tensor in 2D/3D Images. , 2018, , .		6
110	A Coarse-to-Fine Fully Convolutional Neural Network for Fundus Vessel Segmentation. Symmetry, 2018, 10, 607.	2.2	27

#	Article	IF	CITATIONS
111	Eccentricity Based Quantification of Retinal Vascular Tortuosity For Early Detection of Diabetes and Diabetic Retinopathy. , $2018, \ldots$		1
112	Retinal Blood Vessel Segmentation Based on Vessel Branch Width Adaptation., 2018,,.		1
113	A Convolutional Encoder-Decoder Architecture for Retinal Blood Vessel Segmentation in Fundus Images. , 2018, , .		1
114	A Novel and Efficient Hybrid Segmentation Approach for Retinal Vasculature Network. , 2018, , .		1
115	Detection of Diabetes by Macrovascular Tortuosity of Superior Bulbar Conjunctiva., 2018, 2018, 1-4.		3
116	Sensitivity of Cross-Trained Deep CNNs for Retinal Vessel Extraction. , 2018, 2018, 2736-2739.		7
117	Optical coherence tomography angiography measured capillary density in the normal and glaucoma eyes. Saudi Journal of Ophthalmology, 2018, 32, 295-302.	0.3	10
118	DISCERN: Generative Framework for Vessel Segmentation using Convolutional Neural Network and Visual Codebook., 2018, 2018, 5934-5937.		15
119	Early Diagnosis of Diabetic Retinopathy in OCTA Images Based on Local Analysis of Retinal Blood Vessels and Foveal Avascular Zone. , 2018, , .		8
120	An Efficient Retinal Blood Vessel Segmentation using Morphological Operations. , 2018, , .		15
121	Retinal Vessel Segmentation Using Morphological Top Hat Approach On Diabetic Retinopathy Images. , 2018, , .		10
122	Multi-Label Classification Scheme Based on Local Regression for Retinal Vessel Segmentation., 2018,,.		7
123	Low Complexity Convolutional Neural Network for Vessel Segmentation in Portable Retinal Diagnostic Devices., 2018,,.		22
124	Automated System for Retinal Vessel Segmentation., 2018,,.		3
125	BGIDB: A fundus ground truth building tool with automatic DDLS classification for glaucoma research. Journal of Central South University, 2018, 25, 2058-2068.	3.0	2
126	Blood Vessels Segmentation by Using CDNet. , 2018, , .		4
127	A novel retinal vessel detection approach based on multiple deep convolution neural networks. Computer Methods and Programs in Biomedicine, 2018, 167, 43-48.	4.7	44
128	A No-Reference Quality Metric for Retinal Vessel Tree Segmentation. Lecture Notes in Computer Science, 2018, , 82-90.	1.3	9

#	Article	IF	CITATIONS
129	Multiscale Network Followed Network Model for Retinal Vessel Segmentation. Lecture Notes in Computer Science, 2018, , 119-126.	1.3	100
130	Segmentation Implementation using Adaptive Conditional Random Field Model Considering Fundus Images for Diabetic Retinopathy Detection. , 2018, , .		1
131	Learning-based approach to segment pigment signs in fundus images for Retinitis Pigmentosa analysis. Neurocomputing, 2018, 308, 159-171.	5.9	10
132	Retinal vascular segmentation using superpixelâ€based line operator and its application to vascular topology estimation. Medical Physics, 2018, 45, 3132-3146.	3.0	11
133	Retinal blood vessels extraction from fundus images using an automated method., 2018,,.		2
134	Retinal blood vessel segmentation using Otsu thresholding with principal component analysis. , 2018, , .		9
135	Retinal blood vessels segmentation based on multi-classifier fusion. , 2018, , .		4
136	Retinal vessel segmentation of color fundus images using multiscale convolutional neural network with an improved cross-entropy loss function. Neurocomputing, 2018, 309, 179-191.	5.9	253
137	Retinal artery/vein classification using genetic-search feature selection. Computer Methods and Programs in Biomedicine, 2018, 161, 197-207.	4.7	41
138	Modelling of retinal vasculature based on genetically tuned parametric L-system. Royal Society Open Science, 2018, 5, 171639.	2.4	6
139	Early diabetic retinopathy diagnosis based on local retinal blood vessel analysis in optical coherence tomography angiography (OCTA) images. Medical Physics, 2018, 45, 4582-4599.	3.0	35
140	Improved multiâ€scale line detection method for retinal blood vessel segmentation. IET Image Processing, 2018, 12, 1450-1457.	2.5	23
141	A visual attention guided unsupervised feature learning for robust vessel delineation in retinal images. Biomedical Signal Processing and Control, 2018, 44, 110-126.	5.7	27
142	Retinal vascular topology estimation via dominant sets clustering. , 2018, , .		4
143	A robust technique based on VLM and Frangi filter for retinal vessel extraction and denoising. PLoS ONE, 2018, 13, e0192203.	2.5	31
144	Retinal vessel segmentation based on Fully Convolutional Neural Networks. Expert Systems With Applications, 2018, 112, 229-242.	7.6	217
145	Automatic Retinal Vessel Segmentation via Deeply Supervised and Smoothly Regularized Network. IEEE Access, 2019, 7, 57717-57724.	4.2	44
146	Blood vessel segmentation of retinal image using Clifford matched filter and Clifford convolution. Multimedia Tools and Applications, 2019, 78, 34839-34865.	3.9	33

#	Article	IF	Citations
147	Contentâ€based retinal image retrieval. IET Image Processing, 2019, 13, 1525-1534.	2.5	5
148	Retinal image assessment using bi-level adaptive morphological component analysis. Artificial Intelligence in Medicine, 2019, 99, 101702.	6.5	13
149	Place and Object Recognition by CNN-Based COSFIRE Filters. IEEE Access, 2019, 7, 66157-66166.	4.2	5
150	Robust Inhibition-Augmented Operator for Delineation of Curvilinear Structures. IEEE Transactions on Image Processing, 2019, 28, 5852-5866.	9.8	28
151	Multi-proportion channel ensemble model for retinal vessel segmentation. Computers in Biology and Medicine, 2019, 111, 103352.	7.0	26
152	Retina Blood Vessel Detection for Diabetic Retinopathy Diagnosis. , 2019, , .		1
153	Adaptive weighted locality-constrained sparse coding for glaucoma diagnosis. Medical and Biological Engineering and Computing, 2019, 57, 2055-2067.	2.8	10
154	Local Phase U-net for Fundus Image Segmentation. , 2019, , .		7
155	Automatic Retinal Blood Vessel Segmentation Based on Fully Convolutional Neural Networks. Symmetry, 2019, 11, 1112.	2.2	62
156	Crack Junction Detection in Pavement Image Using Correlation Structure Analysis and Iterative Tensor Voting. IEEE Access, 2019, 7, 138094-138109.	4.2	6
157	Retinal blood vessel segmentation from diabetic retinopathy images using tandem PCNN model and deep learning based SVM. Optik, 2019, 199, 163328.	2.9	57
158	Joint Vessel Segmentation and Deformable Registration on Multi-Modal Retinal Images Based on Style Transfer. , 2019, , .		17
159	Design of Optimal Adaptive Filters for Two-Dimensional Filamentary Structures Segmentation. IEEE Signal Processing Letters, 2019, 26, 1511-1515.	3.6	7
160	Multi-Scale Regularized Deep Network for Retinal Vessel Segmentation. , 2019, , .		3
161	Age group recognition from face images using a fusion of CNN- and COSFIRE-based features. , 2019, , .		2
162	Retinal Blood Vessel Extraction Using Morphological Operators and Kirsch's Template. Advances in Intelligent Systems and Computing, 2019, , 603-611.	0.6	9
163	A fully automated pipeline of extracting biomarkers to quantify vascular changes in retina-related diseases. Computer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualization, 2019, 7, 616-631.	1.9	2
164	An automated eye disease prediction system using bag of visual words and support vector machine. Journal of Intelligent and Fuzzy Systems, 2019, 36, 4025-4036.	1.4	7

#	Article	IF	CITATIONS
165	Strided fully convolutional neural network for boosting the sensitivity of retinal blood vessels segmentation. Expert Systems With Applications, 2019, 134, 36-52.	7.6	81
166	Retinal Vessels Segmentation Based on Dilated Multi-Scale Convolutional Neural Network. IEEE Access, 2019, 7, 76342-76352.	4.2	69
167	Discriminative dictionary learning for retinal vessel segmentation using fusion of multiple features. Signal, Image and Video Processing, 2019, 13, 1529-1537.	2.7	16
168	GGM classifier with multi-scale line detectors for retinal vessel segmentation. Signal, Image and Video Processing, 2019, 13, 1667-1675.	2.7	11
169	Retinal vessel segmentation by a divide-and-conquer funnel-structured classification framework. Signal Processing, 2019, 165, 104-114.	3.7	19
170	Retinal Blood Vessel Extraction From Fundus Images Using Improved Otsu Method. International Journal of E-Health and Medical Communications, 2019, 10, 21-43.	1.6	0
171	DUNet: A deformable network for retinal vessel segmentation. Knowledge-Based Systems, 2019, 178, 149-162.	7.1	535
172	Learning representations of sound using trainable COPE feature extractors. Pattern Recognition, 2019, 92, 25-36.	8.1	24
173	Brain-Inspired Robust Delineation Operator. Lecture Notes in Computer Science, 2019, , 555-565.	1.3	4
174	A New Hybrid Algorithm for Retinal Vessels Segmentation on Fundus Images. IEEE Access, 2019, 7, 41885-41896.	4.2	57
175	Extraction of Blood Vessels in Fundus Images of \$\pm\$#xOD; Retina through Hybrid Segmentation Approach. Mathematics, 2019, 7, 169.	2.2	31
176	CE-Net: Context Encoder Network for 2D Medical Image Segmentation. IEEE Transactions on Medical Imaging, 2019, 38, 2281-2292.	8.9	1,266
177	Segmenting retinal vessels with revised top-bottom-hat transformation and flattening of minimum circumscribed ellipse. Medical and Biological Engineering and Computing, 2019, 57, 1481-1496.	2.8	18
178	PixelBNN: Augmenting the PixelCNN with Batch Normalization and the Presentation of a Fast Architecture for Retinal Vessel Segmentation. Journal of Imaging, 2019, 5, 26.	3.0	44
179	Dense U-net Based on Patch-Based Learning for Retinal Vessel Segmentation. Entropy, 2019, 21, 168.	2,2	140
180	BTS-DSN: Deeply supervised neural network with short connections for retinal vessel segmentation. International Journal of Medical Informatics, 2019, 126, 105-113.	3.3	126
181	Retinal blood vessel extraction employing effective image features and combination of supervised and unsupervised machine learning methods. Artificial Intelligence in Medicine, 2019, 95, 1-15.	6. 5	38
182	A Computer-Aided Diagnoses System for Detecting Multiple Ocular Diseases Using Color Retinal Fundus Images. , 2019, , 19-52.		8

#	Article	IF	CITATIONS
183	On Retinal Vessel Segmentation Using FCN. , 2019, , .		1
184	Semantic Segmentation of Retinal Vessel Images via Dense Convolution and Depth Separable Convolution., 2019,,.		1
185	Association of DeepLearning-Based Fundus Age Difference with Carotid Atherosclerosis and Mortality. , 2019, , .		2
186	Improved U-net fundus image segmentation method. , 2019, , .		2
187	Decomposed-Excitatory Antagonistic Model for Reliable Retinal Vessel Detection. , 2019, , .		1
188	M2U-Net: Effective and Efficient Retinal Vessel Segmentation for Real-World Applications. , 2019, , .		63
189	Detection of Central Retinal Vein Occlusion using Guided Salient Features., 2019,,.		1
190	Artery and Vein classification for hypertensive retinopathy. , 2019, , .		5
191	Thin Vessel Detection and Thick Vessel Edge Enhancement to Boost Performance of Retinal Vessel Extraction Methods. Procedia Computer Science, 2019, 163, 618-638.	2.0	7
192	Retinal Image Classification via Vasculature-Guided Sequential Attention. , 2019, , .		6
193	Bi-Directional ConvLSTM U-Net with Densley Connected Convolutions., 2019,,.		209
194	A Multi-Label Computer-aided Diagnoses System for Detecting and Diagnosing Diabetic Retinopathy. , 2019, , .		2
195	Optimization-Based Fundus Image Decomposition for Diagnosis Support of Diabetic Retinopathy. , 2019, , .		1
196	Retinal vascular analysis: Segmentation, tracing, and beyond. , 2019, , 95-120.		1
197	An Improved Retinal Vessel Segmentation Framework Using Frangi Filter Coupled With the Probabilistic Patch Based Denoiser. IEEE Access, 2019, 7, 164344-164361.	4.2	42
198	Retinal vessel segmentation approach based on corrected morphological transformation and fractal dimension. IET Image Processing, 2019, 13, 2538-2547.	2.5	20
199	SD-Unet: A Structured Dropout U-Net for Retinal Vessel Segmentation. , 2019, , .		53
200	Unsupervised Method for Retinal Vessel Segmentation Based on Gabor Wavelet and Multiscale Line Detector. IEEE Access, 2019, 7, 167221-167228.	4.2	32

#	ARTICLE	IF	Citations
201	Optic Disc and Cup Segmentation in Retinal Images for Glaucoma Diagnosis by Locally Statistical Active Contour Model with Structure Prior. Computational and Mathematical Methods in Medicine, 2019, 2019, 1-16.	1.3	24
202	DRPAN: A novel Adversarial Network Approach for Retinal Vessel Segmentation., 2019,,.		9
203	A Study on Recent Developments for Detection of Neovascularization. , 2019, , .		2
204	Computer Aided Intervention and Diagnostics in Clinical and Medical Images. Lecture Notes in Computational Vision and Biomechanics, 2019, , .	0.5	6
205	Automated Method for Retinal Artery/Vein Separation via Graph Search Metaheuristic Approach. IEEE Transactions on Image Processing, 2019, 28, 2705-2718.	9.8	43
206	Detection of u-serrated patterns in direct immunofluorescence images of autoimmune bullous diseases by inhibition-augmented COSFIRE filters. International Journal of Medical Informatics, 2019, 122, 27-36.	3.3	3
207	Robust retinal blood vessel segmentation using hybrid active contour model. IET Image Processing, 2019, 13, 440-450.	2.5	44
208	A methodology framework for retrieval of concrete surface crack′s image properties based on hybrid model. Optik, 2019, 180, 199-214.	2.9	10
209	Automatic Determination of Vertical Cup-to-Disc Ratio in Retinal Fundus Images for Glaucoma Screening. IEEE Access, 2019, 7, 8527-8541.	4.2	23
210	Patch-Based Adaptive Background Subtraction for Vascular Enhancement in X-Ray Cineangiograms. IEEE Journal of Biomedical and Health Informatics, 2019, 23, 2563-2575.	6.3	9
211	Segmentation of Type II Diabetic Patient's Retinal Blood Vessel to Diagnose Diabetic Retinopathy. Lecture Notes in Computational Vision and Biomechanics, 2019, , 153-160.	0.5	1
212	Automated techniques for blood vessels segmentation through fundus retinal images: A review. Microscopy Research and Technique, 2019, 82, 153-170.	2.2	45
213	A Three-Stage Deep Learning Model for Accurate Retinal Vessel Segmentation. IEEE Journal of Biomedical and Health Informatics, 2019, 23, 1427-1436.	6.3	244
214	Retinal Blood Vessel Segmentation by Using Matched Filtering and Fuzzy C-means Clustering with Integrated Level Set Method for Diabetic Retinopathy Assessment. Journal of Medical and Biological Engineering, 2019, 39, 713-731.	1.8	65
215	The multiscale bowler-hat transform for blood vessel enhancement in retinal images. Pattern Recognition, 2019, 88, 739-750.	8.1	56
216	Segmentation of retinal blood vessels from ophthalmologic Diabetic Retinopathy images. Computers and Electrical Engineering, 2019, 73, 245-258.	4.8	42
217	Blood vessel segmentation from fundus image by a cascade classification framework. Pattern Recognition, 2019, 88, 331-341.	8.1	97
218	A framework for retinal vessel segmentation from fundus images using hybrid feature set and hierarchical classification. Signal, Image and Video Processing, 2019, 13, 379-387.	2.7	34

#	Article	IF	CITATIONS
219	Structural feature analysis of the vascular network in retinal images. Computer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualization, 2019, 7, 37-48.	1.9	1
220	A generalized multi-scale line-detection method to boost retinal vessel segmentation sensitivity. Pattern Analysis and Applications, 2019, 22, 1177-1196.	4.6	22
221	A real-time fuzzy morphological algorithm for retinal vessel segmentation. Journal of Real-Time Image Processing, 2019, 16, 2337-2350.	3.5	14
222	Learning skeleton representations for human action recognition. Pattern Recognition Letters, 2019, 118, 23-31.	4.2	19
223	The multiscale top-hat tensor enables specific enhancement of curvilinear structures in 2D and 3D images. Methods, 2020, 173, 3-15.	3.8	8
224	CcNet: A cross-connected convolutional network for segmenting retinal vessels using multi-scale features. Neurocomputing, 2020, 392, 268-276.	5.9	95
225	Segmenting Diabetic Retinopathy Lesions in Multispectral Images Using Low-Dimensional Spatial-Spectral Matrix Representation. IEEE Journal of Biomedical and Health Informatics, 2020, 24, 493-502.	6.3	17
226	A framework for hierarchical division of retinal vascular networks. Neurocomputing, 2020, 392, 221-232.	5.9	17
227	Construction of Retinal Vessel Segmentation Models Based on Convolutional Neural Network. Neural Processing Letters, 2020, 52, 1005-1022.	3.2	19
228	IOT based sustainable diabetic retinopathy diagnosis system. Sustainable Computing: Informatics and Systems, 2020, 28, 100272.	2.2	5
229	Even faster retinal vessel segmentation via accelerated singular value decomposition. Neural Computing and Applications, 2020, 32, 1893-1902.	5.6	7
230	GC-Net: Global context network for medical image segmentation. Computer Methods and Programs in Biomedicine, 2020, 190, 105121.	4.7	50
231	Improving retinal vessel segmentation with joint local loss by matting. Pattern Recognition, 2020, 98, 107068.	8.1	30
233	Retinal Vascular Network Topology Reconstruction and Artery/Vein Classification via Dominant Set Clustering. IEEE Transactions on Medical Imaging, 2020, 39, 341-356.	8.9	46
234	Segmentation of sonar imagery using convolutional neural networks and Markov random field. Multidimensional Systems and Signal Processing, 2020, 31, 21-47.	2.6	9
235	Parallel Architecture of Fully Convolved Neural Network for Retinal Vessel Segmentation. Journal of Digital Imaging, 2020, 33, 168-180.	2.9	16
236	DCCMED-Net: Densely connected and concatenated multi Encoder-Decoder CNNs for retinal vessel extraction from fundus images. Medical Hypotheses, 2020, 134, 109426.	1.5	46
237	Multiscale dense convolutional neural network for DSA cerebrovascular segmentation. Neurocomputing, 2020, 373, 123-134.	5.9	38

#	Article	IF	Citations
238	New grading criterion for retinal haemorrhages in term newborns based on deep convolutional neural networks. Clinical and Experimental Ophthalmology, 2020, 48, 220-229.	2.6	4
239	U-COSFIRE filters for vessel tortuosity quantification with application to automated diagnosis of retinopathy of prematurity. Neural Computing and Applications, 2020, 32, 12453-12468.	5.6	9
240	Dense Dilated Network With Probability Regularized Walk for Vessel Detection. IEEE Transactions on Medical Imaging, 2020, 39, 1392-1403.	8.9	96
241	An automatic evaluation method for retinal image registration based on similar vessel structure matching. Medical and Biological Engineering and Computing, 2020, 58, 117-129.	2.8	4
242	Enhancing detection of retinal blood vessels by combined approach of DWT, Tyler Coye and Gamma correction. Biomedical Signal Processing and Control, 2020, 57, 101740.	5.7	23
243	A new robust method for blood vessel segmentation in retinal fundus images based on weighted line detector and hidden Markov model. Computer Methods and Programs in Biomedicine, 2020, 187, 105231.	4.7	43
244	Convexity shape constraints for retinal blood vessel segmentation and foveal avascular zone detection. Computers in Biology and Medicine, 2020, 127, 104049.	7.0	8
245	A comprehensive diagnosis system for early signs and different diabetic retinopathy grades using fundus retinal images based on pathological changes detection. Computers in Biology and Medicine, 2020, 126, 104039.	7.0	18
246	Frangi based multi-scale level sets for retinal vascular segmentation. Computer Methods and Programs in Biomedicine, 2020, 197, 105752.	4.7	18
247	Residual Connection-Based Encoder Decoder Network (RCED-Net) for Retinal Vessel Segmentation. IEEE Access, 2020, 8, 131257-131272.	4.2	49
248	Wavelet based Fine-to-Coarse Retinal Blood Vessel Extraction using U-net Model. , 2020, , .		5
249	Retinal Vessel Segmentation by Probing Adaptive to Lighting Variations. , 2020, , .		3
250	Exploiting Residual Edge Information in Deep Fully Convolutional Neural Networks For Retinal Vessel Segmentation. , 2020, , .		13
251	Vessel segmentation using multiscale vessel enhancement and a region based level set model. Computerized Medical Imaging and Graphics, 2020, 85, 101783.	5.8	19
252	Evaluation of LBP Variants in Retinal Blood Vessels Segmentation Using Machine Learning., 2020,,.		7
253	ResWnet for Retinal Small Vessel Segmentation. IEEE Access, 2020, 8, 198265-198274.	4.2	12
254	SAR Image Edge Detector Based on Crater-Shaped Window and RUSTICO. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 1-5.	3.1	0
255	An Unsupervised Retinal Vessel Segmentation Using Hessian and Intensity Based Approach. IEEE Access, 2020, 8, 165056-165070.	4.2	33

#	Article	IF	CITATIONS
256	A Multi-Scale Feature Fusion Method Based on U-Net for Retinal Vessel Segmentation. Entropy, 2020, 22, 811.	2.2	30
257	Retinal Blood Vessel Extraction Based on Adaptive Segmentation Algorithm. , 2020, , .		4
258	ELEMENT: Multi-Modal Retinal Vessel Segmentation Based on a Coupled Region Growing and Machine Learning Approach. IEEE Journal of Biomedical and Health Informatics, 2020, 24, 3507-3519.	6.3	43
259	Retinal Vessel Segmentation Under Extreme Low Annotation: A Gan Based Semi-Supervised Approach. , 2020, , .		13
260	Retinal Vessel Segmentation by Deep Residual Learning with Wide Activation. Computational Intelligence and Neuroscience, 2020, 2020, 1-11.	1.7	9
261	Retinal Blood Vessels Segmentation using ISODATA and High Boost Filter. , 2020, , .		8
262	Retinal vessel segmentation using multifractal characterization. Applied Soft Computing Journal, 2020, 94, 106439.	7.2	28
263	Multi-scale channel importance sorting and spatial attention mechanism for retinal vessels segmentation. Applied Soft Computing Journal, 2020, 93, 106353.	7.2	24
264	A size-invariant convolutional network with dense connectivity applied to retinal vessel segmentation measured by a unique index. Computer Methods and Programs in Biomedicine, 2020, 196, 105508.	4.7	22
265	CPGAN: Conditional patchâ€based generative adversarial network for retinal vesselsegmentation. IET Image Processing, 2020, 14, 1081-1090.	2.5	13
266	Retinal Blood Vessel Segmentation Using Hybrid Features and Multi-Layer Perceptron Neural Networks. Symmetry, 2020, 12, 894.	2.2	34
267	Multi-Label Classification Scheme Based on Local Regression for Retinal Vessel Segmentation. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2021, 18, 2586-2597.	3.0	16
268	A fractional filter based efficient algorithm for retinal blood vessel segmentation. Biomedical Signal Processing and Control, 2020, 59, 101883.	5.7	48
269	NFNK: A novel network followed network for retinal vessel segmentation. Neural Networks, 2020, 126, 153-162.	5. 9	119
270	A robust contour detection operator with combined push-pull inhibition and surround suppression. Information Sciences, 2020, 524, 229-240.	6.9	12
271	Semi-Supervised Learning Method of U-Net Deep Learning Network for Blood Vessel Segmentation in Retinal Images. Symmetry, 2020, 12, 1067.	2.2	15
272	From Local to Global: A Graph Framework for Retinal Artery/Vein Classification. IEEE Transactions on Nanobioscience, 2020, 19, 589-597.	3.3	3
273	BSCN: bidirectional symmetric cascade network for retinal vessel segmentation. BMC Medical Imaging, 2020, 20, 20.	2.7	16

#	Article	IF	CITATIONS
274	Attention Guided U-Net With Atrous Convolution for Accurate Retinal Vessels Segmentation. IEEE Access, 2020, 8, 32826-32839.	4.2	81
275	Segmentation and 3D reconstruction of rose plants from stereoscopic images. Computers and Electronics in Agriculture, 2020, 171, 105296.	7.7	18
276	Deep Retinal Image Segmentation With Regularization Under Geometric Priors. IEEE Transactions on Image Processing, 2020, 29, 2552-2567.	9.8	44
277	Enhanced robustness of convolutional networks with a push–pull inhibition layer. Neural Computing and Applications, 2020, 32, 17957-17971.	5.6	14
278	Dense Residual Convolutional Auto Encoder For Retinal Blood Vessels Segmentation. , 2020, , .		8
279	Artificial Intelligence in Ophthalmology: A Meta-Analysis of Deep Learning Models for Retinal Vessels Segmentation. Journal of Clinical Medicine, 2020, 9, 1018.	2.4	37
280	Highâ€quality retinal vessel segmentation using generative adversarial network with a large receptive field. International Journal of Imaging Systems and Technology, 2020, 30, 828-842.	4.1	24
281	An Effective Retinal Blood Vessel Segmentation by Using Automatic Random Walks Based on Centerline Extraction. BioMed Research International, 2020, 2020, 1-11.	1.9	8
282	SUD-GAN: Deep Convolution Generative Adversarial Network Combined with Short Connection and Dense Block for Retinal Vessel Segmentation. Journal of Digital Imaging, 2020, 33, 946-957.	2.9	46
283	Lightweight Attention Convolutional Neural Network for Retinal Vessel Image Segmentation. IEEE Transactions on Industrial Informatics, 2021, 17, 1958-1967.	11.3	153
284	A New Deeply Convolutional Neural Network Architecture for Retinal Blood Vessel Segmentation. International Journal of Pattern Recognition and Artificial Intelligence, 2021, 35, 2157001.	1.2	2
285	<scp>Illumination /scp> normalized based technique for retinal blood vessel segmentation. International Journal of Imaging Systems and Technology, 2021, 31, 351-363.</scp>	4.1	21
286	Retinal Blood Vessel Segmentation from Depigmented Diabetic Retinopathy Images. IETE Journal of Research, 2021, 67, 263-280.	2.6	7
287	A vessel segmentation technique for retinal images. International Journal of Imaging Systems and Technology, 2021, 31, 160-167.	4.1	4
288	Medical image segmentation using customized U-Net with adaptive activation functions. Neural Computing and Applications, 2021, 33, 6307-6323.	5.6	17
289	LCP-Net: A local context-perception deep neural network for medical image segmentation. Expert Systems With Applications, 2021, 168, 114234.	7.6	18
290	Supervised Retinal Vessel Segmentation Based Average Filter and Iterative Self Organizing Data Analysis Technique. International Journal of Computational Intelligence and Applications, 2021, 20, .	0.8	3
291	CS <mml:math altimg="si1.svg" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mrow></mml:mrow><mml:mn>2</mml:mn></mml:msup></mml:math> -Net: Deep learning segmentation of curvilinear structures in medical imaging. Medical Image Analysis, 2021, 67, 101874.	11.6	166

#	ARTICLE	IF	CITATIONS
292	Accurate Retinal Vessel Segmentation in Color Fundus Images via Fully Attention-Based Networks. IEEE Journal of Biomedical and Health Informatics, 2021, 25, 2071-2081.	6.3	54
293	A novel methodology for vessel extraction from retinal fundus image and detection of neovascularization. Multimedia Tools and Applications, 2021, 80, 4093-4110.	3.9	O
294	Neuron Image Segmentation via Learning Deep Features and Enhancing Weak Neuronal Structures. IEEE Journal of Biomedical and Health Informatics, 2021, 25, 1634-1645.	6.3	18
296	Curvelet Transform and ISODATA Thresholding for Retinal Vessel Extraction. Lecture Notes in Electrical Engineering, 2021, , 195-203.	0.4	1
297	U-Net based Multi-level Texture Suppression for Vessel Segmentation in Low Contrast Regions. , 2021, , .		3
298	A viral load-based model for epidemic spread on spatial networks. Mathematical Biosciences and Engineering, 2021, 18, 5635-5663.	1.9	18
299	Segmentation of Blood Vessels, Optic Disc Localization, Detection of Exudates, and Diabetic Retinopathy Diagnosis from Digital Fundus Images. Advances in Intelligent Systems and Computing, 2021, , 173-184.	0.6	2
300	A Scale Normalized Generalized LoG Detector Approach for Retinal Vessel Segmentation. IEEE Access, 2021, 9, 44442-44452.	4.2	4
301	Multi-Level Attention Network for Retinal Vessel Segmentation. IEEE Journal of Biomedical and Health Informatics, 2022, 26, 312-323.	6.3	43
302	Modified pixel level snake using bottom hat transformation for evolution of retinal vasculature map. Mathematical Biosciences and Engineering, 2021, 18, 5737-5757.	1.9	1
303	3D Neuron Microscopy Image Segmentation via the Ray-Shooting Model and a DC-BLSTM Network. IEEE Transactions on Medical Imaging, 2021, 40, 26-37.	8.9	28
304	Contrast Enhancement of Fundus Images by Employing Modified PSO for Improving the Performance of Deep Learning Models. IEEE Access, 2021, 9, 47930-47945.	4.2	34
305	Automatic Diabetic Retinopathy Grading System Based on Detecting Multiple Retinal Lesions. IEEE Access, 2021, 9, 15939-15960.	4.2	45
306	Multi-Scale and Multi-Branch Convolutional Neural Network for Retinal Image Segmentation. Symmetry, 2021, 13, 365.	2.2	11
307	Segmentation of retinal vasculature through composite features and supervised learning. Materials Today: Proceedings, 2021, , .	1.8	1
308	SSCA-Net: Simultaneous Self- and Channel-Attention Neural Network for Multiscale Structure-Preserving Vessel Segmentation. BioMed Research International, 2021, 2021, 1-17.	1.9	6
309	Novel Retinal Vessel Segmentation Method Based on U-net and FPN. , 2021, , .		1
310	Retinal Width Estimation of High-Resolution Fundus Images For Diabetic Retinopathy Detection. , 2021,		1

#	Article	IF	CITATIONS
311	ROSE: A Retinal OCT-Angiography Vessel Segmentation Dataset and New Model. IEEE Transactions on Medical Imaging, 2021, 40, 928-939.	8.9	137
312	Retinal Image Analysis to Detect Neovascularization using Deep Segmentation. , 2021, , .		2
313	DGFAU-Net: Global feature attention upsampling network for medical image segmentation. Neural Computing and Applications, 2021, 33, 12023-12037.	5.6	9
314	Assessing fairness in performance evaluation of publicly available retinal blood vessel segmentation algorithms. Journal of Medical Engineering and Technology, 2021, 45, 351-360.	1.4	1
315	On the quantitative effects of compression of retinal fundus images on morphometric vascular measurements in VAMPIRE. Computer Methods and Programs in Biomedicine, 2021, 202, 105969.	4.7	7
316	A deep learning framework for the detection of Plus disease in retinal fundus images of preterm infants. Biocybernetics and Biomedical Engineering, 2021, 41, 362-375.	5.9	16
317	CSU-Net: A Context Spatial U-Net for Accurate Blood Vessel Segmentation in Fundus Images. IEEE Journal of Biomedical and Health Informatics, 2021, 25, 1128-1138.	6.3	56
318	SA-Net: A scale-attention network for medical image segmentation. PLoS ONE, 2021, 16, e0247388.	2.5	37
319	Multichannel Retinal Blood Vessel Segmentation Based on the Combination of Matched Filter and U-Net Network. BioMed Research International, 2021, 2021, 1-18.	1.9	9
320	A refined equilibrium generative adversarial network for retinal vessel segmentation. Neurocomputing, 2021, 437, 118-130.	5.9	36
321	Performance comparison of artificial bee colony algorithm based approaches for retinal vessel segmentation. Balıkesir Üniversitesi Fen Bilimleri Enstitüsþ Dergisi, 0, , 792-807.	0.3	0
322	2D medical image segmentation via learning multi-scale contextual dependencies. Methods, 2021, , .	3.8	3
323	BSEResU-Net: An attention-based before-activation residual U-Net for retinal vessel segmentation. Computer Methods and Programs in Biomedicine, 2021, 205, 106070.	4.7	35
324	R2AU-Net: Attention Recurrent Residual Convolutional Neural Network for Multimodal Medical Image Segmentation. Security and Communication Networks, 2021, 2021, 1-10.	1.5	33
325	Automatic tool segmentation and tracking during robotic intravascular catheterization for cardiac interventions. Quantitative Imaging in Medicine and Surgery, 2021, 11, 2688-2710.	2.0	12
326	Retinal vessel segmentation based on an improved deep forest. International Journal of Imaging Systems and Technology, 2021, 31, 1792-1802.	4.1	7
327	A new deep learning method for blood vessel segmentation in retinal images based on convolutional kernels and modified U-Net model. Computer Methods and Programs in Biomedicine, 2021, 205, 106081.	4.7	46
328	Densely connected Uâ€Net retinal vessel segmentation algorithm based on multiâ€scale feature convolution extraction. Medical Physics, 2021, 48, 3827-3841.	3.0	11

#	Article	IF	CITATIONS
329	Pyramid U-Net for Retinal Vessel Segmentation., 2021,,.		29
330	A Gaussian-Based Guidewire Segmentation and Tracking Method for Teleoperated Robotic Intravascular Interventions. , 2021, , .		1
331	Correction of artefacts associated with large area EBSD. Ultramicroscopy, 2021, 226, 113315.	1.9	15
332	Joint Extraction of Retinal Vessels and Centerlines Based on Deep Semantics and Multi-Scaled Cross-Task Aggregation. IEEE Journal of Biomedical and Health Informatics, 2021, 25, 2722-2732.	6.3	12
333	Localization of Ocular Vessels with Context Sensitive Semantic Segmentation., 2021,,.		5
334	Deep Learning-Based Computed Tomography Images for Quantitative Measurement of the Correlation between Epicardial Adipose Tissue Volume and Coronary Heart Disease. Scientific Programming, 2021, 2021, 1-9.	0.7	1
335	Screening Fundus Images to Extract Multiple Ocular Features: A Unified Modeling Approach. , 2021, , .		4
336	Failure of affineâ€based reconstruction attack in regenerating vascular feature points. IET Biometrics, 2021, 10, 497-517.	2.5	1
337	Tumor attention networks: Better feature selection, better tumor segmentation. Neural Networks, 2021, 140, 203-222.	5.9	29
338	DPN: detail-preserving network with high resolution representation for efficient segmentation of retinal vessels. Journal of Ambient Intelligence and Humanized Computing, 2023, 14, 5689-5702.	4.9	13
339	UNet retinal blood vessel segmentation algorithm based on improved pyramid pooling method and attention mechanism. Physics in Medicine and Biology, 2021, 66, 175013.	3.0	18
340	A multi-scale segmentation-to-classification network for tiny microaneurysm detection in fundus images. Knowledge-Based Systems, 2021, 226, 107140.	7.1	26
341	Vessel enhancement using Multi-scale Space-Intensity domain Fusion Adaptive filtering. Biomedical Signal Processing and Control, 2021, 69, 102799.	5.7	4
342	SERR-U-Net: Squeeze-and-Excitation Residual and Recurrent Block-Based U-Net for Automatic Vessel Segmentation in Retinal Image. Computational and Mathematical Methods in Medicine, 2021, 2021, 1-16.	1.3	7
343	A Multichannel Deep Neural Network for Retina Vessel Segmentation via a Fusion Mechanism. Frontiers in Bioengineering and Biotechnology, 2021, 9, 697915.	4.1	9
344	A high resolution representation network with multi-path scale for retinal vessel segmentation. Computer Methods and Programs in Biomedicine, 2021, 208, 106206.	4.7	22
345	Gated Skip-Connection Network with Adaptive Upsampling for Retinal Vessel Segmentation. Sensors, 2021, 21, 6177.	3.8	5
346	Retinal blood vessel segmentation using pixel-based feature vector. Biomedical Signal Processing and Control, 2021, 70, 103053.	5.7	21

#	Article	IF	CITATIONS
347	Impact of Novel Image Preprocessing Techniques on Retinal Vessel Segmentation. Electronics (Switzerland), 2021, 10, 2297.	3.1	5
348	Regularizer based on Euler characteristic for retinal blood vessel segmentation. Pattern Recognition Letters, 2021, 149, 83-90.	4.2	8
349	Multi-path cascaded U-net for vessel segmentation from fundus fluorescein angiography sequential images. Computer Methods and Programs in Biomedicine, 2021, 211, 106422.	4.7	11
350	A nested U-shape network with multi-scale upsample attention for robust retinal vascular segmentation. Pattern Recognition, 2021, 120, 107998.	8.1	18
351	Multi-scale retinal vessel segmentation using encoder-decoder network with squeeze-and-excitation connection and atrous spatial pyramid pooling. Applied Optics, 2021, 60, 239.	1.8	4
352	Unsupervised automated retinal vessel segmentation based on Radon line detector and morphological reconstruction. IET Image Processing, 2021, 15, 1484-1498.	2.5	10
353	A smartphone-based test and predictive models for rapid, non-invasive, and point-of-care monitoring of ocular and cardiovascular complications related to diabetes. Informatics in Medicine Unlocked, 2021, 24, 100485.	3.4	5
354	Fine retinal vessel segmentation by combining Nest U-net and patch-learning. Soft Computing, 2021, 25, 5519-5532.	3.6	21
355	Brain-Inspired Algorithms for Processing of Visual Data. Lecture Notes in Computer Science, 2021, , 105-115.	1.3	2
356	Segmentation of retinal blood vessel structure based on statistical distribution of the area of isolated objects., 2021,, 263-278.		2
357	Retinal blood vessels segmentation using classical edge detection filters and the neural network. Informatics in Medicine Unlocked, 2021, 23, 100521.	3.4	45
358	Deep Sclera Segmentation and Recognition. Advances in Computer Vision and Pattern Recognition, 2020, , 395-432.	1.3	25
359	A Single-Resolution Fully Convolutional Network for Retinal Vessel Segmentation in Raw Fundus Images. Lecture Notes in Computer Science, 2019, , 59-69.	1.3	1
360	Vessel-Net: Retinal Vessel Segmentation Under Multi-path Supervision. Lecture Notes in Computer Science, 2019, , 264-272.	1.3	69
361	ACE-Net: Biomedical Image Segmentation with Augmented Contracting and Expansive Paths. Lecture Notes in Computer Science, 2019, , 712-720.	1.3	14
362	CS-Net: Channel and Spatial Attention Network for Curvilinear Structure Segmentation. Lecture Notes in Computer Science, 2019, , 721-730.	1.3	131
363	Trainable COPE Features for Sound Event Detection. Lecture Notes in Computer Science, 2019, , 599-609.	1.3	1
364	U-Net with Attention Mechanism for Retinal Vessel Segmentation. Lecture Notes in Computer Science, 2019, , 668-677.	1.3	3

#	Article	IF	Citations
365	Real-Time Retinal Vessel Segmentation onÂHigh-Resolution Fundus Images Using Laplacian Pyramids. Lecture Notes in Computer Science, 2019, , 337-350.	1.3	4
368	Bio-Inspired Filters for Audio Analysis. Lecture Notes in Computer Science, 2016, , 101-115.	1.3	5
370	Retinal Vessel Segmentation Through Denoising and Mathematical Morphology. Lecture Notes in Computer Science, 2017, , 267-276.	1.3	3
371	Retinal Vessels Segmentation Based on a Convolutional Neural Network. Lecture Notes in Computer Science, 2018, , 119-126.	1.3	8
372	Efficient CNN-CRF Network for Retinal Image Segmentation. Communications in Computer and Information Science, 2017, , 157-165.	0.5	6
373	A Hybrid Filtering-Based Retinal Blood Vessel Segmentation Algorithm. Advances in Intelligent Systems and Computing, 2020, , 73-79.	0.6	1
374	Computerized retinal image analysis - a survey. Multimedia Tools and Applications, 2020, 79, 22389-22421.	3.9	22
375	Fundus image quality enhancement for blood vessel detection via a neural network using CLAHE and Wiener filter. Research on Biomedical Engineering, 2020, 36, 107-119.	2.2	33
376	Unsupervised multiscale retinal blood vessel segmentation using fundus images. IET Image Processing, 2020, 14, 2616-2625.	2.5	18
377	Measurement of Radial Peripapillary Capillary Density in the Normal Human Retina Using Optical Coherence Tomography Angiography. Journal of Glaucoma, 2017, 26, 241-246.	1.6	59
378	Tracking and diameter estimation of retinal vessels using Gaussian process and Radon transform. Journal of Medical Imaging, 2017, 4, 1.	1.5	14
379	Blood vessel segmentation in modern wide-field retinal images in the presence of additive Gaussian noise. Journal of Medical Imaging, $2018, 5, 1$.	1.5	6
380	Recurrent residual U-Net for medical image segmentation. Journal of Medical Imaging, 2019, 6, 1.	1.5	449
381	Retinal vessel segmentation using dense U-net with multiscale inputs. Journal of Medical Imaging, 2019, 6, 1.	1.5	21
382	Segmentation of retinal blood vessels based on feature-oriented dictionary learning and sparse coding using ensemble classification approach. Journal of Medical Imaging, 2019, 6, 1.	1.5	2
383	A Hybrid Unsupervised Approach for Retinal Vessel Segmentation. BioMed Research International, 2020, 2020, 1-20.	1.9	20
384	Blood vessel segmentation of fundus images via cross-modality dictionary learning. Applied Optics, 2018, 57, 7287.	1.8	5
385	Retinal Vessel Segmentation: An Efficient Graph Cut Approach with Retinex and Local Phase. PLoS ONE, 2015, 10, e0122332.	2.5	78

#	Article	IF	Citations
386	Unsupervised Retinal Vessel Segmentation Using Combined Filters. PLoS ONE, 2016, 11, e0149943.	2.5	81
387	Retinal Image Enhancement Using Robust Inverse Diffusion Equation and Self-Similarity Filtering. PLoS ONE, 2016, 11, e0158480.	2.5	3
388	Supervised retinal vessel segmentation from color fundus images based on matched filtering and AdaBoost classifier. PLoS ONE, 2017, 12, e0188939.	2.5	47
389	Retinal Blood Vessel Segmentation Based on Multi-Scale Deep Learning. , 0, , .		22
390	Retinal Vessel Segmentation from Simple to Difficult. , 0, , .		4
391	Blood Vessel Segmentation from Fundus Images Using Modified U-net Convolutional Neural Network. Journal of Image and Graphics(United Kingdom), 2020, 8, 21-25.	3.2	39
392	AN EFFICIENT TECHNIQUE FOR RETINAL VESSEL SEGMENTATION AND DENOISING USING MODIFIED ISODATA AND CLAHE. IIUM Engineering Journal, 2016, 17, 31-46.	0.8	16
393	Retinal blood vessel segmentation based on Densely Connected U-Net. Mathematical Biosciences and Engineering, 2020, 17, 3088-3108.	1.9	26
394	Extraction of retinal blood vessels on fundus images by kirsch's template and Fuzzy C-Means. Journal of Medical Physics, 2019, 44, 21.	0.3	9
395	A Machine Learning based Approach for Segmenting Retinal Nerve Images using Artificial Neural Networks. Engineering, Technology & Applied Science Research, 2020, 10, 5986-5991.	1.9	8
397	Dynamic Inductive Transfer Learning with Decision Support Feedback to Optimize Retina Analysis. , 2021, , .		3
398	Bi-SANetâ€"Bilateral Network with Scale Attention for Retinal Vessel Segmentation. Symmetry, 2021, 13, 1820.	2.2	3
399	A Multi-feature Fusion Method for Optic Cup Segmentation. Lecture Notes in Electrical Engineering, 2022, , 40-48.	0.4	0
400	A Retinal Blood Vessel Segmentation Approach Based on Top-hat Transformation. , 0, , .		0
401	Direction-Based Segmentation of Retinal Blood Vessels. Lecture Notes in Computer Science, 2017, , 1-9.	1.3	3
402	Blood Vessel Delineation in Endoscopic Images with Deep Learning Based Scene Classification. Lecture Notes in Computer Science, 2018, , 147-168.	1.3	2
403	Automatic Detection of Blood Vessel in Retinal Images Using Vesselness Enhancement Filter and Adaptive Thresholding., 2018, , 18-33.		0
404	Post-processing for retinal vessel detection. , 2018, , .		1

#	Article	IF	CITATIONS
405	Patch-Based Generative Adversarial Network Towards Retinal Vessel Segmentation. Communications in Computer and Information Science, 2019, , 49-56.	0.5	3
406	U-Net with Graph Based Smoothing Regularizer for Small Vessel Segmentation on Fundus Image. Communications in Computer and Information Science, 2019, , 515-522.	0.5	3
407	Retinal Vessel Segmentation By Enhanced Corresponding Filtering Estimate on a New High Resolution Fundus Image. International Journal for Research in Applied Science and Engineering Technology, 2019, 7, 1210-1216.	0.1	0
408	Comparative Study of Retinal Blood Vessel Segmentation based on SVM and K-NN Classification. International Journal for Research in Applied Science and Engineering Technology, 2019, 7, 1076-1085.	0.1	0
409	Enhancement of Learning Based Image Matting Method with Different Background/Foreground Weights. Signal and Data Processing, 2019, 16, 75-90.	0.1	1
410	Sustainable Diabetic Retinopathy Diagnosis System Using lot. International Research Journal of Multidisciplinary Technovation, 0, , 71-80.	0.0	1
411	Review of Various Tasks Performed in the Preprocessing Phase of a Diabetic Retinopathy Diagnosis System. Current Medical Imaging, 2020, 16, 397-426.	0.8	2
412	Weakly supervised retinal vessel segmentation algorithm without groundtruth. Electronics Letters, 2020, 56, 1235-1237.	1.0	3
413	A Hybrid Method to Enhance Thick and Thin Vessels for Blood Vessel Segmentation. Diagnostics, 2021, 11, 2017.	2.6	36
414	Automated Corneal Nerve Segmentation Using Weighted Local Phase Tensor. Communications in Computer and Information Science, 2020, , 459-469.	0.5	0
415	Enhancing Tiny Tissues Segmentation via Self-Distillation. , 2020, , .		2
416	Ground truth free retinal vessel segmentation by learning from simple pixels. IET Image Processing, 2021, 15, 1210-1220.	2.5	2
417	Local Adaptive U-net for Medical Image Segmentation. , 2020, , .		11
418	Automated Retinal Vessel Segmentation Based on Morphological Preprocessing and 2D-Gabor Wavelets. Advances in Intelligent Systems and Computing, 2020, , 411-423.	0.6	3
419	Recent Techniques and Trends for Retinal Blood Vessel Extraction and Tortuosity Evaluation: A Comprehensive Review. IEEE Access, 2020, 8, 197787-197816.	4.2	10
420	Segmentation of Blood Vessels from Fundus Image Using Scaled Grid. Communications in Computer and Information Science, 2020, , 217-227.	0.5	1
421	Implementation of Deep Learning Neural Network for Retinal Images. Advances in Computational Intelligence and Robotics Book Series, 2020, , 77-95.	0.4	1
422	Quantitative Methods in Ocular Fundus Imaging: Analysis of Retinal Microvasculature. Applied and Numerical Harmonic Analysis, 2020, , 157-174.	0.3	0

#	Article	IF	CITATIONS
423	A Local Flow Phase Stretch Transform for Robust Retinal Vessel Detection. Lecture Notes in Computer Science, 2020, , 251-261.	1.3	4
424	An Efficient Vessel Segmentation Based on Hierarchical Swarm Optimization Scheme and Mean Shift Clustering with Vessel Connectivities for Retinal Images. International Journal of Electrical and Power Engineering, 2020, 13, 36-49.	0.1	0
425	Influence of background preprocessing on the performance of deep learning retinal vessel detection. Journal of Medical Imaging, 2021, 8, 064001.	1.5	0
426	Deep Learning of the Retina Enables Phenome- and Genome-Wide Analyses of the Microvasculature. Circulation, 2022, 145, 134-150.	1.6	57
428	Convolutional neural network-based automatic detection of follicle cells in ovarian tissue using optical coherence tomography. Biomedical Physics and Engineering Express, 2020, 6, 065026.	1.2	3
429	A detailed and comparative work for retinal vessel segmentation based on the most effective heuristic approaches. Biomedizinische Technik, 2021, 66, 181-200.	0.8	9
430	Vessel Delineation in Retinal Images using Leung-Malik filters and Two Levels Hierarchical Learning. AMIA Annual Symposium proceedings, 2015, 2015, 1140-7.	0.2	1
431	A new baseline for retinal vessel segmentation: Numerical identification and correction of methodological inconsistencies affecting 100+ papers. Medical Image Analysis, 2022, 75, 102300.	11.6	9
432	Semi-supervised Learning Framework in Segmentation of Retinal Blood Vessel Based on U-Net., 2021,,.		0
433	Burr detection and classification using RUSTICO and image processing. Journal of Computational Science, 2021, 56, 101485.	2.9	3
434	Improved retinal vessel segmentation using the enhanced pre-processing method for high resolution fundus images. F1000Research, 0, 10, 1222.	1.6	1
435	Retinal Vessel Segmentation Based onÂGated Skip-Connection Network. Communications in Computer and Information Science, 2021, , 731-738.	0.5	0
436	Edge-aware U-net with gated convolution for retinal vessel segmentation. Biomedical Signal Processing and Control, 2022, 73, 103472.	5.7	25
437	Blood Vessel Segmentation from Retinal Images. , 2020, , .		3
438	Vessels Segmentation Base on Mixed Filter for Retinal Image. , 2020, , .		1
439	The Retinex Decomposition Model for X-ray Coronary Angiographic Sequences. , 2021, , .		О
440	An Adaptive Topology-enhanced Deep Learning Method Combined with Fast Label Extraction Scheme for Retinal Vessel Segmentation. , 2021, , .		1
441	Curvelet Transform Based on Edge Preserving Filter for Retinal Blood Vessel Segmentation. Computers, Materials and Continua, 2022, 71, 2459-2476.	1.9	8

#	Article	IF	CITATIONS
442	A research insight toward the significance in extraction of retinal blood vessels from fundus images and its various implementations. , 2022 , , $163-201$.		1
443	Two-Step Registration on Multi-Modal Retinal Images via Deep Neural Networks. IEEE Transactions on Image Processing, 2022, 31, 823-838.	9.8	16
444	Bridge-Net: Context-involved U-net with patch-based loss weight mapping for retinal blood vessel segmentation. Expert Systems With Applications, 2022, 195, 116526.	7.6	48
445	Supervised learning-based retinal vascular segmentation by M-UNet full convolutional neural network. Signal, Image and Video Processing, 2022, 16, 1755-1761.	2.7	5
446	Retinal vessel segmentation based on U-Net network. , 2022, , .		1
447	Retinal Blood Vessels and Optic Disc Segmentation Using U-Net. Mathematical Problems in Engineering, 2022, 2022, 1-11.	1.1	10
448	DBFU-Net: Double branch fusion U-Net with hard example weighting train strategy to segment retinal vessel. PeerJ Computer Science, 2022, 8, e871.	4.5	5
449	A robust statisticâ€aided edge detector for SAR images based on RUSTICO. Electronics Letters, 2022, 58, 393-395.	1.0	3
450	Res2Unet: A multi-scale channel attention network for retinal vessel segmentation. Neural Computing and Applications, 2022, 34, 12001-12015.	5.6	11
451	CSAUNet: A cascade self-attention u-shaped network for precise fundus vessel segmentation. Biomedical Signal Processing and Control, 2022, 75, 103613.	5.7	6
452	DilUnet: A U-net based architecture for blood vessels segmentation. Computer Methods and Programs in Biomedicine, 2022, 218, 106732.	4.7	15
453	Learning feature-rich integrated comprehensive context networks for automated fundus retinal vessel analysis. Neurocomputing, 2022, 491, 132-143.	5.9	5
454	Detecting retinal vasculature as a key biomarker for deep Learning-based intelligent screening and analysis of diabetic and hypertensive retinopathy. Expert Systems With Applications, 2022, 200, 117009.	7.6	21
455	CAGU-Net: Category Attention Guidance U-Net for Retinal Blood Vessel Segmentation. , 2021, , .		0
456	Multiple Multi-Scale Neural Networks Knowledge Transfer and Integration for Accurate Pixel-Level Retinal Blood Vessel Segmentation. Applied Sciences (Switzerland), 2021, 11, 11907.	2.5	0
457	MSC-Net: Multitask Learning Network for Retinal Vessel Segmentation and Centerline Extraction. Applied Sciences (Switzerland), 2022, 12, 403.	2.5	4
458	Glaucoma Identification based on Segmentation and Fusion Techniques. , 2021, , .		10
459	Multi-Feature Extraction with Ensemble Network for Tracing Chronic Retinal Disorders. , 2021, , .		3

#	Article	IF	CITATIONS
461	RFARN: Retinal vessel segmentation based on reverse fusion attention residual network. PLoS ONE, 2021, 16, e0257256.	2.5	5
462	Vasculature-based biomarkers and segmentation from hyperspectral images of murine peritonitis model., 2021,,.		0
463	MLFF: Multiple Low-Level Features Fusion Model forÂRetinal Vessel Segmentation. Communications in Computer and Information Science, 2022, , 271-281.	0.5	1
464	State-of-the-art retinal vessel segmentation with minimalistic models. Scientific Reports, 2022, 12, 6174.	3.3	33
465	Comparison of Various Segmentation Techniques in Diabetic Retinopathy-A Review. Studies in Computational Intelligence, 2022, , 73-79.	0.9	1
466	Local Road Area Extraction in CSAR Imagery Exploiting Improved Curvilinear Structure Detector. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-15.	6.3	3
467	Performance Comparison of Most Recently Proposed Evolutionary, Swarm Intelligence, and Physics-Based Metaheuristic Algorithms for Retinal Vessel Segmentation. Mathematical Problems in Engineering, 2022, 2022, 1-25.	1.1	3
468	Hyperspectral evaluation of vasculature in induced peritonitis mouse models. Biomedical Optics Express, 2022, 13, 3461.	2.9	3
469	HRNet:A hierarchical recurrent convolution neural network for retinal vessel segmentation. Multimedia Tools and Applications, 2022, 81, 39829-39851.	3.9	4
470	How to design a deep neural network for retinal vessel segmentation: an empirical study. Biomedical Signal Processing and Control, 2022, 77, 103761.	5.7	4
471	A high accuracy segmentation method for retinal blood vessel detection based on hybrid filters and an adaptive thresholding. Journal of Ambient Intelligence and Humanized Computing, 2024, 15, 323-335.	4.9	1
473	Automatic Detection of Diabetic Retinopathy on Digital Fundus Image. , 2022, , .		0
474	Computerized Diagnosis of Diabetic Retinopathy based on Deep Learning Techniques. , 2022, , .		10
475	A novel framework for retinal vessel segmentation using optimal improved frangi filter and adaptive weighted spatial FCM. Computers in Biology and Medicine, 2022, 147, 105770.	7.0	21
476	Automated segmentation of blood vessels in retinal images based on entropy weighted thresholding. Computer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualization, 2023, 11, 542-553.	1.9	1
477	Multiple Ocular Disease Diagnosis Using Fundus Images Based on Multi-Label Deep Learning Classification. Electronics (Switzerland), 2022, 11, 1966.	3.1	6
478	MTPA_Unet: Multi-Scale Transformer-Position Attention Retinal Vessel Segmentation Network Joint Transformer and CNN. Sensors, 2022, 22, 4592.	3.8	9
479	MFE-Net: Multi-type Feature Enhancement Net for Retinal Blood Vessel Segmentation. , 2022, , .		0

#	Article	IF	Citations
480	DNL-Net: deformed non-local neural network for blood vessel segmentation. BMC Medical Imaging, 2022, 22, .	2.7	7
481	Analysis of Vessel Segmentation Based on Various Enhancement Techniques for Improvement of Vessel Intensity Profile. Computational Intelligence and Neuroscience, 2022, 2022, 1-20.	1.7	1
482	Fractal dimension of retinal vasculature as an image quality metric for automated fundus image analysis systems. Scientific Reports, 2022, 12, .	3.3	15
483	MCPANet: Multiscale Cross-Position Attention Network for Retinal Vessel Image Segmentation. Symmetry, 2022, 14, 1357.	2.2	5
484	Learning multi-scale deep fusion for retinal blood vessel extraction in fundus images. Visual Computer, 2023, 39, 4445-4457.	3.5	1
485	Atrous residual convolutional neural network based on U-Net for retinal vessel segmentation. PLoS ONE, 2022, 17, e0273318.	2.5	3
486	Estimating quantitative physiological and morphological tissue parameters of murine tumor models using hyperspectral imaging and optical profilometry. Journal of Biophotonics, 2023, 16, .	2.3	4
488	Automatic Method for Blood Vessel Diameter Measurement on Color Retinal Images. Journal of Biomaterials and Tissue Engineering, 2022, 12, 1919-1932.	0.1	0
489	Optimization of Vessel Segmentation Using Genetic Algorithms. Lecture Notes in Computer Science, 2022, , 391-400.	1.3	1
490	Learning based multi-scale feature fusion for retinal blood vessels segmentation. Journal of Algorithms and Computational Technology, 2022, 16, 174830262110653.	0.7	0
491	Prompt Deep Light-Weight Vessel Segmentation Network (PLVS-Net). IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2023, 20, 1363-1371.	3.0	11
492	Beyond CNNs: Exploiting Further Inherent Symmetries in Medical Image Segmentation. IEEE Transactions on Cybernetics, 2023, 53, 6776-6787.	9.5	3
493	Deep Ensemble Network with Meta-Model Architecture to Early Detect the Vascular Damage Caused by Retinopathy. , 2022, , .		0
494	Stacked Ensemble Network to Assess the Structural Variations in Retina: A Bio-marker for Early Disease Diagnosis. , 2022, , .		0
495	LSW-Net: A Learning Scattering Wavelet Network for Brain Tumor and Retinal Image Segmentation. Electronics (Switzerland), 2022, 11, 2616.	3.1	4
496	Diabetic Retinopathy Detection Using Automated Segmentation Techniques. Journal of Physics: Conference Series, 2022, 2325, 012043.	0.4	2
497	A Hybrid Fusion Method Combining Spatial Image Filtering with Parallel Channel Network for Retinal Vessel Segmentation. Arabian Journal for Science and Engineering, 2023, 48, 6149-6162.	3.0	2
498	Retinal Vessel Segmentation Based on B-COSFIRE Filters in Fundus Images. Frontiers in Public Health, 0, 10, .	2.7	0

#	Article	IF	Citations
499	PARAMETER OPTIMIZATION FOR UNSUPERVISED RETINAL VESSEL SEGMENTATION WITH IMAGE FILTERING. Mühendislik Bilimleri Ve Tasarım Dergisi, 2022, 10, 844-855.	0.3	0
500	Directional Shape Feature Extraction Using Modified Line Filter Technique for Weed Classification. International Journal of Electrical & Electronics Research, 2022, 10, 564-571.	1.6	2
501	Four Severity Levels for Grading the Tortuosity of a Retinal Fundus Image. Journal of Imaging, 2022, 8, 258.	3.0	3
502	Comparative analysis of improved FCM algorithms for the segmentation of retinal blood vessels. Soft Computing, 2023, 27, 2109-2123.	3.6	2
503	MHA-Net: A Multibranch Hybrid Attention Network for Medical Image Segmentation. Computational and Mathematical Methods in Medicine, 2022, 2022, 1-7.	1.3	0
504	A novel MCF-Net: Multi-level context fusion network for 2D medical image segmentation. Computer Methods and Programs in Biomedicine, 2022, 226, 107160.	4.7	4
505	Local-Sensitive Connectivity Filter (LS-CF): A Post-Processing Unsupervised Improvement of the Frangi, Hessian and Vesselness Filters for Multimodal Vessel Segmentation. Journal of Imaging, 2022, 8, 291.	3.0	2
506	Human treelike tubular structure segmentation: A comprehensive review and future perspectives. Computers in Biology and Medicine, 2022, 151, 106241.	7.0	12
507	SFA-Net: Scale and Feature Aggregate Network for Retinal Vessel Segmentation. Journal of Healthcare Engineering, 2022, 2022, 1-12.	1.9	3
508	An improved U-net based retinal vessel image segmentation method. Heliyon, 2022, 8, e11187.	3.2	12
509	MC-UNet: Multimodule Concatenation Based on U-Shape Network for Retinal Blood Vessels Segmentation. Computational Intelligence and Neuroscience, 2022, 2022, 1-10.	1.7	4
510	UCR-Net: U-shaped context residual network for medical image segmentation. Computers in Biology and Medicine, 2022, 151, 106203.	7.0	15
511	An Efficient and Light Weight Deep Learning Model for Accurate Retinal Vessels Segmentation. IEEE Access, 2023, 11, 23107-23118.	4.2	5
512	Separable Paravector Orientation Tensors for Enhancing Retinal Vessels. IEEE Transactions on Medical Imaging, 2023, 42, 880-893.	8.9	1
513	Towards Long-Range Pixels Connection for Context-Aware Semantic Segmentation., 2022,,.		0
514	MISSFormer: An Effective Transformer for 2D Medical Image Segmentation. IEEE Transactions on Medical Imaging, 2023, 42, 1484-1494.	8.9	29
515	SPNet: A novel deep neural network for retinal vessel segmentation based on shared decoder and pyramid-like loss. Neurocomputing, 2023, 523, 199-212.	5.9	4
516	Retinal Image Segmentation U sing Clustering Methods: Performance Analysis. , 2022, , .		1

#	Article	IF	CITATIONS
517	Implementation of Deep Learning Neural Network for Retinal Images., 2022,, 774-792.		0
518	Retinal Blood Vessel Extraction From Fundus Images Using Improved Otsu Method. , 2022, , 948-969.		0
519	BCR-UNet: Bi-directional ConvLSTM residual U-Net for retinal blood vessel segmentation. Frontiers in Public Health, 0, 10 , .	2.7	5
520	RADCU-Net: residual attention and dual-supervision cascaded U-Net for retinal blood vessel segmentation. International Journal of Machine Learning and Cybernetics, 2023, 14, 1605-1620.	3.6	9
521	Separation of arteries and veins in retinal fundus images with a new CNN architecture. Computer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualization, 0, , 1-11.	1.9	0
522	3D-FVS: construction and application of three-dimensional fundus vascular structure model based on single image features. Eye, 0, , .	2.1	0
523	Retinal OCTA Image Segmentation Based on Global Contrastive Learning. Sensors, 2022, 22, 9847.	3.8	2
524	OCTAve: 2D <i>En Face</i> Optical Coherence Tomography Angiography Vessel Segmentation in Weakly-Supervised Learning With Locality Augmentation. IEEE Transactions on Biomedical Engineering, 2023, 70, 1931-1942.	4.2	1
525	Retinal blood vessel segmentation by using the MS-LSDNet network and geometric skeleton reconnection method. Computers in Biology and Medicine, 2023, 153, 106416.	7.0	7
526	Orientation and Context Entangled Network for Retinal Vessel Segmentation. Expert Systems With Applications, 2023, 217, 119443.	7.6	8
527	Separating of glaucoma and non-glaucoma fundus images using EfficientNet-B0. Bitlis Eren \tilde{A} æniversitesi Fen Bilimleri Dergisi, 0, , .	0.5	0
528	MIC-Net: multi-scale integrated context network for automatic retinal vessel segmentation in fundus image. Mathematical Biosciences and Engineering, 2023, 20, 6912-6931.	1.9	1
529	Protection of Sparse Retinal Templates Using Cohort-Based Dissimilarity Vectors. IEEE Transactions on Biometrics, Behavior, and Identity Science, 2023, 5, 233-243.	4.4	2
530	Attention U-Net Based on Bi-ConvLSTM and Its Optimization for Smart Healthcare. IEEE Transactions on Computational Social Systems, 2023, 10, 1966-1974.	4.4	1
531	Improved sub-category exploration and attention hybrid network for weakly supervised semantic segmentation. Neural Computing and Applications, 2023, 35, 10573-10587.	5.6	2
532	Towards Automatic Retinal Blood Vessels Segmentation in Retinal Images. , 2022, , .		0
533	SepFE: Separable Fusion Enhanced Network for Retinal Vessel Segmentation. CMES - Computer Modeling in Engineering and Sciences, 2023, 136, 2465-2485.	1.1	1
534	SDDC-Net: A U-shaped deep spiking neural P convolutional network for retinal vessel segmentation. , 2023, 136, 104002.		11

#	Article	IF	CITATIONS
536	Optimized Smartphone-based Implementation of B-COSFIRE Filter for Retinal Blood Vessel Segmentation. , 2022, , .		0
537	Featureâ€guided attention network for medical image segmentation. Medical Physics, 2023, 50, 4871-4886.	3.0	1
538	Automatic vessel crossing and bifurcation detection based on multi-attention network vessel segmentation and directed graph search. Computers in Biology and Medicine, 2023, 155, 106647.	7.0	3
539	An Enhanced Gabor Filter Based on Heat-Diffused Top Hat Transform for Retinal Blood Vessel Segmentation. Advances in Medical Technologies and Clinical Practice Book Series, 2023, , 247-281.	0.3	0
540	Mesoscale volumetric light-field (MesoLF) imaging of neuroactivity across cortical areas at 18 Hz. Nature Methods, 2023, 20, 600-609.	19.0	7
541	STSANet: Retinal Vessel Segmentation via Spatial-Temporal and Self-Attention Encoding., 2022,,.		1
542	Improved fully convolutional neuron networks on small retinal vessel segmentation using local phase as attention. Frontiers in Medicine, $0,10,10$	2.6	2
543	U-net autoencoder architectures for retinal blood vessels segmentation. , 2023, , 195-210.		0
544	Semantic Segmentation of Retinal Vessels using Deep Learning approach., 2022,,.		0
545	Segmentation of retinal vessels in fundus images based on U-Net with self-calibrated convolutions and spatial attention modules. Medical and Biological Engineering and Computing, 2023, 61, 1745-1755.	2.8	5
546	A bio-inspired fall webworm optimization algorithm for feature selection and support vector machine optimization for retinal abnormalities detection. Multimedia Tools and Applications, 0, , .	3.9	1
548	Online Crack Detection of Highly Curved Cylindrical Coils. IEEE Transactions on Industrial Informatics, 2023, , 1-9.	11.3	0
549	IterMiUnet: A lightweight architecture for automatic blood vessel segmentation. Multimedia Tools and Applications, 2023, 82, 43207-43231.	3.9	3
550	AFFD-Net: A Dual-Decoder Network Based on Attention-Enhancing and Feature Fusion for Retinal Vessel Segmentation. IEEE Access, 2023, 11, 45871-45887.	4.2	0
551	LEA U-Net: a U-Net-based deep learning framework with local feature enhancement and attention for retinal vessel segmentation. Complex & Intelligent Systems, 2023, 9, 6753-6766.	6.5	3
552	Retinal vessel segmentation via a Multi-resolution Contextual Network and adversarial learning. Neural Networks, 2023, 165, 310-320.	5.9	6
553	SegR-Net: A deep learning framework with multi-scale feature fusion for robust retinal vessel segmentation. Computers in Biology and Medicine, 2023, 163, 107132.	7.0	13
554	HC-Net: Hierarchical Context integration Network for medical image segmentation. , 2022, , .		0

#	ARTICLE	IF	CITATIONS
555	GO-DBN: Gannet Optimized Deep Belief Network Based wavelet kernel ELM for Detection of Diabetic Retinopathy. Expert Systems With Applications, 2023, 229, 120408.	7.6	3
556	Early diagnosis of diabetic retinopathy using unsupervised learning. Soft Computing, 2023, 27, 9093-9104.	3.6	1
557	Retinal Vessel Segmentation in Medical Diagnosis using Multi-scale Attention Generative Adversarial Networks. Mobile Networks and Applications, 0, , .	3.3	0
558	A combined fuzzy backtracking search optimization algorithm to localize retinal blood vessels for diabetic retinopathy. Biomedical Physics and Engineering Express, 2023, 9, 055025.	1.2	1
559	Enhancing fine retinal vessel segmentation: Morphological reconstruction and double thresholds filtering strategy. PLoS ONE, 2023, 18, e0288792.	2.5	2
560	An improved LinkNet-based approach for Retinal Image Segmentation. , 2023, , .		0
561	Multi-level spatial-temporal and attentional information deep fusion network for retinal vessel segmentation. Physics in Medicine and Biology, 2023, 68, 195026.	3.0	1
562	基于自é€,应补å∮网络的视网膜血管å^†å‰². Guangxue Xuebao/Acta Optica Sinica, 2023, 43,	1418001.	0
563	å∰æ"¡æ€å›¾åƒå¼•å⁻¼æ‰‹æœ¯å⁻¼è°ªè¿›å±•. Guangxue Xuebao/Acta Optica Sinica, 2023, 43, 1500002.	1.2	0
564	Biometric Recognition ofÂAfrican Clawed Frogs. Lecture Notes in Computer Science, 2023, , 151-161.	1.3	0
565	COFI - Coarse-Semantic toÂFine-Instance Unsupervised Mitochondria Segmentation inÂEM. Lecture Notes in Computer Science, 2023, , 87-97.	1.3	0
566	Systematic Development of Al-Enabled Diagnostic Systems for Glaucoma and Diabetic Retinopathy. IEEE Access, 2023, 11, 105069-105081.	4.2	1
567	A Review on Retinal Blood Vessel Enhancement and Segmentation Techniques for Color Fundus Photography. Critical Reviews in Biomedical Engineering, 2024, 52, 41-69.	0.9	1
568	Vessel segmentation of OCTA images based on latent vector alignment and swin Transformer. , 2023, 28, 2927-2939.		0
569	Features fusion based novel approach for efficient blood vessel segmentation from fundus images. Multimedia Tools and Applications, 0, , .	3.9	1
570	Unfolded deep kernel estimation-attention UNet-based retinal image segmentation. Scientific Reports, 2023, 13, .	3.3	0
571	TDCAU-Net: retinal vessel segmentation using transformer dilated convolutional attention-based U-Net method. Physics in Medicine and Biology, 0, , .	3.0	0
572	A review of retinal vessel segmentation for fundus image analysis. Engineering Applications of Artificial Intelligence, 2024, 128, 107454.	8.1	0

#	ARTICLE	IF	CITATIONS
573	Seismic events extraction method based on the B-COSFIRE filter combined with the differential evolution algorithm. Acta Geophysica, 0 , , .	2.0	O
574	Fine-grained damage detection of cement concrete pavement based on UAV remote sensing image segmentation and stitching. Measurement: Journal of the International Measurement Confederation, 2024, 226, 113844.	5.0	0
575	A novel chaotic weighted EHO-based methodology for retinal vessel segmentation. Computer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualization, $0, 1-23$.	1.9	0
576	GAN-Based Approach for Diabetic Retinopathy Retinal Vasculature Segmentation. Bioengineering, 2024, 11, 4.	3.5	0
577	In-plane Strain Analysis by Correlating Geometry and Visual Data Through a Gradient-Based Surface Reconstruction. , 2023, , .		0
578	MPFC-Net: A multi-perspective feature compensation network for medical image segmentation. Expert Systems With Applications, 2024, 248, 123430.	7.6	0
579	A cognitive deep learning approach for medical image processing. Scientific Reports, 2024, 14, .	3.3	0
580	3D Retinal Vessel Segmentation inÂOCTA Volumes: Annotated Dataset MORE3D andÂHybrid U-Net withÂFlattening Transformation. Lecture Notes in Computer Science, 2024, , 291-306.	1.3	0
581	Retinal blood vessel segmentation using a deep learning method based on modified U-NET model. Multimedia Tools and Applications, 0, , .	3.9	O