Physicochemical characterization and antimicrobial act nanoemulsions incorporating essential oils

Food Hydrocolloids 43, 547-556 DOI: 10.1016/j.foodhyd.2014.07.012

Citation Report

#	Article	IF	CITATIONS
1	Essential oils in foods: extraction, stabilization, and toxicity. Current Opinion in Food Science, 2015, 5, 29-35.	4.1	157
2	Application of CMC as Thickener on Nanoemulsions Based on Olive Oil: Physical Properties and Stability. International Journal of Polymer Science, 2016, 2016, 1-10.	1.2	54
3	Preparation of nanomaterials for food applications using membrane emulsification and membrane mixing. , 2016, , 37-69.		4
4	High-Shear Mixing: Applications in the Food Industry. , 2016, , .		4
5	On the preparation and antibacterial activity of emulsions stabilized with nanocellulose particles. Food Hydrocolloids, 2016, 61, 780-792.	5.6	98
6	Structural modification of bacterial cellulose fibrils under ultrasonic irradiation. Carbohydrate Polymers, 2016, 150, 5-12.	5.1	42
7	Production of high-oleic palm oil nanoemulsions by high-shear homogenization (microfluidization). Innovative Food Science and Emerging Technologies, 2016, 35, 75-85.	2.7	70
8	Delivery systems of antimicrobial compounds to food. Trends in Food Science and Technology, 2016, 57, 165-177.	7.8	71
9	Natural Antimicrobial Edible Coatings for Microbial Safety and Food Quality Enhancement. Comprehensive Reviews in Food Science and Food Safety, 2016, 15, 1080-1103.	5.9	126
10	Nanobiotechnology Methods to Incorporate Bioactive Compounds in Food Packaging. Sustainable Agriculture Reviews, 2016, , 27-58.	0.6	7
11	Investigation into the physical stability of a eugenol nanoemulsion in the presence of a high content of triglyceride. RSC Advances, 2016, 6, 91060-91067.	1.7	15
12	Nanoencapsulation technology to control release and enhance bioactivity of essential oils. , 2016, , 597-640.		10
13	Physicochemical characterization of chitosan-based coating-forming emulsions: Effect of homogenization method and carvacrol content. Food Hydrocolloids, 2016, 61, 851-857.	5.6	42
14	Essential oil nanoemulsions as antimicrobial agents in food. Journal of Biotechnology, 2016, 233, 106-120.	1.9	450
15	Characterizing the novel surfactant-stabilized nanoemulsions of stinging nettle essential oil: Thermal behaviour, storage stability, antimicrobial activity and bioaccessibility. Journal of Molecular Liquids, 2016, 224, 1332-1340.	2.3	43
16	Improving functional properties of chitosan films as active food packaging by incorporating with propolis. Food Hydrocolloids, 2016, 61, 695-702.	5.6	327
17	Determination of the efficacy of ultrasound combined with essential oils on the decontamination of Salmonella inoculated lettuce leaves. LWT - Food Science and Technology, 2016, 73, 80-87.	2.5	57
18	Investigations of the effectiveness of nanoemulsions from sage oil as antibacterial agents on some food borne pathogens. LWT - Food Science and Technology, 2016, 71, 69-76.	2.5	89

#	Article	IF	CITATIONS
19	Effect of emulsification on the antimicrobial activity of carvacrol. CYTA - Journal of Food, 2016, 14, 186-192.	0.9	16
20	Antimicrobial activity of nanoemulsions containing essential oils and high methoxyl pectin during long-term storage. Food Control, 2017, 77, 131-138.	2.8	98
21	Comparing the effectiveness of natural and synthetic emulsifiers on oxidative and physical stability of avocado oil-based nanoemulsions. Innovative Food Science and Emerging Technologies, 2017, 44, 159-166.	2.7	79
22	Nanoemulsions: stability and physical properties. Current Opinion in Food Science, 2017, 16, 1-6.	4.1	124
23	Active films based on alginate containing lemongrass essential oil encapsulated: Effect of process and storage conditions. Food and Bioproducts Processing, 2017, 104, 94-103.	1.8	29
24	Nanostructured bioactive compounds for ecological food packaging. Environmental Chemistry Letters, 2017, 15, 193-204.	8.3	54
25	Ultrasound-mediated nettle oil nanoemulsions stabilized by purified jujube polysaccharide: Process optimization, microbial evaluation and physicochemical storage stability. Journal of Molecular Liquids, 2017, 234, 240-248.	2.3	47
26	Application of cinnamon bark emulsions to protect strawberry jam from fungi. LWT - Food Science and Technology, 2017, 78, 265-272.	2.5	22
27	Effect of novel bioactive edible coatings based on jujube gum and nettle oil-loaded nanoemulsions on the shelf-life of Beluga sturgeon fillets. International Journal of Biological Macromolecules, 2017, 95, 769-777.	3.6	112
28	Formulation, characterization and antimicrobial properties of black cumin essential oil nanoemulsions stabilized by OSA starch. Journal of Food Science and Technology, 2017, 54, 3358-3365.	1.4	39
29	Do oil-in-water (O/W) nano-emulsions have an effect on survival and growth of bacteria?. Food Research International, 2017, 101, 114-128.	2.9	15
30	Influence of Milk Whey on High-Oleic Palm Oil Nanoemulsions: Powder Production, Physical and Release Properties. Food Biophysics, 2017, 12, 439-450.	1.4	8
31	Physical properties and lipid bioavailability of nanoemulsion-based matrices with different thickening agents. Food Hydrocolloids, 2017, 73, 243-254.	5.6	32
32	Preparation, characterization and bioavailability by oral administration of O/W curcumin nanoemulsions stabilized with lysophosphatidylcholine. Food and Function, 2017, 8, 3346-3354.	2.1	25
33	Ultrasonic nanoemulsification of food grade trans-cinnamaldehyde: 1,8-Cineol and investigation of the mechanism of antibacterial activity. Ultrasonics Sonochemistry, 2017, 35, 415-421.	3.8	58
34	Nanostructured emulsions and nanolaminates for delivery of active ingredients: Improving food safety and functionality. Trends in Food Science and Technology, 2017, 60, 12-22.	7.8	67
35	Hydrogel-thickened nanoemulsions based on essential oils for topical delivery of psoralen: Permeation and stability studies. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 116, 38-50.	2.0	53
36	Influence of emulsifier type on the antifungal activity of cinnamon leaf, lemon and bergamot oil nanoemulsions against Aspergillus niger. Food Control, 2017, 73, 784-795.	2.8	69

#	Article	IF	CITATIONS
37	Nanoscale nutrient delivery systems. , 2017, , 87-139.		3
38	Encapsulation by nanoemulsions. , 2017, , 36-73.		35
39	Nanodelivery of nutrients for improved bioavailability. , 2017, , 369-411.		3
40	Food Aroma Compounds. , 2017, , 297-334.		18
41	Physicochemical and Antimicrobial Characterization of Beeswax–Starch Food-Grade Nanoemulsions Incorporating Natural Antimicrobials. International Journal of Molecular Sciences, 2017, 18, 2712.	1.8	13
42	Antimicrobial Activity of Some Essential Oils—Present Status and Future Perspectives. Medicines (Basel, Switzerland), 2017, 4, 58.	0.7	741
43	Recent Research Trends in Fabrication and Applications of Plant Essential Oil Based Nanoemulsions. Journal of Nanomedicine & Nanotechnology, 2017, 08, .	1.1	27
44	Fresh-Cut Fruit and Vegetables: Emerging Eco-friendly Techniques for Sanitation and Preserving Safety. , 0, , .		13
45	Influence of essential oils and pectin on nanoemulsion formulation: AÂternary phase experimental approach. Food Hydrocolloids, 2018, 81, 209-219.	5.6	46
48	Influence of oil phase composition on the antifungal and mycotoxin inhibitory activity of clove oil nanoemulsions. Food and Function, 2018, 9, 2872-2882.	2.1	51
49	Characterization of Interactions between Curcumin and Different Types of Lipid Bilayers by Molecular Dynamics Simulation. Journal of Physical Chemistry B, 2018, 122, 2341-2354.	1.2	45
50	Effect of Microfluidization Condition on Physicochemical Properties and Inhibitory Activity of Nanoemulsion Loaded with Natural Antibacterial Mixture. Food and Bioprocess Technology, 2018, 11, 645-659.	2.6	15
51	Fabrication of Nanoemulsion: A Brief Review. Environmental Chemistry for A Sustainable World, 2018, , 49-62.	0.3	3
52	Thymol nanoemulsion exhibits potential antibacterial activity against bacterial pustule disease and growth promotory effect on soybean. Scientific Reports, 2018, 8, 6650.	1.6	115
53	Prevention of fungal spoilage in food products using natural compounds: A review. Critical Reviews in Food Science and Nutrition, 2018, 58, 2002-2016.	5.4	51
54	Nanostructures for delivery of natural antimicrobials in food. Critical Reviews in Food Science and Nutrition, 2018, 58, 2202-2212.	5.4	56
55	Preparation, characterization, and antimicrobial activity of nanoemulsions incorporating citral essential oil. Journal of Food and Drug Analysis, 2018, 26, 82-89.	0.9	195
56	Combination of different antifungal agents in oil-in-water emulsions to control strawberry jam spoilage. Food Chemistry, 2018, 239, 704-711.	4.2	13

#	Article	IF	CITATIONS
57	Recent advances of controlled drug delivery using microfluidic platforms. Advanced Drug Delivery Reviews, 2018, 128, 3-28.	6.6	241
58	Elaboration and characterization of O/W cinnamon (Cinnamomum zeylanicum) and black pepper (Piper) Tj ETQq1	10.7843 5.6	14.rgBT /Ov 57
60	Formulation of garlic oilâ€inâ€water nanoemulsion: antimicrobial and physicochemical aspects. IET Nanobiotechnology, 2018, 12, 647-652.	1.9	22
61	Physicochemical character of nanoencapsulated Kencur (Kaempferia galanga L.) dreg extracts. AIP Conference Proceedings, 2018, , .	0.3	0
62	Beverage Emulsions: Key Aspects of Their Formulation and Physicochemical Stability. Beverages, 2018, 4, 70.	1.3	22
63	Vitamin E Encapsulation in Plant-Based Nanoemulsions Fabricated Using Dual-Channel Microfluidization: Formation, Stability, and Bioaccessibility. Journal of Agricultural and Food Chemistry, 2018, 66, 10532-10542.	2.4	53
64	A review on antifungal activity and mode of action of essential oils and their delivery as nano-sized oil droplets in food system. Journal of Food Science and Technology, 2018, 55, 4701-4710.	1.4	63
65	The Use of Natural Antimicrobials Combined with Nonthermal Treatments To Control Human Pathogens. ACS Symposium Series, 2018, , 149-169.	0.5	2
66	Preparation of basil oil nanoemulsion using Sapindus mukorossi pericarp extract: Physico-chemical properties and antifungal activity against food spoilage pathogens. Industrial Crops and Products, 2018, 125, 95-104.	2.5	42
67	Geranium Essential Oil Emulsion Containing Benzalkonium Chloride as a Wash Solution on Fresh-Cut Vegetables. Food and Bioprocess Technology, 2018, 11, 2164-2171.	2.6	9
68	Potential applications of nano-emulsions in the food systems: an update. Materials Research Express, 2018, 5, 062001.	0.8	23
69	Essential oil based nanoemulsions to improve the microbial quality of minimally processed fruits and vegetables: A review. Food Research International, 2018, 111, 509-523.	2.9	165
70	Ultrasonication-assisted formation and characterization of geraniol and carvacrol-loaded emulsions for enhanced antimicrobial activity against food-borne pathogens. Chemical Papers, 2018, 72, 2659-2672.	1.0	18
71	Curcumin loaded nanoemulsions/pectin coatings for refrigerated chicken fillets. Food Hydrocolloids, 2018, 83, 445-453.	5.6	134
72	Design of biosystems to provide healthy and safe food. PartÂA: effect of emulsifier and preparation technique on physicochemical, antioxidant and antimicrobial properties. European Food Research and Technology, 2018, 244, 1963-1975.	1.6	9
73	Cosmetics Preservation: A Review on Present Strategies. Molecules, 2018, 23, 1571.	1.7	177
74	Soy Protein Isolate-Phosphatidylcholine Nanoemulsions Prepared Using High-Pressure Homogenization. Nanomaterials, 2018, 8, 307.	1.9	41
75	Microfluidics contribution to pharmaceutical sciences: From drug discovery to post marketing product management. Journal of Pharmaceutical and Biomedical Analysis, 2018, 159, 348-362.	1.4	22

#	Article	IF	CITATIONS
76	Therapeutic challenges in ocular delivery of lipid based emulsion. Egyptian Journal of Basic and Applied Sciences, 2018, 5, 121-129.	0.2	11
77	Applications of Nanoemulsions in Foods. , 2018, , 349-377.		25
78	Surfactant type affects the washing effect of cinnamon leaf essential oil emulsion on kale leaves. Food Chemistry, 2019, 271, 122-128.	4.2	26
79	Electrostatic interaction between proteins and polysaccharides: Physicochemical aspects and applications in emulsion stabilization. Food Reviews International, 2019, 35, 54-89.	4.3	80
80	Production of clove oil nanoemulsion with rapid and enhanced antimicrobial activity against gramâ€positive and gramâ€negative bacteria. Journal of Food Process Engineering, 2019, 42, e13209.	1.5	26
81	Creating Products and Services in Food Biotechnology. , 2019, , 141-178.		2
82	Ultrasound Processing Alone or in Combination with Other Chemical or Physical Treatments as a Safety and Quality Preservation Strategy of Fresh and Processed Fruits and Vegetables: A Review. Food and Bioprocess Technology, 2019, 12, 1452-1471.	2.6	45
83	Valorization of fruits and vegetables waste through green extraction of bioactive compounds and their nanoemulsions-based delivery system. Bioresources and Bioprocessing, 2019, 6, .	2.0	116
84	Bio-Based Nanoemulsion Formulations Applicable in Agriculture, Medicine, and Food Industry. Nanotechnology in the Life Sciences, 2019, , 33-84.	0.4	17
85	Application of Gum Arabic in Nanoemulsion for Safe Conveyance of Bioactive Components. Nanotechnology in the Life Sciences, 2019, , 85-98.	0.4	7
86	Biobased Nanoemulsions: Concept, Formulation, and Applications. Nanotechnology in the Life Sciences, 2019, , 1-31.	0.4	3
87	Encapsulation of Natural Bioactive Compounds: Nanoemulsion Formulation to Enhance Essential Oils Activities. , 0, , .		2
88	Physicochemical characterization and antimicrobial activity in novel systems containing buriti oil and structured lipids nanoemulsions. Biotechnology Reports (Amsterdam, Netherlands), 2019, 24, e00365.	2.1	19
89	Producing an Emulsified Meat System by Partially Substituting Pig Fat with Nanoemulsions that Contain Antioxidant Compounds: The Effect on Oxidative Stability, Nutritional Contribution, and Texture Profile. Foods, 2019, 8, 357.	1.9	13
90	Encapsulation of food ingredients by single O/W and W/O nanoemulsions. , 2019, , 37-87.		2
91	Green Micro- and Nanoemulsions for Managing Parasites, Vectors and Pests. Nanomaterials, 2019, 9, 1285.	1.9	107
92	Antibacterial and antibiofilm activities of linalool nanoemulsions against Salmonella Typhimurium. Food Bioscience, 2019, 28, 57-65.	2.0	78
93	Synthesis, characterization, and antibacterial activity of thymol loaded SBA-15 mesoporous silica nanoparticles. Inorganic and Nano-Metal Chemistry, 2019, 49, 182-189.	0.9	15

#	Article	IF	CITATIONS
94	Nanotechnology and Plant Extracts as a Future Control Strategy for Meat and Milk Products. Nanotechnology in the Life Sciences, 2019, , 201-253.	0.4	3
95	Influence of nonionic and ionic surfactants on the antifungal and mycotoxin inhibitory efficacy of cinnamon oil nanoemulsions. Food and Function, 2019, 10, 2817-2827.	2.1	34
96	Effectiveness of nanoemulsions of clove and lemongrass essential oils and their major components against Escherichia coli and Botrytis cinerea. Journal of Food Science and Technology, 2019, 56, 2721-2736.	1.4	22
97	Green nanoemulsion interventions for biopesticide formulations. , 2019, , 133-160.		10
98	Antimicrobial activity and chemical stability of cinnamon oil in oil-in-water nanoemulsions fabricated using the phase inversion temperature method. LWT - Food Science and Technology, 2019, 110, 190-196.	2.5	53
99	Plant-based larvicidal agents: An overview from 2000 to 2018. Experimental Parasitology, 2019, 199, 92-103.	0.5	27
100	Microemulsionâ€based biopreservatives and γâ€irradiation as combined treatments to provide healthy and safe orange juice. Journal of Food Processing and Preservation, 2019, 43, e13909.	0.9	10
101	Nanoencapsulation of functional food ingredients. Advances in Food and Nutrition Research, 2019, 88, 129-165.	1.5	18
102	Physical properties, antifungal and mycotoxin inhibitory activities of five essential oil nanoemulsions: Impact of oil compositions and processing parameters. Food Chemistry, 2019, 291, 199-206.	4.2	123
103	Comprehensive characterization of active chitosan-gelatin blend films enriched with different essential oils. Food Hydrocolloids, 2019, 95, 33-42.	5.6	197
104	Antibacterial and antioxidant properties of hydroxypropyl methylcellulose-based active composite films incorporating oregano essential oil nanoemulsions. LWT - Food Science and Technology, 2019, 106, 164-171.	2.5	133
105	Production of food bioactive-loaded nanostructures by microfluidization. , 2019, , 341-390.		0
106	Improving the Efficacy of Essential Oils as Antimicrobials in Foods: Mechanisms of Action. Annual Review of Food Science and Technology, 2019, 10, 365-387.	5.1	172
107	Design of biosystems to provide healthy and safe food—partÂB: effect on microbial flora and sensory quality of orange juice. European Food Research and Technology, 2019, 245, 581-591.	1.6	3
108	Effects of edible coating containing nanoâ€emulsion of <scp><i>Aloe vera</i></scp> and eugenol on the physicochemical properties of shrimp during cold storage. Journal of the Science of Food and Agriculture, 2019, 99, 3604-3615.	1.7	33
109	Mechanism for the Nano-Based Drug Delivery System. , 2019, , 219-263.		17
110	Nanoemulsions containing mancozeb and eugenol: development, characterization, and antifungal activity against Glomerella cingulata. Applied Nanoscience (Switzerland), 2019, 9, 233-241.	1.6	4
111	Formation of Double (W1/O/W2) Emulsions as Carriers of Hydrophilic and Lipophilic Active Compounds. Food and Bioprocess Technology, 2019, 12, 422-435.	2.6	20

#	Article	IF	CITATIONS
112	Application of edible coating with essential oil in food preservation. Critical Reviews in Food Science and Nutrition, 2019, 59, 2467-2480.	5.4	185
113	Modulating Functionality of Beverages Through Nanostructured Interventions. , 2020, , 197-227.		Ο
114	Nanoemulsion as advanced edible coatings to preserve the quality of fresh ut fruits and vegetables: a review. International Journal of Food Science and Technology, 2020, 55, 1-10.	1.3	63
115	Oil-in-water emulsions of geraniol and carvacrol improve the antibacterial activity of these compounds on raw goat meat surface during extended storage at 4â€ ⁻ °C. Food Control, 2020, 107, 106757.	2.8	42
116	Preparation of Curcumin Nanodispersions Using Subcritical Water – Screening of Different Emulsifiers. Chemical Engineering and Technology, 2020, 43, 263-272.	0.9	12
117	Effect of Nanoemulsification on the Antibacterial and Anti-biofilm Activities of Selected Spice Essential Oils and Their Major Constituents Against Salmonella enterica Typhimurium. Journal of Cluster Science, 2020, 31, 1123-1135.	1.7	21
118	Encapsulation of Red Propolis in Polymer Nanoparticles for the Destruction of Pathogenic Biofilms. AAPS PharmSciTech, 2020, 21, 49.	1.5	28
119	Combined use of natural antimicrobial based nanoemulsions and ultra high pressure homogenization to increase safety and shelf-life of apple juice. Food Control, 2020, 111, 107051.	2.8	31
120	Physical properties and cellular antioxidant activity of vegetable oil emulsions with different chain lengths and saturation of triglycerides. LWT - Food Science and Technology, 2020, 121, 108948.	2.5	20
121	Essential oil-based nano-emulsions: Effect of different surfactants, sonication and plant species on physicochemical characteristics. Industrial Crops and Products, 2020, 157, 112935.	2.5	55
122	Ultrasonic emulsification: An overview on the preparation of different emulsifiers-stabilized emulsions. Trends in Food Science and Technology, 2020, 105, 363-377.	7.8	189
123	Enhancing the functionality of chitosan- and alginate-based active edible coatings/films for the preservation of fruits and vegetables: A review. International Journal of Biological Macromolecules, 2020, 164, 304-320.	3.6	172
124	<i>Cinnamon Cassia</i> Oil Emulsions Stabilized by Chitin Nanofibrils: Physicochemical Properties and Antibacterial Activities. Journal of Agricultural and Food Chemistry, 2020, 68, 14620-14631.	2.4	28
125	Water-in-oil nanoemulsions loaded with Ardisia compressa K. bioactive compounds: evaluation of their physicochemical stability and functional activities. Journal of Dispersion Science and Technology, 2020, , 1-14.	1.3	0
126	Nanoemulsions: Using emulsifiers from natural sources replacing synthetic ones—A review. Comprehensive Reviews in Food Science and Food Safety, 2020, 19, 2721-2746.	5.9	77
127	Effect of ultrasonication on the stability and storage of a soy protein isolate-phosphatidylcholine nanoemulsions. Scientific Reports, 2020, 10, 14010.	1.6	34
128	Natural Preparations Based on Orange, Bergamot and Clove Essential Oils and Their Chemical Compounds as Antimicrobial Agents. Molecules, 2020, 25, 5502.	1.7	12
129	Studies on the Effect of Oil and Surfactant on the Formation of Alginate-Based O/W Lidocaine Nanocarriers Using Nanoemulsion Template. Pharmaceutics, 2020, 12, 1223.	2.0	70

# 130	ARTICLE Development of active food packaging via incorporation of biopolymeric nanocarriers containing essential oils. Trends in Food Science and Technology, 2020, 101, 106-121.	IF 7.8	CITATIONS
131	Preparation of Terpenoid-Invasomes with Selective Activity against S. aureus and Characterization by Cryo Transmission Electron Microscopy. Biomedicines, 2020, 8, 105.	1.4	14
132	Optimization and Characterization of Essential Oil Nanoemulsions Using Ultrasound for New Ecofriendly Insecticides. ACS Sustainable Chemistry and Engineering, 2020, 8, 7981-7992.	3.2	27
133	Preparation of mint oil microcapsules by microfluidics with high efficiency and controllability in release properties. Microfluidics and Nanofluidics, 2020, 24, 1.	1.0	15
134	Process intensification for curcumin nanodispersion preparation using subcritical water—Optimization and characterization. Chemical Engineering and Processing: Process Intensification, 2020, 153, 107938.	1.8	11
135	Investigation of antimicrobial properties of sage essential oil and its nanoemulsion as antimicrobial agent. LWT - Food Science and Technology, 2020, 130, 109669.	2.5	52
136	Effect of sodium alginate and different types of oil on the physical properties of ultrasound-assisted nanoemulsions. Chemical Engineering and Processing: Process Intensification, 2020, 153, 107942.	1.8	20
137	Self-assembly of Tween 80 micelles as nanocargos for oregano and trans-cinnamaldehyde plant-derived compounds. Food Chemistry, 2020, 327, 126970.	4.2	16
138	Biodegradable packaging antimicrobial activity. , 2020, , 207-238.		2
139	Biocompatible Nutmeg Oil-Loaded Nanoemulsion as Phyto-Repellent. Frontiers in Pharmacology, 2020, 11, 214.	1.6	24
140	Formulation, physical stability test and anti-bacterial test of nanoemulsion from water and n-hexane extract of Cinnamomum burmanii. AIP Conference Proceedings, 2020, , .	0.3	2
141	Preparation of cellulose film in ionic liquid by high shearing and application in pineapple preservation. Materials Research Express, 2020, 7, 025313.	0.8	8
142	Comparison of surfactants at solubilizing, forming and stabilizing nanoemulsion of hesperidin. Journal of Food Engineering, 2020, 281, 110000.	2.7	22
143	Chitosan Film with Citrus limonia Essential Oil: Physical and Morphological Properties and Antibacterial Activity. Colloids and Interfaces, 2020, 4, 18.	0.9	38
144	Recent Advances in the Application of Antibacterial Complexes Using Essential Oils. Molecules, 2020, 25, 1752.	1.7	39
145	Antimicrobial efficacy of nisin, oregano and ultrasound against Escherichia coli O157:H7 and Listeria monocytogenes on lettuce. LWT - Food Science and Technology, 2021, 139, 110522.	2.5	14
146	Emulsions containing essential oils, their components or volatile semiochemicals as promising tools for insect pest and pathogen management. Advances in Colloid and Interface Science, 2021, 287, 102330.	7.0	65
147	Design of highâ€oleic palm oil nanoemulsions suitable for drying in refractance windowâ"¢. Journal of Food Processing and Preservation, 2021, 45, .	0.9	2

#	ARTICLE	IF	CITATIONS
148	Controversy around parabens: Alternative strategies for preservative use in cosmetics and personal care products. Environmental Research, 2021, 198, 110488.	3.7	61
149	Nanoemulsions of essential oils to improve solubility, stability and permeability: a review. Environmental Chemistry Letters, 2021, 19, 1153-1171.	8.3	85
150	Development of antibacterial nanoemulsions incorporating thyme oil: Layer-by-layer self-assembly of whey protein isolate and chitosan hydrochloride. Food Chemistry, 2021, 339, 128016.	4.2	43
151	Effect of Homogenization Method and Carvacrol Content on Microstructural and Physical Properties of Chitosan-Based Films. Foods, 2021, 10, 141.	1.9	12
152	Chemical composition and antifungal activity of essential oils and their combinations against Botrytis cinerea in strawberries. Journal of Food Measurement and Characterization, 2021, 15, 1815-1825.	1.6	35
153	The preparation of peppermint oil/2-hydroxypropyl-β-cyclodextrin/chitosan composite microcapsule and their prolonged retaining ability. Microfluidics and Nanofluidics, 2021, 25, 1.	1.0	3
154	Effect of peppermint oil and its microemulsion on necrotic enteritis in broiler chickens. Veterinary World, 2021, 14, 483-491.	0.7	5
155	The Addition of Microencapsulated or Nanoemulsified Bioactive Compounds Influences the Antioxidant and Antimicrobial Activities of a Fresh Cheese. Molecules, 2021, 26, 2170.	1.7	13
156	Incorporation of antimicrobial nanoemulsions into complex foods: A case study in an apple juice-based beverage. LWT - Food Science and Technology, 2021, 141, 110926.	2.5	9
157	Characterization and antimicrobial activity of microencapsulated citral with dextrin by spray drying. Heliyon, 2021, 7, e06737.	1.4	30
158	Essential oil nanoemulsions for the control of Clostridium sporogenes in cooked meat product: An alternative?. LWT - Food Science and Technology, 2021, 143, 111123.	2.5	18
159	Development, Characterization, and Immunomodulatory Evaluation of Carvacrol-loaded Nanoemulsion. Molecules, 2021, 26, 3899.	1.7	14
160	Nanoencapsulation of Essential Oils as Natural Food Antimicrobial Agents: An Overview. Applied Sciences (Switzerland), 2021, 11, 5778.	1.3	55
161	Preservation of mushrooms (Agaricus bisporus) by an alginate-based-coating containing a cinnamaldehyde essential oil nanoemulsion. Food Packaging and Shelf Life, 2021, 28, 100662.	3.3	36
162	Mandarin (Citrus reticulata L.) essential oil incorporated into chitosan nanoparticles: Characterization, anti-biofilm properties and application in pork preservation. International Journal of Biological Macromolecules, 2021, 185, 620-628.	3.6	52
163	Antimicrobial Activity of Thymol and Thymol-Nanoemulsion Against Three Food-Borne Pathogens Inoculated in a Sausage Model. Food and Bioprocess Technology, 2021, 14, 1936-1945.	2.6	43
164	Application of essential oils as preservatives in food systems: challenges and future prospectives – a review. Phytochemistry Reviews, 2022, 21, 1209-1246.	3.1	22
165	Physicochemical properties and antibacterial activity of hydrophobic deep eutectic solvent-in-water nanoemulsion. Journal of Molecular Liquids, 2021, 338, 116950.	2.3	21

#	Article	IF	CITATIONS
166	Natural antimicrobial-loaded nanoemulsions for the control of food spoilage/pathogenic microorganisms. Advances in Colloid and Interface Science, 2021, 295, 102504.	7.0	26
167	Oral behavior of emulsified systems with different particle size and thickening agents under simulated conditions. Food Research International, 2021, 147, 110558.	2.9	3
168	Characterization, antimicrobial activity, and antioxidant activity of the nanoemulsions of Lavandula spica essential oil and its main monoterpenes. Journal of Drug Delivery Science and Technology, 2021, 65, 102732.	1.4	22
169	Stabilisation of lavender essential oil extracted by microwave-assisted hydrodistillation: Characteristics of starch and soy protein-based microemulsions. Industrial Crops and Products, 2021, 172, 114034.	2.5	8
170	Morphological and metabolomics impact of sublethal doses of natural compounds and its nanoemulsions in Bacillus cereus. Food Research International, 2021, 149, 110658.	2.9	5
171	Biopolymer based nanoemulsion delivery system: An effective approach to boost the antioxidant potential of essential oil in food products. Carbohydrate Polymer Technologies and Applications, 2021, 2, 100082.	1.6	12
172	Edible films and coatings as carriers of nano and microencapsulated ingredients. , 2021, , 211-273.		2
173	Nanoemulsion-based delivery approaches for nutraceuticals: fabrication, application, characterization, biological fate, potential toxicity and future trends. Food and Function, 2021, 12, 1933-1953.	2.1	43
174	Functionality of Food Components and Emerging Technologies. Foods, 2021, 10, 128.	1.9	183
175	Nanoemulsions as Optimized Vehicles for Essential Oils. Sustainable Agriculture Reviews, 2020, , 115-167.	0.6	13
176	Nanoformulations as a modern form of biofungicide. Journal of Environmental Health Science & Engineering, 2020, 18, 119-128.	1.4	26
177	Physicochemical characterization and evaluation of in vitro and in vivo toxicity of goldenberry extract nanoemulsion. Ciencia Rural, 2019, 49, .	0.3	4
178	Plant-Based Nanomaterials: Novel and Highly Effectual Preservatives for Food. , 2021, , 1-28.		1
179	Chemical profile, stability and fungicide activity of oil-in-water nanoemulsion (O / A) incorporated with Ba-har essential oil. Ciência E Natura, 0, 43, e57.	0.0	3
180	Comparative Study of the Development and Characterization of Ecofriendly Oil and Water Nanoemulsions for Improving Antifungal Activity. ACS Agricultural Science and Technology, 2021, 1, 640-654.	1.0	9
181	Effect of emulsifier and droplet size on the antibacterial properties of emulsions and emulsionâ€based films containing essential oil compounds. Journal of Food Processing and Preservation, 2021, 45, e16072.	0.9	7
182	Chitosan nanoparticles encapsulating lemongrass (Cymbopogon commutatus) essential oil: Physicochemical, structural, antimicrobial and in-vitro release properties. International Journal of Biological Macromolecules, 2021, 192, 1084-1097.	3.6	71
183	Spices as Potent Antimicrobial Agents. Journal of Nanomedicine & Nanotechnology, 2016, 07, .	1.1	0

#	Article	IF	CITATIONS
184	Application of Nanotechnology in Functional Foods. , 2019, , 547-579.		4
185	The Effect of Efficient Bioactive Nano-Emulsion Formulation Based on Polylophium involucratum on Improving Quality Features of Green Tiger Pawn Fridge Storage. Annals of Military and Health Sciences Research, 2019, In Press, .	0.1	0
186	Physiological, Biochemical, and Molecular Responses of the Plants Against Enhanced Ultraviolet B and Heavy Metal Stress. , 2020, , 513-554.		0
187	Nanoemulsions for Antimicrobial and Anti-biofilm Applications. Nanotechnology in the Life Sciences, 2020, , 347-373.	0.4	5
188	Food Aroma Compounds. , 2022, , 363-409.		6
189	Ultrasonication induced nano-emulsification of thyme essential oil: Optimization and antibacterial mechanism against Escherichia coli. Food Control, 2022, 133, 108609.	2.8	28
190	Essential Oil Nanoemulsion as Eco-Friendly and Safe Preservative: Bioefficacy Against Microbial Food Deterioration and Toxin Secretion, Mode of Action, and Future Opportunities. Frontiers in Microbiology, 2021, 12, 751062.	1.5	31
191	Stored â€~Galia' melon quality affected by edible nano-coatings enriched with essential oils. Acta Horticulturae, 2021, , 583-590.	0.1	1
192	New Technologies for the Formulation of Secondary Metabolites Produced by Phoma sp. for Biological Control of Weeds. , 2022, , 259-274.		0
193	Composition and Efficacy of Essential Oil Nanoemulsions. Advances in Chemical and Materials Engineering Book Series, 2022, , 59-92.	0.2	0
194	Nanoemulsion Based on Mushroom Bioactive Compounds and Its Application in Food Preservation. Advances in Chemical and Materials Engineering Book Series, 2022, , 425-447.	0.2	0
195	Compound distribution, structural analysis and nanomechanical properties of nanofibers loaded with high-oleic palm oil nanoemulsions for packaging application. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 636, 128148.	2.3	1
196	Spanlastics nanovesicular ocular insert as a novel ocular delivery of travoprost: optimization using Box–Behnken design and inÂvivo evaluation. Journal of Liposome Research, 2022, , 1-11.	1.5	6
198	Chemical Stabilization behind Cardamom Pickering Emulsion Using Nanocellulose. Polysaccharides, 2022, 3, 200-216.	2.1	6
199	A comprehensive review on the application of essential oils as bioactive compounds in Nano-emulsion based edible coatings of fruits and vegetables. Applied Food Research, 2022, 2, 100042.	1.4	44
200	Encapsulated essential oils: A perspective in food preservation. Future Foods, 2022, 5, 100126.	2.4	55
201	Heat Sensitization of Escherichia Coli by the Natural Antimicrobials Vanillin and Emulsified Citral in Blended Carrot-Orange Juice. SSRN Electronic Journal, 0, , .	0.4	0
202	Antifungal Activity of Cymbopogon Citratus Essential Oils from Different Habitats Against Botrytis Cinerea. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
203	Inhibitory Effect of Rosemary Essential Oil and Its Nanoemulsion on the Formation of Biogenic Amines by Food-Borne Pathogens and Fish Spoilage Bacteria. Yuzuncu Yil University Journal of Agricultural Sciences, 2022, 32, 199-212.	0.1	0
204	Improving Anti-listeria Activity of Thymol Emulsions by Adding Lauric Acid. Frontiers in Nutrition, 2022, 9, 859293.	1.6	2
205	Microfluidization: A promising food processing technology and its challenges in industrial application. Food Control, 2022, 137, 108794.	2.8	12
206	Enhancement Effect of Chitosan Coating on Inhibition of Deoxynivalenol Accumulation by Litsea cubeba Essential Oil Emulsion during Malting. Foods, 2021, 10, 3051.	1.9	6
207	A Review of Biopolymers' Utility as Emulsion Stabilizers. Polymers, 2022, 14, 127.	2.0	18
208	Ultrasound emulsification energy strategies impact the encapsulation efficiency of essential oils in colloidal systems. Journal of Molecular Liquids, 2022, 358, 119179.	2.3	6
209	Garlic essential oilâ€based nanoemulsion carrier: Release and stability kinetics of volatile components. Food Science and Nutrition, 2022, 10, 1613-1625.	1.5	17
210	Plant-Based Nanomaterials: Novel and Highly Effectual Preservatives for Food. , 2022, , 797-823.		0
212	Heat sensitization of Escherichia coli by the natural antimicrobials vanillin and emulsified citral in blended carrot-orange juice. Food Microbiology, 2022, 107, 104058.	2.1	8
213	Ginger Essential Oil as an Active Addition to Composite Chitosan Films: Development and Characterization. Gels, 2022, 8, 327.	2.1	18
214	Microemulsification of nonvolatile components of Melaleuca alternifolia and borneol can effectively defend Rhizoctonia solani. Industrial Crops and Products, 2022, 184, 115052.	2.5	5
215	Preparation and evaluation of Mentha spicata L. essential oil nanoemulsion: physicochemical properties, antibacterial activity against foodborne pathogens and antioxidant properties. Journal of Food Measurement and Characterization, 2022, 16, 3289-3300.	1.6	7
216	Development of Geraniol-Loaded Liposomal Nanoformulations against <i>Salmonella</i> Colonization in the Pig Gut. Journal of Agricultural and Food Chemistry, 2022, 70, 7004-7014.	2.4	5
218	Nanoemulsions of oregano essential oil and green extracts: Characterization and application in whey cheese. Food Control, 2022, 141, 109190.	2.8	13
219	Nanostructured pharmaceutical formulations for topical application of clove oil and eugenol. , 2022, , 363-403.		0
220	Chemistry and functionality of clove oil nanoemulsions. , 2022, , 81-101.		0
222	Development of Biodegradable/Biocompatible Nanoliposome-Encapsulated Antimicrobial Essential Oils for Topical Creams and Gels. ACS Omega, 2022, 7, 23875-23889.	1.6	2
223	Application of Natural Antimicrobial Agents in Different Food Packaging Systems and Their Role in Shelf-life Extension of Food: A Review. Journal of Packaging Technology and Research, 0, , .	0.6	2

#	Article	IF	CITATIONS
224	A low energy approach to develop nanoemulsion by combining pea protein and Tween 80 and its application for vitamin D delivery. Food Hydrocolloids for Health, 2022, 2, 100078.	1.6	8
225	Alginate-based nanocarriers for the delivery and controlled-release of bioactive compounds. Advances in Colloid and Interface Science, 2022, 307, 102744.	7.0	40
226	Green nanoemulsions: Components, formulation, techniques of characterization, and applications. , 2022, , 47-69.		1
227	The effect of separate and combined treatments of nisin, Rosmarinus officinalis essential oil (nanoemulsion and free form) and chitosan coating on the shelf life of refrigerated chicken fillets. Journal of Food Measurement and Characterization, 2022, 16, 4497-4513.	1.6	5
228	Preparation, characterization, and antimicrobial activity of cinnamon essential oil and cinnamaldehyde nanoemulsions. Journal of Essential Oil Research, 2022, 34, 544-558.	1.3	6
229	Chitosan Nanoparticle Encapsulation of Antibacterial Essential Oils. Micromachines, 2022, 13, 1265.	1.4	33
230	The medicinal and aromatic plants as ingredients in functional beverage production. Journal of Functional Foods, 2022, 96, 105210.	1.6	21
231	Antimicrobial action of Oregano, Thyme, Clove, Cinnamon and Black pepper essential oils free and encapsulated against foodborne pathogens. Food Control, 2023, 144, 109356.	2.8	26
232	Candelilla wax nanoemulsions with plant-based antioxidants, nutraceuticals, and its effects on the organoleptic parameters. , 2022, , 329-346.		0
233	Nanoemulsions for drug delivery. , 2022, , 17-37.		1
234	In vitro and in vivo antifungal activity of Cymbopogon citrates essential oils from different climate conditions against Botrytis cinerea. Scientia Horticulturae, 2023, 308, 111544.	1.7	8
236	Inhibitory Effect of Sodium Alginate Nanoemulsion Coating Containing Myrtle Essential Oil (Myrtus) Tj ETQq1 1	0.784314 1.7	rgBT /Overlo
237	Essential oils as adjuvants in endodontic therapy: myth or reality?. Future Microbiology, 2022, 17, 1487-1499.	1.0	2
238	Sustainable antibiofilm self-assembled colloidal systems. , 0, 2, .		0
239	Unravelling the sanitization potential of slightly acidic electrolyzed water combined Thymus vulgaris based nanoemulsion against foodborne pathogens and its safety assessment. Food Control, 2023, 146, 109527.	2.8	4
240	Synergistic antimicrobial effect and mode of action of palmarosa oil-loaded nanoemulsion and citric acid against Pectobacterium carotovorum. Food Science and Biotechnology, 2023, 32, 823-831.	1.2	3
241	Effectiveness of time and temperature on antioxidant activity and curcumin loss of the prepared nanodispersion using the subcritical water technique. Polymer Bulletin, 2023, 80, 11931-11951.	1.7	1
242	Physicochemical and Antibacterial Properties of Alginate Films Containing Tansy (Tanacetum vulgare) Tj ETQq1 I	0,78431	4 rgBT /Over

#	Article	IF	CITATIONS
243	Application of essential oils as slow-release antimicrobial agents in food preservation: Preparation strategies, release mechanisms and application cases. Critical Reviews in Food Science and Nutrition, 0, , 1-26.	5.4	12
244	Stability and bioaccessibility of α-tocopherol-enriched nanoemulsions containing different edible oils as carriers. LWT - Food Science and Technology, 2023, 174, 114419.	2.5	7
245	Microfluidics in drug delivery: review of methods and applications. Pharmaceutical Development and Technology, 2023, 28, 61-77.	1.1	3
246	A Comprehensive Investigation on Ho Wood Essential Oil Solution or Gel Using Pickering Systems. Journal of Polymers and the Environment, 0, , .	2.4	0
247	Application of Edible Film with Asian Plant Extracts as an Innovative Food Packaging: A Review. Coatings, 2023, 13, 245.	1.2	4
248	Antibacterial Properties of Bioactive Starch Films Containing Bunium Persicum Seed's Essential Oil Nanoemulsion Fortified with Cinamaldehyde. Journal of Human, Environment, and Health Promotion, 2022, 8, 222-231.	0.2	1
249	Applications of Plant Secondary Metabolites in the Food Industry. , 2023, , 707-738.		0
250	Characterization of a Thymbra spicata essential oil–pectin nanoemulsion, and antimicrobial activity against foodborne pathogenic bacteria. Journal of Food Measurement and Characterization, 0, , .	1.6	0
251	Powdered á´limonene microcapsules obtained by spray drying using native and thermal-treated Brea gum as wall materials. Powder Technology, 2023, 417, 118263.	2.1	2
253	Cinnamon bark oil in water nanoemulsion formulation, characterization, and antimicrobial activities. LWT - Food Science and Technology, 2023, 179, 114671.	2.5	3
254	Biobased nanomaterials as functional food ingredients. , 2023, , 303-327.		0
255	Nanoencapsulation of Grapefruit Seed Extract and Cinnamon Oil for Oral Health: Preparation, In Vitro, and Clinical Antimicrobial Activities. Journal of Agricultural and Food Chemistry, 2023, 71, 5646-5654.	2.4	3
256	Relationship between HLB Number and Predominant Destabilization Process in Microfluidized Nanoemulsions Formulated with Lemon Essential Oil. Applied Sciences (Switzerland), 2023, 13, 5208.	1.3	3
257	Nanoemulsion-based antimicrobial systems. , 2023, , 61-78.		0
266	Application of essential oils as edible coatings: Implications of storage in evaporating coolant structure. , 2023, , 293-312.		0
269	Edible coatings and evaporative cooling best practice guidelines for extension of preservation of fruits and vegetables. , 2023, , 143-155.		0
275	Uses of Nanoemulsions in Pharmaceuticals Industries. , 2023, , 263-297.		0
282	Nanoemulsions from Essential Oils: Preparation, Characterization, and Their Applications. , 2023, , 21-38.		0

		CITATION REPORT		
#	Article	IF	CITATIONS	
285	Application of Essential Oils on Active Packaging Systems. Biochemistry, 0, , .	0.8	0	
291	Significance of essential oils for the treatment of infectious diseases. , 2024, , 317-325.		0	