Novel combination of docetaxel and thymoquinone indapoptosis in DU-145 human prostate cancer cells by mo

Clinical and Translational Oncology 17, 145-151

DOI: 10.1007/s12094-014-1206-6

Citation Report

#	Article	IF	CITATIONS
1	Radiosynthesis, biodistribution and scintigraphic evaluation of 99mTc–thymoquinone against Helicobacter Pylori. Journal of Radioanalytical and Nuclear Chemistry, 2016, 310, 751-760.	0.7	1
2	Effect of API-1 and FR180204 on cell proliferation and apoptosis in human DLD-1 and LoVo colorectal cancer cells. Oncology Letters, 2016, 12, 2463-2474.	0.8	11
3	Thymoquinone chemosensitizes colon cancer cells through inhibition of NF-κB. Oncology Letters, 2016, 12, 2840-2845.	0.8	63
4	Graphene oxide-wrapped PEGylated liquid crystalline nanoparticles for effective chemo-photothermal therapy of metastatic prostate cancer cells. Colloids and Surfaces B: Biointerfaces, 2016, 143, 271-277.	2.5	55
5	The combination of thymoquinone and paclitaxel shows anti-tumor activity through the interplay with apoptosis network in triple-negative breast cancer. Tumor Biology, 2016, 37, 4467-4477.	0.8	59
6	Progress in the Development of Black Seed-Derived Anticancer Agents. , 2016, , 199-212.		O
7	Antiproliferative and Apoptosis-Inducing Activities of Thymoquinone in Lymphoblastic Leukemia Cell Line. Indian Journal of Hematology and Blood Transfusion, 2017, 33, 516-524.	0.3	20
8	Thymoquinone as a Potential Adjuvant Therapy for Cancer Treatment: Evidence from Preclinical Studies. Frontiers in Pharmacology, 2017, 8, 295.	1.6	74
9	Phytochemicals and PI3K Inhibitors in Cancerâ€"An Insight. Frontiers in Pharmacology, 2017, 8, 916.	1.6	36
10	Regressions of Breast Carcinoma Syngraft Following Treatment with Piperine in Combination with Thymoquinone. Scientia Pharmaceutica, 2017, 85, 27.	0.7	62
11	Anticancer Effect of a Novel Octahydropyrazino [2,1-a:5,4-aâ \in 2] diisoquinoline Derivative and Its Synergistic Action with (i) Nigella sativa (i) in Human Gastric Cancer Cells. BioMed Research International, 2017, 2017, 1-13.	0.9	9
12	Thymoquinone, as an anticancer molecule: from basic research to clinical investigation. Oncotarget, 2017, 8, 51907-51919.	0.8	165
13	Review on the Potential Therapeutic Roles of Nigella sativa in the Treatment of Patients with Cancer: Involvement of Apoptosis. Journal of Pharmacopuncture, 2017, 20, 158-172.	0.4	48
14	Protective effect of thymoquinone against cyclophosphamide-induced genotoxic damage in human lymphocytes. Bratislava Medical Journal, 2017, 118, 208-211.	0.4	6
15	Anti-Oxidants as Chemopreventive Agents in Prostate Cancer: A Gap Between Preclinical and Clinical Studies. Recent Patents on Anti-Cancer Drug Discovery, 2018, 13, 224-239.	0.8	19
16	Docetaxel promotes cell apoptosis and decreases SOX2 expression in CD133â€'expressing hepatocellular carcinoma stem cells by suppressing the PI3K/AKT signaling pathway. Oncology Reports, 2019, 41, 1067-1074.	1.2	29
17	PI3K pathway in prostate cancer: All resistant roads lead to PI3K. Biochimica Et Biophysica Acta: Reviews on Cancer, 2018, 1870, 198-206.	3.3	27
18	Thymoquinone: A novel strategy to combat cancer: A review. Biomedicine and Pharmacotherapy, 2018, 106, 390-402.	2.5	127

#	Article	IF	Citations
19	Total saponins of Bolbostemma paniculatum (maxim.) Franquet exert antitumor activity against MDA-MB-231 human breast cancer cells via inhibiting PI3K/Akt/mTOR pathway. BMC Complementary and Alternative Medicine, 2019, 19, 304.	3.7	11
20	MAZ promotes prostate cancer bone metastasis through transcriptionally activating the KRas-dependent RalGEFs pathway. Journal of Experimental and Clinical Cancer Research, 2019, 38, 391.	3.5	32
21	Epigenetic role of thymoquinone: impact on cellular mechanism and cancer therapeutics. Drug Discovery Today, 2019, 24, 2315-2322.	3.2	51
22	Synergistic Effects of Plant Derivatives and Conventional Chemotherapeutic Agents: An Update on the Cancer Perspective. Medicina (Lithuania), 2019, 55, 110.	0.8	117
23	Cancer: Thymoquinone antioxidant/pro-oxidant effect as potential anticancer remedy. Biomedicine and Pharmacotherapy, 2019, 115, 108783.	2.5	98
24	Combination of the natural product capsaicin and docetaxel synergistically kills human prostate cancer cells through the metabolic regulator AMP-activated kinase. Cancer Cell International, 2019, 19, 54.	1.8	58
25	Co-encapsulation of thymoquinone with docetaxel enhances the encapsulation efficiency into PEGylated liposomes and the chemosensitivity of MCF7 breast cancer cells to docetaxel. Heliyon, 2019, 5, e02919.	1.4	32
26	Fabrication of stimuli gated nanoformulation for site-specific delivery of thymoquinone for colon cancer treatment – Insight into thymoquinone's improved physicochemical properties. Journal of Drug Delivery Science and Technology, 2020, 55, 101334.	1.4	6
27	Thymoquinone and Difluoromethylornithine (DFMO) Synergistically Induce Apoptosis of Human Acute T Lymphoblastic Leukemia Jurkat Cells Through the Modulation of Epigenetic Pathways. Technology in Cancer Research and Treatment, 2020, 19, 153303382094748.	0.8	17
28	Targeting kinases with thymoquinone: a molecular approach to cancer therapeutics. Drug Discovery Today, 2020, 25, 2294-2306.	3.2	22
29	Targeting PI3K/Akt/mTOR signaling pathway by polyphenols: Implication for cancer therapy. Life Sciences, 2020, 255, 117481.	2.0	64
30	Therapeutic perspectives of the black cumin component thymoquinone: A review. Food and Function, 2021, 12, 6167-6213.	2.1	21
31	Biological Role of AKT and Regulation of AKT Signaling Pathway by Thymoquinone: Perspectives in Cancer Therapeutics. Mini-Reviews in Medicinal Chemistry, 2021, 21, 288-301.	1.1	12
32	Thymoquinone in autoimmune diseases: Therapeutic potential and molecular mechanisms. Biomedicine and Pharmacotherapy, 2021, 134, 111157.	2.5	17
33	Combination of Platycodin D with docetaxel synergistically suppressed cell growth in DU-145 by enhancing apoptosis and alleviating autophagy. European Journal of Integrative Medicine, 2021, 42, 101302.	0.8	3
34	Thymoquinone: A Tie-Breaker in SARS-CoV2-Infected Cancer Patients?. Cells, 2021, 10, 302.	1.8	14
35	Nutritional Value and Preventive Role of Nigella sativa L. and Its Main Component Thymoquinone in Cancer: An Evidenced-Based Review of Preclinical and Clinical Studies. Molecules, 2021, 26, 2108.	1.7	28
36	Thymoquinone, as a Novel Therapeutic Candidate of Cancers. Pharmaceuticals, 2021, 14, 369.	1.7	37

#	Article	IF	CITATIONS
37	Thymoquinone anticancer activity is enhanced when combined with royal jelly in human breast cancer. World Journal of Clinical Oncology, 2021, 12, 342-354.	0.9	8
38	Therapeutic potential of thymoquinone in combination therapy against cancer and cancer stem cells. World Journal of Clinical Oncology, 2021, 12, 522-543.	0.9	13
39	Dosetaksel Dirençli Prostat Kanseri Hücrelerinde Timokinon Tarafından Otofajik Hücre Ölümünün İndüklenmesi. Duzce Universitesi Tip Fakültesi Dergisi, 2021, 23, 187-191.	0.3	3
40	Black seeds of Nigella sativa: A remedy for advanced cancer therapeutics with special reference to nanotechnology., 2022,, 253-294.		1
41	Thymoquinone-chemotherapeutic combinations: new regimen to combat cancer and cancer stem cells. Naunyn-Schmiedeberg's Archives of Pharmacology, 2020, 393, 1581-1598.	1.4	30
42	Chemopreventive and Anticancer Effects of Thymoquinone: Cellular and Molecular Targets. Journal of Cancer Prevention, 2020, 25, 136-151.	0.8	27
43	Thymoquinone, an Active Compound of Nigella sativa: Role in Prevention and Treatment of Cancer. Current Pharmaceutical Biotechnology, 2020, 21, 1028-1041.	0.9	29
44	Thymoquinone Anticancer Discovery: Possible Mechanisms. Current Drug Discovery Technologies, 2015, 12, 80-89.	0.6	40
45	Thymoquinone Augments Cyclophosphamide-Mediated Inhibition of Cell Proliferation in Breast Cancer Cells. Asian Pacific Journal of Cancer Prevention, 2019, 20, 1153-1160.	0.5	26
46	Synergistic effect of thymoquinone and melatonin against breast cancer implanted in mice. Journal of Cancer Research and Therapeutics, 2018, 14, S324-S330.	0.3	50
47	Targeting microRNAs with thymoquinone: a new approach for cancer therapy. Cellular and Molecular Biology Letters, 2021, 26, 43.	2.7	21
48	Triangulating the pharmacological properties of thymoquinone in regulating reactive oxygen species, inflammation, and cancer: Therapeutic applications and mechanistic pathways. Life Sciences, 2021, 287, 120120.	2.0	8
49	Health-Promoting Activities of Nigella sativa Fixed Oil. Food Bioactive Ingredients, 2021, , 361-379.	0.3	2
50	Nigella sativa Seed Protects Against Cadmium-induced Renal Toxicity in Rats. Current Chemical Biology, 2020, 14, 140-149.	0.2	2
51	Potential anticancer properties and mechanisms of thymoquinone in osteosarcoma and bone metastasis. Cellular and Molecular Biology Letters, 2022, 27, 21.	2.7	21
52	Anticancer Potential of Thymoquinone: A Novel Bioactive Natural Compound from <i>Nigella sativa</i> L Anti-Cancer Agents in Medicinal Chemistry, 2022, 22, 3401-3415.	0.9	6
53	Therapeutic implications and clinical manifestations of thymoquinone. Phytochemistry, 2022, 200, 113213.	1.4	22
54	Anticancer and Anti-Metastatic Role of Thymoquinone: Regulation of Oncogenic Signaling Cascades by Thymoquinone. International Journal of Molecular Sciences, 2022, 23, 6311.	1.8	3

#	Article	IF	CITATIONS
55	Analyzing the Expression of Ovarian Cancer Genes in PA-1 Cells Lines After the Treatment of Thymoquinone. Indian Journal of Gynecologic Oncology, 2023, 21, .	0.1	0
56	Effect of Thymoquinone and its Delivery through Using of Nanomedicine in Benign Prostatic Hyperplasia. , 2022, , 239-252.		0
57	Prognostic significance of natural products against multidrug tumor resistance. Cancer Letters, 2023, 557, 216079.	3.2	2