Carbon quantum dots and their applications

Chemical Society Reviews 44, 362-381 DOI: 10.1039/c4cs00269e

Citation Report

#	Article	IF	CITATIONS
3	First Sino-German Symposium on "Singlet molecular oxygen and photodynamic effects― Photonics & Lasers in Medicine, 2015, 4, .	0.2	2
4	Single Particle Dynamic Imaging and Fe3+ Sensing with Bright Carbon Dots Derived from Bovine Serum Albumin Proteins. Scientific Reports, 2015, 5, 17727.	3.3	78
5	Fluorescence "on-off―Responses of BSA-Cu System Towards Hydrogen Peroxide and L-Cysteine and Their Analysis Applications. Chinese Journal of Analytical Chemistry, 2015, 43, 1820-1828.	1.7	7
6	Single Nanoparticle Mass Spectrometry as a High Temperature Kinetics Tool: Sublimation, Oxidation, and Emission Spectra of Hot Carbon Nanoparticles. Journal of Physical Chemistry A, 2015, 119, 12538-12550.	2.5	13
7	Carbon Quantum Dots and Their Derivative 3D Porous Carbon Frameworks for Sodiumâ€lon Batteries with Ultralong Cycle Life. Advanced Materials, 2015, 27, 7861-7866.	21.0	1,055
8	Multifunctional Nitrogenâ€Đoped Carbon Nanodots for Photoluminescence, Sensor, and Visibleâ€Lightâ€Induced H ₂ Production. ChemPhysChem, 2015, 16, 3058-3063.	2.1	28
9	Tunable Luminescent Carbon Nanospheres with Well-Defined Nanoscale Chemistry for Synchronized Imaging and Therapy. Small, 2015, 11, 4691-4703.	10.0	51
10	Synthesis and Confinement of Carbon Dots in Lysozyme Single Crystals Produces Ordered Hybrid Materials with Tuneable Luminescence. Chemistry - A European Journal, 2015, 21, 9008-9013.	3.3	15
11	Large Scale Synthesis of Highly Stable Fluorescent Carbon Dots Using Silica Spheres as Carriers for Targeted Bioimaging of Cancer Cells. Particle and Particle Systems Characterization, 2015, 32, 944-951.	2.3	20
12	Functionalization of Carbonaceous Nanodots from Mn ^{II} oordinating Functional Knots. Chemistry - A European Journal, 2015, 21, 14843-14850.	3.3	50
13	Truly Fluorescent Excitationâ€Dependent Carbon Dots and Their Applications in Multicolor Cellular Imaging and Multidimensional Sensing. Advanced Materials, 2015, 27, 7782-7787.	21.0	591
14	Nanoparticle-Based and Bioengineered Probes and Sensors to Detect Physiological and Pathological Biomarkers in Neural Cells. Frontiers in Neuroscience, 2015, 9, 480.	2.8	30
15	Nanoarchitectonics: a new materials horizon for nanotechnology. Materials Horizons, 2015, 2, 406-413.	12.2	270
16	Phenylboronic acid-modified magnetic nanoparticles as a platform for carbon dot conjugation and doxorubicin delivery. Journal of Materials Chemistry B, 2015, 3, 5532-5543.	5.8	29
17	Facile access to B-doped solid-state fluorescent carbon dots toward light emitting devices and cell imaging agents. Journal of Materials Chemistry C, 2015, 3, 6668-6675.	5.5	109
18	Highly Photoluminescent Carbon Dots Derived from Egg White: Facile and Green Synthesis, Photoluminescence Properties, and Multiple Applications. ACS Sustainable Chemistry and Engineering, 2015, 3, 1412-1418.	6.7	153
19	The synergistic role of carbon quantum dots for the improved photocatalytic performance of Bi ₂ MoO ₆ . Nanoscale, 2015, 7, 11433-11443.	5.6	306
20	Nanodiamonds and silicon quantum dots: ultrastable and biocompatible luminescent nanoprobes for long-term bioimaging. Chemical Society Reviews, 2015, 44, 4853-4921.	38.1	231

#	ARTICLE	IF	CITATIONS
21	and sensitive determination of dopamine in human serum. RSC Advances, 2015, 5, 54102-54108.	3.6	68
22	Highly Photoluminescent Nitrogen-Doped Carbon Nanodots and Their Protective Effects against Oxidative Stress on Cells. ACS Applied Materials & Interfaces, 2015, 7, 28346-28352.	8.0	81
23	The carbonization of polyethyleneimine: facile fabrication of N-doped graphene oxide and graphene quantum dots. RSC Advances, 2015, 5, 105855-105861.	3.6	23
24	Microplasma-assisted rapid synthesis of luminescent nitrogen-doped carbon dots and their application in pH sensing and uranium detection. Nanoscale, 2015, 7, 20743-20748.	5.6	86
25	A quick and easy synthesis of fluorescent iron oxide nanoparticles featuring a luminescent carbonaceous coating via in situ pyrolysis of organosilane ligands. RSC Advances, 2015, 5, 100384-100389.	3.6	9
26	Horseradish peroxidase-immobilized magnetic mesoporous silica nanoparticles as a potential candidate to eliminate intracellular reactive oxygen species. Nanoscale, 2015, 7, 2941-2950.	5.6	27
27	In situ polymerization of aniline on carbon quantum dots: a new platform for ultrasensitive detection of glucose and hydrogen peroxide. RSC Advances, 2015, 5, 21675-21680.	3.6	19
28	One pot synthesis of highly luminescent polyethylene glycol anchored carbon dots functionalized with a nuclear localization signal peptide for cell nucleus imaging. Nanoscale, 2015, 7, 6104-6113.	5.6	161
29	Uncovering the pKadependent fluorescence quenching of carbon dots induced by chlorophenols. Nanoscale, 2015, 7, 6348-6355.	5.6	28
30	A Facile and Universal Topâ€Down Method for Preparation of Monodisperse Transitionâ€Metal Dichalcogenide Nanodots. Angewandte Chemie - International Edition, 2015, 54, 5425-5428.	13.8	185
31	Highly porous nanostructured polyaniline/carbon nanodots as efficient counter electrodes for Pt-free dye-sensitized solar cells. Journal of Materials Chemistry A, 2015, 3, 19018-19026.	10.3	48
32	Exploring the blue luminescence origin of nitrogen-doped carbon dots by controlling the water amount in synthesis. RSC Advances, 2015, 5, 66528-66533.	3.6	53
33	Luminescent assays based on carbon dots for inorganic trace analysis. Reviews in Analytical Chemistry, 2015, 34, .	3.2	5
34	Chlorine-functionalized carbon dots for highly efficient photodegradation of pollutants under visible-light irradiation. Applied Surface Science, 2015, 355, 774-777.	6.1	22
35	A facile microwave-assisted fabrication of fluorescent carbon nitride quantum dots and their application in the detection of mercury ions. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 151, 875-880.	3.9	115
36	Green Synthesis of Bifunctional Fluorescent Carbon Dots from Garlic for Cellular Imaging and Free Radical Scavenging. ACS Applied Materials & Interfaces, 2015, 7, 17054-17060.	8.0	494
37	One-step synthesis of robust nitrogen-doped carbon dots: acid-evoked fluorescence enhancement and their application in Fe ³⁺ detection. Journal of Materials Chemistry A, 2015, 3, 17747-17754.	10.3	181
38	The regulation of hydrophilicity and hydrophobicity of carbon dots via a one-pot approach. Journal of Materials Chemistry B, 2015, 3, 6013-6018.	5.8	36

#	Article	IF	CITATIONS
39	A unique turn-off fluorescent strategy for sensing dopamine based on formed polydopamine (pDA) using graphene quantum dots (GQDs) as fluorescent probe. Sensors and Actuators B: Chemical, 2015, 221, 7-14.	7.8	92
40	A green solid-phase method for preparation of carbon nitride quantum dots and their applications in chemiluminescent dopamine sensing. RSC Advances, 2015, 5, 55158-55164.	3.6	66
41	Reversible Fluorescent Nanoswitch Based on Carbon Quantum Dots Nanoassembly for Real-Time Acid Phosphatase Activity Monitoring. Analytical Chemistry, 2015, 87, 7332-7339.	6.5	103
42	A FRET-based carbon dot–MnO ₂ nanosheet architecture for glutathione sensing in human whole blood samples. Chemical Communications, 2015, 51, 12748-12751.	4.1	221
44	Ultrastable green fluorescence carbon dots with a high quantum yield for bioimaging and use as theranostic carriers. Journal of Materials Chemistry B, 2015, 3, 4577-4584.	5.8	51
45	Label-free detection of Pb ²⁺ based on aggregation-induced emission enhancement of Au-nanoclusters. RSC Advances, 2015, 5, 36582-36586.	3.6	48
46	Mesoporous carbon biomaterials. Science China Materials, 2015, 58, 241-257.	6.3	54
47	Room-temperature phosphorescence logic gates developed from nucleic acid functionalized carbon dots and graphene oxide. Nanoscale, 2015, 7, 8289-8293.	5.6	45
48	Solar Hydrogen Production Using Carbon Quantum Dots and a Molecular Nickel Catalyst. Journal of the American Chemical Society, 2015, 137, 6018-6025.	13.7	519
49	Multi-functional fluorescent carbon dots with antibacterial and gene delivery properties. RSC Advances, 2015, 5, 46817-46822.	3.6	242
50	A ratiometric nanosensor based on fluorescent carbon dots for label-free and highly selective recognition of DNA. RSC Advances, 2015, 5, 44587-44597.	3.6	70
51	Hydrothermal synthesis of ionic liquid-capped carbon quantum dots with high thermal stability and anion responsiveness. Journal of Materials Science, 2015, 50, 5411-5418.	3.7	64
52	Synthesis and Photochemical Applications of Processable Polymers Enclosing Photoluminescent Carbon Quantum Dots. ACS Nano, 2015, 9, 4156-4164.	14.6	129
53	Carbon nanomaterial-based electrochemical biosensors: an overview. Nanoscale, 2015, 7, 6420-6431.	5.6	329
54	Cancer biomarker detection: recent achievements and challenges. Chemical Society Reviews, 2015, 44, 2963-2997.	38.1	905
55	One-pot synthesis of highly cross-linked fluorescent polyphosphazene nanoparticles for cell imaging. Polymer Chemistry, 2015, 6, 3155-3163.	3.9	46
56	Rational design of nitrogen and sulfur co-doped carbon dots for efficient photoelectrical conversion applications. Journal of Materials Chemistry A, 2015, 3, 11287-11293.	10.3	68
57	A general solid-state synthesis of chemically-doped fluorescent graphene quantum dots for bioimaging and optoelectronic applications. Nanoscale, 2015, 7, 10162-10169.	5.6	121

#	Article	IF	CITATIONS
58	Preparation of biocompatible and antibacterial carbon quantum dots derived from resorcinol and formaldehyde spheres. RSC Advances, 2015, 5, 31677-31682.	3.6	46
59	One-pot and ultrafast synthesis of nitrogen and phosphorus co-doped carbon dots possessing bright dual wavelength fluorescence emission. Nanoscale, 2015, 7, 17278-17282.	5.6	199
60	Bright-Yellow-Emissive N-Doped Carbon Dots: Preparation, Cellular Imaging, and Bifunctional Sensing. ACS Applied Materials & Interfaces, 2015, 7, 23231-23238.	8.0	344
61	Photochemical synthesis of doped graphene quantum dots and their photoluminescence in aqueous and solid states. RSC Advances, 2015, 5, 84276-84279.	3.6	5
62	Detection of thiocyanate through limiting growth of AuNPs with C-dots acting as reductant. Analyst, The, 2015, 140, 7645-7649.	3.5	22
63	Feroxyhyte nanoflakes coupled to up-converting carbon nanodots: a highly active, magnetically recoverable, Fenton-like photocatalyst in the visible-NIR range. Chemical Communications, 2015, 51, 16625-16628.	4.1	31
64	The advances in applying inorganic fluorescent nanomaterials for the detection of hepatocellular carcinoma and other cancers. RSC Advances, 2015, 5, 79572-79584.	3.6	10
65	Supported carbon dots decorated with metallothionein for selective cadmium adsorption and removal. Chinese Chemical Letters, 2015, 26, 1496-1501.	9.0	23
66	Bio-nanoplatforms based on carbon dots conjugating with F-substituted nano-hydroxyapatite for cellular imaging. Nanoscale, 2015, 7, 20033-20041.	5.6	56
67	Enhancement of the Carbon Dots/K ₂ S ₂ O ₈ Chemiluminescence System Induced by Triethylamine. Analytical Chemistry, 2015, 87, 11167-11170.	6.5	30
68	Highly luminescent N, S- Co-doped carbon dots and their direct use as mercury(II) sensor. Analytica Chimica Acta, 2015, 890, 134-142.	5.4	153
69	Surface molecular imprinting on silane-functionalized carbon dots for selective recognition of nifedipine. RSC Advances, 2015, 5, 74084-74090.	3.6	46
70	Carbon "Quantum―Dots for Fluorescence Labeling of Cells. ACS Applied Materials & Interfaces, 2015, 7, 19439-19445.	8.0	149
71	Concentric Förster Resonance Energy Transfer Imaging. Analytical Chemistry, 2015, 87, 8078-8083.	6.5	26
72	Interaction study on bovine serum albumin physically binding to silver nanoparticles: Evolution from discrete conjugates to protein coronas. Applied Surface Science, 2015, 359, 82-88.	6.1	33
73	H:ZnO Nanorod-Based Photoanode Sensitized by CdS and Carbon Quantum Dots for Photoelectrochemical Water Splitting. Journal of Physical Chemistry C, 2015, 119, 24323-24331.	3.1	65
74	Functionalized Carbon Quantum Dots with Dopamine for Tyrosinase Activity Monitoring and Inhibitor Screening: In Vitro and Intracellular Investigation. ACS Applied Materials & Interfaces, 2015, 7, 23564-23574.	8.0	140
75	Self-Targeting Fluorescent Carbon Dots for Diagnosis of Brain Cancer Cells. ACS Nano, 2015, 9, 11455-11461.	14.6	439

#	Article	IF	CITATIONS
76	Fluorescently tuned nitrogen-doped carbon dots from carbon source with different content of carboxyl groups. APL Materials, 2015, 3, .	5.1	42
77	Carbon Quantum Dots Modified BiOCl Ultrathin Nanosheets with Enhanced Molecular Oxygen Activation Ability for Broad Spectrum Photocatalytic Properties and Mechanism Insight. ACS Applied Materials & Interfaces, 2015, 7, 20111-20123.	8.0	302
78	A carbon dot-based fluorescence turn-on sensor for hydrogen peroxide with a photo-induced electron transfer mechanism. Chemical Communications, 2015, 51, 15574-15577.	4.1	94
79	Synthesis, mechanistic investigation, and application of photoluminescent sulfur and nitrogen co-doped carbon dots. Journal of Materials Chemistry C, 2015, 3, 9885-9893.	5.5	154
80	High performance luminescent thermosetting waterborne hyperbranched polyurethane/carbon quantum dot nanocomposite with inÂvitro cytocompatibility. Composites Science and Technology, 2015, 118, 39-46.	7.8	69
81	Germanium-doped carbon dots as a new type of fluorescent probe for visualizing the dynamic invasions of mercury(<scp>ii</scp>) ions into cancer cells. Nanoscale, 2015, 7, 16841-16847.	5.6	99
82	The effects of a solvent and a ligand shell on interaction of CdSe quantum dots: Molecular dynamics simulation. Colloid Journal, 2015, 77, 727-732.	1.3	7
83	Theranostic carbon dots derived from garlic with efficient anti-oxidative effects towards macrophages. RSC Advances, 2015, 5, 97836-97840.	3.6	22
84	Time-Resolved Emission Reveals Ensemble of Emissive States as the Origin of Multicolor Fluorescence in Carbon Dots. Nano Letters, 2015, 15, 8300-8305.	9.1	255
85	Novel visible-light-driven CQDs/Bi 2 WO 6 hybrid materials with enhanced photocatalytic activity toward organic pollutants degradation and mechanism insight. Applied Catalysis B: Environmental, 2015, 168-169, 51-61.	20.2	486
86	Photocurrent generation in carbon nanotube/cubic-phase HfO ₂ nanoparticle hybrid nanocomposites. Beilstein Journal of Nanotechnology, 2016, 7, 1075-1085.	2.8	12
87	"Green―Quantum Dots: Basics, Green Synthesis, and Nanotechnological Applications. , 0, , .		13
88	Recent Progresses in Nanobiosensing for Food Safety Analysis. Sensors, 2016, 16, 1118.	3.8	40
89	Facile fabrication of luminescent organic dots by thermolysis of citric acid in urea melt, and their use for cell staining and polyelectrolyte microcapsule labelling. Beilstein Journal of Nanotechnology, 2016, 7, 1905-1917.	2.8	35
90	Nanoscale "fluorescent stone― Luminescent Calcium Fluoride Nanoparticles as Theranostic Platforms. Theranostics, 2016, 6, 2380-2393.	10.0	41
91	Carbon Nanomaterials Interfacing with Neurons: An In vivo Perspective. Frontiers in Neuroscience, 2016, 10, 250.	2.8	89
92	Carbon-Based Materials for Photo-Triggered Theranostic Applications. Molecules, 2016, 21, 1585.	3.8	47
93	Recent Advances in Stimuli-Responsive Release Function Drug Delivery Systems for Tumor Treatment. Molecules, 2016, 21, 1715.	3.8	110

#	Article	IF	CITATIONS
94	Non-Enzymatic Glucose Sensing Using Carbon Quantum Dots Decorated with Copper Oxide Nanoparticles. Sensors, 2016, 16, 1720.	3.8	40
95	Color-tunable carbon dots/Y_2WO_6: Eu^3+ embedded composite bulk. Optical Materials Express, 2016, 6, 374.	3.0	6
96	Photoluminescence of carbon dots from mesoporous silica. Optical Materials, 2016, 59, 28-33.	3.6	28
97	Toward Efficient Orange Emissive Carbon Nanodots through Conjugated sp ² â€Domain Controlling and Surface Charges Engineering. Advanced Materials, 2016, 28, 3516-3521.	21.0	583
98	Brightness and Photostability of Emerging Red and Nearâ€IR Fluorescent Nanomaterials for Bioimaging. Advanced Optical Materials, 2016, 4, 1549-1557.	7.3	104
99	Study on the Ultrahigh Quantum Yield of Fluorescent P,Oâ€g ₃ N ₄ Nanodots and its Application in Cell Imaging. Chemistry - A European Journal, 2016, 22, 9387-9395.	3.3	55
100	Tripleâ€Mode Emission of Carbon Dots: Applications for Advanced Antiâ€Counterfeiting. Angewandte Chemie - International Edition, 2016, 55, 7231-7235.	13.8	625
101	Programmed Bacteria Death Induced by Carbon Dots with Different Surface Charge. Small, 2016, 12, 4713-4718.	10.0	202
102	Carbon Dots with Intrinsic Theranostic Properties for Bioimaging, Redâ€Lightâ€Triggered Photodynamic/Photothermal Simultaneous Therapy In Vitro and In Vivo. Advanced Healthcare Materials, 2016, 5, 665-675.	7.6	246
103	Carbon dots with high fluorescence quantum yield: the fluorescence originates from organic fluorophores. Nanoscale, 2016, 8, 14374-14378.	5.6	217
104	Mesoporous Silica as Nanoreactors to Prepare Gdâ€Encapsulated Carbon Dots of Controllable Sizes and Magnetic Properties. Advanced Functional Materials, 2016, 26, 3973-3982.	14.9	58
105	Tripleâ€Mode Emission of Carbon Dots: Applications for Advanced Antiâ€Counterfeiting. Angewandte Chemie, 2016, 128, 7347-7351.	2.0	467
106	Interactions of Bimodal Magnetic and Fluorescent Nanoparticles Based on Carbon Quantum Dots and Iron-Carbon Nanocomposites with Cell Cultures. Bulletin of Experimental Biology and Medicine, 2016, 162, 248-251.	0.8	1
107	Efficient Energy-Conversion Materials for the Future: Understanding and Tailoring Charge-Transfer Processes in Carbon Nanostructures. CheM, 2016, 1, 531-556.	11.7	78
108	Nitrogen-doped luminescent carbon nanodots for optimal photo-generation of hydroxyl radicals and visible-light expanded photo-catalysis. Diamond and Related Materials, 2016, 65, 176-182.	3.9	37
109	Carbon Quantum Dot Surface-Engineered VO ₂ Interwoven Nanowires: A Flexible Cathode Material for Lithium and Sodium Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 9733-9744.	8.0	158
110	Hydroxyapatite supported N-doped carbon quantum dots for visible-light photocatalysis. Materials Letters, 2016, 175, 44-47.	2.6	57
111	Tracking graphene by fluorescence imaging: a tool for detecting multiple populations of graphene in solution. Nanoscale, 2016, 8, 8505-8511.	5.6	4

#	Article	IF	CITATIONS
112	Design of Multiple Logic Gates Based on Chemically Triggered Fluorescence Switching of Functionalized Polyethylenimine. ACS Applied Materials & Interfaces, 2016, 8, 9472-9482.	8.0	39
113	Highly efficient photocatalysis toward tetracycline under simulated solar-light by Ag+-CDs-Bi2WO6: Synergistic effects of silver ions and carbon dots. Applied Catalysis B: Environmental, 2016, 192, 277-285.	20.2	79
114	Long lifetime photoluminescence in N, S co-doped carbon quantum dots from an ionic liquid and their applications in ultrasensitive detection of pesticides. Carbon, 2016, 104, 33-39.	10.3	117
115	Preparation of fluorescent organic nanoparticles from polyethylenimine and sucrose for cell imaging. Materials Science and Engineering C, 2016, 68, 37-42.	7.3	26
116	Interfacial modification layers based on carbon dots for efficient inverted polymer solar cells exceeding 10% power conversion efficiency. Nano Energy, 2016, 26, 216-223.	16.0	83
117	Tailoring surface charge distribution of carbon dots through heteroatoms for enhanced visible-light photocatalytic activity. Carbon, 2016, 105, 484-489.	10.3	64
118	Microwave assisted green synthesis of fluorescent N-doped carbon dots: Cytotoxicity and bio-imaging applications. Journal of Photochemistry and Photobiology B: Biology, 2016, 161, 154-161.	3.8	261
119	Pore confinement effects and stabilization of carbon nitride oligomers in macroporous silica for photocatalytic hydrogen production. Carbon, 2016, 106, 320-329.	10.3	19
120	From the traditional way of pyrolysis to tunable photoluminescent water soluble carbon nano-onions for cell imaging and selective sensing of glucose. RSC Advances, 2016, 6, 37319-37329.	3.6	76
121	Multifunctional N,S co-doped carbon quantum dots with pH- and thermo-dependent switchable fluorescent properties and highly selective detection of glutathione. Carbon, 2016, 104, 169-178.	10.3	308
122	A facile and green method towards coal-based fluorescent carbon dots with photocatalytic activity. Applied Surface Science, 2016, 378, 402-407.	6.1	139
123	A chemical method for identifying the photocatalytic active sites on carbon dots. Carbon, 2016, 103, 391-393.	10.3	35
124	Visible-Light-Activated Bactericidal Functions of Carbon "Quantum―Dots. ACS Applied Materials & Interfaces, 2016, 8, 10761-10766.	8.0	206
125	Carbon quantum dot decorated hollow In ₂ S ₃ microspheres with efficient visible-light-driven photocatalytic activities. RSC Advances, 2016, 6, 40137-40146.	3.6	15
126	N-doped carbon quantum dots/TiO2 composite with improved photocatalytic activity. Applied Catalysis B: Environmental, 2016, 193, 67-74.	20.2	291
127	Polybromopyrrole-derived nitrogen-containing polymer dots: Synthesis, optical properties, and insight into their fluorescence quenching by aromatic compounds. Sensors and Actuators B: Chemical, 2016, 232, 722-731.	7.8	14
128	Self-assembly of nitrogen-doped carbon nanoparticles: a new ratiometric UV-vis optical sensor for the highly sensitive and selective detection of Hg ²⁺ in aqueous solution. Analyst, The, 2016, 141, 3313-3318.	3.5	14
129	Quick speciation of iron(ii) and iron(iii) in natural samples using a selective fluorescent carbon dot-based probe. Analytical Methods, 2016, 8, 4064-4068.	2.7	21

#	Article	IF	CITATIONS
130	N-GQDs and Eu ³⁺ co-encapsulated anionic MOFs: two-dimensional luminescent platform for decoding benzene homologues. Dalton Transactions, 2016, 45, 8795-8801.	3.3	23
131	Facile and ultrasensitive fluorescence sensor platform for tumor invasive biomaker β-glucuronidase detection and inhibitor evaluation with carbon quantum dots based on inner-filter effect. Biosensors and Bioelectronics, 2016, 85, 358-362.	10.1	100
132	Luminescent properties and sensing performance of a carbon quantum dot encapsulated mesoporous silica/polyacrylonitrile electrospun nanofibrous membrane. Journal of Materials Science, 2016, 51, 6801-6811.	3.7	29
133	A fluorometric assay for alkaline phosphatase activity based on β-cyclodextrin-modified carbon quantum dots through host-guest recognition. Biosensors and Bioelectronics, 2016, 83, 274-280.	10.1	117
134	Constructing carbon quantum dots/Bi 2 SiO 5 ultrathin nanosheets with enhanced photocatalytic activity and mechanism investigation. Chemical Engineering Journal, 2016, 302, 334-343.	12.7	83
135	Influence of Doping and Temperature on Solvatochromic Shifts in Optical Spectra of Carbon Dots. Journal of Physical Chemistry C, 2016, 120, 10591-10604.	3.1	179
136	Carbon Dot-Mediated Synthesis of Manganese Oxide Decorated Graphene Nanosheets for Supercapacitor Application. ACS Sustainable Chemistry and Engineering, 2016, 4, 3008-3016.	6.7	104
137	Carbon nanodots-catalyzed free radical polymerization of water-soluble vinyl monomers. RSC Advances, 2016, 6, 38470-38474.	3.6	13
138	New development in carbon quantum dots technical applications. Talanta, 2016, 156-157, 245-256.	5.5	81
139	Carbon dot based non enzymatic approach for the detection and estimation of glucose in blood serum. Materials Research Express, 2016, 3, 055001.	1.6	19
140	Carbon dots as fluorescent sensor for detection of explosive nitrocompounds. Carbon, 2016, 106, 171-178.	10.3	117
141	Fluorescent carbon nanoparticles: A low-temperature trypsin-assisted preparation and Fe3+ sensing. Analytica Chimica Acta, 2016, 926, 107-117.	5.4	89
142	Large-Scale Ultrasonic Fabrication of White Fluorescent Carbon Dots. Industrial & Engineering Chemistry Research, 2016, 55, 5335-5341.	3.7	129
143	Intense multi-state visible absorption and full-color luminescence of nitrogen-doped carbon quantum dots for blue-light-excitable solid-state-lighting. Journal of Materials Chemistry C, 2016, 4, 9027-9035.	5.5	119
144	Near-infrared emissive lanthanide hybridized carbon quantum dots for bioimaging applications. Journal of Materials Chemistry B, 2016, 4, 6366-6372.	5.8	92
145	Near-infrared emissive carbon dots for two-photon fluorescence bioimaging. Nanoscale, 2016, 8, 17350-17356.	5.6	243
146	Flexible humidity sensors composed of graphite-like carbon micro-pinecone arrays. RSC Advances, 2016, 6, 95342-95348.	3.6	21
147	The Reductive Dehydration of Cellulose by Solid/Gas Reaction with TiCl ₄ at Low Temperature: A Cheap, Simple, and Green Process for Preparing Anatase Nanoplates and TiO ₂ /C Composites, Chemistry - A European Journal, 2016, 22, 17262-17268	3.3	6

#	Article	IF	CITATIONS
148	Emerging microfluidic devices for cancer cells/biomarkers manipulation and detection. IET Nanobiotechnology, 2016, 10, 263-275.	3.8	21
149	<i>In Situ</i> Synthesis of Fluorescent Carbon Dots/Polyelectrolyte Nanocomposite Microcapsules with Reduced Permeability and Ultrasound Sensitivity. ACS Nano, 2016, 10, 9608-9615.	14.6	62
150	Synthesis of amphiphilic carbon quantum dots with phosphorescence properties and their multifunctional applications. Journal of Materials Chemistry C, 2016, 4, 10146-10153.	5.5	107
151	Single-molecule analysis of fluorescent carbon dots towards localization-based super-resolution microscopy. Methods and Applications in Fluorescence, 2016, 4, 044006.	2.3	17
152	Carbon dots as inhibitors of virus by activation of type I interferon response. Carbon, 2016, 110, 278-285.	10.3	121
153	Multifarious roles of carbon quantum dots in heterogeneous photocatalysis. Journal of Energy Chemistry, 2016, 25, 927-935.	12.9	127
154	One step preparation of proton-functionalized photoluminescent graphitic carbon nitride and its sensing applications. RSC Advances, 2016, 6, 98893-98898.	3.6	19
155	Reactive oxygen species generating systems meeting challenges of photodynamic cancer therapy. Chemical Society Reviews, 2016, 45, 6597-6626.	38.1	1,483
156	Two-photon excitation nanoparticles for photodynamic therapy. Chemical Society Reviews, 2016, 45, 6725-6741.	38.1	443
157	A novel fluorescent carbon dots derived from tamarind. Chemical Physics Letters, 2016, 661, 179-184.	2.6	66
158	A dual-channel fluorescent chemosensor for discriminative detection of glutathione based on functionalized carbon quantum dots. Biosensors and Bioelectronics, 2016, 86, 748-755.	10.1	59
159	Novel oxidative cutting graphene oxide to graphene quantum dots for electrochemical sensing application. Materials Today Communications, 2016, 8, 127-133.	1.9	33
160	Nanoreactors Based on Porphyrin-Functionalized Carbon Compounds. , 2016, , 463-518.		0
161	Microwave-assisted hydrothermal synthesis of UV-emitting carbon dots from tannic acid. New Journal of Chemistry, 2016, 40, 8110-8117.	2.8	40
162	Fluorescent silicon nanoparticle-based gene carriers featuring strong photostability and feeble cytotoxicity. Nano Research, 2016, 9, 3027-3037.	10.4	19
163	Synthesis of a multifunctional manganese(<scp>ii</scp>)–carbon dots hybrid and its application as an efficient magnetic-fluorescent imaging probe for ovarian cancer cell imaging. Journal of Materials Chemistry B, 2016, 4, 5798-5802.	5.8	59
164	Surface Functionalization of Carbon Dots with Polyhedral Oligomeric Silsesquioxane (POSS) for Multifunctional Applications. Advanced Materials Interfaces, 2016, 3, 1500439.	3.7	38
165	A Nanosystem Capable of Releasing a Photosensitizer Bioprecursor under Twoâ€Photon Irradiation for Photodynamic Therapy. Advanced Science, 2016, 3, 1500254.	11.2	41

	CHAI	ION REPORT	
#	Article	IF	CITATIONS
166	Synthesis of Cellulose-Based Carbon Dots for Bioimaging. ChemistrySelect, 2016, 1, 1314-1317.	1.5	59
167	Fabrication of new gas diffusion electrode based on carbon quantum dot and its application for oxygen reduction reaction. International Journal of Hydrogen Energy, 2016, 41, 14684-14691.	7.1	25
168	Nanocarbon Electrochemistry and Electroanalysis: Current Status and Future Perspectives. Electroanalysis, 2016, 28, 27-34.	2.9	79
169	Tuning Optical Properties and Photocatalytic Activities of Carbon-based "Quantum Dots―Through their Surface Groups. Chemical Record, 2016, 16, 219-230.	5.8	72
170	Synthesis of nitrogen- and iron-containing carbon dots, and their application to colorimetric and fluorometric determination of dopamine. Mikrochimica Acta, 2016, 183, 2491-2500.	5.0	72
171	Carbon Quantum Dots sensitized Vertical WO ₃ Nanoplates with Enhanced Photoelectrochemical Properties. ChemistrySelect, 2016, 1, 2772-2777.	1.5	25
172	Fluorescent vesicles formed by simple surfactants induced by oppositely-charged carbon quantum dots. Chemical Communications, 2016, 52, 12024-12027.	4.1	52
173	Carbon nanodots as fluorescent platforms for recognition of fluoride ion via the inner filter effect of simple arylboronic acids. Experimental and theoretical investigations. Journal of Fluorine Chemistry, 2016, 190, 12-22.	1.7	15
174	Solvatochromic fluorescent carbon dots as optic noses for sensing volatile organic compounds. RSC Advances, 2016, 6, 83501-83504.	3.6	43
175	Functionalized Graphene Quantum Dots as Efficient Visible‣ight Photocatalysts for Selective Solar Fuel Production from CO ₂ . ChemCatChem, 2016, 8, 3389-3393.	3.7	49
176	Origin of Excitation Dependent Fluorescence in Carbon Nanodots. Journal of Physical Chemistry Letters, 2016, 7, 3695-3702.	4.6	267
177	Determination of the composition, encapsulation efficiency and loading capacity in protein drug delivery systems using circular dichroism spectroscopy. Analytica Chimica Acta, 2016, 937, 113-118.	5.4	46
178	Improving the biocompatibility of carbon nanodots for cell imaging. Talanta, 2016, 161, 54-61.	5.5	15
179	Carbon dots with tunable concentrations of trapped anti-oxidant as an efficient metal-free catalyst for electrochemical water oxidation. Journal of Materials Chemistry A, 2016, 4, 14614-14624.	10.3	39
180	Chiral carbon dots derived from guanosine 5′-monophosphate form supramolecular hydrogels. Chemical Communications, 2016, 52, 11159-11162.	4.1	56
181	Oxygen-mediated formation of MoS _x -doped hollow carbon dots for visible light-driven photocatalysis. Journal of Materials Chemistry A, 2016, 4, 14796-14803.	10.3	33
182	Synthetic methods and potential applications of transition metal dichalcogenide/graphene nanocomposites. Coordination Chemistry Reviews, 2016, 326, 86-110.	18.8	48
183	Platinum/nitrogen-doped carbon nanoparticles synthesized in nitrogen-doped carbon quantum dots aqueous solution for methanol electro-oxidation. Electrochimica Acta, 2016, 213, 332-340.	5.2	22

#	Article	IF	Citations
184	Hydrothermal synthesis of blue-fluorescent monolayer BN and BCNO quantum dots for bio-imaging probes. RSC Advances, 2016, 6, 79090-79094.	3.6	66
185	l-Tryptophan-capped carbon quantum dots for the sensitive and selective fluorescence detection of mercury ion in aqueous solution. Journal of Nanoparticle Research, 2016, 18, 1.	1.9	18
186	Metal-based quantum dots: synthesis, surface modification, transport and fate in aquatic environments and toxicity to microorganisms. RSC Advances, 2016, 6, 78595-78610.	3.6	101
187	Solvatochromism Unravels the Emission Mechanism of Carbon Nanodots. Journal of Physical Chemistry Letters, 2016, 7, 3419-3423.	4.6	179
188	Intraparticle FRET of Mn(<scp>ii</scp>)-doped carbon dots and its application in discrimination of volatile organic compounds. Nanoscale, 2016, 8, 17190-17195.	5.6	34
189	Competition Between Resonant Plasmonic Coupling and Electrostatic Interaction in Reduced Graphene Oxide Quantum Dots. Scientific Reports, 2016, 6, 36898.	3.3	12
190	Modifying the Size of Ultrasound-Induced Liquid-Phase Exfoliated Graphene: From Nanosheets to Nanodots. ACS Nano, 2016, 10, 10768-10777.	14.6	51
191	Synthesis of BiOBr/carbon quantum dots microspheres with enhanced photoactivity and photostability under visible light irradiation. Applied Catalysis A: General, 2016, 527, 127-136.	4.3	70
192	Yellow emitting carbon dots with superior colloidal, thermal, and photochemical stabilities. Journal of Materials Chemistry C, 2016, 4, 9798-9803.	5.5	50
193	Shining carbon dots: Synthesis and biomedical and optoelectronic applications. Nano Today, 2016, 11, 565-586.	11.9	563
194	Molecular origin of photoluminescence of carbon dots: aggregation-induced orange-red emission. Physical Chemistry Chemical Physics, 2016, 18, 28274-28280.	2.8	143
195	Assigning Electronic States in Carbon Nanodots. Advanced Functional Materials, 2016, 26, 7975-7985.	14.9	52
196	Smart Utilization of Carbon Dots in Semiconductor Photocatalysis. Advanced Materials, 2016, 28, 9454-9477.	21.0	622
197	Recent advances in ionic liquid-based electrochemical biosensors. Science Bulletin, 2016, 61, 1281-1295.	9.0	62
198	Melanin-Like Nanoquencher on Graphitic Carbon Nitride Nanosheets for Tyrosinase Activity and Inhibitor Assay. Analytical Chemistry, 2016, 88, 8355-8358.	6.5	67
199	Acidophilic S-doped carbon quantum dots derived from cellulose fibers and their fluorescence sensing performance for metal ions in an extremely strong acid environment. Journal of Materials Chemistry A, 2016, 4, 12841-12849.	10.3	138
200	Synthesis of Selfâ€Assembled Spermidineâ€Carbon Quantum Dots Effective against Multidrugâ€Resistant Bacteria. Advanced Healthcare Materials, 2016, 5, 2545-2554.	7.6	151
201	A Versatile and Clearable Nanocarbon Theranostic Based on Carbon Dots and Gadolinium Metallofullerene Nanocrystals. Advanced Healthcare Materials, 2016, 5, 2283-2294.	7.6	26

#	Article	IF	CITATIONS
202	Micro/Nanoparticleâ€Augmented Sonodynamic Therapy (SDT): Breaking the Depth Shallow of Photoactivation. Advanced Materials, 2016, 28, 8097-8129.	21.0	607
203	Carbon dots: surface engineering and applications. Journal of Materials Chemistry B, 2016, 4, 5772-5788.	5.8	284
204	Hydrothermal Synthesis of Photoluminescent Nanocarbon from Hydroxylic Acids and Amines. Journal of Solution Chemistry, 2016, 45, 1560-1570.	1.2	3
205	Enhanced photoelectrochemical aptasensing platform for TXNDC5 gene based on exciton energy transfer between NCQDs and TiO2 nanorods. Scientific Reports, 2016, 6, 19202.	3.3	8
206	Toward High-Efficient Red Emissive Carbon Dots: Facile Preparation, Unique Properties, and Applications as Multifunctional Theranostic Agents. Chemistry of Materials, 2016, 28, 8659-8668.	6.7	451
207	The nanomaterial toolkit for neuroengineering. Nano Convergence, 2016, 3, 25.	12.1	20
208	Functionalization of Carbon Nanoparticles and Defunctionalization—Toward Structural and Mechanistic Elucidation of Carbon "Quantum―Dots. Journal of Physical Chemistry C, 2016, 120, 25604-25611.	3.1	60
209	Simple Approach to Synthesize Amino-Functionalized Carbon Dots by Carbonization of Chitosan. Scientific Reports, 2016, 6, 31100.	3.3	136
210	Green synthesis of nitrogen-doped carbon dots from lentil and its application for colorimetric determination of thioridazine hydrochloride. RSC Advances, 2016, 6, 104467-104473.	3.6	37
211	Boosting carbon quantum dots/fullerene electron transfer via surface group engineering. Physical Chemistry Chemical Physics, 2016, 18, 31286-31295.	2.8	31
212	One-step preparation of carbon dot-grafted trisodium citrate dihydrate for tunable photoluminescence and white light-emitting diodes. RSC Advances, 2016, 6, 104724-104730.	3.6	4
213	Gadolinium functionalized carbon dots for fluorescence/magnetic resonance dual-modality imaging of mesenchymal stem cells. Journal of Materials Chemistry B, 2016, 4, 7472-7480.	5.8	46
214	Luminescence properties of Eu3+/CDs/PVA composite applied in light conversion film. Optical Materials, 2016, 62, 458-464.	3.6	22
215	Thermal treatment of hair for the synthesis of sustainable carbon quantum dots and the applications for sensing Hg2+. Scientific Reports, 2016, 6, 35795.	3.3	124
216	The selective detection of galactose based on boronic acid functionalized fluorescent carbon dots. Analytical Methods, 2016, 8, 8345-8351.	2.7	21
217	A self-quenching-resistant carbon nanodot powder with multicolored solid-state fluorescence for ultra-fast staining of various representative bacterial species within one minute. Nanoscale, 2016, 8, 19744-19753.	5.6	29
218	Synthesis of carbon quantum dots/TiO2 nanocomposite for photo-degradation of Rhodamine B and cefradine. Diamond and Related Materials, 2016, 70, 137-144.	3.9	64
219	Accessing Mitochondrial Targets Using NanoCargos. Fundamental Biomedical Technologies, 2016, , 229-254.	0.2	3

#	Article	IF	CITATIONS
220	One-Pot Synthesis of Hydrophilic and Hydrophobic N-Doped Graphene Quantum Dots via Exfoliating and Disintegrating Graphite Flakes. Scientific Reports, 2016, 6, 30426.	3.3	68
221	Photoexcited state properties of carbon dots from thermally induced functionalization of carbon nanoparticles. Journal of Materials Chemistry C, 2016, 4, 10554-10561.	5.5	37
222	Determination of auramine O based on a carbon dot-enhanced chemiluminescence method. Analytical Methods, 2016, 8, 8072-8078.	2.7	5
223	Phenylsulfonic acid functionalized carbon quantum dots based biosensor for acetylcholinesterase activity monitoring andÂinhibitor screening. RSC Advances, 2016, 6, 105454-105460.	3.6	10
224	White carbon: Fluorescent carbon nanoparticles with tunable quantum yield in a reproducible green synthesis. Scientific Reports, 2016, 6, 28557.	3.3	54
225	Hydrophobic Carbon Nanodots with Rapid Cell Penetrability and Tunable Photoluminescence Behavior for in Vitro and in Vivo Imaging. Langmuir, 2016, 32, 12221-12229.	3.5	45
226	Fluorescence detection for H2PO4 - based on carbon dots/Fe3+ composite. Journal Wuhan University of Technology, Materials Science Edition, 2016, 31, 1226-1229.	1.0	4
227	Understanding the Photoluminescence Mechanism of Nitrogenâ€Đoped Carbon Dots by Selective Interaction with Copper Ions. ChemPhysChem, 2016, 17, 2315-2321.	2.1	46
228	Synthesis, Separation, and Characterization of Small and Highly Fluorescent Nitrogenâ€Doped Carbon NanoDots. Angewandte Chemie, 2016, 128, 2147-2152.	2.0	72
229	Development of Multifunctional Fluorescent–Magnetic Nanoprobes for Selective Capturing and Multicolor Imaging of Heterogeneous Circulating Tumor Cells. ACS Applied Materials & Interfaces, 2016, 8, 15076-15085.	8.0	35
230	Carbon quantum dot-based nanoprobes for metal ion detection. Journal of Materials Chemistry C, 2016, 4, 6927-6945.	5.5	408
231	Synthesis of green-emitting carbon quantum dots with excitation wavelength dependent photoluminescence obtained from aqueous beetroot extract. MRS Advances, 2016, 1, 1371-1376.	0.9	4
232	Ionic liquid-assisted thermal decomposition synthesis of carbon dots and graphene-like carbon sheets for optoelectronic application. RSC Advances, 2016, 6, 61292-61300.	3.6	24
233	Paper carbon dot based fluorescence sensor for distinction of organic and inorganic sulphur in analytes. RSC Advances, 2016, 6, 57327-57334.	3.6	10
234	Carbogenically coated silica nanoparticles and their forensic applications. Chemical Communications, 2016, 52, 8294-8296.	4.1	49
235	N, B-doped carbon dots as a sensitive fluorescence probe for Hg 2+ ions and 2,4,6-trinitrophenol detection for bioimaging. Journal of Photochemistry and Photobiology B: Biology, 2016, 162, 1-13.	3.8	80
236	Probing Energy and Electron Transfer Mechanisms in Fluorescence Quenching of Biomass Carbon Quantum Dots. ACS Applied Materials & Interfaces, 2016, 8, 17478-17488.	8.0	223
237	Catalytic Applications of Carbon Dots. Carbon Nanostructures, 2016, , 257-298.	0.1	12

# 238	ARTICLE UV light-switchable transparent polymer films and invisible luminescent inks based on carbon dots and lanthanide complexes. Journal of Materials Chemistry C, 2016, 4, 7253-7259.	IF 5.5	CITATIONS
239	The origin of emissive states of carbon nanoparticles derived from ensemble-averaged and single-molecular studies. Nanoscale, 2016, 8, 14057-14069.	5.6	101
240	Future prospects of luminescent nanomaterial based security inks: from synthesis to anti-counterfeiting applications. Nanoscale, 2016, 8, 14297-14340.	5.6	378
241	Multi-doped carbon dots with ratiometric pH sensing properties for monitoring enzyme catalytic reactions. Chemical Communications, 2016, 52, 9247-9250.	4.1	90
242	Enhanced visible light photocatalytic activity and stability of CQDs/BiOBr composites: The upconversion effect of CQDs. Journal of Alloys and Compounds, 2016, 685, 34-41.	5.5	92
243	Advantages and limitations of nanoparticle labeling for early diagnosis of infection. Expert Review of Molecular Diagnostics, 2016, 16, 883-895.	3.1	16
244	Comparative performance evaluation of carbon dot-based paper immunoassay on Whatman filter paper and nitrocellulose paper in the detection of HIV infection. Microfluidics and Nanofluidics, 2016, 20, 1.	2.2	68
245	Gold nanorod@silica-carbon dots as multifunctional phototheranostics for fluorescence and photoacoustic imaging-guided synergistic photodynamic/photothermal therapy. Nanoscale, 2016, 8, 13067-13077.	5.6	126
246	Stimulus responsive nanogel with innate near IR fluorescent capability for drug delivery and bioimaging. Colloids and Surfaces B: Biointerfaces, 2016, 146, 84-96.	5.0	12
247	Fluorescence characteristics of carbon nanoemitters derived from sucrose by green hydrothermal and microwave methods. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2016, 169, 25-29.	3.9	7
248	Nitrogen-doped carbon dots derived from polyamindoamine dendrimer. RSC Advances, 2016, 6, 59702-59707.	3.6	17
249	White light emission of carbon dots by creating different emissive traps. Journal of Luminescence, 2016, 178, 128-133.	3.1	46
250	Enhanced fluorescence properties of carbon dots in polymer films. Journal of Materials Chemistry C, 2016, 4, 6967-6974.	5.5	74
251	Facilely prepared carbon dots and rare earth ion doped hybrid composites for ratio-metric pH sensing and white-light emission. RSC Advances, 2016, 6, 61468-61472.	3.6	32
252	One-step synthesis of chiral carbon quantum dots and their enantioselective recognition. RSC Advances, 2016, 6, 59956-59960.	3.6	78
253	Boron and nitrogen co-doped porous carbon nanotubes webs as a high-performance anode material for lithium ion batteries. International Journal of Hydrogen Energy, 2016, 41, 14252-14260.	7.1	68
254	A novel photoluminescence sensing system sensitive for and selective to bromate anions based on carbon dots. RSC Advances, 2016, 6, 61891-61896.	3.6	14
255	Synthesis, Separation, and Characterization of Small and Highly Fluorescent Nitrogenâ€Đoped Carbon NanoDots. Angewandte Chemie - International Edition, 2016, 55, 2107-2112.	13.8	266

#	Article	IF	CITATIONS
256	Iron Oxide Nanoparticles Modified with Carbon Quantum Nanodots for the Stabilization of Palladium Nanoparticles: An Efficient Catalyst for the Suzuki Reaction in Aqueous Media under Mild Conditions. ChemCatChem, 2016, 8, 441-447.	3.7	52
257	An Elaborate Supramolecular Assembly for a Smart Nanodevice for Ratiometric Molecular Recognition and Logic Gates. Chemistry - A European Journal, 2016, 22, 8339-8345.	3.3	17
258	Large-scale synthesis of N-doped carbon quantum dots and their phosphorescence properties in a polyurethane matrix. Nanoscale, 2016, 8, 4742-4747.	5.6	252
259	An inner filter effect based sensor of tetracycline hydrochloride as developed by loading photoluminescent carbon nanodots in the electrospun nanofibers. Nanoscale, 2016, 8, 2999-3007.	5.6	194
260	Solid-state synthesis of self-functional carbon quantum dots for detection of bacteria and tumor cells. Sensors and Actuators B: Chemical, 2016, 228, 465-470.	7.8	105
261	Facile and Sensitive Fluorescence Sensing of Alkaline Phosphatase Activity with Photoluminescent Carbon Dots Based on Inner Filter Effect. Analytical Chemistry, 2016, 88, 2720-2726.	6.5	329
262	Highly photoluminescent pH-independent nitrogen-doped carbon dots for sensitive and selective sensing of p-nitrophenol. RSC Advances, 2016, 6, 15192-15200.	3.6	76
263	Phosphorus, and nitrogen co-doped carbon dots as a fluorescent probe for real-time measurement of reactive oxygen and nitrogen species inside macrophages. Biosensors and Bioelectronics, 2016, 79, 822-828.	10.1	102
264	In-situ hydrothermal synthesis of molecularly imprinted polymers coated carbon dots for fluorescent detection of bisphenol A. Sensors and Actuators B: Chemical, 2016, 228, 302-307.	7.8	120
265	Graphene quantum dots as efficient, metal-free, visible -light-active photocatalysts. Science China Materials, 2016, 59, 12-19.	6.3	44
266	Fluorescent carbon quantum dot hydrogels for direct determination of silver ions. Talanta, 2016, 151, 100-105.	5.5	112
267	Carbon nanomaterials for simultaneous determination of dopamine and uric acid in the presence of ascorbic acid: from one-dimensional to the quasi one-dimensional. Electrochimica Acta, 2016, 190, 40-48.	5.2	31
268	Facile construction of carbon dots via acid catalytic hydrothermal method and their application for target imaging of cancer cells. Nano Research, 2016, 9, 214-223.	10.4	51
269	Nitrogen-Doped Carbon Dots for "green―Quantum Dot Solar Cells. Nanoscale Research Letters, 2016, 11, 27.	5.7	146
270	Glutathione modified carbon-dots: from aggregation-induced emission enhancement properties to a "turn-on―sensing of temperature/Fe ³⁺ ions in cells. Inorganic Chemistry Frontiers, 2016, 3, 514-522.	6.0	78
271	Luminescent colloidal carbon dots: optical properties and effects of doping [Invited]. Optics Express, 2016, 24, A312.	3.4	235
272	Carboxylic Carbon Quantum Dots as a Fluorescent Sensing Platform for DNA Detection. ACS Applied Materials & amp; Interfaces, 2016, 8, 1951-1957.	8.0	261
273	Recent advances in dye-sensitized semiconductor systems for photocatalytic hydrogen production. Journal of Materials Chemistry A, 2016, 4, 2365-2402.	10.3	368

#	Article	IF	CITATIONS
274	Aptamer induced assembly of fluorescent nitrogen-doped carbon dots on gold nanoparticles for sensitive detection of AFB1. Biosensors and Bioelectronics, 2016, 78, 23-30.	10.1	205
275	Carbon quantum dots in situ coupling to bismuth oxyiodide via reactable ionic liquid with enhanced photocatalytic molecular oxygen activation performance. Carbon, 2016, 98, 613-623.	10.3	123
276	One-pot synthesis and control of aqueous soluble and organic soluble carbon dots from a designable waterborne polyurethane emulsion. Nanoscale, 2016, 8, 3973-3981.	5.6	34
277	A review on syntheses, properties, characterization and bioanalytical applications of fluorescent carbon dots. Mikrochimica Acta, 2016, 183, 519-542.	5.0	510
278	Recent development of carbon electrode materials and their bioanalytical and environmental applications. Chemical Society Reviews, 2016, 45, 715-752.	38.1	249
279	Nitrogen-Doped Carbon Quantum Dots/BiOBr Ultrathin Nanosheets: In Situ Strong Coupling and Improved Molecular Oxygen Activation Ability under Visible Light Irradiation. ACS Sustainable Chemistry and Engineering, 2016, 4, 136-146.	6.7	233
280	Bio-based waterborne polyurethane/carbon dot nanocomposite as a surface coating material. Progress in Organic Coatings, 2016, 90, 324-330.	3.9	62
281	Full-Color Light-Emitting Carbon Dots with a Surface-State-Controlled Luminescence Mechanism. ACS Nano, 2016, 10, 484-491.	14.6	1,872
282	Facile synthesis of copper doped carbon dots and their application as a "turn-off―fluorescent probe in the detection of Fe ³⁺ ions. RSC Advances, 2016, 6, 28745-28750.	3.6	75
283	Toxicological properties of two fluorescent carbon quantum dots with onion ring morphology and their usefulness as bioimaging agents. RSC Advances, 2016, 6, 30611-30622.	3.6	4
284	Functionalized carbon nanoparticles: Syntheses and applications in optical bioimaging and energy conversion. Coordination Chemistry Reviews, 2016, 320-321, 66-81.	18.8	122
285	Sustainable-Resource-Based Carbon Dot–Silver Nanohybrid: A Strong Tool against <i>Culex quinquefasciatus</i> , a Common Disease Vector. ACS Sustainable Chemistry and Engineering, 2016, 4, 2345-2350.	6.7	21
286	Fluorescent carbon nano dots from lignite: unveiling the impeccable evidence for quantum confinement. Physical Chemistry Chemical Physics, 2016, 18, 12065-12073.	2.8	55
287	Ultrasmall inorganic nanoparticles: State-of-the-art and perspectives for biomedical applications. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 1663-1701.	3.3	238
288	Quantum dot nanoparticle for optimization of breast cancer diagnostics and therapy in a clinical setting. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 1581-1592.	3.3	39
289	Biomimetic synthesis of needle-like fluorescent calcium phosphate/carbon dot hybrid composites for cell labeling and copper ion detection. Dalton Transactions, 2016, 45, 7665-7671.	3.3	15
290	Highly photoluminescent nitrogen-rich carbon dots from melamine and citric acid for the selective detection of iron(<scp>iii</scp>) ion. RSC Advances, 2016, 6, 31884-31888.	3.6	58
291	Evaluation of a reconfigurable portable instrument for copper determination based on luminescent carbon dots. Analytical and Bioanalytical Chemistry, 2016, 408, 3013-3020.	3.7	25

#	Article	IF	CITATIONS
292	Bottom-up electrochemical preparation of solid-state carbon nanodots directly from nitriles/ionic liquids using carbon-free electrodes and the applications in specific ferric ion detection and cell imaging. Nanoscale, 2016, 8, 5470-5477.	5.6	66
293	Characterization of acid functional groups of carbon dots by nonlinear regression data fitting of potentiometric titration curves. Applied Surface Science, 2016, 370, 486-495.	6.1	53
294	Synthesis of magnetic core–shell carbon dot@MFe ₂ O ₄ (M = Mn, Zn and Cu) hybrid materials and their catalytic properties. Journal of Materials Chemistry A, 2016, 4, 4044-4055.	10.3	91
295	Bidirectional acceleration of carrier separation spatially via N-CQDs/atomically-thin BiOI nanosheets nanojunctions for manipulating active species in a photocatalytic process. Journal of Materials Chemistry A, 2016, 4, 5051-5061.	10.3	126
296	One-Step Synthesis and Characterization of N-Doped Carbon Nanodots for Sensing in Organic Media. Analytical Chemistry, 2016, 88, 3178-3185.	6.5	39
297	Microwave-assisted ultrafast and facile synthesis of fluorescent carbon nanoparticles from a single precursor: preparation, characterization and their application for the highly selective detection of explosive picric acid. Journal of Materials Chemistry A, 2016, 4, 4161-4171.	10.3	165
298	A fluorescent probe based on N-doped carbon dots for highly sensitive detection of Hg ²⁺ in aqueous solutions. Analytical Methods, 2016, 8, 2297-2304.	2.7	54
299	In situ formation of carbon dots aids ampicillin sensing. Analytical Methods, 2016, 8, 2441-2447.	2.7	19
300	Synthesis of nitrogen-doping carbon dots with different photoluminescence properties by controlling the surface states. Nanoscale, 2016, 8, 6770-6776.	5.6	214
301	What are the emerging concepts and challenges in NANO? Nanoarchitectonics, hand-operating nanotechnology and mechanobiology. Polymer Journal, 2016, 48, 371-389.	2.7	205
302	Microwave-assisted facile synthesis of yellow fluorescent carbon dots from o-phenylenediamine for cell imaging and sensitive detection of Fe ³⁺ and H ₂ O ₂ . RSC Advances, 2016, 6, 17704-17712.	3.6	121
303	Facile and green approach to prepare fluorescent carbon dots: Emergent nanomaterial for cell imaging and detection of vitamin B2. Journal of Colloid and Interface Science, 2016, 468, 276-283.	9.4	68
304	Nanocomposite films of polyaniline/graphene quantum dots and its supercapacitor properties. Surface Engineering, 2016, 32, 535-540.	2.2	46
305	Colorimetric and fluorescence "turn-on―methods for the sensitive detection of bromelain using carbon dots functionalized gold nanoparticles as a dual probe. RSC Advances, 2016, 6, 32025-32036.	3.6	29
306	A FRET fluorescent nanosensor based on carbon dots for ratiometric detection of Fe ³⁺ in aqueous solution. RSC Advances, 2016, 6, 26936-26940.	3.6	53
307	A simple method for preparing ZnO foam/carbon quantum dots nanocomposite and their photocatalytic applications. Materials Science in Semiconductor Processing, 2016, 47, 25-31.	4.0	60
308	Carbogenic nanodots derived from organo-templated zeolites with modulated full-color luminescence. Chemical Science, 2016, 7, 3564-3568.	7.4	99
309	N-dots as a photoluminescent probe for the rapid and selective detection of Hg ²⁺ and Ag ⁺ in aqueous solution. Journal of Materials Chemistry B, 2016, 4, 2086-2089.	5.8	53

	CITATION	CITATION REPORT	
#	Article	IF	Citations
310	Tunable Carbon-Dot-Based Dual-Emission Fluorescent Nanohybrids for Ratiometric Optical Thermometry in Living Cells. ACS Applied Materials & Interfaces, 2016, 8, 6621-6628.	8.0	180
311	A novel and facile synthesis of carbon quantum dots via salep hydrothermal treatment as the silver nanoparticles support: Application to electroanalytical determination of H2O2 in fetal bovine serum. Biosensors and Bioelectronics, 2016, 81, 143-150.	10.1	109
312	Synthesis of "amphiphilic―carbon dots and their application for the analysis of iodine species (I ₂ , I ^{â^'} and IO ₃ ^{â^'}) in highly saline water. Analyst, The, 2016, 141, 2508-2514.	3.5	20
313	Fluorescence detection of mercury ions and cysteine based on magnesium and nitrogen co-doped carbon quantum dots and IMPLICATION logic gate operation. Sensors and Actuators B: Chemical, 2016, 231, 147-153.	7.8	91
314	Carbon dots prepared from citric acid and urea as fluorescent probes for hypochlorite and peroxynitrite. Mikrochimica Acta, 2016, 183, 1769-1777.	5.0	114
315	Turn-off fluorescence sensor for the detection of ferric ion in water using green synthesized N-doped carbon dots and its bio-imaging. Journal of Photochemistry and Photobiology B: Biology, 2016, 158, 235-242.	3.8	271
316	Facile and green synthesis of fluorescent carbon dots from onion waste and their potential applications as sensor and multicolour imaging agents. RSC Advances, 2016, 6, 28633-28639.	3.6	198
317	Polarization induced dynamic photoluminescence in carbon quantum dot-based ionic fluid. Journal of Materials Chemistry A, 2016, 4, 2246-2251.	10.3	18
318	TEMPO-mediated oxidized nanocellulose incorporating with its derivatives of carbon dots for luminescent hybrid films. RSC Advances, 2016, 6, 6504-6510.	3.6	30
319	Graphene Quantum Dots Produced by Microfluidization. Chemistry of Materials, 2016, 28, 21-24.	6.7	71
320	A fluorescence resonance energy transfer (FRET) based "Turn-On―nanofluorescence sensor using a nitrogen-doped carbon dot-hexagonal cobalt oxyhydroxide nanosheet architecture and application to α-glucosidase inhibitor screening. Biosensors and Bioelectronics, 2016, 79, 728-735.	10.1	111
321	Bioresponsive carbon nano-gated multifunctional mesoporous silica for cancer theranostics. Nanoscale, 2016, 8, 4537-4546.	5.6	64
322	Facile synthesis of N-rich carbon quantum dots by spontaneous polymerization and incision of solvents as efficient bioimaging probes and advanced electrocatalysts for oxygen reduction reaction. Nanoscale, 2016, 8, 2219-2226.	5.6	61
323	Chemically doped fluorescent carbon and graphene quantum dots for bioimaging, sensor, catalytic and photoelectronic applications. Nanoscale, 2016, 8, 2532-2543.	5.6	443
324	A sensitive fluorescent sensor for selective determination of dichlorvos based on the recovered fluorescence of carbon dots-Cu(II) system. Food Chemistry, 2016, 202, 81-87.	8.2	73
325	Integration of inorganic nanostructures with polydopamine-derived carbon: tunable morphologies and versatile applications. Nanoscale, 2016, 8, 1770-1788.	5.6	74
326	Carbon dots: large-scale synthesis, sensing and bioimaging. Materials Today, 2016, 19, 382-393.	14.2	575
327	Recent advances in carbon-based dots for electroanalysis. Analyst, The, 2016, 141, 2619-2628.	3.5	29

#	Article	IF	CITATIONS
328	Great-enhanced performance of Pt nanoparticles by the unique carbon quantum dot/reduced graphene oxide hybrid supports towards methanol electrochemical oxidation. Journal of Power Sources, 2016, 303, 109-117.	7.8	59
329	FRET based ammonia sensor using carbon dots. Sensors and Actuators B: Chemical, 2016, 225, 522-528.	7.8	51
330	Carbon nanomaterials-based electrochemical aptasensors. Biosensors and Bioelectronics, 2016, 79, 136-149.	10.1	148
331	Carbon dots as nanosensor for sensitive and selective detection of Hg2+ and l-cysteine by means of fluorescence "Off–On―switching. Sensors and Actuators B: Chemical, 2016, 224, 926-935.	7.8	114
332	Tuning photoluminescence and surface properties of carbon nanodots for chemical sensing. Nanoscale, 2016, 8, 500-507.	5.6	78
333	Green preparation of nitrogen-doped carbon dots derived from silkworm chrysalis for cell imaging. Journal of Materials Chemistry B, 2016, 4, 387-393.	5.8	143
334	Semiconductor and carbon-based fluorescent nanodots: the need for consistency. Chemical Communications, 2016, 52, 1311-1326.	4.1	389
335	Tunable multicolor carbon dots prepared from well-defined polythiophene derivatives and their emission mechanism. Nanoscale, 2016, 8, 729-734.	5.6	176
336	Hybrid heterostructures based on hematite and highly hydrophilic carbon dots with photocatalytic activity. Applied Catalysis B: Environmental, 2016, 182, 204-212.	20.2	47
337	Facile synthesis of nitrogen and sulfur co-doped carbon dots and application for Fe(III) ions detection and cell imaging. Sensors and Actuators B: Chemical, 2016, 223, 689-696.	7.8	195
338	A sol-gel based molecular imprint incorporating carbon dots for fluorometric determination of nicotinic acid. Mikrochimica Acta, 2016, 183, 329-336.	5.0	30
339	A fluorometric assay for acetylcholinesterase activity and inhibitor screening with carbon quantum dots. Sensors and Actuators B: Chemical, 2016, 222, 879-886.	7.8	73
340	Beyond bottom-up carbon nanodots: Citric-acid derived organic molecules. Nano Today, 2016, 11, 128-132.	11.9	229
341	Ionic liquid-induced strategy for carbon quantum dots/BiOX (X = Br, Cl) hybrid nanosheets with superior visible light-driven photocatalysis. Applied Catalysis B: Environmental, 2016, 181, 260-269.	20.2	380
342	Excitation wavelength independent visible color emission of carbon dots. Nanoscale, 2017, 9, 1909-1915.	5.6	370
343	Metal free, carbon-TiO2 based composites for the visible light photocatalysis. Solar Energy, 2017, 144, 127-133.	6.1	33
344	Sustainable microalgae for the simultaneous synthesis of carbon quantum dots for cellular imaging and porous carbon for CO2 capture. Journal of Colloid and Interface Science, 2017, 493, 257-264.	9.4	64
345	Control Strategy on Two-/Four-Electron Pathway of Water Splitting by Multidoped Carbon Based Catalysts. ACS Catalysis, 2017, 7, 1637-1645.	11.2	66

#	Article	IF	CITATIONS
346	Synthesis, properties and biomedical applications of carbon-based quantum dots: An updated review. Biomedicine and Pharmacotherapy, 2017, 87, 209-222.	5.6	419
347	Successful entrapment of carbon dots within flexible free-standing transparent mesoporous organic-inorganic silica hybrid films for photonic applications. Journal of Physics and Chemistry of Solids, 2017, 103, 190-196.	4.0	39
348	One-pot fabrication of fluorescent carbon nitride nanoparticles with high crystallinity as a highly selective and sensitive sensor for free chlorine. Sensors and Actuators B: Chemical, 2017, 244, 965-971.	7.8	40
349	Insights into the role of nanostructure in the sensing properties of carbon nanodots for improved sensitivity to reactive oxygen species in living cells. Chemical Communications, 2017, 53, 2122-2125.	4.1	35
350	Photoactive materials based on semiconducting nanocarbons – A challenge opening new possibilities for photocatalysis. Journal of Energy Chemistry, 2017, 26, 207-218.	12.9	31
351	Carbonâ€Nanodot Solar Cells from Renewable Precursors. ChemSusChem, 2017, 10, 1004-1013.	6.8	57
352	In-situ synthesis of Cu nanoparticles hybridized with carbon quantum dots as a broad spectrum photocatalyst for improvement of photocatalytic H2 evolution. Applied Catalysis B: Environmental, 2017, 206, 328-335.	20.2	162
353	Cu _{1.8} S-Passivated carbon dots for enhancing photocatalytic activity. Chemical Communications, 2017, 53, 2343-2346.	4.1	32
354	One-pot solid phase pyrolysis synthesis of nitrogen-doped carbon dots for Fe3+ sensing and bioimaging. Sensors and Actuators B: Chemical, 2017, 245, 868-874.	7.8	93
355	Repeatable deep-tissue activation of persistent luminescent nanoparticles by soft X-ray for high sensitivity long-term in vivo bioimaging. Nanoscale, 2017, 9, 2718-2722.	5.6	74
356	Harnessing Vis–NIR broad spectrum for photocatalytic CO2 reduction over carbon quantum dots-decorated ultrathin Bi2WO6 nanosheets. Nano Research, 2017, 10, 1720-1731.	10.4	135
358	Fluorescent Carbon Dot as Nanosensor for Sensitive and Selective Detection of Cefixime Based on Inner Filter Effect. Journal of Fluorescence, 2017, 27, 921-927.	2.5	36
359	Design and preparation of a ternary composite of graphene oxide/carbon dots/polypyrrole for supercapacitor application: Importance and unique role of carbon dots. Carbon, 2017, 115, 134-146.	10.3	211
360	A novel and sensitive fluorescence sensor for glutathione detection by controlling the surface passivation degree of carbon quantum dots. Talanta, 2017, 166, 1-7.	5.5	79
361	Surface passivation of carbon dots with ethylene glycol and their high-sensitivity to Fe ³⁺ . RSC Advances, 2017, 7, 2810-2816.	3.6	65
362	Green Synthesis of Carbon Quantum Dots for Sensitized Solar Cells. ChemPhotoChem, 2017, 1, 116-119.	3.0	51
363	A versatile ratiometric nanosensing approach for sensitive and accurate detection of Hg2+ and biological thiols based on new fluorescent carbon quantum dots. Analytical and Bioanalytical Chemistry, 2017, 409, 2373-2382.	3.7	41
364	Review on Carbon Dots and Their Applications. Chinese Journal of Analytical Chemistry, 2017, 45, 139-150.	1.7	317

#	Article	IF	CITATIONS
365	Graphene Quantum Dots in Two-Dimensional Confined and Hydrophobic Space for Enhanced Adsorption of Nonionic Organic Adsorbates. Industrial & Engineering Chemistry Research, 2017, 56, 583-590.	3.7	26
366	Fluorescent turn-off competitive immunoassay for biotin based on hydrothermally synthesized carbon dots. Mikrochimica Acta, 2017, 184, 907-914.	5.0	17
367	Probing Carbocatalytic Activity of Carbon Nanodots for the Synthesis of Biologically Active Dihydro/Spiro/Glyco Quinazolinones and Aza-Michael Adducts. Journal of Organic Chemistry, 2017, 82, 2097-2106.	3.2	58
368	Carbon Dot Nanothermometry: Intracellular Photoluminescence Lifetime Thermal Sensing. ACS Nano, 2017, 11, 1432-1442.	14.6	243
369	Freestanding carbon nanodots/poly (vinyl alcohol) films with high photoluminescent quantum yield realized by inverted-pyramid structure. Nanotechnology, 2017, 28, 085305.	2.6	7
370	Cu(<scp>i</scp>)-Doped carbon quantum dots with zigzag edge structures for highly efficient catalysis of azide–alkyne cycloadditions. Green Chemistry, 2017, 19, 1494-1498.	9.0	65
371	Synthesis of C ₇₀ â€Based Fluorophores through Sequential Functionalization to Form Isomerically Pure Multiadducts. Angewandte Chemie - International Edition, 2017, 56, 2403-2407.	13.8	31
372	Microwave-assisted synthesis of fluorescent carbon quantum dots from an A ₂ /B ₃ monomer set. RSC Advances, 2017, 7, 12663-12669.	3.6	60
373	Full-colour carbon dots: from energy-efficient synthesis to concentration-dependent photoluminescence properties. Chemical Communications, 2017, 53, 3074-3077.	4.1	164
374	Direct synthesis of carbon quantum dots in aqueous polymer solution: one-pot reaction and preparation of transparent UV-blocking films. Journal of Materials Chemistry A, 2017, 5, 5187-5194.	10.3	111
375	Differentiation and determination of metal ions using fluorescent sensor array based on carbon nanodots. Sensors and Actuators B: Chemical, 2017, 246, 680-685.	7.8	65
376	<i>Ab Initio</i> Atomistic Thermodynamics Study of the (001) Surface of LiCoO ₂ in a Water Environment and Implications for Reactivity under Ambient Conditions. Journal of Physical Chemistry C, 2017, 121, 5069-5080.	3.1	37
377	Oleylamine-modified carbon nanoparticles as a kind of efficient lubricating additive of polyalphaolefin. Journal of Materials Science, 2017, 52, 4483-4492.	3.7	22
378	A reversible fluorescence nanoswitch based on dynamic covalent B–O bonds using functional carbon quantum dots and its application for α-glucosidase activity monitoring. Journal of Materials Chemistry C, 2017, 5, 2826-2832.	5.5	36
379	A novel electrochemiluminescence biosensor for the detection of microRNAs based on a DNA functionalized nitrogen doped carbon quantum dots as signal enhancers. Biosensors and Bioelectronics, 2017, 92, 273-279.	10.1	114
380	Fluorescent, Magnetic Multifunctional Carbon Dots for Selective Separation, Identification, and Eradication of Drug-Resistant Superbugs. ACS Omega, 2017, 2, 554-562.	3.5	59
381	A new type of polymer carbon dots with high quantum yield: From synthesis to investigation on fluorescence mechanism. Polymer, 2017, 116, 472-478.	3.8	116
382	Production of yellow-emitting carbon quantum dots from fullerene carbon soot. Science China	6.3	53

#	Article	IF	CITATIONS
383	Carbon quantum dots as fluorescence resonance energy transfer sensors for organophosphate pesticides determination. Biosensors and Bioelectronics, 2017, 94, 292-297.	10.1	263
384	Polyethylenimine-Derived Fluorescent Nonconjugated Polymer Dots with Reversible Dual-Signal pH Response and Logic Gate Operation. Journal of Physical Chemistry C, 2017, 121, 6874-6883.	3.1	61
385	Rational designed strategy to dispel mutual interference of mercuric and ferric ions towards robust, pH-stable fluorescent carbon nanodots. Analyst, The, 2017, 142, 1149-1156.	3.5	20
386	Hyaluronic acid-based carbon dots for efficient gene delivery and cell imaging. RSC Advances, 2017, 7, 15613-15624.	3.6	53
387	Carbon dot-MnO2 FRET system for fabrication of molecular logic gates. Sensors and Actuators B: Chemical, 2017, 246, 716-725.	7.8	26
388	Design of C-dots/Fe3O4 magnetic nanocomposite as an efficient new nanozyme and its application for determination of H2O2 in nanomolar level. Sensors and Actuators B: Chemical, 2017, 247, 691-696.	7.8	57
389	Fluorometric detection of cholesterol based on Î ² -cyclodextrin functionalized carbon quantum dots via competitive host-guest recognition. Talanta, 2017, 167, 513-519.	5.5	86
390	Synthesis and Electrochemical Properties of Carbon Dots/Manganese Dioxide (CQDs/MnO ₂) Nanoflowers for Supercapacitor Applications. Journal of the Electrochemical Society, 2017, 164, A430-A437.	2.9	28
391	Visualization of Adsorption: Luminescent Mesoporous Silica-Carbon Dots Composite for Rapid and Selective Removal of U(VI) and in Situ Monitoring the Adsorption Behavior. ACS Applied Materials & Interfaces, 2017, 9, 7392-7398.	8.0	96
392	A universal fluorometric assay strategy for glycosidases based on functional carbon quantum dots: β-galactosidase activity detection in vitro and in living cells. Journal of Materials Chemistry B, 2017, 5, 1971-1979.	5.8	61
393	Conquering Aggregation-Induced Solid-State Luminescence Quenching of Carbon Dots through a Carbon Dots-Triggered Silica Gelation Process. Chemistry of Materials, 2017, 29, 1779-1787.	6.7	242
394	Ratiometric luminescence detection of hydrazine with a carbon dots–hemicyanine nanohybrid system. RSC Advances, 2017, 7, 10875-10880.	3.6	22
395	Improved Optical Field Distribution and Charge Extraction through an Interlayer of Carbon Nanospheres in Polymer Solar Cells. Chemistry of Materials, 2017, 29, 2961-2968.	6.7	8
396	Stabilizing alkenyl succinic anhydride (ASA) emulsions with starch nanocrystals and fluorescent carbon dots. Carbohydrate Polymers, 2017, 165, 13-21.	10.2	21
397	Recent advances in optical properties and applications of colloidal quantum dots under two-photon excitation. Coordination Chemistry Reviews, 2017, 338, 141-185.	18.8	56
398	A green one-pot synthesis of nitrogen and sulfur co-doped carbon quantum dots for sensitive and selective detection of cephalexin. Canadian Journal of Chemistry, 2017, 95, 641-648.	1.1	18
399	Synthesis of ultrathin carbon dots-coated iron oxide nanocubes decorated with silver nanoparticles and their excellent catalytic properties. Ceramics International, 2017, 43, 7311-7320.	4.8	14
400	Carbon nanodots: Mechanisms of photoluminescence and principles of application. TrAC - Trends in Analytical Chemistry, 2017, 90, 27-37.	11.4	92

#	Article	IF	CITATIONS
401	Carbon dot – Unique reinforcing filler for polymer with special reference to physico-mechanical properties. Polymer, 2017, 112, 189-200.	3.8	32
402	One-Pot Synthesis of Carbon Dots-Based Fol̀rster Resonance Energy Transfer Material and its Application in Fe ³⁺ Detection. Journal of Nano Research, 0, 45, 134-141.	0.8	6
403	Nearâ€Infrared Photoluminescent Polymer–Carbon Nanodots with Twoâ€Photon Fluorescence. Advanced Materials, 2017, 29, 1603443.	21.0	645
404	From Graphite to Graphene Oxide and Graphene Oxide Quantum Dots. Small, 2017, 13, 1601001.	10.0	69
405	Fluorescent carbon dots and their sensing applications. TrAC - Trends in Analytical Chemistry, 2017, 89, 163-180.	11.4	590
406	Influence of charge traps in carbon nanodots on gas interaction. Nanotechnology, 2017, 28, 135206.	2.6	1
407	Carbon dots/BiOCl films with enhanced visible light photocatalytic performance. Journal of Nanoparticle Research, 2017, 19, 1.	1.9	16
408	Two-photon absorption of the spatially confined LiH molecule. Physical Chemistry Chemical Physics, 2017, 19, 7568-7575.	2.8	10
409	Near-infrared light triggered photo-therapy, in combination with chemotherapy using magnetofluorescent carbon quantum dots for effective cancer treating. Carbon, 2017, 118, 752-764.	10.3	123
410	The emerging roles of carbon dots in solar photovoltaics: a critical review. Environmental Science: Nano, 2017, 4, 1216-1263.	4.3	128
411	Facilitating Translational Nanomedicine via Predictive Safety Assessment. Molecular Therapy, 2017, 25, 1522-1530.	8.2	31
412	One-step hydrothermal synthesis of photoluminescent carbon nanodots with selective antibacterial activity against Porphyromonas gingivalis. Nanoscale, 2017, 9, 7135-7142.	5.6	201
413	Real-time monitoring of the UV-induced formation of quantum dots on a milliliter, microliter, and nanoliter scale. Mikrochimica Acta, 2017, 184, 1489-1497.	5.0	8
414	Interconnected 3 D Network of Grapheneâ€Oxide Nanosheets Decorated with Carbon Dots for Highâ€Performance Supercapacitors. ChemSusChem, 2017, 10, 2626-2634.	6.8	75
415	Signal-On Photoelectrochemical Immunoassay for Aflatoxin B ₁ Based on Enzymatic Product-Etching MnO ₂ Nanosheets for Dissociation of Carbon Dots. Analytical Chemistry, 2017, 89, 5637-5645.	6.5	360
416	Recent progress in the application of nanomaterials in the analysis of emerging chemical contaminants. Analytical Methods, 2017, 9, 2768-2783.	2.7	25
417	Encapsulation and protection of carbon dots within MCM-41 material. Journal of Sol-Gel Science and Technology, 2017, 82, 795-800.	2.4	7
418	Investigation of luminescent mechanism: N-rich carbon dots as luminescence centers in fluorescent hydroxyapatite prepared using a typical hydrothermal process. Journal of Materials Chemistry B, 2017, 5. 3749-3757.	5.8	17

#	Article	IF	CITATIONS
419	Highly N,P-doped carbon dots: Rational design, photoluminescence and cellular imaging. Mikrochimica Acta, 2017, 184, 2933-2940.	5.0	72
420	Fluorescent carbon dots with tunable negative charges for bio-imaging in bacterial viability assessment. Carbon, 2017, 120, 95-102.	10.3	65
421	Pd nanoparticles immobilized on magnetic carbon dots@Fe3O4 nanocubes as a synergistic catalyst for hydrogen generation. International Journal of Hydrogen Energy, 2017, 42, 15167-15177.	7.1	32
422	Graphene/Carbon Dot Hybrid Thin Films Prepared by a Modified Langmuir–Schaefer Method. ACS Omega, 2017, 2, 2090-2099.	3.5	35
423	Green synthesis of carbon quantum dots embedded onto titanium dioxide nanowires for enhancing photocurrent. Royal Society Open Science, 2017, 4, 161051.	2.4	37
424	Activating Room Temperature Long Afterglow of Carbon Dots via Covalent Fixation. Chemistry of Materials, 2017, 29, 4866-4873.	6.7	190
425	MOFâ€Templated Synthesis of Ultrasmall Photoluminescent Carbonâ€Nanodot Arrays for Optical Applications. Angewandte Chemie - International Edition, 2017, 56, 6853-6858.	13.8	179
426	MOFâ€Templated Synthesis of Ultrasmall Photoluminescent Carbonâ€Nanodot Arrays for Optical Applications. Angewandte Chemie, 2017, 129, 6957-6962.	2.0	17
427	Fluorescent CDs@PCL hybrids via tartaric acid, CDs-cocatalyzed polymerization. Materials Science and Engineering C, 2017, 79, 76-83.	7.3	9
428	Highly fluorescent carbon dots from peanut shells as potential probes for copper ion: The optimization and analysis of the synthetic process. Materials Today Chemistry, 2017, 5, 1-10.	3.5	87
429	Hyaluronan-Inorganic Nanohybrid Materials for Biomedical Applications. Biomacromolecules, 2017, 18, 1677-1696.	5.4	66
430	Biocompatible Chitosan–Carbon Dot Hybrid Nanogels for NIR-Imaging-Guided Synergistic Photothermal–Chemo Therapy. ACS Applied Materials & Interfaces, 2017, 9, 18639-18649.	8.0	137
431	Two-photon-excited near-infrared emissive carbon dots as multifunctional agents for fluorescence imaging and photothermal therapy. Nano Research, 2017, 10, 3113-3123.	10.4	246
432	Natural occurrence of fluorescent carbon dots in honey. Carbon, 2017, 119, 569-572.	10.3	61
433	Enhancing Light Absorption and Charge Transfer Efficiency in Carbon Dots through Graphitization and Core Nitrogen Doping. Angewandte Chemie, 2017, 129, 6559-6563.	2.0	51
434	Enhancing Light Absorption and Charge Transfer Efficiency in Carbon Dots through Graphitization and Core Nitrogen Doping. Angewandte Chemie - International Edition, 2017, 56, 6459-6463.	13.8	201
435	Analysis of the electron transfer properties of carbon quantum dots on gold nanorod surfaces via plasmonic resonance scattering spectroscopy. Chemical Communications, 2017, 53, 5729-5732.	4.1	14
436	An amplified comparative fluorescence resonance energy transfer immunosensing of CA125 tumor marker and ovarian cancer cells using green and economic carbon dots for bio-applications in labeling, imaging and sensing, Biosensors and Bioelectronics, 2017, 96, 308-316,	10.1	169

ARTICLE IF CITATIONS Carbon quantum dots in ionic liquids: a new generation of environmentally benign photoluminescent 437 5.5 39 inks. Journal of Materials Chemistry C, 2017, 5, 4951-4958. Cyto-toxicity, biocompatibility and cellular response of carbon dots–plasmonic based nano-hybrids 3.6 fór bioimaging. RSC Advances, 2017, 7, 23502-23514. 439 Design and Applications of Nanoparticles in Biomedical Imaging., 2017, , . 15 Bi-functional fluorescent polymer dots: a one-step synthesis via controlled hydrothermal treatment and application as probes for the detection of temperature and Fe³⁺. Journal of Materials 440 Chemistry C, 2017, 5, 434-443. Electrostatic Assembly Guided Synthesis of Highly Luminescent Carbonâ€Nanodots@BaSO₄ 441 10.0 118 Hybrid Phosphors with Improved Stability. Small, 2017, 13, 1602055. Rapid microwave synthesis of N-doped carbon nanodots with high fluorescence brightness for cell 3.6 imaging and sensitive detection of iron (III). Optical Materials, 2017, 64, 1-8. A multifunctional nanoplatform based on mesoporous silica nanoparticles for imaging-guided 443 3.6 39 chemo/photodynamic synergetic therapy. RSC Advances, 2017, 7, 31133-31141. Facile preparation of full-color emissive carbon dots and their applications in imaging of the <u> 111</u> 5.8 adhesion of erythrocytes to endothelial cells. Journal of Materials Chemistry B, 2017, 5, 5259-5264. Facile synthesis of red-emitting carbon dots from pulp-free lemon juice for bioimaging. Journal of 445 5.8 209 Materials Chemistry B, 2017, 5, 5272-5277. One-step extraction of highly fluorescent carbon quantum dots by a physical method from carbon 446 2.8 black. New Journal of Chemistry, 2017, 41, 5267-5270. A facile method to sensitively monitor chlorinated phenols based on Ru(bpy)32+ 447 10.3 45 electrochemiluminescent system using graphene quantum dots as coreactants. Carbon, 2017, 121, 72-78. The optical and electronic properties of graphene quantum dots with oxygen-containing groups: a density functional theory study. Journal of Materials Chemistry C, 2017, 5, 5984-5993. 448 5.5 108 Towards Efficient Spectral Converters through Materials Design for Luminescent Solar Devices. 449 21.0 174 Advanced Materials, 2017, 29, 1606491. Long Life-time Room-temperature Phosphorescence of Carbon Dots in Aluminum Sulfate. 1.5 ChemistrySelect, 2017, 2, 4058-4062. Ternary NiCoP nanoparticles assembled on graphene for high-performance lithium-ion batteries and 451 3.6 65 supercapacitors. RSC Advances, 2017, 7, 26120-26124. Electrogenerated Chemiluminescence of Semiconductor Nanoparticles and Their Applications in 24 Biosensors. ChemElectroChem, 2017, 4, 1573-1586. Room-temperature Magnetism in Carbon Dots and Enhanced Ferromagnetism in Carbon 453 3.3 23 Dots-Polyaniline Nanocomposite. Scientific Reports, 2017, 7, 2165. Inhibition of Cancer Cell Proliferation by Carbon Dots Derived from Date Pits at Low-Dose. 454 1.5 ChemistrySelect, 2017, 2, 4079-4083.

#	Article	IF	CITATIONS
455	Microwave formation and photoluminescence mechanisms of multi-states nitrogen doped carbon dots. Applied Surface Science, 2017, 422, 257-265.	6.1	70
456	Oneâ€Step Synthesis of Dicyanobenzeneâ€Derived Nitrogenâ€Doped Porous Carbon Monolayers: Porosity and Nearâ€infrared Photoactivity. ChemCatChem, 2017, 9, 4043-4048.	3.7	8
457	Carbon Dot Assisted Synthesis of Nanostructured Polyaniline for Dye Sensitized Solar Cells. Energy & Fuels, 2017, 31, 7364-7371.	5.1	18
458	Top-down and bottom-up approaches to transparent, flexible and luminescent nitrogen-doped carbon nanodot-clay hybrid films. Nanoscale, 2017, 9, 10256-10262.	5.6	41
459	Signal-on fluorescent sensor based on N-CQDs for the detection of glutathione in human serum and pharmaceutic preparation. Preparative Biochemistry and Biotechnology, 2017, 47, 835-840.	1.9	13
460	A Nanosensor Based on Carbon Dots for Recovered Fluorescence Detection Clenbuterol in Pork Samples. Journal of Fluorescence, 2017, 27, 1847-1853.	2.5	15
461	Synthesis of short-chain passivated carbon quantum dots as the light emitting layer towards electroluminescence. RSC Advances, 2017, 7, 28754-28762.	3.6	77
462	Carbon Quantum Dots Decorated C ₃ N ₄ /TiO ₂ Heterostructure Nanorod Arrays for Enhanced Photoelectrochemical Performance. Journal of the Electrochemical Society, 2017, 164, H515-H520.	2.9	22
463	Green fluorescent organic nanoparticles based on carbon dots and self-polymerized dopamine for cell imaging. RSC Advances, 2017, 7, 28987-28993.	3.6	19
464	Photoluminescent Hybrids of Cellulose Nanocrystals and Carbon Quantum Dots as Cytocompatible Probes for <i>in Vitro</i> Bioimaging. Biomacromolecules, 2017, 18, 2045-2055.	5.4	100
465	Preparation of Carbon Dots for Cellular Imaging by the Molecular Aggregation of Cellulolytic Enzyme Lignin. Langmuir, 2017, 33, 5786-5795.	3.5	75
466	Red-Emissive Carbon Dots for Fingerprints Detection by Spray Method: Coffee Ring Effect and Unquenched Fluorescence in Drying Process. ACS Applied Materials & Interfaces, 2017, 9, 18429-18433.	8.0	268
467	Study of Electrical Charge Storage in Polymerâ€Carbon Quantum Dot Composite. ChemistrySelect, 2017, 2, 4241-4247.	1.5	20
468	Carbon dots in zeolites: A new class of thermally activated delayed fluorescence materials with ultralong lifetimes. Science Advances, 2017, 3, e1603171.	10.3	286
469	Ionic liquid-functionalized carbon quantum dots as fluorescent probes for sensitive and selective detection of iron ion and ascorbic acid. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 529, 38-44.	4.7	72
470	Blue and cyan fluorescent carbon dots: one-pot synthesis, selective cell imaging and their antiviral activity. RSC Advances, 2017, 7, 28016-28023.	3.6	37
471	A highly sensitive and selective fluorimetric probe for intracellular peroxynitrite based on photoinduced electron transfer from ferrocene to carbon dots. Biosensors and Bioelectronics, 2017, 97, 150-156.	10.1	67
472	Cool white, persistent room-temperature phosphorescence in carbon dots embedded in a silica gel matrix. Physical Chemistry Chemical Physics, 2017, 19, 15137-15144.	2.8	89

#	Article	IF	Citations
473	Surface states engineering carbon dots as multi-band light active sensitizers for ZnO nanowire array photoanode to boost solar water splitting. Carbon, 2017, 121, 201-208.	10.3	38
474	Augmented glioma-targeted theranostics using multifunctional polymer-coated carbon nanodots. Biomaterials, 2017, 141, 29-39.	11.4	52
475	Carbon Nanodots-Based Fluorescent Turn-On Sensor Array for Biothiols. Analytical Chemistry, 2017, 89, 7084-7089.	6.5	88
476	Correlation of carbon dots' light-activated antimicrobial activities and fluorescence quantum yield. RSC Advances, 2017, 7, 30177-30184.	3.6	68
477	Carbon quantum dots/block copolymer ensembles for metal-ion sensing and bioimaging. Journal of Materials Chemistry B, 2017, 5, 5397-5402.	5.8	10
478	Facile synthesis and screen printing of dual-mode luminescent NaYF ₄ :Er,Yb (Tm)/carbon dots for anti-counterfeiting applications. Journal of Materials Chemistry C, 2017, 5, 6512-6520.	5.5	128
479	Carbon dots: Biomacromolecule interaction, bioimaging and nanomedicine. Coordination Chemistry Reviews, 2017, 343, 256-277.	18.8	312
480	Carbon dots promoted vanadium flow batteries for all-climate energy storage. Chemical Communications, 2017, 53, 7565-7568.	4.1	46
481	Enhanced photoresponsive polyethyleneimine/citric acid co-carbonized dots for facile and selective sensing and intracellular imaging of cobalt ions at physiologic pH. Analytica Chimica Acta, 2017, 970, 64-72.	5.4	39
482	Co-deposition of carbon dots and reduced graphene oxide nanosheets on carbon-fiber microelectrode surface for selective detection of dopamine. Applied Surface Science, 2017, 412, 131-137.	6.1	74
483	A fluorescence active catalyst support comprising carbon quantum dots and magnesium oxide doping for stabilization of palladium nanoparticles: Application as a recoverable catalyst for Suzuki reaction in water. Molecular Catalysis, 2017, 433, 12-19.	2.0	47
484	Carbon Dots' Antiviral Functions Against Noroviruses. Scientific Reports, 2017, 7, 519.	3.3	84
485	N-doped multi-fluorescent carbon dots for â€~turn off-on' silver-biothiol dual sensing and mammalian cell imaging application. Sensors and Actuators B: Chemical, 2017, 248, 481-492.	7.8	95
486	Living cell intracellular temperature imaging with biocompatible dye-conjugated carbon dots. Journal of Materials Chemistry B, 2017, 5, 3383-3390.	5.8	56
487	Photocatalytic water reduction using a polymer coated carbon quantum dot sensitizer and a nickel nanoparticle catalyst. Nanotechnology, 2017, 28, 195402.	2.6	10
488	Selfâ€Assembled Carbon Dot Nanosphere: A Robust, Nearâ€Infrared Lightâ€Responsive, and Vein Injectable Photosensitizer. Advanced Healthcare Materials, 2017, 6, 1601419.	7.6	41
489	Piezochromic Carbon Dots with Twoâ€photon Fluorescence. Angewandte Chemie, 2017, 129, 6283-6287.	2.0	64
490	Piezochromic Carbon Dots with Twoâ€photon Fluorescence. Angewandte Chemie - International Edition, 2017, 56, 6187-6191.	13.8	223

#	ARTICLE	IF	CITATIONS
491	Uniform luminescent carbon nanodots prepared by rapid pyrolysis of organic precursors confined within nanoporous templating structures. Carbon, 2017, 117, 437-446.	10.3	91
492	Synthesis of novel nitrogen-doped carbon dots for highly selective detection of iron ion. Nanotechnology, 2017, 28, 165502.	2.6	68
493	Carbon dots and Ag nanoparticles decorated g-C 3 N 4 nanosheets for enhanced organic pollutants degradation under sunlight irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 342, 42-52.	3.9	82
494	Waste derivitized blue luminescent carbon quantum dots for selenite sensing in water. Talanta, 2017, 170, 49-55.	5.5	55
495	Rationally Designed Carbon Nanodots towards Pure Whiteâ€Light Emission. Angewandte Chemie, 2017, 129, 4234-4237.	2.0	22
496	Enhanced Performance and Photostability of Perovskite Solar Cells by Introduction of Fluorescent Carbon Dots. ACS Applied Materials & Interfaces, 2017, 9, 14518-14524.	8.0	76
497	Magnetofluorescent Carbon Dots Derived from Crab Shell for Targeted Dual-Modality Bioimaging and Drug Delivery. ACS Applied Materials & Interfaces, 2017, 9, 13887-13899.	8.0	190
498	Fluorometric determination and imaging of glutathione based on a thiol-triggered inner filter effect on the fluorescence of carbon dots. Mikrochimica Acta, 2017, 184, 1923-1931.	5.0	29
499	Hybrid carbon dot/Ni 3 S 2 architecture supported on nickel foam for effective light collection and conversion. Chemical Engineering Journal, 2017, 321, 608-613.	12.7	20
500	Amphiphilic carbon dots as versatile vectors for nucleic acid and drug delivery. Nanoscale, 2017, 9, 5935-5947.	5.6	63
501	Red fluorescence-magnetic resonance dual modality imaging applications of gadolinium containing carbon quantum dots with excitation independent emission. New Journal of Chemistry, 2017, 41, 3422-3431.	2.8	16
502	Synthesis of ultra-small carbon nanospheres (<50 nm) with uniform tunable sizes by a convenient catalytic emulsion polymerization strategy: superior supercapacitive and sorption performance. Journal of Materials Chemistry A, 2017, 5, 12131-12143.	10.3	35
503	Carbon quantum dots originated from chitin nanofibers as a fluorescent chemoprobe for drug sensing. Journal of Industrial and Engineering Chemistry, 2017, 52, 162-167.	5.8	37
504	Carrot-derived carbon dots modified with polyethyleneimine and nile blue for ratiometric two-photon fluorescence turn-on sensing of sulfide anion in biological fluids. Talanta, 2017, 169, 141-148.	5.5	85
505	Realization of multiphoton lasing from carbon nanodot microcavities. Nanoscale, 2017, 9, 5957-5963.	5.6	16
506	Rapid exfoliation of layered covalent triazine-based frameworks into N-doped quantum dots for the selective detection of Hg ²⁺ ions. Journal of Materials Chemistry A, 2017, 5, 9272-9278.	10.3	76
507	Rationally Designed Carbon Nanodots towards Pure White‣ight Emission. Angewandte Chemie - International Edition, 2017, 56, 4170-4173.	13.8	99
508	Fluorescent carbon dots: facile synthesis at room temperature and its application for Fe2+ sensing. Journal of Nanoparticle Research, 2017, 19, 1.	1.9	38

#	Article	IF	CITATIONS
509	Amineâ€Rich Nitrogenâ€Doped Carbon Nanodots as a Platform for Selfâ€Enhancing Electrochemiluminescence. Angewandte Chemie - International Edition, 2017, 56, 4757-4761.	13.8	201
510	Amineâ€Rich Nitrogenâ€Doped Carbon Nanodots as a Platform for Selfâ€Enhancing Electrochemiluminescence. Angewandte Chemie, 2017, 129, 4835-4839.	2.0	42
511	Nanosalina: A Tale of Saline-Loving Algae from the Lake's Agony to Cancer Therapy. ACS Applied Materials & Interfaces, 2017, 9, 11528-11536.	8.0	8
512	Application of the chemiluminescence system composed of silicon-doped carbon dots, iron(II) and K2S2O8 to the determination of norfloxacin. Mikrochimica Acta, 2017, 184, 1587-1593.	5.0	33
513	Nitrogen and sulfur co-doped chiral carbon quantum dots with independent photoluminescence and chirality. Inorganic Chemistry Frontiers, 2017, 4, 946-953.	6.0	55
514	A Novel Fluorescent Nanoswitch Based on Carbon Dots for Sensitive Detection of Hg2+ and Iâ^'. Nano, 2017, 12, 1750024.	1.0	6
515	Carbon Materials. , 2017, , 429-462.		2
516	Solvothermal conversion of coal into nitrogen-doped carbon dots with singlet oxygen generation and high quantum yield. Chemical Engineering Journal, 2017, 320, 570-575.	12.7	123
517	Photocatalytic H 2 production from aqueous solutions of hydrazine and its derivatives in the presence of nitric-acid-activated graphitic carbon nitride. Catalysis Today, 2017, 284, 229-235.	4.4	17
518	Nitrogen-doped carbon quantum dots/Ag3PO4 complex photocatalysts with enhanced visible light driven photocatalytic activity and stability. Journal of Colloid and Interface Science, 2017, 491, 238-245.	9.4	58
519	Boron Precursor-Dependent Evolution of Differently Emitting Carbon Dots. Langmuir, 2017, 33, 573-584.	3.5	49
520	The Use of Graphene and Its Derivatives for Liquid-Phase Transmission Electron Microscopy of Radiation-Sensitive Specimens. Nano Letters, 2017, 17, 414-420.	9.1	120
521	Carbon quantum dots reinforced polypyrrole nanowire via electrostatic self-assembly strategy for high-performance supercapacitors. Carbon, 2017, 114, 533-543.	10.3	110
522	Molecular Fluorescence in Citric Acid-Based Carbon Dots. Journal of Physical Chemistry C, 2017, 121, 2014-2022.	3.1	517
523	Carbon dots assisted formation of DNA hydrogel for sustained release of drug. Carbon, 2017, 114, 169-176.	10.3	101
524	Facile heat reflux synthesis of blue luminescent carbon dots as optical nanoprobes for cellular imaging. New Journal of Chemistry, 2017, 41, 702-708.	2.8	6
525	Microwave-assisted synthesis of luminescent and biocompatible lysine-based carbon quantum dots. Journal of Industrial and Engineering Chemistry, 2017, 47, 329-335.	5.8	131
526	Recent progress in carbon dot–metal based nanohybrids for photochemical and electrochemical applications. Journal of Materials Chemistry A, 2017, 5, 1826-1859.	10.3	132

#	ARTICLE	IF	CITATIONS
527	Carbon nanodots as a fluorescence sensor for rapid and sensitive detection of Cr(VI) and their multifunctional applications. Talanta, 2017, 165, 216-222.	5.5	55
528	Nanomaterials for In Vivo Imaging. Chemical Reviews, 2017, 117, 901-986.	47.7	879
529	Recent progress in carbon quantum dots: synthesis, properties and applications in photocatalysis. Journal of Materials Chemistry A, 2017, 5, 3717-3734.	10.3	853
530	Chlorine triggered de-alloying of AuAg@Carbon nanodots: Towards fabrication of a dual signalling assay combining the plasmonic property of bimetallic alloy nanoparticles and photoluminescence of carbon nanodots. Analytica Chimica Acta, 2017, 959, 74-82.	5.4	12
531	Carbon-dot–hydrogel for enzyme-mediated bacterial detection. RSC Advances, 2017, 7, 588-594.	3.6	51
532	Highly sensitive and selective paper sensor based on carbon quantum dots for visual detection of TNT residues in groundwater. Sensors and Actuators B: Chemical, 2017, 243, 1002-1009.	7.8	114
533	Tunable oxygen activation induced by oxygen defects in nitrogen doped carbon quantum dots for sustainable boosting photocatalysis. Carbon, 2017, 114, 601-607.	10.3	86
534	The synthesis of B, N-carbon dots by a combustion method and the application of fluorescence detection for Cu 2+. Chinese Chemical Letters, 2017, 28, 1119-1124.	9.0	83
535	Bioconjugated Nanoparticles for Biosensing, in Vivo Imaging, and Medical Diagnostics. Analytical Chemistry, 2017, 89, 1015-1031.	6.5	120
536	Multispectral MR Imaging and Sensing Using Shaped Nanoparticles. , 2017, , 95-122.		0
536 537	Multispectral MR Imaging and Sensing Using Shaped Nanoparticles. , 2017, , 95-122. Highly luminescent S-doped carbon dots for the selective detection of ammonia. Carbon, 2017, 114, 544-556.	10.3	0
536 537 538	Multispectral MR Imaging and Sensing Using Shaped Nanoparticles. , 2017, , 95-122. Highly luminescent S-doped carbon dots for the selective detection of ammonia. Carbon, 2017, 114, 544-556. Metal-free photocatalysts for various applications in energy conversion and environmental purification. Green Chemistry, 2017, 19, 882-899.	10.3 9.0	0 54 261
536 537 538 539	Multispectral MR Imaging and Sensing Using Shaped Nanoparticles. , 2017, , 95-122. Highly luminescent S-doped carbon dots for the selective detection of ammonia. Carbon, 2017, 114, 544-556. Metal-free photocatalysts for various applications in energy conversion and environmental purification. Green Chemistry, 2017, 19, 882-899. Fluorescent carbon quantum dots chemosensor for selective turn-on sensing of Zn ²⁺ and turn-off sensing of Pb ²⁺ in aqueous medium and zebrafish eggs. New Journal of Chemistry, 2017, 41, 15157-15164.	10.3 9.0 2.8	0 54 261 30
536 537 538 539	Multispectral MR Imaging and Sensing Using Shaped Nanoparticles. , 2017, , 95-122. Highly luminescent S-doped carbon dots for the selective detection of ammonia. Carbon, 2017, 114, 544-556. Metal-free photocatalysts for various applications in energy conversion and environmental purification. Green Chemistry, 2017, 19, 882-899. Fluorescent carbon quantum dots chemosensor for selective turn-on sensing of Zn ²⁺ and turn-off sensing of Pb ²⁺ in aqueous medium and zebrafish eggs. New Journal of Chemistry, 2017, 41, 15157-15164. Highly Efficient Visible Blue-Emitting Black Phosphorus Quantum Dot: Mussel-Inspired Surface Functionalization for Bioapplications. ACS Omega, 2017, 2, 7096-7105.	10.3 9.0 2.8 3.5	0 54 261 30 37
 536 537 538 539 540 541 	Multispectral MR Imaging and Sensing Using Shaped Nanoparticles. , 2017, , 95-122. Highly luminescent S-doped carbon dots for the selective detection of ammonia. Carbon, 2017, 114, 544-556. Metal-free photocatalysts for various applications in energy conversion and environmental purification. Green Chemistry, 2017, 19, 882-899. Fluorescent carbon quantum dots chemosensor for selective turn-on sensing of Zn ²⁺ and turn-off sensing of Pb ²⁺ in aqueous medium and zebrafish eggs. New Journal of Chemistry, 2017, 41, 15157-15164. Highly Efficient Visible Blue-Emitting Black Phosphorus Quantum Dot: Mussel-Inspired Surface Functionalization for Bioapplications. ACS Omega, 2017, 2, 7096-7105. Characterization of Kraft Lignin Fractions Obtained by Sequential Ultrafiltration and Their Potential Application as a Biobased Component in Blends with Polyethylene. ACS Sustainable Chemistry and Engineering, 2017, 5, 11770-11779.	10.3 9.0 2.8 3.5 6.7	0 54 261 30 37 80
5336 5337 5338 5339 540 541	Multispectral MR Imaging and Sensing Using Shaped Nanoparticles. , 2017, , 95-122. Highly luminescent S-doped carbon dots for the selective detection of ammonia. Carbon, 2017, 114, 544-556. Metal-free photocatalysts for various applications in energy conversion and environmental purification. Green Chemistry, 2017, 19, 882-899. Fluorescent carbon quantum dots chemosensor for selective turn-on sensing of Zn ²⁺ and turn-off sensing of Pb ²⁺ in aqueous medium and zebrafish eggs. New Journal of Chemistry, 2017, 41, 15157-15164. Highly Efficient Visible Blue-Emitting Black Phosphorus Quantum Dot: Mussel-Inspired Surface Functionalization for Bioapplications. ACS Omega, 2017, 2, 7096-7105. Characterization of Kraft Lignin Fractions Obtained by Sequential Ultrafiltration and Their Potential Application as a Biobased Component in Blends with Polyethylene. ACS Sustainable Chemistry and Engineering, 2017, 5, 11770-11779. Preparation of nitrogen-doped carbon dots with high quantum yield from Bombyx mori silk for Fe(<scp>iii</scp>	10.3 9.0 2.8 3.5 6.7 3.6	0 54 261 30 37 80
 536 537 538 539 540 541 542 543 	Multispectral MR Imaging and Sensing Using Shaped Nanoparticles. , 2017, , 95-122. Highly luminescent S-doped carbon dots for the selective detection of ammonia. Carbon, 2017, 114, 544-556. Metal-free photocatalysts for various applications in energy conversion and environmental purification. Green Chemistry, 2017, 19, 882-899. Fluorescent carbon quantum dots chemosensor for selective turn-on sensing of Zn ²⁺ and turn-off sensing of Pb ²⁺ in aqueous medium and zebrafish eggs. New Journal of Chemistry, 2017, 41, 15157-15164. Highly Efficient Visible Blue-Emitting Black Phosphorus Quantum Dot: Mussel-Inspired Surface Functionalization for Bioapplications. ACS Omega, 2017, 2, 7096-7105. Characterization of Kraft Lignin Fractions Obtained by Sequential Ultrafiltration and Their Potential Application as a Biobased Component in Blends with Polyethylene. ACS Sustainable Chemistry and Engineering, 2017, 5, 11770-11779. Preparation of nitrogen-doped carbon dots with high quantum yield from Bombyx mori silk for Fe(<scp>) ions detection. RSC Advances, 2017, 7, 50584-50590. Efficiency enhancement of hybridized solar cells through co-sensitization and fast charge extraction by up-converted polyethylene glycol modified carbon quantum dots. Journal of Power Sources, 2017, 367, 158-166.</scp>	10.3 9.0 2.8 3.5 6.7 3.6 7.8	0 54 261 30 37 80 45 16

#	Article	IF	CITATIONS
545	Facile synthesis of multicolor photoluminescent polymer carbon dots with surface-state energy gap-controlled emission. Journal of Materials Chemistry C, 2017, 5, 10785-10793.	5.5	115
546	Effect of Surface Chemistry on the Fluorescence of Detonation Nanodiamonds. ACS Nano, 2017, 11, 10924-10934.	14.6	98
547	Poly(bromocresol green)/carbon quantum dots modified electrode for the simultaneous electrochemical determination of guanine and adenine. Journal of Electroanalytical Chemistry, 2017, 806, 158-165.	3.8	24
548	Preparation of Carbon Dots and Their Application in Food Analysis as Signal Probe. Chinese Journal of Analytical Chemistry, 2017, 45, 1571-1581.	1.7	37
549	Redox-active nanomaterials for nanomedicine applications. Nanoscale, 2017, 9, 15226-15251.	5.6	104
550	Multicolour nitrogen-doped carbon dots: tunable photoluminescence and sandwich fluorescent glass-based light-emitting diodes. Nanoscale, 2017, 9, 17849-17858.	5.6	132
551	Purification, Selection, and Partition Coefficient of Highly Oxidized Carbon Dots in Aqueous Two-Phase Systems Based on Polymer–Salt Pairs. Langmuir, 2017, 33, 12235-12243.	3.5	10
552	Nanoparticle-based optical sensor arrays. Nanoscale, 2017, 9, 16546-16563.	5.6	192
553	A Reloadable Selfâ€Healing Hydrogel Enabling Diffusive Transport of Câ€Dots Across Gel–Gel Interface for Scavenging Reactive Oxygen Species. Advanced Healthcare Materials, 2017, 6, 1700746.	7.6	35
554	A glassy carbon electrode modified with C-dots and silver nanoparticles for enzymatic electrochemiluminescent detection of glutamate enantiomers. Mikrochimica Acta, 2017, 184, 4679-4684.	5.0	17
555	Far-red fluorescent carbon nano-onions as a biocompatible platform for cellular imaging. RSC Advances, 2017, 7, 45676-45681.	3.6	50
556	Phenolic condensation and facilitation of fluorescent carbon dot formation: a mechanism study. Nanoscale, 2017, 9, 16596-16601.	5.6	32
557	Visible detection of copper ions using a fluorescent probe based on red carbon dots and zirconium metal–organic frameworks. Dalton Transactions, 2017, 46, 15080-15086.	3.3	29
558	Solid-State Fluorescence of Fluorine-Modified Carbon Nanodots Aggregates Triggered by Poly(ethylene glycol). ACS Applied Materials & Interfaces, 2017, 9, 37981-37990.	8.0	70
559	Tea-Carbon Dots-Reduced Graphene Oxide: An Efficient Conducting Coating Material for Fabrication of an E-Textile. ACS Sustainable Chemistry and Engineering, 2017, 5, 11645-11651.	6.7	35
560	Highly Efficient Red-Emitting Carbon Dots with Gram-Scale Yield for Bioimaging. Langmuir, 2017, 33, 12635-12642.	3.5	222
561	Interactions of Native Cyclodextrins with Metal Ions and Inorganic Nanoparticles: Fertile Landscape for Chemistry and Materials Science. Chemical Reviews, 2017, 117, 13461-13501.	47.7	238
562	Achieving high-efficiency emission depletion nanoscopy by employing cross relaxation in upconversion nanoparticles. Nature Communications, 2017, 8, 1058.	12.8	239

ARTICLE IF CITATIONS How to make nanobiosensors: surface modification and characterisation of nanomaterials for 563 3.6 103 biosensing applications. RSC Advances, 2017, 7, 49386-49403. Hydrothermal route to graphene quantum dots: Effects of precursor and temperature. Diamond and Related Materials, 2017, 79, 112-118. 564 58 Carbon-Dot-Decorated Layered Double Hydroxide Nanocomposites as a Multifunctional Environmental Material for Co-immobilization of SeO₄^{2â€"} and 565 6.7 49 Sr²⁺ from Aqueous Solutions. ACS Sustainable Chemistry and Engineering, 2017, 5, 9053-9064. Luminescent Carbon Dot Mimics Assembled on DNA. Journal of the American Chemical Society, 2017, 566 139, 13147-13155. Galliumâ€Induced Perturbation of Zinc Selenide Quantum Dots Electronics. ChemistrySelect, 2017, 2, 567 1.5 0 7054-7062. Bioactive carbon dots lights up microtubules and destabilises cell cytoskeletal framework – A robust 5.0 imaging agent with therapeutic activity. Colloids and Surfaces B: Biointerfaces, 2017, 159, 662-672. Flame deposition method for carbon nanoparticles employing green precursors and its composite 569 3.5 6 with Au nanoparticles for photocatalytic degradation of methylene blue. Vacuum, 2017, 146, 633-640. Construction of hierarchical porous carbon nanosheets from template-assisted assembly of coal-based graphene quantum dots for high performance supercapacitor electrodes. Materials Today Energy, 2017, 6, 36-45. 2D Arrangement of Polymer Microsphere Photonic Cavities Doped with Novel Nâ€Rich Carbon Ouantum 571 Dots Display Enhanced One†and Twoâ€Photon Luminescence Driven by Optical Resonances. Advanced 7.3 21 Optical Materials, 2017, 5, 1700695. Microwave-assisted Synthesis of Fluorescent Polymer Dots from Hyperbranched Polyethylenimine and 1.3 Glycerol. Chemistry Letters, 2017, 46, 1463-1465. Long-wavelength, multicolor, and white-light emitting carbon-based dots: Achievements made, 573 10.3 253 challenges remaining, and applications. Carbon, 2017, 124, 429-472. Optimization and Changes in the Mode of Proteolytic Turnover of Quantum Dot–Peptide Substrate Conjugates through Moderation of Interfacial Adsorption. ACS Applied Materials & amp; Interfaces, 574 8.0 2017, 9, 30359-30372. Preparation and optical properties of magnetic carbon/iron oxide hybrid dots. RSC Advances, 2017, 7, 575 3.6 17 41304-41310. LnIII-centered emission sensitized through fluorescent carbon dots. Journal of Luminescence, 2017, 576 3.1 Nitrogen doped carbon nanodots as fluorescent probes for selective detection and quantification of 577 12 3.6 Ferric(III) ions. Optical Materials, 2017, 73, 77-82. Facile and Ultrafast Green Approach to Synthesize Biobased Luminescent Reduced Carbon Nanodot: An 33 Efficient Photocatalyst. ACS Sustainable Chemistry and Engineering, 2017, 5, 9454-9466. Direct one pot synthesis of blue luminescent polymeric carbon dots gel and their application for 579 1.7 12 selective detection of Ag⁺ ions. Soft Materials, 2017, 15, 331-340. Introduction of Nanomaterials for Photocatalysis. Springer Series on Polymer and Composite Materials, 2017, , 1-17.

#	Article	IF	CITATIONS
581	Carbon-Based Nanocomposites for Visible Light-Induced Photocatalysis. Springer Series on Polymer and Composite Materials, 2017, , 203-249.	0.7	12
582	Synthesis, Assembly, and Applications of Hybrid Nanostructures for Biosensing. Chemical Reviews, 2017, 117, 12942-13038.	47.7	258
583	Preparation of Bi ₂ S ₃ /carbon quantum dot hybrid materials with enhanced photocatalytic properties under ultraviolet-, visible- and near infrared-irradiation. Nanoscale, 2017, 9, 15873-15882.	5.6	39
584	Aconitic acid derived carbon dots as recyclable "on–off–on―fluorescent nanoprobes for sensitive detection of mercury(<scp>ii</scp>) ions, cysteine and cellular imaging. RSC Advances, 2017, 7, 44178-44185.	3.6	32
585	Fluorescent carbon nanodots facilely extracted from Coca Cola for temperature sensing. Methods and Applications in Fluorescence, 2017, 5, 044002.	2.3	2
586	Ultrahigh-yield synthesis of N-doped carbon nanodots that down-regulate ROS in zebrafish. Journal of Materials Chemistry B, 2017, 5, 7848-7860.	5.8	31
587	A study on the electrochemical performance of nitrogen and oxygen co-doped carbon dots derived from a green precursor for supercapacitor applications. Journal of Materials Science: Materials in Electronics, 2017, 28, 18489-18496.	2.2	6
588	One-Step Synthesis of Acidophilic Highly-Photoluminescent Carbon Dots Modified by Ionic Liquid from Polyethylene Glycol. ACS Omega, 2017, 2, 5251-5259.	3.5	24
589	Understanding the Capsanthin Tails in Regulating the Hydrophilic–Lipophilic Balance of Carbon Dots for a Rapid Crossing Cell Membrane. Langmuir, 2017, 33, 10259-10270.	3.5	27
590	Dual photoluminescence centers from inorganic-salt-functionalized carbon dots for ratiometric pH sensing. Journal of Materials Chemistry C, 2017, 5, 9849-9853.	5.5	46
591	A fluorescence-electrochemical study of carbon nanodots (CNDs) in bio- and photoelectronic applications and energy gap investigation. Physical Chemistry Chemical Physics, 2017, 19, 20101-20109.	2.8	53
592	A carbon quantum dot-encapsulated micellar reactor for the synthesis of chromene derivatives in water. Molecular Catalysis, 2017, 439, 100-107.	2.0	15
593	Carbon Nanodotâ€5ensitized Modulation of Alzheimer's βâ€Amyloid Selfâ€Assembly, Disassembly, and Toxicity. Small, 2017, 13, 1700983.	10.0	66
594	Cationic Carbon Dots for Modification-Free Detection of Hyaluronidase via an Electrostatic-Controlled Ratiometric Fluorescence Assay. Analytical Chemistry, 2017, 89, 8384-8390.	6.5	106
595	Application of semiconductor quantum dots in bioimaging and biosensing. Journal of Materials Chemistry B, 2017, 5, 6701-6727.	5.8	265
596	Photodynamic Therapy of Oligoethylene Glycolâ€Dendronized Reductionâ€Sensitive Porphyrins. Chinese Journal of Chemistry, 2017, 35, 1445-1451.	4.9	1
597	Carbon Dot Based, Naphthalimide Coupled FRET Pair for Highly Selective Ratiometric Detection of Thioredoxin Reductase and Cancer Screening. ACS Applied Materials & Interfaces, 2017, 9, 25847-25856.	8.0	64
598	Porphyrin Antennas on Carbon Nanodots: Excited State Energy and Electron Transduction. Angewandte Chemie - International Edition, 2017, 56, 12097-12101.	13.8	58

ARTICLE IF CITATIONS Recent Progress in the Preparation, Assembly, Transformation, and Applications of Layerâ€5tructured 599 21.0 65 Nanodisks beyond Graphene. Advanced Materials, 2017, 29, 1701704. Carbonâ€Dot/Naturalâ€Dye Sensitizer for TiO₂ Solar Cells Prepared by a Oneâ€Step Treatment of Celery Leaf Extract. ChemPhotoChem, 2017, 1, 470-478. Capillary electrophoresis and nanomaterials – Part I: Capillary electrophoresis of nanomaterials. 601 2.4 27 Electrophoresis, 2017, 38, 2389-2404. Determination of vitamin B12 via pH-dependent quenching of the fluorescence of nitrogen doped 5.0 carbon quantum dots. Mikrochimica Acta, 2017, 184, 3883-3891. Effect of Nitrogen Doping Level on the Performance of Nâ€Doped Carbon Quantum Dot/TiO₂ 603 6.8 171 Composites for Photocatalytic Hydrogen Evolution. ChemSusChem, 2017, 10, 4650-4656. Microwave assisted synthesis of luminescent carbonaceous nanoparticles from silk fibroin for bioimaging. Materials Science and Engineering C, 2017, 80, 616-623. 604 7.3 Fullâ€Color Inorganic Carbon Dot Phosphors for Whiteâ€Lightâ€Emitting Diodes. Advanced Optical 605 7.3 360 Materials, 2017, 5, 1700416. Nitrogen-doped carbon quantum dots as fluorescent probe for "off-on―detection of mercury ions, 9.4 118 l-cysteine and iodide ions. Journal of Colloid and Interface Science, 2017, 506, 373-378. Nanoparticle-Based Immunochemical Biosensors and Assays: Recent Advances and Challenges. 607 47.7 518 Chemical Reviews, 2017, 117, 9973-10042. Simple Microwave-Assisted Synthesis of Amphiphilic Carbon Quantum Dots from 608 A₃/B₂ Polyamidation Monomer Set. ACS Applied Materials & amp; Interfaces, 8.0 2017, 9, 27883-27893. Nitric Oxide Sensing through Azo-Dye Formation on Carbon Dots. ACS Sensors, 2017, 2, 1215-1224. 609 7.8 63 Different natures of surface electronic transitions of carbon nanoparticles. Physical Chemistry 2.8 Chemical Physics, 2017, 19, 22670-22677. Porphyrin Antennas on Carbon Nanodots: Excited State Energy and Electron Transduction. 611 2.0 16 Angewandte Chemie, 2017, 129, 12265-12269. Carbon nano-dots as a fluorescent and colorimetric dual-readout probe for the detection of arginine 5.6 94 and Cu²⁺and its logic gate operation. Nanoscale, 2017, 9, 11545-11552. Electrochemical Study of DPPH Radical Scavenging for Evaluating the Antioxidant Capacity of Carbon Nanodots. Journal of Physical Chemistry C, 2017, 121, 18635-18642. 613 3.156 Synthesis of C₇₀â€Based Fluorophores through Sequential Functionalization to Form 614 Isomerically Pure Multiadducts. Angewandte Chemie, 2017, 129, 2443-2447. 2D–Materialsâ€Based Quantum Dots: Gateway Towards Nextâ€Generation Optical Devices. Advanced 615 7.3 64 Optical Materials, 2017, 5, 1700257. Synthesis of lanthanum doped carbon dots for detection of mercury ion, multi-color imaging of cells and tissue, and bacteriostasis. Chemical Engineering Journal, 2017, 330, 1137-1147.

# 617	ARTICLE Presence of Fluorescent Carbon Nanoparticles in Baked Lamb: Their Properties and Potential Application for Sensors. Journal of Agricultural and Food Chemistry, 2017, 65, 7553-7559.	IF 5.2	Citations	
618	Colloidal Quantum Dots for Solar Technologies. CheM, 2017, 3, 229-258.	11.7	107	
619	Excitation-Independent Dual-Color Carbon Dots: Surface-State Controlling and Solid-State Lighting. ACS Photonics, 2017, 4, 2352-2358.	6.6	91	
620	Carbon Dots for Bioimaging and Biosensing Applications. Springer Series on Chemical Sensors and Biosensors, 2017, , 201-231.	0.5	4	
621	A glutamic acid-modified cellulose fibrous composite used for the adsorption of heavy metal ions from single and binary solutions. Materials Chemistry Frontiers, 2017, 1, 2317-2323.	5.9	16	
622	Environmentally friendly nitrogen-doped carbon quantum dots for next generation solar cells. Sustainable Energy and Fuels, 2017, 1, 1611-1619.	4.9	81	
623	Boronic acid functionalized nitrogen doped carbon dots for fluorescent turn-on detection of dopamine. Mikrochimica Acta, 2017, 184, 4081-4090.	5.0	54	
624	Scalable synthesis of organic-soluble carbon quantum dots: superior optical properties in solvents, solids, and LEDs. Nanoscale, 2017, 9, 13195-13202.	5.6	117	
625	Ratiometric fluorescent detection of acidic pH in lysosome with carbon nanodots. Chinese Chemical Letters, 2017, 28, 1969-1974.	9.0	37	
626	Ellagic acid-functionalized fluorescent carbon dots for ultrasensitive and selective detection of mercuric ions via quenching. Journal of Luminescence, 2017, 192, 761-766.	3.1	18	
627	N-Doped carbon dots: green and efficient synthesis on a large-scale and their application in fluorescent pH sensing. New Journal of Chemistry, 2017, 41, 10607-10612.	2.8	63	
628	Carbon-encapsulated cobalt nanoparticles: synthesis, properties, and magnetic particle hyperthermia efficiency. Journal of Nanoparticle Research, 2017, 19, 1.	1.9	18	
629	Green preparation of nitrogen doped carbon quantum dot films as fluorescent probes. RSC Advances, 2017, 7, 56087-56092.	3.6	3	
630	Multifunctional, pH-responsive graft copolymer prepared from deproteinized natural rubber and 4-vinylpyridine via emulsion polymerization. Polymer International, 2017, 66, 1864-1872.	3.1	0	
631	Photo-Assisted Synthesis of a Pd–Ag@CQD Nanohybrid and Its Catalytic Efficiency in Promoting the Suzuki–Miyaura Cross-Coupling Reaction under Ligand-Free and Ambient Conditions. ACS Omega, 2017, 2, 8868-8876.	3.5	41	
632	Carbon Dot Assemblies for Enhanced Cellular Uptake and Photothermal Therapy In Vitro. ChemistrySelect, 2017, 2, 10860-10864.	1.5	11	
633	Tracking the Source of Carbon Dot Photoluminescence: Aromatic Domains versus Molecular Fluorophores. Nano Letters, 2017, 17, 7710-7716.	9.1	236	
634	Characteristic Excitation Wavelength Dependence of Fluorescence Emissions in Carbon "Quantum― Dots. Journal of Physical Chemistry C, 2017, 121, 28180-28186.	3.1	93	
		CITATION REPORT		
-----	---	-----------------	------	-----------
#	Article		IF	CITATIONS
635	Bio-conjugation of graphene quantum dots for targeting imaging. RSC Advances, 2017, 7, 535	32-53536.	3.6	16
636	Fabrication of carbon quantum dots with nano-defined position and pattern in one step <i>via sugar-electron-beam writing. Nanoscale, 2017, 9, 19263-19270.</i>		5.6	6
637	Quantification of Humic Substances in Natural Water Using Nitrogen-Doped Carbon Dots. Environmental Science & Technology, 2017, 51, 14092-14099.		10.0	35
638	Carbon Quantum Dots Grafted Antifouling Membranes for Osmotic Power Generation via Pressure-Retarded Osmosis Process. Environmental Science & Technology, 2017, 51, 140	16-14023.	10.0	61
639	Effect of nitrogen atomÂpositioning on the trade-off between emissive and photocatalytic pro of carbon dots. Nature Communications, 2017, 8, 1401.	perties	12.8	208
640	Pulse laser-induced fragmentation of carbon quantum dots: a structural analysis. Nanoscale, 20 18359-18367.	017, 9,	5.6	8
641	Large Emission Red-Shift of Carbon Dots by Fluorine Doping and Their Applications for Red Cell Imaging and Sensitive Intracellular Ag ⁺ Detection. Journal of Physical Chemistry C 121, 26558-26565.	, 2017,	3.1	125
642	A facile and universal strategy for preparation of long wavelength emission carbon dots. Daltor Transactions, 2017, 46, 16905-16910.	n	3.3	20
643	Ruthenium complex-modified carbon nanodots for lysosome-targeted one- and two-photon im and photodynamic therapy. Nanoscale, 2017, 9, 18966-18976.	aging	5.6	56
644	BiOBr/BiOCl/carbon quantum dot microspheres with superior visible light-driven photocatalysis Advances, 2017, 7, 52614-52620.	. RSC	3.6	33
645	An environmentally friendly Z-scheme WO3/CDots/CdS heterostructure with remarkable photocatalytic activity and anti-photocorrosion performance. Journal of Catalysis, 2017, 356, 1	13.	6.2	99
646	Chemiluminescence detection of trace iodide with flow injection analysis of KMnO ₄ â€carbon dots system. Luminescence, 2017, 32, 1192-1196.		2.9	13
647	Versatile Cutting Method for Producing Fluorescent Ultrasmall MXene Sheets. ACS Nano, 2017 11559-11565.	7,11,	14.6	136
648	Enhancing Electron and Hole Extractions for Efficient PbS Quantum Dot Solar Cells. Solar Rrl, 2 1, 1700176.	017,	5.8	12
649	Advances, challenges and promises of carbon dots. Inorganic Chemistry Frontiers, 2017, 4, 196	53-1986.	6.0	127
650	Fluorescent carbon nanoparticles obtained from charcoal via green methods and their applicat for sensing Fe ³⁺ in an aqueous medium. Luminescence, 2017, 32, 1466-1472.	on	2.9	12
651	High-efficient one-pot synthesis of carbon quantum dots decorating Bi2MoO6 nanosheets heterostructure with enhanced visible-light photocatalytic properties. Journal of Alloys and Compounds, 2017, 723, 333-344.		5.5	68
652	Carbon dots and fluorescein: The ideal FRET pair for the fabrication of a precise and fully revers ammonia sensor. Sensors and Actuators B: Chemical, 2017, 253, 714-722.	ible	7.8	22

#	Article	IF	CITATIONS
653	Heterogeneous Fenton-like degradation of ofloxacin over a wide pH range of 3.6–10.0 over modified mesoporous iron oxide. Chemical Engineering Journal, 2017, 328, 397-405.	12.7	64
654	Multifunctional nitrogen-doped carbon dots from maleic anhydride and tetraethylenepentamine via pyrolysis for sensing, adsorbance, and imaging applications. Sensors and Actuators B: Chemical, 2017, 253, 1026-1033.	7.8	39
655	Carbon Dots as Nanodispersants for Multiwalled Carbon Nanotubes: Reduced Cytotoxicity and Metal Nanoparticle Functionalization. Langmuir, 2017, 33, 7622-7632.	3.5	20
656	Trackable Mitochondria-Targeting Nanomicellar Loaded with Doxorubicin for Overcoming Drug Resistance. ACS Applied Materials & Interfaces, 2017, 9, 25152-25163.	8.0	87
657	Nitrogen doped carbon quantum dots as a green luminescent sensitizer to functionalize ZnO nanoparticles for enhanced photovoltaic conversion devices. Materials Research Bulletin, 2017, 94, 399-407.	5.2	39
658	Super-Cationic Carbon Quantum Dots Synthesized from Spermidine as an Eye Drop Formulation for Topical Treatment of Bacterial Keratitis. ACS Nano, 2017, 11, 6703-6716.	14.6	325
659	Photoinduced interaction of arylamine dye with carbon quantum dots ensued from Centella asiatica. Journal of Luminescence, 2017, 192, 321-327.	3.1	15
660	Fluorescent carbon dots with highly negative charges as a sensitive probe for real-time monitoring of bacterial viability. Journal of Materials Chemistry B, 2017, 5, 6008-6015.	5.8	56
661	Modified facile synthesis for quantitatively fluorescent carbon dots. Carbon, 2017, 122, 389-394.	10.3	63
662	Oxygen-rich carbon-nitrogen quantum dots as cocatalysts for enhanced photocatalytic H 2 production activity of TiO 2 nanofibers. Progress in Natural Science: Materials International, 2017, 27, 333-337.	4.4	17
663	Zinc-Reduced CQDs with Highly Improved Stability, Enhanced Fluorescence, and Refined Solid-State Applications. Chemistry of Materials, 2017, 29, 5957-5964.	6.7	33
664	Carbon dots as photosensitisers for solar-driven catalysis. Chemical Society Reviews, 2017, 46, 6111-6123.	38.1	436
665	Host–guest carbon dots as high-performance fluorescence probes. Journal of Materials Chemistry C, 2017, 5, 6328-6335.	5.5	28
666	High luminescent carbon dots as an eco-friendly fluorescence sensor for Cr(VI) determination in water and soil samples. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 346, 502-511.	3.9	71
667	Carbon quantum dots decorated MoSe2 photocatalyst for Cr(VI) reduction in the UV–vis-NIR photon energy range. Journal of Colloid and Interface Science, 2017, 488, 190-195.	9.4	67
668	Improved Solar-Driven Photocatalytic Activity of Hybrid Graphene Quantum Dots/ZnO Nanowires: A Direct <i>Z</i> -Scheme Mechanism. ACS Sustainable Chemistry and Engineering, 2017, 5, 367-375.	6.7	109
669	Fast electron transfer and enhanced visible light photocatalytic activity using multi-dimensional components of carbon quantum dots@3D daisy-like In2S3/single-wall carbon nanotubes. Applied Catalysis B: Environmental, 2017, 204, 224-238.	20.2	137
670	Recent Progress on Visible Light Responsive Heterojunctions for Photocatalytic Applications. Journal of Materials Science and Technology, 2017, 33, 1-22,	10.7	176

#	Article	IF	CITATIONS
671	One pot synthesis of gold – carbon dots nanocomposite and its application for cytosensing of metals for cancer cells. Talanta, 2017, 166, 357-363.	5.5	65
672	Amplified fluorescent sensing of DNA using luminescent carbon dots and AuNPs/GO as a sensing platform: A novel coupling of FRET and DNA hybridization for homogeneous HIV-1 gene detection at femtomolar level. Biosensors and Bioelectronics, 2017, 89, 773-780.	10.1	120
673	Construction of up-converting fluorescent carbon quantum dots/Bi20TiO32 composites with enhanced photocatalytic properties under visible light. Chemical Engineering Journal, 2017, 310, 79-90.	12.7	45
674	Simulated solar driven catalytic degradation of psychiatric drug carbamazepine with binary BiVO4 heterostructures sensitized by graphene quantum dots. Applied Catalysis B: Environmental, 2017, 205, 587-596.	20.2	87
675	A fluorescent carbon-dots-based mitochondria-targetable nanoprobe for peroxynitrite sensing in living cells. Biosensors and Bioelectronics, 2017, 90, 501-507.	10.1	119
676	Prolonged fluorescence lifetime of carbon quantum dots by combining with hydroxyapatite nanorods for bio-applications. Nanoscale, 2017, 9, 2162-2171.	5.6	37
677	Nearâ€Infrared Fluorescent Nanomaterials for Bioimaging and Sensing. Advanced Optical Materials, 2017, 5, 1600446.	7.3	128
678	Nanomaterialsâ€based biosensors for detection of microorganisms and microbial toxins. Biotechnology Journal, 2017, 12, .	3.5	46
679	Layer-by-layer self-assembly for carbon dots/chitosan-based multilayer: Morphology, thickness and molecular interactions. Materials Chemistry and Physics, 2017, 186, 81-89.	4.0	28
680	Functional carbon nanodots for multiscale imaging and therapy. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2017, 9, e1436.	6.1	48
681	Carbon quantum dot-gold nanocluster nanosatellite for ratiometric fluorescence probe and imaging for hydrogen peroxide in living cells. Sensors and Actuators B: Chemical, 2017, 241, 821-827.	7.8	90
682	Rapid detection of Cr(VI) ions based on cobalt(II)-doped carbon dots. Biosensors and Bioelectronics, 2017, 87, 46-52.	10.1	222
683	Largeâ€Area Carbon Nanosheets Doped with Phosphorus: A Highâ€Performance Anode Material for Sodiumâ€lon Batteries. Advanced Science, 2017, 4, 1600243.	11.2	450
684	Nitrogen and phosphorus co-doped graphene quantum dots as a nano-sensor for highly sensitive and selective imaging detection of nitrite in live cell. Sensors and Actuators B: Chemical, 2017, 240, 604-612.	7.8	82
685	Highly dispersed TiO2 nanocrystals and carbon dots on reduced graphene oxide: Ternary nanocomposites for accelerated photocatalytic water disinfection. Applied Catalysis B: Environmental, 2017, 202, 33-41.	20.2	155
686	A colorimetric and fluorometric dual-signal sensor for arginine detection by inhibiting the growth of gold nanoparticles/carbon quantum dots composite. Biosensors and Bioelectronics, 2017, 87, 772-778.	10.1	101
687	One-pot synthesis of boron and nitrogen co-doped carbon dots as the fluorescence probe for dopamine based on the redox reaction between Cr(VI) and dopamine. Sensors and Actuators B: Chemical, 2017, 240, 1265-1271.	7.8	128
688	Brightly near-infrared to blue emission tunable silver-carbon dot nanohybrid for sensing of ascorbic acid and construction of logic gate. Talanta, 2017, 162, 135-142.	5.5	44

#	Article	IF	CITATIONS
689	Ratiometric, visual, dual-signal fluorescent sensing and imaging of pH/copper ions in real samples based on carbon dots-fluorescein isothiocyanate composites. Talanta, 2017, 162, 65-71.	5.5	81
691	Controlling speciation of nitrogen in nitrogen-doped carbon dots by ferric ion catalysis for enhancing fluorescence. Carbon, 2017, 111, 133-141.	10.3	98
692	Fluorescence sensor array based on amino acid derived carbon dots for pattern-based detection of toxic metal ions. Sensors and Actuators B: Chemical, 2017, 241, 1324-1330.	7.8	139
693	Comparison of modification strategies towards enhanced charge carrier separation and photocatalytic degradation activity of metal oxide semiconductors (TiO 2 , WO 3 and ZnO). Applied Surface Science, 2017, 391, 124-148.	6.1	615
694	Detection of Reactive Oxygen Species by a Carbon-Dot–Ascorbic Acid Hydrogel. Analytical Chemistry, 2017, 89, 830-836.	6.5	60
695	Polymer carbon dots—a highlight reviewing their unique structure, bright emission and probable photoluminescence mechanism. Journal of Polymer Science Part A, 2017, 55, 610-615.	2.3	82
696	Electrodeposition of ZnO nanoflake-based photoanode sensitized by carbon quantum dots for photoelectrochemical water oxidation. Ceramics International, 2017, 43, 5329-5333.	4.8	38
697	One pot synthesis of highly fluorescent N doped C-dots and used as fluorescent probe detection for Hg2+ and Ag+ in aqueous solution. Sensors and Actuators B: Chemical, 2017, 243, 244-253.	7.8	97
698	Fluorescent carbon dots for glyphosate determination based on fluorescence resonance energy transfer and logic gate operation. Sensors and Actuators B: Chemical, 2017, 242, 545-553.	7.8	109
699	Facile one-step synthesis of cerium oxide-carbon quantum dots/RGO nanohybrid catalyst and its enhanced photocatalytic activity. Ceramics International, 2017, 43, 3072-3079.	4.8	33
700	Activatable fluorescence: From small molecule to nanoparticle. Advanced Drug Delivery Reviews, 2017, 113, 97-121.	13.7	75
701	Advances on synthesis of highly luminescent carbon quantum dots by citric acid carbonization. , 2017, , .		1
702	Metal free and efficient photoelectrocatalytic removal of organic contaminants over g-C ₃ N ₄ nanosheet films decorated with carbon quantum dots. RSC Advances, 2017, 7, 56335-56343.	3.6	38
703	Synthesis of hydrophilic and hydrophobic carbon quantum dots from waste of wine fermentation. Royal Society Open Science, 2017, 4, 170900.	2.4	42
704	Synergistic Enhancement of Electron-Accepting and -Donating Ability of Nonconjugated Polymer Nanodot in Micellar Environment. Langmuir, 2017, 33, 14718-14727.	3.5	7
705	Hydrothermal Transformations of Ascorbic Acid. Russian Journal of General Chemistry, 2017, 87, 2858-2864.	0.8	8
706	Facile synthesis of N-rich carbon quantum dots from porphyrins as efficient probes for bioimaging and biosensing in living cells. International Journal of Nanomedicine, 2017, Volume 12, 7375-7391.	6.7	137
707	Fluorescent carbon dots from mono- and polysaccharides: synthesis, properties and applications. Beilstein Journal of Organic Chemistry, 2017, 13, 675-693.	2.2	88

#	Article	IF	CITATIONS
708	Microwave-Assisted Polyol Synthesis of Water Dispersible Red-Emitting Eu3+-Modified Carbon Dots. Materials, 2017, 10, 25.	2.9	22
709	Multicolour Emission States from Charge Transfer between Carbon Dots and Surface Molecules. Materials, 2017, 10, 165.	2.9	20
710	Improving the Power Conversion Efficiency of Carbon Quantum Dot-Sensitized Solar Cells by Growing the Dots on a TiO2 Photoanode In Situ. Nanomaterials, 2017, 7, 130.	4.1	31
711	Synergetic Effects of Combined Nanomaterials for Biosensing Applications. Sensors, 2017, 17, 1010.	3.8	47
712	Water Soluble Fluorescent Carbon Nanodots from Biosource for Cells Imaging. Journal of Nanomaterials, 2017, 2017, 1-10.	2.7	53
713	3.29 Nanomaterials for Biological Sensing. , 2017, , 635-656.		2
714	Bright fluorescent silica-nanoparticle probes for high-resolution STED and confocal microscopy. Beilstein Journal of Nanotechnology, 2017, 8, 1283-1296.	2.8	24
715	Antibacterial effects of carbon dots in combination with other antimicrobial reagents. PLoS ONE, 2017, 12, e0185324.	2.5	75
716	Customizing the Electrochemical Properties of Carbon Nanodots by Using Quinones in Bottomâ€Up Synthesis. Angewandte Chemie, 2018, 130, 5156-5161.	2.0	23
717	Induction of long-lived room temperature phosphorescence of carbon dots by water in hydrogen-bonded matrices. Nature Communications, 2018, 9, 734.	12.8	314
718	Customizing the Electrochemical Properties of Carbon Nanodots by Using Quinones in Bottomâ€Up Synthesis. Angewandte Chemie - International Edition, 2018, 57, 5062-5067.	13.8	66
719	Surface passivation with nitrogen-doped carbon dots for improved perovskite solar cell performance. Journal of Materials Science, 2018, 53, 9180-9190.	3.7	42
720	Dual-cocatalysts decorated rimous CdS spheres advancing highly-efficient visible-light photocatalytic hydrogen production. Applied Catalysis B: Environmental, 2018, 231, 101-107.	20.2	366
721	Photoluminescent C-dots: An overview on the recent development in the synthesis, physiochemical properties and potential applications. Journal of Alloys and Compounds, 2018, 748, 818-853.	5.5	77
722	Green and Cost Effective Synthesis of Fluorescent Carbon Quantum Dots for Dopamine Detection. Journal of Fluorescence, 2018, 28, 573-579.	2.5	54
723	White-emitting carbon dots with long alkyl-chain structure: Effective inhibition of aggregation caused quenching effect for label-free imaging of latent fingerprint. Carbon, 2018, 128, 12-20.	10.3	109
724	Spectroscopic studies on in vitro molecular interaction of highly fluorescent carbon dots with different serum albumins. Journal of Molecular Liquids, 2018, 255, 279-287.	4.9	24
725	Autofluorescence-Free Live-Cell Imaging Using Terbium Nanoparticles. Bioconjugate Chemistry, 2018, 29, 1327-1334.	3.6	21

#	Article	IF	CITATIONS
726	Converting Waste Papers to Fluorescent Carbon Dots in the Recycling Process without Loss of Ionic Liquids and Bioimaging Applications. ACS Sustainable Chemistry and Engineering, 2018, 6, 4510-4515.	6.7	75
727	Sensitive immunoassay of von Willebrand factor based on fluorescence resonance energy transfer between graphene quantum dots and Ag@Au nanoparticles. Colloids and Surfaces B: Biointerfaces, 2018, 165, 286-292.	5.0	17
728	β-C ₃ N ₄ Nanocrystals: Carbon Dots with Extraordinary Morphological, Structural, and Optical Homogeneity. Chemistry of Materials, 2018, 30, 1695-1700.	6.7	76
729	White Light-Emitting Multistimuli-Responsive Hydrogels with Lanthanides and Carbon Dots. ACS Applied Materials & Interfaces, 2018, 10, 10409-10418.	8.0	133
730	Microwave-assisted synthesis of water-soluble Eu ³⁺ hybrid carbon dots with enhanced fluorescence for the sensing of Hg ²⁺ ions and imaging of fungal cells. New Journal of Chemistry, 2018, 42, 6125-6133.	2.8	51
731	A novel bio-nano emulsion fuel based on biodegradable nanoparticles to improve diesel engines performance and reduce exhaust emissions. Renewable Energy, 2018, 125, 64-72.	8.9	82
732	Highly selective detection of p-nitrophenol using fluorescence assay based on boron, nitrogen co-doped carbon dots. Talanta, 2018, 184, 184-192.	5.5	109
733	Photophysics and Chemistry of Nitrogen-Doped Carbon Nanodots with High Photoluminescence Quantum Yield. Journal of Physical Chemistry C, 2018, 122, 10217-10230.	3.1	27
734	Biocompatible fluorescent carbon quantum dots prepared from beetroot extract for <i>in vivo</i> live imaging in <i>C. elegans</i> and BALB/c mice. Journal of Materials Chemistry B, 2018, 6, 3366-3371.	5.8	86
735	Design of Fe3O4@SiO2@mSiO2-organosilane carbon dots nanoparticles: Synthesis and fluorescence red-shift properties with concentration dependence. Materials and Design, 2018, 151, 89-101.	7.0	17
736	Microwave-assisted solid-phase synthesis of highly fluorescent carbon nanoparticles and its application in intracellular pH sensing. Talanta, 2018, 186, 80-87.	5.5	7
737	A photoelectrochemical aptasensor for thrombin based on the use of carbon quantum dot-sensitized TiO2 and visible-light photoelectrochemical activity. Mikrochimica Acta, 2018, 185, 263.	5.0	37
738	Green synthesis of red-emission carbon based dots by microbial fermentation. New Journal of Chemistry, 2018, 42, 8591-8595.	2.8	8
739	Achieving deep-red-to-near-infrared emissions in Sn-doped Cu–In–S/ZnS quantum dots for red-enhanced white LEDs and near-infrared LEDs. Nanoscale, 2018, 10, 9788-9795.	5.6	23
740	Facile synthesis of stable colloidal suspension of amorphous carbon nanoparticles in aqueous medium and their characterization. Journal of Physics and Chemistry of Solids, 2018, 120, 96-103.	4.0	5
741	Dissolution of Complex Metal Oxides from First-Principles and Thermodynamics: Cation Removal from the (001) Surface of Li(Ni _{1/3} Mn _{1/3} Co _{1/3})O ₂ . Environmental Science & Technology, 2018, 52, 5792-5802.	10.0	57
742	Poly(3,4-ethylenedioxythiophene) doped with engineered carbon quantum dots for enhanced amperometric detection of nitrite. Mikrochimica Acta, 2018, 185, 249.	5.0	32
743	Strategies of molecular imprinting-based fluorescence sensors for chemical and biological analysis. Biosensors and Bioelectronics, 2018, 112, 54-71.	10.1	288

#	Article	IF	Citations
744	Carbon-based hybrid nanogels: a synergistic nanoplatform for combined biosensing, bioimaging, and responsive drug delivery. Chemical Society Reviews, 2018, 47, 4198-4232.	38.1	201
745	Carbon dots derived from tobacco for visually distinguishing and detecting three kinds of tetracyclines. Nanoscale, 2018, 10, 8139-8145.	5.6	109
746	Semi-quantitative and visual assay of copper ions by fluorescent test paper constructed with dual-emission carbon dots. RSC Advances, 2018, 8, 12708-12713.	3.6	17
747	Green route for synthesis of multifunctional fluorescent carbon dots from Tulsi leaves and its application as Cr(VI) sensors, bio-imaging and patterning agents. Colloids and Surfaces B: Biointerfaces, 2018, 167, 126-133.	5.0	147
748	Metal Charge Transfer Doped Carbon Dots with Reversibly Switchable, Ultra-High Quantum Yield Photoluminescence. ACS Applied Nano Materials, 2018, 1, 1886-1893.	5.0	64
749	A novel strategy of transition-metal doping to engineer absorption of carbon dots for near-infrared photothermal/photodynamic therapies. Carbon, 2018, 134, 519-530.	10.3	119
751	Photoluminescence of carbon quantum dots: coarsely adjusted by quantum confinement effects and finely by surface trap states. Science China Chemistry, 2018, 61, 490-496.	8.2	72
752	Facile synthesis of the nitrogen-doped graphene quantum dots at low temperature for cellular labeling. Materials Research Bulletin, 2018, 104, 83-86.	5.2	8
753	Loading sulfur and nitrogen co-doped carbon dots onto g-C ₃ N ₄ nanosheets for an efficient photocatalytic reduction of 4-nitrophenol. Dalton Transactions, 2018, 47, 6435-6443.	3.3	22
754	Magnetic Mesoporous Silica Gated with Doped Carbon Dot for Site-Specific Drug Delivery, Fluorescence, and MR Imaging. Langmuir, 2018, 34, 5253-5262.	3.5	39
755	Biodistribution studies of ultrasmall silicon nanoparticles and carbon dots in experimental rats and tumor mice. Nanoscale, 2018, 10, 9880-9891.	5.6	68
756	Time-resolved spectroscopy of the ensembled photoluminescence of nitrogen- and boron/nitrogen-doped carbon dots. Physical Chemistry Chemical Physics, 2018, 20, 11673-11681.	2.8	27
757	S- and N-doped carbon quantum dots: Surface chemistry dependent antibacterial activity. Carbon, 2018, 135, 104-111.	10.3	244
758	A Novel Lubricant Based on Covalent Functionalized Graphene Oxide Quantum Dots. Scientific Reports, 2018, 8, 5843.	3.3	34
759	A green synthesis of highly luminescent carbon dots from itaconic acid and their application as an efficient sensor for Fe ³⁺ ions in aqueous medium. New Journal of Chemistry, 2018, 42, 8933-8942.	2.8	41
760	Synthesis of mesoporous recycled poly(ethylene terephthalate)/MWNT/carbon quantum dot nanocomposite from sustainable materials using ultrasonic waves: Application for methylene blue removal. Journal of Cleaner Production, 2018, 190, 525-537.	9.3	67
761	Lysozyme aptasensor based on a glassy carbon electrode modified with a nanocomposite consisting of multi-walled carbon nanotubes, poly(diallyl dimethyl ammonium chloride) and carbon quantum dots. Mikrochimica Acta, 2018, 185, 180.	5.0	29
762	Mn(II)-coordinated Fluorescent Carbon Dots: Preparation and Discrimination of Organic Solvents. Optical Materials, 2018, 78, 118-125.	3.6	20

#	Article	IF	CITATIONS
763	Facile green synthesis of fluorescent N-doped carbon dots from Actinidia deliciosa and their catalytic activity and cytotoxicity applications. Optical Materials, 2018, 78, 181-190.	3.6	98
764	Three-dimensional graphene sheets with NiO nanobelt outgrowths for enhanced capacity and long term high rate cycling Li-ion battery anode material. Journal of Power Sources, 2018, 379, 362-370.	7.8	53
765	Nitrogen and phosphorus dual-doped carbon dots as a label-free sensor for Curcumin determination in real sample and cellular imaging. Talanta, 2018, 183, 61-69.	5.5	77
766	Size- and composition-dependent photocatalytic hydrogen production over colloidal Cd1-xZnxSe nanocrystals. International Journal of Hydrogen Energy, 2018, 43, 13911-13920.	7.1	9
767	Structure of Z-scheme CdS/CQDs/BiOCl heterojunction with enhanced photocatalytic activity for environmental pollutant elimination. Applied Surface Science, 2018, 444, 177-186.	6.1	113
768	Novel thin film composite hollow fiber membranes incorporated with carbon quantum dots for osmotic power generation. Journal of Membrane Science, 2018, 551, 94-102.	8.2	61
769	A new multicomponent CDs/Ag@Mg–Al–Ce-LDH nanocatalyst for highly efficient degradation of organic water pollutants. Journal of Materials Chemistry A, 2018, 6, 4515-4524.	10.3	75
770	Concentration effect on optical properties of carbon dots at room temperature. Journal of Luminescence, 2018, 198, 215-219.	3.1	41
771	Carbon dot powders for photocatalytic reduction of quinones. Materials Letters, 2018, 218, 221-224.	2.6	10
772	Aconitic acid derived carbon dots: Conjugated interaction for the detection of folic acid and fluorescence targeted imaging of folate receptor overexpressed cancer cells. Sensors and Actuators B: Chemical, 2018, 262, 444-451.	7.8	49
773	Nearâ€Infrared Excitation/Emission and Multiphotonâ€Induced Fluorescence of Carbon Dots. Advanced Materials, 2018, 30, e1705913.	21.0	349
774	Enhanced photoluminescence properties of a carbon dot system through surface interaction with polymeric nanoparticles. Journal of Colloid and Interface Science, 2018, 518, 11-20.	9.4	18
775	Construction of hybrid Ag2CO3/AgVO3 nanowires with enhanced visible light photocatalytic activity. Materials Research Bulletin, 2018, 101, 246-252.	5.2	23
776	Folic acid-conjugated green luminescent carbon dots as a nanoprobe for identifying folate receptor-positive cancer cells. Talanta, 2018, 183, 39-47.	5.5	110
777	Yellow-Emissive Carbon Dot-Based Optical Sensing Platforms: Cell Imaging and Analytical Applications for Biocatalytic Reactions. ACS Applied Materials & amp; Interfaces, 2018, 10, 7737-7744.	8.0	87
778	Visible to near-IR fluorescence from single-digit detonation nanodiamonds: excitation wavelength and pH dependence. Scientific Reports, 2018, 8, 2478.	3.3	37
779	Carbon dots as analytical tools for sensing of thioredoxin reductase and screening of cancer cells. Analyst, The, 2018, 143, 1853-1861.	3.5	29
780	Basophilic green fluorescent carbon nanoparticles derived from benzoxazine for the detection of Cr(<scp>vi</scp>) in a strongly alkaline environment. RSC Advances, 2018, 8, 7377-7382.	3.6	16

#	Article	IF	CITATIONS
781	NIRâ€responsive nanomaterials and their applications; upconversion nanoparticles and carbon dots: a perspective. Journal of Chemical Technology and Biotechnology, 2018, 93, 1519-1528.	3.2	37
782	N-Doped carbon dots decorated ceria hollow spheres for enhanced activity of RhB degradation by visible light. Chemical Papers, 2018, 72, 1417-1426.	2.2	10
783	Highly Fluorescent Chiral Nâ€Sâ€Doped Carbon Dots from Cysteine: Affecting Cellular Energy Metabolism. Angewandte Chemie, 2018, 130, 2401-2406.	2.0	52
784	Mitochondria-based aircraft carrier enhances <i>in vivo</i> imaging of carbon quantum dots and delivery of anticancer drug. Nanoscale, 2018, 10, 3744-3752.	5.6	58
785	Aptamer based fluorometric determination of ATP by exploiting the FRET between carbon dots and graphene oxide. Mikrochimica Acta, 2018, 185, 144.	5.0	51
786	The design strategies and mechanisms of fluorogenic and chromogenic probes for the detection of hydrazine. Analytical Methods, 2018, 10, 1117-1139.	2.7	75
787	Determination of bromate via the chemiluminescence generated in the sulfite and carbon quantum dot system. Mikrochimica Acta, 2018, 185, 136.	5.0	22
788	Recent Advances in Graphene Quantum Dots as Bioimaging Probes. Journal of Analysis and Testing, 2018, 2, 45-60.	5.1	24
789	Carbon Dot based Fluorescence sensor for Retinoic acid. ChemistrySelect, 2018, 3, 673-677.	1.5	12
790	Bluish green emitting carbon quantum dots synthesized from jackfruit (<i>Artocarpus) Tj ETQq1 1 0.784314 rgBT 2018, 5, 024008.</i>	/Overlock 1.6	10 Tf 50 38 16
791	Carbon dots: Principles and their applications in food quality and safety detection. Critical Reviews in Food Science and Nutrition, 2018, 58, 2466-2475.	10.3	81
792	Mechanochemical synthesis of fluorescent carbon dots from cellulose powders. Nanotechnology, 2018, 29, 165604.	2.6	16
793	Antimicrobial activity, cytotoxicity and DNA binding studies of carbon dots. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 196, 295-302.	3.9	81
794	A Magnetofluorescent Carbon Dot Assembly as an Acidic H ₂ O ₂ â€Driven Oxygenerator to Regulate Tumor Hypoxia for Simultaneous Bimodal Imaging and Enhanced Photodynamic Therapy. Advanced Materials, 2018, 30, e1706090.	21.0	385
795	Rapid synthesis of N, S co-doped carbon dots and their application for Fe3+ ion detection. Journal of Nanoparticle Research, 2018, 20, 1.	1.9	37
796	Polymer dots grafted TiO2 nanohybrids as high performance visible light photocatalysts. Chemosphere, 2018, 197, 526-534.	8.2	23
797	Synthesis of Luminescent Carbon Dots with Ultrahigh Quantum Yield and Inherent Folate Receptor-Positive Cancer Cell Targetability. Scientific Reports, 2018, 8, 1086.	3.3	215
798	Ultrafine ZnO quantum dot-modified TiO ₂ composite photocatalysts: the role of the quantum size effect in heterojunction-enhanced photocatalytic hydrogen evolution. Catalysis Science and Technology, 2018, 8, 1296-1303.	4.1	55

# 799	ARTICLE Cathode and Anode Interlayers Based on Polymer Carbon Dots via Work Function Regulation for Efficient Polymer Solar Cells. Advanced Materials Interfaces, 2018, 5, 1701519.	IF 3.7	Citations 20
800	Immobilization of horseradish peroxidase on amino-functionalized carbon dots for the sensitive detection of hydrogen peroxide. Mikrochimica Acta, 2018, 185, 114.	5.0	52
801	Hexamethylenetetramine: an effective and universal nitrogen-doping reagent to enhance the photoluminescence of carbon nanodots. New Journal of Chemistry, 2018, 42, 3519-3525.	2.8	8
802	Highly Fluorescent Chiral N‣â€Doped Carbon Dots from Cysteine: Affecting Cellular Energy Metabolism. Angewandte Chemie - International Edition, 2018, 57, 2377-2382.	13.8	249
803	Facile and Green Synthesis of Multicolor Fluorescence Carbon Dots from Curcumin: <i>In Vitro</i> and <i>in Vivo</i> Bioimaging and Other Applications. ACS Omega, 2018, 3, 831-843.	3.5	171
804	Fluorescent Carbon Dots Derived from Maillard Reaction Products: Their Properties, Biodistribution, Cytotoxicity, and Antioxidant Activity. Journal of Agricultural and Food Chemistry, 2018, 66, 1569-1575.	5.2	80
805	Carbonâ€Dotsâ€Based Labâ€Onâ€aâ€Nanoparticle Approach for the Detection and Differentiation of Antibiotics. Chemistry - A European Journal, 2018, 24, 4703-4709.	3.3	53
806	Cutting‣dge Nanomaterials for Advanced Multimodal Bioimaging Applications. Small Methods, 2018, 2, 1700265.	8.6	32
807	Synthesis of three-dimensional porous reduced graphene oxide hydrogel/carbon dots for high-performance supercapacitor. Journal of Electroanalytical Chemistry, 2018, 808, 321-328.	3.8	43
808	A solvent-engineered molecule fusion strategy for rational synthesis of carbon quantum dots with multicolor bandgap fluorescence. Carbon, 2018, 130, 153-163.	10.3	132
809	Novel S, N-doped carbon quantum dot-based "off-on" fluorescent sensor for silver ion and cysteine. Talanta, 2018, 180, 300-308.	5.5	121
810	Chiral evolution of carbon dots and the tuning of laccase activity. Nanoscale, 2018, 10, 2333-2340.	5.6	68
811	Phototunable Fullâ€Color Emission of Celluloseâ€Based Dynamic Fluorescent Materials. Advanced Functional Materials, 2018, 28, 1703548.	14.9	163
812	Synthesis, mechanical investigation, and application of nitrogen and phosphorus co-doped carbon dots with a high photoluminescent quantum yield. Nano Research, 2018, 11, 3691-3701.	10.4	75
813	2D MoS2–carbon quantum dot hybrid based large area, flexible UV–vis–NIR photodetector on paper substrate. Applied Materials Today, 2018, 10, 106-114.	4.3	89
814	Disintegrable NIR Light Triggered Gold Nanorods Supported Liposomal Nanohybrids for Cancer Theranostics. Bioconjugate Chemistry, 2018, 29, 1510-1518.	3.6	40
815	Fluorescent Carbon Nanoparticles in Medicine for Cancer Therapy: An Update. ACS Medicinal Chemistry Letters, 2018, 9, 4-5.	2.8	12
816	Nitrogen-Doped Carbon Nanodots-Ionogels: Preparation, Characterization, and Radical Scavenging Activity. ACS Nano, 2018, 12, 1296-1305.	14.6	77

#	Article	IF	CITATIONS
817	A novel carbon quantum dot-based fluorescent nanosensor for selective detection of flumioxazin in real samples. New Journal of Chemistry, 2018, 42, 2074-2080.	2.8	31
818	Applicability Evaluation of Bright Greenâ€Emitting Carbon Dots in the Solid State for White Lightâ€Emitting Diodes. Chemistry - an Asian Journal, 2018, 13, 292-298.	3.3	30
819	Aptamer based fluorometric β-lactoglobulin assay based on the use of magnetic nanoparticles and carbon dots. Mikrochimica Acta, 2018, 185, 40.	5.0	29
820	Carbon dots prepared in different solvents with controllable structures: optical properties, cellular imaging and photocatalysis. New Journal of Chemistry, 2018, 42, 1690-1697.	2.8	20
821	The chemical redox modulated switch-on fluorescence of carbon dots for probing alkaline phosphatase and its application in an immunoassay. RSC Advances, 2018, 8, 162-169.	3.6	22
822	Luminescence of lemonâ€derived carbon quantum dot and its potential application in luminescent probe for detection of Mo ⁶⁺ ions. Luminescence, 2018, 33, 545-551.	2.9	36
823	Nanoparticle Probes for Superâ€Resolution Fluorescence Microscopy. ChemNanoMat, 2018, 4, 253-264.	2.8	19
824	Highly Crystalline Multicolor Carbon Nanodots for Dual-Modal Imaging-Guided Photothermal Therapy of Glioma. ACS Applied Materials & Interfaces, 2018, 10, 4031-4040.	8.0	63
825	Generation of a carbon dots/ammonium persulfate redox initiator couple for free radical frontal polymerization. Polymer Chemistry, 2018, 9, 420-427.	3.9	17
826	Synthesis and characterization of a nanostructured porous silicon/carbon dot-hybrid for orthogonal molecular detection. NPG Asia Materials, 2018, 10, e463-e463.	7.9	29
827	One-step microwave synthesis of carbon dots for highly sensitive and selective detection of copper ions in aqueous solution. New Journal of Chemistry, 2018, 42, 3097-3101.	2.8	79
828	Carbon Dots for Single-Molecule Imaging of the Nucleolus. ACS Applied Nano Materials, 2018, 1, 483-487.	5.0	67
829	High photoluminescent nitrogen-doped carbon dots with unique double wavelength fluorescence emission for cell imaging. Materials Letters, 2018, 216, 84-87.	2.6	34
830	Plasma Synthesis of Carbon-Based Nanocarriers for Linker-Free Immobilization of Bioactive Cargo. ACS Applied Nano Materials, 2018, 1, 580-594.	5.0	20
831	Enhancement of the Sub-Band-Gap Photoconductivity in ZnO Nanowires through Surface Functionalization with Carbon Nanodots. Journal of Physical Chemistry C, 2018, 122, 1852-1859.	3.1	23
832	Recent advances in quantum dot-based electrochemiluminescence sensors. Journal of Materials Chemistry C, 2018, 6, 942-959.	5.5	104
833	Multi-level fluorescent logic gate based on polyamine coated carbon dots capable of responding to four stimuli. Chemical Engineering Journal, 2018, 337, 471-479.	12.7	33
834	Berberine-based carbon dots for selective and safe cancer theranostics. RSC Advances, 2018, 8, 1168-1173.	3.6	29

#	Article	IF	CITATIONS
835	S-doped CQDs tailored transparent counter electrodes for high-efficiency bifacial dye-sensitized solar cells. Electrochimica Acta, 2018, 261, 588-595.	5.2	29
836	Green synthesis of highly fluorescent nitrogen – Doped carbon dots from Lantana camara berries for effective detection of lead(II) and bioimaging. Journal of Photochemistry and Photobiology B: Biology, 2018, 178, 330-338.	3.8	114
837	Tracking Hyaluronan: Molecularly Imprinted Polymer Coated Carbon Dots for Cancer Cell Targeting and Imaging. ACS Applied Materials & Interfaces, 2018, 10, 3305-3313.	8.0	148
838	Fluorescent Immunoassay for the Detection of Pathogenic Bacteria at the Single-Cell Level Using Carbon Dots-Encapsulated Breakable Organosilica Nanocapsule as Labels. ACS Applied Materials & Interfaces, 2018, 10, 3441-3448.	8.0	98
839	A reusable P, N-doped carbon quantum dot fluorescent sensor for cobalt ion. Sensors and Actuators B: Chemical, 2018, 260, 156-164.	7.8	72
840	Facile preparation of carbon-dot-supported nanoflowers for efficient photothermal therapy of cancer cells. Dalton Transactions, 2018, 47, 1777-1781.	3.3	15
841	Exploring the binding of carbon dots to calf thymus DNA: From green synthesis to fluorescent molecular probe. Carbon, 2018, 130, 257-266.	10.3	24
842	Redox-Controlled Fluorescent Nanoswitch Based on Reversible Disulfide and Its Application in Butyrylcholinesterase Activity Assay. Analytical Chemistry, 2018, 90, 1643-1651.	6.5	74
843	Solventâ€Controlled Synthesis of Highly Luminescent Carbon Dots with a Wide Color Gamut and Narrowed Emission Peak Widths. Small, 2018, 14, e1800612.	10.0	449
844	Synthesis of Organophilic Carbon Dots, Selective Screening of Trinitrophenol and a Comprehensive Understanding of Luminescence Quenching Mechanism. ChemistrySelect, 2018, 3, 4663-4668.	1.5	14
845	PEGylated carbon dot/MnO2 nanohybrid: a new pH/H2O2-driven, turn-on cancer nanotheranostics. Science China Materials, 2018, 61, 1325-1338.	6.3	44
846	Strongly Fluorescent Carbon Quantum Dots from Biomass Tar as Highly Selective and Sensitive Probe for Fe ³ ⁺ Detection. Nano, 2018, 13, 1850043.	1.0	9
847	Ecofriendly Nanomaterials for Sustainable Photocatalytic Decontamination of Organics and Bacteria. , 2018, , 1-29.		2
848	A signal-on ratiometric fluorometric heparin assay based on the direct interaction between amino-modified carbon dots and DNA. Mikrochimica Acta, 2018, 185, 260.	5.0	28
849	Biocompatible FeOOH-Carbon quantum dots nanocomposites for gaseous NO removal under visible light: Improved charge separation and High selectivity. Journal of Hazardous Materials, 2018, 354, 54-62.	12.4	126
850	Orange emissive carbon dots for colorimetric and fluorescent sensing of 2,4,6-trinitrophenol by fluorescence conversion. RSC Advances, 2018, 8, 16095-16102.	3.6	42
851	Microwave-assisted one-step synthesis of white light-emitting carbon dot suspensions. Optical Materials, 2018, 80, 110-119.	3.6	30
852	Catalyzed Microwave-Assisted Preparation of Carbon Quantum Dots from Lignocellulosic Residues. ACS Sustainable Chemistry and Engineering, 2018, 6, 7200-7205.	6.7	88

#	Article	IF	CITATIONS
853	A Graphene Quantum Dots-Enzyme Hybrid System for the Fluorescence Assay of Alkaline Phosphatase Activity and Inhibitor Screening. Analytical Sciences, 2018, 34, 131-136.	1.6	7
854	Carbon nanodot-induced gelation of a histidine-based amphiphile: application as a fluorescent ink, and modulation of gel stiffness. Chemical Communications, 2018, 54, 4341-4344.	4.1	23
855	Interaction and energy transfer between carbon dots and serum human transferrin. Spectroscopy Letters, 2018, 51, 123-129.	1.0	7
856	Solvothermal-Assisted Synthesis of Biomass Carbon Quantum Dots/Bismuth Oxyiodide Microflower for Enhanced Photocatalytic Activity. Nano, 2018, 13, 1850031.	1.0	14
857	Zinc and nitrogen ornamented bluish white luminescent carbon dots for engrossing bacteriostatic activity and Fenton based bio-sensor. Materials Science and Engineering C, 2018, 88, 115-129.	7.3	76
858	3D carbon quantum dots/graphene aerogel as a metal-free catalyst for enhanced photosensitization efficiency. Applied Catalysis B: Environmental, 2018, 233, 11-18.	20.2	112
859	Nanomaterials in Neural‣temâ€Cellâ€Mediated Regenerative Medicine: Imaging and Treatment of Neurological Diseases. Advanced Materials, 2018, 30, e1705694.	21.0	77
860	Quick synthesis of 2-propanol derived fluorescent carbon dots for bioimaging applications. Optical Materials, 2018, 78, 477-483.	3.6	10
861	Using Quenching To Detect Corrosion on Sculptural Metalwork: A Real-World Application of Fluorescence Spectroscopy. Journal of Chemical Education, 2018, 95, 858-863.	2.3	3
862	NIR upconversion characteristics of carbon dots for selective detection of glutathione. New Journal of Chemistry, 2018, 42, 6399-6407.	2.8	42
863	Smart self-tightening surgical suture from a tough bio-based hyperbranched polyurethane/reduced carbon dot nanocomposite. Biomedical Materials (Bristol), 2018, 13, 045004.	3.3	21
864	Electrochemical synthesis of nitrogen-doped carbon quantum dots decorated copper oxide for the sensitive and selective detection of non-steroidal anti-inflammatory drug in berries. Journal of Colloid and Interface Science, 2018, 523, 191-200.	9.4	53
865	Photostable and Low-Toxic Yellow-Green Carbon Dots for Highly Selective Detection of Explosive 2,4,6-Trinitrophenol Based on the Dual Electron Transfer Mechanism. ACS Applied Materials & Interfaces, 2018, 10, 13040-13047.	8.0	121
866	Inverse Pickering emulsions stabilized by carbon quantum dots: Influencing factors and their application as templates. Chemical Engineering Journal, 2018, 345, 209-220.	12.7	24
867	Enhancement of the Collective Optical Properties of Plasmonic Hybrid Carbon Dots via Localized Surface Plasmon. Journal of Luminescence, 2018, 200, 287-297.	3.1	26
868	Carbon quantum dots from natural resource: A review. Materials Today Chemistry, 2018, 8, 96-109.	3.5	522
869	N,S co-doped carbon dots based fluorescent "on-off-on―sensor for determination of ascorbic acid in common fruits. Food Chemistry, 2018, 258, 214-221.	8.2	198
870	Highly sensitive and selective dual-emission ratiometric fluorescence detection of dopamine based on carbon dots-gold nanoclusters hybrid. Sensors and Actuators B: Chemical, 2018, 265, 371-377.	7.8	145

#	Article		CITATIONS
871	Rapid "turn-on―detection of atrazine using highly luminescent N-doped carbon quantum dot. Sensors and Actuators B: Chemical, 2018, 263, 459-468.		82
872	A chemical/molecular 4-input/2-output keypad lock with easy resettability based on red-emission carbon dots–Prussian blue composite film electrodes. Nanoscale, 2018, 10, 7484-7493.	5.6	26
873	Nitrogen-doped carbon dots for the detection of mercury ions in living cells and visualization of latent fingerprints. New Journal of Chemistry, 2018, 42, 6824-6830.	2.8	54
874	Concentration-dependent color tunability of nitrogen-doped carbon dots and their application for iron(III) detection and multicolor bioimaging. Journal of Colloid and Interface Science, 2018, 521, 33-41.	9.4	92
875	High Electrochemical Sensitivity of TiO _{2–<i>x</i>} Nanosheets and an Electron-Induced Mutual Interference Effect toward Heavy Metal Ions Demonstrated Using X-ray Absorption Fine Structure Spectra. Analytical Chemistry, 2018, 90, 4328-4337.	6.5	52
876	Seeking value from biomass materials: preparation of coffee bean shell-derived fluorescent carbon dots <i>via</i> molecular aggregation for antioxidation and bioimaging applications. Materials Chemistry Frontiers, 2018, 2, 1269-1275.	5.9	62
877	A versatile fluorimetric chemosensor for mercury (II) assay based on carbon nanodots. Sensors and Actuators B: Chemical, 2018, 265, 293-301.	7.8	17
878	Facile one-step fabrication of upconversion fluorescence carbon quantum dots anchored on graphene with enhanced nonlinear optical responses. RSC Advances, 2018, 8, 10267-10276.	3.6	24
879	Green synthesis of carbon quantum dots from lignite coal and the application in Fe ³⁺ detection. IOP Conference Series: Earth and Environmental Science, 2018, 113, 012063.	0.3	19
880	Solution synthesis of stannous sulfide and stannic disulfide quantum dots for their optical and electronic properties. Optics Communications, 2018, 406, 239-243.	2.1	5
881	Presence and Formation Mechanism of Foodborne Carbonaceous Nanostructures from Roasted Pike Eel (<i>Muraenesox cinereus</i>). Journal of Agricultural and Food Chemistry, 2018, 66, 2862-2869.	5.2	48
882	Heteroatomâ€Doped Carbonaceous Photocatalysts for Solar Fuel Production and Environmental Remediation. ChemCatChem, 2018, 10, 62-123.	3.7	39
883	Preconcentration and extraction of lead ions in vegetable and water samples by N-doped carbon quantum dot conjugated with Fe3O4 as a green and facial adsorbent. Food Chemistry, 2018, 239, 1019-1026.	8.2	72
884	Carbon dots-TiO2 nanosheets composites for photoreduction of Cr(VI) under sunlight illumination: Favorable role of carbon dots. Applied Catalysis B: Environmental, 2018, 224, 508-517.	20.2	210
885	Advantages of Carbon Nanomaterials in Electrochemical Aptasensors for Food Analysis. Electroanalysis, 2018, 30, 2-19.	2.9	52
886	Electrochemically generated green-fluorescent N-doped carbon quantum dots for facile monitoring alkaline phosphatase activity based on the Fe3+-mediating ON-OFF-ON-OFF fluorescence principle. Carbon, 2018, 127, 340-348.	10.3	125
887	Naturalâ€Productâ€Derived Carbon Dots: From Natural Products to Functional Materials. ChemSusChem, 2018, 11, 11-24.	6.8	278
888	Highly efficient photocatalysis toward tetracycline of nitrogen doped carbon quantum dots sensitized bismuth tungstate based on interfacial charge transfer. Journal of Colloid and Interface Science, 2018, 511, 296-306.	9.4	119

#	Article		CITATIONS
889	One pot solid-state synthesis of highly fluorescent N and S co-doped carbon dots and its use as fluorescent probe for Ag+ detection in aqueous solution. Sensors and Actuators B: Chemical, 2018, 255, 3284-3291.		142
890	Carbon nanomaterials in oncology: an expanding horizon. Drug Discovery Today, 2018, 23, 1016-1025.	6.4	34
891	Size effect on oral absorption in polymer-functionalized mesoporous carbon nanoparticles. Journal of Colloid and Interface Science, 2018, 511, 57-66.	9.4	34
892	Enhanced electrochemical response of carbon quantum dot modified electrodes. Talanta, 2018, 178, 679-685.	5.5	55
893	Hyaluronate dots for highly efficient photodynamic therapy. Carbohydrate Polymers, 2018, 181, 10-18.	10.2	22
894	Small molecular organic nanocrystals resemble carbon nanodots in terms of their properties. Chemical Science, 2018, 9, 175-180.	7.4	93
895	Luminescent carbon dots obtained from cellulose. Materials Chemistry and Physics, 2018, 203, 148-155.	4.0	104
896	0D/2D interface engineering of carbon quantum dots modified Bi2WO6 ultrathin nanosheets with enhanced photoactivity for full spectrum light utilization and mechanism insight. Applied Catalysis B: Environmental, 2018, 222, 115-123.	20.2	288
897	Creation of Triple Hierarchical Micro-Meso-Macroporous N-doped Carbon Shells with Hollow Cores Toward the Electrocatalytic Oxygen Reduction Reaction. Nano-Micro Letters, 2018, 10, 3.	27.0	99
898	DNA assembly of carbon dots and 5-fluorouracil used for room-temperature phosphorescence turn-on sensing of AFP and AFP-triggered simultaneous release of dual-drug. Sensors and Actuators B: Chemical, 2018, 255, 1623-1630.	7.8	26
899	Nitro group reduction and Suzuki reaction catalysed by palladium supported on magnetic nanoparticles modified with carbon quantum dots generated from glycerol and urea. Applied Organometallic Chemistry, 2018, 32, e3984.	3.5	66
900	Preparation of highly sensitive Pt nanoparticles-carbon quantum dots/ionic liquid functionalized graphene oxide nanocomposites and application for H2O2 detection. Sensors and Actuators B: Chemical, 2018, 255, 1500-1506.	7.8	128
902	Biosensing of solitary and clustered abasic site DNA damage lesions with copper nanoclusters and carbon dots. Sensors and Actuators B: Chemical, 2018, 255, 763-774.	7.8	22
903	Synthesis of catalytically active multielement-doped carbon dots and application for colorimetric detection of glucose. Sensors and Actuators B: Chemical, 2018, 255, 2601-2607.	7.8	73
904	NH2-rich Carbon Quantum Dots: A protein-responsive probe for detection and identification. Sensors and Actuators B: Chemical, 2018, 255, 2725-2732.	7.8	48
905	Analytical Nanoscience and Nanotechnology: Where we are and where we are heading. Talanta, 2018, 177, 104-121.	5.5	56
906	TiO2/BiOI/CQDs: Enhanced photocatalytic properties under visible-light irradiation. Ceramics International, 2018, 44, 1348-1355.	4.8	35
907	Fabricating carbon quantum dots doped ZnIn 2 S 4 nanoflower composites with broad spectrum and enhanced photocatalytic Tetracycline hydrochloride degradation. Materials Research Bulletin, 2018, 97, 158-168.	5.2	58

#	Article		CITATIONS
908	Artful and multifaceted applications of carbon dot in biomedicine. Journal of Controlled Release, 2018, 269, 302-321.		115
909	Supramolecular Cross-Link-Regulated Emission and Related Applications in Polymer Carbon Dots. ACS Applied Materials & Interfaces, 2018, 10, 12262-12277.	8.0	110
910	Functional Carbon Quantum Dots: A Versatile Platform for Chemosensing and Biosensing. Chemical Record, 2018, 18, 491-505.	5.8	119
911	Carbon dots with red-shifted photoluminescence by fluorine doping for optical bio-imaging. Carbon, 2018, 128, 78-85.	10.3	147
912	Visible-light photocatalytic reduction of Cr(VI) via carbon quantum dots-decorated TiO2 nanocomposites. Journal of Environmental Chemical Engineering, 2018, 6, 1-8.	6.7	52
913	Exploring Tetrathiafulvalene–Carbon Nanodot Conjugates in Charge Transfer Reactions. Angewandte Chemie - International Edition, 2018, 57, 1001-1005.	13.8	41
914	Near-infrared and visible dual emissive transparent nanopaper based on Yb(III)–carbon quantum dots grafted oxidized nanofibrillated cellulose for anti-counterfeiting applications. Cellulose, 2018, 25, 377-389.	4.9	60
915	Synthesis of Bi/BiOCl-TiO2-CQDs quaternary photocatalyst with enhanced visible-light photoactivity and fast charge migration. Catalysis Communications, 2018, 107, 74-77.	3.3	32
916	Exploring Tetrathiafulvalene–Carbon Nanodot Conjugates in Charge Transfer Reactions. Angewandte Chemie, 2018, 130, 1013-1017.	2.0	7
917	Fluorescent carbon dots nanosensor for label-free determination of vitamin B12 based on inner filter effect. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 193, 305-309.	3.9	53
918	Microwaveâ€Assisted Synthesis of Biocompatible Silk Fibroinâ€Based Carbon Quantum Dots. Particle and Particle Systems Characterization, 2018, 35, 1700300.	2.3	23
919	MnO ₂ Nanosheet-Carbon Dots Sensing Platform for Sensitive Detection of Organophosphorus Pesticides. Analytical Chemistry, 2018, 90, 2618-2624.	6.5	288
920	Thermally Tunable Pickering Emulsions Stabilized by Carbon-Dot-Incorporated Core–Shell Nanospheres with Fluorescence "On–Off―Behavior. Langmuir, 2018, 34, 273-283.	3.5	16
921	Engineering cross-linking by coal-based graphene quantum dots toward tough, flexible, and hydrophobic electrospun carbon nanofiber fabrics. Carbon, 2018, 129, 54-62.	10.3	83
922	Bottom-up preparation of nitrogen doped carbon quantum dots with green emission under microwave-assisted hydrothermal treatment and their biological imaging. Materials Science and Engineering C, 2018, 84, 60-66.	7.3	61
923	Magnetically controlled immunosensor for highly sensitive detection of carcinoembryonic antigen based on an efficient "turn-on―cyanine fluorophore. Sensors and Actuators B: Chemical, 2018, 258, 133-140.	7.8	9
924	A chemiluminescence resonance energy transfer for the determination of indolyl acetic acid using luminescent nitrogen-doped carbon dots as acceptors. New Journal of Chemistry, 2018, 42, 388-394.	2.8	12
925	Mechanism insight into rapid photocatalytic disinfection of Salmonella based on vanadate QDs-interspersed g-C3N4 heterostructures. Applied Catalysis B: Environmental, 2018, 225, 228-237.	20.2	165

#	Article		CITATIONS
926	Experimental investigation of conduction and convection heat transfer properties of a novel nanofluid based on carbon quantum dots. International Communications in Heat and Mass Transfer, 2018, 90, 85-92.	5.6	24
927	Carbon dots based dual-emission silica nanoparticles as ratiometric fluorescent probe for chromium speciation analysis in water samples. Canadian Journal of Chemistry, 2018, 96, 72-77.	1.1	10
928	Inner filter effect based fluorometric determination of the activity of alkaline phosphatase by usingÂcarbon dots codoped withÂboron and nitrogen. Mikrochimica Acta, 2018, 185, 17.	5.0	34
929	S,N-doped carbon dots as a fluorescent probe for bilirubin. Mikrochimica Acta, 2018, 185, 11.	5.0	96
930	Color-Tunable Carbon Dots Possessing Solid-State Emission for Full-Color Light-Emitting Diodes Applications. ACS Photonics, 2018, 5, 502-510.	6.6	206
931	Effect of Carbon Dots on Conducting Polymers for Energy Storage Applications. ACS Sustainable Chemistry and Engineering, 2018, 6, 127-134.	6.7	88
932	Nitrogen-doped carbon quantum dots from biomass via simple one-pot method and exploration of their application. Applied Surface Science, 2018, 434, 1079-1085.	6.1	112
933	An -OH group functionalized MOF for ratiometric Fe3+ sensing. Journal of Solid State Chemistry, 2018, 258, 441-446.	2.9	82
934	Dispersion of optical and structural properties in gel column separated carbon nanoparticles. Carbon, 2018, 127, 541-547.	10.3	21
935	Paper-based fluorogenic devices for in vitro diagnostics. Biosensors and Bioelectronics, 2018, 102, 256-266.	10.1	50
936	Carbon quantum dots/KNbO3 hybrid composites with enhanced visible-light driven photocatalytic activity toward dye waste-water degradation and hydrogen production. Molecular Catalysis, 2018, 445, 1-11.	2.0	74
937	Carbon dot/polyvinylpyrrolidone hybrid nanofibers with efficient solid-state photoluminescence constructed using an electrospinning technique. Nanotechnology, 2018, 29, 025706.	2.6	19
938	A new two-dimensional layered germanate with <i>in situ</i> embedded carbon dots for optical temperature sensing. Inorganic Chemistry Frontiers, 2018, 5, 139-144.	6.0	25
939	Potential Nanomedicine Applications of Multifunctional Carbon Nanoparticles Developed Using Green Technology. ACS Sustainable Chemistry and Engineering, 2018, 6, 1235-1245.	6.7	20
940	Carbon-dot-based dual-emission silica nanoparticles as a ratiometric fluorescent probe for vanadium(V) detection in mineral water samples. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 189, 51-56.	3.9	14
941	Multimodal bioimaging based on gold nanorod and carbon dot nanohybrids as a novel tool for atherosclerosis detection. Nano Research, 2018, 11, 1262-1273.	10.4	44
942	Green anhydrous synthesis of hydrophilic carbon dots on large-scale and their application for broad fluorescent pH sensing. Sensors and Actuators B: Chemical, 2018, 255, 572-579.	7.8	62
943	A highly selective and sensitive "on-off-on―fluorescent probe for detecting Hg(II) based on Au/N-doped carbon quantum dots. Sensors and Actuators B: Chemical, 2018, 255, 657-665.	7.8	73

#	Article		CITATIONS
944	Biocompatible Carbon Nanodots for Functional Imaging and Cancer Therapy. International Journal of Biomedical and Clinical Engineering, 2018, 7, 31-45.		1
945	Actinide embedded nearly planar gold superatoms: structural properties and applications in surface-enhanced Raman scattering (SERS). Physical Chemistry Chemical Physics, 2018, 20, 27523-27527.	2.8	14
946	Construction and comparison of BSA-stabilized functionalized GQD composite fluorescent probes for selective trypsin detection. New Journal of Chemistry, 2018, 42, 17718-17724.	2.8	8
947	A novel fluorescent sensor for water in organic solvents based on dynamic quenching of carbon quantum dots. New Journal of Chemistry, 2018, 42, 18787-18793.	2.8	31
948	Optimal design of an antireflection coating structure for enhancing the energy-conversion efficiency of a silicon nanostructure solar cell. RSC Advances, 2018, 8, 34793-34807.	3.6	10
949	A facile and green approach to prepare carbon dots with pH-dependent fluorescence for patterning and bioimaging. RSC Advances, 2018, 8, 38091-38099.	3.6	31
950	Carbon quantum dots derived by direct carbonization of carbonaceous microcrystals in mesophase pitch. Nanoscale, 2018, 10, 21492-21498.	5.6	33
951	A novel label-free photoelectrochemical immunosensor based on NCQDs and Bi ₂ S ₃ co-sensitized hierarchical mesoporous SnO ₂ microflowers for detection of NT-proBNP. Journal of Materials Chemistry B, 2018, 6, 7634-7642.	5.8	26
952	Microemulsions as Nanotemplates: A Soft and Versatile Approach. , 0, , .		5
953	Synthesis of carbon quantum dots in a Nafion matrix: Precursor effect on the ion transport properties. Mendeleev Communications, 2018, 28, 251-253.	1.6	5
954	Mercury lons Mediated Phosphorus Containing Carbon Dots as Fluorescent Probe for Biothiols Screening. Nano, 2018, 13, 1850116.	1.0	1
955	Real time monitoring and quantification of uptake carbon nanodots in eukaryotic cells. Microscopy Research and Technique, 2018, 81, 1541-1547.	2.2	11
956	Biomaterials for Regenerative Medicine: Historical Perspectives and Current Trends. Advances in Experimental Medicine and Biology, 2018, 1119, 1-19.	1.6	25
957	Graphene quantum dots from chemistry to applications. Materials Today Chemistry, 2018, 10, 221-258.	3.5	539
958	Preparation of carbon dots from succinic acid and glycerol as ferrous ion and hydrogen peroxide dual-mode sensors and for cell imaging. Optical Materials, 2018, 86, 517-529.	3.6	38
959	Synthesis of Nitrogen-Doped Lignin/DES Carbon Quantum Dots as a Fluorescent Probe for the Detection of Fe3+ lons. Polymers, 2018, 10, 1282.	4.5	44
960	In vivo theranostics with near-infrared-emitting carbon dots—highly efficient photothermal therapy based on passive targeting after intravenous administration. Light: Science and Applications, 2018, 7, 91.	16.6	289
961	Influence of molecular fluorophores on the research field of chemically synthesized carbon dots. Nano Today, 2018, 23, 124-139.	11.9	181

#	Article		CITATIONS
962	Controllable Synthesis of Carbon Dots with Excitationâ€Wavelengthâ€Dependent or Independent Photoluminescence for the Selective and Sensitive Detection of Co ²⁺ lons. ChemistrySelect, 2018, 3, 11791-11799.	1.5	9
963	Highly Photoluminescent and Stable N-Doped Carbon Dots as Nanoprobes for Hg2+ Detection. Nanomaterials, 2018, 8, 900.	4.1	50
965	Tuning Carbon Dots' Optoelectronic Properties with Polymers. Polymers, 2018, 10, 1312.	4.5	19
967	Carbon Nanodots: A Review—From the Current Understanding of the Fundamental Photophysics to the Full Control of the Optical Response. Journal of Carbon Research, 2018, 4, 67.	2.7	137
968	Porous Silicon Bragg Reflector/Carbon Dot Hybrids: Synthesis, Nanostructure, and Optical Properties. Frontiers in Chemistry, 2018, 6, 574.	3.6	12
969	Effects of Carbon Quantum Dots on Aquatic Environments: Comparison of Toxicity to Organisms at Different Trophic Levels. Environmental Science & Technology, 2018, 52, 14445-14451.	10.0	76
970	Highly Green Emissive Nitrogen-Doped Carbon Dots with Excellent Thermal Stability for Bioimaging and Solid-State LED. Inorganic Chemistry, 2018, 57, 15229-15239.	4.0	65
971	Degradable Carbon Dots from Cigarette Smoking with Broad-Spectrum Antimicrobial Activities against Drug-Resistant Bacteria. ACS Applied Bio Materials, 2018, 1, 1871-1879.	4.6	49
972	Mechanistic Insight into the Carbon Dots: Protonation induced Photoluminescence. Journal of Material Science & Engineering, 2018, 07, .	0.2	3
973	Construction of Acetaldehyde-Modified g-C ₃ N ₄ Ultrathin Nanosheets via Ethylene Clycol-Assisted Liquid Exfoliation for Selective Fluorescence Sensing of Ag ⁺ . ACS Applied Materials & Interfaces, 2018, 10, 44624-44633.	8.0	37
974	Inorganic Salt Incorporated Solvothermal Synthesis of Multicolor Carbon Dots, Emission Mechanism, and Antibacterial Study. ACS Applied Nano Materials, 2018, 1, 6131-6138.	5.0	61
975	Highâ€Performance Liâ€CO ₂ Batteries Based on Metalâ€Free Carbon Quantum Dot/Holey Graphene Composite Catalysts. Advanced Functional Materials, 2018, 28, 1804630.	14.9	121
976	Two-dimensional quantum dots: Fundamentals, photoluminescence mechanism and their energy and environmental applications. Materials Today Energy, 2018, 10, 222-240.	4.7	87
977	Applications of carbon quantum dots (CQDs) in membrane technologies: A review. Water Research, 2018, 147, 43-49.	11.3	220
978	Carbon dots prepared from Litchi chinensis and modified with manganese dioxide nanosheets for use in a competitive fluorometric immunoassay for aflatoxin B1. Mikrochimica Acta, 2018, 185, 476.	5.0	49
979	A biodegradable fluorescent nanohybrid for photo-driven tumor diagnosis and tumor growth inhibition. Nanoscale, 2018, 10, 19082-19091.	5.6	30
980	Facile synthesis of Nb2O5/carbon nanocomposites as advanced anode materials for lithium-ion batteries. Electrochimica Acta, 2018, 292, 63-71.	5.2	77
981	Photoluminescent and pH-responsive supramolecular structures from co-assembly of carbon quantum dots and zwitterionic surfactant micelles. Journal of Materials Chemistry B, 2018, 6, 7021-7032.	5.8	27

#	Article	IF	CITATIONS
982	Soft-Lithographic Patterning of Luminescent Carbon Nanodots Derived from Collagen Waste. ACS Applied Materials & Interfaces, 2018, 10, 36275-36283.	8.0	24
983	Nitrogen-doped carbon quantum dots as a fluorescent probe to detect copper ions, glutathione, and intracellular pH. Analytical and Bioanalytical Chemistry, 2018, 410, 7701-7710.	3.7	37
984	Lanthanide doped carbon dots as a fluorescence chromaticity-based pH probe. Mikrochimica Acta, 2018, 185, 489.	5.0	21
985	Highly fluorescent carbon quantum dots-Nafion as proton selective hybrid membrane for direct methanol fuel cells. Electrochimica Acta, 2018, 292, 855-864.	5.2	38
986	Adaptation of a visible wavelength fluorescence microplate reader for discovery of near-infrared fluorescent probes. Review of Scientific Instruments, 2018, 89, 095111.	1.3	13
987	Synthesis and characterization of biomass CQDs doped WO2.72. Results in Physics, 2018, 11, 482-488.	4.1	9
988	Hyperbranched Polyurethaneâ€ s upported Pdâ€Ag@CQD Nanocomposite: A High Performing Heterogeneous Catalyst. ChemistrySelect, 2018, 3, 11210-11218.	1.5	8
989	Subgram-Scale Synthesis of Biomass Waste-Derived Fluorescent Carbon Dots in Subcritical Water for Bioimaging, Sensing, and Solid-State Patterning. ACS Omega, 2018, 3, 13211-13218.	3.5	40
990	Turning date palm frondsÂinto biocompatible mesoporous fluorescent carbon dots. Scientific Reports, 2018, 8, 16269.	3.3	47
991	Determination of DNA based on fluorescence quenching of terbium doped carbon dots. Mikrochimica Acta, 2018, 185, 514.	5.0	14
992	Highly Biocompatible, Fluorescence, and Zwitterionic Carbon Dots as a Novel Approach for Bioimaging Applications in Cancerous Cells. ACS Applied Materials & Interfaces, 2018, 10, 37835-37845.	8.0	58
993	Metal-free graphene quantum dots photosensitizer coupled with nickel phosphide cocatalyst for enhanced photocatalytic hydrogen production in water under visible light. Chinese Journal of Catalysis, 2018, 39, 1753-1761.	14.0	23
994	Carbon dots modifier for highly active photocatalysts based on ZnO porous microspheres. Journal of Materials Science: Materials in Electronics, 2018, 29, 19994-20002.	2.2	12
995	<i>In Vivo</i> Examination of Folic Acid-Conjugated Gold-Silica Nanohybrids as Contrast Agents for Localized Tumor Diagnosis and Biodistribution. Bioconjugate Chemistry, 2018, 29, 4012-4019.	3.6	18
996	Recent advances in sensors for tetracycline antibiotics and their applications. TrAC - Trends in Analytical Chemistry, 2018, 109, 260-274.	11.4	190
997	Green Preparation of High Yield Fluorescent Graphene Quantum Dots from Coal-Tar-Pitch by Mild Oxidation. Nanomaterials, 2018, 8, 844.	4.1	77
998	Recognition of Latent Fingerprints and Ink-Free Printing Derived from Interfacial Segregation of Carbon Dots. ACS Applied Materials & amp; Interfaces, 2018, 10, 39205-39213.	8.0	51
999	Facile Conversion of Toxic Cigarette Butts to N,S-Codoped Carbon Dots and Their Application in Fluorescent Film, Security Ink, Bioimaging, Sensing and Logic Gate Operation. ACS Omega, 2018, 3, 13454-13466.	3.5	95

#	Article	IF	CITATIONS
1000	Application of carbon quantum dots to increase the activity of conventional photocatalysts: A systematic review. Journal of Molecular Liquids, 2018, 271, 857-871.	4.9	105
1001	MoS ₂ /CQDs obtained by photoreduction for assembly of a ternary MoS ₂ /CQDs/ZnIn ₂ S ₄ nanocomposite for efficient photocatalytic hydrogen evolution under visible light. Journal of Materials Chemistry A, 2018, 6, 19735-19742.		77
1002	Photoluminescence Enhancement of Carbon Dots by Surfactants at Room Temperature. Chemistry - A European Journal, 2018, 24, 15806-15811.	3.3	19
1003	One-pot solvothermal synthesis of carbon dots/Ag nanoparticles/TiO2 nanocomposites with enhanced photocatalytic performance. Ceramics International, 2018, 44, 22481-22488.	4.8	45
1004	Carbon dots-enhanced luminol chemiluminescence and its application to 2-methoxyestradiol determination. Green Chemistry Letters and Reviews, 2018, 11, 379-386.	4.7	12
1005	Functional Micro-/Nanomaterials for Imaging Technology. Engineering Materials, 2018, , 1-25.	0.6	0
1006	Green Synthesized Carbon Quantum Dots from Polianthes tuberose L. Petals for Copper (II) and Iron (II) Detection. Journal of Fluorescence, 2018, 28, 1261-1267.	2.5	30
1007	Multifunctional hyaluronic acid-derived carbon dots for self-targeted imaging-guided photodynamic therapy. Journal of Materials Chemistry B, 2018, 6, 6534-6543.	5.8	51
1009	A chiral responsive carbon dots–gold nanoparticle complex mediated by hydrogen peroxide independent of surface modification with chiral ligands. Nanoscale, 2018, 10, 18606-18612.	5.6	25
1010	The Effect of Ligands and Solvents on Nonradiative Transitions in Semiconductor Quantum Dots (A) Tj ETQq1 1 ().784314 0.6	rgBT /Overlo
1011	A double fluorescent nanoprobe based on phosphorus/nitrogen co-doped carbon dots for detecting dichromate ions and dopamine. RSC Advances, 2018, 8, 31793-31802.	3.6	21
1012	Gold Rod-Polyethylene Glycol-Carbon Dot Nanohybrids as Phototheranostic Probes. Nanomaterials, 2018, 8, 706.	4.1	9
1013	An Alternative Route to Obtain Carbon Quantum Dots from Photoluminescent Materials in Peat. Materials, 2018, 11, 1492.	2.9	14
1014	Systematic Comparison of Carbon Dots from Different Preparations—Consistent Optical Properties and Photoinduced Redox Characteristics in Visible Spectrum and Structural and Mechanistic Implications. Journal of Physical Chemistry C, 2018, 122, 21667-21676.	3.1	34
1015	A ratiometric fluorometric and colorimetric probe for the β-thalassemia drug deferiprone based on the use of gold nanoclusters and carbon dots. Mikrochimica Acta, 2018, 185, 442.	5.0	15
1016	Waste candle soot derived nitrogen doped carbon dots based fluorescent sensor probe: An efficient and inexpensive route to determine Hg(II) and Fe(III) from water. Journal of Environmental Chemical Engineering, 2018, 6, 5561-5569.	6.7	53
1017	Heterogeneous Organocatalysis for Photoredox Chemistry. ACS Catalysis, 2018, 8, 9790-9808.	11.2	165
1018	Antioxidant Capacity of Nitrogen and Sulfur Codoped Carbon Nanodots. ACS Applied Nano Materials, 2018, 1, 2699-2708.	5.0	46

#		IF	CITATIONS
" 1019	Highly biocompatible yogurt-derived carbon dots as multipurpose sensors for detection of formic acid vapor and metal ions. Optical Materials, 2018, 81, 93-101.	3.6	46
1020	In Situ Nanoreactors: Controllable Photoluminescent Carbonâ€Rich Polymer Nanodots Derived from Fatty Acid under Photoirradiation. Macromolecular Rapid Communications, 2018, 39, e1800152.	3.9	11
1021	Carbon–TiO ₂ hybrid dots in different configurations – optical properties, redox characteristics, and mechanistic implications. New Journal of Chemistry, 2018, 42, 10798-10806.	2.8	10
1022	Magnetic carbon dots based molecularly imprinted polymers for fluorescent detection of bovine hemoglobin. Talanta, 2018, 188, 145-151.	5.5	125
1023	Novel carbon quantum dots for fluorescent detection of phenol and insights into the mechanism. New Journal of Chemistry, 2018, 42, 11485-11492.	2.8	29
1024	Sunlight-driven water-splitting using two-dimensional carbon based semiconductors. Journal of Materials Chemistry A, 2018, 6, 12876-12931.	10.3	215
1025	Nano strategies for berberine delivery, a natural alkaloid of Berberis. Biomedicine and Pharmacotherapy, 2018, 104, 465-473.	5.6	133
1026	Zero-Dimensional Carbon Allotropes—Carbon Nanoparticles Versus Fullerenes in Functionalization by Electronic Polymers for Different Optical and Redox Properties. ACS Omega, 2018, 3, 5685-5691.	3.5	18
1027	Highly Sensitive and Selective Detection of Amoxicillin Using Carbon Quantum Dots Derived from Beet. Journal of Fluorescence, 2018, 28, 759-765.	2.5	36
1028	Curved Fragmented Graphenic Hierarchical Architectures for Extraordinary Charging Capacities. Small, 2018, 14, e1702054.		12
1029	Depth Profiling of the Chemical Composition of Free-Standing Carbon Dots Using X-ray Photoelectron Spectroscopy. Journal of Physical Chemistry C, 2018, 122, 14889-14897.	3.1	20
1030	Computational studies on the doped graphene quantum dots as potential carriers in drug delivery systems for isoniazid drug. Structural Chemistry, 2018, 29, 1427-1448.	2.0	63
1031	In-situ incorporation of carbon dots into mesoporous nickel boride for regulating photocatalytic activities. Carbon, 2018, 137, 484-492.	10.3	42
1032	Conjugated systems of porphyrin–carbon nanoallotropes: a review. New Journal of Chemistry, 2018, 42, 12328-12348.	2.8	35
1033	One-Pot Synthesis of a Magnetic, Ratiometric Fluorescent Nanoprobe by Encapsulating Fe ₃ O ₄ Magnetic Nanoparticles and Dual-Emissive Rhodamine B Modified Carbon Dots in Metal–Organic Framework for Enhanced HClO Sensing. ACS Applied Materials & Interfaces, 2018, 10, 20801-20805.	8.0	84
1034	Synthesis of hydrogel-bearing phenylboronic acid moieties and their applications in glucose sensing and insulin delivery. Journal of Materials Chemistry B, 2018, 6, 3831-3854.	5.8	67
1035	Red fluorescent carbon dots with phenylboronic acid tags for quick detection of Fe(III) in PC12 cells. Journal of Colloid and Interface Science, 2018, 526, 487-496.	9.4	71
1036	Mercaptopyrimidine-directed gold nanoclusters: a suitable fluorescent probe for intracellular glutathione imaging and selective cancer cell identification. Journal of Materials Chemistry B, 2018, 6, 3650-3654.	5.8	31

#	Article	IF	Citations
1037	New detection method for nucleoside triphosphates based on carbon dots: The distance-dependent singlet oxygen trapping. Analytica Chimica Acta, 2018, 1031, 145-151.		10
1038	Facile synthesis of carbon nanodots with surface state-modulated fluorescence for highly sensitive and real-time detection of water in organic solvents. Analytica Chimica Acta, 2018, 1034, 144-152.	5.4	55
1039	TiO ₂ -carbon quantum dots (CQD) nanohybrid: enhanced photocatalytic activity. Materials Research Express, 2018, 5, 075502.	1.6	34
1040	Quick Microwave Assisted Synthesis and In Vitro Imaging Application of Oxygen Doped Fluorescent Carbon Dots. Journal of Fluorescence, 2018, 28, 959-966.	2.5	20
1041	Multicolor carbon nanodots from food waste and their heavy metal ion detection application. RSC Advances, 2018, 8, 23657-23662.	3.6	39
1042	Carbon Quantum Dots as Fluorescent Component in Peroxyoxalate Chemiluminescence for Hydrogen Peroxide Determination. Bulletin of the Chemical Society of Japan, 2018, 91, 1128-1130.	3.2	11
1043	A self-quenching-resistant carbon dots powder with tunable solid-state fluorescence and their applications in light-emitting diodes and fingerprints detection. Dyes and Pigments, 2018, 159, 245-251.	3.7	47
1044	In-situ green synthesis of nitrogen-doped carbon dots for bioimaging and TiO2 nanoparticles@nitrogen-doped carbon composite for photocatalytic degradation of organic pollutants. Journal of Alloys and Compounds, 2018, 766, 12-24.	5.5	120
1045	Facile preparation of bright orange fluorescent carbon dots and the constructed biosensing platform for the detection of pH in living cells. Talanta, 2018, 189, 8-15.	5.5	79
1046	High pH-induced efficient room-temperature phosphorescence from carbon dots in hydrogen-bonded matrices. Journal of Materials Chemistry C, 2018, 6, 7890-7895.	5.5	72
1047	Carbon Dot Initiated Synthesis of Poly(4,4′-diaminodiphenylmethane) and Its Methylene Blue Adsorption. ACS Omega, 2018, 3, 7061-7068.	3.5	35
1048	Amorphous Carbon Dots and their Remarkable Ability to Detect 2,4,6-Trinitrophenol. Scientific Reports, 2018, 8, 9770.	3.3	158
1049	MoS2 quantum dots embedded in g-C3N4 frameworks: A hybrid 0D-2D heterojunction as an efficient visible-light driven photocatalyst. Applied Surface Science, 2018, 457, 30-40.	6.1	56
1050	Photoluminescence tuning in carbon dots: surface passivation or/and functionalization, heteroatom doping. Journal of Materials Chemistry C, 2018, 6, 7944-7970.	5.5	274
1051	Chiral modulation of amyloid beta fibrillation and cytotoxicity by enantiomeric carbon dots. Chemical Communications, 2018, 54, 7762-7765.	4.1	95
1052	Carbon dots for promoting the growth of ZIF-8 crystals to obtain fluorescent powders and their application for latent fingerprint imaging. CrystEngComm, 2018, 20, 5056-5060.	2.6	20
1053	Selective prepared carbon nanomaterials for advanced photocatalytic application in environmental pollutant treatment and hydrogen production. Applied Catalysis B: Environmental, 2018, 239, 408-424.	20.2	386
1054	Mitochondrial-Targeting Anticancer Agent Conjugates and Nanocarrier Systems for Cancer Treatment. Frontiers in Pharmacology, 2018, 9, 922.	3.5	111

		CITATION RE	PORT	
# 1055	ARTICLE Carbon Quantum Dots: A Component of Efficient Visible Light Photocatalysts. , 2018, , .		IF	CITATIONS
1056	Peteroatoma Doped Carbon Dots (CDs) as a Class of Metala Free Photocatalysts for PE Polymerization under Visible Light and Sunlight. Angewandte Chemie, 2018, 130, 12213	Ta€ K AFT -12218.	2.0	33
1057	CQD-Based Composites as Visible-Light Active Photocatalysts for Purification of Water. ,	0, , .		3
1058	Carbon Dot Fluorescence-Lifetime-Encoded Anti-Counterfeiting. ACS Applied Materials & Interfaces, 2018, 10, 29902-29908.	amp;	8.0	183
1059	Tunable and ultra-stable UV light-switchable fluorescent composites for information hidir storage. Dalton Transactions, 2018, 47, 11264-11271.	ıg and	3.3	27
1060	Graphene Hydrogel Decorated with N, O Co-Doped Carbon Dots for Flexible Supercapaci Electrodes. Journal of the Electrochemical Society, 2018, 165, A2217-A2224.	cor	2.9	22
1061	Advanced Organic and Polymer Whisperingâ€Galleryâ€Mode Microresonators for Enhand Optical Light. Advanced Optical Materials, 2018, 6, 1800343.	ed Nonlinear	7.3	70
1062	The effect of surface charge on the cytotoxicity and uptake of carbon quantum dots in hi umbilical cord derived mesenchymal stem cells. Colloids and Surfaces B: Biointerfaces, 20 241-249.	uman)18, 171,	5.0	53
1063	Visible-Light-Driven Nitrogen-Doped Carbon Quantum Dots/CaTiO ₃ Compose with Enhanced NO Adsorption for NO Removal. Industrial & Engineering Chemistry I 57, 10226-10233.	site Catalyst Research, 2018,	3.7	32
1064	Degradable Carbon Dots with Broad-Spectrum Antibacterial Activity. ACS Applied Materia Interfaces, 2018, 10, 26936-26946.	ils &	8.0	246
1065	Heteroatomâ€Doped Carbon Dots (CDs) as a Class of Metalâ€Free Photocatalysts for PE Polymerization under Visible Light and Sunlight. Angewandte Chemie - International Editi 12037-12042.	Tâ€RAFT on, 2018, 57,	13.8	121
1066	A pH-induced charge convertible nanocomposite as novel targeted phototherapy agent a carrier. Chemical Engineering Journal, 2018, 353, 350-360.	nd gene	12.7	23
1067	Quick and low cost synthesis of sulphur doped carbon dots by simple acidic carbonizatio for the detection of Fe3+ ions in highly acidic environment. Diamond and Related Materia 262-268.	n of sucrose als, 2018, 88,	3.9	59
1068	Carbon quantum dots modified La2Ti2O7 nanosheets for visible light photocatalysis. Ma Letters, 2018, 230, 72-75.	terials	2.6	23
1069	Citrateâ€Based Fluorescent Biomaterials. Advanced Healthcare Materials, 2018, 7, e1800)532.	7.6	51
1070	Carbon Quantum Dot Surface-Chemistry-Dependent Ag Release Governs the High Antiba of Ag-Metal–Organic Framework Composites. ACS Applied Bio Materials, 2018, 1, 693	cterial Activity 707.	4.6	80
1071	Carbon Nanoscrolls for Aluminum Battery. ACS Nano, 2018, 12, 8456-8466.		14.6	165
1072	Cancer biomarker determination by resonance energy transfer using functional fluoresce nanoprobes. Analytica Chimica Acta, 2018, 1041, 1-24.	nt	5.4	40

#	Article	IF	Citations
1073	A sensitive label-free FRET probe for glutathione based on CdSe/ZnS quantum dots and MnO ₂ nanosheets. Analytical Methods, 2018, 10, 4170-4177.	2.7	29
1074	A facile and controllable protocol for simultaneous synthesis of magnetite nanoparticles and luminescent carbon dots. Journal of Alloys and Compounds, 2018, 769, 360-366.	5.5	6
1075	Phosphorus-doped carbon dots for sensing both Au (III) and l-methionine. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 365, 178-184.	3.9	16
1076	Quantum dots in proteomic studies and medical diagnostics. Russian Chemical Bulletin, 2018, 67, 600-613.	1.5	4
1077	Er-doped carbon dots broadening light absorption range and accelerating electron transport for enhancing photovoltaic performance of CdS quantum dots sensitized cells. Optical Materials, 2018, 84, 242-251.	3.6	9
1078	A fluorescence resonance energy transfer biosensor based on carbon dots and gold nanoparticles for the detection of trypsin. Sensors and Actuators B: Chemical, 2018, 273, 1015-1021.	7.8	65
1079	Highly fluorescent N-doped carbon nanodots as an effective multi-probe quenching system for the determination of nitrite, nitrate and ferric ions in food matrices. Talanta, 2018, 189, 480-488.	5.5	43
1080	Thiazole Orange-Modified Carbon Dots for Ratiometric Fluorescence Detection of G-Quadruplex and Double-Stranded DNA. ACS Applied Materials & Interfaces, 2018, 10, 25166-25173.	8.0	49
1081	Synthesis of catalytically active carbon quantum dots and its application for colorimetric detection of glutathione. Sensors and Actuators B: Chemical, 2018, 273, 1098-1102.	7.8	76
1082	Fluorescent quantum dots for microbial imaging. Chinese Chemical Letters, 2018, 29, 1475-1485.	9.0	66
1083	Dual-channel fluorescence detection of mercuric (II) and glutathione by down- and up-conversion fluorescence carbon dots. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 205, 29-39.	3.9	34
1084	Cancer Targeting and Drug Delivery Using Carbon-Based Quantum Dots and Nanotubes. Molecules, 2018, 23, 378.	3.8	173
1085	Fluorescent Nanobiosensors for Sensing Glucose. Sensors, 2018, 18, 1440.	3.8	76
1086	Carbon Dots from Sugars and Ascorbic Acid: Role of the Precursors on Morphology, Properties, Toxicity, and Drug Uptake. ACS Medicinal Chemistry Letters, 2018, 9, 832-837.	2.8	95
1087	Noninvasive Brain Tumor Imaging Using Red Emissive Carbonized Polymer Dots across the Blood–Brain Barrier. ACS Omega, 2018, 3, 7888-7896.	3.5	27
1088	Black phosphorus quantum dots: synthesis, properties, functionalized modification and applications. Chemical Society Reviews, 2018, 47, 6795-6823.	38.1	250
1089	Novel properties and applications of carbon nanodots. Nanoscale Horizons, 2018, 3, 565-597.	8.0	274
1090	Multifunctional bacterial imaging and therapy systems. Journal of Materials Chemistry B, 2018, 6, 5198-5214.	5.8	34

ARTICLE IF CITATIONS Tailoring the Emission Color of Carbon Dots through Nitrogen-Induced Changes of Their Crystalline 1091 3.1 54 Structure. Journal of Physical Chemistry C, 2018, 122, 19897-19903. pH assisted selective detection of Hg(II) and Ag(I) based on nitrogen-rich carbon dots. Sensors and Actuators B: Chemical, 2018, 273, 1640-1647 A rapid microwave synthesis of green-emissive carbon dots with solid-state fluorescence and 1093 2.4 52 pH-sensitive properties. Royal Society Open Science, 2018, 5, 180245. Nitrogen-Doped Carbon Nanoparticles Derived from Silkworm Excrement as On–Off–On Fluorescent 1094 Sensors to Detect Fe(III) and Biothiols. Nanomaterials, 2018, 8, 443. Origin and Perspectives of the Photochemical Activity of Nanoporous Carbons. Advanced Science, 1095 11.2 45 2018, 5, 1800293. Role of elemental carbon in the photochemical aging of soot. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 7717-7722. 1096 7.1 Carbon dots-decorated Na2W4O13 composite with WO3 for highly efficient photocatalytic 1097 12.4 72 antibacterial activity. Journal of Hazardous Materials, 2018, 359, 1-8. Surface functionalisation significantly changes the physical and electronic properties of carbon 1098 5.6 28 nano-dots. Nanoscale, 2018, 10, 13908-13912. 1099 Carbon-electroluminescence: An organic approach to lighting. AIP Conference Proceedings, 2018, , . 0.4 1 Resolving the Multiple Emission Centers in Carbon Dots: From Fluorophore Molecular States to Aromatic Domain States and Carbon-Core States. Journal of Physical Chemistry Letters, 2018, 9, 4.6 142 4189-4198. Nanogenerators Begin to Light Up: A Novel Polingâ€Free Piezoelectric System with Multicolor Photoluminescence as an Efficient Mechatronics Development Platform. Advanced Materials 1101 3.7 14 Interfaces, 2018, 5, 1800587. Dramatic photoluminescence quenching in carbon dots induced by cyclic voltammetry. Chemical 4.1 Communications, 2018, 54, 9067-9070 Photovoltaic Performance of Inverted Polymer Solar Cells Using Hybrid Carbon Quantum Dots and 1103 2.2 12 Absorption Polymer Materials. Electronic Materials Letters, 2018, 14, 581-586. Graphene Quantum Dotâ€"Aerogel: From Nanoscopic to Macroscopic Fluorescent Materials. Sensing 1104 8.0 Polyaromatic Compounds in Water. ACS Applied Materials & amp; Interfaces, 2018, 10, 18192-18201. Green and cost-effective synthesis of carbon dots from date kernel and their application as a novel 1105 switchable fluorescence probe for sensitive assay of Zoledronic acid drug in human serum and 5.486 cellular imaging. Analytica Chimica Acta, 2018, 1030, 183-193. An ultrasensitive and selective electrochemical aptasensor based on rGO-MWCNTs/Chitosan/carbon quantum dot for the detection of lysozyme. Biosensors and Bioelectronics, 2018, 115, 37-44. Flexible carbon dots composite paper for electricity generation from water vapor absorption. Journal 1108 10.3 47 of Materials Chemistry A, 2018, 6, 10639-10643. Yellow emissive carbon dots with quantum yield up to 68.6% from manganese ions. Carbon, 2018, 135, 1109 68 253-259.

#	Article	IF	Citations
1110	Liquid-phase laser ablation synthesis of graphene quantum dots from carbon nano-onions: Comparison with chemical oxidation. Journal of Colloid and Interface Science, 2018, 527, 132-140.	9.4	117
1111	Carbon quantum dots (CQDs) and Co(dmgH)2PyCl synergistically promote photocatalytic hydrogen evolution over hexagonal ZnIn2S4. Applied Surface Science, 2018, 462, 255-262.	6.1	39
1112	Current status and prospects on chemical structure driven photoluminescence behaviour of carbon dots. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2018, 37, 1-22.	11.6	147
1113	One-pot ultrafast preparation of silica quantum dots and their utilization for fabrication of luminescent mesoporous silica nanoparticles. Materials Science and Engineering C, 2018, 93, 679-685.	7.3	8
1114	The Recognition of Sweat Latent Fingerprints with Green-Emitting Carbon Dots. Nanomaterials, 2018, 8, 612.	4.1	25
1115	Cr(VI) remediation from aqueous environment through modified-TiO ₂ -mediated photocatalytic reduction. Beilstein Journal of Nanotechnology, 2018, 9, 1448-1470.	2.8	102
1116	A Facile Synthesis of Highly Nitrogen-Doped Carbon Dots for Imaging and Detection in Biological Samples. Journal of Analytical Methods in Chemistry, 2018, 2018, 1-9.	1.6	15
1117	Fluorescent and photoacoustic bifunctional probe for the detection of ascorbic acid in biological fluids, living cells and <i>in vivo</i> . Nanoscale, 2018, 10, 17834-17841.	5.6	43
1118	Carbon dots with red emission as a fluorescent and colorimeteric dual-readout probe for the detection of chromium(<scp>vi</scp>) and cysteine and its logic gate operation. Journal of Materials Chemistry B, 2018, 6, 6099-6107.	5.8	83
1119	Small Carbon Quantum Dots, Large Photosynthesis Enhancement. Journal of Agricultural and Food Chemistry, 2018, 66, 9159-9161.	5.2	29
1120	Practical Three-Minute Synthesis of Acid-Coated Fluorescent Carbon Dots with Tuneable Core Structure. Scientific Reports, 2018, 8, 12234.	3.3	46
1121	Ultrasensitive and highly selective FRET aptasensor for Hg ²⁺ measurement in fish samples using carbon dots/AuNPs as donor/acceptor platform. New Journal of Chemistry, 2018, 42, 16027-16035.	2.8	23
1122	Green preparation of versatile nitrogen-doped carbon quantum dots from watermelon juice for cell imaging, detection of Fe3+ ions and cysteine, and optical thermometry. Journal of Molecular Liquids, 2018, 269, 766-774.	4.9	114
1123	Design principles of chiral carbon nanodots help convey chirality from molecular to nanoscale level. Nature Communications, 2018, 9, 3442.	12.8	169
1124	N-doped carbon dots@layer facilitated heterostructure of TiO2 polymorphs for efficient photoelectrochemical water oxidation. Journal of the Taiwan Institute of Chemical Engineers, 2018, 93, 388-396.	5.3	14
1125	Electron-rich heterocycle induced tunable emitting fluorescence of graphitic carbon nitride quantum dots. Applied Surface Science, 2018, 462, 303-309.	6.1	24
1126	Surface PEGylation and biological imaging of fluorescent Tb3+-doped layered double hydroxides through the photoinduced RAFT polymerization. Journal of Colloid and Interface Science, 2018, 532, 641-649.	9.4	11
1127	Pristine Carbon Dots Boost the Growth of <i>Chlorella vulgaris</i> by Enhancing Photosynthesis. ACS Applied Bio Materials. 2018. 1. 894-902.	4.6	45

#	Article	IF	CITATIONS
1128	Nanostructured Graphene Oxide Dots: Synthesis, Characterization, Photoinduced Electron Transfer Studies, and Detection of Explosives/Biomolecules. ACS Omega, 2018, 3, 9096-9104.	3.5	22
1129	Photodeposition of gold nanoparticles on silica nanospheres using carbon dots as excellent electron donors. New Journal of Chemistry, 2018, 42, 14717-14720.	2.8	2
1130	Multifunctional Carbon-Based Nanomaterials: Applications in Biomolecular Imaging and Therapy. ACS Omega, 2018, 3, 9126-9145.	3.5	62
1131	Nitrogen-doped carbon nanodots for bioimaging and delivery of paclitaxel. Journal of Materials Chemistry B, 2018, 6, 5540-5548.	5.8	139
1132	Mitochondria-targeting single-layered graphene quantum dots with dual recognition sites for ATP imaging in living cells. Nanoscale, 2018, 10, 17402-17408.	5.6	51
1133	Multifunctional carbon dot for lifetime thermal sensing, nucleolus imaging and antialgal activity. Journal of Materials Chemistry B, 2018, 6, 5708-5717.	5.8	32
1134	Fullerenols Revisited: Highly Monodispersed Photoluminescent Nanomaterials as Ideal Building Blocks for Supramolecular Chemistry. Chemistry - A European Journal, 2018, 24, 16609-16619.	3.3	17
1135	Electrochemically driven phenothiazine modification of carbon nanodots. Nano Research, 2018, 11, 6405-6416.	10.4	6
1136	SERS-fluorescent encoded particles as dual-mode optical probes. Applied Materials Today, 2018, 13, 1-14.	4.3	41
1137	Carbon Quantum Dots for Bioimaging. , 2018, , .		11
1137 1138	Carbon Quantum Dots for Bioimaging. , 2018, , . Surface modification and chemical functionalization of carbon dots: a review. Mikrochimica Acta, 2018, 185, 424.	5.0	11 220
1137 1138 1139	 Carbon Quantum Dots for Bioimaging., 2018, , . Surface modification and chemical functionalization of carbon dots: a review. Mikrochimica Acta, 2018, 185, 424. High quantum yield nitrogen-doped carbon dots: green synthesis and application as "off-on― fluorescent sensors for the determination of Fe3+ and adenosine triphosphate in biological samples. Sensors and Actuators B: Chemical, 2018, 276, 82-88. 	5.0	11 220 144
1137 1138 1139 1140	Carbon Quantum Dots for Bioimaging., 2018, , . Surface modification and chemical functionalization of carbon dots: a review. Mikrochimica Acta, 2018, 185, 424. High quantum yield nitrogen-doped carbon dots: green synthesis and application as "off-on― fluorescent sensors for the determination of Fe3+ and adenosine triphosphate in biological samples. Sensors and Actuators B: Chemical, 2018, 276, 82-88. Carbonâ€Quantumâ€Dotâ€Derived Nanostructured MnO ₂ and Its Symmetrical Supercapacitor Performances. ChemistrySelect, 2018, 3, 8713-8723.	5.0 7.8 1.5	11 220 144 36
1137 1138 1139 1140 1141	 Carbon Quantum Dots for Bioimaging. , 2018, , . Surface modification and chemical functionalization of carbon dots: a review. Mikrochimica Acta, 2018, 185, 424. High quantum yield nitrogen-doped carbon dots: green synthesis and application as "off-on― fluorescent sensors for the determination of Fe3+ and adenosine triphosphate in biological samples. Sensors and Actuators B: Chemical, 2018, 276, 82-88. Carbonâ€Quantumâ€Dotâ€Derived Nanostructured MnO₂ and Its Symmetrical Supercapacitor Performances. ChemistrySelect, 2018, 3, 8713-8723. A simple, scalable approach for combining carbon dots with hexagonal nanoplates of nickel-based compounds for efficient photocatalytic reduction. Dalton Transactions, 2018, 47, 12694-12701. 	5.0 7.8 1.5 3.3	11 220 144 36 3
1137 1138 1139 1140 1141 1142	Carbon Quantum Dots for Bioimaging. , 2018, , . Surface modification and chemical functionalization of carbon dots: a review. Mikrochimica Acta, 2018, 185, 424. High quantum yield nitrogen-doped carbon dots: green synthesis and application as "off-on― fluorescent sensors for the determination of Fe3+ and adenosine triphosphate in biological samples. Sensors and Actuators B: Chemical, 2018, 276, 82-88. Carbonâ€Quantumâ€Dotâ€Derived Nanostructured MnO ₂ and Its Symmetrical Supercapacitor Performances. ChemistrySelect, 2018, 3, 8713-8723. A simple, scalable approach for combining carbon dots with hexagonal nanoplates of nickel-based compounds for efficient photocatalytic reduction. Dalton Transactions, 2018, 47, 12694-12701. Effect of porous modification on the synthesis and photocatalytic activity of graphitic carbon nitride/carbon quantum dot nanocomposite. Journal of Materials Science: Materials in Electronics, 2018, 29, 17454-17462.	5.0 7.8 1.5 3.3 2.2	11 220 144 36 3 16
1137 1138 1139 1140 1141 1142 1142	Carbon Quantum Dots for Bioimaging. , 2018, , . Surface modification and chemical functionalization of carbon dots: a review. Mikrochimica Acta, 2018, 185, 424. High quantum yield nitrogen-doped carbon dots: green synthesis and application as â€cœoff-onâ€-fluorescent sensors for the determination of Fe3+ and adenosine triphosphate in biological samples. Sensors and Actuators B: Chemical, 2018, 276, 82-88. Carbonâ€Quantumâ€Dotâ€Derived Nanostructured MnO ₂ and Its Symmetrical Supercapacitor Performances. ChemistrySelect, 2018, 3, 8713-8723. A simple, scalable approach for combining carbon dots with hexagonal nanoplates of nickel-based compounds for efficient photocatalytic reduction. Dalton Transactions, 2018, 47, 12694-12701. Effect of porous modification on the synthesis and photocatalytic activity of graphitic carbon intride/carbon quantum dot nanocomposite. Journal of Materials Science: Materials in Electronics, 2018, 29, 17454-17462. One-step hydrothermal synthesis of chiral carbon dots and their effects on mung bean plant growth. Nanoscale, 2018, 10, 12734-12742.	5.0 7.8 1.5 3.3 2.2 5.6	11 220 144 36 3 16 128
 1137 1138 1139 1140 1141 1142 1143 1144 	Carbon Quantum Dots for Bioimaging. , 2018, , . Surface modification and chemical functionalization of carbon dots: a review. Mikrochimica Acta, 2018, 185, 424. High quantum yield nitrogen-doped carbon dots: green synthesis and application as "off-onâ€-fluorescent sensors for the determination of Fe3+ and adenosine triphosphate in biological samples. Sensors and Actuators B: Chemical, 2018, 276, 82-88. Carbonâ€Quantumâ€Dotâ€Derived Nanostructured MnO ₂ and Its Symmetrical Supercapacitor Performances. ChemistrySelect, 2018, 3, 8713-8723. A simple, scalable approach for combining carbon dots with hexagonal nanoplates of nickel-based compounds for efficient photocatalytic reduction. Dalton Transactions, 2018, 47, 12694-12701. Effect of porous modification on the synthesis and photocatalytic activity of graphitic carbon nitride/carbon quantum dot nanocomposite. Journal of Materials Science: Materials in Electronics, 2018, 29, 17454-17462. One-step hydrothermal synthesis of chiral carbon dots and their effects on mung bean plant growth. Nanoscale, 2018, 10, 12734-12742. Quantum Dots for Cancer Therapy and Bioimaging. Nanomedicine and Nanotoxicology, 2018, , 89-135.	5.0 7.8 1.5 3.3 2.2 5.6	11 220 144 36 3 16 128 6

#	Article	IF	CITATIONS
1146	Solid phase extraction for the purification of violet, blue, green and yellow emitting carbon dots. Nanoscale, 2018, 10, 11293-11296.	5.6	24
1147	Synchronous and rapid preparation of lignin nanoparticles and carbon quantum dots from natural lignocellulose. Green Chemistry, 2018, 20, 3414-3419.	9.0	109
1148	One-pot synthesis and lubricity of fluorescent carbon dots applied on PCL-PEG-PCL hydrogel. Journal of Biomaterials Science, Polymer Edition, 2018, 29, 1549-1565.	3.5	11
1149	Investigation of phosphorous doping effects on polymeric carbon dots: Fluorescence, photostability, and environmental impact. Carbon, 2018, 129, 438-449.	10.3	115
1150	Improved charge extraction with N-doped carbon quantum dots in dye-sensitized solar cells. Electrochimica Acta, 2018, 282, 255-262.	5.2	35
1151	Hydrothermal Addition Polymerization for Ultrahighâ€Yield Carbonized Polymer Dots with Room Temperature Phosphorescence via Nanocomposite. Chemistry - A European Journal, 2018, 24, 11303-11308.	3.3	117
1152	Enhancement in the dielectrics of poly(o-toluidine)/single wall carbon nanotubes (POT/SWCNTS) polymer nanocomposites for electrical energy storage. Journal of Materials Science: Materials in Electronics, 2018, 29, 13241-13253.	2.2	2
1153	Malic Acid Carbon Dots: From Super-resolution Live-Cell Imaging to Highly Efficient Separation. ACS Nano, 2018, 12, 5741-5752.	14.6	135
1154	Engineering triangular carbon quantum dots with unprecedented narrow bandwidth emission for multicolored LEDs. Nature Communications, 2018, 9, 2249.	12.8	676
1155	Design of Janus-like PMMA-PEG-FA grafted fluorescent carbon dots and their nanoassemblies for leakage-free tumor theranostic application. Materials and Design, 2018, 155, 288-296.	7.0	26
1156	Synthesis of Graphene-like Films by Electrochemical Reduction of Polyhalogenated Aromatic Compounds and their Electrochemical Capacitor Applications. Langmuir, 2018, 34, 7958-7970.	3.5	16
1157	Introducing carbon dots to moderate the blue emission from zinc vanadium oxide hydroxide hydrate nanoplates. RSC Advances, 2018, 8, 20686-20691.	3.6	5
1158	Carbon quantum dot-based fluorescent vesicles and chiral hydrogels with biosurfactant and biocompatible small molecule. Soft Matter, 2018, 14, 6983-6993.	2.7	37
1159	Highâ€Performance Red/Nearâ€IR Carbon Dots as Fluorescence Probes for Tumor Imaging <i>In Vivo</i> . ChemistrySelect, 2018, 3, 6374-6381.	1.5	13
1160	Thermal carbonization in nanoscale reactors: controlled formation of carbon nanodots inside porous CaCO3 microparticles. Scientific Reports, 2018, 8, 9394.	3.3	10
1161	Solvent-dependent carbon dots and their applications in the detection of water in organic solvents. Journal of Materials Chemistry C, 2018, 6, 7527-7532.	5.5	149
1162	Carbon quantum dots embedded mesoporous silica for rapid fluorescent detection of acidic gas. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 206, 170-176.	3.9	20
1163	Surface functionalization of highly luminescent carbon nanodots from Dioscorea hispida with polyethylene glycol and branched polyethyleneimine and their in vitro study. Journal of King Saud University - Science, 2019, 31, 768-779.	3.5	22

#	Article	IF	CITATIONS
1164	Graphene/Graphene Oxide and Carbon Nanotube Based Sensors for the Determination and Removal of Bisphenols. , 2019, , 329-372.		1
1166	Photocatalytic Degradation of Organic Pollutants in Water Using Graphene Oxide Composite. , 2019, , 413-438.		20
1167	Nonâ€Metalâ€Heteroatomâ€Doped Carbon Dots: Synthesis and Properties. Chemistry - A European Journal, 2019, 25, 1165-1176.	3.3	122
1168	Functionalization of Carbon Nanostructures. , 2019, , 123-144.		25
1169	How an environmental issue could turn into useful high-valued products: The olive mill wastewater case. Science of the Total Environment, 2019, 647, 1097-1105.	8.0	16
1170	Efficient and visual monitoring of cerium (III) ions by green-fluorescent carbon dots and paper-based sensing. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 206, 240-245.	3.9	33
1171	A self-calibrating logic system and oxidase-based biosensor using Tb3+-doped carbon dots/DNA conjugates. Talanta, 2019, 191, 235-240.	5.5	22
1172	A Recyclable Optical Fiber Sensor Based on Fluorescent Carbon Dots for the Determination of Ferric Ion Concentrations. Journal of Lightwave Technology, 2019, 37, 4815-4822.	4.6	14
1173	Carbon dots: advances in nanocarbon applications. Nanoscale, 2019, 11, 19214-19224.	5.6	267
1174	Carbon dot-based inverse opal hydrogels with photoluminescence: dual-mode sensing of solvents and metal ions. Analyst, The, 2019, 144, 5802-5809.	3.5	14
1175	Ultra-long room-temperature phosphorescent carbon dots: pH sensing and dual-channel detection of tetracyclines. Nanoscale, 2019, 11, 16036-16042.	5.6	60
1176	A simple method for the preparation of multi-color carbon quantum dots by using reversible regulatory color transformation. Mikrochimica Acta, 2019, 186, 612.	5.0	10
1177	Antiâ€VEGFâ€Aptamer Modified Câ€Dots—A Hybrid Nanocomposite for Topical Treatment of Ocular Vascular Disorders. Small, 2019, 15, e1902776.	10.0	49
1178	A Novel Application of Fluorine Doped Carbon Dots Combining Vortex-Assisted Liquid-Liquid Microextraction for Determination of 4-Nitrophenol with Spectrofluorimetric Method. Journal of Fluorescence, 2019, 29, 1133-1141.	2.5	14
1179	Concentric FRET: a review of the emerging concept, theory, and applications. Methods and Applications in Fluorescence, 2019, 7, 042001.	2.3	19
1180	Citrate-based fluorophore-modified cellulose nanocrystals as a biocompatible fluorescent probe for detecting ferric ions and intracellular imaging. Carbohydrate Polymers, 2019, 224, 115198.	10.2	28
1181	Dual emission carbon dots from carotenoids: Converting a single emission to dual emission. Luminescence, 2019, 34, 790-795.	2.9	8
1182	Manipulating the Optical Properties of Carbon Dots by Fineâ€Tuning their Structural Features. ChemSusChem, 2019, 12, 4432-4441.	6.8	33

#	Article	IF	CITATIONS
1183	Synthesis and biomedical applications of graphitic carbon nitride quantum dots. Journal of Materials Chemistry B, 2019, 7, 5432-5448.	5.8	78
1184	Solvent Effects: A Signature of J- and H-Aggregate of Carbon Nanodots in Polar Solvents. Journal of Physical Chemistry A, 2019, 123, 7420-7429.	2.5	19
1185	Hierarchical carbon material of N-doped carbon quantum dots in-situ formed on N-doped carbon nanotube for efficient oxygen reduction. Applied Surface Science, 2019, 495, 143597.	6.1	37
1186	Synthesis of poly(ionic liquid)s brush-grafted carbon dots for high-performance lubricant additives of polyethylene glycol. Carbon, 2019, 154, 301-312.	10.3	63
1187	A facile synthesis of self-doped carbon dots from 2-aminoterephthalic acid and their applications. Materials Today Communications, 2019, 20, 100599.	1.9	3
1188	Wood powder-derived quantum dots for CeO2 photocatalytic and anti-counterfeit applications. Optical Materials, 2019, 96, 109302.	3.6	20
1189	Synthesis and Imaging of Biocompatible Graphdiyne Quantum Dots. ACS Applied Materials & Interfaces, 2019, 11, 32798-32807.	8.0	49
1190	Photocatalyst with a metal-free electron–hole pair double transfer mechanism for pharmaceutical and personal care product degradation. Environmental Science: Nano, 2019, 6, 3292-3306.	4.3	14
1191	Near-infrared emissive carbon dots with 33.96% emission in aqueous solution for cellular sensing and light-emitting diodes. Science Bulletin, 2019, 64, 1285-1292.	9.0	240
1192	Dual-emission carbon dots-based fluorescent probe for ratiometric sensing of Fe(III) and pyrophosphate in biological samples. Sensors and Actuators B: Chemical, 2019, 298, 126829.	7.8	53
1193	A convenient signal amplification strategy for the carcinoembryonic antigen determination based on the self-polymerization of dopamine. Journal of Solid State Electrochemistry, 2019, 23, 2447-2453.	2.5	3
1194	Morphologyâ€dependent electrochemical performance of nitrogenâ€doped carbon dots@polyaniline hybrids for supercapacitors. International Journal of Energy Research, 2019, 43, 7529.	4.5	20
1195	Heteroatom doped blue luminescent carbon dots as a nano-probe for targeted cell labeling and anticancer drug delivery vehicle. Materials Chemistry and Physics, 2019, 237, 121860.	4.0	79
1196	Environmentally friendly synthesis of photoluminescent biochar dots from waste soy residues for rapid monitoring of potentially toxic elements. RSC Advances, 2019, 9, 21653-21659.	3.6	10
1197	Preparation and application of carbon dots derived from cherry blossom flowers. Chemical Physics Letters, 2019, 731, 136586.	2.6	15
1198	Selective detection for seven kinds of antibiotics with blue emitting carbon dots and Al3+ ions. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 223, 117366.	3.9	23
1199	Nanodot-Directed Formation of Plasmonic-Fluorescent Nanohybrids toward Dual Optical Detection of Glucose and Cholesterol via Hydrogen Peroxide Sensing. ACS Applied Materials & (Interfaces, 2019, 11, 27233-27242.	8.0	44
1200	Zinc Ion-Induced Assembly of Crystalline Carbon Dots with Excellent Supercapacitor Performance. Journal of Physical Chemistry C, 2019, 123, 19421-19428.	3.1	15

#	Article	IF	CITATIONS
1201	Nitrogen-Doped Carbon Quantum Dots for Preventing Biofilm Formation and Eradicating Drug-Resistant Bacteria Infection. ACS Biomaterials Science and Engineering, 2019, 5, 4739-4749.	5.2	58
1202	Boosted photocatalytic decomposition of nocuous organic gases over tricomposites of N-doped carbon quantum dots, ZnFe2O4, and BiOBr with different junctions. Journal of Hazardous Materials, 2019, 380, 120866.	12.4	32
1203	N,S-doped carbon dots as dual-functional modifiers to boost bio-electricity generation of individually-modified bacterial cells. Nano Energy, 2019, 63, 103875.	16.0	57
1204	On–Off switching of the phosphorescence signal in a carbon dot/polyvinyl alcohol composite for multiple data encryption. Nanoscale, 2019, 11, 14250-14255.	5.6	51
1205	Nanocarbons for Biology and Medicine: Sensing, Imaging, and Drug Delivery. Chemical Reviews, 2019, 119, 9559-9656.	47.7	368
1206	Ultrabright Full Color Carbon Dots by Fine-Tuning Crystal Morphology Controllable Synthesis for Multicolor Bioimaging and Sensing. ACS Applied Materials & Interfaces, 2019, 11, 27259-27268.	8.0	29
1207	Waste Utilization of Synthetic Carbon Quantum Dots Based on Tea and Peanut Shell. Journal of Nanomaterials, 2019, 2019, 1-7.	2.7	19
1208	Solvent-controlled and solvent-dependent strategies for the synthesis of multicolor carbon dots for pH sensing and cell imaging. Journal of Materials Chemistry C, 2019, 7, 9709-9718.	5.5	71
1209	Hydrothermal Synthesis to Water-stable Luminescent Carbon Dots from Acerola Fruit for Photoluminescent Composites Preparation and its Application as Sensors. Materials Research, 2019, 22,	1.3	31
1210	Site-specific drug delivery in the skin for the localized treatment of skin diseases. Expert Opinion on Drug Delivery, 2019, 16, 847-867.	5.0	40
1211	Fluorescence "Off-On―Probe for L-Cysteine Detection Based on Nitrogen Doped Carbon Dots. Journal of Fluorescence, 2019, 29, 819-825.	2.5	16
1212	Carbon dots rooted PVDF membrane for fluorescence detection of heavy metal ions. Applied Surface Science, 2019, 494, 635-643.	6.1	30
1213	Carbon quantum dots derived from pure solvent tetrahydrofuran as a fluorescent probe to detect pH and silver ion. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 382, 111981.	3.9	19
1214	Experimental and molecular modeling of interaction of carbon quantum dots with glucose. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	2.3	10
1215	Chemical versus physical grafting of photoluminescent amino-functional carbon dots onto transparent nematic nanocellulose gels and aerogels. Cellulose, 2019, 26, 7781-7796.	4.9	15
1216	Green Hydrothermal Synthesis of N-doped Carbon Dots from Biomass Highland Barley for the Detection of Hg2+. Sensors, 2019, 19, 3169.	3.8	81
1217	Selective photothermal killing of cancer cells using LED-activated nucleus targeting fluorescent carbon dots. Nanoscale Advances, 2019, 1, 2840-2846.	4.6	30
1218	Manufacturing of a Sensitive and Selective Optical Sensor Based on Molecularly Imprinted Polymers and Green Carbon Dots Synthesized from Cedrus Plant for Trace Analysis of Propranolol. Analytical Sciences, 2019, 35, 1083-1088.	1.6	13

#	Article	IF	CITATIONS
1219	Green Luminescence and Irradiance Properties of Carbon Dots Cross-linked with Polydimethylsiloxane. Journal of Physical Chemistry C, 2019, 123, 19835-19843.	3.1	16
1220	Red-Emissive Carbon Dots for "Switch-On―Dual Function Sensing Platform Rapid Detection of Ferric Ions and <scp>I</scp> -Cysteine in Living Cells. ACS Omega, 2019, 4, 12575-12583.	3.5	40
1221	Carbon dots with molecular fluorescence and their application as a "turn-off―fluorescent probe for ferricyanide detection. Scientific Reports, 2019, 9, 10723.	3.3	53
1222	The effect of solvent polarity on emission properties of carbon dots and their uses in colorimetric sensors for water and humidity. Materials Research Bulletin, 2019, 119, 110564.	5.2	60
1223	One-step synthesis of a dual-emitting carbon dot-based ratiometric fluorescent probe for the visual assay of Pb ²⁺ and PPi and development of a paper sensor. Journal of Materials Chemistry B, 2019, 7, 5502-5509.	5.8	35
1224	A Short Report on the Polymerization of Pyrrole and Its Copolymers by Sonochemical Synthesis of Fluorescent Carbon Dots. Polymers, 2019, 11, 1240.	4.5	21
1225	Carbon dots co-doped with nitrogen and chlorine for "off-on―fluorometric determination of the activity of acetylcholinesterase and for quantification of organophosphate pesticides. Mikrochimica Acta, 2019, 186, 585.	5.0	37
1226	The structure-activity relationship of hydrophilic carbon dots regulated by the nature of precursor ionic liquids. Journal of Colloid and Interface Science, 2019, 554, 722-730.	9.4	13
1227	Hydrothermal synthesis, characterization and seed germination effects of greenâ€emitting graphene oxideâ€carbon dot composite using brown macroalgal bioâ€oil as precursor. Journal of Chemical Technology and Biotechnology, 2019, 94, 3269-3275.	3.2	15
1228	Preparation of Responsive Carbon Dots for Anticancer Drug Delivery. Methods in Molecular Biology, 2019, 2000, 227-234.	0.9	5
1229	Synthesis of Triâ€functional Coreâ€shell CuO@carbon Quantum Dots@carbon Hollow Nanospheres Heterostructure for Nonâ€enzymatic H 2 O 2 Sensing and Overall Water Splitting Applications. Electroanalysis, 2019, 31, 2120-2129.	2.9	6
1230	Quantum dots from microfluidics for nanomedical application. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2019, 11, e1567.	6.1	29
1231	Fluorescence turn-on and turn-off sensing of pesticides by carbon dot-based sensor. New Journal of Chemistry, 2019, 43, 12137-12151.	2.8	53
1232	Biomassâ€Derived Carbon Dots and Their Applications. Energy and Environmental Materials, 2019, 2, 172-192.	12.8	295
1233	Ultrasensitive fluorometric determination of iron(<scp>iii</scp>) and inositol hexaphosphate in cancerous and bacterial cells by using carbon dots with bright yellow fluorescence. Analyst, The, 2019, 144, 5010-5021.	3.5	27
1234	Carbon Quantum Dot as Electron Transporting Layer in Organic Light Emitting Diode. ChemistrySelect, 2019, 4, 7450-7454.	1.5	11
1235	Visible light photocatalytic activity of Cu, N co-doped carbon dots/Ag3PO4 nanocomposites for neutral red under green LED radiation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 578, 123643.	4.7	18
1236	Review of Carbon and Graphene Quantum Dots for Sensing. ACS Sensors, 2019, 4, 1732-1748.	7.8	660

		LEPUKI	
#	Article	IF	CITATIONS
1237	Carbon Dots for Sensing and Killing Microorganisms. Journal of Carbon Research, 2019, 5, 33.	2.7	78
1238	Construction of a ratiometric phosphorescent assay with long-lived carbon quantum dots and inorganic nanoparticles for its application in environmental and biological systems. New Journal of Chemistry, 2019, 43, 12410-12416.	2.8	7
1239	Deep-Ultraviolet Emissive Carbon Nanodots. Nano Letters, 2019, 19, 5553-5561.	9.1	56
1240	CQDs modified PbBiO2Cl nanosheets with improved molecular oxygen activation ability for photodegradation of organic contaminants. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 382, 111921.	3.9	17
1241	Redox Modifications of Carbon Dots Shape Their Optoelectronics. Journal of Physical Chemistry C, 2019, 123, 27937-27944.	3.1	19
1242	Biomass-derived Carbon Quantum Dots for Visible-Light-Induced Photocatalysis and Label-Free Detection of Fe(III) and Ascorbic acid. Scientific Reports, 2019, 9, 15084.	3.3	161
1243	Photocatalytic Degradation of Pharmaceuticals Carbamazepine, Diclofenac, and Sulfamethoxazole by Semiconductor and Carbon Materials: A Review. Molecules, 2019, 24, 3702.	3.8	92
1244	In Situ Generation of Agl Quantum Dots by the Confinement of A Supramolecular Polymer Network: A Novel Approach for Ultrasensitive Response. Chemistry - an Asian Journal, 2019, 14, 3274-3278.	3.3	11
1245	Self-Quenching Origin of Carbon Dots and the Guideline for Their Solid-State Luminescence. Journal of Physical Chemistry C, 2019, 123, 27124-27131.	3.1	36
1246	Functional Carbon Quantum Dots as Medical Countermeasures to Human Coronavirus. ACS Applied Materials & Interfaces, 2019, 11, 42964-42974.	8.0	231
1247	Use of Nitrogenâ€Ðoped Carbon Nanodots for the Photocatalytic Fluoroalkylation of Organic Compounds. Chemistry - A European Journal, 2019, 25, 16032-16036.	3.3	35
1248	Blue and green luminescent carbon nanodots from controllable fuel-rich flame reactors. Scientific Reports, 2019, 9, 14566.	3.3	33
1249	ZnO-Associated Carbon Dot-Based Fluorescent Assay for Sensitive and Selective Dopamine Detection. ACS Omega, 2019, 4, 17031-17038.	3.5	35
1250	Bottom-up synthesis of nitrogen and oxygen co-decorated carbon quantum dots with enhanced DNA plasmid expression. Colloids and Surfaces B: Biointerfaces, 2019, 184, 110543.	5.0	25
1251	Recent advances in synthetic methods and applications of photo-luminescent molecularly imprinted polymers. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2019, 41, 100315.	11.6	40
1252	Combined Surface-Enhanced Raman Scattering Emissions for High-Throughput Optical Labels on Micrometer-Scale Objects. Analytical Chemistry, 2019, 91, 13866-13873.	6.5	26
1253	A Mini Review on Carbon Quantum Dots: Preparation, Properties, and Electrocatalytic Application. Frontiers in Chemistry, 2019, 7, 671.	3.6	366
1255	Evolution and Synthesis of Carbon Dots: From Carbon Dots to Carbonized Polymer Dots. Advanced Science, 2019, 6, 1901316.	11.2	760

#	Article	IF	CITATIONS
1256	<p>Impact Of Underlying Pulmonary Diseases On Treatment Outcomes In Early-Stage Non-Small Cell Lung Cancer Treated With Definitive Radiotherapy</p> . International Journal of COPD, 2019, Volume 14, 2273-2281.	2.3	14
1257	Influence of gold nanoparticles in different aggregation states on the fluorescence of carbon dots and its application. Analytica Chimica Acta, 2019, 1091, 119-126.	5.4	18
1258	Preparation of Carbon Dots with High-Fluorescence Quantum Yield and Their Application in Dopamine Fluorescence Probe and Cellular Imaging. Journal of Nanomaterials, 2019, 2019, 1-9.	2.7	50
1259	Carbon Dots in a Matrix: Energyâ€Transferâ€Enhanced Roomâ€Temperature Red Phosphorescence. Angewandte Chemie, 2019, 131, 18614-18619.	2.0	23
1260	Excitons in Carbonic Nanostructures. Journal of Carbon Research, 2019, 5, 71.	2.7	41
1261	On the Emission Properties of Carbon Dots: Reviewing Data and Discussing Models. Journal of Carbon Research, 2019, 5, 60.	2.7	105
1262	A fluorometric method for mercury(II)Âdetection based on theÂuse of pyrophosphate-modified carbon quantum dots. Mikrochimica Acta, 2019, 186, 736.	5.0	19
1263	N-Doped Carbon Quantum Dot (NCQD)-Deposited Carbon Capsules for Synergistic Fluorescence Imaging and Photothermal Therapy of Oral Cancer. Langmuir, 2019, 35, 15320-15329.	3.5	43
1264	Fluorescent Carbon-Dots Thin Film for Fungal Detection and Bio-labeling Applications. ACS Applied Bio Materials, 2019, 2, 5829-5840.	4.6	17
1265	Luminescent carbon nanoparticles separation and purification. Advances in Colloid and Interface Science, 2019, 274, 102043.	14.7	25
1266	Aqueous Carbon Quantum Dot-Embedded PC60-PC ₆₁ BM Nanospheres for Ecological Fluorescent Printing: Contrasting Fluorescence Resonance Energy-Transfer Signals between Watermelon-like and Random Morphologies. Journal of Physical Chemistry Letters, 2019, 10, 6525-6535.	4.6	17
1267	Laser-driven nanomaterials and laser-enabled nanofabrication for industrial applications. , 2019, , 181-203.		15
1268	N-Cdots-decorated TiO2(B)/anatase microspheres with high photocatalytic performance in visible light. International Journal of Hydrogen Energy, 2019, 44, 31129-31140.	7.1	10
1269	Polyol-Mediated Synthesis of Nitrogen-Containing Carbon-Dots from Tetracyanobenzene with Intense Red Fluorescence. Nanomaterials, 2019, 9, 1470.	4.1	3
1270	Carbon Dots in a Matrix: Energyâ€Transferâ€Enhanced Roomâ€Temperature Red Phosphorescence. Angewandte Chemie - International Edition, 2019, 58, 18443-18448.	13.8	125
1271	Preparation and Characterization of Bacterial Cellulose-Carbon Dot Hybrid Nanopaper for Potential Sensing Applications. Applied Sciences (Switzerland), 2019, 9, 107.	2.5	7
1272	Small molecules derived carbon dots: synthesis and applications in sensing, catalysis, imaging, and biomedicine. Journal of Nanobiotechnology, 2019, 17, 92.	9.1	324
1273	Hydrophobic Carbon Dots from Aliphatic Compounds with One Terminal Functional Group. Journal of Physical Chemistry C, 2019, 123, 22447-22456.	3.1	19

#	Article	IF	CITATIONS
1274	Highly selective and sensitive detection of amaranth by using carbon dots-based nanosensor. RSC Advances, 2019, 9, 26315-26320.	3.6	25
1275	Study of nanocarbon thin-film field-electron emitters by Raman spectroscopy. Journal of Physics: Conference Series, 2019, 1236, 012005.	0.4	1
1276	A review on photocatalytic: Modification of material and the application to removal of dye in wastewater. Journal of Physics: Conference Series, 2019, 1277, 012006.	0.4	3
1277	An Ultrasensitive and Highly Selective Electrochemical Aptasensor for Environmental Endocrine Disrupter Bisphenol A Determination Using Gold Nanoparticles/Nitrogen, Sulfur, and Phosphorus Co-Doped Carbon Dots as Signal Enhancer and Its Electrochemical Kinetic Research. Journal of the Electrochemical Society, 2019, 166, B1161-B1170.	2.9	18
1278	Porous Fe ₂ O ₃ Modified by Nitrogen-Doped Carbon Quantum Dots/Reduced Graphene Oxide Composite Aerogel as a High-Capacity and High-Rate Anode Material for Alkaline Aqueous Batteries. ACS Applied Materials & Interfaces, 2019, 11, 36970-36984.	8.0	96
1279	A convenient and universal platform for sensing environmental nitro-aromatic explosives based on amphiphilic carbon dots. Environmental Research, 2019, 177, 108621.	7.5	29
1280	Hydrothermal synthesis of green fluorescent nitrogen doped carbon dots for the detection of nitrite and multicolor cellular imaging. Analytica Chimica Acta, 2019, 1090, 133-142.	5.4	64
1281	Highly Fluorescent Green Carbon Dots as a Fluorescent Probe for Detecting Mineral Water pH. Sensors, 2019, 19, 3801.	3.8	33
1282	Strategy for Activating Room-Temperature Phosphorescence of Carbon Dots in Aqueous Environments. Chemistry of Materials, 2019, 31, 7979-7986.	6.7	112
1283	Carbon-Based Nanomaterials in Sensors for Food Safety. Nanomaterials, 2019, 9, 1330.	4.1	59
1284	Regulating the properties of carbon dots via a solvent-involved molecule fusion strategy for improved sensing selectivity. Analytica Chimica Acta, 2019, 1088, 107-115.	5.4	21
1285	Preparation, functionalization and characterization of engineered carbon nanodots. Nature Protocols, 2019, 14, 2931-2953.	12.0	96
1286	Insight into the hybrid luminescence showed by carbon dots and molecular fluorophores in solution. Physical Chemistry Chemical Physics, 2019, 21, 20919-20926.	2.8	40
1287	Three-dimensional nitrogen and phosphorus co-doped carbon quantum dots/reduced graphene oxide composite aerogels with a hierarchical porous structure as superior electrode materials for supercapacitors. Journal of Materials Chemistry A, 2019, 7, 26311-26325.	10.3	175
1288	A review on tungsten-trioxide-based photoanodes for water oxidation. Chinese Journal of Catalysis, 2019, 40, 1408-1420.	14.0	41
1289	Sensing strategy based on Carbon Quantum Dots obtained from riboflavin for the identification of pesticides. Sensors and Actuators B: Chemical, 2019, 301, 127149.	7.8	51
1290	Fluorescence ON-OFF switching, Boolean logic gates like behavior of carbon quantum dots and highly sensitive bovine serum albumin sensing. Journal of Applied Physics, 2019, 126, 084503.	2.5	3
1291	Biotoxicity of degradable carbon dots towards microalgae <i>Chlorella vulgaris</i> . Environmental Science: Nano, 2019, 6, 3316-3323.	4.3	28
#	Article	IF	CITATIONS
------	--	-----	-----------
1292	Copper-Doped Carbon Dots for Optical Bioimaging and Photodynamic Therapy. Inorganic Chemistry, 2019, 58, 13394-13402.	4.0	87
1293	Hybridizing engineering strategy of non-lacunary (nBu4N)4W10O32 by carbon quantum dot with remarkably enhanced visible-light-catalytic oxidation performance. Applied Catalysis A: General, 2019, 587, 117261.	4.3	13
1294	Confined synthesis of phosphorus, nitrogen co-doped carbon dots with green luminescence and anion recognition performance. Polyhedron, 2019, 171, 389-395.	2.2	23
1295	Preparation of nitrogen-doped carbon dots with a high fluorescence quantum yield for the highly sensitive detection of Cu2+ ions, drawing anti-counterfeit patterns and imaging live cells. New Carbon Materials, 2019, 34, 390-402.	6.1	36
1296	In Situ Green Synthesis of Nitrogen-Doped Carbon-Dot-Based Room-Temperature Phosphorescent Materials for Visual Iron Ion Detection. ACS Sustainable Chemistry and Engineering, 2019, 7, 18801-18809.	6.7	52
1297	Intracellular ratiometric temperature sensing using fluorescent carbon dots. Nanoscale Advances, 2019, 1, 105-113.	4.6	82
1298	Biomolecule-derived quantum dots for sustainable optoelectronics. Nanoscale Advances, 2019, 1, 913-936.	4.6	42
1299	Green synthesis of nitrogen and sulfur co-doped carbon dots from <i>Allium fistulosum</i> for cell imaging. New Journal of Chemistry, 2019, 43, 718-723.	2.8	65
1300	An insight into the molecular and surface state photoluminescence of carbon dots revealed through solvent-induced modulations in their excitation wavelength dependent emission properties. Photochemical and Photobiological Sciences, 2019, 18, 110-119.	2.9	46
1301	Dopamine integrated B, N, S doped CQD nanoprobe for rapid and selective detection of fluoride ion. Analytica Chimica Acta, 2019, 1058, 146-154.	5.4	34
1302	Carbon dots produced <i>via</i> space-confined vacuum heating: maintaining efficient luminescence in both dispersed and aggregated states. Nanoscale Horizons, 2019, 4, 388-395.	8.0	82
1303	Nitrogen-doped carbon dots derived from electrospun carbon nanofibers for Cu(ii) ion sensing. New Journal of Chemistry, 2019, 43, 1812-1817.	2.8	26
1304	A rational strategy to develop a boron nitride quantum dot-based molecular logic gate and fluorescent assay of alkaline phosphatase activity. Journal of Materials Chemistry B, 2019, 7, 897-902.	5.8	27
1305	Facile <i>in situ</i> synthesis of a carbon quantum dot/graphene heterostructure as an efficient metal-free electrocatalyst for overall water splitting. Chemical Communications, 2019, 55, 1635-1638.	4.1	70
1306	Designing highly crystalline multifunctional multicolor-luminescence nanosystem for tracking breast cancer heterogeneity. Nanoscale Advances, 2019, 1, 1021-1034.	4.6	6
1307	Photoluminescence enhancement <i>via</i> microwave irradiation of carbon quantum dots derived from solvothermal synthesis of <scp>l</scp> -arginine. New Journal of Chemistry, 2019, 43, 689-695.	2.8	40
1308	Full color carbon dots through surface engineering for constructing white light-emitting diodes. Journal of Materials Chemistry C, 2019, 7, 2212-2218.	5.5	69
1309	Carbonâ€Derived Supports for Palladium Nanoparticles as Catalysts for Carbonâ€Carbon Bonds Formation. ChemCatChem, 2019, 11, 1792-1823.	3.7	54

		CITATION REPORT		
#	Article		IF	CITATIONS
1310	Carbon Quantum Dots in Nanobiotechnology. Advanced Structured Materials, 2019, ,	145-179.	0.5	17
1311	Dual role of BSA for synthesis of MnO ₂ nanoparticles and their mediated turn-on probe for glutathione determination and cancer cell recognition. Analyst, The, 1988-1994.	fluorescent 2019, 144,	3.5	43
1312	One-pot synthesis of carbon dots co-doped with N and S: high quantum yield governed state and fluorescence detection of Ag+. Molecular Physics, 2019, 117, 2500-2510.	d by molecular	1.7	8
1314	Carbon-quantum dots derived from denatured milk for efficient chromium-ion sensing supercapacitor applications. Materials Letters, 2019, 241, 156-159.	and	2.6	66
1315	One-step fabrication of boronic-acid-functionalized carbon dots for the detection of si Talanta, 2019, 197, 548-552.	alic acid.	5.5	61
1316	Conjugated Carbon Nitride as an Emerging Luminescent Material: Quantum Dots, Thir Applications in Imaging, Sensing, Optoelectronic Devices and Photoelectrochemistry. ChemPhotoChem, 2019, 3, 170-179.	n Films and Their	3.0	38
1317	An Injectable Selfâ€Healing Multifluorescent Hydrogel Formed by Engineered Coiledâ€ Quantum Dots. Macromolecular Materials and Engineering, 2019, 304, 1800658.	Coil Polypeptide and	3.6	2
1318	Tunable ternary nanocomposite prepared by electrodeposition for biosensing of centra reversible acetyl cholinesterase inhibitor donepezil hydrochloride in real samples. Collc Surfaces A: Physicochemical and Engineering Aspects, 2019, 567, 76-85.	ally acting vids and	4.7	27
1319	Investigating the effects of amino acid-based surface modification of carbon nanopart kinetics of insulin amyloid formation. Colloids and Surfaces B: Biointerfaces, 2019, 176	icles on the 5, 471-479.	5.0	18
1320	Facile synthesis of fluorescent carbon dots from Prunus cerasifera fruits for fluorescen ion detection and cell imaging. Spectrochimica Acta - Part A: Molecular and Biomolecu Spectroscopy, 2019, 213, 281-287.	t ink, Fe3+ lar	3.9	56
1321	Influence of carbonization conditions on luminescence and gene delivery properties of nitrogen-doped carbon dots. RSC Advances, 2019, 9, 3493-3502.	:	3.6	9
1322	Nanomaterials for Advanced Biological Applications. Advanced Structured Materials, 2	019,,.	0.5	10
1323	Carbon dot festooned and surface passivated graphene-reinforced chitosan construct tumor-targeted delivery of TNF-α gene. International Journal of Biological Macromolec 628-636.	for ules, 2019, 127,	7.5	21
1324	Multifunctional N,S co-doped carbon dots for sensitive probing of temperature, ferric i methotrexate. Analytical and Bioanalytical Chemistry, 2019, 411, 1647-1657.	on, and	3.7	45
1325	Understanding the Citric Acid–Urea Co–Directed Microwave Assisted Synthesis a Modulation of Fluorescent Nitrogen Doped Carbon Dots: A Turn On Assay for Ascorbic ChemistrySelect, 2019, 4, 816-824.	nd Ferric Ion 2 Acid.	1.5	8
1326	A conjugated carbon-dot–tyrosinase bioprobe for highly selective and sensitive dete dopamine. Analyst, The, 2019, 144, 468-473.	ction of	3.5	50
1327	Photo-triggered conversion of hydrophilic fluorescent biomimetic nanostructures for c Chemical Communications, 2019, 55, 596-599.	ell imaging.	4.1	6
1328	Recent advances in the Suzuki–Miyaura cross-coupling reaction using efficient catal eco-friendly media. Green Chemistry, 2019, 21, 381-405.	ysts in	9.0	323

#	Article	IF	CITATIONS
1329	Interfacial engineering of carbon dots with benzenediboronic acid for fluorescent biosensing. Nanoscale Advances, 2019, 1, 765-771.	4.6	18
1330	Blue, green, and red full-color ultralong afterglow in nitrogen-doped carbon dots. Nanoscale, 2019, 11, 6584-6590.	5.6	176
1331	<p> The dominant role of surface functionalization in carbon dots' photo-activated antibacterial activity</p> . International Journal of Nanomedicine, 2019, Volume 14, 2655-2665.	6.7	69
1332	Tris(2,2'â€bipyridyl)ruthenium(II)â€Nanomaterial Coâ€Reactant Electrochemiluminescence. ChemElectroChem, 2019, 6, 3878-3884.	3.4	20
1333	Economical and green synthesis of graphene and carbon quantum dots from agricultural waste. Materials Research Express, 2019, 6, 0850g8.	1.6	47
1334	Carbon Quantum Dot Assisted Adsorption of Graphene Oxide to the Oil–Water Interface for Copper Sensing Emulsions. Advanced Materials Interfaces, 2019, 6, 1900392.	3.7	9
1335	Fabrication of carbon quantum dots/TiO2/Fe2O3 composites and enhancement of photocatalytic activity under visible light. Chemical Physics Letters, 2019, 730, 391-398.	2.6	53
1336	Remarkable synergetic effect by in-situ covalent hybridization of carbon dots with graphene oxide and carboxylated acrylonitrile butadiene rubber. Polymer, 2019, 175, 283-293.	3.8	17
1337	Fluorescent Carbon Dots from Nerium oleander: Effects of Physical Conditions and the Extract Types. Journal of Fluorescence, 2019, 29, 853-864.	2.5	6
1338	Carbon-based quantum particles: an electroanalytical and biomedical perspective. Chemical Society Reviews, 2019, 48, 4281-4316.	38.1	187
1339	Nanomaterials Properties of Environmental Interest and How to Assess Them. , 2019, , 45-105.		2
1340	Cost-effective and facile fluorescent probes for label-free recognition of chlorpromazine hydrochloride and logic gate operation. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 382, 111918.	3.9	17
1341	Carbon Nanodots for Capacitor Electrodes. Trends in Chemistry, 2019, 1, 858-868.	8.5	30
1342	Fluorescent carbon dots functionalization. Advances in Colloid and Interface Science, 2019, 270, 165-190.	14.7	181
1343	Single precursor-based luminescent nitrogen-doped carbon dots and their application for iron (III) sensing. Arabian Journal of Chemistry, 2019, 12, 1083-1091.	4.9	35
1344	Facile and green synthesis of highly fluorescent nitrogen-doped carbon dots from jackfruit seeds and its applications towards the fluorimetric detection of Au ³⁺ ions in aqueous medium and in <i>in vitro</i>	2.8	53
1345	Quantitative Analysis of Surface Sites on Carbon Dots and Their Interaction with Metal Ions by a Potentiometric Titration Method. Analytical Chemistry, 2019, 91, 9690-9697.	6.5	19
1346	Controllable Formation of Luminescent Carbon Quantum Dots Mediated by the Fano Resonances Formed in Oligomers of Gold Nanoparticles. Advanced Materials, 2019, 31, e1901371.	21.0	15

#	Article	IF	CITATIONS
1347	Coal tar pitch as natural carbon quantum dots decorated on TiO2 for visible light photodegradation of rhodamine B. Carbon, 2019, 152, 284-294.	10.3	75
1348	Recent Trends in the Synthesis of Carbon Nanomaterials. , 2019, , 519-555.		1
1350	Facile microwave synthesis of carbon dots powder with enhanced solid-state fluorescence and its applications in rapid fingerprints detection and white-light-emitting diodes. Dyes and Pigments, 2019, 170, 107623.	3.7	47
1351	Construction of biomass carbon dots based fluorescence sensors and their applications in chemical and biological analysis. TrAC - Trends in Analytical Chemistry, 2019, 118, 315-337.	11.4	127
1352	2,4-Dinitrobenzenesulfonate-functionalized carbon dots as a turn-on fluorescent probe for imaging of biothiols in living cells. Mikrochimica Acta, 2019, 186, 402.	5.0	25
1353	N-doped carbon dots sensor for selective detection of hydroxylamine hydrochloride. Optical Materials, 2019, 94, 121-129.	3.6	15
1354	Microwave-assisted synthesis of carbon dots and their applications. Journal of Materials Chemistry C, 2019, 7, 7175-7195.	5.5	270
1355	Surface modification of carbon quantum dots by fluorescein derivative for dual-emission ratiometric fluorescent hypochlorite biosensing and in vivo bioimaging. Sensors and Actuators B: Chemical, 2019, 296, 126638.	7.8	37
1356	One-step synthesized fluorescent nitrogen doped carbon dots from thymidine for Cr (VI) detection in water. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 222, 117165.	3.9	45
1357	An LTCC monolithic microreactor for the synthesis of carbon dots with photoluminescence imaging of the reaction progress. Sensors and Actuators B: Chemical, 2019, 296, 126613.	7.8	30
1358	Surface charge controlled nucleoli selective staining with nanoscale carbon dots. PLoS ONE, 2019, 14, e0216230.	2.5	24
1359	Hole-extraction and photostability enhancement in highly efficient inverted perovskite solar cells through carbon dot-based hybrid material. Nano Energy, 2019, 62, 781-790.	16.0	83
1360	Solution Processed Highly Responsive UV Photodetectors from Carbon Nanodot/Silicon Heterojunctions. ACS Applied Nano Materials, 2019, 2, 3971-3976.	5.0	18
1361	Farâ€Red to Nearâ€Infrared Carbon Dots: Preparation and Applications in Biotechnology. Small, 2019, 15, e1901507.	10.0	169
1362	Unlocking the door to highly efficient Ag-based nanoparticles catalysts for NaBH4-assisted nitrophenol reduction. Nano Research, 2019, 12, 2407-2436.	10.4	113
1363	Double Magnetic Separation-assisted Fluorescence Method for Sensitive Detection of Ochratoxin A. Chemical Research in Chinese Universities, 2019, 35, 382-389.	2.6	5
1364	Red carbon dots: Optical property regulations and applications. Materials Today, 2019, 30, 52-79.	14.2	221
1365	Environmentally Friendly Supercapacitor Based on Carbon Dots from Durian Peel as an Electrode. Key Engineering Materials, 0, 803, 115-119.	0.4	16

#	Article	IF	CITATIONS
1366	Carbon dots-based fluorescent turn off/on sensor for highly selective and sensitive detection of Hg2+ and biothiols. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 222, 117260.	3.9	33
1367	Carbon dots for energy conversion applications. Journal of Applied Physics, 2019, 125, .	2.5	46
1368	Hotâ€Tailoring of Carbon Nitride Dots with Redshifted Photoluminescence for Visual Double Text Encryption and Bioimaging. Chemistry - A European Journal, 2019, 25, 10188-10196.	3.3	31
1369	Dual-mode colorimetric and fluorometric probe for ferric ion detection using N-doped carbon dots prepared via hydrothermal synthesis followed by microwave irradiation. Optical Materials, 2019, 94, 330-336.	3.6	44
1370	Next-Generation Multifunctional Carbon–Metal Nanohybrids for Energy and Environmental Applications. Environmental Science & Technology, 2019, 53, 7265-7287.	10.0	109
1371	Hydrothermal synthesis of carbon nanodots from bovine gelatin and PHM3 microalgae strain for anticancer and bioimaging applications. Nanoscale Advances, 2019, 1, 2924-2936.	4.6	37
1372	Recent Advances in Carbonaceous Photocatalysts with Enhanced Photocatalytic Performances: A Mini Review. Materials, 2019, 12, 1916.	2.9	93
1373	Multifunctional sensing applications of biocompatible N-doped carbon dots as pH and Fe3+ sensors. Microchemical Journal, 2019, 149, 103981.	4.5	46
1374	Carbon quantum dots/Ag sensitized TiO2 nanotube film for applications in photocathodic protection. Journal of Alloys and Compounds, 2019, 797, 912-921.	5.5	32
1375	High photoluminescent nitrogen and zinc doped carbon dots for sensing Fe3+ ions and temperature. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 222, 117141.	3.9	49
1376	Pyrene-derivatized highly fluorescent carbon dots for the sensitive and selective determination of ferric ions and dopamine. Dyes and Pigments, 2019, 170, 107574.	3.7	51
1377	Using green emitting pH-responsive nanogels to report environmental changes within hydrogels: a nanoprobe for versatile sensing. Nanoscale, 2019, 11, 11484-11495.	5.6	10
1378	Insight into the DNA adsorption on nitrogen-doped positive carbon dots. RSC Advances, 2019, 9, 12462-12469.	3.6	16
1379	A yellow-emissive carbon nanodot-based ratiometric fluorescent nanosensor for visualization of exogenous and endogenous hydroxyl radicals in the mitochondria of live cells. Journal of Materials Chemistry B, 2019, 7, 3737-3744.	5.8	33
1380	Fluorescence immunoassay based on the inner-filter effect of carbon dots for highly sensitive amantadine detection in foodstuffs. Food Chemistry, 2019, 294, 347-354.	8.2	57
1381	Carbon-Dots-Derived 3D Highly Nitrogen-Doped Porous Carbon Framework for High-Performance Lithium Ion Storage. ACS Sustainable Chemistry and Engineering, 2019, 7, 9848-9856.	6.7	42
1382	Easily synthesized carbon dots for determination of mercury(II) in water samples. Heliyon, 2019, 5, e01596.	3.2	35
1383	Fluorescence Based Platform to Discriminate Protein Using Carbon Quantum Dots. ChemistrySelect, 2019, 4, 5619-5627.	1.5	13

#	Article	IF	CITATIONS
1384	Conjugated carbon quantum dots: Potent nano-antibiotic for intracellular pathogens. Journal of Colloid and Interface Science, 2019, 552, 378-387.	9.4	42
1385	Persulfate activation towards organic decomposition and Cr(VI) reduction achieved by a novel CQDs-TiO2â°x/rGO nanocomposite. Chemical Engineering Journal, 2019, 373, 238-250.	12.7	95
1386	Single-step synthesis of highly photoluminescent carbon dots for rapid detection of Hg2+ with excellent sensitivity. Journal of Colloid and Interface Science, 2019, 551, 101-110.	9.4	93
1387	Surface modified graphene/SnO2 nanocomposite from carbon black as an efficient disinfectant against Pseudomonas aeruginosa. Materials Chemistry and Physics, 2019, 232, 137-144.	4.0	18
1388	Preparation of mesoporous silica/carbon quantum dots composite and its application in selective and sensitive Hg2+ detection. Microporous and Mesoporous Materials, 2019, 284, 378-384.	4.4	34
1389	Lowering the detection limit towards nanomolar mercury ion detection <i>via</i> surface modification of N-doped carbon quantum dots. New Journal of Chemistry, 2019, 43, 8677-8683.	2.8	41
1390	Antidepressant drug-protein interactions studied by spectroscopic methods based on fluorescent carbon quantum dots. Heliyon, 2019, 5, e01631.	3.2	7
1391	In situ growth of carbon dots on TiO2 nanotube arrays for PEC enzyme biosensors with visible light response. RSC Advances, 2019, 9, 15084-15091.	3.6	12
1392	A Facile Microwave-Assisted Synthesis of Carbon Dots and Their Application as Sensitizers in Nanocrystalline TiO ₂ Solar Cells. Journal of Physics: Conference Series, 2019, 1204, 012093.	0.4	8
1393	Advancement in science and technology of carbon dot-polymer hybrid composites: a review. Functional Composites and Structures, 2019, 1, 022001.	3.4	99
1394	A Facile Approach to Solid-State White Emissive Carbon Dots and Their Application in UV-Excitable and Single-Component-Based White LEDs. Nanomaterials, 2019, 9, 725.	4.1	25
1395	Amperometric sensing of hydrazine by using single gold nanopore electrodes filled with Prussian Blue and coated with polypyrrole and carbon dots. Mikrochimica Acta, 2019, 186, 350.	5.0	17
1396	Dual-interface modification effect of Carbon Quantum Dots on the performance of Polymer Solar Cells. Journal of Materials Science: Materials in Electronics, 2019, 30, 11063-11069.	2.2	2
1397	Carbon quantum dots: an emerging material for optoelectronic applications. Journal of Materials Chemistry C, 2019, 7, 6820-6835.	5.5	225
1398	Maltase Decorated by Chiral Carbon Dots with Inhibited Enzyme Activity for Glucose Level Control. Small, 2019, 15, e1901512.	10.0	56
1399	Template-Modulated Afterglow of Carbon Dots in Zeolites: Room-Temperature Phosphorescence and Thermally Activated Delayed Fluorescence. , 2019, 1, 58-63.		92
1400	A novel enhanced fluorescence method based on multifunctional carbon dots for specific detection of Hg2+ in complex samples. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 220, 117109.	3.9	29
1401	Synthesis of luminescent carbon quantum dots by microplasma process. Chemical Engineering and Processing: Process Intensification, 2019, 140, 29-35.	3.6	99

#	Article	IF	CITATIONS
1402	Nuclear-targeted of TAT peptide-conjugated carbon dots for both one-and two-photon fluorescence imaging. Colloids and Surfaces B: Biointerfaces, 2019, 180, 449-456.	5.0	17
1403	A facile approach to synthesize carbon quantum dots with pH-dependent properties. Dyes and Pigments, 2019, 169, 73-80.	3.7	31
1404	Cotransformation of Carbon Dots and Contaminant under Light in Aqueous Solutions: A Mechanistic Study. Environmental Science & Technology, 2019, 53, 6235-6244.	10.0	33
1405	Green Synthesis of Highly Luminescent Carbon Quantum Dots from Lemon Juice. Journal of Nanotechnology, 2019, 2019, 1-9.	3.4	104
1406	Recent Advancements in Doped/Co-Doped Carbon Quantum Dots for Multi-Potential Applications. Journal of Carbon Research, 2019, 5, 24.	2.7	42
1407	Temperature-Dependence of Solvent-Induced Stokes Shift and Fluorescence Tunability in Carbon Nanodots. Journal of Carbon Research, 2019, 5, 20.	2.7	2
1408	Amygdalin-Functionalized Carbon Quantum Dots for Probing β-Glucosidase Activity for Cancer Diagnosis and Therapeutics. ACS Biomaterials Science and Engineering, 2019, 5, 3089-3099.	5.2	36
1409	Self-assembly carbon dots for powerful solar water evaporation. Carbon, 2019, 149, 556-563.	10.3	109
1410	Construction of Î ² -cyclodextrin derived CDs-coupled block copolymer micelles loaded with CdSe/ZnS QDs via host-guest interaction for ratiometric fluorescence sensing of metal ions. Dyes and Pigments, 2019, 168, 369-380.	3.7	12
1411	Chemical structure and in vitro cellular uptake of luminescent carbon quantum dots prepared by solvothermal and microwave assisted techniques. Journal of Colloid and Interface Science, 2019, 549, 150-161.	9.4	26
1412	A ratiometric fluorescence and light scattering sensing platform based on Cu-doped carbon dots for tryptophan and Fe(III). Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 219, 248-256.	3.9	34
1413	Tuning the photoluminescence property of carbon dots by ultraviolet light irradiation. RSC Advances, 2019, 9, 12732-12736.	3.6	7
1414	N, S Co-Doped Carbon Quantum Dots for the Selective and Sensitive Fluorescent Determination of <i>N</i> -Acetyl- <scp>l</scp> -Cysteine in Pharmaceutical Products and Urine. Analytical Letters, 2019, 52, 1711-1731.	1.8	17
1415	Enhanced photoresponse of monolayer MoS ₂ through hybridization with carbon quantum dots as efficient photosensitizer. 2D Materials, 2019, 6, 035025.	4.4	24
1416	MoO ₃ /Carbon Dots Composites for Liâ€kon Battery Anodes. ChemNanoMat, 2019, 5, 921-925.	2.8	25
1417	Enhanced RuBisCO activity and promoted dicotyledons growth with degradable carbon dots. Nano Research, 2019, 12, 1585-1593.	10.4	73
1418	Color-tunable carbon dots via control the degree of self-assembly in solution at different concentration. Journal of Luminescence, 2019, 212, 69-75.	3.1	14
1419	Emerging R&D on membranes and systems for water reuse and desalination. Chinese Journal of Chemical Engineering, 2019, 27, 1578-1585.	3.5	27

#	Article	IF	CITATIONS
1420	Blue-fluorescent and biocompatible carbon dots derived from abundant low-quality coals. Journal of Photochemistry and Photobiology B: Biology, 2019, 195, 1-11.	3.8	67
1421	One-Pot Synthesis of Photoluminescent Self-Assembled Carbon Dot Monolayer Films. Journal of Nanomaterials, 2019, 2019, 1-8.	2.7	1
1422	Green synthesis of fluorescent carbon dots for determination of glucose in biofluids using a paper platform. Talanta, 2019, 201, 503-510.	5.5	35
1423	Recent Advances in Synthesis, Optical Properties, and Biomedical Applications of Carbon Dots. ACS Applied Bio Materials, 2019, 2, 2317-2338.	4.6	226
1424	Laser wavelength modulated pulsed laser ablation for selective and efficient production of graphene quantum dots. RSC Advances, 2019, 9, 13658-13663.	3.6	30
1425	Spectroelectrochemistry of Quantum Dots. Israel Journal of Chemistry, 2019, 59, 679-694.	2.3	9
1426	Multimodal Carbon Dots as Biosensors. , 2019, , 377-400.		4
1427	Sacrificing ionic liquid-assisted anchoring of carbonized polymer dots on perovskite-like PbBiO2Br for robust CO2 photoreduction. Applied Catalysis B: Environmental, 2019, 254, 551-559.	20.2	91
1428	Ultrasmall Quantum Dots with Broadâ€ s pectrum Metal Doping Ability for Trimodal Molecular Imaging. Advanced Functional Materials, 2019, 29, 1901671.	14.9	16
1429	High density sulfonated magnetic carbon quantum dots as a photo enhanced, photo-induced proton generation, and photo switchable solid acid catalyst for room temperature one-pot reaction. Research on Chemical Intermediates, 2019, 45, 3929-3942.	2.7	8
1430	Manganese-doped carbon quantum dots for fluorometric and magnetic resonance (dual mode) bioimaging and biosensing. Mikrochimica Acta, 2019, 186, 315.	5.0	43
1431	Electrochemical sensing based on carbon nanoparticles: A review. Sensors and Actuators B: Chemical, 2019, 293, 183-209.	7.8	204
1432	Pheophytin Derived Nearâ€Infraredâ€Light Responsive Carbon Dot Assembly as a New Phototheranotic Agent for Bioimaging and Photodynamic Therapy. Chemistry - an Asian Journal, 2019, 14, 2162-2168.	3.3	47
1433	Switching Carbon Nanodots from Single Emission to Dual Emission by One-Step Electrochemical Tailoring in Alkaline Alcohols: Implications for Sensing and Bioimaging. ACS Applied Nano Materials, 2019, 2, 2776-2784.	5.0	8
1434	Green Fabrication of Carbon Dots upon Photoirradiation and Their Application in Cell Imaging. ACS Applied Nano Materials, 2019, 2, 3404-3413.	5.0	9
1435	Fluorine and Nitrogen Co-Doped Carbon Dot Complexation with Fe(III) as a <i>T</i> ₁ Contrast Agent for Magnetic Resonance Imaging. ACS Applied Materials & Interfaces, 2019, 11, 18203-18212.	8.0	39
1436	Synthesis of Au@nitrogen-doped carbon quantum dots@Pt core-shell structure nanoparticles for enhanced methanol electrooxidation. Journal of Alloys and Compounds, 2019, 793, 635-645.	5.5	23
1437	Nucleotide-derived theranostic nanodots with intrinsic fluorescence and singlet oxygen generation for bioimaging and photodynamic therapy. Nanoscale Advances, 2019, 1, 2250-2257.	4.6	30

# 1438	ARTICLE UV lightâ€ŧunable fluorescent inks and polymer hydrogel films based on carbon nanodots and lanthanide for enhancing antiâ€counterfeiting. Luminescence, 2019, 34, 437-443.	IF 2.9	CITATIONS 27
1439	Electrochemical investigations of Nb2O5/carbon materials from filter paper, microfibrillated and bacterial celluloses by sustainable reductive mineralization. Electrochimica Acta, 2019, 313, 478-487.	5.2	6
1440	Morphological and Interfacial Engineering of Cobalt-Based Electrocatalysts by Carbon Dots for Enhanced Water Splitting. ACS Sustainable Chemistry and Engineering, 2019, 7, 7047-7057.	6.7	65
1441	Facile and High-Yield Synthesis of Carbon Quantum Dots from Biomass-Derived Carbons at Mild Condition. ACS Sustainable Chemistry and Engineering, 2019, 7, 7833-7843.	6.7	149
1442	Yellow fluorescent graphene quantum dots as a phosphor for white tunable light-emitting diodes. RSC Advances, 2019, 9, 9301-9307.	3.6	27
1443	Preparation of N-doped yellow carbon dots and N, P co-doped red carbon dots for bioimaging and photodynamic therapy of tumors. New Journal of Chemistry, 2019, 43, 6332-6342.	2.8	101
1444	3,4-Hydroxypyridinone-modified carbon quantum dot as a highly sensitive and selective fluorescent probe for the rapid detection of uranyl ions. Environmental Science: Nano, 2019, 6, 1457-1465.	4.3	40
1445	Fluorescent pH nanosensors: Design strategies and applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2019, 39, 76-141.	11.6	85
1446	Fluorescent Carbon Dots Ink for Gravure Printing. Journal of Carbon Research, 2019, 5, 12.	2.7	6
1447	Boswellia ovalifoliolata bark extract derived carbon dots for selective fluorescent sensing of Fe3+. Journal of Environmental Chemical Engineering, 2019, 7, 103013.	6.7	38
1448	Metallic Ni ₃ N Quantum Dots as a Synergistic Promoter for NiO Nanosheet toward Efficient Oxygen Reduction Electrocatalysis. Journal of Physical Chemistry C, 2019, 123, 8633-8639.	3.1	19
1449	Dual responsive specifically labelled carbogenic fluorescent nanodots for super resolution and electron microscopy. Nanoscale, 2019, 11, 6561-6565.	5.6	10
1450	Nitrogen-doped carbon dots encapsulated in the mesoporous channels of SBA-15 with solid-state fluorescence and excellent stability. Nanoscale, 2019, 11, 7247-7255.	5.6	34
1451	Carbon nanodot-based heterostructures for improving the charge separation and the photocurrent generation. Nanoscale, 2019, 11, 7414-7423.	5.6	22
1452	Boron Doped Carbon Dots with Unusually High Photoluminescence Quantum Yield for Ratiometric Intracellular pH Sensing. ChemPhysChem, 2019, 20, 1018-1027.	2.1	39
1453	Photocatalytic degradation of amoxicillin by carbon quantum dots modified K2Ti6O13 nanotubes: Effect of light wavelength. Chinese Chemical Letters, 2019, 30, 1214-1218.	9.0	120
1454	Fluorescent hybrid nanospheres induced by single-stranded DNA and magnetic carbon quantum dots. New Journal of Chemistry, 2019, 43, 4965-4974.	2.8	7
1455	Carbon dots as carriers for the development of controlled drug and gene delivery systems. , 2019, , 295-317.		13

#	Article	IF	CITATIONS
1456	Dual functional nanocomposites of magnetic MnFe2O4 and fluorescent carbon dots for efficient U(VI) removal. Chemical Engineering Journal, 2019, 368, 941-950.	12.7	89
1457	Multi-shelled ZnO decorated with nitrogen and phosphorus co-doped carbon quantum dots: synthesis and enhanced photodegradation activity of methylene blue in aqueous solutions. RSC Advances, 2019, 9, 7362-7374.	3.6	47
1458	Tailoring the photoluminescence of atomically precise nanoclusters. Chemical Society Reviews, 2019, 48, 2422-2457.	38.1	655
1459	The advanced role of carbon quantum dots in nanomedical applications. Biosensors and Bioelectronics, 2019, 141, 111158.	10.1	198
1460	Pyromellitic acid-derived highly fluorescent N-doped carbon dots for the sensitive and selective determination of 4-nitrophenol. Dyes and Pigments, 2019, 165, 327-334.	3.7	56
1461	UV protection from cotton fabrics finished with boron and nitrogen co-doped carbon dots. Cellulose, 2019, 26, 4205-4212.	4.9	32
1462	RCQDs @ Ag/VOx nanorods for enhanced visible-light photocatalytic activity. Journal of Nanoparticle Research, 2019, 21, 1.	1.9	2
1464	Rational design of ternary NiS/CQDs/ZnIn2S4 nanocomposites as efficient noble-metal-free photocatalyst for hydrogen evolution under visible light. Chinese Journal of Catalysis, 2019, 40, 335-342.	14.0	92
1465	Polymer/carbon-based quantum dot nanocomposite: forthcoming materials for technical application. Journal of Macromolecular Science - Pure and Applied Chemistry, 2019, 56, 341-356.	2.2	32
1466	A critical comparison of lanthanide based upconversion nanoparticles to fluorescent proteins, semiconductor quantum dots, and carbon dots for use in optical sensing and imaging. Methods and Applications in Fluorescence, 2019, 7, 022002.	2.3	57
1467	2,4,6-Trinitrophenol detection by a new portable sensing gadget using carbon dots as a fluorescent probe. Analytical and Bioanalytical Chemistry, 2019, 411, 2291-2300.	3.7	26
1468	Bioactive carbon dots direct the osteogenic differentiation of human bone marrow mesenchymal stem cells. Colloids and Surfaces B: Biointerfaces, 2019, 179, 1-8.	5.0	39
1469	Hybrid carbon dots platform enabling opportunities for desired optical properties and redox characteristics by-design. Chemical Physics Letters, 2019, 724, 8-12.	2.6	12
1470	Self-assembled hybrid nanocomposite films of carbon dots and hydrolyzed collagen. Materials Chemistry and Physics, 2019, 230, 44-53.	4.0	10
1471	Acid anhydride coated carbon nanodots: activated platforms for engineering clicked (bio)nanoconstructs. Nanoscale, 2019, 11, 7850-7856.	5.6	12
1472	Hydrothermal synthesis of carbon quantum dots from biowaste for bio-imaging. AIP Conference Proceedings, 2019, , .	0.4	21
1473	Nitrogen-Doped Carbon Dots via Hydrothermal Synthesis: Naked Eye Fluorescent Sensor for Dopamine and Used for Multicolor Cell Imaging. ACS Applied Bio Materials, 2019, 2, 2069-2077.	4.6	83
1474	Sustainable Production of Carbon Nanoparticles from Olive Pit Biomass: Understanding Proton Transfer in the Excited State on Carbon Dots. ACS Sustainable Chemistry and Engineering, 2019, 7, 10493-10500	6.7	26

		IF	CITATIONS
#	AKTICLE	IF	CITATIONS
1475	Boric Acid Matrix. Angewandte Chemie, 2019, 131, 7356-7361.	2.0	62
1476	A Universal Strategy for Activating the Multicolor Roomâ€Temperature Afterglow of Carbon Dots in a Boric Acid Matrix. Angewandte Chemie - International Edition, 2019, 58, 7278-7283.	13.8	266
1477	Green emitting carbon dots for sensitive fluorometric determination of cartap based on its aggregation effect on gold nanoparticles. Mikrochimica Acta, 2019, 186, 259.	5.0	27
1478	A magnetofluorescent boron-doped carbon dots as a metal-free bimodal probe. Talanta, 2019, 200, 9-14.	5.5	13
1479	Recent advances in carbon quantum dot-based sensing of heavy metals in water. TrAC - Trends in Analytical Chemistry, 2019, 114, 171-195.	11.4	165
1480	In Situ Photoconversion of Multicolor Luminescence and Pure White Light Emission Based on Carbon Dot-Supported Supramolecular Assembly. Journal of the American Chemical Society, 2019, 141, 6583-6591.	13.7	165
1481	Hydrothermal synthesis of N-doped carbon dots from an ethanolamine–ionic liquid gel to construct label-free multifunctional fluorescent probes for Hg ²⁺ , Cu ²⁺ and S ₂ O ₃ ^{2â^'} . Analyst, The, 2019, 144, 3013-3022.	3.5	43
1482	Excited states and excitonic interactions in prototypic polycyclic aromatic hydrocarbon dimers as models for graphitic interactions in carbon dots. Physical Chemistry Chemical Physics, 2019, 21, 9077-9088.	2.8	34
1483	Luminescent Grapheneâ€Based Materials via Europium Complexation on Dipyridylpyridazineâ€Functionalized Graphene Sheets. Chemistry - A European Journal, 2019, 25, 6823-6830.	3.3	14
1484	Synthesis of N-Doped Micropore Carbon Quantum Dots with High Quantum Yield and Dual-Wavelength Photoluminescence Emission from Biomass for Cellular Imaging. Nanomaterials, 2019, 9, 495.	4.1	65
1485	Modified 2D-2D ZnIn2S4/BiOCl van der Waals heterojunctions with CQDs: Accelerated charge transfer and enhanced photocatalytic activity under vis- and NIR-light. Chemosphere, 2019, 227, 82-92.	8.2	122
1486	Polyethyleneimine-functionalized carbon dots and their precursor co-immobilized on silica for hydrophilic interaction chromatography. Journal of Chromatography A, 2019, 1597, 142-148.	3.7	55
1487	Unveiling the interaction between carbon nanodot and IR light emitting fluorescent dyes inside the confined micellar environment. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 377, 298-308.	3.9	3
1488	Fabrication of luminescent PtS2 quantum dots. Journal of Luminescence, 2019, 211, 227-232.	3.1	9
1489	Current advances of carbon dots based biosensors for tumor marker detection, cancer cells analysis and bioimaging. TrAC - Trends in Analytical Chemistry, 2019, 115, 83-99.	11.4	110
1490	Fluorescent Aerogels Based on Chemical Crosslinking between Nanocellulose and Carbon Dots for Optical Sensor. ACS Applied Materials & amp; Interfaces, 2019, 11, 16048-16058.	8.0	109
1491	Multicolor photoluminescent carbon nanodots regulated by degree of oxidation for multicolor patterning, invisible inks, and detection of metal ions. Journal of Nanoparticle Research, 2019, 21, 1.	1.9	3
1492	Synthesis and Characterization of Fluorescent Carbon Dots from Tapioca. ChemistrySelect, 2019, 4, 4140-4146.	1.5	29

#	Article	IF	CITATIONS
1493	Highly efficient synthesis of N-doped carbon dots with excellent stability through pyrolysis method. Journal of Materials Science, 2019, 54, 9372-9384.	3.7	48
1494	Progress in microwave-assisted synthesis of quantum dots (graphene/carbon/semiconducting) for bioapplications: a review. Materials Today Chemistry, 2019, 12, 282-314.	3.5	155
1495	Fluorescent boron and nitrogen co-doped carbon dots with high quantum yield for the detection of nimesulide and fluorescence staining. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 216, 296-302.	3.9	23
1496	Carbon based nanomaterials for tissue engineering of bone: Building new bone on small black scaffolds: A review. Journal of Advanced Research, 2019, 18, 185-201.	9.5	280
1497	Construction of FRET biosensor for off-on detection of lead ions based on carbon dots and gold nanorods. Talanta, 2019, 201, 90-95.	5.5	30
1498	Probing the impact of carbon quantum dots on partially unwound helical mode in ferroelectric liquid crystals. Journal of Applied Physics, 2019, 125, .	2.5	17
1499	Near-infrared carbon dots-based fluorescence turn on aptasensor for determination of carcinoembryonic antigen in pleural effusion. Analytica Chimica Acta, 2019, 1068, 52-59.	5.4	43
1500	One-step sonochemical synthesis of versatile nitrogen-doped carbon quantum dots for sensitive detection of Fe2+ ions and temperature in vitro. Materials Science and Engineering C, 2019, 101, 352-359.	7.3	59
1501	Spectroscopy of Nanodiamond Surface: Investigation and Applications. Topics in Applied Physics, 2019, , 363-413.	0.8	4
1502	Recent insights into near-infrared light-responsive carbon dots for bioimaging and cancer phototherapy. Inorganic Chemistry Frontiers, 2019, 6, 1116-1128.	6.0	76
1503	Highly Hydrophilic Carbon Dots' Decoration on NiCo ₂ O ₄ Nanowires for Greatly Increased Electric Conductivity, Supercapacitance, and Energy Density. Advanced Materials Interfaces, 2019, 6, 1900049.	3.7	14
1504	Facile Synthesis of Carbon Dots@2D MoS ₂ Heterostructure with Enhanced Photocatalytic Properties. Inorganic Chemistry, 2019, 58, 5746-5752.	4.0	31
1506	Aggregation-induced emission enhancement of yellow photoluminescent carbon dots for highly selective detection of environmental and intracellular copper(II) ions. Chinese Chemical Letters, 2019, 30, 1410-1414.	9.0	69
1507	Redâ€Shifted Absorption of Câ€Dots for Utilization in Hybrid Nanoâ€Optoelectronics by Application of Systematically Synthesized Precursor Molecules. Physica Status Solidi (B): Basic Research, 2019, 256, 1800493.	1.5	2
1508	Multifunctional iron oxide-carbon hybrid nanoparticles for targeted fluorescent/MR dual-modal imaging and detection of breast cancer cells. Analytica Chimica Acta, 2019, 1067, 115-128.	5.4	37
1509	Highly fluorescent near-infrared emitting carbon dots derived from lemon juice and its bioimaging application. Journal of Luminescence, 2019, 211, 298-304.	3.1	82
1510	Synthesis of polyethylene glycol modified carbon dots as a kind of excellent water-based lubricant additives. Fullerenes Nanotubes and Carbon Nanostructures, 2019, 27, 400-409.	2.1	15
1511	Influence of precursor size in the hydrothermal synthesis of cellulose-based carbon nanodots and its application towards solar cell sensitization. Materials Chemistry and Physics, 2019, 228, 187-193.	4.0	26

#	Article	IF	CITATIONS
1512	One-pot fabrication of Fe-doped carbon nitride nanoparticles as peroxidase mimetics for H2O2 and glucose detection. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 215, 218-224.	3.9	26
1513	Functional Mesoporous Silica Nanocomposites: Biomedical applications and Biosafety International Journal of Molecular Sciences, 2019, 20, 929.	4.1	45
1514	Specific fluorometric assay for direct determination of amikacin by molecularly imprinting polymer on high fluorescent g-C3N4 quantum dots. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 214, 451-458.	3.9	43
1515	Degradability and Clearance of Inorganic Nanoparticles for Biomedical Applications. Advanced Materials, 2019, 31, e1805730.	21.0	267
1516	Composite Structures with Emissive Quantum Dots for Light Enhancement. Advanced Optical Materials, 2019, 7, 1801072.	7.3	30
1517	Insight into the Excitationâ€Dependent Fluorescence of Carbon Dots. ChemPhysChem, 2019, 20, 984-990.	2.1	25
1518	Benzoxazine monomer derived carbon dots as a broad-spectrum agent to block viral infectivity. Journal of Colloid and Interface Science, 2019, 542, 198-206.	9.4	104
1519	Cationic polymer-derived carbon dots for enhanced gene delivery and cell imaging. Biomaterials Science, 2019, 7, 1940-1948.	5.4	33
1520	Synthesis and Application of CCQDs as a Novel Type of Environmentally Friendly Scale Inhibitor. ACS Applied Materials & Interfaces, 2019, 11, 9277-9282.	8.0	40
1521	Safe One-Pot Synthesis of Fluorescent Carbon Quantum Dots from Lemon Juice for a Hands-On Experience of Nanotechnology. Journal of Chemical Education, 2019, 96, 540-545.	2.3	36
1522	Boosting the supercapacitor performance of activated carbon by constructing overall conductive networks using graphene quantum dots. Journal of Materials Chemistry A, 2019, 7, 6021-6027.	10.3	145
1523	Feasibility study of preparation of carbon quantum dots from Pennsylvania anthracite and Kentucky bituminous coals. Fuel, 2019, 243, 433-440.	6.4	47
1524	Functionalized carbon dots from zein biopolymer as a sensitive and selective fluorescent probe for determination of sumatriptan. Microchemical Journal, 2019, 146, 965-973.	4.5	18
1525	Fluorescent carbon dots for ratiometric detection of curcumin and ferric ion based on inner filter effect, cell imaging and PVDF membrane fouling research of iron flocculants in wastewater treatment. Sensors and Actuators B: Chemical, 2019, 287, 231-240.	7.8	81
1526	Development of Carbon Nanomaterials and Their Composites for Various Catalytic Applications. , 2019, , 425-439.		4
1527	Upconverting Carbon Nanodots from Ethylenediaminetetraacetic Acid (EDTA) as Nearâ€Infrared Activated Phototheranostic Agents. Chemistry - A European Journal, 2019, 25, 5539-5546.	3.3	15
1528	Nanostructured Materials for Energy Related Applications. Environmental Chemistry for A Sustainable World, 2019, , .	0.5	5
1529	Nitrogen-doped carbon dots decorated ultrathin nickel hydroxide nanosheets for high-performance hybrid supercapacitor. Journal of Colloid and Interface Science, 2019, 542, 392-399.	9.4	64

#	Article	IF	CITATIONS
1530	Gamma ray assisted modification of carbon quantum dot/polyurethane nanocomposites: structural, mechanical and photocatalytic study. RSC Advances, 2019, 9, 6278-6286.	3.6	10
1531	Carbon quantum dots and their biomedical and therapeutic applications: a review. RSC Advances, 2019, 9, 6460-6481.	3.6	314
1532	Facile reflux synthesis of polyethyleneimineâ€capped fluorescent carbon dots for sequential bioassays toward Cu ²⁺ /H ₂ S and its application for a logic system. Biotechnology and Applied Biochemistry, 2019, 66, 426-433.	3.1	15
1533	Ecoâ€Friendly Colloidal Quantum Dotâ€Based Luminescent Solar Concentrators. Advanced Science, 2019, 6, 1801967.	11.2	93
1534	Biocompatible HA@Fe 3 O 4 @Nâ€CDs hybrids for detecting and absorbing lead ion. Journal of Biomedical Materials Research - Part A, 2019, 107, 1532-1540.	4.0	2
1535	Carbon dots synthesized at room temperature for detection of tetracycline hydrochloride. Analytica Chimica Acta, 2019, 1063, 144-151.	5.4	160
1536	In situ formed nanomaterials for colorimetric and fluorescent sensing. Coordination Chemistry Reviews, 2019, 387, 249-261.	18.8	42
1537	Waste derived sustainable carbon nanodots as a new approach for sensitive quantification of ethionamide and cell imaging. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 376, 54-62.	3.9	13
1538	Large-scale synthesis of carbon dots/TiO ₂ nanocomposites for the photocatalytic color switching system. Nanoscale Advances, 2019, 1, 1819-1825.	4.6	18
1539	Insights into supramolecular-interaction-regulated piezochromic carbonized polymer dots. Nanoscale, 2019, 11, 5072-5079.	5.6	29
1540	A ratiometric fluorescence probe based on carbon dots for discriminative and highly sensitive detection of acetylcholinesterase and butyrylcholinesterase in human whole blood. Biosensors and Bioelectronics, 2019, 131, 232-236.	10.1	97
1541	Natural plant precursor for the facile and eco-friendly synthesis of carbon nanodots with multifunctional aspects. Journal of Molecular Liquids, 2019, 281, 134-140.	4.9	22
1542	Highly sensitive glutathione assay and intracellular imaging with functionalized semiconductor quantum dots. Nanoscale, 2019, 11, 5014-5020.	5.6	38
1543	A single-shot diagnostic platform based on copper nanoclusters coated with cetyl trimethylammonium bromide for determination of carbamazepine in exhaled breath condensate. Mikrochimica Acta, 2019, 186, 194.	5.0	16
1544	Optical Properties and Carrier Dynamics in Inorganic and Hybrid Inorganic/Organic ZnO―and GaNâ€Based Nanowire Structures. Physica Status Solidi (B): Basic Research, 2019, 256, 1800463.	1.5	5
1545	Pt catalysts supported on lignin-based carbon dots for methanol electro-oxidation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 569, 110-118.	4.7	44
1546	Highly fluorescent carbon dots as an efficient nanoprobe for detection of clomifene citrate. RSC Advances, 2019, 9, 6084-6093.	3.6	21
1547	Chitosan-Based Carbon Quantum Dots for Biomedical Applications: Synthesis and Characterization. Nanomaterials, 2019, 9, 274.	4.1	63

		CITATION REPORT		
#	ARTICLE Biomass-Derived Nanomaterials. Environmental Chemistry for A Sustainable World, 202	19, , 243-270.	IF 0.5	CITATIONS 2
1549	Carbon Dotsâ€inâ€Matrix Boosting Intriguing Luminescence Properties and Application e1805504.	ns. Small, 2019, 15,	10.0	124
1550	Synthesis and Applications of Redâ \in Emissive Carbon Dots. Chemical Record, 2019, 19,	2083-2094.	5.8	56
1551	Hydrothermally Green Synthesized Nitrogen-Doped Carbon Dots from <i>Phyllanthus e Their Catalytic Ability in the Detoxification of Textile Effluents. ACS Omega, 2019, 4, 34</i>	mblica and 49-3457.	3.5	68
1552	Preparation of CQDs with hydroxyl function for Fe ³⁺ detection. Micro an 2019, 14, 440-444.	d Nano Letters,	1.3	10
1553	Microwave Assisted Synthesis and Optical Properties of Highly Fluorescent N-Doped Ca Asian Journal of Chemistry, 2019, 31, 2897-2902.	irbon Dots.	0.3	0
1554	Photo-Fenton Degradation of AO7 and Photocatalytic Reduction of Cr(VI) over CQD-De Nanoparticles Under Visible and NIR Light Irradiation. Nanoscale Research Letters, 2019	2corated BiFeO3 9, 14, 397.	5.7	35
1555	Fluorescent Probes for Diagnostics of \hat{I}^2 -Galactosidase: From Micro to Macro. Topics in Chemistry, 2019, , 185-201.	Medicinal	0.8	0
1556	Inorganic Fluorescent Nanomaterials. Topics in Medicinal Chemistry, 2019, , 55-80.		0.8	1
1557	Red-Emissive Guanylated Polyene-Functionalized Carbon Dots Arm Oral Epithelia agains Fungal Infections. ACS Applied Materials & Interfaces, 2019, 11, 46591-46603.	st Invasive	8.0	15
1558	Sucrose Derived Luminescent Carbon Dots as a Promising Bio-Medical Agent. Materials Proceedings, 2019, 18, 1724-1728.	Today:	1.8	4
1559	Rapid synthesis of nitrogen doped carbon dots with green fluorescent for bio-imaging. Materials, 2019, 98, 109486.	Optical	3.6	11
1560	Green Carbon Dots for Metal Sensing. Materials Science Forum, 0, 962, 36-40.		0.3	1
1561	Biocompatible carbon dots with low-saturation-intensity and high-photobleaching-resis STED nanoscopy imaging of the nucleolus and tunneling nanotubes in living cells. Nano 2019, 12, 3075-3084.	tance for Research,	10.4	73
1562	Ultrasonication-promoted synthesis of luminescent sulfur nano-dots for cellular imagin applications. Chemical Communications, 2019, 55, 13004-13007.	g	4.1	78
1563	Red-emissive nitrogen doped carbon quantum dots for highly selective and sensitive flu detection of the alachlor herbicide in soil samples. New Journal of Chemistry, 2019, 43,	orescence 18695-18701.	2.8	24
1564	Titanium carbide MXenes combined with red-emitting carbon dots as a unique turn-on nanosensor for label-free determination of glucose. Journal of Materials Chemistry B, 20 7729-7735.	fluorescent)19, 7,	5.8	54
1565	Tunable afterglow luminescence and triple-mode emissions of thermally activated carbo confined within nanoclays. Journal of Materials Chemistry C, 2019, 7, 13640-13646.	on dots	5.5	44

		CITATION REPORT		
#	Article		IF	CITATIONS
1566	Femtosecond Laser Synthesis of Luminescent Carbon Dots from Toluene. JETP Letters, 20	19, 110, 464-471.	1.4	9
1567	A target analyte induced fluorescence band shift of piperazine modified carbon quantum specific visual detection method for oxytetracycline. Chemical Communications, 2019, 55	dots: a , 12364-12367.	4.1	28
1568	Stepwise preparation of Ti-doped functionalized carbon nitride nanoparticles and hybrid TiO ₂ /graphitic-C ₃ N ₄ for detection of free residual visible-light photocatalysis. Chemical Communications, 2019, 55, 13848-13851.	chlorine and	4.1	4
1569	Synthesis, applications and potential photoluminescence mechanism of spectrally tunable dots. Nanoscale, 2019, 11, 20411-20428.	e carbon	5.6	96
1570	Sensor array based on single carbon quantum dot for fluorometric differentiation of all na amino acids. Mikrochimica Acta, 2019, 186, 858.	tural	5.0	17
1571	Nanotheranostics. , 2019, , .			8
1572	Nanostructured Materials for Treating Aquatic Pollution. Engineering Materials, 2019, , .		0.6	4
1573	Preparation of Ag@SiO2@NH2 core-shell nanocomposites for the fluorescence enhancen carbon quantum dots. Journal of Nanoparticle Research, 2019, 21, 1.	ient of	1.9	3
1574	The Application of Green-Synthesis-Derived Carbon Quantum Dots to Bioimaging and the Mercury(II). Journal of Analytical Methods in Chemistry, 2019, 2019, 1-9.	Analysis of	1.6	20
1575	Carbon Dots: A Mystic Star in the World of Nanoscience. Journal of Nanomaterials, 2019,	2019, 1-19.	2.7	83
1576	Enhanced Performance of Reagent-Less Carbon Nanodots Based Enzyme Electrochemical Sensors, 2019, 19, 5576.	Biosensors.	3.8	12
1577	Carbon Quantum Dots (CQDs) Decorated Bi2O3-x Hybrid Photocatalysts with Promising NIR-Light-Driven Photodegradation Activity for AO7. Catalysts, 2019, 9, 1031.		3.5	39
1578	Nanomaterials for Healthcare Biosensing Applications. Sensors, 2019, 19, 5311.		3.8	142
1579	Antibacterial Activity against Methicillin-Resistant Staphylococcus aureus of Colloidal Poly Prepared by Carbon Dot Stimulated Polymerization of Dopamine. Nanomaterials, 2019, 9	dopamine 1731.	4.1	36
1580	Therapeutic efficacy of nanoparticles and routes of administration. Biomaterials Research, 20.	, 2019, 23,	6.9	561
1581	Evaluation of Commercial "Carbon Quantum Dots―Sample on Origins of Red Absorp Features. Journal of Carbon Research, 2019, 5, 70.	tion and Emission	2.7	15
1582	Investigating the Effect of Reaction Time on Carbon Dot Formation, Structure, and Optica ACS Omega, 2019, 4, 21658-21665.	Il Properties.	3.5	63
1583	Continuous synthesis of carbon dots with full spectrum fluorescence and the mechanism multiple color emission. Lab on A Chip, 2019, 19, 3974-3978.	of their	6.0	33

#	Article	IF	CITATIONS
1584	Hydrochromic carbon dots as smart sensors for water sensing in organic solvents. Nanoscale Advances, 2019, 1, 4258-4267.	4.6	36
1585	Novel single excitation dual-emission carbon dots for colorimetric and ratiometric fluorescent dual mode detection of Cu ²⁺ and Al ³⁺ ions. RSC Advances, 2019, 9, 38568-38575.	3.6	25
1586	Simple preparation of graphene quantum dots with controllable surface states from graphite. RSC Advances, 2019, 9, 38447-38453.	3.6	24
1588	Lowâ€Dimensional Saturable Absorbers in the Visible Spectral Region. Advanced Optical Materials, 2019, 7, 1800886.	7.3	55
1589	Fluorescence quenching capillary analysis for determining trace-level nitrite in food based on the citric acid/ethylenediamine nanodots/nitrite reaction. Food Chemistry, 2019, 274, 162-169.	8.2	32
1590	Facile pyrolysis synthesis of ionic liquid capped carbon dots and subsequent application as the water-based lubricant additives. Journal of Materials Science, 2019, 54, 1171-1183.	3.7	74
1591	Magnetic networks of carbon quantum dots and Ag particles. Journal of Colloid and Interface Science, 2019, 539, 203-213.	9.4	18
1592	Synthesis of N,S-Doped Carbon Quantum Dots for Use in Organic Solar Cells as the ZnO Modifier To Eliminate the Light-Soaking Effect. ACS Applied Materials & Interfaces, 2019, 11, 2243-2253.	8.0	94
1593	Preparation of carbon dots with long-wavelength and photoluminescenceâ€ŧunable emission to achieve multicolor imaging in cells. Optical Materials, 2019, 88, 353-358.	3.6	16
1594	Multiplex Lateral Flow Immunoassay: An Overview of Strategies towards High-throughput Point-of-Need Testing. Biosensors, 2019, 9, 2.	4.7	133
1595	Phosphorus and chlorine co-doped carbon dots with strong photoluminescence as a fluorescent probe for ferric ions. Mikrochimica Acta, 2019, 186, 32.	5.0	52
1596	Electronic and photocatalytic properties of modified MoS2/graphene quantum dots heterostructures: A computational study. Applied Surface Science, 2019, 473, 70-76.	6.1	14
1597	Time-resolved photoluminescence of pH-sensitive carbon dots. Carbon, 2019, 144, 500-508.	10.3	33
1598	Self-functionalized ultrastable water suspension of luminescent carbon quantum dots. Materials Chemistry and Physics, 2019, 225, 23-27.	4.0	41
1599	Carbon nanosheet facilitated charge separation and transfer between molybdenum carbide and graphitic carbon nitride toward efficient photocatalytic H2 production. Applied Surface Science, 2019, 473, 91-101.	6.1	59
1600	A review on nanostructured carbon quantum dots and their applications in biotechnology, sensors, and chemiluminescence. Talanta, 2019, 196, 456-478.	5.5	336
1601	Zingerone Nanotetramer Strengthened the Polypharmacological Efficacy of Zingerone on Human Hepatoma Cell Lines. ACS Applied Materials & Interfaces, 2019, 11, 137-150.	8.0	9
1602	Review on carbon nanomaterials as typical candidates for orthopaedic coatings. SN Applied Sciences, 2019, 1, 1.	2.9	18

# 1603	ARTICLE Enhanced removal and detection of benzo[a]pyrene in environmental water samples using carbon dots-modified magnetic nanocomposites. Ecotoxicology and Environmental Safety, 2019, 170, 383-390.	IF 6.0	Citations 25
1604	Fingerprint imaging using N-doped carbon dots. Carbon, 2019, 144, 791-797.	10.3	64
1605	Determination of Hg2+ and Cu2+ ions by dual-emissive Ag/Au nanocluster/carbon dots nanohybrids: Switching the selectivity by pH adjustment. Journal of Hazardous Materials, 2019, 367, 437-446.	12.4	70
1606	Multi-fluorescent cationic carbon dots for solid-state fingerprinting. Journal of Luminescence, 2019, 208, 428-436.	3.1	25
1607	Biogenic nanomaterials: Synthesis, characterization, growth mechanism, and biomedical applications. Journal of Microbiological Methods, 2019, 157, 65-80.	1.6	55
1608	Porous carbon nanosheets: Synthetic strategies and electrochemical energy related applications. Nano Today, 2019, 24, 103-119.	11.9	357
1609	Selective Labeling and Growth Inhibition of <i>Pseudomonas aeruginosa</i> by Aminoguanidine Carbon Dots. ACS Infectious Diseases, 2019, 5, 292-302.	3.8	50
1610	CQDS preluded carbon-incorporated 3D burger-like hybrid ZnO enhanced visible-light-driven photocatalytic activity and mechanism implication. Journal of Catalysis, 2019, 369, 450-461.	6.2	66
1611	Carbon Quantum Dots–Modified Interfacial Interactions and Ion Conductivity for Enhanced High Current Density Performance in Lithium–Sulfur Batteries. Advanced Energy Materials, 2019, 9, 1802955.	19.5	102
1612	Photoluminescent lignin hybridized carbon quantum dots composites for bioimaging applications. International Journal of Biological Macromolecules, 2019, 122, 954-961.	7.5	92
1613	Carbon quantum dot-decorated TiO2 for fast and sustainable antibacterial properties under visible-light. Journal of Alloys and Compounds, 2019, 777, 234-243.	5.5	69
1614	Review on carbon dots in food safety applications. Talanta, 2019, 194, 809-821.	5.5	121
1615	Carbon quantum dots from glucose oxidation as a highly competent anode material for lithium and sodium-ion batteries. Electrochimica Acta, 2019, 297, 250-257.	5.2	82
1616	A novel fluorescent probe for ascorbic acid based on seed-mediated growth of silver nanoparticles quenching of carbon dots fluorescence. Analytical and Bioanalytical Chemistry, 2019, 411, 877-883.	3.7	35
1617	Smart choice of carbon dots as a dual-mode onsite nanoplatform for the trace level detection of Cr2O72 Dyes and Pigments, 2019, 163, 102-110.	3.7	44
1618	Carbon dots: The next generation platform for biomedical applications. Materials Science and Engineering C, 2019, 96, 887-903.	7.3	148
1619	Efficient visible-light-driven water remediation by 3D graphene aerogel-supported nitrogen-doped carbon quantum dots. Catalysis Today, 2019, 335, 160-165.	4.4	21
1620	Bright hydrophilic and organophilic fluorescence carbon dots: One-pot fabrication and multi-functional applications at visualized Au3+ detection in cell and white light-emitting devices. Sensors and Actuators B: Chemical, 2019, 281, 905-911.	7.8	40

#	Article	IF	CITATIONS
1621	Nitrogen-doped fluorescent carbon dots for highly sensitive and selective detection of tannic acid. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 210, 111-119.	3.9	31
1622	A facile method to prepare polymer functionalized carbon dots inspired by the mussel chemistry for LED application. Dyes and Pigments, 2019, 162, 845-854.	3.7	12
1623	Graphitic Nitrogen and Highâ€Crystalline Triggered Strong Photoluminescence and Roomâ€Temperature Ferromagnetism in Carbonized Polymer Dots. Advanced Science, 2019, 6, 1801192.	11.2	98
1624	Carbon nanopowder directed synthesis of carbon dots for sensing multiple targets. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 562, 86-92.	4.7	23
1625	Surface Molecularly Imprinted Carbon Dots Based Core-Shell Material for Selective Fluorescence Sensing of Ketoprofen. Journal of Fluorescence, 2019, 29, 145-154.	2.5	29
1626	Ln(III) chelates-functionalized carbon quantum dots: Synthesis, optical studies and multimodal bioimaging applications. Colloids and Surfaces B: Biointerfaces, 2019, 175, 272-280.	5.0	42
1627	Multipurpose sensing applications of biocompatible radish-derived carbon dots as Cu2+ and acetic acid vapor sensors. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 211, 59-70.	3.9	63
1628	Recent Advances and Progress for the Fabrication and Surface Modification of AIE-active Organic-inorganic Luminescent Composites. Chinese Journal of Polymer Science (English Edition), 2019, 37, 340-351.	3.8	15
1629	Carbon quantum dots/BiVO4 composite with enhanced photocatalytic activity. Science China Technological Sciences, 2019, 62, 356-360.	4.0	13
1630	Green synthesis of fluorescent carbon quantum dots from Eleusine coracana and their application as a fluorescence â€~turn-off' sensor probe for selective detection of Cu2+. Applied Surface Science, 2019, 476, 468-480.	6.1	165
1631	Ce6-Modified Carbon Dots for Multimodal-Imaging-Guided and Single-NIR-Laser-Triggered Photothermal/Photodynamic Synergistic Cancer Therapy by Reduced Irradiation Power. ACS Applied Materials & Interfaces, 2019, 11, 5791-5803.	8.0	172
1632	Glutathione-responsive PEGylated GQD-based nanomaterials for diagnosis and treatment of breast cancer. Journal of Industrial and Engineering Chemistry, 2019, 71, 301-307.	5.8	18
1633	Feasibility of detection valence speciation of Cr(III) and Cr(VI) in environmental samples by spectrofluorimetric method with fluorescent carbon quantum dots. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 212, 286-292.	3.9	51
1634	Ground-State Heterogeneity along with Fluorescent Byproducts Causes Excitation-Dependent Fluorescence and Time-Dependent Spectral Migration in Citric Acid-Derived Carbon Dots. Journal of Physical Chemistry Letters, 2019, 10, 335-345.	4.6	29
1635	One-pot synthesis of aqueous carbon quantum dots using bibenzoimidazolyl derivative and their antitumor activity against breast cancer cell lines. Inorganic Chemistry Communication, 2019, 101, 11-15.	3.9	14
1636	Fluorescent Self-Healing Carbon Dot/Polymer Gels. ACS Nano, 2019, 13, 1433-1442.	14.6	73
1637	Biological Response to Carbon-Family Nanomaterials: Interactions at the Nano-Bio Interface. Frontiers in Bioengineering and Biotechnology, 2019, 7, 4.	4.1	47
1638	Carbon quantum dots decorated BiVO4 quantum tube with enhanced photocatalytic performance for efficient degradation of organic pollutants under visible and near-infrared light. Journal of Materials Science, 2019, 54, 6488-6499.	3.7	34

	CITATIO	on Report	
#	Article	IF	CITATIONS
1639	An ancient plant for the synthesis of a novel carbon dot and its applications as an antibacterial agent and probe for sensing of an anti-cancer drug. Materials Science and Engineering C, 2019, 98, 826-833.	7.3	122
1640	Controlled synthesis of platinum nanoflowers supported on carbon quantum dots as a highly effective catalyst for methanol electro-oxidation. Surface and Coatings Technology, 2019, 360, 400-408.	4.8	34
1641	Nonpolymeric pH-Sensitive Carbon Dots for Treatment of Tumor. Bioconjugate Chemistry, 2019, 30, 621-632.	3.6	22
1642	Fluorescence Turn-On, Specific Detection of Cystine in Human Blood Plasma and Urine Samples by Nitrogen-Doped Carbon Quantum Dots. ACS Omega, 2019, 4, 1007-1014.	3.5	47
1643	Universal existence of fluorescent carbon dots in beer and assessment of their potential toxicity. Nanotoxicology, 2019, 13, 160-173.	3.0	33
1644	Constructing honeycomb architectures from polymer carbon dot composites for luminous efficacy enhancement of LEDs. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	2.3	2
1645	Construction of hydrophobic interface on natural biomaterials for higher efficient and reversible radioactive iodine adsorption in water. Journal of Hazardous Materials, 2019, 368, 81-89.	12.4	22
1646	Theranostic Carbon Dots with Innovative NIR-II Emission for in Vivo Renal-Excreted Optical Imaging and Photothermal Therapy. ACS Applied Materials & Interfaces, 2019, 11, 4737-4744.	8.0	218
1647	Controlling the fluorescence and room-temperature phosphorescence behaviour of carbon nanodots with inorganic crystalline nanocomposites. Nature Communications, 2019, 10, 206.	12.8	128
1648	Supporting carbon quantum dots on NH2-MIL-125 for enhanced photocatalytic degradation of organic pollutants under a broad spectrum irradiation. Applied Surface Science, 2019, 467-468, 320-327.	6.1	37
1649	Investigation of photoluminescence behavior of reduced graphene quantum dots. Inorganic Chemistry Communication, 2019, 99, 199-205.	3.9	20
1650	Study on the fluorescence properties of carbon dots prepared via combustion process. Journal of Luminescence, 2019, 206, 608-612.	3.1	30
1651	Progress in the materials for optical detection of arsenic in water. TrAC - Trends in Analytical Chemistry, 2019, 110, 97-115.	11.4	47
1652	Preparation of highly functionalized carbon nanoparticles using a one-step acid dehydration of glycerol. Carbon, 2019, 142, 547-557.	10.3	24
1653	The fabrication of highly ordered fluorescent molecularly imprinted mesoporous microspheres for the selective sensing of sparfloxacin in biological samples. Sensors and Actuators B: Chemical, 2019, 281, 821-829.	7.8	13
1654	Efficient Nanocarriers for Drug-Delivery Systems. , 2019, , 1-41.		10
1655	pH controlled green luminescent carbon dots derived from benzoxazine monomers for the fluorescence turn-on and turn-off detection. Journal of Colloid and Interface Science, 2019, 536, 516-525.	9.4	47
1656	Small nitrogen-doped carbon dots as efficient nanoenhancer for boosting the electrochemical performance of three-dimensional graphene. Journal of Colloid and Interface Science, 2019, 536, 628-637.	9.4	34

#	Article	IF	CITATIONS
1657	Carbon Dots and Their Polymeric Nanocomposites. , 2019, , 217-260.		5
1658	Hydrothermal synthesis of nitrogen and boron co-doped carbon quantum dots for application in acetone and dopamine sensors and multicolor cellular imaging. Sensors and Actuators B: Chemical, 2019, 281, 34-43.	7.8	119
1659	Nitrogen-doped carbon dots rapid and selective detection of mercury ion and biothiol and construction of an IMPLICATION logic gate. Talanta, 2019, 194, 554-562.	5.5	59
1660	Development of nitrogen and sulfur-doped carbon dots for cellular imaging. Journal of Pharmaceutical Analysis, 2019, 9, 127-132.	5.3	44
1661	Bottom-up synthesis and structural design strategy for graphene quantum dots with tunable emission to the near infrared region. Carbon, 2019, 142, 673-684.	10.3	62
1662	βâ€Cyclodextrinâ€Decorated Carbon Dots Serve as Nanocarriers for Targeted Drug Delivery and Controlled Release. ChemNanoMat, 2019, 5, 479-487.	2.8	32
1663	High-fluorescent carbon dots (CDs) originated from China grass carp scales (CGCS) for effective detection of Hg(II) ions. Microchemical Journal, 2019, 145, 718-728.	4.5	54
1664	A multifunctional sensor for selective and sensitive detection of vitamin B12 and tartrazine by Förster resonance energy transfer. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 211, 178-188.	3.9	26
1665	Green synthesis of glowing carbon dots from Carica papaya waste pulp and their application as a label-freechemo probe for chromium detection in water. Sensors and Actuators B: Chemical, 2019, 283, 363-372.	7.8	94
1666	Fuel waste to fluorescent carbon dots and its multifarious applications. Sensors and Actuators B: Chemical, 2019, 282, 972-983.	7.8	28
1667	Carbon dots as a dual sensor for the selective determination of d-penicillamine and biological applications. Optical Materials, 2019, 88, 134-142.	3.6	21
1668	Photoinduced charge transfer from Carbon Dots to Graphene in solid composite. Thin Solid Films, 2019, 669, 620-624.	1.8	6
1669	Selective recognition of Fe3+ and Cr3+ in aqueous medium via fluorescence quenching of graphene quantum dots. Journal of Dispersion Science and Technology, 2019, 40, 250-255.	2.4	10
1670	Polymer microsphere for water-soluble drug delivery via carbon dot-stabilizing W/O emulsion. Journal of Materials Science, 2019, 54, 5160-5175.	3.7	19
1671	High performance fluorescence biosensing of cysteine in human serum with superior specificity based on carbon dots and cobalt-derived recognition. Sensors and Actuators B: Chemical, 2019, 280, 62-68.	7.8	56
1672	Built-in electric field-assisted charge separation over carbon dots-modified Bi2WO6 nanoplates for photodegradation. Applied Surface Science, 2019, 465, 164-171.	6.1	56
1673	Optical detection of anthrax biomarkers in an aqueous medium: the combination of carbon quantum dots and europium ions within alginate hydrogels. Journal of Materials Science, 2019, 54, 2526-2534.	3.7	21
1674	Facial fabrication of carbon quantum dots (CDs)-modified N-TiO2-x nanocomposite for the efficient photoreduction of Cr(VI) under visible light. Chemical Engineering Journal, 2019, 357, 473-486.	12.7	123

#	Article	IF	CITATIONS
1675	A new approach in functionalization of carbon nanoparticles for optoelectronically relevant carbon dots and beyond. Carbon, 2019, 141, 553-560.	10.3	36
1676	Research on design, fabrication, and properties of Fe2O3@SiO2/CDs/PEG@nSiO2 nanocomposites. Materials Letters, 2019, 235, 39-41.	2.6	6
1677	One-step synthesis of carbon dots embedded zincone microspheres for luminescent detection and removal of dichromate anions in water. Sensors and Actuators B: Chemical, 2019, 279, 130-137.	7.8	17
1678	Tuning the electronic and optical properties of graphene quantum dots by selective boronization. Journal of Materials Chemistry C, 2019, 7, 237-246.	5.5	54
1679	Real-time detection of alcohol vapors and volatile organic compounds via optical electronic nose using carbon dots prepared from rice husk and density functional theory calculation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 560, 278-287.	4.7	69
1680	Ratiometric fluorescence sensing of Fe2+/3+ by carbon dots doped lanthanide coordination polymers. Journal of Luminescence, 2019, 205, 519-524.	3.1	25
1681	Cholesterol derived carbon quantum dots as fluorescence probe for the specific detection of hemoglobin in diluted human blood samples. Materials Science and Engineering C, 2019, 94, 580-586.	7.3	41
1682	Synthesis and characterization of fluorescent N-CDs/ZnONPs nanocomposite for latent fingerprint detection by using powder brushing method. Arabian Journal of Chemistry, 2020, 13, 3817-3835.	4.9	41
1683	Preparation and electrochemical characterization of carbon dots/polyaniline composite materials. Polymer Bulletin, 2020, 77, 1067-1080.	3.3	9
1684	Biotechnological applications of nanostructured hybrids of polyamine carbon quantum dots and iron oxide nanoparticles. Amino Acids, 2020, 52, 301-311.	2.7	9
1685	A self-adaptive multi-color fluorescent pH probe with the ability of whole cell imaging. Talanta, 2020, 208, 119780.	5.5	13
1686	Carbon quantum dots functionalized agarose gel matrix for in solution detection of nonylphenol. Environmental Technology (United Kingdom), 2020, 41, 322-328.	2.2	15
1687	3D CQDs-{001}TiO2/Ti photoelectrode with dominant {001} facets: Efficient visible-light-driven photoelectrocatalytic oxidation of organic pollutants and mechanism insight. Applied Catalysis B: Environmental, 2020, 261, 118229.	20.2	40
1688	Highly sensitive and selective detection of 4-nitrophenol, and on-off-on fluorescence sensor for Cr (VI) and ascorbic acid detection by glucosamine derived n-doped carbon dots. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 387, 112134.	3.9	44
1689	Laser-driven direct synthesis of carbon nanodots and application as sensitizers for visible-light photocatalysis. Carbon, 2020, 156, 453-462.	10.3	25
1690	Fabrication of TiO2-BiOBrxl1-x heterojunctions with adjustable band structure for enhanced visible light photocatalytic activity. Journal of Alloys and Compounds, 2020, 825, 152047.	5.5	14
1691	Carbon nanodots synthesized from chitosan and its application as a corrosion inhibitor in boat-building carbon steel BIS2062. Applied Nanoscience (Switzerland), 2020, 10, 1061-1071.	3.1	33
1692	Carbon dots and AuNCs co-doped electrospun membranes for ratiometric fluorescent determination of cyanide. Journal of Hazardous Materials, 2020, 384, 121368.	12.4	27

#	Article	IF	CITATIONS
1693	Application of carbon dots in dyeâ€sensitized solar cells: A review. Journal of Applied Polymer Science, 2020, 137, 48443.	2.6	81
1694	Carbon dots derived from pea for specifically binding with Cryptococcus neoformans. Analytical Biochemistry, 2020, 589, 113476.	2.4	8
1695	Oxidized nanocellulose facilitates preparing photoluminescent nitrogen-doped fluorescent carbon dots for Fe3+ ions detection and bioimaging. Chemical Engineering Journal, 2020, 384, 123260.	12.7	82
1696	Novel synthesis of high-thermal stability carbon dots and nanocomposites from oleic acid as an organic substrate. Applied Nanoscience (Switzerland), 2020, 10, 455-464.	3.1	32
1697	Fabrication, photoluminescence and applications of quantum dots embedded glass ceramics. Chemical Engineering Journal, 2020, 383, 123082.	12.7	61
1698	Recent developments on AgI based heterojunction photocatalytic systems in photocatalytic application. Chemical Engineering Journal, 2020, 383, 123083.	12.7	147
1699	Development of sulfur doped carbon quantum dots for highly selective and sensitive fluorescent detection of Fe2+ and Fe3+ ions in oral ferrous gluconate samples. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 226, 117602.	3.9	38
1700	Cu2+ enhanced chemiluminescence of carbon dots-H2O2 system in alkaline solution. Talanta, 2020, 208, 120380.	5.5	16
1701	Dual-colored carbon dots-based ratiometric fluorescent sensor for high-precision detection of alkaline phosphatase activity. Talanta, 2020, 208, 120460.	5.5	19
1702	A Cu2O-CDs-Cu three component catalyst for boosting oxidase-like activity with hot electrons. Chemical Engineering Journal, 2020, 382, 122484.	12.7	41
1703	Stimuliâ€Responsive Hybridized Nanostructures. Advanced Functional Materials, 2020, 30, 1903439.	14.9	37
1704	Rapid synthesis of multifunctional carbon nanodots as effective antioxidants, antibacterial agents, and quercetin nanoprobes. Talanta, 2020, 206, 120243.	5.5	38
1705	Multicolor emissive carbon dot with solvatochromic behavior across the entire visible spectrum. Carbon, 2020, 156, 110-118.	10.3	64
1706	Recent Advances and Sensing Applications of Carbon Dots. Small Methods, 2020, 4, 1900387.	8.6	145
1707	Plasma-enabled catalyst-free conversion of ethanol to hydrogen gas and carbon dots near room temperature. Chemical Engineering Journal, 2020, 382, 122745.	12.7	63
1708	Sewage sludge in microwave oven: A sustainable synthetic approach toward carbon dots for fluorescent sensing of para-Nitrophenol. Journal of Hazardous Materials, 2020, 382, 121048.	12.4	98
1709	Kohlenstoffâ€Nanopunkte als Photokatalysatoren für die freie radikalische und ATRPâ€basierte radikalische Photopolymerisation mit blauen LEDs. Angewandte Chemie, 2020, 132, 3192-3197.	2.0	16
1710	Novel up-conversion carbon quantum dots/î±-FeOOH nanohybrids eliminate tetracycline and its related drug resistance in visible-light responsive Fenton system. Applied Catalysis B: Environmental, 2020, 263, 118336.	20.2	91

#	Article	IF	CITATIONS
1711	Role of surface charge in enhancing antibacterial activity of fluorescent carbon dots. Nanotechnology, 2020, 31, 095101.	2.6	44
1712	Enhanced imaging of glycan expressing cancer cells using poly(glycidyl methacrylate)-grafted silica nanospheres labeled with quantum dots. Analytica Chimica Acta, 2020, 1095, 138-145.	5.4	11
1713	A facile approach to synthesis carbon quantum dots-doped P25 visible-light driven photocatalyst with improved NO removal performance. Atmospheric Pollution Research, 2020, 11, 303-309.	3.8	17
1714	Recent progress of carbon dots and carbon nanotubes applied in oxygen reduction reaction of fuel cell for transportation. Applied Energy, 2020, 257, 114027.	10.1	101
1715	Carbon Dots with Dualâ€Emissive, Robust, and Aggregationâ€Induced Roomâ€Temperature Phosphorescence Characteristics. Angewandte Chemie, 2020, 132, 1279-1285.	2.0	18
1716	Carbon Dots with Dualâ€Emissive, Robust, and Aggregationâ€Induced Roomâ€Temperature Phosphorescence Characteristics. Angewandte Chemie - International Edition, 2020, 59, 1263-1269.	13.8	198
1717	Manganeseâ€Based Functional Nanoplatforms: Nanosynthetic Construction, Physiochemical Property, and Theranostic Applicability. Advanced Functional Materials, 2020, 30, 1907066.	14.9	95
1718	A facile one step hydrothermal synthesis of carbon quantum dots for label -free fluorescence sensing approach to detect picric acid in aqueous solution. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 388, 112201.	3.9	65
1719	Plasmon Based Cellulose Nano Fibril–PVA Film for Effective Ultra Violet Radiation Blocking. Journal of Cluster Science, 2020, 31, 1147-1154.	3.3	5
1720	Carbon Dots as a Promising Green Photocatalyst for Free Radical and ATRPâ€Based Radical Photopolymerization with Blue LEDs. Angewandte Chemie - International Edition, 2020, 59, 3166-3171.	13.8	95
1721	New insight into the engineering of green carbon dots: Possible applications in emerging cancer theranostics. Talanta, 2020, 209, 120547.	5.5	34
1722	Color tunable carbon quantum dots from wasted paper by different solvents for anti-counterfeiting and fluorescent flexible film. Chemical Engineering Journal, 2020, 383, 123200.	12.7	103
1723	Chitosan-carbon quantum dots as a new platform for highly sensitive insulin impedimetric aptasensor. Sensors and Actuators B: Chemical, 2020, 304, 127281.	7.8	41
1724	Multifaceted applications of green carbon dots synthesized from renewable sources. Advances in Colloid and Interface Science, 2020, 275, 102046.	14.7	117
1725	Polarization study of carbon nanodots photoluminescence. Fullerenes Nanotubes and Carbon Nanostructures, 2020, 28, 118-122.	2.1	0
1726	Nanocarbon Catalysts: Recent Understanding Regarding the Active Sites. Advanced Science, 2020, 7, 1902126.	11.2	94
1727	Antibacterial properties of a bacterial cellulose CQD-TiO2 nanocomposite. Carbohydrate Polymers, 2020, 234, 115835.	10.2	99
1728	Bifunctional carbon dots for cell imaging and inhibition of human insulin fibrillation in the whole aggregation process. International Journal of Biological Macromolecules, 2020, 147, <u>453-462.</u>	7.5	24

#	Article	IF	CITATIONS
1730	A molecular fluorophore in citric acid/ethylenediamine carbon dots identified and quantified by multinuclear solidâ€state nuclear magnetic resonance. Magnetic Resonance in Chemistry, 2020, 58, 1130-1138.	1.9	34
1731	Carbon Dots Doped with N and S towards Controlling Emitting. Journal of Fluorescence, 2020, 30, 81-89.	2.5	15
1732	Luminescent carbon dots with concentration-dependent emission in solution and yellow emission in solid state. Journal of Colloid and Interface Science, 2020, 565, 77-85.	9.4	57
1733	In situ generation of carbon dots within a polymer matrix. Polymer, 2020, 188, 122159.	3.8	24
1734	Defect State Assisted Z-scheme Charge Recombination in Bi ₂ O ₂ CO ₃ /Graphene Quantum Dot Composites For Photocatalytic Oxidation of NO. ACS Applied Nano Materials, 2020, 3, 772-781.	5.0	36
1735	A novel "on–off–on―fluorescence assay for the discriminative detection of Cu(<scp>ii</scp>) and <scp>I-</scp> cysteine based on red-emissive Si-CDs and cellular imaging applications. Journal of Materials Chemistry B, 2020, 8, 919-927.	5.8	34
1736	Role of surface states on luminescence shift of caramelised sugar carbon dots for color conversion emitting devices. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2020, 11, 015003.	1.5	2
1738	Construction of efficient "on-off-on―fluorescence aptasensor for ultrasensitive detection of prostate specific antigen via covalent energy transfer between g-C3N4 quantum dots and palladium triangular plates. Analytica Chimica Acta, 2020, 1104, 53-59.	5.4	27
1739	Green Synthesis of Carbon Dots toward Anti-Counterfeiting. ACS Sustainable Chemistry and Engineering, 2020, 8, 1566-1572.	6.7	114
1740	Allotrope carbon materials in thermal interface materials and fuel cell applications: A review. International Journal of Energy Research, 2020, 44, 2471-2498.	4.5	32
1741	Single-step synthesis of polychromatic carbon quantum dots for macroscopic detection of Hg2+. Ecotoxicology and Environmental Safety, 2020, 190, 110141.	6.0	46
1742	Multiple color emission of solid-state hybrid material containing carbon dots and Europium(III) complexes. Journal of Luminescence, 2020, 220, 116959.	3.1	9
1743	Applications of hydrothermal synthesis of <i>Escherichia coli</i> derived carbon dots in <i>in vivo</i> imaging and <i>p</i> -nitrophenol detection. Analyst, The, 2020, 145, 177-183.	3.5	57
1744	A phenylenediamine-based carbon dot-modified silica stationary phase for hydrophilic interaction chromatography. Analyst, The, 2020, 145, 1056-1061.	3.5	25
1745	Recent advances in carbon dots for bioimaging applications. Nanoscale Horizons, 2020, 5, 218-234.	8.0	192
1746	Rational synthesis of highly efficient ultra-narrow red-emitting carbon quantum dots for NIR-II two-photon bioimaging. Nanoscale, 2020, 12, 1589-1601.	5.6	89
1747	Carbon dots: a booming material for biomedical applications. Materials Chemistry Frontiers, 2020, 4, 821-836.	5.9	150
1748	Recent advances in nanostructured carbon for sodium-ion batteries. Journal of Materials Chemistry A, 2020, 8, 1604-1630.	10.3	130

#	Article	IF	CITATIONS
1749	Platinum ions mediate the interactions between DNA and carbon quantum dots: diagnosis of MRSA infections. Journal of Materials Chemistry B, 2020, 8, 3506-3512.	5.8	15
1750	Highly adhesive carbon quantum dots from biogenic amines for prevention of biofilm formation. Chemical Engineering Journal, 2020, 386, 123913.	12.7	64
1751	Carbon quantum dots activated metal organic frameworks for selective detection of Cu(â¡) and Fe(â¢). Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 588, 124378.	4.7	35
1752	Unique approach to debundle carbon nanotubes in polymer matrix using carbon dots for enhanced properties. European Polymer Journal, 2020, 123, 109454.	5.4	15
1753	The optical properties and solar energy conversion applications of carbon quantum dots: A review. Solar Energy, 2020, 196, 549-566.	6.1	149
1754	Research progress on chemiluminescence immunoassay combined with novel technologies. TrAC - Trends in Analytical Chemistry, 2020, 124, 115780.	11.4	72
1755	Photoactivated Fluorescence Enhancement in F,Nâ€Đoped Carbon Dots with Piezochromic Behavior. Angewandte Chemie - International Edition, 2020, 59, 9986-9991.	13.8	139
1756	Organic acid participation strategy for the synthesis of highly fluorescent carbon dots and their application in dual-mode determination of copper ions. Applied Surface Science, 2020, 505, 144567.	6.1	15
1757	One-step hydrothermal synthesis of a flexible nanopaper-based Fe3+ sensor using carbon quantum dot grafted cellulose nanofibrils. Cellulose, 2020, 27, 729-742.	4.9	33
1758	Carbon-dot modified polyacrylonitrile fibers: Recyclable materials capable of selectively and reversibly adsorbing small-sized anionic dyes. Chemical Engineering Journal, 2020, 391, 123484.	12.7	42
1759	Deciphering the interaction of solvents with dual emissive carbon dots: A photoluminescence study and its response for different metal ions. Materials Science and Engineering C, 2020, 108, 110443.	7.3	17
1760	Carbon-coated ultrasmall gadolinium oxide (Cd2O3@C) nanoparticles: Application to magnetic resonance imaging and fluorescence properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 586, 124261.	4.7	19
1761	Amplified light harvesting for enhancing Italian lettuce photosynthesis using water soluble silicon quantum dots as artificial antennas. Nanoscale, 2020, 12, 155-166.	5.6	35
1762	Amplified luminescence quenching effect upon binding of nitrogen doped carbon nanodots to transition metal ions. Photochemical and Photobiological Sciences, 2020, 19, 207-216.	2.9	8
1763	Construction of a thermo-responsive copolymer-stabilized Fe ₃ O ₄ @CD@PdNP hybrid and its application in catalytic reduction. Polymer Chemistry, 2020, 11, 1177-1187.	3.9	8
1764	Carbon-based dots for electrochemiluminescence sensing. Materials Chemistry Frontiers, 2020, 4, 369-385.	5.9	72
1765	Graphene oxide membranes on a hierarchical elemental carbon-based support. Environmental Science: Nano, 2020, 7, 891-902.	4.3	4
1766	Graphitic Carbon Quantum Dots Modified Nickel Cobalt Sulfide as Cathode Materials for Alkaline Aqueous Batteries. Nano-Micro Letters, 2020, 12, 16.	27.0	114

#	Article	IF	CITATIONS
1767	Rapid and Largeâ€Scale Production of Multiâ€Fluorescence Carbon Dots by a Magnetic Hyperthermia Method. Angewandte Chemie, 2020, 132, 3123-3129.	2.0	11
1768	A universal strategy to separate hydrophilic hybrid-light carbon quantum dots using pure water as eluent. Applied Materials Today, 2020, 18, 100528.	4.3	10
1769	Gravity field-mediated synthesis of carbon-conjugated quantum dots with tunable defective density for enhanced triiodide reduction. Nano Energy, 2020, 69, 104377.	16.0	19
1770	Bright high-colour-purity deep-blue carbon dot light-emitting diodes via efficient edge amination. Nature Photonics, 2020, 14, 171-176.	31.4	303
1771	β-Cyclodextrin functionalized N,Zn codoped carbon dots for specific fluorescence detection of fluoroquinolones in milk samples. Microchemical Journal, 2020, 153, 104517.	4.5	20
1772	Ratiometric pH Sensing in Living Cells Using Carbon Dots. Particle and Particle Systems Characterization, 2020, 37, 1900430.	2.3	14
1773	Fabrication of dual emission carbon dots and its use in highly sensitive thioamide detection. Dyes and Pigments, 2020, 175, 108126.	3.7	10
1774	Carbon Dot/Poly(methylacrylic acid) Nanocomposite Hydrogels with High Toughness and Strong Fluorescence. ACS Applied Polymer Materials, 2020, 2, 1043-1052.	4.4	25
1775	Visible-light-activated N-doped CQDs/g-C3N4/Bi2WO6 nanocomposites with different component arrangements for the promoted degradation of hazardous vapors. Journal of Materials Science and Technology, 2020, 40, 168-175.	10.7	34
1776	Carbon Dots as Potent Antimicrobial Agents. Theranostics, 2020, 10, 671-686.	10.0	241
1777	Inâ€situ formation and intercalation of carbon dots induced highâ€yield 1Tâ€molybdenum disulfide as electrode materials. Energy Storage, 2020, 2, e118.	4.3	6
1778	Role of Intrinsic Atomic Features and Bonding Motifs from the Surface to the Deep Core on Multistate Emissive Properties of N,B-Codoped Carbon Dots. Journal of Physical Chemistry C, 2020, 124, 1121-1128.	3.1	18
1779	Rapid and Large‣cale Production of Multiâ€Fluorescence Carbon Dots by a Magnetic Hyperthermia Method. Angewandte Chemie - International Edition, 2020, 59, 3099-3105.	13.8	97
1780	Carbon quantum dots as fluorescence sensors for label-free detection of folic acid in biological samples. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 229, 117931.	3.9	58
1781	Fluorescent carbon quantum dots synthesized using phenylalanine and citric acid for selective detection of Fe3+ ions. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 229, 117944.	3.9	78
1782	Synthesis of N, Zn-doped carbon dots for the detection of Fe3+ ions and bactericidal activity against Escherichia coli and Staphylococcus aureus. Journal of Photochemistry and Photobiology B: Biology, 2020, 202, 111734.	3.8	54
1783	Photoactivated Fluorescence Enhancement in F,Nâ€Đoped Carbon Dots with Piezochromic Behavior. Angewandte Chemie, 2020, 132, 10072-10077.	2.0	27
1784	Fabrication of chemiluminescence resonance energy transfer platform based on nanomaterial and its application in optical sensing, biological imaging and photodynamic therapy. TrAC - Trends in Analytical Chemistry, 2020, 122, 115747.	11.4	44

#	Article	IF	CITATIONS
1785	Surface structure and fluorescence characteristics of concentrated carbon point. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 586, 124201.	4.7	4
1786	Making a cup of carbon dots for ratiometric and colorimetric fluorescent detection of Cu2+ ions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 586, 124233.	4.7	28
1787	Ultra-radiant photoluminescence of glutathione rigidified reduced carbon quantum dots (r-CQDs) derived from ice-biryani for in vitro and in vivo bioimaging applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 586, 124266.	4.7	22
1788	A smart bioresponsive nanosystem with dual-modal imaging for drug visual loading and targeted delivery. Chemical Engineering Journal, 2020, 391, 123619.	12.7	37
1789	Green, energy-efficient preparation of CDs-embedded BiPO4 heterostructure for better light harvesting and conversion. Chemical Engineering Journal, 2020, 391, 123551.	12.7	7
1790	Carbon Quantum Dots As Antibacterial Photosensitizers and Their Polymer Nanocomposite Applications. Particle and Particle Systems Characterization, 2020, 37, 1900348.	2.3	58
1791	Waste-derived Materials: Opportunities in Photocatalysis. Topics in Current Chemistry, 2020, 378, 3.	5.8	18
1792	Carbon dots; the smallest photoresponsive structure of carbon in advanced drug targeting. Journal of Drug Delivery Science and Technology, 2020, 55, 101408.	3.0	32
1793	Carbon dots-MnO2 based turn-on fluorescent probe for rapid and sensitive detection of hydrazine in water. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 389, 112258.	3.9	16
1794	Carbon dots derived fluorescent nanosensors as versatile tools for food quality and safety assessment: A review. Trends in Food Science and Technology, 2020, 95, 149-161.	15.1	141
1795	Determination of 2,4,6-trinitrophenol by in-situ assembly of SBA-15 with multi-hydroxyl carbon dots. Analytica Chimica Acta, 2020, 1098, 170-180.	5.4	21
1796	New polyvinyl alcohol/carbon quantum dots (PVA/CQDs) nanocomposite films: Structural, optical and catalysis properties. Synthetic Metals, 2020, 259, 116218.	3.9	77
1797	One-pot synthesized nitrogen-fluorine-codoped carbon quantum dots for ClOâ^' ions detection in water samples. Dyes and Pigments, 2020, 175, 108178.	3.7	19
1798	Selective detection of Fe ³⁺ ions based on fluorescence MXene quantum dots <i>via</i> a mechanism integrating electron transfer and inner filter effect. Nanoscale, 2020, 12, 1826-1832.	5.6	128
1799	Preparation of boron nitrogen co-doped carbon quantum dots for rapid detection of Cr(VI). Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 243, 118807.	3.9	45
1800	Nanostructured materials for harnessing the power of horseradish peroxidase for tailored environmental applications. Science of the Total Environment, 2020, 749, 142360.	8.0	31
1801	Sensor and Bioimaging Studies Based on Carbon Quantum Dots: The Green Chemistry Approach. Critical Reviews in Analytical Chemistry, 2022, 52, 814-847.	3.5	34
1802	CQDs/Au NPs Modified Polysulfone Membrane with Antibacterial Function and Photocatalytic Activity for Degradation of Methylene Blue. Nano, 2020, 15, 2050131.	1.0	5

#	ARTICLE Carbon Dots Derived from Facile Tailoring of Shaerhu Lignite as a Novel Fluorescence Sensor with	IF	CITATIONS
1803	Highâ€Selectivity and Sensitivity for Cu Ž+ Detection. ČhemistrySelect, 2020, 5, 12125-12130. Functionalized carbon dot nanoparticles reinforced soy protein isolate biopolymeric film. Journal of	2.4	20
1805	Carbon quantum dots supported ZnO sphere based photocatalyst for dye degradation application. Current Applied Physics, 2020, 20, 1176-1184.	2.4	42
1806	Carbon nanodots as dual role of crosslinking and reinforcing chloroprene rubber. Composites Communications, 2020, 22, 100441.	6.3	20
1807	Carbon dot mediated trihybrid formation by reduction of GO and <i>in situ</i> gold nanocluster fabrication: photo-switching behaviour and degradation of chemical warfare agent stimulants. Journal of Materials Chemistry C, 2020, 8, 15735-15741.	5.5	12
1808	Application of micro/nanomaterials in adsorption and sensing of active ingredients in traditional Chinese medicine. Journal of Pharmaceutical and Biomedical Analysis, 2020, 190, 113548.	2.8	12
1809	Porphyrin structure carbon dots under red light irradiation for bacterial inactivation. New Journal of Chemistry, 2020, 44, 18225-18232.	2.8	10
1810	Dynamic Thermosensitive Solid-State Photoluminescent Carbonized Polymer Dots as Temperature-Responsive Switches for Sensor Applications. ACS Applied Nano Materials, 2020, 3, 10560-10564.	5.0	13
1811	New Class of Efficient T2 Magnetic Resonance Imaging Contrast Agent: Carbon-Coated Paramagnetic Dysprosium Oxide Nanoparticles. Pharmaceuticals, 2020, 13, 312.	3.8	8
1812	Microbial and quality improvement of boiled gansi dish using carbon dots combined with radio frequency treatment. International Journal of Food Microbiology, 2020, 334, 108835.	4.7	19
1813	A spectroscopic investigation of Carbon dots and its reduced state towards fluorescence performance. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 403, 112847.	3.9	13
1814	Carbon Nanoparticles and Materials on Their Basis. Colloids and Interfaces, 2020, 4, 42.	2.1	7
1815	Simple synthesis of photoluminescent carbon dots from a marine polysaccharide found in shark cartilage. Electronic Journal of Biotechnology, 2020, 47, 36-42.	2.2	16
1816	Recent advances in chiral carbonized polymer dots: From synthesis and properties to applications. Nano Today, 2020, 34, 100953.	11.9	95
1817	Two-photon active nucleus-targeting carbon dots: enhanced ROS generation and photodynamic therapy for oral cancer. Nanoscale, 2020, 12, 20598-20603.	5.6	68
1818	Photobase effect for just-in-time delivery in photocatalytic hydrogen generation. Nature Communications, 2020, 11, 5179.	12.8	23
1819	Preparation of sulfur-doped carbon quantum dots from lignin as a sensor to detect Sudan I in an acidic environment. Journal of Materials Chemistry B, 2020, 8, 10788-10796.	5.8	55
1820	Surface functional carbon dots: chemical engineering applications beyond optical properties. Journal of Materials Chemistry C, 2020, 8, 16282-16294.	5.5	36

#	Article	IF	CITATIONS
1821	Natural carbon-based quantum dots and their applications in drug delivery: A review. Biomedicine and Pharmacotherapy, 2020, 132, 110834.	5.6	151
1822	Bioinspired fluorescence carbon quantum dots extracted from natural honey: Efficient material for photonic and antibacterial applications. Nano Structures Nano Objects, 2020, 24, 100589.	3.5	44
1823	Graphitic Carbon Nitride Quantum Dots Embedded in Carbon Nanosheets for Near-Infrared Imaging-Guided Combined Photo-Chemotherapy. ACS Nano, 2020, 14, 13304-13315.	14.6	83
1824	Stealth and Bright Monomolecular Fluorescent Organic Nanoparticles Based on Folded Amphiphilic Polymer. ACS Nano, 2020, 14, 13924-13937.	14.6	29
1825	Synthesis of green fluorescent carbon dots from carbon nano-onions and graphene oxide. RSC Advances, 2020, 10, 36404-36412.	3.6	29
1826	Accurate regulation of pore distribution and atomic arrangement enabling highly efficient dual-carbon lithium ion capacitors. Journal of Materials Chemistry A, 2020, 8, 22230-22239.	10.3	7
1827	Artificial photosynthetic assemblies constructed by the self-assembly of synthetic building blocks for enhanced photocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2020, 8, 21690-21699.	10.3	11
1828	Polymeric nanoparticles based on CDs with photoreversible dual-color fluorescence modulation. Journal of Materials Chemistry C, 2020, 8, 15697-15704.	5.5	8
1829	Hydrothermal synthesis and characterization of nitrogen-doped fluorescent carbon quantum dots from citric acid and urea. Ferroelectrics, 2020, 566, 116-123.	0.6	5
1830	Facile preparation of fluorescent carbon quantum dots from denatured sour milk and its multifunctional applications in the fluorometric determination of gold ions, in vitro bioimaging and fluorescent polymer film. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 401, 112788.	3.9	24
1831	A Green, Economic "Switch-On―Sensor for Cefixime Analysis Based on Black Soya Bean Carbon Quantum Dots. Journal of AOAC INTERNATIONAL, 2020, 103, 1230-1236.	1.5	9
1832	Large and Emissive Crystals from Carbon Quantum Dots onto Interfacial Organized Templates. Angewandte Chemie - International Edition, 2020, 59, 20167-20173.	13.8	14
1833	Green mitigation of microbial corrosion by copper nanoparticles doped carbon quantum dots nanohybrid. Environmental Science and Pollution Research, 2020, 27, 40537-40551.	5.3	19
1834	Design and fabrication of carbon dots decorated WO3 nanosheets hybrid photoanodes for sunlight-driven dye-sensitized solar cell applications. Journal of Materials Science: Materials in Electronics, 2020, 31, 14553-14562.	2.2	4
1835	Zero-dimensional carbon nanomaterials-based adsorbents. , 2020, , 181-193.		0
1836	Engineering Heterostructured Thin-Film Nanocomposite Membrane with Functionalized Graphene Oxide Quantum Dots (GOQD) for Highly Efficient Reverse Osmosis. ACS Applied Materials & Interfaces, 2020, 12, 38662-38673.	8.0	51
1837	Mechanofluorochromic carbon dots under grinding stimulation. Nanoscale, 2020, 12, 16433-16437.	5.6	6
1838	One-pot synthesis of a carbon dots@zeolitic imidazolate framework-8 composite for enhanced Cu ²⁺ sensing. Analytical Methods, 2020, 12, 4058-4063.	2.7	23

#	Article	IF	CITATIONS
1839	Surface vs. core N/S/Se-heteroatom doping of carbon nanodots produces divergent yet consistent optical responses to reactive oxygen species. Nanoscale Advances, 2020, 2, 4024-4033.	4.6	2
1840	Review of Nanotechnology Impacts on Oilfield Scale Management. ACS Applied Nano Materials, 2020, 3, 7343-7364.	5.0	36
1841	Facile fabrication of an effective nanocellulose-based aerogel and removal of methylene blue from aqueous system. Journal of Water Process Engineering, 2020, 37, 101511.	5.6	17
1842	Design of pH-Responsive Dissociable Nanosystem Based on Carbon Dots with Enhanced Anti-biofilm Property and Excellent Biocompatibility. ACS Applied Bio Materials, 2020, 3, 1105-1115.	4.6	35
1843	DNA Functional Materials Assembled from Branched DNA: Design, Synthesis, and Applications. Chemical Reviews, 2020, 120, 9420-9481.	47.7	313
1844	Coupling 0D and 1D Carbons for Electrochemical Hydrogen Production Promoted by a Percolation Mechanism. ChemSusChem, 2020, 13, 4094-4102.	6.8	3
1845	Heteroatom doped carbon dots with nanoenzyme like properties as theranostic platforms for free radical scavenging, imaging, and chemotherapy. Acta Biomaterialia, 2020, 114, 343-357.	8.3	52
1846	Electrochemical performance of a three-layer electrode based on Bi nanoparticles, multi-walled carbon nanotube composites for simultaneous Hg(II) and Cu(II) detection. Chinese Chemical Letters, 2020, 31, 2752-2756.	9.0	35
1847	The Renal Clearable Magnetic Resonance Imaging Contrast Agents: State of the Art and Recent Advances. Molecules, 2020, 25, 5072.	3.8	10
1848	Green synthesis of carbon quantum dots from food waste. Materials Today: Proceedings, 2022, 51, 1696-1700.	1.8	9
1849	State-of-the-Art on the Preparation, Modification, and Application of Biomass-Derived Carbon Quantum Dots. Industrial & Engineering Chemistry Research, 2020, 59, 22017-22039.	3.7	67
1850	Synthesis, characterization and biocompatibility studies of carbon quantum dots from Phoenix dactylifera. 3 Biotech, 2020, 10, 540.	2.2	30
1851	Nitrogen and sulfur co-doped fluorescent carbon dots for the trapping of Hg(<scp>ii</scp>) ions from water. Materials Advances, 2020, 1, 3009-3021.	5.4	10
1852	Nanotheranostic Carbon Dots as an Emerging Platform for Cancer Therapy. Journal of Nanotheranostics, 2020, 1, 58-77.	3.1	28
1853	Anchoring Carbon Nanodots onto Nanosilica for Phosphorescence Enhancement and Delayed Fluorescence Nascence in Solid and Liquid States. Small, 2020, 16, e2005228.	10.0	61
1854	Green synthesis of water-soluble fluorescent carbon dots from rosemary leaves: Applications in food storage capacity, fingerprint detection, and antibacterial activity. Journal of Chemical Research, 2021, 45, 428-435.	1.3	33
1855	A peptide nucleic acid–regulated fluorescence resonance energy transfer DNA assay based on the use of carbon dots and gold nanoparticles. Mikrochimica Acta, 2020, 187, 375.	5.0	14
1856	Carbonaceous nanomaterials as photocatalysts. , 2020, , 97-117.		1

#	Article	IF	CITATIONS
1857	Chiral Self-Assembly of Porphyrins Induced by Chiral Carbon Dots. Frontiers in Chemistry, 2020, 8, 670.	3.6	26
1858	Fluorescent carbon dots are the new quantum dots: an overview of their potential in emerging technologies and nanosafety. Journal of Materials Science, 2020, 55, 15074-15105.	3.7	36
1859	Ultrastable and ultrasensitive pH-switchable carbon dots with high quantum yield for water quality identification, glucose detection, and two starch-based solid-state fluorescence materials. Nano Research, 2020, 13, 3012-3018.	10.4	48
1860	Solvent Effect on Structural Elucidation of Photoluminescent Graphitic Carbon Nanodots. ACS Omega, 2020, 5, 20409-20416.	3.5	10
1861	Carbon dot-modified mesoporous carbon as a supercapacitor with enhanced light-assisted capacitance. Nanoscale, 2020, 12, 17925-17930.	5.6	25
1862	Carbon Dots for Forensic Applications: A Critical Review. Nanomaterials, 2020, 10, 1535.	4.1	36
1863	Dispersion Properties of Nanocellulose: A Review. Carbohydrate Polymers, 2020, 250, 116892.	10.2	133
1864	Carbonized Polymer Dots with Tunable Room-Temperature Phosphorescence Lifetime and Wavelength. ACS Applied Materials & Interfaces, 2020, 12, 38593-38601.	8.0	90
1865	Human virus detection with graphene-based materials. Biosensors and Bioelectronics, 2020, 166, 112436.	10.1	140
1866	Functionalizing Luminescent Metal–Organic Frameworks for Enhanced Photoluminescence. ACS Energy Letters, 2020, 5, 2671-2680.	17.4	58
1867	Fluorescence of CQDs Synthesized by Hydrothermal Method. IOP Conference Series: Materials Science and Engineering, 2020, 774, 012013.	0.6	1
1868	Highly sensitive fluorescence sensor for mercury(II) based on boron- and nitrogen-co-doped graphene quantum dots. Journal of Colloid and Interface Science, 2020, 566, 357-368.	9.4	62
1869	Photothermal effect of carbon quantum dots enhanced photoelectrochemical water splitting of hematite photoanodes. Journal of Materials Chemistry A, 2020, 8, 14915-14920.	10.3	58
1870	Fluorescent Turn-on Aptasensor of Staphylococcus aureus Based on the FRET Between Green Carbon Quantum Dot and Gold Nanoparticle. Food Analytical Methods, 2020, 13, 2070-2079.	2.6	50
1871	Synthesis of Novel Fluorescent Carbon Quantum Dots From Rosa roxburghii for Rapid and Highly Selective Detection of o-nitrophenol and Cellular Imaging. Frontiers in Chemistry, 2020, 8, 665.	3.6	16
1872	Adverse effect assessment of fluorescent carbon dots in cigarette smoke. NanoImpact, 2020, 19, 100241.	4.5	4
1873	Inkâ€Based Additive Nanomanufacturing of Functional Materials for Humanâ€Integrated Smart Wearables. Advanced Intelligent Systems, 2020, 2, 2000117.	6.1	17
1874	Quantification of EGFR and EGFR-overexpressed cancer cells based on carbon dots@bimetallic CuCo Prussian blue analogue. RSC Advances, 2020, 10, 28355-28364.	3.6	13

#	Article	IF	CITATIONS
1875	Large and Emissive Crystals from Carbon Quantum Dots onto Interfacial Organized Templates. Angewandte Chemie, 2020, 132, 20342-20348.	2.0	0
1876	Quaternized Cationic Carbon Dots as Antigen Delivery Systems for Improving Humoral and Cellular Immune Responses. ACS Applied Nano Materials, 2020, 3, 9449-9461.	5.0	15
1877	Flash-cooling assisted sol-gel self-ignited synthesis of magnetic carbon dots-based heterostructure with antitumor properties. Materials Science and Engineering C, 2020, 117, 111288.	7.3	8
1878	Carbon dots/polyoxometalate/Pt as a ternary composite for electrocatalytic methanol oxidation. Journal of Coordination Chemistry, 2020, 73, 2450-2461.	2.2	1
1879	Photocatalytic degradation of methyl orange using Carbon Quantum Dots (CQDs) derived from watermelon rinds. IOP Conference Series: Materials Science and Engineering, 2020, 736, 042038.	0.6	14
1880	Properties of Carbon Dots Synthesized Solvothermally from Citric Acid and Urea. Journal of Structural Chemistry, 2020, 61, 811-817.	1.0	5
1881	Quantum/carbon dots-based fluorescent assays for enzyme activity. TrAC - Trends in Analytical Chemistry, 2020, 131, 116008.	11.4	43
1882	Synthesis of Carbon Dots by Varying Doped Elements and Application in Serine Detection. Journal of Fluorescence, 2020, 30, 1447-1456.	2.5	5
1883	Emerging Lowâ€Dimensional Nanoagents for Bioâ€Microimaging. Advanced Functional Materials, 2020, 30, 2003147.	14.9	13
1884	Photoexcited state properties and antibacterial activities of carbon dots relevant to mechanistic features and implications. Carbon, 2020, 170, 137-145.	10.3	42
1885	Fabrication of Gold nanoparticles/Carbon Quantum Dots Nanocomposites for the Electrochemical Analysis of Ascorbic Acid, Dopamine and Uric Acid. International Journal of Electrochemical Science, 2020, 15, 8808-8822.	1.3	2
1886	Synthesis and cytocompatibility analysis of carbon nanodots derived from palmyra palm leaf for multicolor imaging applications. Sustainable Chemistry and Pharmacy, 2020, 18, 100334.	3.3	11
1887	Machine learning-guided synthesis of advanced inorganic materials. Materials Today, 2020, 41, 72-80.	14.2	70
1888	Fluorescent Nanomaterials for Cellular Imaging. , 2020, , .		1
1889	Mitocans Revisited: Mitochondrial Targeting as Efficient Anti-Cancer Therapy. International Journal of Molecular Sciences, 2020, 21, 7941.	4.1	73
1890	Ascorbic Acid-PEI Carbon Dots with Osteogenic Effects as miR-2861 Carriers to Effectively Enhance Bone Regeneration. ACS Applied Materials & amp; Interfaces, 2020, 12, 50287-50302.	8.0	40
1891	A Critical Review of Electrochemical Glucose Sensing: Evolution of Biosensor Platforms Based on Advanced Nanosystems. Sensors, 2020, 20, 6013.	3.8	110
1892	Carbon-based dot nanoclusters with enhanced roles of defect states in the fluorescence and singlet oxygen generation. New Journal of Chemistry, 2020, 44, 16461-16467.	2.8	7

#	Article	IF	CITATIONS
1893	Polyene-Free Photoluminescent Polymers via Hydrothermal Hydrolysis of Polyacrylonitrile in Neutral Water. ACS Macro Letters, 2020, 9, 1403-1408.	4.8	8
1894	Carbon-based nanomaterials: in the quest of alternative metal-free photocatalysts for solar water splitting. Nanoscale Advances, 2020, 2, 5130-5151.	4.6	50
1895	An easy synthesis of nitrogen and phosphorus co-doped carbon dots as a probe for chloramphenicol. RSC Advances, 2020, 10, 32919-32926.	3.6	11
1896	Optical nanosensors for biofilm detection in the food industry: principles, applications and challenges. Critical Reviews in Food Science and Nutrition, 2021, 61, 2107-2124.	10.3	24
1897	Inorganic nanocrystal-dynamic porous polymer assemblies with effective energy transfer for sensitive diagnosis of urine copper. Chemical Science, 2020, 11, 12187-12193.	7.4	8
1898	A Perspective on Application of Carbon Quantum Dots in Luminescence Immunoassays. Frontiers in Chemistry, 2020, 8, 580033.	3.6	8
1899	Synthesis and Visible-Light Photocatalytic N2/H2O to Ammonia of Au@CDs Core-Shell Nanocatalyst. Nano, 2020, 15, 2050103.	1.0	4
1900	Imidazolium-type ionic liquid-based carbon quantum dot doped gels for information encryption. Nanoscale, 2020, 12, 20965-20972.	5.6	19
1901	Decoration of MAPbI ₃ Perovskites with Carbon Dots for Enhanced Photoelectrochemical Performance and Stability. Nano, 2020, 15, 2050141.	1.0	1
1902	Carbon dots for effective photodynamic inactivation of virus. RSC Advances, 2020, 10, 33944-33954.	3.6	15
1903	Quantum dots as nanosensors for detection of toxics: a literature review. Analytical Methods, 2020, 12, 4254-4275.	2.7	37
1904	Highly swelling pH-responsive microgels for dual mode near infra-red fluorescence reporting and imaging. Nanoscale Advances, 2020, 2, 4261-4271.	4.6	8
1905	Electrospun captoprilâ€loaded <scp>PCL</scp> arbon quantum dots nanocomposite scaffold: Fabrication, characterization, and in vitro studies. Polymers for Advanced Technologies, 2020, 31, 3302-3315.	3.2	21
1906	Synthesis of Core‧hell Au@TiO 2 @C Nanoparticles and Their Photocatalytic Properties for the Degradation of Rhodamine B Under Simulated‧olar Light. ChemistrySelect, 2020, 5, 10055-10059.	1.5	3
1907	Eco-Friendly Fluorescent Carbon Nanodots: Characteristics and Potential Applications. , 0, , .		4
1908	Fabrication of low-cost sustainable electrocatalyst: a diagnostic tool for multifunctional disorders in human fluids. Journal of Materials Chemistry B, 2020, 8, 9502-9511.	5.8	7
1909	The Elusive Nature of Carbon Nanodot Fluorescence: An Unconventional Perspective. Journal of Physical Chemistry C, 2020, 124, 22314-22320.	3.1	31
1910	Dual-responsive mesoporous silica nanoparticles coated with carbon dots and polymers for drug encapsulation and delivery. Nanomedicine, 2020, 15, 2447-2458.	3.3	14

#	Article	IF	CITATIONS
1911	Facile synthesis of ultrahigh fluorescence N,S-self-doped carbon nanodots and their multiple applications for H ₂ S sensing, bioimaging in live cells and zebrafish, and anti-counterfeiting. Nanoscale, 2020, 12, 20482-20490.	5.6	24
1913	One-Step and One-Precursor Hydrothermal Synthesis of Carbon Dots with Superior Antibacterial Activity. ACS Applied Bio Materials, 2020, 3, 7095-7102.	4.6	39
1914	Phosphorus-Doped Carbon Quantum Dots as Fluorometric Probes for Iron Detection. ACS Omega, 2020, 5, 22278-22288.	3.5	86
1915	Tuning residual chirality in carbon dots with anti-microbial properties. RSC Advances, 2020, 10, 32202-32210.	3.6	32
1916	Topochemical synthesis of low-dimensional nanomaterials. Nanoscale, 2020, 12, 21971-21987.	5.6	7
1917	Facile synthesis of N, P-doped carbon dots from maize starch <i>via</i> a solvothermal approach for the highly sensitive detection of Fe ³⁺ . RSC Advances, 2020, 10, 33483-33489.	3.6	36
1918	A Fluorescent "Turn-off―Probe for the Determination of Curcumin Using Upconvert Luminescent Carbon Dots. Journal of Fluorescence, 2020, 30, 1469-1476.	2.5	15
1919	Facile Synthesis of "Boron-Doped―Carbon Dots and Their Application in Visible-Light-Driven Photocatalytic Degradation of Organic Dyes. Nanomaterials, 2020, 10, 1560.	4.1	40
1920	Electrogenerated Chemiluminescence and Electroluminescence of Nâ€Doped Graphene Quantum Dots Fabricated from an Electrochemical Exfoliation Process in Nitrogenâ€Containing Electrolytes. Chemistry - A European Journal, 2020, 26, 15892-15900.	3.3	27
1921	Molecular Fluorophores Self-Organize into C-Dot Seeds and Incorporate into C-Dot Structures. Journal of Physical Chemistry Letters, 2020, 11, 8252-8258.	4.6	24
1922	Recent Developments of Carbon Dots in Biosensing: A Review. ACS Sensors, 2020, 5, 2724-2741.	7.8	266
1923	Fundamental Understanding of the Formation Mechanism for Graphene Quantum Dots Fabricated by Pulsed Laser Fragmentation in Liquid: Experimental and Theoretical Insight. Small, 2020, 16, 2003538.	10.0	13
1924	A novel synthesis of graphene quantum dots via thermal treatment of crude graphite oxide in a dry and alkaline condition, and their application in uranyl detection. Heliyon, 2020, 6, e04533.	3.2	7
1925	Solvothermal Synthesis and Inkjet Printing of Carbon Quantum Dots. ChemistrySelect, 2020, 5, 14930-14934.	1.5	6
1926	A zeolite-based ship-in-a-bottle route to ultrasmall carbon dots for live cell labeling and bioimaging. Nanoscale Advances, 2020, 2, 5803-5809.	4.6	7
1927	Luminescent carbon dots obtained from chitosan: a comparison between different methods to enhance the quantum yield. Fullerenes Nanotubes and Carbon Nanostructures, 2021, 29, 414-422.	2.1	13
1928	When rare earth meets carbon nanodots: mechanisms, applications and outlook. Chemical Society Reviews, 2020, 49, 9220-9248.	38.1	61
1929	Pressure-Dependent Tuning of Photoluminescence and Size Distribution of Carbon Nanodots for Theranostic Anticancer Applications. Materials, 2020, 13, 4899.	2.9	8

#	Article	IF	CITATIONS
1930	In Situ Chromophore Doping: A New Mechanism for the Long-Wavelength Emission of Carbon Dots. Journal of Physical Chemistry C, 2020, 124, 10638-10646.	3.1	27
1931	Synthesis and evaluation of polyamine carbon quantum dots (CQDs) in Litopenaeus vannamei as a therapeutic agent against WSSV. Scientific Reports, 2020, 10, 7343.	3.3	27
1932	Phase separation of co-solvent promotes multiple bio-nanomaterials conversion from natural lignocellulose. Industrial Crops and Products, 2020, 152, 112469.	5.2	13
1933	Carbon-Dot-Based Thin Film with Responses toward Mechanical Stimulation and Acidic/Basic Vapors. ACS Omega, 2020, 5, 12144-12147.	3.5	4
1934	Polyaniline and quantum dot-based nanostructures: Developments and perspectives. Journal of Plastic Film and Sheeting, 2020, 36, 430-447.	2.2	6
1935	Graphitic nanorings for super-long lifespan lithium-ion capacitors. Nano Research, 2020, 13, 2909-2916.	10.4	14
1936	Ordered structures of alkylated carbon dots and their applications in nonlinear optics. Journal of Materials Chemistry C, 2020, 8, 8980-8991.	5.5	20
1937	A facile synthesis of two ionized fluorescent carbon dots and selective detection toward Fe ²⁺ and Cu ²⁺ . Nanoscale Advances, 2020, 2, 2943-2949.	4.6	1
1938	Finding Value in Wastewaters from the Cork Industry: Carbon Dots Synthesis and Fluorescence for Hemeprotein Detection. Molecules, 2020, 25, 2320.	3.8	8
1939	Regulatory Preparation of N/S Doped Carbon Quantum Dots and Their Applications as Fe(III) Ion Sensors. ChemistrySelect, 2020, 5, 5306-5311.	1.5	10
1940	A review: recent advances in preparations and applications of heteroatom-doped carbon quantum dots. Dalton Transactions, 2020, 49, 6915-6938.	3.3	142
1941	Nitrogen-doped graphene quantum dots prepared by electrolysis of nitrogen-doped nanomesh graphene for the fluorometric determination of ferric ions. Mikrochimica Acta, 2020, 187, 322.	5.0	29
1942	Direct carbonization of organic solvents toward graphene quantum dots. Nanoscale, 2020, 12, 10956-10963.	5.6	24
1943	Nanozyme-based electrochemical biosensors for disease biomarker detection. Analyst, The, 2020, 145, 4398-4420.	3.5	121
1944	Benefit of porous silica nanoreactor in preparation of fluorescence carbon dots from citric acid. Nano Express, 2020, 1, 010011.	2.4	8
1945	Carbon dot-dispersed hexabutyloxytriphenylene discotic mesogens: structural, morphological and charge transport behavior. Journal of Materials Chemistry C, 2020, 8, 9252-9261.	5.5	20
1946	Highly sensitive fluorometric method based on nitrogen-doped carbon dot clusters for tartrazine determination in cookies samples. Turkish Journal of Chemistry, 2020, 44, 99-111.	1.2	13
1947	Fluorescent nanoparticles for sensing. Frontiers of Nanoscience, 2020, 16, 117-149.	0.6	16
#	ARTICLE	IF	CITATIONS
----------	---	------	-----------
 1948	Induced toxicity in early-life stage zebrafish (Danio rerio) and its behavioral analysis after exposure to non-doped, nitrogen-doped and nitrogen, sulfur-co doped carbon quantum dots. Environmental Toxicology and Pharmacology, 2020, 79, 103426	4.0	22
1949	Nanotechnology-Based Strategies to Develop New Anticancer Therapies. Biomolecules, 2020, 10, 735.	4.0	32
1950	Organic Field-Effect Transistor Memory Device Based on an Integrated Carbon Quantum Dots/Polyvinyl Pyrrolidone Hybrid Nanolayer. Electronics (Switzerland), 2020, 9, 753.	3.1	3
1951	Fluorescent Carbon Quantum Dots—Synthesis, Functionalization and Sensing Application in Food Analysis. Nanomaterials, 2020, 10, 930.	4.1	87
1952	Ultra-thin tubular graphitic carbon Nitride-Carbon Dot lateral heterostructures: One-Step synthesis and highly efficient catalytic hydrogen generation. Chemical Engineering Journal, 2020, 397, 125470.	12.7	72
1953	Carbon Dots in Porous Materials: Host–Guest Synergy for Enhanced Performance. Angewandte Chemie, 2020, 132, 19558-19570.	2.0	12
1954	Calcium-modified carbon dots derived from polyethylene glycol: fluorescence-based detection of Trifluralin herbicide. Journal of Materials Science, 2020, 55, 11597-11608.	3.7	29
1955	Application of functionalized carbon dots in detection, diagnostic, disease treatment, and desalination: a review. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2020, 11, 025017.	1.5	11
1956	Synthesis of Multi-Color Fluorescent Carbon Dots From Mint Leaves: A Robust Bioimaging Agent with Potential Antioxidant Activity. Journal of Nanoscience and Nanotechnology, 2020, 20, 6305-6316.	0.9	22
1957	Unique hole-accepting carbon-dots promoting selective carbon dioxide reduction nearly 100% to methanol by pure water. Nature Communications, 2020, 11, 2531.	12.8	168
1958	Functionalized carbon quantum dots as fluorescent nanoprobe for determination of tetracyclines and cell imaging. Mikrochimica Acta, 2020, 187, 351.	5.0	71
1959	Easy and Rapid Synthesis of Carbon Quantum Dots from Mortiño (Vaccinium Meridionale Swartz) Extract for Use as Green Tracers in the Oil and Gas Industry: Lab-to-Field Trial Development in Colombia. Industrial & Engineering Chemistry Research, 2020, 59, 11359-11369.	3.7	21
1960	Ionic liquids as gas sensors and biosensors. , 2020, , 319-342.		3
1961	Bio-route synthesis of carbon quantum dots from tulsi leaves and its application as a draw solution in forward osmosis. Journal of Environmental Chemical Engineering, 2020, 8, 104174.	6.7	31
1962	Tunable multicolour S/N coâ€doped carbon quantum dots synthesized from waste foam and application to detection of Cr ³⁺ ions. Luminescence, 2020, 35, 1373-1383.	2.9	12
1963	Carbon dots derived from flax straw for highly sensitive and selective detections of cobalt, chromium, and ascorbic acid. Journal of Colloid and Interface Science, 2020, 579, 96-108.	9.4	109
1964	The synthesis of highly active carbon dot-coated gold nanoparticles <i>via</i> the room-temperature <i>in situ</i> carbonization of organic ligands for 4-nitrophenol reduction. RSC Advances, 2020, 10, 19419-19424.	3.6	10
1965	Fabrication of a novel core–shell CQDs@ZIF-8 composite with enhanced photocatalytic activity. Journal of Materials Science, 2020, 55, 13049-13061.	3.7	46

#	Article	IF	CITATIONS
1966	An excitation-dependent ratiometric dual-emission strategy for the large-scale enhancement of fluorescent tint control. Nanoscale, 2020, 12, 12773-12778.	5.6	9
1967	Highly luminescent un-doped carbon nano-dots driven from folic acid and passivated by polyethylene glycol. Materials Today: Proceedings, 2020, 33, 1800-1803.	1.8	3
1968	Green synthesis of multipurpose carbon quantum dots from red cabbage and estimation of their antioxidant potential and bio-labeling activity. Applied Microbiology and Biotechnology, 2020, 104, 7187-7200.	3.6	56
1969	Dual sensing of tetracycline and l-Lysine using green synthesized carbon dots from Nigella sativa seeds. Dyes and Pigments, 2020, 182, 108640.	3.7	42
1970	Surface states of carbon dots and their influences on luminescence. Journal of Applied Physics, 2020, 127, .	2.5	180
1971	Turning Spent Coffee Grounds into Sustainable Precursors for the Fabrication of Carbon Dots. Nanomaterials, 2020, 10, 1209.	4.1	36
1972	Preparation of nitrogen-doped carbon quantum dots (NCQDs) and application for non-enzymatic detection of glucose. Microchemical Journal, 2020, 158, 105187.	4.5	23
1973	Synthesis of quantum dots based on microfluidic technology. Current Opinion in Chemical Engineering, 2020, 29, 34-41.	7.8	19
1974	Metal ions sensing using carbon nanodots from various sources. Functional Materials Letters, 2020, 13, 2040005.	1.2	4
1975	Two-Step and Green Synthesis of Highly Fluorescent Carbon Quantum Dots and Carbon Nanofibers from Pine Fruit. Journal of Fluorescence, 2020, 30, 927-938.	2.5	24
1976	Off-on detection of glutathione based on the nitrogen, sulfur codoped carbon quantum dots@MnO nano-composite in human lung cancer cells and blood serum. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 398, 112558.	3.9	21
1977	Photocatalytic properties of grapheneâ€supported titania clusters from densityâ€functional theory. Journal of Computational Chemistry, 2020, 41, 1921-1930.	3.3	10
1978	Pink Fluorescent Carbon Dots Derived from the Phytomedicine for Breast Cancer Cell Imaging. ChemistrySelect, 2020, 5, 6954-6960.	1.5	18
1979	An ultrasensitive chemiluminescence assay for 4-nitrophenol by using luminol–NalO4 reaction catalyzed by copper, nitrogen co-doped carbon dots. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 241, 118608.	3.9	21
1980	Evaluating nitrite content changes in some Chinese home cooking with a newely-developed CDs diazotization spectrophotometry. Food Chemistry, 2020, 330, 127151.	8.2	18
1981	Detecting Ferric Iron by Microalgal Residue-Derived Fluorescent Nanosensor with an Advanced Kinetic Model. IScience, 2020, 23, 101174.	4.1	8
1983	Diselenide-Bridged Carbon-Dot-Mediated Self-Healing, Conductive, and Adhesive Wireless Hydrogel Sensors for Label-Free Breast Cancer Detection. ACS Nano, 2020, 14, 8409-8420.	14.6	94
1984	Controlled functionalization of carbon nanodots for targeted intracellular production of reactive oxygen species. Nanoscale Horizons, 2020, 5, 1240-1249.	8.0	36

#	Article	IF	CITATIONS
1985	Carbon dots with red/near-infrared emissions and their intrinsic merits for biomedical applications. Carbon, 2020, 167, 322-344.	10.3	164
1986	Advances in carbon dots: from the perspective of traditional quantum dots. Materials Chemistry Frontiers, 2020, 4, 1586-1613.	5.9	208
1987	Sensitive and selective determination of 4â€nitrophenol in water and food using modified polyethyleneimineâ€capped carbon dots. Journal of the Chinese Chemical Society, 2020, 67, 1230-1238.	1.4	9
1988	Green Nanomaterials. Advanced Structured Materials, 2020, , .	0.5	5
1989	Carbon dots-fed Shewanella oneidensis MR-1 for bioelectricity enhancement. Nature Communications, 2020, 11, 1379.	12.8	97
1990	Purple-emissive carbon dots enhance sensitivity of Si photodetectors to ultraviolet range. Nanoscale, 2020, 12, 8379-8384.	5.6	36
1991	Recent Advances in Nanomaterials for Analysis of Trace Heavy Metals. Critical Reviews in Analytical Chemistry, 2021, 51, 353-372.	3.5	24
1992	Dynamic Modification of Fermi Energy in Single-Layer Graphene by Photoinduced Electron Transfer from Carbon Dots. Nanomaterials, 2020, 10, 528.	4.1	9
1993	S, N-doped carbon quantum dots enhanced Luminol-Mn(IV) chemiluminescence reaction for detection of uric acid in biological fluids. Microchemical Journal, 2020, 156, 104841.	4.5	23
1994	Metal Nanoparticle–Microbe Interactions: Synthesis and Antimicrobial Effects. Particle and Particle Systems Characterization, 2020, 37, 1900419.	2.3	39
1995	Amphiphilic fluorescent carbon nanodots as a selective nanoprobe for nitrite and tetracycline both in aqueous and organic solutions. New Journal of Chemistry, 2020, 44, 5120-5126.	2.8	21
1996	In Situ Investigation on the Protein Corona Formation of Quantum Dots by Using Fluorescence Resonance Energy Transfer. Small, 2020, 16, e1907633.	10.0	46
1997	Waste to wealth translation of e-waste to plasmonic nanostructures for surface-enhanced Raman scattering. Applied Nanoscience (Switzerland), 2020, 10, 1615-1623.	3.1	11
1998	The Cost-Effective Preparation of Green Fluorescent Carbon Dots for Bioimaging and Enhanced Intracellular Drug Delivery. Nanoscale Research Letters, 2020, 15, 55.	5.7	39
1999	Green synthesis, biomedical and biotechnological applications of carbon and graphene quantum dots. A review. Environmental Chemistry Letters, 2020, 18, 703-727.	16.2	311
2000	One-step synthesis of green emission carbon dots for selective and sensitive detection of nitrite ions and cellular imaging application. RSC Advances, 2020, 10, 10067-10075.	3.6	11
2001	Borohydride-modified polyurethane foam: a new form of a widely known reducing agent in synthesis of metal nanoparticles for sensing applications. Applied Nanoscience (Switzerland), 2020, 10, 1023-1033.	3.1	4
2002	Quaternary ammonium carbon quantum dots as an antimicrobial agent against gram-positive bacteria for the treatment of MRSA-infected pneumonia in mice. Carbon, 2020, 163, 70-84.	10.3	58

#	Article	IF	CITATIONS
2003	Experimental and DFT Studies of Hybrid Silver/Cdots Nanoparticles. Journal of Physical Chemistry B, 2020, 124, 2425-2435.	2.6	10
2004	Chitin Nanofiber Paper toward Optical (Bio)sensing Applications. ACS Applied Materials & Interfaces, 2020, 12, 15538-15552.	8.0	64
2005	Fluorescent Carbon Dots Derived from Vehicle Exhaust Soot and Sensing of Tartrazine in Soft Drinks. ACS Omega, 2020, 5, 7025-7031.	3.5	52
2006	Modelâ€Based Optimization of Ripening Processes with Feedback Modules. Chemical Engineering and Technology, 2020, 43, 896-903.	1.5	7
2007	Phytochemical properties and antioxidant activity of Echinops persicus plant extract: green synthesis of carbon quantum dots from the plant extract. SN Applied Sciences, 2020, 2, 1.	2.9	24
2008	Nanoscale materials for the treatment of water contaminated by bacteria and viruses. , 2020, , 261-305.		3
2009	Ultrahigh yield synthesis of mesoporous carbon nanoparticles as a superior lubricant additive for polyethylene glycol. Dalton Transactions, 2020, 49, 5283-5290.	3.3	19
2010	Targeted tumour theranostics in mice via carbon quantum dots structurally mimicking large amino acids. Nature Biomedical Engineering, 2020, 4, 704-716.	22.5	243
2011	Osteopromotive carbon dots promote bone regeneration through the PERK-eIF2α-ATF4 pathway. Biomaterials Science, 2020, 8, 2840-2852.	5.4	22
2012	Facile Access to Solid-State Carbon Dots with High Luminescence Efficiency and Excellent Formability via Cellulose Derivative Coatings. ACS Sustainable Chemistry and Engineering, 2020, 8, 5937-5945.	6.7	45
2013	Strong Coupling of Carbon Quantum Dots in Plasmonic Nanocavities. ACS Applied Materials & Interfaces, 2020, 12, 19866-19873.	8.0	27
2014	Two-Photon Dual-Emissive Carbon Dot-Based Probe: Deep-Tissue Imaging and Ultrasensitive Sensing of Intracellular Ferric Ions. ACS Applied Materials & Interfaces, 2020, 12, 18395-18406.	8.0	78
2015	Synthesis of dual functional procaine-derived carbon dots for bioimaging and anticancer therapy. Nanomedicine, 2020, 15, 677-689.	3.3	17
2016	A novel cholchicine/gadolinium-loading tubulin self-assembly nanocarrier for MR imaging and chemotherapy of glioma. Nanotechnology, 2020, 31, 255601.	2.6	3
2017	High-efficient, spherical and thermal-stable carbon dots@silica fluorescent composite as rare earth-free phosphors for white LED. Ceramics International, 2020, 46, 14706-14712.	4.8	18
2018	Control of the size and luminescence of carbon nanodots by adjusting ambient pressure in laser ablation process. Journal of Applied Physics, 2020, 127, 083102.	2.5	3
2019	Optical and electrochemical tuning of hydrothermally synthesized nitrogen-doped carbon dots. Nanoscale Advances, 2020, 2, 3375-3383.	4.6	8
2020	Fluorescent carbonaceous materials isolated from cigarette ashes for the determination of iron(<scp>iii</scp>) in water samples. Analytical Methods, 2020, 12, 3523-3529.	2.7	4

#	Article	IF	CITATIONS
2021	Chitosan derived nitrogen-doped carbon dots suppress osteoclastic osteolysis <i>via</i> downregulating ROS. Nanoscale, 2020, 12, 16229-16244.	5.6	43
2022	Efficient full-color emitting carbon-dot-based composite phosphors by chemical dispersion. Nanoscale, 2020, 12, 15823-15831.	5.6	39
2023	AlE-active metal–organic frameworks: facile preparation, tunable light emission, ultrasensitive sensing of copper(<scp>ii</scp>) and visual fluorescence detection of glucose. Journal of Materials Chemistry C, 2020, 8, 10408-10415.	5.5	41
2024	Carbon Dots as Nano-Organocatalysts for Synthetic Applications. ACS Catalysis, 2020, 10, 8090-8105.	11.2	111
2025	Central nervous system responses to biomaterials. , 2020, , 507-554.		2
2026	Designing of novel nanosensors for environmental aspects. , 2020, , 51-87.		4
2027	Synthesis of carbon nitride quantum dots and biocompatibility evaluation using C. elegans as a model organism. Materials Today Communications, 2020, 25, 101383.	1.9	4
2028	Effects of polydopamine-passivation on the optical properties of carbon dots and its potential use <i>in vivo</i> . Physical Chemistry Chemical Physics, 2020, 22, 16595-16605.	2.8	14
2029	Evaluation of Different Bottom-up Routes for the Fabrication of Carbon Dots. Nanomaterials, 2020, 10, 1316.	4.1	47
2030	A vinyl sulfone clicked carbon dot-engineered microfluidic paper-based analytical device for fluorometric determination of biothiols. Mikrochimica Acta, 2020, 187, 421.	5.0	17
2031	Influence of carbon nanodots on DNA-Thionine interaction. Application to breast cancer diagnosis. Electrochimica Acta, 2020, 353, 136522.	5.2	17
2032	Synthesis and characterization of nitrogen-doped carbon dots as fluorescent nanoprobes with antimicrobial properties and skin permeability. Journal of Drug Delivery Science and Technology, 2020, 59, 101889.	3.0	25
2033	Green synthesis of Au@N-CQDs@Pd core-shell nanoparticles for enhanced methanol electrooxidation. Journal of Electroanalytical Chemistry, 2020, 873, 114423.	3.8	7
2034	Synthesis of homogeneous carbon quantum dots by ultrafast dual-beam pulsed laser ablation for bioimaging. Materials Today Nano, 2020, 12, 100091.	4.6	66
2035	Ratiometric Nanoparticle Probe Based on FRETâ€Amplified Phosphorescence for Oxygen Sensing with Minimal Phototoxicity. Small, 2020, 16, e2002494.	10.0	41
2036	Decoration of Graphene Quantum Dots on TiO ₂ Nanostructures: Photosensitizer and Cocatalyst Role for Enhanced Hydrogen Generation. Industrial & Engineering Chemistry Research, 2020, 59, 13060-13068.	3.7	44
2037	Photoluminescent, Ferromagnetic, and Hydrophobic Sponges for Oil–Water Separation. ACS Omega, 2020, 5, 15077-15082.	3.5	13
2038	Chirality Transfer in Carbon Dot-Composited Sol–Gel Systems for Excitation-Dependent Circularly Polarized Luminescence. Langmuir, 2020, 36, 8965-8970.	3.5	24

#	Article	IF	CITATIONS
2039	Rapid conversion from common precursors to carbon dots in large scale: Spectral controls, optical sensing, cellular imaging and LEDs application. Journal of Colloid and Interface Science, 2020, 580, 88-98.	9.4	31
2040	Novel MOF-based mixed-matrix membranes, N-CQDs@[Zn(HCOO)3][C2H8N]/PEG, as the effective antimicrobials. Journal of the Iranian Chemical Society, 2020, 17, 2987-2995.	2.2	7
2041	A novel fluorescence assay based on self-doping biomass carbon dots for rapid detection of dimethoate. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 400, 112724.	3.9	27
2042	A label-free fluorescent sensor based on carbon quantum dots with enhanced sensitive for the determination of myricetin in real samples. Microchemical Journal, 2020, 157, 104956.	4.5	24
2043	Carbon Dot Nanoparticles Exert Inhibitory Effects on Human Platelets and Reduce Mortality in Mice with Acute Pulmonary Thromboembolism. Nanomaterials, 2020, 10, 1254.	4.1	12
2044	Nanoparticle Charge and Size Control Foliar Delivery Efficiency to Plant Cells and Organelles. ACS Nano, 2020, 14, 7970-7986.	14.6	204
2045	Sonochemical synthesis of carbon dots, mechanism, effect of parameters, and catalytic, energy, biomedical and tissue engineering applications. Ultrasonics Sonochemistry, 2020, 64, 105009.	8.2	132
2046	Optical and photodynamic properties of carbon/TiO2 hybrid dots in different nanoscale configurations. Chemical Physics Letters, 2020, 743, 137208.	2.6	1
2047	Disulfide bond-based self-crosslinked carbon-dots for turn-on fluorescence imaging of GSH in living cells. Analyst, The, 2020, 145, 2982-2987.	3.5	26
2048	Review—Recent Advances in Carbon Nanomaterials as Electrochemical Biosensors. Journal of the Electrochemical Society, 2020, 167, 037555.	2.9	272
2049	Carbon quantum dots derived from lysine and arginine simultaneously scavenge bacteria and promote tissue repair. Applied Materials Today, 2020, 19, 100601.	4.3	59
2050	Highly fluorescent carbon dots derived from Mangifera indica leaves for selective detection of metal ions. Science of the Total Environment, 2020, 720, 137604.	8.0	83
2051	Carbon source self-heating: ultrafast, energy-efficient and room temperature synthesis of highly fluorescent N, S-codoped carbon dots for quantitative detection of Fe(<scp>iii</scp>) ions in biological samples. Nanoscale Advances, 2020, 2, 1483-1492.	4.6	17
2052	Recent advances in preparations and applications of carbon aerogels: A review. Carbon, 2020, 163, 1-18.	10.3	246
2053	Development of immunoassays for the determination of phthalates. Food and Agricultural Immunology, 2020, 31, 303-316.	1.4	10
2054	Synthesis of multiple-color emissive carbon dots towards white-light emission. Nanotechnology, 2020, 31, 245001.	2.6	7
2055	An eco-friendly fluorometric polymer nanoparticle for selectively monitoring sulfadiazine in tap water. Methods and Applications in Fluorescence, 2020, 8, 025005.	2.3	1
2056	Novel synthesis of Cu ₂ CoSnS ₄ -carbon quantum dots nano-composites potential light absorber for hybrid photovoltaics. Nanotechnology, 2020, 31, 235401.	2.6	3

#	Article	IF	CITATIONS
2057	Optical properties of graphene quantum dots: the role of chiral symmetry. 2D Materials, 2020, 7, 025041.	4.4	6
2058	Orthogonal Adsorption of Carbon Dots and DNA on Nanoceria. Langmuir, 2020, 36, 2474-2481.	3.5	8
2059	Preparation of molecularly imprinted fluorescence sensor based on carbon quantum dots via precipitation polymerization for fluorescence detection of tetracycline. Journal of Applied Polymer Science, 2020, 137, 49126.	2.6	19
2060	Glycyrrhizicâ€Acidâ€Based Carbon Dots with High Antiviral Activity by Multisite Inhibition Mechanisms. Small, 2020, 16, e1906206.	10.0	148
2061	Decorating CoNi layered double hydroxides nanosheet arrays with fullerene quantum dot anchored on Ni foam for efficient electrocatalytic water splitting and urea electrolysis. Chemical Engineering Journal, 2020, 390, 124525.	12.7	118
2062	Versatile, Aqueous Soluble C ₂ N Quantum Dots with Enriched Active Edges and Oxygenated Groups. Journal of the American Chemical Society, 2020, 142, 4621-4630.	13.7	38
2063	Multi-Functional Carbon Dots from an Ayurvedic Medicinal Plant for Cancer Cell Bioimaging Applications. Journal of Fluorescence, 2020, 30, 407-418.	2.5	37
2064	Synthesis of a Novel CQDsâ€GOâ€Ag ₂ S Composite and Study on the Adsorption of Methylene Blue. ChemistrySelect, 2020, 5, 2501-2507.	1.5	2
2065	Application of nanosensors for food safety. , 2020, , 369-386.		7
2066	One-Step Facile Synthesis of Fluorescent Carbon Dots via Magnetic Hyperthermia Method. Industrial & Engineering Chemistry Research, 2020, 59, 4968-4976.	3.7	15
2067	Carbon Dot-Sensitized Photoanodes for Visible Light-Driven Organic Transformations. ACS Applied Nano Materials, 2020, 3, 2756-2765.	5.0	7
2068	Copper-Ion-Assisted Precipitation Etching Method for the Luminescent Enhanced Assembling of Sulfur Quantum Dots. ACS Omega, 2020, 5, 5407-5411.	3.5	27
2069	Carbon dots: A green synthesis from Lawsonia inermis leaves. Materials Today: Proceedings, 2020, 26, 716-719.	1.8	15
2070	Translocation of a hydroxyl functionalized carbon dot across a lipid bilayer: an all-atom molecular dynamics simulation study. Physical Chemistry Chemical Physics, 2020, 22, 6335-6350.	2.8	20
2071	Visibleâ€Lightâ€Excited Ultralongâ€Lifetime Room Temperature Phosphorescence Based on Nitrogenâ€Doped Carbon Dots for Double Anticounterfeiting. Advanced Optical Materials, 2020, 8, 1901557.	7.3	71
2072	Highly Sensitive Detection of Fe 3+ Ions Using Waterborne Polyurethaneâ€Carbon Dots Selfâ€Healable Fluorescence Film. Macromolecular Materials and Engineering, 2020, 305, 1900810.	3.6	16
2073	Controlled synthesis and photocatalytic performance of biocompatible uniform carbon quantum dots with microwave absorption capacity. Applied Surface Science, 2020, 512, 145751.	6.1	23
2074	Sensor array based on carbon dots for ATP-related physiological phosphates detecting and ATP hydrolysis monitoring. Sensors and Actuators B: Chemical, 2020, 310, 127851.	7.8	25

ARTICLE IF CITATIONS Synthesis of carbon-dots@SiO2@TiO2 nanoplatform for photothermal imaging induced multimodal 2075 9.5 35 synergistic antitumor. Journal of Advanced Research, 2020, 23, 13-23. The effect of surface charge on cellular uptake and inflammatory behavior of carbon dots. Colloids 4.1 and Interface Science Communications, 2020, 35, 100243. Ratiometric fluorescent probe based on AuNCs induced AIE for quantification and visual sensing of 2077 5.427 glucose. Analytica Chimica Acta, 2020, 1104, 140-146. Synthesis of bifunctional carbon quantum dots for bioimaging and anti-inflammation. Nanotechnology, 2020, 31, 175102. Dual roles of a transparent polymer film containing dispersed N-doped carbon dots: A high-efficiency 2079 6.1 36 blue light converter and UV screen. Applied Surface Science, 2020, 510, 145405. Bone Tissue Engineering via Carbonâ€Based Nanomaterials. Advanced Healthcare Materials, 2020, 9, 2080 e1901495. Carbon science perspective in 2020: Current research and future challenges. Carbon, 2020, 161, 373-391. 2081 10.3 77 Effect of heating power towards synthesis of carbon dots through microwave pyrolysis method for 2082 0.4 optical-based biosensor. AIP Conference Proceedings, 2020, , . Controlling Metallophilic Interactions in Chiral Gold(I) Double Salts towards Excitation 2083 Wavelengthâ€Tunable Circularly Polarized Luminescence. Angewandte Chemie - International Edition, 13.8 71 2020, 59, 6915-6922. ZnCl2 Enabled Synthesis of Highly Crystalline and Emissive Carbon Dots with Exceptional Capability to 2084 10.0 63 Generate O2â(…–. Matter, 2020, 2, 495-506. Low-toxicity carbon quantum dots derived from gentamicin sulfate to combat antibiotic resistance 2085 4.1 74 and eradicate mature biofilms. Chemical Communications, 2020, 56, 2316-2319. Evaluation of the Environmental Impact and Efficiency of N-Doping Strategies in the Synthesis of 2086 2.9 39 Carbon Dots. Materials, 2020, 13, 504. Controlling Metallophilic Interactions in Chiral Gold(I) Double Salts towards Excitation 2087 2.0 20 Wavelengthâ€Tunable Circularly Polarized Luminescence. Angewandte Chemie, 2020, 132, 6982-6989. Electric field-assisted synthesis of Pt, carbon quantum dots-coloaded graphene hybrid for hydrogen evolution reaction. Journal of Power Sources, 2020, 451, 227770. 2088 Enhanced photocatalytic activity of ZnO sensitized by carbon quantum dots and application in phenol 2089 3.6 75 wastewater. Optical Materials, 2020, 100, 109674. Exploring the antibacterial potential and unraveling the mechanism of action of non-doped and 2090 1.9 24 heteroatom-doped carbon nanodots. Journal of Nanoparticle Research, 2020, 22, 1. CQD@^{ĵ3}-Fe2O3 multifunctional nanoprobe for selective fluorescence sensing, detoxification and 2091 4.7 11 removal of Hg(II). Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 589, 124445. Recent advances in white light-emitting diodes of carbon quantum dots. Nanoscale, 2020, 12, 2092 5.6 98 4826-4832.

.,			Circuration
#	ARTICLE	IF	CITATIONS
2093	graphene quantum dot (GQD) nanoparticles and ethanol-biodiesel blends. Fuel, 2020, 267, 117116.	6.4	79
2094	Carbon quantum dots-stabilized Pickering emulsion to prepare NIR light-responsive PLGA drug delivery system. Materials Today Communications, 2020, 23, 100951.	1.9	17
2095	Emerging thin-film nanocomposite (TFN) membranes for reverse osmosis: A review. Water Research, 2020, 173, 115557.	11.3	230
2096	Highly sensitive fluorescent carbon dots probe with ratiometric emission for the determination of ClO ^{â^'} . Analyst, The, 2020, 145, 2212-2218.	3.5	22
2097	Nickel nanoparticles decorated on carbon quantum dots as a novel non-platinum catalyst for methanol oxidation; a green, low-cost, electrochemically-synthesized electrocatalyst. Chemical Engineering Science, 2020, 217, 115534.	3.8	24
2098	Principles, mechanisms, and application of carbon quantum dots in sensors: a review. Analytical Methods, 2020, 12, 1266-1287.	2.7	287
2099	Synthesis and modulation of the optical properties of carbon quantum dots using microwave radiation. Fullerenes Nanotubes and Carbon Nanostructures, 2020, 28, 724-731.	2.1	19
2100	Seleniumâ€Doped Carbon Quantum Dots Act as Broadâ€Spectrum Antioxidants for Acute Kidney Injury Management. Advanced Science, 2020, 7, 2000420.	11.2	109
2101	High luminous efficiency Au@CDs for sensitive and label-free electrochemiluminescent detection of circulating tumor cells in serum. Sensors and Actuators B: Chemical, 2020, 316, 128131.	7.8	33
2102	Efficient removal of Cu(<scp>ii</scp>) from aqueous systems using enhanced quantum yield nitrogen-doped carbon nanodots. RSC Advances, 2020, 10, 14979-14990.	3.6	22
2103	Effect of Solvent-Derived Highly Luminescent Multicolor Carbon Dots for White-Light-Emitting Diodes and Water Detection. Langmuir, 2020, 36, 5287-5295.	3.5	74
2104	Recent advances in crystalline carbon dots for superior application potential. Materials Advances, 2020, 1, 525-553.	5.4	92
2105	Investigation on the Relationship Between Carbon Cores and Fluorescence Moieties by Measurement of Fluorescence Anisotropy of CDs with Different Sizes. Chemical Research in Chinese Universities, 2020, 36, 894-900.	2.6	0
2106	Patterned carbon dot-based thin films for solid-state devices. Nanoscale, 2020, 12, 10254-10264.	5.6	13
2107	Polyethylene Glycol6000/carbon Nanodots as Fluorescent Bioimaging Agents. Nanomaterials, 2020, 10, 677.	4.1	23
2108	Modification of PPyâ€NW Anode by Carbon Dots for Highâ€performance Miniâ€microbial Fuel Cells. Fuel Cells, 2020, 20, 203-211.	2.4	9
2109	Monitoring graphene oxide's efficiency for removing Re(VII) and Cr(VI) with fluorescent silica hydrogels. Environmental Pollution, 2020, 262, 114246.	7.5	25
2110	Oneâ€Step Microwave Approach to Generate Carbon Dots/Gelatin Composite with Both Thermoresponsive Sol–Gel Transition and Fluorescence Properties. Macromolecular Materials and Engineering, 2020, 305, 2000035.	3.6	5

#	Article	IF	CITATIONS
2111	Carbon Dots. , 2020, , .		20
2112	Cellulose-Based Photoluminescent Nanocomposites. , 2020, , 117-170.		3
2113	Nanoscale materials with different dimensions for advanced electrocatalysts. , 2020, , 193-218.		0
2114	Achieving red room temperature afterglow carbon dots in composite matrices through chromophore conjugation degree controlling. Journal of Luminescence, 2020, 223, 117267.	3.1	15
2115	Amorphous carbon dot and chitosan based composites as fluorescent inks and luminescent films. Materials Chemistry and Physics, 2020, 249, 122984.	4.0	20
2116	pH-sensitive drug delivery based on chitosan wrapped graphene quantum dots with enhanced fluorescent stability. Materials Science and Engineering C, 2020, 112, 110888.	7.3	41
2117	Uncovering the actual inner-filter effect between highly efficient carbon dots and nitroaromatics. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 236, 118342.	3.9	14
2118	One Stone, Two Birds: pH- and Temperature-Sensitive Nitrogen-Doped Carbon Dots for Multiple Anticounterfeiting and Multiple Cell Imaging. ACS Applied Materials & Interfaces, 2020, 12, 20849-20858.	8.0	44
2119	Cross-Linked Polyamide Chains Enhanced the Fluorescence of Polymer Carbon Dots. ACS Omega, 2020, 5, 8219-8229.	3.5	9
2120	Enhancing photoluminescence of carbon quantum dots doped PVA films with randomly dispersed silica microspheres. Scientific Reports, 2020, 10, 5710.	3.3	9
2121	Carbon dots-inspired fluorescent cyclodextrins: competitive supramolecular "off–on―(bio)sensors. Nanoscale, 2020, 12, 9178-9185.	5.6	6
2122	Functional gas sensing nanomaterials: A panoramic view. Applied Physics Reviews, 2020, 7, .	11.3	295
2123	Unraveling the Fluorescence Mechanism of Carbon Dots with <i>Sub</i> -Single-Particle Resolution. ACS Nano, 2020, 14, 6127-6137.	14.6	152
2124	Metal-Free Colorimetric Detection of Pyrophosphate lons by Inhibitive Nanozymatic Carbon Dots. ACS Sensors, 2020, 5, 1314-1324.	7.8	52
2125	Nitrogen-Doped Carbon Dots Induced Enhancement in CO2 Sensing Response From ZnO–Porous Silicon Hybrid Structure. Frontiers in Chemistry, 2020, 8, 291.	3.6	18
2126	High and reversible oxygen uptake in carbon dot solutions generated from polyethylene facilitating reactant-enhanced solar light harvesting. Nanoscale, 2020, 12, 10480-10490.	5.6	15
2127	Multifunctional Mesoporous CDQs/BMMs with Strong Fluorescent Property and Sustained Drug Releasing Performance. ChemistrySelect, 2020, 5, 4786-4792.	1.5	1
2128	Removal of uranium (VI) from water by the action of microwave-rapid green synthesized carbon quantum dots from starch-water system and supported onto polymeric matrix. Journal of Hazardous Materials, 2020, 397, 122770.	12.4	73

#	Article	IF	CITATIONS
2129	Modulating charge separation and transfer kinetics in carbon nanodots for photoredox catalysis. Journal of Energy Chemistry, 2020, 50, 365-377.	12.9	15
2130	Red emissive carbon dots obtained from direct calcination of 1,2,4-triaminobenzene for dual-mode pH sensing in living cells. New Journal of Chemistry, 2020, 44, 7210-7217.	2.8	18
2131	Development of a fluorescent m <scp>icrowaveâ€assisted</scp> synthesized carbon dots/Cu ²⁺ probe for rapid detection of tea polyphenols. Journal of Food Process Engineering, 2020, 43, e13419.	2.9	8
2132	Emerging Trends in Nanocarbonâ€Based Cardiovascular Applications. Advanced Therapeutics, 2020, 3, 1900208.	3.2	5
2133	Glowing photoluminescene in carbon-based nanodots: current state and future perspectives. Journal of Materials Science, 2020, 55, 8769-8792.	3.7	22
2134	Preparation of antimicrobial/ultraviolet protective bacterial nanocellulose film with carbon dots synthesized from lactic acid bacteria. International Journal of Biological Macromolecules, 2020, 155, 216-225.	7.5	95
2135	Replacement of Pd nanoparticles: Hydrogenation promoted by frustrated Lewis acid-base pairs in carbon quantum dots. Journal of Catalysis, 2020, 383, 304-310.	6.2	20
2136	Tuning HOMO and LUMO of three region (UV, Vis and IR) photoluminescent nitrogen doped graphene quantum dots for photodegradation of methylene blue. Materials Research Bulletin, 2020, 128, 110886.	5.2	59
2137	Optical properties and zeta potential of carbon quantum dots (CQDs) dispersed nematic liquid crystal 4′- heptyl-4-biphenylcarbonitrile (7CB). Optical Materials, 2020, 105, 109849.	3.6	44
2138	Recent Advances in Nanomaterials with Inherent Optical and Magnetic Properties for Bioimaging and Imaging-Guided Nucleic Acid Therapy. Bioconjugate Chemistry, 2020, 31, 1234-1246.	3.6	12
2139	Highly Efficient Orange Emissive Graphene Quantum Dots Prepared by Acid-Free Method for White LEDs. ACS Sustainable Chemistry and Engineering, 2020, 8, 6657-6666.	6.7	37
2140	pH-Responsive Hybrid Jute Carbon Dot-Cotton Patch. ACS Sustainable Chemistry and Engineering, 2020, 8, 7394-7402.	6.7	19
2141	Carbon and graphene quantum dots: a review on syntheses, characterization, biological and sensing applications for neurotransmitter determination. RSC Advances, 2020, 10, 15406-15429.	3.6	315
2142	Bifunctional Nanoparticles as a Recyclable Fluorescent Sensor for pH and Cu2+ Detection and Removal of Heavy Metal Ions. Nano, 2020, 15, 2050048.	1.0	3
2143	New Immunosensing-Fluorescence Detection of Tumor Marker Cytokeratin-19 Fragment (CYFRA 21-1) Via Carbon Quantum Dots/Zinc Oxide Nanocomposite. Nanoscale Research Letters, 2020, 15, 12.	5.7	31
2144	UV–Vis–NIR Fullâ€Range Responsive Carbon Dots with Large Multiphoton Absorption Cross Sections and Deepâ€Red Fluorescence at Nucleoli and In Vivo. Small, 2020, 16, e2000680.	10.0	143
2145	Luminescent carbon dots obtained from polymeric waste. Journal of Cleaner Production, 2020, 262, 121288.	9.3	29
2146	Photocatalytic activation of peroxymonosulfate by surface-tailored carbon quantum dots. Journal of Hazardous Materials, 2020, 395, 122695.	12.4	88

#	Article	IF	CITATIONS
2147	A two-photon fluorescence, carbonized polymer dot (CPD)-based, wide range pH nanosensor: a view from the surface state. Nanoscale, 2020, 12, 9094-9103.	5.6	22
2148	Fabrication of polyaniline–carrot derived carbon dots/polypyrrole–graphene nanocomposite for wide potential window supercapacitor. Carbon Letters, 2021, 31, 269-276.	5.9	29
2149	Synthesis of a carbon dots modified g-C3N4/SnO2 Z-scheme photocatalyst with superior photocatalytic activity for PPCPs degradation under visible light irradiation. Journal of Hazardous Materials, 2021, 401, 123257.	12.4	145
2150	Preparation of ZnO-carbon quantum dot composite thin films with superhydrophilic surface. Materials Technology, 2021, 36, 72-80.	3.0	12
2151	Engineering luminescent pectin-based hydrogel for highly efficient multiple sensing. International Journal of Biological Macromolecules, 2021, 166, 869-875.	7.5	12
2152	Single-step synthesis of N-doped carbon dots and applied for dopamine sensing, in vitro multicolor cellular imaging as well as fluorescent ink. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 406, 113019.	3.9	20
2153	Nitrogen and fluorine co-doped green fluorescence carbon dots as a label-free probe for determination of cytochrome c in serum and temperature sensing. Journal of Colloid and Interface Science, 2021, 586, 683-691.	9.4	35
2154	Carbon nitride based photocatalysts for solar photocatalytic disinfection, can we go further?. Chemical Engineering Journal, 2021, 404, 126540.	12.7	105
2155	Continuous hydrothermal flow synthesis of S-functionalised carbon quantum dots for enhanced oil recovery. Chemical Engineering Journal, 2021, 405, 126631.	12.7	43
2156	Carbon quantum dots-TiO2 nanocomposite as an efficient photocatalyst for the photodegradation of aromatic ring-containing mixed VOCs: An experimental and DFT studies of adsorption and electronic structure of the interface. Journal of Hazardous Materials, 2021, 401, 123402.	12.4	75
2157	Recent advances and future trends on molecularly imprinted polymer-based fluorescence sensors with luminescent carbon dots. Talanta, 2021, 223, 121411.	5.5	85
2158	Carbon quantum dots for advanced electrocatalysis. Journal of Energy Chemistry, 2021, 55, 279-294.	12.9	175
2159	Current approaches and prospective drug targeting to brain. Journal of Drug Delivery Science and Technology, 2021, 61, 102098.	3.0	11
2160	Magnetic assisted fluorescence immunoassay for sensitive chloramphenicol detection using carbon dots@CaCO3 nanocomposites. Journal of Hazardous Materials, 2021, 402, 123942.	12.4	41
2161	Current and future perspectives of carbon and graphene quantum dots: From synthesis to strategy for building optoelectronic and energy devices. Renewable and Sustainable Energy Reviews, 2021, 135, 110391.	16.4	144
2162	Recent advances in the construction and analytical applications of carbon dots-based optical nanoassembly. Talanta, 2021, 223, 121691.	5.5	15
2163	Electrochemical synthesis of carbon dots with a Stokes shift of 309Ânm for sensing of Fe3+ and ascorbic acid. Dyes and Pigments, 2021, 185, 108878.	3.7	51
2164	Effect of the surface chemistry on the photoluminescence properties of boron doped carbon dots. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 405, 112903.	3.9	6

#	Article	IF	CITATIONS
2165	Applications of carbon dots in environmental pollution control: A review. Chemical Engineering Journal, 2021, 406, 126848.	12.7	238
2166	Recent progress and prospects of Li-CO2 batteries: Mechanisms, catalysts and electrolytes. Energy Storage Materials, 2021, 34, 148-170.	18.0	88
2167	High potential and robust ternary LaFeO3/CdS/carbon quantum dots nanocomposite for photocatalytic H2 evolution under sunlight illumination. Journal of Colloid and Interface Science, 2021, 583, 255-266.	9.4	73
2168	Synthesis of highly fluorescent carbon dots as a dual-excitation rationmetric fluorescent probe for the fast detection of chlorogenic acid. Talanta, 2021, 221, 121372.	5.5	29
2169	Broad-spectrum response NCQDs/Bi2O2CO3 heterojunction nanosheets for ciprofloxacin photodegradation: Unraveling the unique roles of NCQDs upon different light irradiation. Chemosphere, 2021, 264, 128434.	8.2	40
2170	Novel fluorescent hydrogel for the adsorption and detection of Fe (III). Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 608, 125563.	4.7	26
2171	Fe3+ and intracellular pH determination based on orange fluorescence carbon dots co-doped with boron, nitrogen and sulfur. Materials Science and Engineering C, 2021, 118, 111478.	7.3	36
2172	Study of structural and functional properties of fluorescent EDTA@CQDs synthesized from peanut shells via pyrolysis technique. Materials Today: Proceedings, 2021, 44, 192-198.	1.8	4
2173	Ni-based layered double hydroxide catalysts for oxygen evolution reaction. Materials Today Physics, 2021, 16, 100292.	6.0	108
2174	Efficient one step synthesis of green carbon quantum dots catalyzed by tin oxide. Materials Today Communications, 2021, 26, 101762.	1.9	8
2175	Carbon dots for epoxy curing: Anti-forgery patterns with long-term luminescent stability. Chemical Engineering Journal, 2021, 405, 126988.	12.7	26
2176	In-situ synthesis of carbon dots-embedded europium metal-organic frameworks for ratiometric fluorescence detection of Hg2+ in aqueous environment. Analytica Chimica Acta, 2021, 1141, 13-20.	5.4	65
2177	Carbon-based sustainable nanomaterials for water treatment: State-of-art and future perspectives. Chemosphere, 2021, 263, 128005.	8.2	184
2178	Cucurbituril-assisted formation of tunable carbon dots from single organic precursors in water. Organic Chemistry Frontiers, 2021, 8, 224-230.	4.5	11
2179	Electronic band gap of flame-formed carbon nanoparticles by scanning tunneling spectroscopy. Proceedings of the Combustion Institute, 2021, 38, 1805-1812.	3.9	18
2180	Construction of multi-functional optical sensing materials based on deazapurine-typed carbon dots. Dyes and Pigments, 2021, 186, 108994.	3.7	1
2181	3D printed ABS/paraffin hybrid rocket fuels with carbon dots for superior combustion performance. Combustion and Flame, 2021, 225, 428-434.	5.2	21
2182	Photon―and Chargeâ€Management in Advanced Energy Materials: Combining 0D, 1D, and 2D Nanocarbons as well as Bulk Semiconductors with Organic Chromophores. Advanced Energy Materials, 2021, 11, 2002831.	19.5	12

#	Article	IF	CITATIONS
2183	An overview of lowâ€ŧemperature plasma surface modification of carbon materials for removal ofÂpollutants from liquid and gas phases. Plasma Processes and Polymers, 2021, 18, 2000171.	3.0	23
2184	Accelerated Development of Colloidal Nanomaterials Enabled by Modular Microfluidic Reactors: Toward Autonomous Robotic Experimentation. Advanced Materials, 2021, 33, e2004495.	21.0	64
2185	Tailoring Multiple Porosities of Hierarchical ZSMâ€5 Zeolites by Carbon Dots for Highâ€Performance Catalytic Transformation. Advanced Materials Interfaces, 2021, 8, 2001846.	3.7	5
2186	Facile synthesis of novel carbon dots@metal organic framework composite for remarkable and highly sustained oxygen evolution reaction. Journal of Alloys and Compounds, 2021, 856, 158038.	5.5	34
2187	Controllable excitation-dependent fluorescence triggered by the increasing graphitic nitrogen in carbon dots and its application in multi-analyte detection. Dyes and Pigments, 2021, 184, 108772.	3.7	5
2188	The utility of carbon dots for photocatalysis. , 2021, , 123-160.		0
2189	Luminous silica colloids with carbon dot incorporation for sensitive immunochromatographic assay of Zika virus. Analyst, The, 2021, 146, 706-713.	3.5	22
2190	Carbon Nanodots in Electrochemical Sensors and Biosensors: A Review. ChemElectroChem, 2021, 8, 15-35.	3.4	64
2191	Structural design of carbon dots/porous materials composites and their applications. Chemical Engineering Journal, 2021, 421, 127743.	12.7	55
2192	<i>Serratia marcescens</i> -derived fluorescent carbon dots as a platform toward multi-mode bioimaging and detection of <i>p</i> -nitrophenol. Analyst, The, 2021, 146, 683-690.	3.5	9
2193	Carbon dots and ruthenium doped oxygen sensitive nanofibrous membranes for monitoring the respiration of agricultural products. Polymer Testing, 2021, 93, 106957.	4.8	15
2194	A universal sugar-blowing approach to synthesize fluorescent nitrogen-doped carbon nanodots for detection of Hg(II). Applied Surface Science, 2021, 544, 148725.	6.1	16
2195	Optically induced insulator-to-semiconductor transition in fluorescent carbon quantum dots measured by terahertz time-domain spectroscopy. Carbon, 2021, 174, 741-749.	10.3	12
2196	Bio-nano emulsion fuel based on graphene quantum dot nanoparticles for reducing energy consumption and pollutants emission. Energy, 2021, 218, 119551.	8.8	14
2197	Novel yellow solid-state fluorescent-emitting carbon dots with high quantum yield for white light-emitting diodes. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 250, 119340.	3.9	19
2198	Fluorescent carbon quantum dots from Ananas comosus waste peels: A promising material for NLO behaviour, antibacterial, and antioxidant activities. Inorganic Chemistry Communication, 2021, 124, 108397.	3.9	30
2199	Novel fluorescent nitrogen-doped carbon dots derived from <i>Panax notoginseng</i> for bioimaging and high selectivity detection of Cr ⁶⁺ . Analyst, The, 2021, 146, 911-919.	3.5	23
2200	Aggregation of coronene: the effect of carboxyl and amine functional groups. Physical Chemistry Chemical Physics, 2021, 23, 1500-1509.	2.8	2

#	Article	IF	CITATIONS
2201	Normal breast epithelial MCF-10A cells to evaluate the safety of carbon dots. RSC Medicinal Chemistry, 2021, 12, 245-253.	3.9	21
2202	Amino-rich carbon quantum dots ultrathin nanofiltration membranes by double "one-step―methods: Breaking through trade-off among separation, permeation and stability. Chemical Engineering Journal, 2021, 404, 127144.	12.7	51
2203	Fabrication of multi-functional carbon dots based on "one stone, three birds―strategy and their applications for the dual-mode Fe ³⁺ detection, effective promotion on cell proliferation and treatment on ferric toxicosis <i>in vitro</i> . Journal of Materials Chemistry B, 2021, 9, 767-782.	5.8	9
2204	Glutathione modified N-doped carbon dots for sensitive and selective dopamine detection. Dyes and Pigments, 2021, 186, 109028.	3.7	40
2205	<i>Salvia Miltiorrhiza</i> -Derived Carbon Dots as Scavengers of Reactive Oxygen Species for Reducing Oxidative Damage of Plants. ACS Applied Nano Materials, 2021, 4, 113-120.	5.0	44
2206	Recent Advance in Carbon Dots: From Properties to Applications. Chinese Journal of Chemistry, 2021, 39, 1364-1388.	4.9	24
2207	Carbonized polymer dots modified ultrathin Bi12O17Cl2 nanosheets Z-scheme heterojunction for robust CO2 photoreduction. Chemical Engineering Science, 2021, 232, 116338.	3.8	48
2208	Static interaction between colloidal carbon nano-dots and aniline: A novel platform for ultrasensitive detection of aniline in aqueous media. Materials Research Bulletin, 2021, 134, 111119.	5.2	23
2209	Facile electrolytic synthesis of Pt and carbon quantum dots coloaded multiwall carbon nanotube as highly efficient electrocatalyst for hydrogen evolution and ethanol oxidation. Chemical Engineering Journal, 2021, 408, 127271.	12.7	27
2210	Novel ZnCo2O4 embedded with S, N-CQDs as efficient visible-light photocatalyst. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 405, 112971.	3.9	22
2211	A carbon dot-based fluorometric probe for oxytetracycline detection utilizing a Förster resonance energy transfer mechanism. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 246, 118947.	3.9	40
2212	Facile Microwave-Assisted Synthesis of Functionalized Carbon Nitride Quantum Dots as Fluorescence Probe for Fast and Highly Selective Detection of 2,4,6-Trinitrophenol. Journal of Fluorescence, 2021, 31, 1-9.	2.5	17
2213	Rapid fabrication of carbon dots from babul seed powder as green precursor: Antioxidant activity and multicolor imaging. Materials Today: Proceedings, 2021, 43, 1389-1397.	1.8	8
2214	Tunable fluorescent carbon dots: synthesis progress, fluorescence origin, selective and sensitive volatile organic compounds detection. Critical Reviews in Solid State and Materials Sciences, 2021, 46, 349-370.	12.3	23
2215	Nitrogen-doped carbon quantum dots via a facile reflux assisted polymerization of N-Methyl-Pyrrolidone for hydrogen evolution reaction. Journal of Solid State Chemistry, 2021, 293, 121781.	2.9	12
2216	Embedding carbon dots in Eu ³⁺ â€doped metalâ€organic framework for labelâ€free ratiometric fluorescence detection of Fe ³⁺ ions. Journal of the American Ceramic Society, 2021, 104, 886-895.	3.8	31
2217	Carbon and graphene quantum dots in fuel cell application: An overview. International Journal of Energy Research, 2021, 45, 1396-1424.	4.5	59
2218	The synthesis and modification of highly fluorescent carbon quantum dots for reversible detection of waterâ€soluble phosphonateâ€1â€hydroxyethaneâ€1,1â€diphosphonic acid by fluorescence spectroscopy. Luminescence, 2021, 36, 200-209.	2.9	2

#	Article	IF	CITATIONS
2219	Dual-property blue and red emission carbon dots for Fe(III) ions detection and cellular imaging. Rare Metals, 2021, 40, 1957-1965.	7.1	18
2220	Theranostic applications of stimulus-responsive systems based on carbon dots. International Journal of Polymeric Materials and Polymeric Biomaterials, 2021, 70, 117-130.	3.4	4
2221	Effect of carbon quantum dots on the photoâ€absorption, photoâ€response and photoelectrochemical performance of KNb 3 O 8 film photoelectrode. Micro and Nano Letters, 2021, 16, 181-186.	1.3	0
2222	Quantum Dots Coated with Molecularly Imprinted Polymer as Probes for Environmentally and Medicinally Important Analytes. , 2021, , 223-253.		0
2223	Removal of Narrow Spectral Lines from Experimental Photoluminescence Spectra of ZnS:Mn Nanocrystals. Journal of Applied Spectroscopy, 2021, 87, 995-999.	0.7	0
2224	Quantum Dot Fluorescence Probe Technology in the Analysis of Organophosphorus Pesticides Application Progress. Advances in Analytical Chemistry, 2021, 11, 172-181.	0.1	0
2225	A hyperbranched polysiloxane containing carbon dots with near white light emission. Polymer Chemistry, 2021, 12, 3582-3591.	3.9	16
2226	Carbon dots <i>versus</i> nano-carbon/organic hybrids – dramatically different behaviors in fluorescence sensing of metal cations with structural and mechanistic implications. Nanoscale Advances, 2021, 3, 2316-2324.	4.6	16
2227	Luminescence-colour-changing sensing toward neurological drug carbamazepine in water and biofluids based on white light-emitting CD/Ln-MOF/PVA test papers. Journal of Materials Chemistry C, 2021, 9, 8683-8693.	5.5	19
2228	Use of nitrogen-doped amorphous carbon nanodots (N-CNDs) as a fluorometric paper-based sensor: a new approach for sensitive determination of lead(<scp>ii</scp>) at a trace level in highly ionic matrices. Analytical Methods, 2021, 13, 3551-3560.	2.7	18
2229	Gadolinium-Incorporated Carbon Nanodots for <i>T</i> ₁ -Weighted Magnetic Resonance Imaging. ACS Applied Nano Materials, 2021, 4, 1467-1477.	5.0	17
2230	Variability and improvement of optical and antimicrobial performances for CQDs/mesoporous SiO ₂ /Ag NPs composites via <i>in situ</i> synthesis. Green Processing and Synthesis, 2021, 10, 403-411.	3.4	8
2231	Carbon dots: Discovery, structure, fluorescent properties, and applications. Green Processing and Synthesis, 2021, 10, 134-156.	3.4	35
2232	Nanostructured Materials for Glycan Based Applications. , 2021, , 473-505.		0
2233	Toxicity of functionalized nanoparticles: current trends and emerging challenges. , 2021, , 121-162.		0
2234	Quantum dot biosensor combined with antibody and aptamer for tracing food-borne pathogens. Food Quality and Safety, 2021, 5, .	1.8	11
2235	Aptamer modified nanoprobe for multimodal fluorescence/magnetic resonance imaging of human ovarian cancer cells. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	2.3	6
2236	Synthesis and Characterization of New Mesoporous Polyurethane-Nitrogen Doped Carbon Dot Nanocomposites: Ultrafast, Highly Selective and Sensitive Turn-off Fluorescent Sensors for Fe3+ Ions. Journal of Fluorescence, 2021, 31, 517-539.	2.5	7

#	Article	IF	CITATIONS
2237	Application of Carbon Quantum dot Fluorescent Materials in Metal Ions Detection. E3S Web of Conferences, 2021, 245, 03080.	0.5	4
2238	Highly sensitive and selective detection of naproxen <i>via</i> molecularly imprinted carbon dots as a fluorescent sensor. RSC Advances, 2021, 11, 29073-29079.	3.6	16
2239	Lasting Tracking and Rapid Discrimination of Live Gram-Positive Bacteria by Peptidoglycan-Targeting Carbon Quantum Dots. ACS Applied Materials & Interfaces, 2021, 13, 1277-1287.	8.0	40
2240	Study and Comparison on Purification Methods of Multicolor Emission Carbon Dots. Chemistry - an Asian Journal, 2021, 16, 348-354.	3.3	18
2241	Two-Dimensional Material-Based Quantum Dots for Wavelength-Selective, Tunable, and Broadband Photodetector Devices. Lecture Notes in Nanoscale Science and Technology, 2021, , 249-287.	0.8	2
2242	Carbon dots up-regulate heme oxygenase-1 expression towards acute lung injury therapy. Journal of Materials Chemistry B, 2021, 9, 9005-9011.	5.8	8
2243	Organic dots (O-dots) for theranostic applications: preparation and surface engineering. RSC Advances, 2021, 11, 2253-2291.	3.6	10
2244	NaCl nanocrystal-encapsulated carbon dots as a solution-based sensor for phosphorescent sensing of trace amounts of water in organic solvents. Analytical Methods, 2021, 13, 4949-4954.	2.7	15
2245	Harnessing nanotechnology to expand the toolbox of chemical biology. Nature Chemical Biology, 2021, 17, 129-137.	8.0	24
2246	Facile synthesis of biomass waste-derived fluorescent N, S, P co-doped carbon dots for detection of Fe ³⁺ ions in solutions and living cells. Analytical Methods, 2021, 13, 789-795.	2.7	39
2247	The formation mechanism and chirality evolution of chiral carbon dots prepared <i>via</i> radical assisted synthesis at room temperature. Nanoscale, 2021, 13, 10478-10489.	5.6	13
2248	Carbon dot/TiO ₂ nanocomposites as photocatalysts for metallaphotocatalytic carbon–heteroatom cross-couplings. Green Chemistry, 2021, 23, 4524-4530.	9.0	22
2249	Carbon-based Nanomaterials and Curcumin: A Review of Biosensing Applications. Advances in Experimental Medicine and Biology, 2021, 1291, 55-74.	1.6	5
2250	Ball-milling treatment of cotton fiber for optimizing its derived carbon quantum dots. IOP Conference Series: Earth and Environmental Science, 0, 639, 012015.	0.3	0
2251	Functionalized Advanced Carbon-Based Nanomaterials for Sensing. , 2021, , .		0
2252	Cancer antigen 125 assessment using carbon quantum dots for optical biosensing for the early diagnosis of ovarian cancer. RSC Advances, 2021, 11, 31047-31057.	3.6	15
2253	Construction and evaluation of an iron delivery system by ultra-small nanoparticles from roast sturgeon (Acipenser schrenckiid). Food and Function, 2021, 12, 1147-1155.	4.6	8
2254	<i>In vivo</i> study of a novel, safe, rapid, and targeted red carbon dot probe for recognition of tumors with high expression of folate enzyme. RSC Advances, 2021, 11, 28809-28817.	3.6	6

#	Article	IF	CITATIONS
2255	Categorization of Quantum Dots, Clusters, Nanoclusters, and Nanodots. Journal of Chemical Education, 2021, 98, 703-709.	2.3	22
2256	Fluorescence-based sensors as an emerging tool for anion detection: mechanism, sensory materials and applications. Journal of Materials Chemistry C, 2021, 9, 9820-9850.	5.5	64
2257	Theranostic Activity of Nitric Oxide-Releasing Carbon Quantum Dots. Bioconjugate Chemistry, 2021, 32, 367-375.	3.6	13
2258	Contribution of B,N-co-doped reduced graphene oxide as a catalyst support to the activity of iridium oxide for oxygen evolution reaction. Journal of Materials Chemistry A, 2021, 9, 9066-9080.	10.3	30
2259	Carbon dots: synthesis, properties and biomedical applications. Journal of Materials Chemistry B, 2021, 9, 6553-6575.	5.8	106
2260	Synergism of carbon quantum dots and Au nanoparticles with Bi ₂ MoO ₆ for activity enhanced photocatalytic oxidative degradation of phenol. RSC Advances, 2021, 11, 28674-28684.	3.6	6
2261	Hybrid artificial photosynthetic systems constructed using quantum dots and molecular catalysts for solar fuel production: development and advances. Journal of Materials Chemistry A, 2021, 9, 19346-19368.	10.3	19
2262	Silicon Nanoparticles and Carbon Dots. RSC Nanoscience and Nanotechnology, 2021, , 355-392.	0.2	0
2263	Quantum dots for photocatalysis: synthesis and environmental applications. Green Chemistry, 2021, 23, 4931-4954.	9.0	72
2264	Recent advances of biomass carbon dots on syntheses, characterization, luminescence mechanism, and sensing applications. Nano Select, 2021, 2, 1117-1145.	3.7	43
2265	Nanobiosensors for smart manufacturing. , 2021, , 289-306.		1
2266	Chitosan-based carbon nanoparticles as a heavy metal indicator and for wastewater treatment. RSC Advances, 2021, 11, 12015-12021.	3.6	14
2267	The exploitation of thermophile resources in hot springs: fluorescent carbon dots derived from Ureibacillus thermosphaericus for multicolour cellular imaging and selectivity detection of heavy metals. Analytical Methods, 2021, 13, 1810-1815.	2.7	1
2268	Overview of Electrode Materials Progressed for Application in Electrochemical Supercapacitors: An Update. Asian Journal of Chemistry, 2021, 33, 1039-1050.	0.3	1
2269	Creating Smart and Functional Textile Materials with Graphene. Materials Horizons, 2021, , 411-444.	0.6	1
2270	Using constant-wavelength synchronous fluorescence spectroscopy in nanoparticle-based sensors: a minireview. Analytical Methods, 2021, 13, 968-973.	2.7	5
2271	Structural and electronic properties of TiO2 from first principles calculations. , 2021, , 67-85.		2
2272	Molecularly imprinted polymer composites in wastewater treatment. , 2021, , 381-413.		3

#	Article	IF	CITATIONS
2273	Physiological effect of colloidal carbon quantum dots on <i>Bursaphelenchus xylophilus</i> . RSC Advances, 2021, 11, 6212-6220.	3.6	3
2274	On the myth of "red/near-IR carbon quantum dots―from thermal processing of specific colorless organic precursors. Nanoscale Advances, 2021, 3, 4186-4195.	4.6	23
2275	Boosting the humidity resistance of nonconventional luminogens with room temperature phosphorescence <i>via</i> enhancing the strength of hydrogen bonds. Journal of Materials Chemistry C, 2021, 9, 8515-8523.	5.5	35
2276	One-step hydrothermal synthesis of nitrogen-doped carbon dots for high-sensitivity visual detection of nitrite and ascorbic acid. Analytical Methods, 2021, 13, 3685-3692.	2.7	10
2277	Theoretical and Computational Investigations of Carbon Nanostructures. Advances in Sustainability Science and Technology, 2021, , 139-164.	0.6	0
2278	The facile formation of hierarchical mesoporous silica nanocarriers for tumor-selective multimodal theranostics. Biomaterials Science, 2021, 9, 5237-5246.	5.4	8
2279	<i>Tagetes erecta</i> as an organic precursor: synthesis of highly fluorescent CQDs for the micromolar tracing of ferric ions in human blood serum. RSC Advances, 2021, 11, 19924-19934.	3.6	8
2280	Triazole, imidazole, and thiazole-based compounds as potential agents against coronavirus. Results in Chemistry, 2021, 3, 100132.	2.0	24
2281	Critical overview on the green synthesis of carbon quantum dots and their application for cancer therapy. Environmental Science: Nano, 2021, 8, 848-862.	4.3	55
2282	Fundamental photophysical properties of fluorescent carbon dots and their applications in metal ion sensing and bioimaging. , 2021, , 159-209.		0
2283	Synthesis and modification of carbon dots for advanced biosensing application. Analyst, The, 2021, 146, 4418-4435.	3.5	60
2284	A supramolecular single-site photocatalyst based on multi-to-one Förster resonance energy transfer. Chemical Communications, 2021, 57, 4174-4177.	4.1	12
2285	Red, orange, yellow and green luminescence by carbon dots: hydrogen-bond-induced solvation effects. Nanoscale, 2021, 13, 6846-6855.	5.6	49
2286	A novel carbon dot/polyacrylamide composite hydrogel film for reversible detection of the antibacterial drug ornidazole. RSC Advances, 2021, 11, 22993-23001.	3.6	9
2287	Antitumor/antiviral carbon quantum dots based on carrageenan and pullulan. International Journal of Biological Macromolecules, 2021, 170, 688-700.	7.5	55
2288	Carbon Nanomaterials Embedded in Conductive Polymers: A State of the Art. Polymers, 2021, 13, 745.	4.5	32
2289	Ultraspeed synthesis of highly fluorescent Nâ€doped carbon dots for the labelâ€free detection of manganese (<scp>VII</scp>). Journal of the Chinese Chemical Society, 2021, 68, 1514-1521.	1.4	8
2290	Manganese-Doped Carbon Dots with Redshifted Orange Emission for Enhanced Fluorescence and Magnetic Resonance Imaging. ACS Applied Bio Materials, 2021, 4, 1969-1975.	4.6	36

#	Article	IF	CITATIONS
	Correction protection investigations of carbon date and polydonaming composite coating on		
2291	magnesium alloy. Journal of Magnesium and Alloys, 2022, 10, 1358-1367.	11.9	16
2292	Carbon-based nanomaterials for targeted cancer nanotherapy: recent trends and future prospects. Journal of Drug Targeting, 2021, 29, 716-741.	4.4	52
2293	Zinc-Doped Carbon Dots as Effective Blue-Light-Activated Antibacterial Agent. Nano, 2021, 16, 2150031.	1.0	3
2294	Photodegradation of carbon dots cause cytotoxicity. Nature Communications, 2021, 12, 812.	12.8	78
2295	N-doped carbon dot from cigarette-tobacco: Picric acid sensing in real water sample and synthesis of CD-MWCNT nano-composite for UV-photodetection. Journal of Environmental Chemical Engineering, 2021, 9, 104971.	6.7	22
2296	Molecular, Aromatic, and Amorphous Domains of N-Carbon Dots: Leading toward the Competitive Photoluminescence and Photocatalytic Properties. Journal of Physical Chemistry C, 2021, 125, 4299-4309.	3.1	27
2297	Fluorescent Carbon Dots: Fantastic Electroluminescent Materials for Lightâ€Emitting Diodes. Advanced Science, 2021, 8, 2001977.	11.2	141
2298	Rational design, synthesis, and applications of carbon dots@metal–organic frameworks (CD@MOF) based sensors. TrAC - Trends in Analytical Chemistry, 2021, 135, 116163.	11.4	77
2299	Random Sequence Generation using Superconducting Qubits. , 2021, , .		6
2300	Efficient Continuous Hydrothermal Flow Synthesis of Carbon Quantum Dots from a Targeted Biomass Precursor for On–Off Metal Ions Nanosensing. ACS Sustainable Chemistry and Engineering, 2021, 9, 2559-2569.	6.7	50
2301	Advanced catalytic performance for the electro-oxidation of methanol enabled by channel-rich Au@GQDs@Pt3.5Pb nano-pompons. Journal of Electroanalytical Chemistry, 2021, 882, 114973.	3.8	4
2302	A ratiometric lanthanide-free fluorescent probe based on two-dimensional metal-organic frameworks and carbon dots for the determination of anthrax biomarker. Mikrochimica Acta, 2021, 188, 84.	5.0	29
2304	Carbon/graphene quantum dot and conjugated polymer nanostructures impart unprecedented high efficiencies in routine P3HT:PCBM photovoltaics. Solar Energy, 2021, 215, 77-91.	6.1	5
2305	Precise control of the ratiometric fluorescence of dual-emissive B/N-doped carbon dots using pH-dependent bonds. Nanotechnology, 2021, 32, 175604.	2.6	3
2306	Aptamer-Functionalized Hybrid Nanostructures for Sensing, Drug Delivery, Catalysis and Mechanical Applications. International Journal of Molecular Sciences, 2021, 22, 1803.	4.1	18
2307	A novel multifunctional NCQDs-based injectable self-crosslinking and in situ forming hydrogel as an innovative stimuli responsive smart drug delivery system for cancer therapy. Materials Science and Engineering C, 2021, 121, 111829.	7.3	24
2308	Putrescine-functionalized carbon quantum dot (put-CQD) nanoparticles effectively prime grapevine (Vitis vinifera cv. â€~Sultana') against salt stress. BMC Plant Biology, 2021, 21, 120.	3.6	48
2309	Antibiofouling Thinâ€Film Nanocomposite Membranes for Sustainable Water Purification. Advanced Sustainable Systems, 2021, 5, 2000279.	5.3	9

#	Article	IF	CITATIONS
2310	Carbon Dot/Naphthalimide Based Ratiometric Fluorescence Biosensor for Hyaluronidase Detection. Materials, 2021, 14, 1313.	2.9	11
2311	Poly- <scp>l</scp> -lysine-Functionalized Green-Light-Emitting Carbon Dots as a Fluorescence Turn-on Sensor for Ultrasensitive Detection of Endotoxin. ACS Applied Bio Materials, 2021, 4, 3410-3422.	4.6	23
2312	State-of-the-Art of Nanodiagnostics and Nanotherapeutics against SARS-CoV-2. ACS Applied Materials & Interfaces, 2021, 13, 14816-14843.	8.0	27
2313	Optical processes in carbon nanocolloids. CheM, 2021, 7, 606-628.	11.7	73
2314	Green Sources Derived Carbon Dots for Multifaceted Applications. Journal of Fluorescence, 2021, 31, 915-932.	2.5	31
2315	An Improved Synthesis of Water-Soluble Dual Fluorescence Emission Carbon Dots from Holly Leaves for Accurate Detection of Mercury Ions in Living Cells. International Journal of Nanomedicine, 2021, Volume 16, 2045-2058.	6.7	14
2317	Tribological performance of various metal-doped carbon dots as water-based lubricant additives and their potential application as additives of poly(ethylene glycol). Friction, 2022, 10, 688-705.	6.4	26
2318	A Review on van der Waals Boron Nitride Quantum Dots. Journal of Carbon Research, 2021, 7, 35.	2.7	5
2319	An Ultraâ€sensitive Electrochemiluminescent Detection of Carcinoembryonic Antigen Using a Hollowedâ€out Electrode. Electroanalysis, 2021, 33, 1444-1450.	2.9	3
2320	Polymer/quantum dot nanostructures in remarkably stabilized photovoltaics based on polymers having benzodithiophene/naphthothiadiazole constituents. International Journal of Energy Research, 2021, 45, 13284-13297.	4.5	2
2321	Clusteringâ€Induced White Light Emission from Carbonized Polymer Dots. Advanced Photonics Research, 2021, 2, 2000161.	3.6	8
2322	Carbon Dots and Stability of Their Optical Properties. Particle and Particle Systems Characterization, 2021, 38, 2000271.	2.3	45
2323	Folic Acid Functionalized Carbon Dot/Polypyrrole Nanoparticles for Specific Bioimaging and Photothermal Therapy. ACS Applied Bio Materials, 2021, 4, 3453-3461.	4.6	21
2324	Survey of Synthesis Processes for N-Doped Carbon Dots Assessed by Green Chemistry and Circular and EcoScale Metrics. ACS Sustainable Chemistry and Engineering, 2021, 9, 4755-4770.	6.7	14
2325	Fluorescence quenching mechanism of 9-hydroxyphenal-1-one carbon quantum dots by Cu2+ ions: An experimental and computational investigation. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 408, 113103.	3.9	4
2326	Application of TiO2 hollow spheres and ZnS/SiO2 double-passivaiting layers in the photoanode of the CdS/CdSe QDs sensitized solar cells for the efficiency enhancement. Solar Energy, 2021, 216, 48-60.	6.1	6
2327	Progress and challenges in understanding of photoluminescence properties of carbon dots based on theoretical computations. Applied Materials Today, 2021, 22, 100924.	4.3	57
2328	Copper nanocluster-based sensor for determination of vancomycin in exhaled breath condensate: A synchronous fluorescence spectroscopy. Journal of Pharmaceutical and Biomedical Analysis, 2021, 196, 113906.	2.8	11

#	Article	IF	CITATIONS
2329	Radiopharmaceuticals: An insight into the latest advances in medical uses and regulatory perspectives. Journal of Biosciences, 2021, 46, 1.	1.1	3
2330	Inexpensive Near-Infrared Fluorimeters: Enabling Translation of nIR-Based Assays to the Field. Analytical Chemistry, 2021, 93, 4800-4808.	6.5	15
2331	Insight into the Multistate Emissive N, Pâ€doped Carbon Nanoâ€Onions: Emerging Visibleâ€Light Absorption for Photocatalysis. Chemistry - an Asian Journal, 2021, 16, 1138-1149.	3.3	25
2332	Green synthesis of nanocarbon dots using hydrothermal carbonization of lysine amino acid and its application in detection of duloxetine. Journal of the Iranian Chemical Society, 2021, 18, 2863-2872.	2.2	4
2333	Recent Development in Synthesis of Carbon Dots from Natural Resources and Their Applications in Biomedicine and Multiâ€5ensing Platform. ChemistrySelect, 2021, 6, 2774-2789.	1.5	26
2334	Microwave-assisted synthesis of colorimetric and fluorometric dual-functional hybrid carbon nanodots for Fe3+ detection and bioimaging. Chinese Chemical Letters, 2021, 32, 3189-3194.	9.0	26
2335	Kilogram-Scale Synthesis and Functionalization of Carbon Dots for Superior Electrochemical Potassium Storage. ACS Nano, 2021, 15, 6872-6885.	14.6	184
2336	Luminescence Semiconductor Quantum Dots in Chemical Analysis. Journal of Analytical Chemistry, 2021, 76, 273-283.	0.9	5
2337	Blue Emissive Carbon Quantum Dots (CQDs) from Bio-waste Peels and Its Antioxidant Activity. Journal of Cluster Science, 2022, 33, 1045-1053.	3.3	18
2338	From Chemistry to Biology: Applications and Advantages of Green, Biosynthesized/Biofabricated Metal- and Carbon-based Nanoparticles. Fibers and Polymers, 2021, 22, 877-897.	2.1	5
2339	A Gelation‣tabilized Strategy toward Photothermal Architecture Design for Highly Efficient Solar Water Evaporation. Solar Rrl, 2021, 5, 2100133.	5.8	27
2340	Carbon Dots Detect Water-to-Ice Phase Transition and Act as Alcohol Sensors <i>via</i> Fluorescence Turn-Off/On Mechanism. ACS Nano, 2021, 15, 6582-6593.	14.6	34
2341	Highâ€Throughput Oneâ€Photon Excitation Pathway in 0D/3D Heterojunctions for Visibleâ€Light Driven Hydrogen Evolution. Advanced Functional Materials, 2021, 31, 2100816.	14.9	92
2342	Timeâ€Dependent Phosphorescence Colors from Carbon Dots for Advanced Dynamic Information Encryption. Advanced Materials, 2021, 33, e2006781.	21.0	241
2343	One Pot Synthesis of Multicolor Emissive Nitrogen Doped Carbon Dots and its Application as Acetone and Picric Acid Sensor. Iranian Journal of Science and Technology, Transaction A: Science, 2021, 45, 1301-1310.	1.5	4
2344	Integrating biphase γ- and α-Fe2O3 with carbon dots as a synergistic nanozyme with easy recycle and high catalytic activity. Applied Surface Science, 2021, 545, 148987.	6.1	10
2345	Carbon quantum dots: Comprehensively understanding of the internal quenching mechanism and application for catechol detection. Sensors and Actuators B: Chemical, 2021, 333, 129557.	7.8	26
2346	Recent Advances on Nanocomposite Resists With Design Functionality for Lithographic Microfabrication. Frontiers in Materials, 2021, 8, .	2.4	7

#	Article	IF	CITATIONS
2347	Amino acid–functionalized carbon quantum dots for selective detection of Al3+ ions and fluorescence imaging in living cells. Analytical and Bioanalytical Chemistry, 2021, 413, 3965-3974.	3.7	17
2348	Yellow emission carbon dots for highly selective and sensitive OFF-ON sensing of ferric and pyrophosphate ions in living cells. Journal of Colloid and Interface Science, 2021, 587, 376-384.	9.4	34
2349	Enhanced tolerance to salinity stress in grapevine plants through application of carbon quantum dots functionalized by proline. Environmental Science and Pollution Research, 2021, 28, 42877-42890.	5.3	37
2350	Fluorine-defects induced solid-state red emission of carbon dots with an excellent thermosensitivity. Chinese Chemical Letters, 2021, 32, 3646-3651.	9.0	25
2351	Boron, and nitrogen co-doped carbon dots as a multiplexing probe for sensing of p-nitrophenol, Fe (III), and temperature. Nanotechnology, 2021, 32, 265502.	2.6	9
2352	Applications of carbon quantum dots in lubricant additives: a review. Journal of Materials Science, 2021, 56, 12061-12092.	3.7	36
2353	One-pot fabrication of N, S co-doped carbon with 3D hierarchically porous frameworks and high electron/ion transfer rate for lithium-ion batteries. Chemical Engineering Science, 2021, 234, 116453.	3.8	15
2354	Regulation of fluorescence emission of carbon dots via hydrogen bonding assembly. Inorganic Chemistry Communication, 2021, 126, 108500.	3.9	4
2355	Recent advances and future perspectives for carbon nanostructures reinforced organic coating for anti-corrosion application. Surfaces and Interfaces, 2021, 23, 100994.	3.0	22
2356	Carbon Nanomaterials: Synthesis, Functionalization and Sensing Applications. Nanomaterials, 2021, 11, 967.	4.1	132
2358	Synthesis of tunable high-thermal stability carbon dots via functionalization for applications in high-temperature environment. Applied Nanoscience (Switzerland), 2021, 11, 1691-1706.	3.1	15
2359	Development of an impedimetric sensor based on carbon dots and chitosan nanocomposite modified electrode for Cu(II) detection in water. Journal of Solid State Electrochemistry, 2021, 25, 1797-1806.	2.5	10
2360	Carbon Dot Nanoparticles: Exploring the Potential Use for Gene Delivery in Ophthalmic Diseases. Nanomaterials, 2021, 11, 935.	4.1	24
2361	Nanostructures derived from expired drugs and their applications toward sensing, security ink, and bactericidal material. Science of the Total Environment, 2021, 764, 144260.	8.0	4
2362	Carbon dots for specific "off-on―sensing of Co2+ and EDTA for in vivo bioimaging. Materials Science and Engineering C, 2021, 123, 112022.	7.3	22
2363	Carbon dots prepared by thermal reactions and selective detections of copper and mercury ions in visible spectrum. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	2.3	3
2364	Facile Hydrothermal Synthesis of Chlorella-Derived Environmentally Friendly Fluorescent Carbon Dots for Differentiation of Living and Dead Chlorella. ACS Applied Bio Materials, 2021, 4, 3697-3705.	4.6	7
2365	Renalâ€Clearable Nickelâ€Doped Carbon Dots with Boosted Photothermal Conversion Efficiency for Multimodal Imagingâ€Guided Cancer Therapy in the Second Nearâ€Infrared Biowindow. Advanced Functional Materials, 2021, 31, 2100549.	14.9	107

#	Article	IF	CITATIONS
2366	Large-scale electrochemical fabrication of nitrogen-doped carbon quantum dots and their application as corrosion inhibitor for copper. Journal of Materials Science, 2021, 56, 12909-12919.	3.7	24
2367	Femtosecond laser synthesis of nitrogen-doped luminescent carbon dots from acetonitrile. Dyes and Pigments, 2021, 188, 109176.	3.7	20
2368	Carbon-Based Nanomaterials: Promising Antiviral Agents to Combat COVID-19 in the Microbial-Resistant Era. ACS Nano, 2021, 15, 8069-8086.	14.6	134
2369	N-Doped Carbon Dots Synthesized from Ethylene Glycol and β-Alanine for Detection of Cr(VI) and 4-Nitrophenol via Photoluminescence Quenching. ACS Applied Nano Materials, 2021, 4, 3444-3454.	5.0	52
2370	pHâ€responsive zwitterionic carbon dots for detection of rituximab antibody. Luminescence, 2021, 36, 1198-1208.	2.9	7
2371	Up-converted nitrogen-doped carbon quantum dots to accelerate charge transfer of dibismuth tetraoxide for enhanced full-spectrum photocatalytic activity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 615, 126217.	4.7	10
2372	Carbon quantum dots by submerged arc discharge in water: Synthesis, characterization, and mechanism of formation. Journal of Applied Physics, 2021, 129, .	2.5	62
2373	Space-confined carbonization strategy for synthesis of carbon nanosheets from glucose and coal tar pitch for high-performance lithium-ion batteries. Applied Surface Science, 2021, 547, 149228.	6.1	78
2374	Self-Targeting of Carbon Dots into the Cell Nucleus: Diverse Mechanisms of Toxicity in NIH/3T3 and L929 Cells. International Journal of Molecular Sciences, 2021, 22, 5608.	4.1	22
2375	Controlled Polymerization of Norbornene Cycloparaphenylenes Expands Carbon Nanomaterials Design Space. ACS Central Science, 2021, 7, 1056-1065.	11.3	15
2376	Fluorescence properties of yellow light emitting carbon quantum dots and their application for effective recognition of heavy metal ions in aqueous medium. Nano Select, 2021, 2, 2432-2439.	3.7	4
2377	New Insight into the Fluorescence Quenching of Nitrogen-Containing Carbonaceous Quantum Dots—From Surface Chemistry to Biomedical Applications. Materials, 2021, 14, 2454.	2.9	13
2378	A rich gallery of carbon dots based photoluminescent suspensions and powders derived by citric acid/urea. Scientific Reports, 2021, 11, 10554.	3.3	47
2379	Integrating photoluminescent nanomaterials with photonic nanostructures. Journal of Luminescence, 2021, 233, 117870.	3.1	10
2380	Snapshots into carbon dots formation through a combined spectroscopic approach. Nature Communications, 2021, 12, 2640.	12.8	86
2381	Emerging theranostic applications of carbon dots and its variants. View, 2022, 3, 20200089.	5.3	17
2382	Carbon quantum dots/Bi4O5Br2 photocatalyst with enhanced photodynamic therapy: killing of lung cancer (A549) cells in vitro. Rare Metals, 2022, 41, 132-143.	7.1	15
2383	Carbon Based Nanodots in Early Diagnosis of Cancer. Frontiers in Chemistry, 2021, 9, 669169.	3.6	8

ARTICLE IF CITATIONS Impact of photoluminescent carbon quantum dots on photosynthesis efficiency of rice and corn 2384 5.8 26 crops. Plant Physiology and Biochemistry, 2021, 162, 737-751. N,S-Codoped Carbon Dots with Red Fluorescence and Their Cellular Imaging. ACS Applied Bio 4.6 Materials, 2021, 4, 4973-4981. Fluorescent supramolecular self-assembly gels and their application as sensors: A review. 2386 18.8 97 Coordination Chemistry Reviews, 2021, 434, 213792. Photoluminescent Metal Complexes and Materials as Temperature Sensorsâ€"An Introductory Review. Chemosensors, 2021, 9, 109. Enhanced reduction of p-nitrophenol by zerovalent iron modified with carbon quantum dots. Applied 2388 20.2 46 Catalysis B: Environmental, 2021, 285, 119829. Highly efficient optoelectronic devices based on colloidal heterostructured quantum dots. APL Materials, 2021, 9, 050701. 2389 5.1 Optical Nanobiosensing of Stibogluconate in Plasma and Urine Using Green Synthesized Fluorescent 2390 0.7 1 Carbon Nanodots. Journal of Applied Spectroscopy, 2021, 88, 401-413. Multifunctional N-Doped Carbon Dots for Bimodal Detection of Bilirubin and Vitamin B₁₂, 4.6 40 Living Cell Imaging, and Fluorescent Ink. ACS Applied Bio Materials, 2021, 4, 5201-5211. Effects of Sonication and Hydrothermal Treatments on the Optical and Chemical Properties of Carbon 2392 3.5 6 Dots. ACS Omega, 2021, 6, 14174-14181. Carbon dots-based room-temperature phosphorescent test strip: Visual and convenient water 2393 detection in organic solvents. Dyes and Pigments, 2021, 189, 109226. The Preparation of Cu(II)- and Ag(I)-responsive Carbon Nanodots from the Right Amino-acid Carbon 2394 4 2.5 Source. Journal of Fluorescence, 2021, 31, 1153-1160. Interaction Promotes the Formation and Photothermal Conversion of Carbon Dots/Polydopamine 3.7 Composite for Solarâ€Driven Water Evaporation. Advanced Materials Interfaces, 2021, 8, 2100332. Nitrogen-doped carbon dots as high-effective inhibitors for carbon steel in acidic medium. Colloids 2396 4.7 39 and Surface's A: Physicochemical and Engineering Aspects, 2021, 616, 126280. Graphene plasmonic coupling with intersubband radiation of truncated pyramidal-shaped InAs/GaAs 2.1 quantum dots. Journal of the Optical Society of America B: Optical Physics, 2021, 38, 1824. Recent Progress in Luminous Particleâ€Encapsulated Hostâ€"Guest Metalâ€Organic Frameworks for Optical 2398 39 7.3 Applications. Advanced Optical Materials, 2021, 9, 2100283. A micro-wave strategy for synthesizing room temperature phosphorescent materials. Chinese Chemical Letters, 2022, 33, 243-246. 2399 14 Polymeric surfaces with biocidal action: challenges imposed by the SARS-CoV-2, technologies 2400 2.4 7 employed, and future perspectives. Journal of Polymer Research, 2021, 28, 1. A Versatile Optical Fiber Sensor Comprising an Excitation-Independent Carbon Quantum 2401 Dots/Cellulose Acetate Composite Film for Adrenaline Detection. IEEE Sensors Journal, 2021, 21, 10392-10399.

#	Article	IF	CITATIONS
2402	Simple and Sensitive Multi-components Detection Using Synthetic Nitrogen-doped Carbon Dots Based on Soluble Starch. Journal of Fluorescence, 2021, 31, 1379-1392.	2.5	2
2403	Commonly available, everyday materials as non-conventional powders for the visualization of latent fingerprints. Forensic Chemistry, 2021, 24, 100339.	2.8	19
2404	Paper-Based Immunosensors with Bio-Chemiluminescence Detection. Sensors, 2021, 21, 4309.	3.8	23
2405	Biomassâ€Derived Carbon Materials: Controllable Preparation and Versatile Applications. Small, 2021, 17, e2008079.	10.0	105
2406	An overview of the recent advances of carbon quantum dots/metal oxides in the application of heterogeneous photocatalysis in photodegradation of pollutants towards visible-light and solar energy exploitation. Journal of Environmental Chemical Engineering, 2021, 9, 105199.	6.7	71
2407	Aqueous Conversion of Fructose Phosphate Precursor Nanoparticles into Emissive Câ€Đot Composite Nanoparticles. ChemNanoMat, 2021, 7, 916-926.	2.8	0
2408	Self-photo-oxidation for extending visible light absorption of carbon dots and oxidase-like activity. Carbon, 2021, 182, 537-544.	10.3	25
2409	Photoluminescence quenching of thermally treated waste-derived carbon dots for selective metal ion sensing. Environmental Research, 2021, 197, 111008.	7.5	24
2410	Acid-activated carbon nitrides as photocatalysts for degrading organic pollutants under visible light. Chemosphere, 2021, 273, 129731.	8.2	21
2411	Highly Efficient MicroRNA Delivery Using Functionalized Carbon Dots for Enhanced Conversion of Fibroblasts to Cardiomyocytes. International Journal of Nanomedicine, 2021, Volume 16, 3741-3754.	6.7	20
2412	Sensitive electrochemiluminescent detection of telomerase activity based on nicking enzyme assisted signal amplification. Microchemical Journal, 2021, 165, 106123.	4.5	7
2413	Mechanism of action and cellular responses of HEK293 cells on challenge with zwitterionic carbon dots. Colloids and Surfaces B: Biointerfaces, 2021, 202, 111698.	5.0	9
2414	Fluorescent nanoparticles as tools in ecology and physiology. Biological Reviews, 2021, 96, 2392-2424.	10.4	13
2415	Chemically heterogeneous carbon dots enhanced cholesterol detection by MALDI TOF mass spectrometry. Journal of Colloid and Interface Science, 2021, 591, 373-383.	9.4	18
2416	Enhanced photocatalytic performance and reusability of N-doped carbon dots/zinc oxide hybrid nanostructures. Nanotechnology, 2021, 32, 385703.	2.6	0
2417	Carbon-dot-based solid-state luminescent materials: Synthesis and applications in white light emitting diodes and optical sensors. New Carbon Materials, 2021, 36, 527-545.	6.1	16
2418	Synthesis and Applications of Organic-Based Fluorescent Carbon Dots: Technical Review. , 0, , .		0
2419	Electrospun polyacrylonitrile nanofibers as graphene oxide quantum dot precursors with improved photoluminescent properties. Materials Science in Semiconductor Processing, 2021, 127, 105729.	4.0	9

#	Article	IF	CITATIONS
2420	Advances in engineering perovskite oxides for photochemical and photoelectrochemical water splitting. Applied Physics Reviews, 2021, 8, .	11.3	19
2421	A fast, low-cost, sensitive, selective, and non-laborious method based on functionalized magnetic nanoparticles, magnetic solid-phase extraction, and fluorescent carbon dots for the fluorimetric determination of copper in wines without prior sample treatment. Food Chemistry, 2021, 363, 130248.	8.2	7
2422	Expanded porphyrin nanosheet for metal-free photocatalytic water splitting using visible light. Chinese Journal of Chemical Physics, 2021, 34, 350-355.	1.3	1
2423	Interfacial Polarization and Dual Charge Transfer Induced High Permittivity of Carbon Dotsâ€Based Composite as Humidityâ€Resistant Tribomaterial for Efficient Biomechanical Energy Harvesting. Advanced Energy Materials, 2021, 11, 2101294.	19.5	31
2424	Carbon dots as emerging luminophores in security inks for anti-counterfeit applications - An up-to-date review. Applied Materials Today, 2021, 23, 101050.	4.3	58
2425	Supramolecular self-assemblies formed by co-assembly of carbon dots and tannic acid. Dyes and Pigments, 2021, 190, 109287.	3.7	7
2426	Highly Photoluminescent Nitrogen- and Zinc-Doped Carbon Dots for Efficient Delivery of CRISPR/Cas9 and mRNA. Bioconjugate Chemistry, 2021, 32, 1875-1887.	3.6	17
2427	Carbon Dots as an Emergent Class of Antimicrobial Agents. Nanomaterials, 2021, 11, 1877.	4.1	73
2428	3D Network of Sepia Melanin and N―and, Sâ€Doped Graphitic Carbon Quantum Dots for Sustainable Electrochemical Capacitors. Advanced Sustainable Systems, 2021, 5, 2100152.	5.3	2
2429	Carbon Dots Intensified Mechanochemiluminescence from Waterborne Polyurethanes as Tunable Force Sensing Materials. Chinese Journal of Polymer Science (English Edition), 2021, 39, 1403-1411.	3.8	12
2430	Photoluminescent Nanoparticles for Chemical and Biological Analysis and Imaging. Chemical Reviews, 2021, 121, 9243-9358.	47.7	162
2431	Recent Progress in Nanotechnology for COVID-19 Prevention, Diagnostics and Treatment. Nanomaterials, 2021, 11, 1788.	4.1	38
2432	Chiral nanomaterials for tumor therapy: autophagy, apoptosis, and photothermal ablation. Journal of Nanobiotechnology, 2021, 19, 220.	9.1	36
2433	Carbon quantum dots for optical sensor applications: A review. Optics and Laser Technology, 2021, 139, 106928.	4.6	78
2434	Construction of a Dye-Sensitized and Gold Plasmon-Enhanced Cathodic Photoelectrochemical Biosensor for Methyltransferase Activity Assay. Analytical Chemistry, 2021, 93, 10310-10316.	6.5	26
2435	Nitrogen-Doped Carbon Dots Increased Light Conversion and Electron Supply to Improve the Corn Photosystem and Yield. Environmental Science & Technology, 2021, 55, 12317-12325.	10.0	67
2436	Comparative life cycle assessment of high-yield synthesis routes for carbon dots. NanoImpact, 2021, 23, 100332.	4.5	22
2437	Aggregation Induced Emissive Luminogens for Sensing of Toxic Elements. ChemistryOpen, 2021, 10, 681-696.	1.9	9

#	Article	IF	CITATIONS
2438	Live Cell Imaging With Biocompatible Fluorescent Carbon Quantum Dots Derived From Edible Mushrooms Agaricus bisporus, Pleurotus ostreatus, and Suillus luteus. Journal of Fluorescence, 2021, 31, 1461-1473.	2.5	7
2439	Graphene quantum dots and its modified application for energy storage and conversion. Journal of Energy Storage, 2021, 39, 102606.	8.1	16
2440	Red/Green Tunable-Emission Carbon Nanodots for Smart Visual Precision pH Sensing. Chemistry of Materials, 2021, 33, 6091-6098.	6.7	33
2441	An adequate avenue towards well-designed PBDT-DTNT:PCBM active layers via quantum dot/conductive polymer configurations. Journal of Industrial and Engineering Chemistry, 2021, 99, 431-442.	5.8	0
2442	Self-assembled dual-emissive nanoprobe with metalâ^'organic frameworks as scaffolds for enhanced ascorbic acid and ascorbate oxidase sensing. Sensors and Actuators B: Chemical, 2021, 339, 129910.	7.8	40
2443	Two-dimensional closely-packed gold nanoislands: A platform for optical data storage and carbon dot generation. Applied Surface Science, 2021, 555, 149586.	6.1	5
2444	Reversible and color-variable afterglow luminescence of carbon dots triggered by water for multi-level encryption and decryption. Chemical Engineering Journal, 2021, 415, 128999.	12.7	48
2445	Ultrafast Dynamics in Carbon Dots as Photosensitizers: A Review. ACS Applied Nano Materials, 2021, 4, 7587-7606.	5.0	17
2446	MULTI-FUNCTIONAL CARBON DOTS: A SYSTEMATIC OVERVIEW. International Journal of Applied Pharmaceutics, 0, , 1-22.	0.3	0
2447	Recent advances in functionalization of carbon nanosurface structures for electrochemical sensing applications: tuning and turning. Journal of Nanostructure in Chemistry, 2022, 12, 441-466.	9.1	8
2448	Structure and Interface Modification of Carbon Dots for Electrochemical Energy Application. Small, 2021, 17, e2102091.	10.0	36
2449	Hybrid ultrafiltration membranes based on PES and MOFs @ carbon quantum dots for improving anti-fouling performance. Separation and Purification Technology, 2021, 266, 118586.	7.9	31
2450	Doped-carbon dots: Recent advances in their biosensing, bioimaging and therapy applications. Colloids and Surfaces B: Biointerfaces, 2021, 203, 111743.	5.0	77
2451	Carbon Quantum Dots for Energy Applications: A Review. ACS Applied Nano Materials, 2021, 4, 6515-6541.	5.0	145
2452	Carbon dots: A novel trend in pharmaceutical applications. Annales Pharmaceutiques Francaises, 2021, 79, 335-345.	1.0	11
2453	Magnetic Field Probes the Impact of the Ionic Micellar Interface on Photoinduced Charge-Transfer Kinetics of Carbon Dots. Journal of Physical Chemistry C, 2021, 125, 17418-17427.	3.1	7
2454	Luminescent hybrid biocomposite films derived from animal skin waste. Carbon Trends, 2021, 4, 100059.	3.0	5
2455	Whole ellâ€Based Photosynthetic Biohybrid Systems for Energy and Environmental Applications. ChemPlusChem, 2021, 86, 1021-1036.	2.8	9

#	Article	IF	CITATIONS
2456	Enhancing Light Absorption and Prolonging Charge Separation in Carbon Quantum Dots <i>via</i> Cl-Doping for Visible-Light-Driven Photocharge-Transfer Reactions. ACS Applied Materials & Interfaces, 2021, 13, 34648-34657.	8.0	39
2457	Fluorescent quantum dots: An insight on synthesis and potential biological application as drug carrier in cancer. Biochemistry and Biophysics Reports, 2021, 26, 100962.	1.3	21
2458	Highly efficient Ti3+ self-doped TiO2 co-modified with carbon dots and palladium nanocomposites for disinfection of bacterial and fungi. Journal of Hazardous Materials, 2021, 413, 125318.	12.4	31
2459	Facile Synthesis of Matrixâ€Free Roomâ€Temperature Phosphorescent Nitrogenâ€Doped Carbon Dots and Their Application as Security Inks. Macromolecular Materials and Engineering, 2021, 306, 2100339.	3.6	9
2460	Tuneable properties of carbon quantum dots by different synthetic methods. Journal of Nanostructure in Chemistry, 2022, 12, 565-580.	9.1	27
2461	Large Polycyclic Aromatic Hydrocarbons as Graphene Quantum Dots: from Synthesis to Spectroscopy and Photonics. Advanced Optical Materials, 2021, 9, 2100508.	7.3	18
2462	Optical and electronic properties of TiO2/GOQDs composites: A combined experimental and first-principles calculations study. Computational Materials Science, 2021, 195, 110503.	3.0	11
2463	Amine–carbon quantum dots (CQDs–NH2) tailored polymeric loose nanofiltration membrane for precise molecular separation. Chemical Engineering Research and Design, 2021, 171, 237-246.	5.6	17
2464	Pressure-induced photoluminescence enhancement and ambient retention in confined carbon dots. Nano Research, 2022, 15, 2545-2551.	10.4	26
2465	Photodynamic therapy for hypoxic tumors: Advances and perspectives. Coordination Chemistry Reviews, 2021, 438, 213888.	18.8	151
2466	Preparation, characterization and preliminary cytotoxic evaluation of 6-mercaptopurine-coated biotinylated carbon dots nanoparticles as a drug delivery system. Materials Today: Proceedings, 2023, 80, 2327-2333.	1.8	10
2467	Carbon quantum dots modified Ag2S/CS nanocomposite as effective antibacterial agents. Journal of Inorganic Biochemistry, 2021, 220, 111456.	3.5	14
2468	A review of carbon dots and their composite materials for electrochemical energy technologies. , 2021, 3, 795-826.		77
2469	Photoluminescent Recognition of Strong Alcoholic Beverages with Carbon Nanoparticles. ACS Omega, 2021, 6, 18802-18810.	3.5	8
2470	Protein Corona Hinders N-CQDs Oxidative Potential and Favors Their Application as Nanobiocatalytic System. International Journal of Molecular Sciences, 2021, 22, 8136.	4.1	7
2471	A Critical Review of Carbon Quantum Dots: From Synthesis toward Applications in Electrochemical Biosensors for the Determination of a Depression-Related Neurotransmitter. Materials, 2021, 14, 3987.	2.9	18
2472	Advances in chlorin-based photodynamic therapy with nanoparticle delivery system for cancer treatment. Expert Opinion on Drug Delivery, 2021, 18, 1473-1500.	5.0	8
2473	Facile preparation of carbon quantum dots/TiO2 composites at room temperature with improved visible-light photocatalytic activity. Journal of Alloys and Compounds, 2021, 869, 159389.	5.5	32

#	Article	IF	CITATIONS
2474	A nanohybrid system based on covalently functionalized graphene quantum dots with dithienopyrrole derivative for the sensitive and selective fluorometric detection of Pb ²⁺ ions. Luminescence, 2021, 36, 1743-1750.	2.9	11
2475	Ratiometric dual-emission of Rhodamine-B grafted carbon dots for full-range solvent components detection. Analytica Chimica Acta, 2021, 1174, 338743.	5.4	18
2476	Estimation of carbon dots amelioration of copper toxicity in maize studied by synchrotron radiation-FTIR. Colloids and Surfaces B: Biointerfaces, 2021, 204, 111828.	5.0	7
2477	An insight into the solvatochromic and photophysical behaviours of biowaste-origin carbon nanodots. Journal of Molecular Liquids, 2021, 336, 116360.	4.9	8
2478	Theoretical Understanding of Structure–Property Relationships in Luminescence of Carbon Dots. Journal of Physical Chemistry Letters, 2021, 12, 7671-7687.	4.6	111
2479	Green synthesis of white light emitting carbon quantum dots: Fabrication of white fluorescent film and optical sensor applications. Journal of Hazardous Materials, 2021, 416, 125091.	12.4	39
2480	Dopamine-Conjugated Carbon Dots Inhibit Human Calcitonin Fibrillation. Nanomaterials, 2021, 11, 2242.	4.1	6
2481	Solvatochromic Surface-Passivated Carbon Dots for Fluorometric Moisture Sensing in Organic Solvents. ACS Applied Nano Materials, 2021, 4, 7974-7987.	5.0	32
2482	Fluorescent carbon-dots enhance light harvesting and photosynthesis by overexpressing PsbP and PsiK genes. Journal of Nanobiotechnology, 2021, 19, 260.	9.1	31
2483	Multilayer Graphene—A Promising Electrode Material in Liquid Cell Electrochemistry. Advanced Functional Materials, 2021, 31, 2104628.	14.9	11
2484	Nanotherapeutics and nanotheragnostics for cancers: properties, pharmacokinetics, biopharmaceutics, and biosafety. Current Pharmaceutical Design, 2021, 27, .	1.9	1
2485	One Spot Microwave Synthesis and Characterization of Nitrogen-Doped Carbon Dots with High Oxygen Content for Fluorometric Determination of Banned Sudan II Dye in Spice Samples. Journal of Fluorescence, 2021, 31, 1587-1598.	2.5	0
2486	High performance of carbon quantum dots-decorated-polymeric nanocomposite for enhanced microwave adsorption of vanadium (V) from water. Groundwater for Sustainable Development, 2021, 14, 100582.	4.6	9
2487	One-pot synthesis of Forsythia@carbon quantum dots with natural anti-wood rot fungus activity. Materials and Design, 2021, 206, 109800.	7.0	17
2488	Optical Properties of Carbon Dots in the Deepâ€Red to Nearâ€Infrared Region Are Attractive for Biomedical Applications. Small, 2021, 17, e2102325.	10.0	93
2489	Versatile Fluorescent Carbon Dots from Citric Acid and Cysteine with Antimicrobial, Anti-biofilm, Antioxidant, and AChE Enzyme Inhibition Capabilities. Journal of Fluorescence, 2021, 31, 1705-1717.	2.5	33
2490	Logic Gate Design Using Multicolor Fluorescent Carbon Nanodots for Smartphone-Based Information Extraction. ACS Applied Nano Materials, 2021, 4, 8184-8191.	5.0	11
2491	Enzyme-Inspired Lysine-Modified Carbon Quantum Dots Performing Carbonylation Using Urea and a Cascade Reaction for Synthesizing 2-Benzoxazolinone. ACS Catalysis, 2021, 11, 10778-10788.	11.2	10

#	Article	IF	Citations
2492	Carbon Nitride Quantum Dot-Embedded Poly(vinyl alcohol) Transparent Thin Films for Greenish-Yellow Light-Emitting Diodes. ACS Omega, 2021, 6, 22840-22847.	3.5	3
2493	Carbon Quantum Dots Based on Carbohydrates as Nano Sensors for Food Quality and Safety. Starch/Staerke, 2021, 73, 2100044.	2.1	6
2494	Enhanced visible light-triggered antibacterial activity of carbon quantum dots/polyurethane nanocomposites by gamma rays induced pre-treatment. Radiation Physics and Chemistry, 2021, 185, 109499.	2.8	15
2495	Luminescent nanostructures for the detection of latent fingermarks: A review. Wiley Interdisciplinary Reviews Forensic Science, 2022, 4, .	2.1	4
2496	Advances, opportunities, and challenge for full-color emissive carbon dots. Chinese Chemical Letters, 2022, 33, 613-625.	9.0	75
2497	â€~Autophagy' and unique aerial oxygen harvesting properties exhibited by highly photocatalytic carbon quantum dots. Carbon, 2021, 181, 16-27.	10.3	19
2498	Carbon dots-based catalyst for various organic transformations. Journal of Materials Science, 2021, 56, 17369-17410.	3.7	18
2499	Green Synthesized Cu@Carbon Quantum Dots for Histidine and Arsenate Sensing. IEEE Sensors Journal, 2021, 21, 16464-16468.	4.7	2
2500	Glucose derived carbon quantum dots on tungstate-titanate nanocomposite for hydrogen energy evolution and solar light catalysis. Journal of Nanostructure in Chemistry, 2022, 12, 611-623.	9.1	14
2501	MicroRNA of Nâ€region from SARSâ€CoVâ€2: Potential sensing components for biosensor development. Biotechnology and Applied Biochemistry, 2021, , .	3.1	4
2502	Green fluorescent carbon dots as targeting probes for LEDâ€dependent bacterial killing. Nano Select, 2022, 3, 662-672.	3.7	5
2503	The development of carbon dots: From the perspective of materials chemistry. Materials Today, 2021, 51, 188-207.	14.2	213
2504	Towards Red Emissive Systems Based on Carbon Dots. Nanomaterials, 2021, 11, 2089.	4.1	15
2505	Emerging applications of zeolites in catalysis, separation and host–guest assembly. Nature Reviews Materials, 2021, 6, 1156-1174.	48.7	209
2506	Advances in Integrating Carbon Dots With Membranes and Their Applications. ChemistrySelect, 2021, 6, 7443-7462.	1.5	4
2507	Biomass-Based Carbon Dots: Current Development and Future Perspectives. ACS Nano, 2021, 15, 15471-15501.	14.6	269
2508	Rapid trace analysis of ceftriaxone using new fluorescent carbon dots as a highly sensitive turn-off nanoprobe. Microchemical Journal, 2021, 168, 106372.	4.5	15
2509	Rare Earth Doped Luminescent Materials as Photocatalysts for Enhanced Photocatalytic Reactions. Green Chemistry and Sustainable Technology, 2022, , 259-279.	0.7	0

#	Article	IF	CITATIONS
2510	All-Carbon van der Waals Heterojunction Photodetectors. Springer Series in Materials Science, 2022, , 131-147.	0.6	0
2511	Transparent Hard Coatings with SiON-Encapsulated N-Doped Carbon Dots for Complete UV Blocking and White Light Emission. ACS Applied Electronic Materials, 2021, 3, 3761-3773.	4.3	13
2512	Nanotherapeutic approaches to target mitochondria in cancer. Life Sciences, 2021, 281, 119773.	4.3	19
2513	Two-dimensional quantum dots for biological applications. Nano Research, 2021, 14, 3820-3839.	10.4	50
2514	Förster Resonance Energy Transfer from Carbon Nanoparticles to a DNA-Bound Compound: A Method to Detect the Nature of Binding. Journal of Physical Chemistry B, 2021, 125, 10126-10137.	2.6	4
2515	Unraveling the Instability Issues in P3HT:PCBM Solar Cells by Graphene/Carbon Quantum Dots and Host Polymer Chain/Fiber Arrangements. Journal of Electronic Materials, 2021, 50, 6545-6563.	2.2	0
2516	A fluorescence biosensor based on single-stranded DNA and carbon quantum dots for acrylamide detection. Food Chemistry, 2021, 356, 129668.	8.2	39
2517	Photoinduced synthesis of green photocatalyst Fe3O4/BiOBr/CQDs derived from corncob biomass for carbamazepine degradation: The role of selectively more CQDs decoration and Z-scheme structure. Chemical Engineering Journal, 2021, 420, 129705.	12.7	85
2518	Doping and Surface Modification of Carbon Quantum Dots for Enhanced Functionalities and Related Applications. Particle and Particle Systems Characterization, 2021, 38, 2100170.	2.3	48
2519	Preparation of Fe ₃ O ₄ @Câ€dots as a recyclable magnetic nanocatalyst using <scp><i>Elaeagnus angustifolia</i></scp> and its application for the green synthesis of formamidines. Applied Organometallic Chemistry, 2021, 35, e6387.	3.5	7
2520	Photodynamic Inactivation of <i>E. coli</i> Bacteria via Carbon Nanodots. ACS Omega, 2021, 6, 23742-23749.	3.5	5
2521	Recent advances in the rational synthesis of red-emissive carbon dots for nanomedicine applications: A review. FlatChem, 2021, 29, 100271.	5.6	24
2522	Light-emitting carbon dots extracted from naturally grown torreya grandis seeds. Organic Electronics, 2021, 96, 106255.	2.6	5
2523	Review on hydrogen production photocatalytically using carbon quantum dots: Future fuel. International Journal of Hydrogen Energy, 2021, 46, 37208-37241.	7.1	39
2524	Biocompatible Ruthenium Single-Atom Catalyst for Cascade Enzyme-Mimicking Therapy. ACS Applied Materials & Interfaces, 2021, 13, 45269-45278.	8.0	41
2525	A facile strategy to realize metal-free room-temperature phosphorescence by construct nitrogen doped carbon dots-based nanocomposite. Microchemical Journal, 2022, 172, 106878.	4.5	12
2526	Graphene Quantum Dots enable digital communication through biological fluids. Carbon, 2021, 182, 847-855.	10.3	11
2527	Carbon dots with dual emission: A versatile sensing platform for rapid assay of Cr (VI). Carbon, 2021, 182, 42-50.	10.3	55

#	Article	IF	CITATIONS
2528	Inorganic Nanomaterials with Intrinsic Singlet Oxygen Generation for Photodynamic Therapy. Advanced Science, 2021, 8, e2102587.	11.2	66
2529	High Degradation of Methylene Blue Using a New Nanocomposite Based on Zeolitic Imidazolate Framework-8. ACS Omega, 2021, 6, 26210-26220.	3.5	32
2530	Synthesized carbon dots with high N and S content as excellent corrosion inhibitors for copper in sulfuric acid solution. Journal of Molecular Liquids, 2021, 338, 116702.	4.9	62
2531	A first principles approach to the interactions of alkali metal atoms with carbon quantum dots. Computational Materials Science, 2021, 197, 110614.	3.0	1
2532	Carbon dots as a new class of nanomedicines: Opportunities and challenges. Coordination Chemistry Reviews, 2021, 442, 214010.	18.8	158
2533	ZnIn ₂ S ₄ â€Based Photocatalysts for Energy and Environmental Applications. Small Methods, 2021, 5, e2100887.	8.6	153
2534	PHARMACEUTICAL AND BIOPHARMACEUTICAL ASPECTS OF QUANTUM DOTS-AN OVERVIEW. International Journal of Applied Pharmaceutics, 0, , 44-53.	0.3	4
2535	Green and Facile Synthesis of Luminescent CQDs from Pomegranate Peels and its Utilization in the Degradation of Azure B and Amido Black 10B by Decorating it on CuO Nanorods. ChemistrySelect, 2021, 6, 8566-8580.	1.5	16
2536	N-Doped Carbon Dots for Visual Recognition of 4-Nitroaniline and Use in Fluorescent Inks. ACS Applied Nano Materials, 2021, 4, 9616-9624.	5.0	19
2537	Production of carbon dots by pulsed laser ablation: Precursors and <scp>photoâ€oxidase</scp> properties. Journal of the Chinese Chemical Society, 2022, 69, 193-199.	1.4	6
2538	A feasible and universal one-step method for functionalizing carbon dots efficiently via in-situ free radical polymerization. Journal of Luminescence, 2021, 238, 118246.	3.1	4
2539	0D/2D CQDs/Bi7O9I3 composite with high photocatalytic disinfection performance under visible light. Journal of Solid State Chemistry, 2021, 302, 122426.	2.9	7
2540	Exploration of carbon dots derived from epimedium towards detecting dopamine and hydrogen peroxide. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 627, 127179.	4.7	3
2541	Role of precursor microstructure in the development of graphene quantum dots from biomass. Journal of Environmental Chemical Engineering, 2021, 9, 106154.	6.7	15
2542	Formation of nanomaterial internal cavity based on process similar to bread-baking. Journal of Solid State Chemistry, 2021, 302, 122391.	2.9	0
2543	Signal-on electrochemical aptasensor for sensitive detection of sulfamethazine based on carbon quantum dots/tungsten disulfide nanocomposites. Electrochimica Acta, 2021, 393, 139054.	5.2	15
2544	Solid-state photoluminescent silicone-carbon dots/dendrimer composites for highly efficient luminescent solar concentrators. Chemical Engineering Journal, 2021, 422, 130158.	12.7	39
2545	Multifunctional carbon dots derived from dansyl chloride for ratiometric thermal sensor and reactive oxygen generation. Dyes and Pigments, 2021, 194, 109549.	3.7	8

#	Article	IF	CITATIONS
2546	Simple and facile carbon dots based electrochemical biosensor for TNF-α targeting in cancer patient's sample. Analytica Chimica Acta, 2021, 1182, 338909.	5.4	23
2547	The design of high performance photoanode of CQDs/TiO2/WO3 based on DFT alignment of lattice parameter and energy band, and charge distribution. Journal of Colloid and Interface Science, 2021, 600, 828-837.	9.4	27
2548	Duplex metal co-doped carbon quantum dots-based drug delivery system with intelligent adjustable size as adjuvant for synergistic cancer therapy. Carbon, 2021, 183, 789-808.	10.3	57
2549	Carbon dots structural characterization by solution-state NMR and UV–visible spectroscopy and DFT modeling. Applied Surface Science, 2021, 564, 150195.	6.1	26
2550	Carbon quantum dots inducing formation of \hat{l}^2 phase in PVDF-HFP to improve the piezoelectric performance. Sensors and Actuators A: Physical, 2021, 330, 112880.	4.1	19
2551	Increasing the migration and separation efficiencies of photogenerated carriers in CQDs/BiOCl through the point discharge effect. Applied Surface Science, 2021, 562, 150214.	6.1	38
2552	Synthesis of modified PANI/CQDs nanocomposite by dimethylgyloxime for removal of Ni (II) from aqueous solution. Surfaces and Interfaces, 2021, 26, 101392.	3.0	5
2553	Dual lignin valorization enabled by carbon quantum dots and lithium-sulfur cathode. Industrial Crops and Products, 2021, 170, 113801.	5.2	10
2554	Nanoparticles as fingermark sensors. TrAC - Trends in Analytical Chemistry, 2021, 143, 116378.	11.4	28
2555	Assembling carbon dots on vertically aligned acetate fibers as ideal salt-rejecting evaporators for solar water purification. Chemical Engineering Journal, 2021, 421, 129822.	12.7	57
2556	Photocatalytic degradation of hazardous organic pollutants in water by Fe-MOFs and their composites: A review. Journal of Environmental Chemical Engineering, 2021, 9, 105967.	6.7	47
2557	Origin of sonocatalytic activity of fluorescent carbon dots. Carbon, 2021, 184, 102-108.	10.3	16
2558	Fabrication of fluorescence sensor based on molecularly imprinted polymer on amine-modified carbon quantum dots for fast and highly sensitive and selective detection of tannic acid in food samples. Analytica Chimica Acta, 2021, 1186, 339122.	5.4	20
2559	An environment-friendly route to explore the carbon quantum dots derived from curry berries (Murrayakoenigii L) as a fluorescent biosensor for detecting vitamin B12. Materials Letters, 2021, 303, 130521.	2.6	15
2560	One-pot facile synthesis of yellow-green emission carbon dots for rapid and efficient determination of progesterone. Applied Surface Science, 2021, 566, 150686.	6.1	18
2561	High quantum yield aminophenylboronic acid-functionalized N-doped carbon dots for highly selective hypochlorite ion detection. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 260, 119895.	3.9	14
2562	Preparation Fe3O4@chitosan-graphene quantum dots nanocomposites for fluorescence and magnetic resonance imaging. Chemical Physics Letters, 2021, 783, 139060.	2.6	12
2563	Synthesis of highly luminescent carbon dots from postconsumer waste silk cloth and investigation of its electron transfer dynamics with methyl viologen dichloride. Journal of the Indian Chemical Society, 2021, 98, 100181.	2.8	3

#	Article	IF	CITATIONS
2564	Progress and challenges in using sustainable carbon anodes in rechargeable metal-ion batteries. Progress in Energy and Combustion Science, 2021, 87, 100929.	31.2	52
2565	Quantifying morphological and mechanical properties of thermoplastics elastomers by selective localization of nanofillers with different geometries. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 629, 127365.	4.7	6
2566	Tuning the aggregation of silver nanoparticles with carbon dots for the surface-enhanced Raman scattering application. Carbon, 2021, 185, 442-448.	10.3	10
2567	A facile fluorescent sensor based on carbon dots and Fe3O4 nanoplates for the detection of hyaluronidase activity. Sensors and Actuators B: Chemical, 2021, 346, 130434.	7.8	5
2568	Photocatalytic activation of peroxymonosulfate by carbon quantum dots functionalized carbon nitride for efficient degradation of bisphenol A under visible-light irradiation. Chemical Engineering Journal, 2021, 424, 130296.	12.7	118
2569	Synthesis and properties of carbon quantum dots and their research progress in cancer treatment. Dyes and Pigments, 2021, 196, 109766.	3.7	15
2570	Electrochemically reduced TiO2 photoanode coupled with oxygen vacancy-rich carbon quantum dots for synergistically improving photoelectrochemical performance. Chemical Engineering Journal, 2021, 425, 131770.	12.7	53
2571	Transfer, transportation, and accumulation of cerium-doped carbon quantum dots: Promoting growth and development in wheat. Ecotoxicology and Environmental Safety, 2021, 226, 112852.	6.0	21
2572	Temperature-responsive polymer-tethered Zr-porphyrin MOFs encapsulated carbon dot nanohybrids with boosted visible-light photodegradation for organic contaminants in water. Chemical Engineering Journal, 2021, 426, 131794.	12.7	51
2573	Self-assembled ZnO-carbon dots anode materials for high performance nickel-zinc alkaline batteries. Chemical Engineering Journal, 2021, 425, 130660.	12.7	29
2574	Chiral helical supramolecular hydrogels with adjustable pitch and diameter towards high-performance chiroptical detecting. Giant, 2021, 8, 100077.	5.1	13
2575	Ammonia-assisted fabrication of Cr1.3Fe0.7O3@amine-containing carbon quantum dot core-shell architectures with ultrathin shell for broad-spectrum-driven photocatalytic hydrogen evolution. Journal of Alloys and Compounds, 2021, 884, 161000.	5.5	3
2576	Solvothermal synthesis of functionalized carbon dots from amino acid as an eco-friendly corrosion inhibitor for copper in sulfuric acid solution. Journal of Colloid and Interface Science, 2021, 604, 1-14.	9.4	81
2577	Facile preparation of highly thermosensitive N-doped carbon dots and their detection of temperature and 6-mercaotopurine. Microchemical Journal, 2021, 171, 106835.	4.5	9
2578	Carbon dots as nano-modules for energy conversion and storage. Materials Today Communications, 2021, 29, 102732.	1.9	13
2579	Elucidating the mechanism of dual-fluorescence in carbon dots. Journal of Colloid and Interface Science, 2022, 606, 67-76.	9.4	51
2580	Application of carbon dots and their composite materials for the detection and removal of radioactive ions: A review. Chemosphere, 2022, 287, 132313.	8.2	82
2581	Biomass derived functional carbon materials for supercapacitor applications. Chemosphere, 2022, 286, 131961.	8.2	148

#	Article	IF	CITATIONS
2582	Recent advances in graphitic carbon nitride semiconductor: Structure, synthesis and applications. Materials Science in Semiconductor Processing, 2022, 137, 106181.	4.0	49
2583	Nanomaterials for fluorescent detection of curcumin. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 265, 120359.	3.9	11
2584	Facile synthesis, high fluorescence and flame retardancy of carbon dots. Journal of Materials Science and Technology, 2022, 104, 163-171.	10.7	18
2585	InVO4-based photocatalysts for energy and environmental applications. Chemical Engineering Journal, 2022, 428, 131145.	12.7	44
2586	Green synthesized carbon quantum dots from maple tree leaves for biosensing of Cesium and electrocatalytic oxidation of glycerol. Chemosphere, 2022, 287, 131915.	8.2	50
2587	Combining carbon dots with WO3-x nanodots for utilizing the full spectrum of solar radiation in photocatalysis. Chemical Engineering Journal, 2022, 428, 131139.	12.7	31
2588	pH-responsive and sustained release drug delivery system of BSA coated CDs-DOX. Journal of Molecular Structure, 2022, 1248, 131358.	3.6	12
2589	A facile method to prepare Fe3O4@CTP QDs composite as advanced anode material for lithium ion batteries. Journal of Alloys and Compounds, 2022, 890, 161911.	5.5	18
2590	Carbon quantum dots modified TiO2 composites for hydrogen production and selective glucose photoreforming. Journal of Energy Chemistry, 2022, 64, 201-208.	12.9	63
2591	Concentration-Modulated Carbon Dots Photoluminescence and the Modulation Mechanism. Modern Physics, 2021, 11, 21-27.	0.1	0
2592	Carbon Dots Fluorescence-Based Colorimetric Sensor for Sensitive Detection of Aluminum Ions with a Smartphone. Chemosensors, 2021, 9, 25.	3.6	27
2593	Consumer Nanoproducts for Biomedical Applications. , 2021, , 1-27.		0
2594	Carbon dots for cancer nanomedicine: a bright future. Nanoscale Advances, 2021, 3, 5183-5221.	4.6	37
2595	Improved biorefinery pathways of marine diatoms using a water miscible ionic liquid and its colloidal solution: efficient lipid extraction and <i>in situ</i> synthesis of fluorescent carbon dots for bio-imaging applications. RSC Advances, 2021, 11, 21207-21215.	3.6	7
2596	A Mini Review on pH-Sensitive Photoluminescence in Carbon Nanodots. Frontiers in Chemistry, 2020, 8, 605028.	3.6	53
2597	Fabrication and photocatalytic activity of graphitic-C ₃ N ₄ quantum dots-decorated basic zinc carbonate prepared by a co-precipitation method. Physical Chemistry Chemical Physics, 2021, 23, 20329-20339.	2.8	5
2598	Red and green-emitting biocompatible carbon quantum dots for efficient tandem luminescent solar concentrators. Journal of Materials Chemistry C, 2021, 9, 12255-12262.	5.5	27
2599	Highly efficient ratiometric nanothermometers based on colloidal carbon quantum dots. Journal of Materials Chemistry B, 2021, 9, 4111-4119.	5.8	22
#	Article	IF	CITATIONS
------	--	------	-----------
2600	Carbon-based heterogeneous photocatalysts for water cleaning technologies: a review. Environmental Chemistry Letters, 2021, 19, 643-668.	16.2	32
2601	A universal strategy for preparing carbon quantum dot-based composites with blue and green afterglow luminescence. Materials Chemistry Frontiers, 2021, 5, 8161-8170.	5.9	10
2602	Surface chemical functionality of carbon dots: influence on the structure and energy storage performance of the layered double hydroxide. RSC Advances, 2021, 11, 10785-10793.	3.6	3
2603	Study on the influence of embedded structure of carbon quantum dots of the organic solar cells with the territory active layer structure of P3HT: PC61BM: CQDs. Journal of Materials Science: Materials in Electronics, 2021, 32, 2293-2301.	2.2	3
2604	Transition metal sulfides meet electrospinning: versatile synthesis, distinct properties and prospective applications. Nanoscale, 2021, 13, 9112-9146.	5.6	35
2605	A simple electrochemiluminesecence aptasenor using a GCE/NCQDs/aptamers for detection of Pb. Environmental Technology (United Kingdom), 2022, 43, 2270-2277.	2.2	7
2606	Merging Carbon Nanostructures with Porphyrins. , 2021, , 1-46.		1
2607	Applications of Hyaluronic Acid Nanomaterials in Fluorescence/Photoacoustic Imaging and Phototherapy. Acta Chimica Sinica, 2021, 79, 1097.	1.4	4
2608	Carbon-Based Quantum Dots for Supercapacitors: Recent Advances and Future Challenges. Nanomaterials, 2021, 11, 91.	4.1	87
2609	Surface defect-rich ceria quantum dots anchored on sulfur-doped carbon nitride nanotubes with enhanced charge separation for solar hydrogen production. Journal of Energy Chemistry, 2021, 52, 51-59.	12.9	33
2610	Biosensors in Food Traceability and Quality. , 2021, , 308-321.		3
2611	Study on the fluorescence of double-emission carbon quantum dots by improved intercept method. Methods and Applications in Fluorescence, 2021, 9, 015004.	2.3	1
2612	Natural polyphenol fluorescent polymer dots. Green Chemistry, 2021, 23, 1834-1839.	9.0	44
2613	Green Synthesis of Self-Passivated Fluorescent Carbon Dots Derived from Rice Bran for Degradation of Methylene Blue and Fluorescent Ink Applications. Journal of Fluorescence, 2021, 31, 427-436.	2.5	32
2614	Visible light-induced charge injection and migration in self-assembled carbon dot-DNA-carbon dot nano-dumbbell obtained through controlled stoichiometric conjugation. Nanoscale, 2021, 13, 14147-14155.	5.6	6
2615	Nanoparticles and bioorthogonal chemistry joining forces for improved biomedical applications. Nanoscale Advances, 2021, 3, 1261-1292.	4.6	24
2616	Synthesis of Multi-Functional Carbon Quantum Dots for Targeted Antitumor Therapy. Journal of Fluorescence, 2021, 31, 339-348.	2.5	9
2617	Cochineal quinone carbon dot synthesis <i>via</i> a keto–enol tautomerism strategy and their intermolecular photo-induced cross-redox interactions with tetracycline. New Journal of Chemistry, 2021, 45, 15336-15343.	2.8	3

		CITATION RE	PORT	
#	Article		IF	CITATIONS
2618	Influence of carbon nano-dots in water on sonoluminescence. Nanoscale, 2021, 13, 14	130-14138.	5.6	4
2619	Achieving 46% efficient white-light emissive carbon dot-based materials by enhancing phosphorescence for single-component white-light-emitting diodes. Journal of Material 2021, 9, 6796-6801.	ls Chemistry C,	5.5	46
2620	N-Doped fluorescent carbon nanodots derived out of Gum ghatti for the fluorescence mercury ions Hg2+ in the aqueous phase. Materials Today: Proceedings, 2022, 48, 427	tracking of '-437.	1.8	4
2621	Carbon quantum dots synthesized from Plectranthus Amboinicus: An eco-friendly mate excellent non-linear optical properties. Materials Today: Proceedings, 2021, 47, 1601-1	erial with .604.	1.8	3
2622	Excitation dependence and independence of photoluminescence in carbon dots and gr dots: insights into the mechanism of emission. Nanoscale, 2021, 13, 16662-16671.	aphene quantum	5.6	36
2624	Dualâ€Colorâ€Emitting Carbon Nanodots for Multicolor Bioimaging and Optogenetic Channels. Advanced Science, 2017, 4, 1700325.	Control of Ion	11.2	31
2625	Carbon Dots in Porous Materials: Host–Guest Synergy for Enhanced Performance. A Chemie - International Edition, 2020, 59, 19390-19402.	ngewandte	13.8	94
2626	Labelling Proteins with Carbon Nanodots. ChemBioChem, 2017, 18, 2385-2389.		2.6	18
2627	Versatile Selfâ€Assembly and Biosensing Applications of DNA and Carbon Quantum Do Cerium Ions. Chemistry - A European Journal, 2017, 23, 10413-10422.	ots Coordinated	3.3	32
2628	Treating of Aquatic Pollution by Carbon Quantum Dots. Engineering Materials, 2019, ,	121-145.	0.6	1
2629	Metal and Carbon Quantum Dot Photocatalysts for Water Purification. Environmental A Sustainable World, 2021, , 81-118.	Chemistry for	0.5	3
2630	Carbon Dots from Renewable Resources: A Review on Precursor Choices and Potential Advanced Structured Materials, 2020, , 159-208.	Applications.	0.5	3
2631	Hydrothermal synthesis of fluorescent silicon nanoparticles using maleic acid as surfac ligands. Journal of Materials Science, 2018, 53, 2443-2452.	e-stabilizing	3.7	17
2632	Polyethylene glycol (PEG) derived carbon dots: Preparation and applications. Applied N 2020, 20, 100677.	laterials Today,	4.3	69
2633	Nano-enabled sensing approaches for pathogenic bacterial detection. Biosensors and E 2020, 165, 112276.	3ioelectronics,	10.1	74
2634	Facile synthesis of pH-responsive gadolinium(III)-doped carbon nanodots with red fluor magnetic resonance properties for dual-readout logic gate operations. Carbon, 2020, 1	escence and 166, 265-272.	10.3	34
2635	Mapping the Surface Groups of Amine-Rich Carbon Dots Enables Covalent Catalysis in CheM, 2020, 6, 3022-3037.	Aqueous Media.	11.7	46
2636	Highly selective detection of methanol in aqueous and ethanol medium based on hybri ZnS:Mn2+quantum dots/N-methylpolypyrrole as a fluorescence switchable sensor. Foc 2020, 328, 127091.	d d Chemistry,	8.2	18

#	Article	IF	CITATIONS
2637	Steady-state and time-resolved fluorescence studies on interactions of carbon "quantum―dots with nitrotoluenes. Inorganica Chimica Acta, 2017, 468, 300-307.	2.4	22
2638	N-doped carbon dots derived from leaves with low toxicity via damaging cytomembrane for broad-spectrum antibacterial activity. Materials Today Communications, 2020, 24, 101222.	1.9	30
2639	Chemiluminescent carbon dots: Synthesis, properties, and applications. Nano Today, 2020, 35, 100954.	11.9	138
2640	Sensitive detection of Sudan dyes using tire-derived carbon dots as a fluorescent sensor. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 239, 118514.	3.9	27
2641	Nucleobase chemosensor based on carbon nanodots. Talanta, 2017, 173, 107-112.	5.5	10
2642	A review on the preparation and applications of coal-based fluorescent carbon dots. New Carbon Materials, 2020, 35, 646-666.	6.1	22
2643	Photonic Carbon Dots as an Emerging Nanoagent for Biomedical and Healthcare Applications. ACS Nano, 2020, 14, 6470-6497.	14.6	186
2645	Carbon quantum dots modified Bi 2 WO 6 nanoflowers for enhancing photocatalytic activity: an experimental and DFT study. Micro and Nano Letters, 2020, 15, 317-322.	1.3	11
2646	A facile microwave-assisted synthesis of highly crystalline red carbon dots by adjusting the reaction solvent for white light-emitting diodes. Nanotechnology, 2020, 31, 215704.	2.6	17
2647	Electrochemical UV Sensor Using Carbon Quantum Dot/Graphene Semiconductor. Journal of the Electrochemical Society, 2018, 165, H3001-H3007.	2.9	6
2648	Carbon Dots: Highlight on Their Synthesis, Properties and Applications in Tumor Imaging and Therapy. Nanoscience and Nanotechnology Letters, 2017, 9, 1827-1848.	0.4	5
2649	Two-photon saturable absorption properties and laser Q-switch application of carbon quantum dots. Optics Letters, 2017, 42, 3972.	3.3	16
2650	Enhancement of the fluorescence property of carbon quantum dots based on laser ablated gold nanoparticles to evaluate pyrene. Optical Materials Express, 2020, 10, 2227.	3.0	13
2651	Solvothermal synthesis of chitosan quantum dots using different solvents. International Journal of Plant Protection, 2016, 9, 333-336.	0.1	1
2652	Promising Nanostructured Materials against Enveloped Virus. Anais Da Academia Brasileira De Ciencias, 2020, 92, e20200718.	0.8	16
2653	Carbon Quantum Dots: Surface Passivation and Functionalization. Current Organic Chemistry, 2016, 20, 682-695.	1.6	135
2654	A Review on the Removal of Dye, Pesticide and Pathogens from Waste Water Using Quantum Dots. European Journal of Advanced Chemistry Research, 2020, 1, .	0.6	6
2655	Preparation and Characterization of Spion-CDs as a Multifunctional Fluorescence/Magnetic Resonance Nanoparticle. Acta Chemica Iasi, 2019, 27, 87-98.	0.1	2

#	Article	IF	CITATIONS
2656	Carbon family nanomaterials — new applications and technologies. Acta Chimica Slovaca, 2020, 13, 77-87.	0.8	2
2657	A Review of Clinical Applications of Graphene Quantum Dot-based Composites. Journal of Composites and Compounds, 2019, 1, 36-47.	0.5	17
2658	Exploring the Potential of Carbon Dots to Combat COVID-19. Frontiers in Molecular Biosciences, 2020, 7, 616575.	3.5	39
2659	Eco-Friendly Sustainable Fluorescent Carbon Dots for the Adsorption of Heavy Metal Ions in Aqueous Environment. Nanomaterials, 2020, 10, 315.	4.1	94
2660	Contribution of Carbon Dot Nanoparticles in Electrocatalysis: Development in Energy Conversion Process. Journal of Electrochemical Science and Technology, 2020, 11, 220-237.	2.2	16
2661	Carbon Quantum Dots: Synthesis, Characterization and Biomedical Applications. Turkish Journal of Pharmaceutical Sciences, 2018, 15, 219-230.	1.4	97
2662	Carbon Quantum Dots: A Safe Tool to Learn about Quantum Phenomenon in Nanomaterials. Journal of Laboratory Chemical Education, 2017, 5, 48-54.	1.0	9
2663	Synthesis, Properties and Applications of Luminescent Carbon Dots. Indian Institute of Metals Series, 2021, , 421-460.	0.3	2
2664	Advances in chemistry of carbon nanotubes and their composites (nanomaterial): A Review. E3S Web of Conferences, 2021, 309, 01221.	0.5	0
2665	Synthesis of Nano-Hybrid Polymethacrylate-Carbon Dots as Pour Point Depressant and Combined with Ethylene-Vinyl Acetate Resin to Improve the Cold Flow Properties of Diesel. SSRN Electronic Journal, 0, , .	0.4	0
2666	Surface Charge Alteration in Carbon Dots Governs the Interfacial Electron Transfer and Transport. Journal of Physical Chemistry C, 2021, 125, 23398-23408.	3.1	16
2667	¹⁹ F-Grafted Fluorescent Carbonized Polymer Dots for Dual-Mode Imaging. Analytical Chemistry, 2021, 93, 13880-13885.	6.5	9
2668	Fluorescent carbon dots for sensing metal ions and small molecules. Chinese Journal of Analytical Chemistry, 2022, 50, 103-111.	1.7	9
2669	Recent Advances in Functional Carbon Quantum Dots for Antitumour. International Journal of Nanomedicine, 2021, Volume 16, 7195-7229.	6.7	14
2670	Materials Approaches for Improving Electrochemical Sensor Performance. Journal of Physical Chemistry B, 2021, 125, 11820-11834.	2.6	18
2671	Colorimetric-fluorescent Dual-mode Sensing of Peroxide Explosives Based on Inner Filter Effect with Boosted Sensitivity and Selectivity. Chinese Journal of Analytical Chemistry, 2021, , .	1.7	1
2672	Cobalt-Doped Carbon Quantum Dots with Peroxidase-Mimetic Activity for Ascorbic Acid Detection through Both Fluorometric and Colorimetric Methods. ACS Applied Materials & amp; Interfaces, 2021, 13, 49453-49461.	8.0	59
2673	Green Synthesis of Pd Nanoparticles for Sustainable and Environmentally Benign Processes. Catalysts, 2021, 11, 1258.	3.5	21

#	Article	IF	CITATIONS
2674	Facile synthesis of quantum dots/TiO2 photocatalyst with superior photocatalytic activity: the effect of carbon nitride quantum dots and N-doped carbon dots. Research on Chemical Intermediates, 2021, 47, 5229-5247.	2.7	6
2675	Synergistic Antibacterial Potential and Cell Surface Topology Study of Carbon Nanodots and Tetracycline Against E. coli. Frontiers in Bioengineering and Biotechnology, 2021, 9, 626276.	4.1	4
2676	Metal ions-doped carbon dots: Synthesis, properties, and applications. Chemical Engineering Journal, 2022, 430, 133101.	12.7	96
2677	Investigation on synergistic effect of rGO and carbon quantum dots-embedded ZnO hollow spheres for improved photocatalytic aqueous pollutant removal process. Journal of Materials Science: Materials in Electronics, 2021, 32, 28633-28647.	2.2	8
2678	Nanocarbons in quantum regime: An emerging sustainable catalytic platform for organic synthesis. Catalysis Reviews - Science and Engineering, 2023, 65, 874-928.	12.9	12
2679	Large-Scale Preparation of Peanut-Bran-Derived Carbon Dots and Their Promoting Effect on Italian Lettuce. ACS Agricultural Science and Technology, 2022, 2, 215-221.	2.3	9
2680	Nonenzymatic DNA-Based Fluorescence Biosensor Combining Carbon Dots and Graphene Oxide with Target-Induced DNA Strand Displacement for microRNA Detection. Nanomaterials, 2021, 11, 2608.	4.1	10
2681	The distinguished long-term friction reduction and anti-wear functions of amphipathic carbon dots originated from lauryl gallate. Materials Today Communications, 2021, 29, 102881.	1.9	3
2682	Microbial inhibition and biosensing with multifunctional carbon dots: Progress and perspectives. Biotechnology Advances, 2021, 53, 107843.	11.7	24
2683	Measurement of Fluorescence Spectra and Quantum Yield of Carbon Nanoparticles Made from Monosodium Glutamate. Journal of Advances in Physical Chemistry, 2016, 05, 75-82.	0.1	0
2684	An Overview of Recent Progresses in Nanotechnology. , 2016, 2, 8-16.		0
2685	Carbon Quantum Dots as Potential Drug Carriers. Engineering and Protection of Environment, 2016, 19, 277-288.	0.3	0
2686	Synthesis and Applications of Carbon Quantum Dots. Journal of Advances in Physical Chemistry, 2017, 06, 128-136.	0.1	0
2687	Synthesis and Coating of Fluorescent Carbon Dots via Micro-Emulsion Method. Journal of Advances in Physical Chemistry, 2017, 06, 45-51.	0.1	0
2688	Synthetic Strategies for Anisotropic and Shape-Selective Nanomaterials. Nanostructure Science and Technology, 2017, , 29-77.	0.1	1
2689	KESTANE BALINDAN SENTEZLENEN KARBON NOKTALARIN TETRASİKLİN ANALİZİNDE KULLANILABİLİRLÄ ARAÅžTIRILMASI. Uludag Aricilik Dergisi, 2017, 17, 49-58.	°ÄžÄ°Nİ 1.3	N _o
2690	One-step microwave synthesis of photoluminescent carbon nanoparticles from sodium dextran sulfate water solution. , 2018, , .		0
2691	Carbon Dot-Based Hybrid Nanogels for Biomedical Applications. Biomedical Journal of Scientific & Technical Research, 2018, 4, .	0.1	0

	CITA	tion Report	
#	Article	IF	CITATIONS
2692	Carbon Dots Synthesized from Green Precursors with an Amplified Photoluminescence: Synthesis, Characterization, and Its Application. Nanotechnology in the Life Sciences, 2019, , 1-33.	0.6	0
2693	Ecofriendly Nanomaterials for Sustainable Photocatalytic Decontamination of Organics and Bacteria. , 2019, , 1777-1805.		0
2694	Theranostic Nanoplatforms as a Promising Diagnostic and Therapeutic Tool for Staphylococcus aureus. , 2019, , 63-78.		1
2695	An influence of surface modification on the carbon nanoparticles photoluminescence. , 2019, , .		0
2696	Improvement on fluorescent properties of photonic crystals filled by quantum dots based on multi-layer films. , 2019, , .		0
2697	Modeling, Simulation and Optimization of Process Chains. , 2020, , 549-578.		Ο
2698	Kırmızı Soğandan Karbon Kuantum Noktaların Sentezi ve Fotolüminesans Özelliklerinin İn Journal of Natural and Applied Sciences, 0, , 48-56.	celenmesi. 0.4	1
2700	Nitrogen-induced shift of photoluminescence from green to blue emission for xylose-derived carbon dots. Nano Express, 2020, 1, 020018.	2.4	3
2701	Recent Advances on Functional Nucleic-Acid Biosensors. Sensors, 2021, 21, 7109.	3.8	12
2702	Hydrothermal Synthesis of Carbon Dots from Luochuan Red Fuji Apple Peel and Application for the Detection of Fe3+ Ions. Nano, 2021, 16, .	1.0	5
2703	Design principles and biological applications of red-emissive two-photon carbon dots. Communications Materials, 2021, 2, .	6.9	29
2704	Carbon dot with aggregation induced emission and pH triggered disintegration. Colloids and Interface Science Communications, 2021, 45, 100537.	4.1	14
2705	Nanostructure Engineering of Graphitic Carbon Nitride for Electrochemical Applications. ACS Nano, 2021, 15, 18777-18793.	14.6	61
2706	Effect of pH on Optical Properties of Graphene Oxide Quantum Dots. International Journal of Optics and Photonics, 2020, 14, 135-142.	0.3	2
2707	Microwave-assisted fabrication of CQDs/ZnIn2S4 nanocomposites for synergistic photocatalytic removal of Cr(VI) and rhodamine B. Inorganic and Nano-Metal Chemistry, 2021, 51, 451-457.	1.6	6
2708	Carbon Dot-Lanthanide Composite Based Smart Luminescent Anticounterfeiting Material. Journal of Nanoscience and Technology, 2020, 6, 924-927.	0.3	0
2709	Morphology dependent photocatalytic activity of ZnO nanostructures-A short review. , 2020, 1, 30-38.		0

2710	Au/CQDsâ€TiO 2 composite nanorod array film with simple preparation route and enhanced visible light response. Micro and Nano Letters, 2021, 16, 132-141.	1.3	1
------	---	-----	---

		CITATION R	EPORT	
#	Article		IF	CITATIONS
2711	Photovoltaic spectral conversion materials: The role of solâ \in "gel processing. , 2020, , 1	145-182.		0
2712	Fabrication of Ni–MOF-derived composite material for efficient electrocatalytic OER. Taibah University for Science, 2021, 15, 637-648.	. Journal of	2.5	12
2713	Fabrication of recyclable reduced graphene oxide/graphitic carbon nitride quantum do hybrids with enhanced photocatalytic activity. RSC Advances, 2021, 11, 35147-35155	t aerogel	3.6	10
2714	Near Infrared-Emitting Carbon Nanomaterials for Biomedical Applications. , 2020, , 133	3-161.		2
2715	Energy transfer with nanoparticles for in vitro diagnostics. Frontiers of Nanoscience, 2	020, 16, 25-65.	0.6	1
2716	Sensing of Transition Metals by Top-Down Carbon Dots. Applied Sciences (Switzerland	ł), 2021, 11, 10360.	2.5	3
2717	Oxygen vacancy-abundant carbon quantum dots as superfast hole transport channel f improving surface charge transfer efficiency of BiVO4 photoanode. Chemical Engineer 2022, 431, 133414.	or vastly ing Journal,	12.7	36
2718	Exploring the Role of Surface States in Emissive Carbon Nanodots: Analysis at Singleâ€ Chemistry - an Asian Journal, 2021, 16, 4155-4164.	EParticle Level.	3.3	2
2719	Bright Electroluminescent Whiteâ€Lightâ€Emitting Diodes Based on Carbon Dots with Color Temperature Enabled by Aggregation. Small, 2021, 17, e2104551.	ו Tunable Correlated	10.0	34
2720	Optical properties of N- and S-doped carbon dots based on citric acid and L-cysteine. F Nanotubes and Carbon Nanostructures, 2022, 30, 22-26.	ullerenes	2.1	6
2721	Red Phosphorescent Carbon Quantum Dot Organic Framework-Based Electroluminesc Light-Emitting Diodes Exceeding 5% External Quantum Efficiency. Journal of the Ameri Society, 2021, 143, 18941-18951.	ent Ican Chemical	13.7	54
2722	Facile synthesis of CQDs/Ag NPs composites with photoluminescence and their potent antibacterial materials. Inorganic Chemistry Communication, 2021, 134, 109059.	tial application in	3.9	3
2723	Synthesis of Some Bioactive Nanomaterials and Applications of Various Nanoconjugat Therapeutic Applications. Environmental Chemistry for A Sustainable World, 2021, , 34	es for Targeted 47-376.	0.5	0
2724	Enhanced luminescence of solid blue carbon dots by the "lslands―Ag films for hig light-emitting diodes. Applied Physics Express, 2020, 13, 082010.	thly efficient	2.4	1
2725	Environmental and Toxicological Implications of Nanopharmaceuticals: An Overview. E Chemistry for A Sustainable World, 2021, , 1-40.	invironmental	0.5	0
2726	Review of research of nanocomposites based on graphene quantum dots. ChemistrySe 605-628.	elect, 2022, 7,	1.5	0
2727	Synthesis and Spectral Properties of Highly Fluorescent Nitrogen-Containing Graphene Structures. Nanosistemi, Nanomateriali, Nanotehnologii, 2020, 18, .	2-Туре	0.3	1
2729	Synthesis of color-tunable tannic acid-based carbon dots for multicolor/white light-emi New Journal of Chemistry, 2021, 45, 22559-22563.	itting diodes.	2.8	9

#	Article	IF	CITATIONS
2730	Transformation of carbon dots by ultraviolet irradiation, ozonation, and chlorination processes: kinetics and mechanisms. Environmental Science: Nano, 2022, 9, 324-334.	4.3	7
2731	One-step synthesized single component white emitting carbon microspheres for lighting. Journal of Luminescence, 2022, 242, 118606.	3.1	1
2732	Designing an intriguingly fluorescent N, B-doped carbon dots based fluorescent probe for selective detection of NO2â´´ ions. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 268, 120657.	3.9	10
2733	Excellent behaviors of highly dispersed Ni-based catalyst in CO methanation synthesized by in-situ hydrothermal method with carbon quantum dots assisted. Fuel, 2022, 310, 121813.	6.4	6
2734	Affinity-mediated photoluminescence quenching between metallic ions and surface functional groups of carbon nanodots. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 634, 127940.	4.7	2
2735	Glucosamine/ \hat{l}^2 -Alanine Carbon Dots Use as DNA Carriers Into E. coli Cells. Frontiers in Nanotechnology, 2021, 3, .	4.8	2
2736	Biosynthesis of quantum dots and their usage in solar cells: insight from the novel researches. International Nano Letters, 2022, 12, 139-151.	5.0	5
2737	A confined carbon dot-based self-calibrated fluorescence probe for visible and highly sensitive moisture readouts. Journal Physics D: Applied Physics, 2022, 55, 154001.	2.8	2
2738	Bright red-emitting P, Br co-doped carbon dots as "OFF-ON―fluorescent probe for Cu2+ and L-cysteine detection. Journal of Alloys and Compounds, 2022, 897, 162731.	5.5	17
2739	Scalable production, cell toxicity assessment, and plant growth promotion activities of carbon quantum dots derived from low-quality coal feedstock. Chemical Engineering Journal, 2022, 433, 133633.	12.7	23
2740	Facile Fabrication of Highly Fluorescent N-Doped Carbon Quantum Dots Using an Ultrasonic-Assisted Hydrothermal Method: Optical Properties and Cell Imaging. ACS Omega, 2021, 6, 32904-32916.	3.5	17
2741	Measurement of trace bisphenol A in drinking water with combination of immunochromatographic detection technology and SERS method. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 267, 120519.	3.9	11
2742	Green carbon dots with multifaceted applications– Waste to wealth strategy. FlatChem, 2022, 31, 100310.	5.6	26
2743	Tertiary Amine-Terminated Carbon Dots with Reversible CO ₂ Switchable Amphiphilicity as the Versatile Lubricant Additives. ACS Sustainable Chemistry and Engineering, 2021, 9, 16829-16839.	6.7	19
2744	A fluorescence aptasensor based on carbon quantum dots and magnetic Fe3O4 nanoparticles for highly sensitive detection of 17β-estradiol. Food Chemistry, 2022, 373, 131591.	8.2	33
2745	Recent Progress of Subâ€Nanometric Materials in Photothermal Energy Conversion. Advanced Science, 2022, 9, e2104225.	11.2	23
2746	Colorimetric detection of ATP by inhibiting the Peroxidase-like activity of carbon dots. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 268, 120658.	3.9	5
2747	Tinospora cordifolia Leaves Derived Carbon dots for Cancer Cell Bioimaging, Free radical Scavenging, and Fe3+ Sensing Applications. Journal of Fluorescence, 2022, 32, 275-292.	2.5	12

#	Article	IF	CITATIONS
2748	Colorimetric Picomolar-Level Determination of L-Cysteine with Fabricated N, Fe-Codoped Carbon Dots as a Peroxidase Mimic. Analytical Letters, 0, , 1-15.	1.8	1
2749	Boosting Photocatalytic Activity Using Carbon Nitride Based 2D/2D van der Waals Heterojunctions. Chemistry of Materials, 2021, 33, 9012-9092.	6.7	88
2750	Green Synthesis of Tunable Fluorescent Carbon Quantum Dots from Lignin and Their Application in Anti-Counterfeit Printing. ACS Applied Materials & amp; Interfaces, 2021, 13, 56465-56475.	8.0	82
2751	Carbon dots for virus detection and therapy. Mikrochimica Acta, 2021, 188, 430.	5.0	34
2752	A versatile and facile strategy for full-color emitting carbonized polymer dots. Journal of Nanoparticle Research, 2021, 23, 1.	1.9	3
2753	Platinum Crosslinked Carbon Dot@TiO _{2â^'} <i>_x</i> pâ€n Junctions for Relapseâ€Free Sonodynamic Tumor Eradication via Highâ€Yield ROS and GSH Depletion. Small, 2022, 18, e2103528.	10.0	61
2754	A Facile Approach for Elementalâ€Doped Carbon Quantum Dots and Their Application for Efficient Photodetectors. Small, 2021, 17, e2105683.	10.0	16
2755	Luminescent Carbon Dots for Environmental Photocatalytic. Environmental Footprints and Eco-design of Products and Processes, 2022, , 201-228.	1.1	0
2756	One-step synthesis of nitrogen-doped carbon quantum dots for paper-based electrochemiluminescence detection of Cu2+ ions. Microchemical Journal, 2022, 174, 107057.	4.5	16
2757	Carbon "quantum―dots for bioapplications. Experimental Biology and Medicine, 2022, 247, 300-309.	2.4	13
2758	Chapter 3. Imaging Applications of Inorganic Nanomaterials. Inorganic Materials Series, 2021, , 127-193.	0.7	0
2759	Red fluorescent carbon dots excited by visible light: cell imaging and visual detection of ammonia gas using PVB films. New Journal of Chemistry, 2021, 45, 22869-22875.	2.8	2
2760	The Role of Carbon Allotrope-Based Charge Transport Layers in Enhancing the Performance of Perovskite Solar Cells. , 2021, , 1-38.		0
2761	Carbon dots prepared from citric acid and urea by microwave-assisted irradiation as a turn-on fluorescent probe for allantoin determination. New Journal of Chemistry, 2021, 45, 22424-22431.	2.8	8
2762	Waste Oil Based S-Doped Carbon Dots for Cr (VI), 4-Nitrophenol, Catechol and Acetone Detection and Cr (VI) Removal Through PVA/S-CDs Films. SSRN Electronic Journal, 0, , .	0.4	0
2763	Antimicrobial carbon-dot–stabilized silver nanoparticles. New Journal of Chemistry, 2022, 46, 2546-2552.	2.8	8
2764	Comparison of Carbon Dots Prepared in Deep Eutectic Solvent and Water/Deep Eutectic Solvent: Study of Fluorescent Detection of Fe3+ and Cetirizine and their Photocatalytic Antibacterial Activity. Journal of Fluorescence, 2022, 32, 549-558.	2.5	8
2765	Robust and color-tunable afterglows from guanidine derivatives. Chemical Communications, 2022, 58, 545-548.	4.1	17

		CITATION RE	PORT	
#	Article		IF	CITATIONS
2766	Carbon dots: a novel platform for biomedical applications. Nanoscale Advances, 2022,	4, 353-376.	4.6	46
2767	A sustainable, top-down mechanosynthesis of carbohydrate-functionalized silver nano Reaction Chemistry and Engineering, 2022, 7, 888-897.	particles.	3.7	11
2768	Green, economical synthesis of nitrogen enriched carbon nanoparticles from seaweed their application as invisible ink and fluorescent film. Materials Letters, 2022, 309, 131	extract and 446.	2.6	7
2769	Electron spin dynamics in sucrose-derived luminescent carbon dot-silica nanocomposit Physics and Chemistry of Solids, 2022, 162, 110536.	tes. Journal of	4.0	3
2770	Multiple fluorescence quenching effects mediated fluorescent sensing of captopril Bas Acids-Derivative carbon nanodots. Spectrochimica Acta - Part A: Molecular and Biomol Spectroscopy, 2022, 269, 120742.	ecular	3.9	8
2771	Are carbon dots worth the tremendous attention it is getting: Challenges and opportu Materials Today, 2022, 26, 101331.	nities. Applied	4.3	14
2772	Green preparation of carbon quantum dots with wolfberry as on-off-on nanosensors for detection of Fe3+ and l-ascorbic acid. Food Chemistry, 2022, 376, 131898.	or the	8.2	42
2773	Luminescent determination of propineb fungicide by using a carbon quantum dots-eur system. Talanta, 2022, 240, 123205.	opium ions	5.5	7
2775	Two-Photon Fluorescent Nanomaterials and Their Applications in Biomedicine. Journal Nanotechnology, 2021, 17, 509-528.	of Biomedical	1.1	24
2776	Graphene Quantum Dots Supported on Fe-based Metal-Organic Frameworks for Efficie Photocatalytic CO ₂ Reduction [※] . Acta Chimica Sinica, 202	ent 2, 80, 22.	1.4	16
2777	Heteroatom Modified Hybrid Carbon Quantum Dots Derived from Cucurbita pepo for t Driven Photocatalytic Dye Degradation. Topics in Catalysis, 0, , 1.	the Visible Light	2.8	11
2778	Dual emissive amphiphilic carbon dots as ratiometric fluorescent probes for the detern critical micelle concentration of surfactants. Analytical Methods, 2022, 14, 672-677.	nination of	2.7	7
2779	Water stable, red emitting, carbon nanoparticles stimulate 3D cell invasion <i>via</i> clathrin-mediated endocytic uptake. Nanoscale Advances, 2022, 4, 1375-1386.		4.6	7
2780	Quantum Dots-Loaded Self-Healing Gels for Versatile Fluorescent Assembly. Nanomate 452.	erials, 2022, 12,	4.1	5
2781	Natural Occurrence of Carbon Dots during In Vitro Nonenzymatic Glycosylation of Her ACS Omega, 2022, 7, 3881-3888.	noglobin A0.	3.5	0
2782	Recent Progress and Future Perspectives of Carbon Dots in the Detection, Degradation Enhancement of Drugs. Particle and Particle Systems Characterization, 2022, 39, .	n, and	2.3	8
2783	Sensitive visual detection of intracellular zinc ions based on signal-on polydopamine ca Nanotechnology, 2022, 33, 185502.	arbon dots.	2.6	5
2784	Customized Carbon Dots with Predictable Optical Properties Synthesized at Room Ter by Machine Learning. Chemistry of Materials, 2022, 34, 998-1009.	nperature Guided	6.7	40

#	Article	IF	CITATIONS
2785	Recent Advances in Applied Fluorescent Polymeric Gels. ACS Applied Polymer Materials, 2022, 4, 3131-3152.	4.4	14
2787	Ionic liquid–supported nanoparticles for gas-sensing applications. , 2022, , 331-345.		0
2788	Synthesis Mechanisms, Structural Models, and Photothermal Therapy Applications of Top-Down Carbon Dots from Carbon Powder, Graphite, Graphene, and Carbon Nanotubes. International Journal of Molecular Sciences, 2022, 23, 1456.	4.1	41
2789	Anhydride-Terminated Solid-State Carbon Dots with Bright Orange Emission Induced by Weak Excitonic Electronic Coupling. ACS Applied Materials & Interfaces, 2022, 14, 5762-5774.	8.0	17
2790	Red, green, and blue light-emitting carbon dots prepared from gallic acid for white light-emitting diode applications. Nanoscale Advances, 2021, 4, 14-18.	4.6	10
2791	Phoenix dactylifera leaf-derived biocompatible carbon quantum dots: application in cell imaging. Biomass Conversion and Biorefinery, 2023, 13, 12989-12998.	4.6	6
2792	AlEgen nanoparticles. , 2022, , 463-486.		0
2793	Carbon Dots: An Excellent Fluorescent Probe for Contaminant Sensing and Remediation. Small, 2022, 18, e2105579.	10.0	34
2794	Up-conversion fluorescent carbon quantum dots decorated covalent triazine frameworks as efficient metal-free photocatalyst for hydrogen evolution. International Journal of Hydrogen Energy, 2022, 47, 8739-8748.	7.1	19
2795	A Review on Characterization Techniques for Carbon Quantum Dots and Their Applications in Agrochemical Residue Detection. Journal of Fluorescence, 2022, 32, 449-471.	2.5	18
2796	A multifunctional metal–organic framework with a μ ₃ -OH ^{â^'} site for gas and vapor sorption and selective detection of nitrofurantoin. Journal of Materials Chemistry C, 2022, 10, 1136-1143.	5.5	28
2797	Long-wavelength emission carbon dots as self-ratiometric fluorescent nanoprobe for sensitive determination of Zn2+. Mikrochimica Acta, 2022, 189, 55.	5.0	3
2798	On-off-on fluorescent nanosensing: Materials, detection strategies and recent food applications. Trends in Food Science and Technology, 2022, 119, 243-256.	15.1	84
2799	Relevant photovoltaic effect in N-doped CQDs/MoS2 (0D/2D) quantum dimensional heterostructure. Ceramics International, 2022, 48, 14107-14116.	4.8	21
2801	Nanosensors for food logistics. , 2022, , 657-683.		0
2802	Fabrication of semiâ€flexible carbon quantum dotsâ€reinforced polypyrrole (<scp>PPy</scp> /) Tj ETQq1 1 0.784 energy storage device. International Journal of Energy Research, 2022, 46, 7277-7292.	1314 rgBT 4.5	/Overlock 1(9
2803	Excellent anti-corrosion performance of epoxy composite coatings filled with novel N-doped carbon nanodots. European Polymer Journal, 2022, 163, 110957.	5.4	4
2804	Aliphatic and aromatic amine based nitrogen-doped carbon dots: a comparative photophysical study. Journal of Optics (United Kingdom), 2022, 24, 044011.	2.2	3

		CITATION REP	ORT	
#	Article		IF	CITATIONS
2805	Construction of a Turn-off–on Fluorescent System Based On Aggregation Induced Emission of Acetaldehyde Using Carbonized Polymer dots and Tb3+. Journal of Fluorescence, 2022, 32, 759	of -770.	2.5	4
2806	Synergistic effects of the hybridization between boron-doped carbon quantum dots and n/n-typ g-C3N4 homojunction for boosted visible-light photocatalytic activity. Environmental Science a Pollution Research, 2022, 29, 41272-41292.	e nd	5.3	11
2807	A Cholesterol Optical Fiber Sensor Based on CQDs-COD/CA Composite. IEEE Sensors Journal, 24 6247-6255.)22, 22,	4.7	7
2808	Engineering pyridinic and pyrrolic N-enriched graphene quantum dots to strengthen metal-supp interactions for highly efficient methanol oxidation. Journal of Materials Science, 2022, 57, 325	ort 2-3267.	3.7	4
2809	Carbon-based materials for visible light photocatalysis. , 2022, , 115-134.			0
2810	Light-Induced Hypoxia in Carbon Quantum Dots and Ultrahigh Photocatalytic Efficiency. Journa the American Chemical Society, 2022, 144, 2580-2589.	l of	13.7	31
2811	Catalytic Oxidation of Alcohols over a Nitrogen- and Sulfur-Doped Graphitic Carbon Dot-Modifi Magnetic Nanocomposite. Industrial & Engineering Chemistry Research, 2022, 61, 2010-2	₂d 022.	3.7	7
2812	Fluorescent detection of tetracycline in foods based on carbon dots derived from natural red be pigment. LWT - Food Science and Technology, 2022, 157, 113100.	et	5.2	21
2813	Triggering excitation independent fluorescence in zinc(II) incorporated carbon dots: Surface passivation of carbon dots with zinc(II) ions by microwave assisted synthesis methods. Diamon Related Materials, 2022, 123, 108874.	d and	3.9	12
2814	Fluorescence turn-off sensing of TNT by polyethylenimine capped carbon quantum dots. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 271, 120884.		3.9	21
2815	Cellulose nanofiber-based coating film integrated with nitrogen-functionalized carbon dots for active packaging applications of fresh fruit. Postharvest Biology and Technology, 2022, 186, 11	1845.	6.0	63
2816	A comprehensive understanding of multiple emissive states in S and N doped carbon dots and t highly selective detection of Cr(VI). Journal of Luminescence, 2022, 244, 118767.	he	3.1	1
2817	Bioinspired quantum dots for cancer therapy: A mini-review. Materials Letters, 2022, 313, 1317	42.	2.6	22
2818	Engineering highly graphitic carbon quantum dots by catalytic dehydrogenation and carbonizat Ti3C2Tx-MXene wrapped polystyrene spheres. Carbon, 2022, 190, 319-328.	ion of	10.3	49
2819	Coupling band structure and oxidation-reduction potential to expound photodegradation performance difference of biochar-derived dissolved black carbon for organic pollutants under l irradiation. Science of the Total Environment, 2022, 820, 153300.	ght	8.0	18
2820	Carbon quantum dots-embedded graphitic carbon nitride nanotubes for enhancing the power conversion efficiency of sensitized solar cells. Materials Today Chemistry, 2022, 24, 100763.		3.5	7
2821	Solution-processable carbon dots with efficient solid-state red/near-infrared emission. Journal of Colloid and Interface Science, 2022, 613, 547-553.		9.4	21
2823	A review on advancements in carbon quantum dots and their application in photovoltaics. RSC Advances, 2022, 12, 4714-4759.		3.6	62

#	Article	IF	CITATIONS
2824	Nanofluidic Traps by Two-Photon Fabrication for Extended Detection of Single Macromolecules and Colloids in Solution. ACS Applied Nano Materials, 2022, 5, 1995-2005.	5.0	3
2825	A Siâ€CdTe Composite Quantum Dots Probe with Dualâ€Wavelength Emission for Sensitively Monitoring Intracellular H ₂ O ₂ . Advanced Functional Materials, 2022, 32, .	14.9	18
2826	A Combinational Approach for More Efficient miRNA Biosensing. Current Genomics, 2022, 23, 5-25.	1.6	1
2827	Carbon dots based photocatalysis for environmental applications. Journal of Environmental Chemical Engineering, 2022, 10, 107336.	6.7	55
2828	Bioactive Graphene Quantum Dots Based Polymer Composite for Biomedical Applications. Polymers, 2022, 14, 617.	4.5	61
2829	The parallel fluorescence determination of iron(III), terbium(III) and europium(III) ions using the coal-derived carbon dot. Microchemical Journal, 2022, 177, 107255.	4.5	7
2830	A green strategy for nitrogen-doped polymer nanodots with high oxygen and chloride corrosion resistance in extremely acidic condition. Chemical Engineering Journal, 2022, 437, 135242.	12.7	9
2831	Yellowâ€Emissive Carbon Dots with High Solidâ€&tate Photoluminescence. Advanced Functional Materials, 2022, 32, .	14.9	84
2832	Graphitic-C3N4 quantum dots modified FeOOH for photo-Fenton degradation of organic pollutants. Applied Surface Science, 2022, 586, 152792.	6.1	20
2833	Carbon-dot hydrogels as superior carbonaceous adsorbents for removing perfluorooctane sulfonate from water. Chemical Engineering Journal, 2022, 435, 135021.	12.7	23
2834	Enhanced adsorption and visible-light photocatalytic degradation of toluene by CQDs/UiO-66 MOG with hierarchical pores. Chemical Engineering Journal, 2022, 435, 135033.	12.7	50
2835	Colloidal Inorganic Ligand-Capped Nanocrystals: Fundamentals, Status, and Insights into Advanced Functional Nanodevices. Chemical Reviews, 2022, 122, 4091-4162.	47.7	52
2836	Memristors based on carbon dots for learning activities in artificial biosynapse applications. Materials Chemistry Frontiers, 2022, 6, 1098-1106.	5.9	6
2837	Smartphone-based fluorescence detection of bilirubin using yellow emissive carbon dots. Analytical Methods, 2022, 14, 1730-1738.	2.7	31
2838	Green fluorescent nanomaterials for rapid detection of chromium and iron ions: wool keratin-based carbon quantum dots. RSC Advances, 2022, 12, 8108-8118.	3.6	15
2839	High reaction activity enables carbon dots to construct multicomponent nanocomposites with superior catalytic performance. Inorganic Chemistry Frontiers, 2022, 9, 1761-1769.	6.0	5
2840	Bottom-up synthesized crystalline boron quantum dots with nonvolatile memory effects through one-step hydrothermal polymerization of ammonium pentaborane and boric acid. CrystEngComm, 2022, 24, 3469-3474.	2.6	5
2841	Altering natural photosynthesis through quantum dots: effect of quantum dots on viability, light harvesting capacity and growth of photosynthetic organisms. Functional Plant Biology, 2022, 49, 444-451.	2.1	3

# 2842	ARTICLE Fabrication of g-C ₃ N ₄ /Bi ₂ WO ₆ as a direct Z-scheme excellent photocatalyst. New Journal of Chemistry, 2022, 46, 5751-5760.	IF 2.8	CITATIONS
2843	One-step solvent-free synthesis of carbon dot-based layered composites exhibiting color-tunable photoluminescence. RSC Advances, 2022, 12, 8283-8289.	3.6	6
2844	Carbon Dots: Fundamental Concepts and Biomedical Applications. Materials Horizons, 2022, , 83-108.	0.6	1
2845	Carbon dot-boosted catalytic activity of CaO ₂ by tuning visible light conversion. Journal of Materials Chemistry A, 2022, 10, 7792-7799.	10.3	13
2846	Recent advances of nanomaterial sensor for point-of care diagnostics applications and research. , 2022, , 181-202.		2
2847	Carbon nanomaterials: Application as sensors for diagnostics. , 2022, , 211-248.		3
2848	Small variations in reaction conditions tune carbon dot fluorescence. Nanoscale, 2022, 14, 6930-6940.	5.6	14
2849	A New Optical Fiber Biosensor for Acetylcholine Detection Based on Ph Sensitive Fluorescent Carbon Quantum Dots. SSRN Electronic Journal, 0, , .	0.4	0
2850	Classification of nanomaterials and their physical and chemical nature. , 2022, , 7-34.		1
2851	Facile preparation of fluorescent water-soluble non-conjugated polymer dots and fabricating an acetylcholinesterase biosensor. RSC Advances, 2022, 12, 7911-7921.	3.6	5
2852	Prospects of nano-carbons as emerging catalysts for enzyme-mimetic applications. Materials Advances, 2022, 3, 3101-3122.	5.4	39
2853	Synthesis of nitrogen and phosphorus co-doped graphene quantum dots as metal-free electrocatalysts for ethanol electrooxidation. Fullerenes Nanotubes and Carbon Nanostructures, 2022, 30, 853-862.	2.1	3
2854	Synthesizing Luminescent Carbon from Condensed Tobacco Smoke: Bio-Waste for Possible Bioimaging. Canadian Journal of Chemistry, 0, , .	1.1	0
2855	Nuclear Magnetic Resonance Reveals Molecular Species in Carbon Nanodot Samples Disclosing Flaws. Angewandte Chemie, 2022, 134, .	2.0	3
2856	Programmed Stimuli-Responsive Carbon Dot-Nanogel Hybrids for Imaging-Guided Enhanced Tumor Phototherapy. ACS Applied Materials & Interfaces, 2022, 14, 10142-10153.	8.0	19
2857	Nitrogen-Doped Carbon Nanodots Produced by Femtosecond Laser Synthesis for Effective Fluorophores. ACS Omega, 2022, 7, 6810-6823.	3.5	10
2858	Preparation, Properties, and Application of Lignocellulosicâ€Based Fluorescent Carbon Dots. ChemSusChem, 2022, 15, e202102486.	6.8	20
2859	Citrus limetta pulp-waste derived Au@CDs as a colorimetric and spectroscopic probe. Journal of Materials Science: Materials in Electronics, 2022, 33, 7058-7067.	2.2	0

#	Article	IF	CITATIONS
2860	Plastic Waste Precursor-Derived Fluorescent Carbon and Construction of Ternary FCs@CuO@TiO2 Hybrid Photocatalyst for Hydrogen Production and Sensing Application. Energies, 2022, 15, 1734.	3.1	8
2861	Anti-COVID-19 Nanomaterials: Directions to Improve Prevention, Diagnosis, and Treatment. Nanomaterials, 2022, 12, 783.	4.1	10
2862	Photoexcited State Properties of Poly(9-vinylcarbazole)-Functionalized Carbon Dots in Solution versus in Nanocomposite Films: Implications for Solid-State Optoelectronic Devices. ACS Applied Nano Materials, 2022, 5, 2820-2827.	5.0	7
2863	Nuclear Magnetic Resonance Reveals Molecular Species in Carbon Nanodot Samples Disclosing Flaws. Angewandte Chemie - International Edition, 2022, 61, .	13.8	45
2864	Soft–Hard Segment Combined Carbonized Polymer Dots for Flexible Optical Film with Superhigh Surface Hardness. ACS Applied Materials & Interfaces, 2022, 14, 14504-14512.	8.0	9
2865	Photoluminescence properties of silk–carbon quantum dots composites. Journal of Sol-Gel Science and Technology, 2023, 107, 170-177.	2.4	4
2866	Green synthesis of multifunctional carbon quantum dots: An approach in cancer theranostics. , 2022, 136, 212756.		28
2867	pH-Sensitive Silver-Containing Carbon Dots Based on Folic Acid. Materials, 2022, 15, 1880.	2.9	1
2868	Determination of xanthine using a ratiometric fluorescence probe based on boron-doped carbon quantum dots and gold nanoclusters. Mikrochimica Acta, 2022, 189, 148.	5.0	14
2869	Physicochemical Characterization and Antibacterial Properties of Carbon Dots from Two Mediterranean Olive Solid Waste Cultivars. Nanomaterials, 2022, 12, 885.	4.1	14
2870	Maize starch derived boron doped carbon spheres via facile solvothermal route as the photoluminescence sensor for determination of pH and Cr(VI). Nanotechnology, 2022, 33, 275707.	2.6	2
2871	Review of the use of nanodevices to detect single molecules. Analytical Biochemistry, 2022, 654, 114645.	2.4	7
2872	Chiral carbon dots: synthesis, optical properties, and emerging applications. Light: Science and Applications, 2022, 11, 75.	16.6	105
2873	Experimental and theoretical review on covalent coupling and elemental doping of carbon nanomaterials for environmental photocatalysis. Critical Reviews in Solid State and Materials Sciences, 2023, 48, 215-256.	12.3	10
2874	Contribution of nicotinamide as an intracyclic N dopant to the structure and properties of carbon dots synthesized using three α-hydroxy acids as C sources. Nanotechnology, 2022, 33, 215705.	2.6	2
2875	Study on the ultraviolet absorbing properties of cotton fabric finished with boron and nitrogen co-doped carbon dots. Journal of Coatings Technology Research, 2022, 19, 1077-1086.	2.5	4
2876	A Review on the Use of Biochar Derived Carbon Quantum Dots Production for Sensing Applications. Chemosensors, 2022, 10, 117.	3.6	20
2877	Three Millennia of Nanocrystals. ACS Nano, 2022, 16, 5085-5102.	14.6	27

#	Article	IF	CITATIONS
2878	Carbon dots enhanced gelatin/chitosan bio-nanocomposite packaging film for perishable foods. Chinese Chemical Letters, 2022, 33, 4577-4582.	9.0	50
2879	Sensitive detection of Fe3+ ions and cell imaging of carbon nanodots derived from canistel (Pouteria) Tj ETQq1 1	0,784314	⊦rgBT /Ov∉rl
2880	Recent advances in carbon quantum dots for virus detection, as well as inhibition and treatment of viral infection. Nano Convergence, 2022, 9, 15.	12.1	40
2881	Biosynthesis and characterization of carbon quantum Dots@CuS composite using water hyacinth leaves and its usage in photocatalytic dilapidation of Brilliant Green dye. Materials Chemistry and Physics, 2022, 281, 125921.	4.0	17
2882	Carbon Dots Confined in Silica Nanoparticles for Triplet-to-Singlet Föster Resonance Energy-Transfer-Induced Delayed Fluorescence. ACS Applied Nano Materials, 2022, 5, 5168-5175.	5.0	11
2883	Plant-derived Ca, N, S-Doped carbon dots for fast universal cell imaging and intracellular Congo red detection. Analytica Chimica Acta, 2022, 1202, 339672.	5.4	15
2884	Precise Self-assembly of Janus Pyramid Heteroclusters into Core-Corona Nanodots and Nanodot Supracrystals: Implications for the Construction of Virus-like Particles and Nanomaterials. ACS Applied Nano Materials, 2022, 5, 5558-5568.	5.0	3
2885	The optical fiber sensing platform for ferric ions detection: A practical application for carbon quantum dots. Sensors and Actuators B: Chemical, 2022, 364, 131857.	7.8	13
2886	Current scenario and recent advancement of doped carbon dots: a short review scientocracy update (2013–2022). Carbon Letters, 2022, 32, 953-977.	5.9	18
2887	On chip manipulation of carbon dots via gigahertz acoustic streaming for enhanced bioimaging and biosensing. Talanta, 2022, 245, 123462.	5.5	2
2888	Carbon quantum dots–functionalized silica stationary phase for pharmaceutical analysis by a green liquid chromatography mode. Mikrochimica Acta, 2022, 189, 175.	5.0	4
2889	Bioinspired honeycomb-like 3D architectures self-assembled from chitosan as dual-functional membrane for effective adsorption and detection of copper ion. Microporous and Mesoporous Materials, 2022, 335, 111859.	4.4	8
2890	Novel nitrogen-doped carbon dots for "turn-on―sensing of ATP based on aggregation induced emission enhancement effect. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 273, 121044.	3.9	5
2891	A Eu3+-based high sensitivity ratiometric fluorescence sensor for determination of tetracycline combining bi-functional carbon dots by surface functionalization and heteroatom doping. Dyes and Pigments, 2022, 201, 110190.	3.7	16
2892	Construction of 0D/3D carbon quantum dots modified PbBiO2Cl microspheres with accelerated charge carriers for promoted visible-light-driven degradation of organic contaminants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 642, 128591.	4.7	7
2893	Investigating the role of ultrasound in improving the photocatalytic ability of CQD decorated boron-doped g-C3N4 for tetracycline degradation and first-principles study of nitrogen-vacancy formation. Carbon, 2022, 192, 405-417.	10.3	68
2894	Quantum materials made in microfluidics - critical review and perspective. Chemical Engineering Journal, 2022, 438, 135616.	12.7	13
2895	A thermal-assisted electrochemical strategy to synthesize carbon dots with bimodal photoluminescence emission. Carbon, 2022, 193, 404-411.	10.3	18

#	Article	IF	CITATIONS
2896	Formation mechanism of carbon dots: From chemical structures to fluorescent behaviors. Carbon, 2022, 194, 42-51.	10.3	63
2897	Multichannel detection of persulfate by fluorescent carbon quantum dots derived from one-pot solvothermal reaction. Materials Letters, 2022, 318, 132183.	2.6	2
2898	Phycocyanin - carbon dots nanoprobe for the ratiometric fluorescence determination of peroxynitrite. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 275, 121177.	3.9	7
2899	Carbon dots as a sustainable alternative to plant extracts for the green synthesis of noble metal nanoparticles. Environmental Nanotechnology, Monitoring and Management, 2022, 18, 100676.	2.9	3
2900	Composite Films Based on Carbon Quantum Dots in a Matrix of PEDOT:PSS Conductive Polymer. Physics of the Solid State, 2021, 63, 1276-1282.	0.6	5
2901	Carbon quantum dot preparation and application to detecting active ingredients in traditional Chinese medicine. , 2021, 1, 81-89.		4
2902	Carbon Nanomaterials for Theranostic Use. Journal of Carbon Research, 2022, 8, 3.	2.7	16
2903	A Mini-Review on Nanostructured g-C3N4 Photocatalysts for Solar Fuel Production. Nanoscience and Nanotechnology - Asia, 2021, 12, .	0.7	0
2904	Polymer Precursor Strategy Toward the Precise Synthesis of Uniform Hairy Carbon Dots with Tunable Sizes and Size Effects over Their Fluorescence. Macromolecules, 2021, 54, 11497-11507.	4.8	10
2905	Monitoring the Viral Transmission of SARS-CoV-2 in Still Waterbodies Using a Lanthanide-Doped Carbon Nanoparticle-Based Sensor Array. ACS Sustainable Chemistry and Engineering, 2022, 10, 245-258.	6.7	17
2906	Construction of Photoelectrochemical DNA Biosensors Based on TiO2@Carbon Dots@Black Phosphorous Quantum Dots. Micromachines, 2021, 12, 1523.	2.9	6
2907	Soft Bioelectronics Based on Nanomaterials. Chemical Reviews, 2022, 122, 5068-5143.	47.7	72
2909	A multifunctional nanozyme-based enhanced system for tert-butyl hydroquinone assay by surface-enhanced Raman scattering. Mikrochimica Acta, 2022, 189, 29.	5.0	12
2910	Artificial Sense Technology: Emulating and Extending Biological Senses. ACS Nano, 2021, 15, 18671-18678.	14.6	64
2911	Pre- and Postfunctionalization of Dye-Loaded Polymeric Nanoparticles for Preparation of FRET-Based Nanoprobes. ACS Applied Polymer Materials, 2022, 4, 44-53.	4.4	4
2912	Modified Carbon Dots with Lowered Retention and Improved Colloidal Stability for Application in Harsh Reservoir Condition. , 2021, , .		0
2913	Graphitic carbon nitride quantum dots: Synthesis and applications. , 2021, , 58-73.		0
2914	Biocompatible carbon nanodots from red onion peels for anti-oxidative and bioimaging applications. Materials Express, 2021, 11, 1958-1965.	0.5	2

#	Article	IF	CITATIONS
2915	Oneâ€₽ot Synthesis of Deep Blue Hydrophobic Carbon Dots with Room Temperature Phosphorescence, White Light Emission, and Explosive Sensor. Advanced Electronic Materials, 2022, 8, .	5.1	16
2917	Integrated Cascade Biorefinery Processes to Transform Woody Biomass Into Phenolic Monomers and Carbon Quantum Dots. Frontiers in Bioengineering and Biotechnology, 2021, 9, 803138.	4.1	10
2918	Carbon-Based Quantum Dots for Photovoltaic Devices: A Review. ACS Applied Electronic Materials, 2022, 4, 27-58.	4.3	27
2919	Ecoâ€friendly <scp>PCL</scp> @ <scp>CDs</scp> biomaterials via phytic acid, <scp>CDs</scp> â€cocatalyzed polymerization for rifapentin delivery. Journal of Applied Polymer Science, 2022, 139, 51984.	2.6	2
2920	Nanoscience versus Viruses: The SARSâ€CoVâ€2 Case. Advanced Functional Materials, 2022, 32, 2107826.	14.9	8
2921	Green Nanomaterials for Photocatalytic Degradation of Toxic Organic Compounds. Current Pharmaceutical Biotechnology, 2023, 24, 118-144.	1.6	3
2922	Formation of Gold Nanoparticles in the Presence of Carbon Nanoparticles. Russian Journal of General Chemistry, 2021, 91, 2475-2482.	0.8	0
2923	Simple Strategy for Scalable Preparation Carbon Dots: RTP, Timeâ€Dependent Fluorescence, and NIR Behaviors. Advanced Science, 2022, 9, e2104278.	11.2	31
2924	A Review on Carbon Quantum Dot Based Semiconductor Photocatalysts for the Abatement of Refractory Pollutants. ChemPhysChem, 2022, 23, .	2.1	3
2925	Recent Trends in Protective Textiles against Biological Threats: A Focus on Biological Warfare Agents. Polymers, 2022, 14, 1599.	4.5	13
2926	Transfer of Axial Chirality to the Nanoscale Endows Carbon Nanodots with Circularly Polarized Luminescence. Angewandte Chemie, 2022, 134, .	2.0	5
2927	Transfer of Axial Chirality to the Nanoscale Endows Carbon Nanodots with Circularly Polarized Luminescence. Angewandte Chemie - International Edition, 2022, 61, .	13.8	28
2928	Dark-Field Microscopic Study of Cellular Uptake of Carbon Nanodots: Nuclear Penetrability. Molecules, 2022, 27, 2437.	3.8	5
2929	Fluorescent Carbon Dot-Supported Imaging-Based Biomedicine: A Comprehensive Review. Bioinorganic Chemistry and Applications, 2022, 2022, 1-32.	4.1	13
2930	An overview of synthetic methods and applications of photoluminescence properties of carbon quantum dots. Luminescence, 2023, 38, 845-866.	2.9	12
2931	Carbon Dots and Eu ³⁺ Hybrid-Based Ratiometric Fluorescent Probe for Oxytetracycline Detection. Industrial & Engineering Chemistry Research, 2022, 61, 5825-5832.	3.7	20
2932	Combining metal nanoclusters and carbon nanomaterials: Opportunities and challenges in advanced nanohybrids. Advances in Colloid and Interface Science, 2022, 304, 102667.	14.7	16
2933	Amino-embedded carbon quantum dots incorporated thin-film nanocomposite membrane for desalination by pervaporation. Desalination, 2022, 533, 115742.	8.2	11

# 2934	ARTICLE Recent advances in Carbon Dots/2-D hybrid materials. Carbon, 2022, 195, 219-245.	IF 10.3	Citations
2935	Visible-light-driven N and Fe co-doped carbon dots for peroxymonosulfate activation and highly efficient aminopyrine photodegradation. Chemical Engineering Journal, 2022, 443, 136473.	12.7	19
2936	Functional carbon dots from a mild oxidation of coal liquefaction residue. Fuel, 2022, 322, 124216.	6.4	16
2942	Green synthesis of carbon quantum dots and their environmental applications. Environmental Research, 2022, 212, 113283.	7.5	83
2943	Can Carbon Quantum Dots (CQDs) or Boron Compounds be an Ultimate Solution for COVID-19 Therapy?. Iranian Journal of Pharmaceutical Research, 2021, 20, 9-20.	0.5	1
2944	Superior resistance-thermal stability of carbon dots@NaBiF4 nanocomposite: facile synthesis and surface configurations. Dalton Transactions, 0, , .	3.3	0
2945	Selective Fe(<scp>ii</scp>)-fluorescence sensor with validated two-consecutive working range using N,S,I-GQDs associated with garlic extract as an auxiliary green chelating agent. RSC Advances, 2022, 12, 14356-14367.	3.6	1
2946	CHAPTER 9. Quantum Dots in Biological Imaging. Monographs in Supramolecular Chemistry, 2022, , 278-321.	0.2	1
2947	Introduction and overview of carbon nanomaterial-based sensors for sustainable response. , 2022, , 395-416.		1
2948	Quantum dots as promising nanomaterials in agriculture. , 2022, , 243-296.		3
2949	Consumer Nanoproducts for Biomedical Applications. , 2022, , 549-574.		0
2950	Electrochemical and optical sensors made of composites of metal–organic frameworks and carbon-based materials. A review. Environmental Chemistry Letters, 2022, 20, 3099-3131.	16.2	17
2951	Self-Cleaning Coatings for the Protection of Cementitious Materials: The Effect of Carbon Dot Content on the Enhancement of Catalytic Activity of TiO2. Coatings, 2022, 12, 587.	2.6	7
2952	ZnIn ₂ S ₄ â€Based Nanostructures in Artificial Photosynthesis: Insights into Photocatalytic Reduction toward Sustainable Energy Production. Small Structures, 2022, 3, .	12.0	30
2953	Properties and Applications of Graphene and Its Derivatives in Biosensors for Cancer Detection: A Comprehensive Review. Biosensors, 2022, 12, 269.	4.7	37
2954	Delivering quantum dots to lubricants: Current status and prospect. Friction, 2022, 10, 1751-1771.	6.4	9
2955	On–Off–On fluorescence sequential sensor for silver ions, thiamine and anti-counterfeiting application using mannitol derived carbon dots. Nano Structures Nano Objects, 2022, 30, 100868.	3.5	9
2956	One step synthesis of efficient red emissive carbon dots and their bovine serum albumin composites with enhanced multi-photon fluorescence for in vivo bioimaging. Light: Science and Applications, 2022, 11, 113.	16.6	46

# 2957	ARTICLE UV protective bio-based epoxy/carbon quantum dots nanocomposite coatings: Synthesis and investigation of properties. Journal of Composite Materials, 2022, 56, 2201-2210.	IF 2.4	CITATIONS 8
2958	Synthesis of fluorescent polystyrene nanoparticles: a reproducible and scalable method. , 0, 4, e22.		1
2959	Modulating the Carbonization Degree of Carbon Dots for Multicolor Afterglow Emission. ACS Applied Materials & Interfaces, 2022, 14, 22363-22371.	8.0	33
2960	Hydrothermal synthesis of biomass-derived carbon nanodots: Characterization and applications. Materials Chemistry and Physics, 2022, 288, 126236.	4.0	13
2961	Life Cycle Assessment-Based Comparative Study between High-Yield and "Standard―Bottom-Up Procedures for the Fabrication of Carbon Dots. Materials, 2022, 15, 3446.	2.9	6
2962	Ultralong persistent luminescence from carbon dots. Light: Science and Applications, 2022, 11, 132.	16.6	12
2963	Microwave-assisted synthesis and formation mechanism of fluorescent carbon dots from starch. Carbohydrate Polymer Technologies and Applications, 2022, 3, 100218.	2.6	7
2964	Stimulus-Responsiveness of Thermo-Sensitive Polymer Hybridized with N-Doped Carbon Quantum Dots and Its Applications in Solvent Recognition and Fe3+ Ion Detection. Polymers, 2022, 14, 1970.	4.5	0
2965	Synthesis, properties and catalysis of quantum dots in C–C and C-heteroatom bond formations. ChemistrySelect, 2022, .	1.5	0
2966	Carbon Dots in Bioimaging, Biosensing and Therapeutics: A Comprehensive Review. Small Science, 2022, 2, .	9.9	117
2967	Metal formate framework-assisted solid fluorescent material based on carbonized nanoparticles for the detection of latent fingerprints. Analytica Chimica Acta, 2022, 1209, 339864.	5.4	6
2968	Synthesis of nano-hybrid polymethacrylate-carbon dots as pour point depressant and combined with ethylene-vinyl acetate resin to improve the cold flow properties of diesel fuels. Energy, 2022, 253, 124186.	8.8	10
2969	Sensors for Volatile Organic Compounds. ACS Nano, 2022, 16, 7080-7115.	14.6	129
2970	Novel N, F co-doped carbon dots to detect sulfide and cadmium ions with high selectivity and sensitivity based on a "turn-off-on―mechanism. Dyes and Pigments, 2022, 203, 110379.	3.7	15
2971	Accelerating the extracellular electron transfer of Shewanella oneidensis MR-1 by carbon dots: The role of carbon dots concentration. Electrochimica Acta, 2022, 421, 140490.	5.2	6
2972	Photocatalytic removal of pharmaceutical water pollutants by TiO2 – Carbon dots nanocomposites: A review. Chemosphere, 2022, 301, 134731.	8.2	36
2973	State-of-the-art developments in carbon quantum dots (CQDs): Photo-catalysis, bio-imaging, and bio-sensing applications. Chemosphere, 2022, 302, 134815.	8.2	81
2974	Carbon Dots from Natural Sources for Biomedical Applications. Particle and Particle Systems Characterization, 2022, 39, .	2.3	15

#	Article	IF	CITATIONS
2976	Nanotechnology Role Development for COVID-19 Pandemic Management. Journal of Nanotechnology, 2022, 2022, 1-12.	3.4	2
2977	All-carbon stretchable and cavity-free white lasers. Optics Express, 2022, 30, 20213.	3.4	2
2978	An overview of patents and recent development in flexible supercapacitors. Journal of Energy Storage, 2022, 52, 104887.	8.1	22
2979	Ultrasensitive Detection of Acephate Based on Carbon Quantum Dots-Mediated Fluorescence Inner Filter Effects (Ife). SSRN Electronic Journal, 0, , .	0.4	1
2980	Nitrogenâ€Rich Carbonaceous Materials for Advanced Oxygen Electrocatalysis: Synthesis, Characterization, and Activity of Nitrogen Sites. Advanced Functional Materials, 2022, 32, .	14.9	59
2981	Nitrogen and Sulfur Coâ€Đoped Carbon Quantum Dots for Sensing Applications: A Review. ChemistrySelect, 2022, 7, .	1.5	7
2982	Pressure-Induced Bifurcation in the Photoluminescence of Red Carbon Quantum Dots: Coexistence of Emissions from Surface Groups and Nitrogen-Doped Cores. Journal of Physical Chemistry Letters, 2022, 13, 4768-4777.	4.6	7
2983	Chemical-free natural dots as photocatalysts: A novel and cost-effective approach for dye degradation. International Journal of Environmental Science and Technology, 2023, 20, 5557-5570.	3.5	5
2984	Toward Strong Nearâ€Infrared Absorption/Emission from Carbon Dots in Aqueous Media through Solvothermal Fusion of Large Conjugated Perylene Derivatives with Postâ€Surface Engineering. Advanced Science, 2022, 9, .	11.2	48
2985	Sustainable Synthesis of Carbon Quantum Dots with Tailored Surface Functional Groups from Pomelo Peel Waste for Inhibiting Scale. ChemistrySelect, 2022, 7, .	1.5	2
2986	Nitrogen doped carbon quantum dots (N-CQDs) with high luminescence for sensitive and selective detection of hypochlorite ions by fluorescence quenching. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 279, 121456.	3.9	18
2987	White light emitting diode and anti-counterfeiting applications of microwave assisted synthesized green fluorescent carbon dots derived from waste curry leaves. Results in Optics, 2022, 8, 100249.	2.0	9
2988	Double quantum dots decorated layer structure CeCO3OH for improved N2 photo-fixation. Journal of Catalysis, 2022, 412, 1-9.	6.2	10
2989	Carbon quantum dots-based antifungal coating film for active packaging application of avocado. Food Packaging and Shelf Life, 2022, 33, 100878.	7.5	43
2990	Nanocomposites of Epoxy and Carbon Dots. ACS Symposium Series, 0, , 201-233.	0.5	0
2991	Recent developments in carbon dot-based green analytical methods: new opportunities in fluorescence assays of pesticides, drugs and biomolecules. New Journal of Chemistry, 2022, 46, 14287-14308.	2.8	34
2992	Carbon Quantum Dots Coated Vse2 Nanosheets as Anodes for High-Performance Potassium-Ion Batteries. SSRN Electronic Journal, 0, , .	0.4	0
2993	Achieving full-color emission in coal-based humic acid derived carbon dots through intradot aggregation. Journal of Materials Chemistry C, 2022, 10, 10124-10131.	5.5	9

#	Article	IF	CITATIONS
2994	Striding the threshold of photocatalytic <i>lignin-first</i> biorefining <i>via</i> a bottom-up approach: from model compounds to realistic lignin. Green Chemistry, 2022, 24, 5351-5378.	9.0	25
2995	Recent development of the fluorescence-based detection of volatile organic compounds: a mechanistic overview. Journal of Materials Chemistry C, 2022, 10, 10224-10254.	5.5	23
2996	Green carbon quantum dots: eco-friendly and sustainable synthetic approaches to nanocrystals. , 2022, , 443-466.		1
2997	Sulfolipid density dictates the extent of carbon nanodot interaction with chloroplast membranes. Environmental Science: Nano, 2022, 9, 2691-2703.	4.3	4
2998	Carbonaceous Nanocomposites Derived from Waste Material for Wastewater Treatment. ACS Symposium Series, 0, , 43-73.	0.5	0
2999	Design and Performance of Flexible Solar-Blind Ultraviolet Photodetectors Based on Carbon Dots. , 2022, , .		0
3000	Borate particulate photocatalysts for photocatalytic applications: A review. International Journal of Hydrogen Energy, 2022, 47, 25608-25630.	7.1	68
3001	Copper Doped Carbon Dots for Addressing Bacterial Biofilm Formation, Wound Infection, and Tooth Staining. ACS Nano, 2022, 16, 9479-9497.	14.6	63
3002	Hydrothermal synthesis of carbon nanodots from waste wine cork and their use in biocompatible fluorescence imaging. New Carbon Materials, 2022, 37, 595-602.	6.1	9
3003	Layered Double Hydroxide/Nanocarbon Composites as Heterogeneous Catalysts: A Review. ChemEngineering, 2022, 6, 45.	2.4	6
3004	Cooccurrence of pH-sensitive shifting blue and immobile green triple surface-state fluorescence in ultrasmall super body-centered cubic carbon quantum dots. Nanotechnology, 2022, 33, 385704.	2.6	2
3005	Solvent-Free Preparation of Tannic Acid Carbon Dots for Selective Detection of Ni2+ in the Environment. International Journal of Molecular Sciences, 2022, 23, 6681.	4.1	9
3006	Carbon Dots for Intracellular Sensing. Small Structures, 2022, 3, .	12.0	32
3007	Highly Luminescent Nucleoside-Based N, P-Doped Carbon Dots for Sensitive Detection of lons and Bioimaging. Frontiers in Chemistry, 0, 10, .	3.6	2
3008	Recent Development of Morphology ontrolled Hybrid Nanomaterials for Triboelectric Nanogenerator: A Review. Chemical Record, 2022, 22, .	5.8	12
3009	Carbon nanoparticles characteristics synthesized in pulsed radiofrequency discharge and their effect on surface hydrophobicity. Contributions To Plasma Physics, 0, , .	1.1	0
3010	Chemical bath synthesis of Ag ₂ S, CuS, and CdS nanoparticle-polymer nanocomposites: structural, linear, and nonlinear optical characteristics. Optical Materials Express, 2022, 12, 2697.	3.0	8
3011	CQDs/PANI nanocomposites based sensing probe for the sensitive and selective detection of mercury ions via Raman spectroscopy. Applied Physics A: Materials Science and Processing, 2022, 128, .	2.3	1

#	Article	IF	CITATIONS
3012	Adverse reproductive and developmental consequences of quantum dots. Environmental Research, 2022, 213, 113666.	7.5	5
3013	Ultra-bright green carbon dots with excitation-independent fluorescence for bioimaging. Journal of Nanostructure in Chemistry, 2023, 13, 377-387.	9.1	13
3014	Cost-effective synthesis of red-emitting carbon-based quantum dots and its photothermal profiling. Materials Letters, 2022, 323, 132590.	2.6	5
3015	Visual monitoring of silver ions and cysteine using bi-ligand Eu-based metal organic framework as a reference signal: Color tonality. Microchemical Journal, 2022, 181, 107721.	4.5	21
3016	Red-emitting carbon dots as luminescent agent in wide-range water detection in organic solvents and polarity-selective zebrafish imaging. Journal of Alloys and Compounds, 2022, 920, 165963.	5.5	29
3017	Photocatalytic activity study of ZnO modified with nitrogen–sulfur co-doped carbon quantum dots under visible light. New Journal of Chemistry, 2022, 46, 14867-14878.	2.8	8
3018	Element doping: a marvelous strategy for pioneering the smart applications of VO ₂ . Nanoscale, 2022, 14, 11054-11097.	5.6	18
3019	Physical and chemical properties of carbon dots. , 2022, , 117-133.		2
3020	Self-assembly of carbon nanodots induced by liquid–liquid phase separation in a surface microdroplet. Soft Matter, 2022, 18, 6517-6528.	2.7	1
3021	Direct measurement of the pH of aerosol particles using carbon quantum dots. Analytical Methods, 2022, 14, 2929-2936.	2.7	7
3022	Multichannel Differentiation of Trace Elements Based on Carbon Quantum Dots. SSRN Electronic Journal, 0, , .	0.4	0
3023	Carbon dots—an overview. , 2022, , 1-19.		0
3024	Electron transfer between carbon dots and tetranuclear Dawson-derived sandwich polyanions. Physical Chemistry Chemical Physics, 2022, 24, 17654-17664.	2.8	1
3025	Carbon dots derived from natural sources and their biological and environmental impacts. Environmental Science: Nano, 2022, 9, 3206-3225.	4.3	7
3026	Green Synthesis of Nitrogen-Doped Carbon Quantum Dots from Pig Bone for Selective Detection of Co2+ and Fenvalerate. SSRN Electronic Journal, 0, , .	0.4	0
3027	Synthesis and properties of PI composite films using carbon quantum dots as fillers. E-Polymers, 2022, 22, 577-584.	3.0	3
3028	Visible-Light-Driven Photocatalytic Reduction of Cr (Vi) by Carbon Quantum Dots-Sensitized Tio2. SSRN Electronic Journal, 0, , .	0.4	0
3029	GRAFTING OF BORON-NITROGEN-DOPED CARBON QUANTUM DOTS ON COTTON FABRIC FOR IMPARTING ANTI-ULTRAVIOLET PROPERTIES. Cellulose Chemistry and Technology, 2022, 56, 657-665.	1.2	3

ARTICLE IF CITATIONS Highâ€Precision and Highâ€Flux Separation by Rationally Designing the Nanochannels and Surface 3030 9.9 6 Nanostructure of Polyamide Nanofiltration Mémbranes. Small Science, 2022, 2, . Carbon Quantum Dots from Pomelo Peel as Fluorescence Probes for "Turn-Off–On―High-Sensitivity 3.8 Detection of Fe3+ and L-Cysteine. Molecules, 2022, 27, 4099. Preparation of transparent wood containing carbon dots for application in the field of white-LED. 3032 1.7 7 Journal of Wood Chemistry and Technology, 2022, 42, 331-341. Recent advances in fabrication of smart dressings for real-time monitoring of pH in chronic 3.3 wounds—a review. Polymer Bulletin, 2023, 80, 5831-5859. Nanomaterials in Bone Regeneration. Applied Sciences (Switzerland), 2022, 12, 6793. 2.5 3034 15 The Pivotal Role of Quantum Dots-Based Biomarkers Integrated with Ultra-Sensitive Probes for 3.8 Multiplex Detection of Human Viral Infections. Pharmaceuticals, 2022, 15, 880. Recent Advances on Synthesis and Potential Applications of Carbon Quantum Dots. Frontiers in 3036 2.4 37 Materials, 0, 9, . Carbon Dots for Carbon Dummies: The Quantum and The Molecular Questions Among Some Others. 3037 3.3 21 Chemistry - A European Journal, 2022, 28, . 3038 Materials for evaporationâ€driven hydrovoltaic technology. , 2022, 1, 449-470. 16 Biofilm inhibition and bacterial eradication by C-dots derived from polyethyleneimine-citric acid. 3039 Colloids and Surfaces B: Biointerfaces, 2022, 217, 112704. Green-emission nitrogen-doped carbon quantum dots from alkaline N-methyl-2-pyrrolidinone for 3040 5.00 determination of Î²-galactosidase and its inhibitors. Mikrochimica Acta, 2022, 189, . Nanoparticles in the diagnosis and treatment of vascular aging and related diseases. Signal 3041 17.1 Transduction and Targeted Therapy, 2022, 7, . Recent progress in first row transition metal Layered double hydroxide (LDH) based electrocatalysts towards water splitting: A review with insights on synthesis. Coordination Chemistry Reviews, 2022, 3043 18.8 125 469, 214666. From renewable biomass to nanomaterials: Does biomass origin matter?. Progress in Materials Science, 2022, 130, 100999. 3044 32.8 Multifunctional N doped carbon dots for cellular sensing, light-emitting-diode, and additive 3045 2.6 1 manufacturing. Materials Letters, 2022, 325, 132838. A new optical fiber biosensor for acetylcholine detection based on pH sensitive fluorescent carbon 3046 quantum dots. Sensors and Actuators B: Chemical, 2022, 369, 132268. CeO2/MOH nanosheets with carbon dots for improved photocatalytic N2 fixation performances. 3047 2.6 6 Materials Letters, 2022, 324, 132769. Peroxyoxalate/carbon dots chemiluminescent reaction for fluorescent and visual determination of 3048 4.5 Fe3+. Microchemical Journal, 2022, 181, 107782.

#	Article	IF	CITATIONS
3049	Synthesis strategies, luminescence mechanisms, and biomedical applications of near-infrared fluorescent carbon dots. Coordination Chemistry Reviews, 2022, 470, 214703.	18.8	64
3050	Prepared carbon dots from wheat straw for detection of Cu2+ in cells and zebrafish and room temperature phosphorescent anti-counterfeiting. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 281, 121597.	3.9	14
3051	Efficient photocatalyst for the degradation of cationic and anionic dyes prepared via modification of carbonized mesoporous TiO2 by encapsulation of carbon dots. Materials Research Bulletin, 2022, 155, 111963.	5.2	8
3052	Multifunctional nanomaterials and nanocomposites for sensing and monitoring of environmentally hazardous heavy metal contaminants. Environmental Research, 2022, 214, 113795.	7.5	17
3053	Fabrication of "electroactive cells―using bio-inspired polydopamine-derived carbon nanoparticles for manipulation of cells with electrical stimulation. Frontiers in Bioengineering and Biotechnology, 0, 10, .	4.1	1
3054	Enhanced nonsacrificial photocatalytic generation of hydrogen peroxide under visible light using modified graphitic carbon nitride with doped phosphorus and loaded carbon quantum dots: Constructing electron transfer channel. Journal of Colloid and Interface Science, 2022, 628, 259-272.	9.4	12
3055	Constructing a defect-rich hydroxide nanoenzyme sensor based on dielectric barrier discharge microplasma etching for sensitive detection of thiamine hydrochloride and hydrogen peroxide. Journal of Colloid and Interface Science, 2022, 628, 597-606.	9.4	10
3056	Recent Advances in Carbon Dots Based Biocatalysts for Degrading Organic Pollutants. Current Pollution Reports, 2022, 8, 384-394.	6.6	10
3057	Synthesis of luminescent graphene quantum dots from biomass waste materials for energyâ€related applications—An overview. Energy Storage, 2023, 5, .	4.3	29
3058	Carbon quantum dots: A promising nanocarrier for bioimaging and drug delivery in cancer. Materials Today Communications, 2022, 32, 104068.	1.9	28
3059	The synthesis of nickel sulfide deposited with nitrogen-doped carbon quantum dots as advanced electrode materials for supercapacitors. Journal of Materials Science, 2022, 57, 14052-14064.	3.7	2
3060	Mild Acidolysis-Assisted Hydrothermal Carbonization of Lignin for Simultaneous Preparation of Green and Blue Fluorescent Carbon Quantum Dots. ACS Sustainable Chemistry and Engineering, 2022, 10, 9888-9898.	6.7	13
3061	Carbon nanodots as sensitive and selective nanomaterials in pharmaceutical analysis. Journal of Materials Science, 2022, 57, 14217-14245.	3.7	19
3062	Oxidation-Modulated CQDs Derived from Covalent Organic Frameworks as Enhanced Fluorescence Sensors for the Detection of Chromium(VI) and Ascorbic Acid. Industrial & Engineering Chemistry Research, 2022, 61, 11484-11493.	3.7	4
3063	Eu3+-doped Bovine Serum Albumin-derived Carbon Dots for Ratiometric Fluorescent Detection of Tetracycline. Journal of Analysis and Testing, 2022, 6, 365-373.	5.1	12
3064	Dual-mode colorimetric and fluorescence sensing system for the detection of captopril based on Fe/NC nanozymes and carbon dots. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 282, 121683.	3.9	10
3065	Inhibition of highland barley bran-derived carbon dots on the formation of advanced glycation end products. LWT - Food Science and Technology, 2022, 167, 113772.	5.2	1
3066	In-situ encapsulation of oil soluble carbon nanoclusters in ZIF-8 and applied as bifunctional recyclable stable sensing material of nitrofurazone and lysine and fluorescent ink. Journal of Molecular Structure, 2022, 1269, 133766.	3.6	1

#	Article	IF	CITATIONS
3067	Green Synthesis of Surface-Group-Tunable Red Emissive Carbon Dots and Their Applications for Fe3+ and Pyrophosphate Detection. SSRN Electronic Journal, 0, , .	0.4	0
3068	Quantum dots for modern display devices. , 2022, , 899-932.		0
3069	Synthesis of Carbon Quantum Dots by Gas-liquid Plasma Using Ethanol as Precursor. , 2022, , .		0
3070	Solvothermal Synthesis of Fluorescent Carbon Quantum Dots by Using Vanillin as Carbon Source. Integrated Ferroelectrics, 2022, 228, 272-280.	0.7	4
3071	Halogen-Doped Carbon Dots: Synthesis, Application, and Prospects. Molecules, 2022, 27, 4620.	3.8	20
3072	Structural and functional study of fluorescent carbon dots synthesized from lemon-peel via one step microwave irradiation method. IOP Conference Series: Materials Science and Engineering, 2022, 1248, 012053.	0.6	0
3073	Applications of Nonviral Biomaterials for microRNA Transfection in Bone Tissue Engineering. Frontiers in Materials, 0, 9, .	2.4	0
3074	Construction of Carbon Dot-Modified g-C ₃ N ₄ /BiOIO ₃ Z-Scheme Heterojunction for Boosting Photocatalytic CO ₂ Reduction under Full Spectrum Light. ACS Sustainable Chemistry and Engineering, 2022, 10, 11143-11153.	6.7	18
3075	Chiral Carbon Dots Derived from Serine with Well-Defined Structure and Enantioselective Catalytic Activity. Nano Letters, 2022, 22, 7203-7211.	9.1	28
3077	Solvatochromism, electrochemical characterization and anti-proliferative activity of bio-assisted fabrication of hierarchical carbon dots. Applied Physics A: Materials Science and Processing, 2022, 128, .	2.3	0
3078	Solar Hydrogen Generation over Carbon Nitride Photocatalyst Promoted by Waterâ€Soluble Carbon Dots. ChemPhotoChem, 0, , .	3.0	1
3079	Color Conversion Light-Emitting Diodes Based on Carbon Dots: A Review. Materials, 2022, 15, 5450.	2.9	9
3081	Gadolinium (III) doped carbon dots as dual-mode sensor for the recognition of dopamine hydrochloride and glutamate enantiomers with logic gate operation. Talanta, 2023, 252, 123865.	5.5	8
3082	Green Synthesis of Fluorescent Carbon Dots from Ocimum basilicum L. Seed and Their Application as Effective Photocatalyst in Pollutants Degradation. Journal of Cluster Science, 2023, 34, 1569-1581.	3.3	2
3084	Sterically Stabilized Carbon Dots as Solid-State Phosphors for White-Light-Emitting Diodes. ACS Applied Nano Materials, 2022, 5, 11896-11905.	5.0	7
3085	Recent advances of eco-friendly quantum dots light-emitting diodes for display. Progress in Quantum Electronics, 2022, 86, 100415.	7.0	8
3086	Amineâ€Rich Carbon Dots as Novel Nanoâ€Aminocatalytic Platforms in Organic Synthesis. European Journal of Organic Chemistry, 2022, 2022, .	2.4	14
3087	Role of Carbon-Based Nanomaterials in Enhancing the Performance of Energy Storage Devices: Design Small and Store Big. Journal of Nanomaterials, 2022, 2022, 1-10.	2.7	9

#	Article	IF	CITATIONS
3088	Synthesis and characterization of highly emission multicolored carbon quantum dots. , 2022, 169, 207340.		5
3089	Targeted chemo-photodynamic therapy toward esophageal cancer by GSH-sensitive theranostic nanoplatform. Biomedicine and Pharmacotherapy, 2022, 153, 113506.	5.6	9
3090	The fabrication of excitation-dependent fluorescence boron/nitrogen co-doped carbon quantum dots and their employment in bioimaging. Chemical Physics, 2022, 562, 111678.	1.9	9
3091	Luminescent carbon dots obtained from cellulose and their applications as sensors for metal ions. Materials Chemistry and Physics, 2022, 290, 126633.	4.0	5
3092	AND logic gate supported novel speckled phosphorus-doped carbon dots decorated ZrO2/CaO/MgO sonocatalysts for efficient MB dye decolorization. Materials Chemistry and Physics, 2022, 290, 126609.	4.0	2
3093	Boosted photocatalytic activity of LaFeO3/Ag3PO4 heterojunction via carbon quantum dots: Higher conductivity, stability, and dispersivity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 652, 129895.	4.7	13
3094	Battery-type Ni-Co-Se hollow microspheres cathode materials enabled by bifunctional N-doped carbon quantum dots with ultrafast electrochemical kinetics for hybrid supercapacitors. Chemical Engineering Journal, 2022, 450, 138347.	12.7	43
3095	An ultrasensitive lateral flow immunoassay platform for foodborne biotoxins and pathogenic bacteria based on carbon-dots embedded mesoporous silicon nanoparticles fluorescent reporter probes. Food Chemistry, 2023, 399, 133970.	8.2	24
3096	Carbon dot-based biosensors for the detection of communicable and non -communicable diseases. Talanta, 2023, 251, 123791.	5.5	12
3097	Circularly Polarized Luminescence of Achiral Carbon Dots in Biâ€Solvent Systems Triggered by Supramolecular Selfâ€Assembly. Chemistry - A European Journal, 2022, 28, .	3.3	7
3098	Lighting up Micro-/Nanorobots with Fluorescence. Chemical Reviews, 2023, 123, 3944-3975.	47.7	33
3099	Nanocarbon-based electrode materials applied for supercapacitors. Rare Metals, 2022, 41, 3957-3975.	7.1	31
3100	Highly efficient fluorescent probes from chitosan-based amino-functional carbon dots for the selective detection of Cu2+ traces. Materials Chemistry and Physics, 2022, 291, 126772.	4.0	9
3101	Curving of graphene quantum dots by external electric field. Chemical Physics Letters, 2022, 806, 140050.	2.6	1
3102	Bacterial cellulose production from wastewater and the influence of its porosity on the fluorescence intensity of prepared carbon dots. Biochemical Engineering Journal, 2022, 187, 108633.	3.6	1
3103	Planar and dendrite-free zinc deposition enabled by exposed crystal plane optimization of zinc anode. Energy Storage Materials, 2022, 53, 273-304.	18.0	63
3104	O, S-g-C3N4 nanotubes as photovoltaic boosters in quantum dot-sensitized all-weather solar cells: a synergistic approach for enhanced power conversion efficiency in dark-light conditions. Materials Today Chemistry, 2022, 26, 101125.	3.5	2
3105	The utilization of carbon-based nanomaterials in bone tissue regeneration and engineering: Respective featured applications and future prospects. Medicine in Novel Technology and Devices, 2022, 16, 100168.	1.6	15

#	Article	IF	CITATIONS
3106	Acid treatment to tune the optical properties of carbon quantum dots. Applied Surface Science, 2022, 605, 154690.	6.1	11
3107	Carbon dots as an effective material in enzyme immobilization for sensing applications. , 2023, , 241-253.		4
3108	Catalytic applications of carbon dots. , 2023, , 337-344.		1
3109	Carbon dots-based fluorescence spectroscopy for metal ion sensing. , 2023, , 87-96.		1
3110	Characterization of carbon dots. , 2023, , 43-58.		1
3111	Carbon dot-based molecularly imprinted fluorescent nanopomegranate for selective detection of quinoline in coking wastewater. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2023, 284, 121770.	3.9	7
3112	Carbon dots in hydrogels and their applications. , 2023, , 149-160.		0
3113	Analytical applications of carbon dots in forensics, security, and other related fields. , 2023, , 199-212.		0
3114	Natural xylose-derived carbon dots towards efficient semi-artificial photosynthesis. Journal of Colloid and Interface Science, 2023, 629, 12-21.	9.4	12
3115	Microwave-assisted synthesis of quantum dots. , 2023, , 115-145.		2
3116	Merging Carbon Nanostructures with Porphyrins. , 2022, , 219-264.		0
3117	Carbon Quantum Dots. Nanotechnology in the Life Sciences, 2022, , 75-102.	0.6	0
3118	Development of Abiotic Stress Resistant Grapevine Varieties. , 2022, , 61-159.		2
3119	The role of molecular fluorophores in the photoluminescence of carbon dots derived from citric acid: current state-of-the-art and future perspectives. Nanoscale, 2022, 14, 14368-14384.	5.6	17
3120	Carbon dots and miniaturizing fabrication of portable carbon dot-based devices for bioimaging, biosensing, heavy metal detection and drug delivery applications. Journal of Materials Chemistry C, 2022, 10, 15277-15300.	5.5	3
3121	Quantum Dots: Potential Cell Imaging Agent. , 2022, , 191-207.		1
3122	Dye Sensitized and Quantum Dot Sensitized Solar Cell. Advances in Sustainability Science and Technology, 2022, , 131-149.	0.6	0
3123	Recent development in chiral self-assembly of porphyrin and protoporphyrin IX molecular architectures. , 2022, , 57-79.		0

#	Article	IF	CITATIONS
3124	Nanomaterial-mediated biosensors. , 2022, , 523-553.		0
3125	One-pot synthesis of efficient multifunctional nitrogen-doped carbon dots with efficient yellow fluorescence emission for detection of hypochlorite and thiosulfate. Journal of Materials Chemistry B, 2022, 10, 8910-8917.	5.8	4
3126	Antibacterial activities of carbon quantum dots derived from lemon juice. AIP Conference Proceedings, 2022, , .	0.4	2
3127	Macromatrices for nanoscale particles. Journal of Materials Chemistry C, 2022, 10, 11105-11118.	5.5	0
3128	Polarity-dependent emission from hydroxyl-free carbon nanodots. Nanoscale, 2022, 14, 13059-13065.	5.6	3
3129	Advanced carbon nanomaterial–based anodes for sodium-ion batteries. , 2022, , 251-272.		0
3130	In-Situ Synthesis of Carbon Dots Embedded Wrinkled-Mesoporous Silica Microspheres for Efficient Capturing and Monitoring Organochlorine Pesticides from Water and Fruit Juice. SSRN Electronic Journal, 0, , .	0.4	0
3131	Multiple fluorescence response behaviours to proteins/bacteria and selective antibacterial activity of cetylpyridinium chloride (CPC)-based cationic carbon dots. RSC Advances, 2022, 12, 22695-22702.	3.6	1
3132	A fluorescent sensor array based on three kinds of carbon dots for identification of hydroxybenzaldehyde and nitrobenzaldehyde isomers. New Journal of Chemistry, 2022, 46, 18366-18373.	2.8	1
3133	Synthesis, optical properties and applications of red/near-infrared carbon dots. Journal of Materials Chemistry C, 2022, 10, 11827-11847.	5.5	22
3134	D0 carbon nanoparticles: Carbon nanodots and graphene oxide quantum dots. , 2022, , 505-527.		0
3135	Research progress in the synthesis and biological application of quantum dots. New Journal of Chemistry, 2022, 46, 20515-20539.	2.8	11
3136	Metal Ions-Capped Carbon Quantum Dots for Efficient Luminescent Solar Concentrators. SSRN Electronic Journal, 0, , .	0.4	1
3137	Green Synthesis of Carbon Dot-Based Materials for Toxic Metal Detection and Environmental Remediation. , 2022, , 1-26.		0
3138	Structure of Carbon Dots Derived from Thermal Citric Acid/Urea Reaction. SSRN Electronic Journal, 0, , .	0.4	0
3139	Application of coal-based carbon dots for photocatalysis and energy storage: a minireview. New Journal of Chemistry, 2022, 46, 17102-17113.	2.8	9
3140	Ultrafast insights into full-colour light-emitting C-Dots. Nanoscale, 2022, 14, 15812-15820.	5.6	5
3141	Nickel-doped carbon dots with enhanced and tunable multicolor fluorescence emission for multicolor light-emitting diodes. Carbon, 2023, 201, 796-804.	10.3	24

#	Article	IF	Citations
3142	Carbon dots as adsorbents for removal of toxic chemicals. , 2023, , 161-180.		0
3143	Graphene Nanostructures by Pulsed Laser Ablation in Liquids: A Review. Materials, 2022, 15, 5925.	2.9	8
3144	A visual and reversible nanoprobe for rapid and on-site determination of hexavalent chromium and lysine based on dual-emission carbon quantum dots coupled with smartphone. Mikrochimica Acta, 2022, 189, .	5.0	7
3145	Carbon Quantum Dot-Coated VSe ₂ Nanosheets as Anodes for High-Performance Potassium-Ion Batteries. ACS Applied Nano Materials, 2022, 5, 13136-13148.	5.0	8
3146	Recent Advances on Carbon Nanostructure-Based Biosensors. Current and Future Developments in Nanomaterials and Carbon Nanotubes, 2022, , 19-38.	0.3	1
3147	Graphene Quantum Dots with Blue and Yellow Luminescence Fabricated by Modulating Intercalation State. Materials, 2022, 15, 6567.	2.9	2
3148	Biowaste-Derived Carbon Dots: A Perspective on Biomedical Potentials. Molecules, 2022, 27, 6186.	3.8	12
3149	An overview of paclitaxel and molecular imprinted polymers capped with Quantum Dots as an alternative approach for paclitaxel extraction and detection. Current Materials Science, 2022, 15, .	0.4	1
3150	An ultrasensitive sensing platform based on fluorescence carbon dots for chlorogenic acid determination in food samples. Food Chemistry, 2023, 404, 134395.	8.2	6
3151	Recent Progress on Techniques in the Detection of Aflatoxin B1 in Edible Oil: A Mini Review. Molecules, 2022, 27, 6141.	3.8	8
3152	Biogenic synthesis of carbon quantum dots from garlic peel bioâ€waste for use as a fluorescent probe for sensing of quercetin. Luminescence, 2022, 37, 1991-2001.	2.9	4
3153	Preparation of Multicolour Solid Fluorescent Carbon Dots for Light-Emitting Diodes Using Phenylethylamine as a Co-Carbonization Agent. International Journal of Molecular Sciences, 2022, 23, 11071.	4.1	5
3154	Green Synthesis of Carbon Dots and Their Integration into Nylon-11 Nanofibers for Enhanced Mechanical Strength and Biocompatibility. Nanomaterials, 2022, 12, 3347.	4.1	5
3155	From Small Molecules to Zero-Dimensional Carbon Nanodots: Chasing the Stepwise Transformations During Carbonization. Journal of Physical Chemistry C, 2022, 126, 16377-16386.	3.1	9
3156	Mechanistic Exploration of Visible Light-Activated Carbon/TiO2 Hybrid Dots Damaging Bacterial Cells. Applied Sciences (Switzerland), 2022, 12, 9633.	2.5	1
3157	Hydrothermal Synthesis of Nitrogen-Doped and Excitation-Dependent Carbon Quantum Dots for Selective Detection of Fe3+ in Blood Plasma. Coatings, 2022, 12, 1311.	2.6	3
3158	Sensing performance and mechanism of carbon dots encapsulated into metal–organic frameworks. Mikrochimica Acta, 2022, 189, .	5.0	15
3159	Preparing Colour-Tunable Tannic Acid-Based Carbon Dots by Changing the pH Value of the Reaction System. Nanomaterials, 2022, 12, 3062.	4.1	4

ARTICLE IF CITATIONS High reactive oxygen species produced from fluorescence carbon dots for anticancer and 3160 2.9 3 photodynamic therapies: A review. Luminescence, 2022, 37, 2006-2017. Blue, green and yellow carbon dots derived from pyrogenic carbon: Structure and fluorescence 10.3 behaviour. Carbón, 2023, 201, 900-909. Nitrogen and Sulfur-Doped Carbon Quantum Dots Used as Fluorescent Probes. Journal of Applied 3162 0 0.7 Spectroscopy, 2022, 89, 761-767. Optical Biosensor Based on Graphene and Its Derivatives for Detecting Biomolecules. International 3163 Journal of Molecular Sciences, 2022, 23, 10838. Nanocomposites of Carbon Quantum Dots and Graphene Quantum Dots: Environmental Applications 3164 3.6 33 as Sensors. Chemosensors, 2022, 10, 367. Carbon dots modified/prepared by supramolecular host molecules and their potential applications: A review. Analytica Chimica Acta, 2022, 1232, 340475. 5.4Development of composite carbon quantum dots-insulin formulation for oral administration. 3166 3.0 7 Journal of Drug Delivery Science and Technology, 2022, 76, 103833. Fluorescent carbon quantum dots: Synthesis methods, functionalization and biomedical applications. 3167 6.8 Applied Surface Science Advances, 2022, 11, 100311. Value Addition in Coconut Water., 2022, , 287-384. 3168 1 Ultrasensitive detection of acephate based on carbon guantum dot-mediated fluorescence inner filter 3.5 effects. Analyst, The, 2022, 147, 5462-5469. Carbon-Based Nanomaterials for Targeted Drug and Gene Delivery Systems. Nanotechnology in the Life 3170 0.6 1 Sciences, 2022, , 455-488. Gadolinium-doped fluorescent carbon quantum dots as MRI contrast agents and fluorescent probes. 3171 3.3 Scientific Reports, 2022, 12, . Hydrophilic Cyclodextrin Derivative Directed Lateral Recombination of 1-D Dipeptide Protected Gold 3172 0 Nanoclusters Assembly for Lysosomal Localization., 2022, 4, 2244-2251. Hydroxyapatite-collagen- carboxylic carbon quantum dot composite loaded with chrysin supported the proliferation and differentiation of human bone marrow derived mesenchymal stem cells. 2.4 Frontiers in Materials, 0, 9, . Quantum Dots Mediated Imaging and Phototherapy in Cancer Spheroid Models: State of the Art and 3174 9 4.5 Perspectives. Pharmaceutics, 2022, 14, 2136. Resonance Energy Transfer Reveals the Presence of Multiple Luminescence Emission Centers within a 1.4 Carbon Nanodot. JETP Letters, 2022, 116, 505-513. Facile synthesis of nitrogen-doped carbon dots as sensitive fluorescence probes for selective 3176 recognition of cinnamaldehyde and l-Arginine/l-Lysine in living cells. Spectrochimica Acta - Part A: 3.9 2 Molecular and Biomolecular Spectroscopy, 2023, 287, 122039. Advances in Novel Nanomaterial-Based Optical Fiber Biosensorsâ€"A Review. Biosensors, 2022, 12, 843. 44

#	Article	IF	CITATIONS
3178	Luminescent carbon dots obtained from different precursors and methods and their applications as sensors for metal ions. Fullerenes Nanotubes and Carbon Nanostructures, 0, , 1-10.	2.1	0
3179	Carbon Dots Embedded in Nanoporous SiO ₂ Nanoparticles for Enhancing Photosynthesis in Agricultural Crops. ACS Applied Nano Materials, 2023, 6, 110-118.	5.0	3
3180	High β-crystallinity comprising nitrogenous carbon dot/PVDF nanocomposite decorated self-powered and flexible piezoelectric nanogenerator for harvesting human movement mediated energy and sensing weights. Ceramics International, 2023, 49, 5466-5478.	4.8	9
3181	Bioanalytical Applications of Graphene Quantum Dots for Circulating Cell-Free Nucleic Acids: A Review. ACS Omega, 2022, 7, 39586-39602.	3.5	14
3182	Recent Progress of Carbon Dots for Air Pollutants Detection and Photocatalytic Removal: Synthesis, Modifications, and Applications. Small, 2022, 18, .	10.0	8
3183	Carbon Dots versus Nano-Carbon/Organic Hybrids—Divergence between Optical Properties and Photoinduced Antimicrobial Activities. Journal of Carbon Research, 2022, 8, 54.	2.7	3
3184	Near-Infrared-II Activatable Symbiotic 2D Carbon–Clay Nanohybrids for Dual Imaging-Guided Combinational Cancer Therapy. ACS Applied Materials & Interfaces, 2022, 14, 49471-49482.	8.0	3
3185	Metal salts assisted thermoplastic polymer NIPAM in-situ carbonization on porous silica microspheres surface. Journal of Porous Materials, 2023, 30, 541-546.	2.6	1
3186	Spontaneous formation of carbon dots helps to distinguish molecular fluorophores species. Applied Surface Science, 2023, 610, 155536.	6.1	3
3187	Green synthesis of surface-group-tunable red emissive carbon dots and their applications for Fe3+ and pyrophosphate detection. Microchemical Journal, 2022, 183, 108123.	4.5	6
3188	Graphene oxide internalization into mammalian cells – a review. Colloids and Surfaces B: Biointerfaces, 2023, 221, 112998.	5.0	14
3189	Methyl orange-derived carbon dots for light-emitting-diode and fluorescent electrospun nanofibers. Dyes and Pigments, 2023, 209, 110898.	3.7	2
3190	Fluorescent assemblies: Synergistic of amphiphilic molecules and fluorescent elements. Current Opinion in Colloid and Interface Science, 2023, 63, 101657.	7.4	7
3191	Emerging metal doped carbon dots for promising theranostic applications. Biomedical Materials (Bristol), 2023, 18, 012001.	3.3	7
3192	Inhibition of UV-B stress in lettuce through enzyme-like Scutellaria baicalensis carbon dots. Ecotoxicology and Environmental Safety, 2022, 246, 114177.	6.0	4
3193	Applications of Carbon Dots in Electrochemical Energy Storage. ACS Applied Electronic Materials, 2022, 4, 5144-5164.	4.3	8
3194	Ultra-stable dual-color phosphorescence Carbon-Dot@Silica material for advanced anti-counterfeiting. Dyes and Pigments, 2022, 208, 110827.	3.7	6
3195	Carbon quantum dot-based fluorescence quenching coupled with enzyme-assisted multiple cycle amplification for biosensing of miRNA. Microchemical Journal, 2022, 183, 108116.	4.5	7

#	Article	IF	CITATIONS
3196	Methamphetamine detection using nanoparticle-based biosensors: A comprehensive review. Sensing and Bio-Sensing Research, 2022, 38, 100538.	4.2	2
3197	N, S co-doped carbon quantum dots/TiO2 composite for visible-light-driven photocatalytic reduction of Cr (VI). Journal of Environmental Chemical Engineering, 2022, 10, 108742.	6.7	12
3198	Small-molecule fluorescent probes for plasma membrane staining: Design, mechanisms and biological applications. Coordination Chemistry Reviews, 2023, 474, 214862.	18.8	17
3199	Effect of different carbon dots positions on the transfer of photo-induced charges in type I heterojunction for significantly enhanced photocatalytic activity. Separation and Purification Technology, 2023, 304, 122337.	7.9	54
3200	A fluorescent carbon dots synthesized at room temperature for automatic determination of nitrite in Sichuan pickles. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2023, 286, 122025.	3.9	6
3201	Fluorescent Carbon Dots from Vegetable and Fruit Wastes and Their Applications. , 2022, , 365-383.		3
3202	Construction of photo-induced zinc-doped carbon dots based on drug-resistant bactericides and their application for local treatment. Nanoscale Advances, 0, , .	4.6	1
3203	Large scale synthesis of carbon dots for efficient luminescent solar concentrators. Journal of Materials Chemistry C, 2022, 10, 18154-18163.	5.5	3
3204	Surface activity, micellization, and application of nano-surfactants—amphiphilic carbon dots. Carbon, 2023, 202, 398-413.	10.3	25
3205	Metal-doped carbon dots as robust nanomaterials for the monitoring and degradation of water pollutants. Chemosphere, 2023, 312, 137190.	8.2	27
3206	Natural resources for sustainable synthesis of nanomaterials with anticancer applications: A move toward green nanomedicine. Environmental Research, 2023, 216, 114803.	7.5	10
3207	N-substituted CQDs impregnated by Fe3O4 heterostructure: Bifunctional catalyst for electro-catalytic and photo-catalytic detection of an environmental hazardous organic pollutant. Chemosphere, 2023, 311, 137168.	8.2	3
3208	New strategy of sustainable development: Interface process exploration between Mikania-derived carbon dots and sesame growth. Surfaces and Interfaces, 2022, 35, 102469.	3.0	1
3209	One-step microwave preparation of carbon dots-composited G-quartet hydrogels with controllable chirality and circularly polarized luminescence. Carbon, 2023, 203, 39-46.	10.3	14
3210	Anticancer and microbicide action of carbon quantum dots derived from microcrystalline cellulose: Hydrothermal versus infrared assisted techniques. Arabian Journal of Chemistry, 2023, 16, 104419.	4.9	9
3211	Application of carbon-based quantum dots in photodynamic therapy. Carbon, 2023, 203, 273-310.	10.3	29
3212	A sequential dual-lock strategy for generation of room-temperature phosphorescence of boron doped carbon dots for dynamic anti-counterfeiting. Journal of Colloid and Interface Science, 2023, 632, 129-139.	9.4	17
3213	In-situ synthesis of carbon dots embedded wrinkled-mesoporous silica microspheres for efficiently capturing and monitoring organochlorine pesticides from water and fruit juice. Separation and Purification Technology, 2023, 306, 122589.	7.9	7

#	Article	IF	CITATIONS
3214	Could artificial intelligence revolutionize the development of nanovectors for gene therapy and mRNA vaccines?. Nano Today, 2022, 47, 101665.	11.9	11
3216	Ultrasound-assisted synthesis of kojic acid-1,2,3-triazole based dihydropyrano[3,2-b]pyran derivatives using Fe3O4@CQD@Cul as a novel nanomagnetic catalyst. Scientific Reports, 2022, 12, .	3.3	7
3218	Effect of Carbon Dots Concentration on Electrical and Optical Properties of Their Composites with a Conducting Polymer. Molecules, 2022, 27, 8000.	3.8	2
3219	Preparation of Fluorescent Carbon Dots Composites and Their Potential Applications in Biomedicine and Drug Delivery—A Review. Pharmaceutics, 2022, 14, 2482.	4.5	12
3220	Emerging carbon-based quantum dots for sustainable photocatalysis. Green Chemistry, 2023, 25, 32-58.	9.0	33
3221	One-step large-scale fabricating aggregation-induced emission carbon dots with strong solid-state fluorescence emission. Materials Today Chemistry, 2022, 26, 101255.	3.5	8
3222	Investigation of the role of pH and the stoichiometry of the N-dopant in the luminescence, composition and synthesis yield of carbon dots. Journal of Materials Chemistry B, 2023, 11, 1131-1143.	5.8	6
3223	Carbon-based glyco-nanoplatforms: towards the next generation of glycan-based multivalent probes. Chemical Society Reviews, 2022, 51, 9960-9985.	38.1	7
3224	The preparation of an FITC-carbon dot nanocomposite and using a C-18 reverse phase column to improve the Hg ²⁺ ion sensitivity of the FITC-carbon dot ratiometric fluorescent sensor. New Journal of Chemistry, 0, , .	2.8	0
3225	Equipping carbon dots in a defect-containing MOF <i>via</i> self-carbonization for explosive sensing. Journal of Materials Chemistry C, 2022, 11, 321-328.	5.5	8
3226	Nitrogen-doped carbon dots as visible light initiators for 3D (bio)printing. Polymer Chemistry, 2023, 14, 268-276.	3.9	4
3227	A rapid and recyclable analysis method for sulfadimethoxine detection based on molecularly imprinted electrochemical sensor reinforced by GQDs/ZIF-8 nanocomposite. Microchemical Journal, 2023, 185, 108266.	4.5	3
3228	Experimental synthesis of dual-emission carbon dots: The role of reaction temperature. Inorganic Chemistry Communication, 2023, 148, 110301.	3.9	4
3229	An abiotic carbon dots@ ZIF-90 fluorescent probe for rapid and reliable detection of adenosine triphosphate. Analytical Biochemistry, 2023, 663, 115021.	2.4	1
3230	Electrochemical (bio)sensors based on carbon quantum dots, ionic liquid and gold nanoparticles for bisphenol A. Analytical Biochemistry, 2023, 662, 115002.	2.4	6
3231	Synthesis of luminescent chitosan-based carbon dots for Candida albicans bioimaging. International Journal of Biological Macromolecules, 2023, 227, 805-814.	7.5	9
3232	Recent advances of solvent-engineered carbon dots: A review. Carbon, 2023, 204, 76-93.	10.3	33
3233	Synergy between nitrogen, phosphorus co-doped carbon quantum dots and ZnO nanorods for enhanced hydrogen production. Journal of Alloys and Compounds, 2023, 937, 168397.	5.5	12

#	Article	IF	CITATIONS
3234	Supported carbon-dots: A review. Journal of Luminescence, 2023, 255, 119552.	3.1	7
3235	CeO2-CDs clusters decorated Co(OH)2 nanosheets for improved photocatalytic ammonia synthesis. Journal of Colloid and Interface Science, 2023, 634, 642-650.	9.4	9
3236	Understanding the aggregation of excitation wavelength independent emission of amphiphilic carbon dots for bioimaging and organic acid sensing. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2023, 290, 122257.	3.9	6
3237	Recent advances in two-dimensional ultrathin Bi-based photocatalysts. Progress in Materials Science, 2023, 133, 101047.	32.8	14
3238	A state-of-the-art review on carbon quantum dots: Prospective, advances, zebrafish biocompatibility and bioimaging in vivo and bibliometric analysis. Sustainable Materials and Technologies, 2023, 35, e00529.	3.3	3
3239	Study of molecular interaction of SnS nanoparticles with bovine serum albumin. AIP Conference Proceedings, 2022, , .	0.4	0
3240	Green Synthesis of Carbon-Based Nanomaterials: Industrial Applications. , 2022, , 1-12.		0
3241	Nitrogen-doped cyan-emissive carbon quantum dots for fluorescence tetracycline detection and lysosome imaging. RSC Advances, 2022, 12, 33761-33771.	3.6	1
3242	Green Materials Sterilization Solutions. , 2022, , 1-10.		0
3243	Lemon-juice derived highly efficient S-GQD/GO composite as a photocatalyst for regeneration of coenzyme under solar light. Main Group Chemistry, 2023, 22, 129-141.	0.8	0
3244	Hydrothermal synthesis of high-performance nitrogen-doped carbon quantum dots from Ophiopogon japonicus and their application in sensing Fe (III) with a broad quantitative range. Digest Journal of Nanomaterials and Biostructures, 2022, 17, 1327-1343.	0.8	1
3245	Eco-friendly Synthesis of Carbon Quantum Dots as an Effective Adsorbent. Journal of Fluorescence, 2023, 33, 423-435.	2.5	11
3246	Colloidal Behavior and Biodegradation of Engineered Carbon-Based Nanomaterials in Aquatic Environment. Nanomaterials, 2022, 12, 4149.	4.1	4
3247	Ultrasensitive FRET-based aptasensor for interleukin-6 as a biomarker for COVID-19 progression using nitrogen-doped carbon quantum dots and gold nanoparticles. Mikrochimica Acta, 2022, 189, .	5.0	10
3248	Dual-response fluorescent probe based on nitrogen-doped carbon dots and europium ions hybrid for ratiometric and on-site visual determination of oxytetracycline and tetracycline. Science of the Total Environment, 2023, 860, 160533.	8.0	8
3249	Water-soluble photoluminescent carbon dots prepared from phloroglucinol by catalyst- and solvent-free reaction. Carbon Letters, 2023, 33, 467-475.	5.9	1
3250	Inhibitory activity of carbon quantum dots against <i>Phytophthora infestans</i> and fungal plant pathogens and their effect on dsRNA-induced gene silencing. Biotechnology and Biotechnological Equipment, 2022, 36, 949-959.	1.3	5
3251	Aggregation in carbon dots. Aggregate, 2022, 3, .	9.9	40

#	Article	IF	CITATIONS
3252	A Highly Sensitive and Selective Nano-Fluorescent Probe for Ratiometric and Visual Detection of Oxytetracycline Benefiting from Dual Roles of Nitrogen-Doped Carbon Dots. Nanomaterials, 2022, 12, 4306.	4.1	5
3253	More than One Century of History for Photocatalysis, from Past, Present and Future Perspectives. Catalysts, 2022, 12, 1572.	3.5	3
3254	Challenges in developing strategies for the valorization of lignin—a major pollutant of the paper mill industry. Environmental Science and Pollution Research, 2023, 30, 11119-11140.	5.3	11
3255	2D and 3D Nanomaterials for Photoelectrocatalytic Removal of Organic Pollutants from Water. Crystal Research and Technology, 2023, 58, .	1.3	Ο
3256	Ionic liquid-induced construction of 0D/3D carbon quantum dots modified PbBiO2Cl/PbBiO2Br microspheres: Boosting molecular oxygen activation for efficient antibiotics degradation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 660, 130854.	4.7	4
3257	Facile Access to Fabricate Carbon Dots and Perspective of Largeâ \in Scale Applications. Small, 2023, 19, .	10.0	21
3258	Preparation of novel PMMA-NaNbO3-carbon quantum dot composite films for studies of dielectric properties and a.c. conductivity studies. Polymer Bulletin, 2023, 80, 11779-11796.	3.3	1
3259	Plasmonic Copper activated ZnO Microarrays for Efficient Photoelectrocatalytic Applications. Chemistry - an Asian Journal, 0, , .	3.3	0
3260	Sensitive and selective neurotransmitter epinephrine detection at a carbon quantum dots/copper oxide nanocomposite. Journal of Electroanalytical Chemistry, 2023, 929, 117120.	3.8	21
3261	Affinity of carbon quantum dots anchored within metal organic framework matrix as enhancer of plant nourishment. Heliyon, 2022, 8, e12396.	3.2	9
3262	Rational design of carbon-based electrocatalysts for enhancing redox reactions in rechargeable metal batteries. Nano Research, 2023, 16, 4246-4276.	10.4	10
3263	A facile, green synthesis of carbon quantum dots from Polyalthia longifolia and its application for the selective detection of cadmium. Dyes and Pigments, 2023, 210, 111048.	3.7	11
3264	New Insights into the Cellular Toxicity of Carbon Quantum Dots to Escherichia coli. Antioxidants, 2022, 11, 2475.	5.1	7
3265	Force Sensitive Resistors : A New and Emerging Field of Research in Conducting Polymers. Journal of Mines, Metals and Fuels, 0, , 215-221.	0.1	Ο
3266	In-situ synthesis of high thermal stability and salt resistance carbon dots for injection pressure reduction and enhanced oil recovery. Nano Research, 2023, 16, 12058-12065.	10.4	4
3267	Principle, design, strategies, and future perspectives of heavy metal ion detection using carbon nanomaterial-based electrochemical sensors: a review. Journal of the Iranian Chemical Society, 2023, 20, 775-791.	2.2	8
3268	Picomolar Detection of Lead Ions (Pb2+) by Functionally Modified Fluorescent Carbon Quantum Dots from Watermelon Juice and Their Imaging in Cancer Cells. Journal of Imaging, 2023, 9, 19.	3.0	5
3269	Recent advances on nitrogen-doped carbon quantum dots and their applications in bioimaging: a review. Bulletin of Materials Science, 2023, 46, .	1.7	8
#	Article	IF	CITATIONS
------	--	------	-----------
3270	Facile synthesis of graphene quantum dots with red emission and high quantum yield. New Journal of Chemistry, 2023, 47, 2221-2229.	2.8	2
3271	Carbonized Polymer Dots Assemble in Proton onducting Channels to Enhance the Conductivity and Selectivity Simultaneously for Highâ€Performance Fuel Cells. Small, 2023, 19, .	10.0	5
3272	Carbon-Based Nanoparticles and Their Surface-Modified Counterparts as MALDI Matrices. Analytical Chemistry, 2023, 95, 100-114.	6.5	8
3273	Deciphering the catalytic mechanism of superoxide dismutase activity of carbon dot nanozyme. Nature Communications, 2023, 14, .	12.8	116
3274	Ligand effects on the photoluminescence of atomically precise silver nanoclusters. Nanoscale, 2023, 15, 3120-3129.	5.6	15
3275	Dual-Emission Carbon-Dot Ratiometric Fluorescence Sensor for Morphine Recognition in Biological Samples. Biosensors, 2023, 13, 143.	4.7	3
3276	Long‣ived Dynamic Room Temperature Phosphorescence from Carbon Dots Based Materials. Small, 2023, 19, .	10.0	32
3277	The precursors' feeding ratio of NCQDs/NaBiO3·2H2O induced the modulation of hydrothermal reaction products and their photocatalytic properties. Journal of Molecular Structure, 2023, 1278, 134966.	3.6	3
3278	Fluorescent Carbon Dots for Super-Resolution Microscopy. Materials, 2023, 16, 890.	2.9	4
3279	Carbon-Based Nanomaterials: Carbon Nanotube, Fullerene, and Carbon Dots. , 2023, , 27-57.		1
3280	Carbon dots: building a robust optical shield for wood preservation. Advanced Composites and Hybrid Materials, 2023, 6, .	21.1	7
3281	Applications of Fluorescent Carbon Dots as Photocatalysts: A Review. Catalysts, 2023, 13, 179.	3.5	15
3282	See the Unseen: Redâ€Emissive Carbon Dots for Visualizing the Nucleolar Structures in Two Model Animals and In Vivo Drug Toxicity. Small, 2023, 19, .	10.0	13
3283	Tailoring the Chemical Structure of Nitrogenâ€Đoped Carbon Dots for Nanoâ€Aminocatalysis in Aqueous Media. ChemSusChem, 2023, 16, .	6.8	9
3284	Gene silencing for invasive paper wasp management: Synthesized dsRNA can modify gene expression but did not affect mortality. PLoS ONE, 2023, 18, e0279983.	2.5	3
3285	Green Carbon Dots: Synthesis, Characterization, Properties and Biomedical Applications. Journal of Functional Biomaterials, 2023, 14, 27.	4.4	52
3286	The impact of Carbon Quantum Dots (CQDs) on the photocatalytic activity of TiO2 under UV and visible light. Journal of Water Process Engineering, 2023, 51, 103465.	5.6	16
3287	Properties and application of carbon quantum dots (CQDs) in biosensors for disease detection: A comprehensive review. Journal of Drug Delivery Science and Technology, 2023, 80, 104156.	3.0	39

#	Article	IF	CITATIONS
3288	Boosting the adsorption capacity and photocatalytic activity of activated carbon by graphene quantum dots and titanium dioxide. Diamond and Related Materials, 2023, 132, 109640.	3.9	13
3289	Fmoc-diphenylalanine gelating nanoarchitectonics: A simplistic peptide self-assembly to meet complex applications. Journal of Colloid and Interface Science, 2023, 636, 113-133.	9.4	16
3290	Red-to-blue colorimetric probe based on biomass carbon dots for smartphone-integrated optosensing of Cu(II) and L-cysteine. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2023, 290, 122285.	3.9	6
3291	Selective detection of aspartic acid in human serum by a fluorescent probe based on CuInS2@ZnS quantum dots. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2023, 291, 122294.	3.9	4
3292	Synthesis, characterization and potential sensing application of carbon dots synthesized via the hydrothermal treatment of cow milk. Scientific Reports, 2022, 12, .	3.3	19
3293	Carbon nanoparticles-based hydrogel nanocomposite induces bone repair in vivo. Bioprocess and Biosystems Engineering, 2023, 46, 577-588.	3.4	1
3294	A Robust Switchable Oilâ€Inâ€Water Emulsion Stabilized by Electrostatic Repulsions between Surfactant and Similarly Charged Carbon Dots. Small, 2023, 19, .	10.0	4
3295	Metal Ions Doped-Carbon Dots: Synthetic Approaches, Physicochemical Properties and Their Applications. , 2022, , 54-63.		0
3296	Bioimaging applications of carbon quantum dots. , 2023, , 239-261.		0
3297	Carbon nanomaterials: Fundamentals, functionalization, and applications. , 2023, , 91-105.		0
3298	Photocatalytic applications of carbon quantum dots for wastewater treatment. , 2023, , 263-294.		0
3299	Magnetic and nanophotonics applications of carbon quantum dots. , 2023, , 377-396.		0
3300	Nano-inks in security and defense applications. , 2023, , 623-657.		0
3301	Biosensors for nucleic acid detection. , 2023, , 173-233.		0
3302	Rapid microwave-assisted synthesis of nitrogen-doped carbon quantum dots as fluorescent nanosensors for the spectrofluorimetric determination of palbociclib: application for cellular imaging and selective probing in living cancer cells. RSC Advances, 2023, 13, 4156-4167.	3.6	19
3303	Functionalization of carbon and graphene quantum dots. , 2023, , 335-381.		1
3304	Bioapplications of quantum dots. , 2023, , 463-476.		0
3305	Portable Smartphone Platform Based on Aggregation-Induced Enhanced Emission Carbon Dots for Ratiometric Quantitative Sensing of Fluoride Ions. ACS Sensors, 2023, 8, 884-892.	7.8	21

#	Article	IF	CITATIONS
3306	Light-emitting diode application of carbon quantum dots. , 2023, , 159-181.		0
3307	Carbon dots (C-dots): fluorescence processes and bioimaging. , 2023, , 201-213.		1
3308	Emerging Trends of Carbonâ€Based Quantum Dots: Nanoarchitectonics and Applications. Small, 2023, 19,	10.0	33
3309	Current prospects of carbon-based nanodots in photocatalytic CO2 conversion. , 2023, , 295-340.		0
3310	Current advancement and development of functionalized carbon nanomaterials for biomedical therapy. , 2023, , 381-413.		0
3311	Sustainable applications of carbon dots-based composites as photocatalyst for environmental pollutants remediation. , 2023, , 555-577.		0
3312	Communication of molecular fluorophores with other photoluminescence centres in carbon dots. Nanoscale, 2023, 15, 4022-4032.	5.6	8
3313	Organic pollutant and dye degradation with nanocomposites. , 2023, , 97-136.		0
3314	Polysaccharide-based C-dots and polysaccharide/C-dot nanocomposites: fabrication strategies and applications. Nanoscale, 2023, 15, 3630-3650.	5.6	6
3315	Functionalization of carbon nanotubes: Fundamentals, strategies, and tuning of properties. , 2023, , 181-193.		0
3316	Nanocontrol of excitation and emission mechanism. , 2023, , 219-273.		0
3317	Unveiling the Photocatalytic Activity of Carbon Dots/g-C3N4 Nanocomposite for the O-Arylation of 2-Chloroquinoline-3-carbaldehydes. Catalysts, 2023, 13, 308.	3.5	3
3318	Pressure-induced core defects and photoluminescent quenching in carbon quantum dots. Applied Physics Letters, 2023, 122, .	3.3	1
3319	Gold@Carbon Quantum Dots Nanocomposites Based Two-In-One Sensor: A Novel Approach for Sensitive Detection of Aminoglycosides Antibiotics in Food Samples. Food Chemistry, 2023, 415, 135590.	8.2	6
3320	Turmeric-derived gadolinium-doped carbon quantum dots for multifunctional fluorescence imaging and MRI contrast agent. Journal of Luminescence, 2023, 257, 119692.	3.1	5
3321	A Bibliometric Analysis of Carbon Dots in Sensors Application. Jurnal Penelitian Fisika Dan Aplikasinya, 2022, 12, 138-155.	0.3	0
3322	Carbon dots as a new class of multifunctional nanomaterial in mesenchymal stem cells: opportunities and challenges. Journal of Materials Chemistry B, 2023, 11, 3511-3536.	5.8	6
3323	Graphene quantum dots and their role in environmental sustainability. , 2023, , 227-249.		0

#	Article	IF	CITATIONS
3324	Affinity of deep eutectic solvents with aromatic molecules and aromatic nanostructures in chemical transformations. Current Opinion in Green and Sustainable Chemistry, 2023, 40, 100779.	5.9	2
3325	Outstanding lubrication properties of carbon dot-based ionic liquids. Journal of Molecular Liquids, 2023, 376, 121458.	4.9	6
3326	Multifunctional Fe-doped carbon dots and metal-organic frameworks nanoreactor for cascade degradation and detection of organophosphorus pesticides. Chemical Engineering Journal, 2023, 464, 142480.	12.7	12
3327	Biological synthesis of novel carbon quantum dots using Halimeda opuntia green algae with improved optical properties and electrochemical performance for possible energy storage applications. International Journal of Electrochemical Science, 2023, 18, 100102.	1.3	6
3328	Aminophenol functionalized carbon quantum dots as fluorescent sensor for nitroalkenes. Microchemical Journal, 2023, 189, 108569.	4.5	5
3329	Photobleach effect of multi-color emitting carbon dots for UV-light sensing. Chemical Engineering Journal, 2023, 464, 142643.	12.7	10
3330	A triple-emission ratiometric fluorescence sensor based on carbon dots-Au nanoclusters nanocomposite for detection of tetracycline. Sensors and Actuators B: Chemical, 2023, 384, 133636.	7.8	12
3331	Carbon quantum dot fluorescent probe for labeling and imaging of stellate cell on liver frozen section below freezing point. Analytica Chimica Acta, 2023, 1260, 341210.	5.4	3
3332	Honeycomb-like cork activated carbon modified with carbon dots for high-efficient adsorption of Pb(â¡) and rhodamine B. Industrial Crops and Products, 2023, 196, 116485.	5.2	6
3333	Synthesis of SiO2-coated perovskite quantum dots for micro-LED display applications. Surfaces and Interfaces, 2023, 38, 102802.	3.0	1
3334	Low temperature selective catalytic reduction of NOx with NH3 with improved SO2 and water resistance by using N-doped graphene dots-CuO–CeO2 nano-heterostructures modified vanadate catalysts. Applied Surface Science, 2023, 623, 157088.	6.1	6
3335	Separation and online optical characterization of fluorescent components of pyrogenic carbons for carbon dots identification. Carbon, 2023, 209, 118009.	10.3	4
3336	Synthesis of CdS QDs/BaSnO3 nanocomposites via electrostatic self-assembly for visible light photocatalytic deep oxidation of NO. Applied Surface Science, 2023, 623, 157004.	6.1	5
3337	An activatable nanocomposite as a hydrogen peroxide-catalytic oxygenerator for tumor imaging and enhanced photodynamic therapy. Sensors and Actuators B: Chemical, 2023, 384, 133663.	7.8	0
3338	Modular wearable optoelectronic system using photoactive nanomembranes. Nano Energy, 2023, 111, 108446.	16.0	1
3339	Carbon dots as oxidant-antioxidant nanomaterials, understanding the structure-properties relationship. A critical review. Nano Today, 2023, 50, 101837.	11.9	26
3340	Influence of nanofillers (Ag NPs and C. dots) on the controlled drug release profile of gelatin-grafted-polyacrylamide hydrogel: An in vitro study. Materials Today Communications, 2023, 35, 105922.	1.9	5
3341	pH-sensitive green tea-derived carbon quantum dots for real-time monitoring of shrimp freshness. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 666, 131242.	4.7	12

#	Article	IF	CITATIONS
3342	Ultrafine sulfur–doped carbon nanoparticles enhanced the transmembrane bioelectricity of Clostridium butyricum for biohydrogen production. Nano Energy, 2023, 110, 108382.	16.0	4
3343	Two-dimensional MXene with multidimensional carbonaceous matrix: A platform for general-purpose functional materials. Progress in Materials Science, 2023, 135, 101105.	32.8	43
3344	Surficial amino groups coupling induced concentration-dependent fluorescence and fluorescence quantum yield of nitrogen-dopped carbon quantum dots via efficient charge transfer. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2023, 294, 122542.	3.9	10
3345	Nitrogen-doped carbon nanodots deposited on titania nanoparticles: Unconventional near-infrared active photocatalysts for cancer therapy. Catalysis Today, 2023, 419, 114154.	4.4	3
3346	A comprehensive review on carbon quantum dots as an effective photosensitizer and drug delivery system for cancer treatment. , 2023, 4, 11-20.		16
3347	Putrescine-functionalized carbon quantum dot (put-CQD) nanoparticle: A promising stress-protecting agent against cadmium stress in grapevine (Vitis vinifera cv. Sultana). Plant Physiology and Biochemistry, 2023, 197, 107653.	5.8	6
3348	Multicomponent hydroxides supported Cu/Cu2O nanoparticles for high efficient photocatalytic ammonia synthesis. Journal of Colloid and Interface Science, 2023, 642, 470-478.	9.4	8
3349	Engineering and surface modification of carbon quantum dots for cancer bioimaging. Inorganic Chemistry Communication, 2023, 149, 110433.	3.9	16
3350	Hierarchy of hybrid materials. Part-II: The place of organics-on-inorganics in it, their composition and applications. Frontiers in Chemistry, 0, 11, .	3.6	6
3351	Carbon Quantum Dots Accelerating Surface Charge Transfer of 3D PbBiO2I Microspheres with Enhanced Broad Spectrum Photocatalytic Activity—Development and Mechanism Insight. Materials, 2023, 16, 1111.	2.9	3
3352	Insights into engineered graphitic carbon nitride quantum dots for hazardous contaminants degradation in wastewater. Environmental Research, 2023, 223, 115408.	7.5	8
3353	Carbon quantum dots as a nitric oxide donor can promote wound healing of deep partial-thickness burns in rats. European Journal of Pharmaceutical Sciences, 2023, 183, 106394.	4.0	0
3354	Quantum dots: chemical applications. , 2023, , 421-437.		0
3355	Adsorption and decomposition steps on Cu(111) of liquid aromatic hydrocarbon precursors for low-temperature CVD of graphene: A DFT study. Carbon, 2023, 206, 142-149.	10.3	2
3356	Preparation of photocatalysts decorated by carbon quantum dots (CQDs) and their applications: A review. Journal of Environmental Chemical Engineering, 2023, 11, 109487.	6.7	25
3357	Structure-modified polymeric carbon-dots with lowered retention and enhanced colloidal stability in porous media for tracer application at extreme reservoir condition. Materials Today Physics, 2023, 32, 101014.	6.0	1
3358	Nanoparticles. Advances in Environmental Engineering and Green Technologies Book Series, 2023, , 15-41.	0.4	0
3359	pH-Sensitive Fluorescence Emission of Boron/Nitrogen Co-Doped Carbon Quantum Dots. Coatings, 2023, 13, 456.	2.6	1

~			-		
$C1^{-}$	ΓΔΤΙ	ON	୍ବାହ	FD	OPT

#	Article	IF	CITATIONS
3360	Wattle-Bark-Tannin-Derived Carbon Quantum Dots as Multi-Functional Nanomaterials for Intelligent Detection of Cr ⁶⁺ lons, Bio-Imaging, and Fluorescent Ink Applications. Industrial & Engineering Chemistry Research, 2023, 62, 3622-3634.	3.7	6
3361	Advanced Flexible Materials from Nanocellulose. Advanced Functional Materials, 2023, 33, .	14.9	24
3362	A novel antibacterial and fluorescent coating composed of polydopamine and carbon dots on the surface of orthodontic brackets. Journal of Materials Science: Materials in Medicine, 2023, 34, .	3.6	6
3363	Carbon-based designer and programmable fluorescent quantum dots for targeted biological and biomedical applications. Materials Chemistry Frontiers, 2023, 7, 1781-1802.	5.9	12
3364	Spirulina carbon dots: a promising biomaterial for photocatalytic textile industry Reactive Red M8B dye degradation. Environmental Science and Pollution Research, 2023, 30, 52073-52086.	5.3	3
3365	Nanoparticles-mediated ion channels manipulation: From their membrane interactions to bioapplications. Advanced Drug Delivery Reviews, 2023, 195, 114763.	13.7	13
3366	Antibacterial Strategies: Photodynamic and Photothermal Treatments Based on Carbon-Based Materials. , 0, , .		1
3367	Green, HFâ€Free Synthesis of MXene Quantum Dots and their Photocatalytic Activity for Hydrogen Evolution. Small Methods, 2023, 7, .	8.6	10
3368	Lanthanum-doped carbon quantum dots (La-CQDs) for detection of Fe3+ in colorimetric test paper and information anti-counterfeiting. Optical Materials, 2023, 137, 113630.	3.6	8
3369	Microwave-assisted synthesis of N-doped carbon quantum dots for detection of methyl orange in saffron. Chemical Papers, 2023, 77, 3641-3649.	2.2	6
3370	The material–microorganism interface in microbial hybrid electrocatalysis systems. Nanoscale, 2023, 15, 6009-6024.	5.6	3
3371	Enlightening the Path to Protein Engineering: Chemoselective Turn-On Probes for High-Throughput Screening of Enzymatic Activity. Chemical Reviews, 2023, 123, 2832-2901.	47.7	9
3372	Controlling persistent luminescence in nanocrystalline phosphors. Nature Materials, 2023, 22, 289-304.	27.5	67
3373	Ionic liquid capped white luminescent carbon dots: application in sensing and bioimaging. Materials Today Chemistry, 2023, 29, 101437.	3.5	3
3374	Carbon Nanomaterial-Based Biosensors: A Forthcoming Future for Clinical Diagnostics. Materials Horizons, 2023, , 1067-1089.	0.6	0
3375	A Novel Quantum Dots-Based Fluorescent Sensor for Determination of the Anticancer Dacomitinib: Application to Dosage Forms. Molecules, 2023, 28, 2351.	3.8	13
3376	Recent Advancement of Luminescent Graphene Quantum Dots for Energy-Related Applications. Materials Horizons, 2023, , 147-164.	0.6	0
3377	Resculpting carbon dots via electrochemical etching. Scientific Reports, 2023, 13, .	3.3	0

#	Article	IF	CITATIONS
3378	Aggregation-induced color fine-tunable carbon dot phosphorescence covering from green to near-infrared for advanced information encryption. Chemical Engineering Journal, 2023, 462, 142339.	12.7	18
3379	Cancer nanomedicine: a review of nano-therapeutics and challenges ahead. RSC Advances, 2023, 13, 8606-8629.	3.6	34
3380	Development of High-Performance Polymer Electrolyte Membranes through the Application of Quantum Dot Coatings to Nafion Membranes. ACS Applied Materials & Interfaces, 2023, 15, 15616-15624.	8.0	4
3381	In vivo fluorescence non-enzymatic glucose sensing technique for diabetes management by CQDs incorporated dextran nanocomposites in human blood serums. Microchemical Journal, 2023, 190, 108646.	4.5	4
3382	An Overview on Carbon Quantum Dots Optical and Chemical Features. Molecules, 2023, 28, 2772.	3.8	18
3383	DNAâ€Nanocrystal Assemblies for Environmentally Responsive and Highly Efficient Energy Harvesting and Storage. Advanced Science, 0, , 2206848.	11.2	4
3384	Carbon Dots for Electroluminescent Lightâ€Emitting Diodes: Recent Progress and Future Prospects. Advanced Materials, 2023, 35, .	21.0	26
3385	Confinement effect of network-structured carbon dots/cellulose nanofiber/magnesium hydroxide for enhanced heavy metal ions capture and immobilization. International Journal of Biological Macromolecules, 2023, 237, 124194.	7.5	4
3386	Design of Fluorescent Carbon Dots (CDs) for the Selective detection of Metal ontaining lons. Chemistry - A European Journal, 0, , .	3.3	1
3387	Optimization of Engine Parameters Using Taguchi Technique for a Diesel Engine Running on a Newly Developed bio-nano Diesel Emulsion. Arabian Journal for Science and Engineering, 2023, 48, 12345-12370.	3.0	2
3388	Estimation of Two Diuretics Using Fluorescent Nitrogen Doped Carbon Quantum Dots: Application to Spiked Human Plasma and Tablets. Journal of Fluorescence, 0, , .	2.5	1
3389	Nitrogen-doped carbon dot/activated carbon nanotube-supported copper nanoparticles as an efficient electrocatalyst for the oxygen reduction reaction. Journal of Electroanalytical Chemistry, 2023, 937, 117423.	3.8	1
3390	Synthesis of Hexamine (HMTA) derived carbon dots and their optical properties. Materials Today: Proceedings, 2023, , .	1.8	1
3391	Controlled Growth of MoS ₂ on Dendritic Ferric Oxide to Enhance Electrochemiluminescence of Nitrogen-Doped Carbon Quantum Dots for Sensitive Immunoassay. Analytical Chemistry, 2023, 95, 6655-6663.	6.5	7
3392	Toward Rational Design of Carbon Nanodots with High Photothermal Efficiency for Tumor Photothermal Therapy ^{â€} . Chinese Journal of Chemistry, 2023, 41, 1994-2001.	4.9	7
3393	Development of $\hat{I}\mu$ -poly(L-lysine) carbon dots-modified magnetic nanoparticles and their applications as novel antibacterial agents. Frontiers in Chemistry, 0, 11, .	3.6	5
3394	Lights and Dots toward Therapy—Carbon-Based Quantum Dots as New Agents for Photodynamic Therapy. Pharmaceutics, 2023, 15, 1170.	4.5	8
3395	Self-passivated carbon dots derived from Bougainvillea spectabilis for photovoltaic application. Journal of Materials Science: Materials in Electronics, 2023, 34, .	2.2	1

#	Article	IF	CITATIONS
3396	Carbon dots prepared by different bottom-up methods: a study on optical properties and the application as nanoprobes for metal ions detection. Fullerenes Nanotubes and Carbon Nanostructures, 2023, 31, 641-651.	2.1	4
3397	Solubility tuning of alkyl amine functionalized carbon quantum dots for selective detection of nitroexplosive. Carbon, 2023, 209, 117972.	10.3	10
3398	Magnetic Polaron States in Photoluminescent Carbon Dots Enable Hydrogen Peroxide Photoproduction. Small, 2023, 19, .	10.0	2
3399	Biogenic Carbon Quantum Dots as a Neoteric Inducer in the Game of Directing Chondrogenesis. ACS Applied Materials & Interfaces, 2023, 15, 19997-20011.	8.0	5
3400	Red-emitting and antibacterial carbon dots for cellular imaging and skin wound healing. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2023, 14, 015012.	1.5	0
3401	Advances in multi-dimensional cellulose-based fluorescent carbon dot composites. Composites Part B: Engineering, 2023, 260, 110752.	12.0	3
3402	Synthesis and application of quantum dots in detection of environmental contaminants in food: A comprehensive review. Science of the Total Environment, 2023, 882, 163565.	8.0	8
3403	Carbon Nanodots Memristor: An Emerging Candidate toward Artificial Biosynapse and Human Sensory Perception System. Advanced Science, 2023, 10, .	11.2	13
3404	Easy-to-perform organic-solvent-free synthesis of carbon dots with strong green photoluminescence. Chinese Chemical Letters, 2024, 35, 108481.	9.0	2
3405	Preparation of carbon dots from carbonized corncobs by electrochemical oxidation and their application in Na-batteries. New Carbon Materials, 2023, 38, 347-355.	6.1	2
3406	Near-infrared carbon quantum dots from PEG-based deep eutectic solvents for high-accuracy quantitative analysis of naphthenic acids in wastewater. Journal of Environmental Chemical Engineering, 2023, 11, 109988.	6.7	3
3407	Preparation and application of high-brightness red carbon quantum dots for pH and oxidized <scp>l</scp> -glutathione dual response. Analyst, The, 2023, 148, 2375-2386.	3.5	3
3408	Structural diversity and optoelectronic properties of chemical modification pentagonal quantum dots. Journal of Physics: Conference Series, 2023, 2485, 012002.	0.4	0
3409	Carbon dots: Types, preparation, and their boosted antibacterial activity by photoactivation. Current status and future perspectives. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2023, 15, .	6.1	6
3410	Fabrication and chemical modification of carbon nanodots/monolayer hexagonal boron nitride/substrate heterostructures and their terahertz optoelectronic properties. Applied Surface Science, 2023, 629, 157441.	6.1	2
3411	Synthesis and Application of Carbon Quantum Dots Derived from Carbon Black in Bioimaging. Journal of Fluorescence, 2024, 34, 213-226.	2.5	1
3413	Application of Inorganic Quantum Dots in Advanced Lithium–Sulfur Batteries. Advanced Science, 2023, 10, .	11.2	5
3414	Extraction, characterization and toxicity evaluation of fluorescent carbon nanoparticles in bamboo charcoal peanut. Journal of Food Composition and Analysis, 2023, 121, 105357.	3.9	0

#	Article	IF	CITATIONS
3415	Specific discrimination of zinc and manganese ions by label free dual emissive carbon dots by ratio-metric mode. Talanta, 2023, 260, 124627.	5.5	0
3416	Green Synthesis of Carbon Dot-Based Materials for Toxic Metal Detection and Environmental Remediation. , 2023, , 329-354.		0
3417	Violet phosphorus quantum dots as an emerging visible light-responsive photocatalyst for an efficient hydrogen evolution reaction. Journal of Materials Chemistry A, 2023, 11, 10883-10890.	10.3	3
3418	Fluorescent probe based on hydrogel-immobilized carbon dots complex with temperature-trigger for ferric iron detection. Journal of Materials Science, 2023, 58, 7602-7612.	3.7	0
3419	Carbon Quantum Dots Produced From Natural Biomass As The Material of The Future and Application Areas. European Journal of Science and Technology, 0, , .	0.5	0
3420	Carbon Quantum Dots with High Photothermal Conversion Efficiency and Their Application in Photothermal Modulated Reversible Deformation of Poly(<i>N</i> -isopropylacrylamide) Hydrogel. ACS Applied Bio Materials, 2023, 6, 3395-3405.	4.6	1
3421	Natural Polymer-Carbon Dot Nanocomposites for Biomedical Use. Advances in Material Research and Technology, 2023, , 297-341.	0.6	0
3422	One-step hydrothermal synthesis of near-infrared emission carbon quantum dots as fluorescence aptamer sensor for cortisol sensing and imaging. Talanta, 2023, 260, 124637.	5.5	6
3423	Recent advances in modification of novel carbon-based composites: Synthesis, properties, and biotechnological/ biomedical applications. Chemico-Biological Interactions, 2023, 379, 110517.	4.0	5
3424	Prospects of Safe Use of Nanomaterials in Biomedical Applications. , 2023, , 83-101.		1
3425	Rapid and facile synthesis of high-color purity solid-state carbon dots with high yield using a direct heating method. Applied Physics A: Materials Science and Processing, 2023, 129, .	2.3	0
3426	A portable smartphone-assisted digital image fluorimetry for analysis of methiocarb pesticide in vegetables: Nitrogen-doped carbon quantum dots as a sensing probe. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2023, 299, 122824.	3.9	2
3427	Nanomaterials in Combating Water Pollution and Related Ecotoxicological Risk. Environmental Contamination Remediation and Management, 2023, , 139-172.	1.0	1
3428	Employing Gamma-Ray-Modified Carbon Quantum Dots to Combat a Wide Range of Bacteria. Antibiotics, 2023, 12, 919.	3.7	4
3429	Safe Appraisal of Carbon Nanoparticles in Pollutant Sensing. Environmental Contamination Remediation and Management, 2023, , 229-261.	1.0	0
3430	Therapeutic nanoparticles for targeted drug delivery: A mini-review. AIP Conference Proceedings, 2023,	0.4	0
3431	Optical Properties of Carbon Dots Synthesized by the Hydrothermal Method. Materials, 2023, 16, 4018.	2.9	7
3432	A multifunctional sensing of two carbon dots based on diaminonaphthalenes for detection of of offoxacin drug. Journal of Photochemistry and Photobiology A: Chemistry, 2023, 443, 114867.	3.9	0

		CITATION RE	EPORT	
#	Article		IF	CITATIONS
3433	White lasing $\hat{a} {\in} ``$ materials, design and applications. Journal of Materials Chemistry C, 0,		5.5	1
3435	Revolutionizing Food Safety with Quantum Dot–Polymer Nanocomposites: From Mon Sensing Applications. Foods, 2023, 12, 2195.	toring to	4.3	5
3436	The Research Progress of in Vivo Optical Imaging Technology Based on Near-Infrared Reg Fluorescenr Nanoprobes in Biomedicine. Advances in Condensed Matter Physics, 2023, 1	ion I 2, 36-41.	0.1	0
3437	Uncommon 2D diamond-like carbon nanodots derived from nanotubes: atomic structure states, and photonic properties. Physical Chemistry Chemical Physics, 2023, 25, 17571-	, electronic 7582.	2.8	1
3438	Carbon dot-based artificial light-harvesting systems with sequential energy transfer and v emission for photocatalysis. Chinese Chemical Letters, 2024, 35, 108632.	vhite light	9.0	2
3439	Carbon Dots–Biomembrane Interactions and Their Implications for Cellular Drug Delive Pharmaceuticals, 2023, 16, 833.	ry.	3.8	0
3440	Design and development of molten metal nanomaterials using sonochemistry for multip applications. Advances in Colloid and Interface Science, 2023, 318, 102934.	e	14.7	2
3441	Orange Pomace-Derived Fluorescent Carbon Quantum Dots: Detection of Dual Analytes Nanomolar Range. ACS Omega, 2023, 8, 22178-22189.	in the	3.5	5
3442	In-situ synthesis of ionic liquid-based-carbon quantum dots as fluorescence probe for her detection. Analytica Chimica Acta, 2023, 1272, 341502.	noglobin	5.4	6
3443	Carbon dots-based reinforced hydrogen-rich water nanocomposite coating for storage q fresh-cut pear. Food Bioscience, 2023, 53, 102837.	uality of	4.4	4
3444	Tuning photoluminescence of polysiloxane functionalized carbon dots through changing polysiloxane compositions. Polymers for Advanced Technologies, 2023, 34, 2936-2945.		3.2	0
3445	Fluorescence signal from carbon quantum dots synthesized from natural resources. Mat Proceedings, 2023, , .	erials Today:	1.8	0
3447	Guava-fruit based synthesis of carbon quantum dots for spectrofluorometric quantitative risperidone in spiked human plasma and pharmaceutical dosage forms. RSC Advances, 2 17765-17774.	analysis of 023, 13,	3.6	3
3448	Nanocellulose-Based Passivated-Carbon Quantum Dots (P-CQDs) for Antimicrobial Appli Practical Review. Polymers, 2023, 15, 2660.	ations: A	4.5	2
3449	Cefminox sodium carbon nanodots for treatment and bacterial detection of bloodstream Chemical Engineering Journal, 2023, 470, 143988.	infection.	12.7	2
3451	Green Carbon (Nano)Materials-Based Sensors for Analysis of Hazardous Metal Ions. ACS Series, 0, , 91-138.	Symposium	0.5	0
3452	Advances in Synthetic Methods, Surface Chemistry, and Characterizations of Fullerenes. Symposium Series, 0, , 41-74.	ACS	0.5	1
3453	Synthesis, Characterization, and Properties of Green Carbon Nanodots. ACS Symposium 25-39.	Series, 0, ,	0.5	0

	Сітатіс	on Report	
#	Article	IF	CITATIONS
3456	Green Carbon Materials for Removal of Environmental Pollutants. ACS Symposium Series, 0, , 75-89.	0.5	0
3457	Green Carbon Materials for Sensing Applications. ACS Symposium Series, 0, , 163-179.	0.5	0
3458	Green Carbon Materials: Synthesis from Waste Biomass, Properties, and Environmental Applications. ACS Symposium Series, 0, , 181-193.	0.5	0
3460	Biomass-based functionalized carbon dots: A promising shield with antimicrobial activities. , 2023, , 113-155.		0
3461	Future of Carbon Materials in Environmental Analysis. ACS Symposium Series, 0, , 195-231.	0.5	0
3462	Green Synthesis, Characterization, and Properties of Carbon Aerogels. ACS Symposium Series, 0, , 1-23.	0.5	0
3463	Carbon-Dots Based Sensors for Detection of Pollutants from Soil. ACS Symposium Series, 0, , 139-162.	0.5	0
3465	Production of the protein-based nitrogen-doped carbon quantum dots/TiO2 nanoparticles with rapid and efficient photocatalytic degradation of hexavalent chromium. Journal of Photochemistry and Photobiology A: Chemistry, 2023, 444, 114947.	3.9	2
3466	Resourceful Quantum Dots for Pulmonary Drug Delivery: Facts, Frontiers, and Future. , 2023, , 345-368.		0
3467	Light of carbon: Recent advancements of carbon dots for LEDs. Nano Energy, 2023, 114, 108623.	16.0	23
3468	Preparation of N, Cl Co-Doped Lignin Carbon Quantum Dots and Detection of Microplastics in Water. Crystals, 2023, 13, 983.	2.2	2
3469	A review: Engineered nanomaterials for photoreduction of Cr(VI) to Cr(III). Journal of Hazardous Materials Advances, 2023, 12, 100333.	3.0	0
3470	One-pot functionalization of carbon dots with ecPis-4s antimicrobial peptide. Materials Chemistry and Physics, 2023, 307, 128101.	4.0	0
3471	N doped-carbon quantum dots with ultra-high quantum yield photoluminescent property conjugated with folic acid for targeted drug delivery and bioimaging applications. Journal of Photochemistry and Photobiology A: Chemistry, 2023, 444, 114972.	3.9	4
3472	Simultaneous Hydrogen Generation and Exciplex Stimulated Emission in Photobasic Carbon Dots. Angewandte Chemie, 2023, 135, .	2.0	3
3473	Simultaneous Hydrogen Generation and Exciplex Stimulated Emission in Photobasic Carbon Dots. Angewandte Chemie - International Edition, 2023, 62, .	13.8	5
3474	Multifunctional, Ultraâ€Tough Organohydrogel Eâ€Skin Reinforced by Hierarchical Goatskin Fibers Skeleton for Energy Harvesting and Selfâ€Powered Monitoring. Advanced Functional Materials, 2023, 33,	14.9	34
3475	Quantum dots as antibacterial agents. , 2023, , 119-128.		1

# 3476	ARTICLE Quantum dots: Emerging trends toward biosensing. , 2023, , 129-145.	IF	CITATIONS
3477	Recent advancements of carbon quantum dots for biological applications. , 2023, , 75-93.		0
3478	The era of graphene-based quantum dots. , 2023, , 23-56.		0
3479	Carbon quantum dots biosynthesis: Perspectives and challenges. , 2023, , 9-22.		0
3480	An Efficient Green Approach to Constructing Adenine Sulfate-Derived Multicolor Sulfur- and Nitrogen-Codoped Carbon Dots and Their Bioimaging Applications. ACS Applied Materials & Interfaces, 2023, 15, 32783-32791.	8.0	6
3481	Preparation of chitosan/gelatin-based functional films integrated with carbon dots from banana peel for active packaging application. International Journal of Biological Macromolecules, 2023, 246, 125600.	7.5	17
3482	STUDY OF MODIFIED BIO-NANO DIESEL EMULSION FUELS TO SAVE ENERGY, REDUCE POLLUTION, AND IMPROVE DIESEL ENGINE PERFORMANCE. International Journal of Energy for A Clean Environment, 2024, 25, 1-15.	1.1	0
3483	Fluorometric and Colorimetric Hybrid Carbon-Dot Nanosensors for Dual Monitoring of Urea. ACS Applied Nano Materials, 2023, 6, 7992-8003.	5.0	5
3484	Förster Resonance Energy Transfer between Multicolor Emissive N-Doped Carbon Quantum Dots and Gold Nanorods for the Detection of H ₂ O ₂ , Glucose, Glutathione, and Acetylcholinesterase. ACS Applied Nano Materials, 2023, 6, 8046-8058.	5.0	11
3485	Ferrite nanoparticles for hyperthermia. , 2023, , 775-803.		0
3486	Influence of intentional phosphorus doping on Brassica juncea-derived unintentionally N, Ca-doped carbon quantum dots@bioplastic composites for applications in LED and UV-tube down-conversion. Materials Chemistry and Physics, 2023, 303, 127834.	4.0	4
3487	Photocatalytic activation of peroxymonosulfate by carbon quantum dots: rational regulation of surface functionality and computational insights. Materials Today Chemistry, 2023, 30, 101546.	3.5	1
3488	Ligand engineering with heterocyclic aromatic thiol doped carbon quantum dots. Carbon, 2023, 211, 118086.	10.3	5
3489	Structural water molecules dominated p band intermediate states as a unified model for the origin on the photoluminescence emission of noble metal nanoclusters: from monolayer protected clusters to cage confined nanoclusters. Science and Technology of Advanced Materials, 2023, 24, .	6.1	2
3490	Red-Emitting Carbon Quantum Dots for Biomedical Applications: Synthesis and Purification Issues of the Hydrothermal Approach. Nanomaterials, 2023, 13, 1635.	4.1	1
3491	Preparation of Chiral Carbon Quantum Dots and its Application. Journal of Fluorescence, 2024, 34, 1-13.	2.5	4
3492	Polymer quantum dots doped in metal organic framework for sono-catalytic degradation of sulfamethazine. Surfaces and Interfaces, 2023, 39, 102967.	3.0	2
3493	Polymer dots loaded fabric as quenching florescence sensor for selective detection of gold. Journal of Industrial and Engineering Chemistry, 2023, 125, 117-126.	5.8	1

		CITATION REPORT		
#	Article		IF	CITATIONS
3494	Molecular Design of NIR-II Polymethine Fluorophores for Bioimaging and Biosensing. , 2	2023, 1, 220-233.		9
3495	Advances in Solution-Processed Blue Quantum Dot Light-Emitting Diodes. Nanomateri	als, 2023, 13, 1695.	4.1	2
3496	Bright, green fluorescent carbon dots for sensitive and selective detection of ferrous ic Open, 2023, 7, 100236.	ons. Talanta	3.7	2
3497	Nitrogen and chlorine co-doped carbon dots to enhance the efficiency of dye-sensitize Diamond and Related Materials, 2023, 136, 110046.	d solar cells.	3.9	1
3498	Solid-state fluorescence from bioplastic nanocomposite embedded with intentional zir carbon quantum dots synthesized from Brassica juncea flower extract for applications down-conversion. Materials Letters, 2023, 347, 134629.	ıc doped in UV-tube	2.6	0
3499	Facile one-precursor and one-pot synthesis of Girard's reagent T-based carbon dots bacteria-resistant and anti-biofilm applications. Biomedical Materials (Bristol), 2023, 18	; for 3, 045025.	3.3	0
3500	Emerging Applications of Nanotechnology in Drug Delivery and Medical Imaging: Revie Radiopharmaceuticals, 2023, 16, 269-283.	w. Current	0.8	1
3501	Unveiling Unconventional Luminescence Behavior of Multicolor Carbon Dots Derived f Phenylenediamine. Journal of Physical Chemistry Letters, 2023, 14, 5975-5984.	rom	4.6	20
3502	Fluorometric Assay of Tyrosinase and Atrazine Based on the Use of Carbon Dots and th Tyrosinase Activity. Journal of Fluorescence, 2024, 34, 765-774.	ie Inhibition of	2.5	0
3503	Green synthesis of functionalized fluorescent carbon dots from biomass and their corrinhibition mechanism for copper in sulfuric acid environment. Chemical Engineering Job 470, 144425.	osion urnal, 2023,	12.7	7
3504	Machine-learning analysis to predict the fluorescence quantum yield of carbon quantum biochar. Science of the Total Environment, 2023, 896, 165136.	m dots in	8.0	4
3505	Continuous productions of highly fluorescent carbon dots and enriched polymer nano microfluidic techniques. Chemical Engineering Journal, 2023, 471, 144444.	fibers via	12.7	2
3506	Development of nanozyme based sensors as diagnostic tools in clinic applications: a re of Materials Chemistry B, 2023, 11, 6762-6781.	eview. Journal	5.8	6
3507	Green Synthesis of Carbon Dots for Rapid Selective Detection and Photoreduction of C Sunlight. Industrial & Engineering Chemistry Research, 2023, 62, 10849-10860.	Cr(VI) under	3.7	4
3508	First-principle study of Cu-, Ag-, and Au-decorated Si-doped carbon quantum dots (Si@ gas sensing efficacies. Journal of Molecular Modeling, 2023, 29, .	CQD) for CO2	1.8	2
3509	Carbon dots and beyond. Talanta Open, 2023, , 100242.		3.7	0
3510	Carbon-Based Nanostructured Bio-Assemblies for Bioelectrochemical Applications. , 20	24, 2, 208-224.		0
3511	Solid-State Phosphors from Coal-Derived Carbon Quantum Dots. ACS Omega, 2023, 8	, 25410-25423.	3.5	1

		CITATION REPORT		
#	Article		IF	Citations
3512	Photoluminescence Induced in Mineral Oil by Ionizing Radiation. Lubricants, 2023, 11,	287.	2.9	0
3513	Effect of Gadolinium on Electrical Properties of Polyethyleneimine Functionalized and I Graphene Quantum Dot Nanocomposite Based Diode. Advanced Electronic Materials,	Nitrogenâ€Đoped 2023, 9, .	5.1	4
3514	Nanosize design of carbon dots, graphene quantum dots, and metal–organic frame sensors for detection of chlorpyrifos in food and water: A review. Microchemical Journa 109056.	vorks based al, 2023, 193,	4.5	6
3515	Green approach synthesis of carbon quantum dots from agave bagasse and their use t germination and plant growth. SN Applied Sciences, 2023, 5, .	o boost seed	2.9	1
3516	Long-term prospects of nano-carbon and its derivatives as anode materials for lithium- A review. Journal of Energy Storage, 2023, 72, 108178.	ion batteries –	8.1	7
3517	Photothermal Mediated Chemical Recycling to Monomers via Carbon Quantum Dots. J American Chemical Society, 2023, 145, 16090-16097.	ournal of the	13.7	7
3519	Carbon Dots Enabling Partsâ€Perâ€Billion Sensitive and Ultraselective Photoluminesce Sensing of Inorganic Mercury. Advanced Optical Materials, 2023, 11, .	≀nce Lifetimeâ€Based	7.3	1
3520	Nanosilver-decorated covalent organic frameworks for enhanced photodynamic, photo antibacterial properties. Materials Chemistry and Physics, 2023, 307, 128158.	othermal, and	4.0	4
3521	Recent Advances in Rechargeable Metal–CO ₂ Batteries with Nonaquec Chemical Reviews, 2023, 123, 9497-9564.	ous Electrolytes.	47.7	7
3522	Electrochemiluminescence of carbon-based quantum dots. , 2023, , 304-337.			0
3523	Aptamer SERS and RRS determination of trace lead ions using nitrogen-doped carbon the new nano-gold reaction. Spectrochimica Acta - Part A: Molecular and Biomolecular 2023, , 123146.	dot to catalyze Spectroscopy,	3.9	0
3524	Applications of Carbonâ€Based Materials for Improving the Performance and Stability Solar Cells. Energy Technology, 2023, 11, .	of Perovskite	3.8	2
3525	Tunable Multicolor Lanthanide Supramolecular Assemblies with White Light Emission (Cucurbituril[7]. Small, 2023, 19, .	Confined by	10.0	4
3526	Application of electro-spun nano-fibers based on agriculture cellulosic biomaterial was removal of dye and heavy metal from polluted water. Journal of the Textile Institute, 0,	tes for , 1-10.	1.9	2
3527	Progress in drug delivery and diagnostic applications of carbon dots: a systematic revie in Chemistry, 0, 11, .	ew. Frontiers	3.6	7
3528	Electrocatalytic composites of carbon quantum dots and anion exchange ionomers for reduction reaction. European Journal of Materials, 2023, 3, .	the oxygen	2.6	0
3529	Preparation and Characterization of Carbon Dots Obtained from Different Low Molar N Precursors. Microscopy and Microanalysis, 2023, 29, 1255-1256.	Mass	0.4	0
3530	Multidrug-Resistant Pathogens in Burn Wound, Prevention, Diagnosis, and Therapeutic (Conventional Antimicrobials and Nanoparticles). Canadian Journal of Infectious Disea Microbiology, 2023, 2023, 1-17.	c Approaches ses and Medical	1.9	2

# 3531	ARTICLE Carbon dots as a sustainable nanoplatform. Biomass Conversion and Biorefinery, 0, , .	IF 4.6	CITATIONS 0
3532	Recent progress on electroanalytical sensing of small molecules and biomolecules using carbon dots: A review. Journal of Industrial and Engineering Chemistry, 2023, 127, 62-81.	5.8	1
3533	Enhancing Proton Conduction of High Temperature Proton Exchange Membranes Based on Carbon Dots Doped Polyvinyl Chloride Nanofibers. Separation and Purification Technology, 2023, , 124679.	7.9	0
3534	Effect of carbon quantum dots and Zn2+ ion on perovskite solar cells. Journal of Materials Science: Materials in Electronics, 2023, 34, .	2.2	1
3535	Ziziphus mauritiana-derived nitrogen-doped biogenic carbon dots: Eco-friendly catalysts for dye degradation and antibacterial applications. Chemosphere, 2023, 338, 139584.	8.2	2
3536	A review on the photosensitizers used for enhancing the photoelectrochemical performance of hydrogen production with emphasis on a novel toxicity assessment framework. International Journal of Hydrogen Energy, 2024, 51, 990-1022.	7.1	0
3537	Development and Characterization of N/S-Carbon Quantum Dots by Valorizing Greek Crayfish Food Waste. Applied Sciences (Switzerland), 2023, 13, 8730.	2.5	5
3538	Recent advances in surface regulation and engineering strategies of photoelectrodes toward enhanced photoelectrochemical water splitting. Coordination Chemistry Reviews, 2023, 494, 215362.	18.8	6
3540	Dual Optical Sensing of Al3+ and Hg2+ Using Carbon Dots Synthesized from Biomass. International Journal of Nanoscience, 2024, 23, .	0.7	0
3541	Amide-decorated carbon dots as sensitive and selective probes for fluorescence enhancement detection of cadmium ion. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2023, 303, 123219.	3.9	6
3542	Machine learning in analytical chemistry: From synthesis of nanostructures to their applications in luminescence sensing. TrAC - Trends in Analytical Chemistry, 2023, 167, 117216.	11.4	6
3543	Heteroatom doped carbon dots from green sources as metal ion sensor and as fluorescent ink. Diamond and Related Materials, 2023, 139, 110293.	3.9	1
3544	Photocatalytic CO2 reduction. Nature Reviews Methods Primers, 2023, 3, .	21.2	36
3546	Late-model N, B, and P-co-doped carbon dots as additives for friction-reduction and anti-wear. Diamond and Related Materials, 2023, 139, 110315.	3.9	2
3547	Band structure induced photodegradation mechanism of PEI-based carbon quantum dots for tetracycline and toxicity evaluation for these intermediates. Journal of Environmental Chemical Engineering, 2023, 11, 110779.	6.7	0
3548	Nitrogen and Sulfur Co-Doped Carbon Quantum Dot-Engineered TiO ₂ Graphene on Carbon Fabric for Photocatalysis Applications. ACS Applied Nano Materials, 2023, 6, 15782-15794.	5.0	1
3549	Caffeic acid recarbonization: A green chemistry, sustainable carbon nano material platform to intervene in neurodegeneration induced by emerging contaminants. Environmental Research, 2023, 237, 116932.	7.5	2
3550	Luminescent nanocomposite based on Brassica juncea-derived intentionally Cu-doped carbon quantum dots embedded in bioplastic for UV-tube down-conversion applications. Applied Physics A: Materials Science and Processing, 2023, 129, .	2.3	1

#	Article	IF	CITATIONS
3551	Cleaner, High-Efficiency, and High-Value Conversion of Chrome-Containing Leather Solid Waste into Carbon Quantum Dots as Renewable Bimetallic Ions Detection Sensors. ACS Sustainable Chemistry and Engineering, 0, , .	6.7	1
3552	Portable smartphone platform based on a ratio fluorescence probe for situ visual monition of cardiac disease markers in vitro. Chemical Engineering Journal, 2023, 474, 145614.	12.7	2
3553	Synthesis of Humin-based Carbon Quantum Dots and Luminescent Properties. , 2018, 3, 8-15.		1
3554	Quantum Dots in Medical Detection/Diagnosis. , 2023, , 75-106.		0
3555	A review on carbon dots as innovative materials for advancing biomedical applications: synthesis, opportunities, and challenges. Journal of Materials Science, 2023, 58, 13531-13579.	3.7	1
3556	The surface modification strategy toward long wavelength emission of carbon dots. Nano, 0, , .	1.0	0
3557	An overview of polymer surface coated synthetic quantum dots as therapeutics and sensors applications. Progress in Biophysics and Molecular Biology, 2023, 184, 1-12.	2.9	0
3558	Recent Advances in the Support Layer, Interlayer and Active Layer of TFC and TFN Organic Solvent Nanofiltration (OSN) Membranes: A Review. Chemical Record, 2023, 23, .	5.8	1
3559	Electrochemical Sensing and Biosensing-Based on Carbon Nanodots. , 2023, , 339-362.		0
3560	Carbon Quantum Dots: Green Nano-biomaterials in the Future of Biosensing. , 2023, , 283-306.		0
3561	Development of a carbon quantum dot-based sensor for the detection of acetylcholinesterase and the organophosphate pesticide. Heliyon, 2023, 9, e19551.	3.2	0
3562	Effect of conjugation length on fluorescence characteristics of carbon dots. RSC Advances, 2023, 13, 27714-27721.	3.6	0
3563	Divergence in Antiviral Activities of Carbon Dots versus Nano-Carbon/Organic Hybrids and Implications. Journal of Carbon Research, 2023, 9, 79.	2.7	0
3564	Green and fast microwave-driven synthesis of fluorescent N,S-carbon dots for determination of two 5-nitroimidazole antimicrobials. Sustainable Chemistry and Pharmacy, 2023, 36, 101255.	3.3	1
3565	Bottomâ€Up Synthesis Optimization Through The Design Of Experiments Using Blue N,Sâ€Carbon Dots With Interesting Affinity For Potentially Toxic Elements. ChemistrySelect, 2023, 8, .	1.5	0
3566	Functional carbon dots derived from biomass and plastic wastes. Green Chemistry, 2023, 25, 6581-6602.	9.0	7
3567	Preparation and application of carbon quantum dot fluorescent probe combined with rare earth. Analytical Methods, 0, , .	2.7	0
3568	Carbon dots and their interactions with recognition molecules for enhanced nucleic acid detection. Biochemical and Biophysical Research Communications, 2023, 680, 93-107.	2.1	6

#	Article	IF	CITATIONS
3569	Mechanistic Insights into the Biodegradation of Carbon Dots by Fungal Laccase. Environmental Science & Technology, 2023, 57, 11977-11987.	10.0	2
3570	Nanotechnology-assisted treatment of pharmaceuticals contaminated water. Bioengineered, 2023, 14, .	3.2	2
3571	The reformation of catalyst: From a trial-and-error synthesis to rational design. Nano Research, 0, , .	10.4	16
3572	Highly fluorescent N, F co-doped carbon dots with tunable light emission for multicolor bio-labeling and antibacterial applications. Journal of Hazardous Materials, 2023, 459, 132331.	12.4	4
3573	Design, fabrication, and characterization of o-phenylenediamine surface-conjugated carbon quantum nanodots as a potential new bioactive formulation. Applied Nanoscience (Switzerland), 2023, 13, 6667-6696.	3.1	0
3574	Carboxyl groups on carbon nanodots as co-reactant sites for anodic electrochemiluminescence of tris(2,2-bipyridine)ruthenium(II). Journal of Colloid and Interface Science, 2024, 653, 1256-1263.	9.4	1
3575	From waste to energy: luminescent solar concentrators based on carbon dots derived from surgical facemasks. Materials Advances, 2023, 4, 5200-5205.	5.4	2
3576	A Smartphone-Based Sensing for Portable and Sensitive Visual Detection of Hg (II) via Nitrogen Doped Carbon Quantum Dots Modified Paper Strip. Journal of Fluorescence, 0, , .	2.5	0
3577	Synthesis and applications of carbon quantum dots derived from biomass waste: a review. Environmental Chemistry Letters, 2023, 21, 3393-3424.	16.2	8
3578	Multicolor Photoluminescent Carbon Dots à La Carte for Biomedical Applications. ACS Applied Materials & Interfaces, 2023, 15, 44711-44721.	8.0	1
3580	Dynamic aggregation of carbon dots selfâ€stabilizes symmetry breaking for exceptional hydrogen production with nearâ€infrared light. Aggregate, 2024, 5, .	9.9	2
3581	Recent Advancements in Metal and Non-Metal Mixed-Doped Carbon Quantum Dots: Synthesis and Emerging Potential Applications. Nanomaterials, 2023, 13, 2336.	4.1	3
3582	Multifunctional carbon dots in nanomaterial surface modification: a descriptive review. , 2023, 2, .		1
3583	Context and prospects of carbon quantum dots applied to environmental solutions. Environmental Nanotechnology, Monitoring and Management, 2023, 20, 100884.	2.9	0
3584	Carbon quantum dots derived from polysaccharides: Chemistry and potential applications. Carbohydrate Polymers, 2024, 324, 121503.	10.2	4
3585	Recent Trends in Nobel Metals and Carbon Dots in the Costume of Hybrid Nano Architecture. Topics in Catalysis, 2024, 67, 280-299.	2.8	1
3586	Sustainable synthesis of multifunctional nanomaterials from rice wastes: a comprehensive review. Environmental Science and Pollution Research, 2023, 30, 95039-95053.	5.3	3
3587	Doping carbon dots on etched CeO2-based bimetallic hydroxides for improved photocatalytic ammonia production. Solar Energy, 2023, 264, 112002.	6.1	0

#	Article	IF	CITATIONS
3588	Synthesis of Carbonaceous Quantum Dots. , 2023, , 20-37.		0
3589	Sequential processing of nitrogen-rich, biowaste-derived carbon quantum dots combined with strontium cobaltite for enhanced supercapacitive performance. Journal of Alloys and Compounds, 2023, 969, 172256.	5.5	1
3590	Studying the structural and optical properties of carbon quantum dots prepared by electro-chemical method. Journal of Optics (India), 0, , .	1.7	2
3591	Application of Carbonaceous Quantum Dots in Solar Cells. , 2023, , 94-109.		0
3592	Nanomaterials-based treatment against white spot syndrome virus of penaeid shrimp. Aquaculture International, 0, , .	2.2	1
3593	N- and S-codoped carbon quantum dots for enhancing fluorescence sensing of trace Hg ²⁺ . Physical Chemistry Chemical Physics, 2023, 25, 28230-28240.	2.8	0
3594	Recent progress of responsive Raman scattering probes for biosensing and bioimaging. TrAC - Trends in Analytical Chemistry, 2023, 169, 117357.	11.4	1
3595	Photostable yellow emissive carbon dots for iron-mediated reversible sensing of biothiols and cellular imaging. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2024, 304, 123364.	3.9	0
3596	Study of the Scattering Effect by SiO2 Nanoparticles, in a Luminescent Solar Concentrator Sensitized with Carbon Dots. Nanomaterials, 2023, 13, 2480.	4.1	0
3597	Graphene quantum dots (GQD) and edge-functionalized GQDs as hole transport materials in perovskite solar cells for producing renewable energy: a DFT and TD-DFT study. RSC Advances, 2023, 13, 29163-29173.	3.6	0
3598	Graphene-based Nanocomposites for Glucose Sensing. , 2023, , 319-342.		0
3599	Investigation of nitrogen-doped carbon dot/ZnO nanocomposites and their application as interlayer in solution-processed organic light emitting diodes. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2023, 297, 116749.	3.5	1
3601	Photoluminescence and Supercapacitive Properties of Carbon Dots Nanoparticles: A Review. Journal of Metastable and Nanocrystalline Materials, 0, 37, 1-22.	0.1	2
3602	An aptasensor based on the fluorescence resonance energy transfer of nitrogen-doped carbon quantum dots and graphene oxide to detect fipronil in eggs. European Food Research and Technology, 2023, 249, 2887-2895.	3.3	0
3603	Organotin(IV)â€Ðecorated Graphene Quantum Dots as Dual Platform for Molecular Imaging and Treatment of Triple Negative Breast Cancer. Chemistry - A European Journal, 2023, 29, .	3.3	3
3604	Copper oxide nanostructures with nanoneedles shape obtained by direct reaction with nitrogen-doped carbon quantum dots: development of an electrochemical sensor to glyphosate. Journal of Materials Science, 2023, 58, 12569-12583.	3.7	3
3605	Green Synthesis of Biocompatible Hybrid Ginger/Chitosan Carbon Nanodot Exhibiting Antiproliferative Activity on Carcinoma Cells. , 2023, 13, 1916-1925.		0
3606	Fluorescent Determination of Ferric Ion in vitro with Carbon Quantum Dots Prepared by L-Arginine and Citric Acid. Analytical Letters, 0, , 1-13.	1.8	0

#	Article	IF	CITATIONS
3607	Green Synthesis for Carbon Quantum Dots via <i>Opuntia ficus-indica</i> and <i>Agave maximiliana</i> : Surface-Enhanced Raman Scattering Sensing Applications. ACS Omega, 2023, 8, 33342-33348.	3.5	0
3608	Theoretical insights into tunable electronic properties of graphene quantum dots through ZnO doping. Chemical Physics Impact, 2023, 7, 100305.	3.5	2
3609	Shape Control of Carbon Nanoparticles via a Simple Anionâ€Directed Strategy for Precise Endoplasmic Reticulumâ€Targeted Imaging. Angewandte Chemie, 2023, 135, .	2.0	0
3610	Shape Control of Carbon Nanoparticles via a Simple Anionâ€Directed Strategy for Precise Endoplasmic Reticulumâ€Targeted Imaging. Angewandte Chemie - International Edition, 2023, 62, .	13.8	3
3611	Repurposing of waste ammonium sulfate as S,N-doped carbon quantum dots: A sensitive and selective fluorescent probe for the determination of tetracycline. Journal of the Taiwan Institute of Chemical Engineers, 2023, , 105128.	5.3	0
3612	Carbon-dot-triggered aggregation/dispersion of gold nanoparticles for colorimetric detection of nucleic acids and its application in visualization of loop-mediated isothermal amplification. Analytical Methods, 0, , .	2.7	0
3613	Modulating the fluorescence properties of carbon dots by varying the stoichiometricÂratios of citric acid and urea during the synthesis. Materials Today Communications, 2023, 37, 107199.	1.9	0
3614	Green synthesis of N,S-doped carbon dots for tartrazine detection and their antibacterial activities. Analyst, The, 0, , .	3.5	0
3615	Nanoremediation for heavy metal contamination: A review. , 2023, 4, 100091.		3
3616	Size-Dependent Properties of Graphene Quantum Dots. , 2023, , 1-32.		0
3617	N-doped carbon quantum dots obtained by oleylamine through electrochemical routes: structural study and a proof of concept in the employ as a probe for detection of copper through surface-enhanced ultraviolet absorbance (SEUVA). Applied Nanoscience (Switzerland), 0, , .	3.1	2
3618	Investigations on a novel composite phase change material comprising paraffin wax and CQDs for thermal conductivity enhancement. Thermal Science, 2023, , 217-217.	1.1	1
3620	A review of carbon dots in synthesis strategy. Coordination Chemistry Reviews, 2024, 498, 215468.	18.8	12
3621	Hybrid Photocatalyst Nanomaterials in Solar Cell Applications. Advances in Material Research and Technology, 2023, , 221-238.	0.6	0
3622	Unlocking the Molecular Behavior of Natural Amine-Targeted Carbon Quantum Dots for the Synthesis of Diverse Pharmacophore Scaffolds via an Unusual Nanoaminocatalytic Route. ACS Applied Materials & Interfaces, 2023, 15, 49083-49094.	8.0	2
3623	Electrochemically enhanced peroxidase-like activity of nanohybrids for rapid and sensitive detection of H2O2 and Dopamine. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 679, 132576.	4.7	3
3624	Bright solid-state luminescence and high-temperature resistance of Ga-doped carbon dots with ultra-wideband white emission for light-emitting diodes. Dalton Transactions, 0, , .	3.3	0
3625	Preparation of Carbon dots-metal nanoparticles Nanocomposites and Their Application in Heterogeneous Catalysis. Nano Futures, 0, , .	2.2	0

#	Article	IF	CITATIONS
3626	Bi/BiOI/carbon quantum dots nano-sheets with superior photocatalysis. RSC Advances, 2023, 13, 30520-30527.	3.6	2
3627	Photophysical Study of Heteroatom-Doped Carbon Dots-MnO ₂ -Based Nanosensor: Selective Detection of Glutathione in the Nanomolar Level. ACS Applied Bio Materials, 0, , .	4.6	1
3628	Stabilizing Carbon Dot Phosphorescence in Aqueous Solutions by Hydrogen-Bonded Networks for Dual-Wavelength-Driven Information Encryption. ACS Applied Nano Materials, 0, , .	5.0	0
3629	Decorating carbon quantum dots onto VO2 nanorods to boost electron and ion transport kinetics for high–performance zinc–ion batteries. Journal of Energy Storage, 2023, 74, 109340.	8.1	4
3630	Development of aptasensor for chlorpyrifos detection using paper-based screen-printed electrode. Environmental Research, 2023, , 117478.	7.5	0
3631	Recent Advances in Functional Cellulose-based Films with Antimicrobial and Antioxidant Properties for Food Packaging. Journal of Agricultural and Food Chemistry, 2023, 71, 16469-16487.	5.2	2
3632	Carbon Nanomaterial-Based Hydrogels as Scaffolds in Tissue Engineering: A Comprehensive Review. International Journal of Nanomedicine, 0, Volume 18, 6153-6183.	6.7	2
3633	Multicolor Afterglow from Carbon Dots: Preparation and Mechanism. Small Methods, 2024, 8, .	8.6	0
3634	Exploring recent advancements and future prospects on coordination self-assembly of the regulated lanthanide-doped luminescent supramolecular hydrogels. Coordination Chemistry Reviews, 2024, 499, 215486.	18.8	3
3635	Visible-light photopolymerization activated by nanocarbon materials as photocatalysts. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2023, 57, 100637.	11.6	1
3636	Unlocking the Potential of Carbon Quantum Dots for Cell Imaging, Intracellular Localization, and Gene Expression Control in Arabidopsis thaliana (L.) Heynh International Journal of Molecular Sciences, 2023, 24, 15700.	4.1	0
3637	Lateral flow assays for food analyses: Food contaminants, allergens, toxins, and beyond. TrAC - Trends in Analytical Chemistry, 2023, 169, 117418.	11.4	1
3638	Potential application of hybrid forward osmosis – Membrane distillation (FO-MD) system for various water treatment processes. Chemical Engineering Research and Design, 2023, 180, 1023-1052.	5.6	0
3639	Cucurbit[7]uril-based carbon dots for recognizing histamine. Chemical Communications, 2023, 59, 13851-13854.	4.1	0
3640	Waste-derived high-yield biocompatible fluorescent carbon quantum dots for biological and nanofertiliser applications. Journal of Environmental Chemical Engineering, 2023, 11, 111344.	6.7	0
3641	Metal organic framework-derived carbon nanomaterials and MOF hybrids for chemical sensing. TrAC - Trends in Analytical Chemistry, 2024, 170, 117425.	11.4	2
3642	Carbon Dots–TiO ₂ Nanocomposites for the Enhanced Visible‣ight Driven Photodegradation of Methylene Blue. Advanced Sustainable Systems, 2024, 8, .	5.3	0
3643	Synergistic enhancement of potassium permanganate-induced chemiluminescence by nitrogen and silver carbon dots and formaldehyde for selective detection of tannin. Journal of Food Composition and Analysis, 2024, 125, 105792.	3.9	0

#	Article	IF	CITATIONS
3644	Fluorescent Carbon Dots from Snake Plant for Applications as Probe for Optical and Electrochemical Sensing of Hg ²⁺ and Fe ³⁺ and Bioâ€Imaging Agent. ChemistrySelect, 2023, 8, .	1.5	0
3645	Carbon quantum dots conjugated with metal hybrid nanoparticles as advanced electrocatalyst for energy applications – A review. Coordination Chemistry Reviews, 2024, 500, 215499.	18.8	5
3646	Cancer Therapy with Carbon Dots. , 2023, , 301-333.		0
3647	How to guide photocatalytic applications of titanium dioxide co-doped with nitrogen and carbon by modulating the production of reactive oxygen species. Journal of Environmental Chemical Engineering, 2023, 11, 111523.	6.7	0
3648	Applications of Carbon Dots in Ion Sensing. , 2023, , 168-209.		0
3649	Post-functionalization of sulfur quantum dots and their aggregation-dependent antibacterial activity. Nanoscale, 2023, 15, 18624-18638.	5.6	1
3650	Preparation of Microcrystalline Cellulose-Derived Carbon Dots as a Sensor for Fe3+ Detection. Coatings, 2023, 13, 1979.	2.6	1
3651	Photoexcited state properties of N-ethylcarbazole-functionalized carbon dots in solution and in PVK polymer matrix. Chemical Physics Letters, 2023, 833, 140964.	2.6	0
3652	Carbon dots nanoparticles: A promising breakthrough in biosensing, catalysis, biomedical and authers applications. Nano Structures Nano Objects, 2024, 37, 101074.	3.5	1
3653	Challenges and progresses in the chemical investigation of high molecular weight species in condensed pyrolysis products of coal and biomass. Journal of Analytical and Applied Pyrolysis, 2024, 177, 106280.	5.5	0
3654	Simultaneous recognition of dopamine and uric acid in real samples through highly sensitive new electrode fabricated using ZnO/carbon quantum dots: bio-imaging and theoretical studies. Analyst, The, 0, , .	3.5	0
3655	Fe-N coordination moieties regulate the defect formation in carbon nanomaterial for efficient peroxydisulfate activation: Significant role of surface complex. Journal of Environmental Chemical Engineering, 2023, 11, 111585.	6.7	1
3656	Hyperactivation of lipases by immobilization on superhydrophobic graphene quantum dots inorganic hybrid nanoflower. International Journal of Biological Macromolecules, 2024, 254, 127817.	7.5	0
3657	Luminescence properties of CQDs and photocatalytic properties of TiO2/ZnO/CQDs ternary composites. Journal of Materials Science: Materials in Electronics, 2023, 34, .	2.2	0
3658	Recent Advances in Chemically Engineered Nanostructures Impact on Ischemic Stroke Treatment. ACS Omega, 2023, 8, 45188-45207.	3.5	0
3659	Development of ionic liquid-capped carbon dots derived from Tecoma stans (L.) Juss. ex Kunth: Combatting bacterial pathogens in diabetic foot ulcer pus swabs, targeting both standard and multi-drug resistant strains. South African Journal of Botany, 2023, 163, 412-426.	2.5	1
3660	Self-assembly of polysaccharide nanocrystals: from aggregation in suspensions to optical materials. Progress in Polymer Science, 2024, 148, 101768.	24.7	0
3661	Multifunctional Fluorescent Self-Healing Elastomers Consisting of Polydimethylsiloxane and Carbon Dots Linked via a Schiff Base Reaction. ACS Applied Polymer Materials, 2023, 5, 10458-10468.	4.4	2

#	Article	IF	CITATIONS
3662	Electrocatalytic behavior of carbon quantum dots in sustainable applications: A review. Current Opinion in Electrochemistry, 2024, 43, 101436.	4.8	0
3663	IN SILICO, ANTIMICROBIAL AND CYTOTOXIC STUDIES OF CARBOXAMIDE DERIVATIVES AND THEIR GREEN SYNTHESIS. Indian Drugs, 2023, 60, 19-31.	0.1	0
3664	Cost-efficient and ultrasensitive hydrogel-based visual point-of-care sensor integrated with surface patterning and strongly emissive carbon dots directly from Prunus mume Carbonisatus. Sensors and Actuators B: Chemical, 2024, 401, 134958.	7.8	2
3665	Spectrofluorometric quantitative analysis of aripiprazole based on quenching of natural derived carbon quantum dots in spiked human plasma. Scientific Reports, 2023, 13, .	3.3	0
3666	Carbon quantum dots: organic–inorganic perovskite composites for optoelectronic applications. Journal of Materials Science: Materials in Electronics, 2023, 34, .	2.2	0
3667	Recent advances in fluorescence nanoparticles "quantum dots―as gene delivery system: A review. International Journal of Biological Macromolecules, 2024, 254, 127802.	7.5	3
3668	Rapid environmentally benign label free detection of heparin using highly fluorescent N,S-CDs sensing probe through a turn-on mechanism. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2024, 306, 123609.	3.9	2
3669	Studying the structural, electrical, and optical properties of carbon quantum dot prepared by the electro-chemical method. Journal of Optics (India), 0, , .	1.7	0
3670	Ultra-trace analysis of chromium ions (Cr3+/Cr6+) in water sample using selective fluorescence turn-off sensor with natural carbon dots mixed graphene quantum dots nanohybrid composite synthesis by pyrolysis. Arabian Journal of Chemistry, 2024, 17, 105443.	4.9	0
3671	Nano-based theranostic approaches for infection control: current status and perspectives. Materials Chemistry Frontiers, 2023, 8, 9-40.	5.9	0
3672	0D-carbon-quantum-dots/2D-MoS2 mixed-dimensional heterojunction transistor for emulating pulsatile photoelectric therapy of visual amnesic behaviors. Science China Materials, 2023, 66, 4814-4824.	6.3	0
3673	CQTDs/SiO2NPs nanocomposite for Pb2+ and Cd2+ remediation and reuse applications in LFP detection and photocatalysis. , 2023, 4, 100118.		0
3675	Enhancing the visible light absorption of MOF-808 by surface decoration with sulfur and nitrogen co-doped carbon quantum dots: Highly efficient photocatalyst for improved photocatalytic water remediation. Applied Surface Science, 2024, 648, 159014.	6.1	1
3676	Room temperature cost-effective synthesis of carbon quantum dots for fluorescence pattern recognition of metal ions. Analyst, The, 2024, 149, 410-417.	3.5	1
3677	One-step synthesis of N, S-doped carbon dots with green emission and their application in 4-NP detection, pH sensing, and cell imaging. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2024, 308, 123709.	3.9	0
3678	Synthesis of nitrogen-doped carbon dots as type II photosensitizers for photooxidation reactions of thioanisoles and styrenes. Molecular Catalysis, 2024, 553, 113749.	2.0	0
3679	Bifunctional fluorescent molecularly imprinted resin based on carbon dot for selective detection and enrichment of 2,4-dichlorophenoxyacetic acid in lettuce. Food Chemistry, 2024, 439, 138167.	8.2	0
3680	Confronting antibiotic-resistant pathogens: Distinctive drug delivery potentials of progressive nanoparticles. Microbial Pathogenesis, 2024, 187, 106499.	2.9	1

#	Article	IF	CITATIONS
3681	Recent advancements towards the green synthesis of carbon quantum dots as an innovative and eco-friendly solution for metal ion sensing and monitoring. , 2024, 2, 11-36.		1
3682	Application of Fluorescent Carbon Dots as Catalysts for the Ring-Opening Reaction of Epoxides. Materials, 2023, 16, 7620.	2.9	0
3683	Illuminating new frontiers: Harnessing nanoscale photocatalysis for sustainable C-H functionalization reactions with visible light. Coordination Chemistry Reviews, 2024, 502, 215607.	18.8	0
3684	A Review on Development of Carbon-Based Nanomaterials for Energy Storage Devices: Opportunities and Challenges. Energy & amp; Fuels, 2023, 37, 19433-19460.	5.1	1
3685	Engineering extracellular electron transfer pathways of electroactive microorganisms by synthetic biology for energy and chemicals production. Chemical Society Reviews, 2024, 53, 1375-1446.	38.1	2
3686	Carbon-Based Nanomaterials Decorated Electrospun Nanofibers in Biosensors: A Review. ACS Omega, 0, , .	3.5	0
3687	Comparison of Toxicity and Cellular Uptake of CdSe/ZnS and Carbon Quantum Dots for Molecular Tracking Using Saccharomyces cerevisiae as a Fungal Model. Nanomaterials, 2024, 14, 10.	4.1	0
3688	Achieving tunable time-dependent delayed emission color via dynamic competition between the matrix and carbon dots for anti-counterfeiting and multidimensional encryption. Chemical Engineering Journal, 2024, 479, 147808.	12.7	1
3689	Metallic nanostructures-based aptasensors for robust detection of proteins. Nanoscale Advances, 0, ,	4.6	1
3690	Dual-functional membranes of CQDs/TiO2 @PI/PES nanofibers for the high filter efficiency of ultrafine particles and photocatalytic activity. Journal of Environmental Chemical Engineering, 2024, 12, 111680.	6.7	1
3691	Carbon dots enhanced interfacial electron storage and transfer of iron phosphide for productively photocatalytic water splitting. Applied Surface Science, 2024, 649, 159153.	6.1	0
3692	Polyfluoroalkyl Substances (PFASs) Detection Via Carbon Dots: A Review. Sustainable Chemistry, 2023, 4, 339-362.	4.7	0
3693	Synthesis of carbon quantum dots from Trigonella foenum-graecum L seeds and their biodistribution in mice as an inorganic isotope label. Inorganic Chemistry Communication, 2024, 160, 111937.	3.9	0
3694	Highly luminescent heteroatom codoped carbon dots for multitudinous applications. Materials Today Communications, 2024, 38, 107895.	1.9	0
3695	Zinc-Reduced Carbon Quantum Dots as Color-Conversion Materials in Blue Light-Emitting Diodes. ACS Applied Nano Materials, 0, , .	5.0	0
3696	Effect of doping of organo-soluble carbon dots on ionic relaxation and conductivity of planar anchored cyanobiphenyl based nematic liquid crystal. Journal of Molecular Structure, 2024, 1301, 137403.	3.6	0
3698	Nitrogenâ€doped Carbon Dots as Efficient Photocatalysts for High Selectivity of Dehalogenative Oxyalkylation of Styrene. ChemSusChem, 0, , .	6.8	0
3699	A wearable self-powered microneedle system based on conductive drugs for infected wound healing: A new electrical stimulation delivery strategy. Chemical Engineering Journal, 2024, 480, 148347.	12.7	4

CITATION REPORT ARTICLE IF CITATIONS Utilization of carbon-based nanomaterials for wastewater treatment and biogas enhancement: A 8.2 0 state-of-the-art review. Chemosphere, 2024, 350, 141008. Carbon-based Nanozymes: How Structure Affects Performance. Nano Biomedicine and Engineering, 2024, 16, 28-47. Constructing of GQDs/ZnO S-scheme heterojunction as efficient piezocatalyst for environmental 10.3 3 remediation and understanding the charge transfer mechanism. Carbon, 2024, 218, 118772. Injectable Hydrogel Incorporated with Ironâ€Doped Carbon Dots Exhibiting Peroxidaseâ€Like Activity for Antibacterial Therapy and Wound Healing. Advanced Therapeutics, 2024, 7, . Low-cost bio-waste carbon nanocomposites for sustainable electrochemical devices: A systematic 1.9 0 review. Materials Today Communications, 2024, 38, 108034. L-arginine and 1,4-Butanediol conjugated highly ordered nitrogen doped carbon dots as photoluminescent probe for "turn off†based detection of organic pollutants in real sample matrices. Inorganic Chemistry Communication, 2024, 161, 112049. Opposite regulation effects of Al³⁺ on different types of carbon quantum dots and 3.6 0 potential applications in information encryption. RSC Advances, 2024, 14, 1944-1951. Thin-Film Composite Polyamide Membranes Decorated with Photoactive Carbon Dots for Antimicrobial 5.0 Applications. ACS Applied Nano Materials, 2024, 7, 1477-1490. Emerging pathways in environmentally friendly synthesis of carbon-based quantum dots for exploring 3.9 1 antibacterial resistance. Inorganic Chémistry Communication, 2024, 161, 112012. Carrageenan-based active and intelligent packaging films integrated with anthocyanin and TiO2-doped carbon dots derived from sweet potato peels. International Journal of Biological Macromolecules, 2024, 259, 129371. Current advancement in nanomaterial-based emerging techniques for the determination of aminoglycosides antibiotics for antibiotic resistance surveillances. Materials Advances, 2024, 5, 0 5.4961-985. Advancement in nanomaterials for environmental pollutants remediation: a systematic review on bibliometrics analysis, material types, synthesis pathways, and related mechanisms. Journal of 9.1 Nanobiotechnology, 2024, 22, Graphene quantum dots and carbon nanodots: modeling of zero-dimensional carbon nanomaterials. 1 2024, , 411-482. Carbon quantum dots in bioimaging and biomedicines. Frontiers in Bioengineering and Biotechnology, 4.1 0, 11, . Recent advances on magnetic carbon-related materials in advanced oxidation processes of emerging 0 3.9 pollutants degradation. Water Resources and Industry, 2024, 31, 100241. Structural Features of Carbon Dots and Their Agricultural Potential. ACS Omega, 2024, 9, 4166-4185. Multifunctional nanocomposites for targeted drug delivery in breast cancer therapy., 2024, , 139-177. 0

3717	Synthesizing Benzotriazole Group-Terminated Carbon Dots as Multifunctional Additives of Poly(ethylene glycol). Langmuir, 2024, 40, 1922-1930.	3.5	0
------	---	-----	---

3700

3701

3702

3703

3704

3706

3708

3709

3710

3711

3712

3713

3714

#	Article	IF	CITATIONS
3718	Controlled Synthesis of Carbon Quantum Dots. , 2024, , 1-43.		0
3719	Ultra-sensitive electrochemiluminescence monitoring of microRNA via Triton X-100 functionalized carbon dots-based nanocomposites. Sensors and Actuators B: Chemical, 2024, 405, 135314.	7.8	0
3721	Asymmetric 1D and 2D tunneling induced grating in Quantum Dot system. Optics and Laser Technology, 2024, 172, 110484.	4.6	0
3722	Double Emissions in Boron-Doped Carbon Dots for Anticounterfeiting Applications. ACS Applied Nano Materials, 2024, 7, 2304-2311.	5.0	0
3723	Assessment of the correlation between optical properties and CQD preparation approaches. European Physical Journal Plus, 2024, 139, .	2.6	2
3724	High Quantum Yield Amino Acid Carbon Quantum Dots with Unparalleled Refractive Index. ACS Nano, 2024, 18, 2421-2433.	14.6	1
3725	Black gram husk-derived carbon dots: characterization and catalytic dye reduction activities. Clean Technologies and Environmental Policy, 0, , .	4.1	0
3726	CARBON DOTS: Bioimaging and Anticancer Drug Delivery. Chemistry - A European Journal, 2024, 30, .	3.3	0
3727	Facile synthesis of biomass derived economically viable carbon dot polymer nanocomposite: A perspective towards sustainable removal of dyes from synthetic wastewater. Journal of Water Process Engineering, 2024, 58, 104748.	5.6	0
3728	Photocatalytic activity of hollow mesoporous SiO2-BiOI/CQDs photocatalyst under visible light. Journal of Molecular Liquids, 2024, 396, 124028.	4.9	0
3729	Exploring forward scattering mechanisms in TiO2 with carbon quantum dots: Insights into photovoltaic applications. Optical Materials, 2024, 148, 114922.	3.6	0
3730	Redox properties of zero-dimensional carbon–based nanomaterials. , 2024, , 249-290.		0
3731	Carbon dot enhanced peroxidase-like activity of platinum nanozymes. Nanoscale, 2024, 16, 4637-4646.	5.6	0
3732	Carbon-based nanomaterials for photocatalytic application. , 2024, , 153-178.		0
3733	Multifunctional graphene quantum dots: A therapeutic strategy for neurodegenerative diseases by regulating calcium influx, crossing the blood-brain barrier and inhibiting AÎ ² -protein aggregation. Applied Materials Today, 2024, 36, 102072.	4.3	0
3734	Two birds with one stone: Facile fabrication of a ternary ZnIn2S4/BiVO4/MWCNTs nanocomposite for photocatalytic detoxification of priority organic pollutants and hydrogen production with a proposed mechanism. Journal of Alloys and Compounds, 2024, 980, 173615.	5.5	0
3735	Applications of zero-dimensional carbon nanomaterials in water treatment. , 2024, , 577-609.		0
3736	Dual-use of sodium alginate to prepare sodium algenate -derived carbon dots sodium algenate hydrogel composite for Pb2+ removal. Applied Surface Science, 2024, 654, 159416.	6.1	0

# 3737	ARTICLE Molecular surface-dependent light harvesting and photo charge separation in plant-derived carbon quantum dots for visible-light-driven OH radical generation for remediation of aromatic hydrocarbon pollutants and real wastewater. Journal of Colloid and Interface Science, 2024, 660, 756-770.	IF 9.4	Citations 0
3738	Electrochemical immuno-biosensors for the detection of the tumor marker alpha-fetoprotein: A review. Talanta, 2024, 271, 125638.	5.5	0
3739	Advanced nanostructured material-based biosensors in clinical and forensic diagnosis. , 2024, , 429-461.		0
3740	Electronic properties of zero-dimensional carbon–based nanomaterials. , 2024, , 185-248.		0
3741	Nanomaterials: fundamentals and applications. , 2024, , 403-436.		0
3742	Modern trends in carbon nanostructured material-based electrochemical biosensing systems. , 2024, , 21-36.		0
3743	Antibiotics-free nanomaterials against bacterial keratitis: Eliminating infections with reactive oxygen species (ROS). Chemical Engineering Journal, 2024, 482, 148978.	12.7	0
3744	Correlation between surface structure of carbon dots and selective detection of heavy metal ions. Applied Physics A: Materials Science and Processing, 2024, 130, .	2.3	0
3745	Application of Nanofillers in Drug Delivery Industry. , 2024, , 1-41.		0
3746	Biocidal polymer derived near white lightâ€emitting polymeric carbon particles for antibacterial and bioimaging applications*. Photochemistry and Photobiology, 0, , .	2.5	0
3747	Rational Design of Full-Color Fluorescent C ₃ N Quantum Dots. Journal of Physical Chemistry Letters, 2024, 15, 1161-1171.	4.6	0
3749	Carbon dots derived from metformin by electrochemical synthesis with broad-spectrum antibacterial properties. Journal of Materials Chemistry B, 2024, 12, 2346-2353.	5.8	0
3750	Castor seed-derived luminescent carbon nanoparticles for metal ion detection and temperature sensing applications. Physica Scripta, 2024, 99, 035405.	2.5	1
3751	The promising role of doped h-BANDs for solar cells application: A DFT study. Journal of Photochemistry and Photobiology A: Chemistry, 2024, 451, 115499.	3.9	0
3752	Carbon Dots as New Effective Catalysts for Knoevenagel Condensation Reaction and Synthesis of Cyclic Carbonates under Solventâ€free Conditions. ChemistrySelect, 2024, 9, .	1.5	0
3753	Cobalt/carbon quantum dots core-shell nanoparticles as an improved catalyst for Fenton-like reaction. Nano Structures Nano Objects, 2024, 37, 101097.	3.5	0
3754	Fluorescence enhancing and quenching signal based on new approach for selective detection of multiple organochlorine pesticides using blue emissive-carbon dot. Environmental Pollution, 2024, 345, 123418.	7.5	0
3755	Catalytic Nanodotsâ€Ðriven Pyroptosis Suppression in Nucleus Pulposus for Antioxidant Intervention of Intervertebral Disc Degeneration. Advanced Materials, 0, , .	21.0	0

#	Article	IF	Citations
3756	Synergistic Effects of UV Irradiation on a Flexible Ag/NCQDs-MoS ₂ /Ag/Kapton Resistive-Switching Memory Device. ACS Applied Electronic Materials, 2024, 6, 875-886.	4.3	0
3757	Nanomaterials in optical sensing. , 2024, , 447-481.		0
3758	Carbon nanodots from orange peel waste as fluorescent probes for detecting nitrobenzene. , 2024, 2, 933-942.		0
3759	The future of plant based green carbon dots as cancer Nanomedicine: From current progress to future Perspectives and beyond. Journal of Advanced Research, 2024, , .	9.5	1
3760	Research Progress of Nanomaterials for Prevention, Diagnosis, and Treatment of SARS-CoV-2. BioNanoScience, 0, , .	3.5	0
3761	Zeroâ€Dimensional Carbon Nanomaterials for Electrochemical Energy Storage. ChemElectroChem, 0, , .	3.4	0
3762	Emerging Stoke's Shift-Based Cr(VI) Fingerprint Sensor from Intensely Blue Fluorescent, High Quantum Yield, Pepitas-Derived Carbon Dots. , 2024, 2, 291-300.		0
3763	Nitrogen-doped carbon dots as photocatalysts for organic synthesis: Effect of nitrogen content on catalytic activity. Nano Research, 0, , .	10.4	0
3764	Palladium-platinum nanostructures from fenugreek extract for Suzuki coupling reaction. Inorganic Chemistry Communication, 2024, 162, 112177.	3.9	0
3765	Portable optical fiber biosensors integrated with smartphone: technologies, applications, and challenges [Invited]. Biomedical Optics Express, 2024, 15, 1630.	2.9	0
3766	A review on recent advancements in the growth of MoS2 based flexible photodetectors. Solar Energy Materials and Solar Cells, 2024, 268, 112736.	6.2	0
3767	Effective Performance of Derived Sustainable Lupine Carbon Quantum Dots as a Superior Inhibitor Material for Carbon Steel Corrosion in a Hydrochloric Acidic Environment (1.0 Molar). Industrial & Engineering Chemistry Research, 2024, 63, 2901-2915.	3.7	0
3768	Grafting Carbon Dots on Persistent Luminescence Phosphors to Generate Remarkably Improved NIR Afterglow for Microenvironment Fluorescence Detection. Advanced Optical Materials, 0, , .	7.3	0
3769	Versatile P-doped carbon quantum dots derived from green precursor: an efficient metal ion sensor and photocatalytic behaviourÂin aqueous environment. Research on Chemical Intermediates, 2024, 50, 1873-1893.	2.7	0
3770	Multifunctional fire-resistant and flame-triggered shape memory epoxy nanocomposites containing carbon dots. Chemical Engineering Journal, 2024, 484, 149327.	12.7	0
3771	Facile cost-effective green synthesis of carbon dots: selective detection of biologically relevant metal ions and synergetic efficiency for treatment of cancer. Biomedical Materials (Bristol), 2024, 19, 025043.	3.3	0
3773	The Rise of Boron-Containing Compounds: Advancements in Synthesis, Medicinal Chemistry, and Emerging Pharmacology. Chemical Reviews, 2024, 124, 2441-2511.	47.7	1
3774	Carbon-Based Nanostructures as Emerging Materials for Gene Delivery Applications. Pharmaceutics, 2024, 16, 288.	4.5	0

#	Article	IF	Citations
3775	Quantum dots as fabricating materials for supercapacitors. Journal of Alloys and Compounds, 2024, 985, 173947.	5.5	0
3776	Smartphone Platform for Low-Cost Point-of-Care Quantitative Detection of Vitamin B ₁₂ Utilizing a Biodegradable Bioplastic Nanocomposite-Based Fluorescence Nanosensor. ACS Applied Electronic Materials, 2024, 6, 1971-1981.	4.3	0
3777	Rational design of complex quantum dots decorated ceria nanorods for efficient visible-light driven nitrogen fixation. Journal of Environmental Chemical Engineering, 2024, 12, 112304.	6.7	0
3778	Biomass-based carbon quantum dots and their agricultural applications. Plant Stress, 2024, 11, 100411.	5.5	0
3779	Sulfur and nitrogen co-doped carbon quantum dots/polyurethane nanocomposite as a new fluorescent sensor for highly sensitive and selective detection of toxic mercury (II) ions. Iranian Polymer Journal (English Edition), 2024, 33, 773-786.	2.4	0
3780	Investigations on paraffin wax/CQD composite phase change material - Improved latent heat and thermal stability. Journal of Energy Storage, 2024, 85, 111056.	8.1	0
3781	Separation and purification of fluorescent carbon dots – an unmet challenge. Analyst, The, 2024, 149, 1680-1700.	3.5	0
3782	Machine-Learning-Enhanced Fluorescent Nanosensor Based on Carbon Quantum Dots for Heavy Metal Detection. ACS Applied Nano Materials, 2024, 7, 5576-5586.	5.0	0
3783	Carbon/graphene quantum dots as electrolyte additives for batteries and supercapacitors: A review. Journal of Energy Storage, 2024, 85, 111040.	8.1	0
3784	In situ construction of N-doped hollow carbon nanotubes anchored Co nanoparticles for bifunctional ORR/OER electrocatalyst. International Journal of Hydrogen Energy, 2024, 61, 203-209.	7.1	0
3785	The Emerging Next-Generation Materials for Biomedical Applications. Advances in Chemical and Materials Engineering Book Series, 2024, , 1-10.	0.3	0
3786	Crystal-phase engineering of BiVO4 induced by N-doped carbon quantum dots for photocatalytic application. Journal of Materials Science, 2024, 59, 4118-4135.	3.7	0
3787	A Luminescent Cd-MOF Used as a Chemosensor for High-Efficiency Sensing of Fe ³⁺ , Cr(IV), Trinitrophenol, and Colchicine. ACS Omega, 2024, 9, 11339-11346.	3.5	0
3788	Radiation-convective heat transfer and performance analysis of a parallel-plates duct direct absorption solar heat collection system. Applied Thermal Engineering, 2024, 245, 122796.	6.0	0
3789	N, S co-doped carbon dots for fluorescent and colorimetric dual-mode detection of Co(II) in actual water. Journal of Industrial and Engineering Chemistry, 2024, , .	5.8	0
3790	Recent advances of carbon dots based emerging materials for supercapacitors applications. Journal of Energy Storage, 2024, 85, 111118.	8.1	0
3791	Formulation and evaluation of anti-osteoarthritic, cytotoxicity and antioxidant effects of carbon dots derived Allium sativum L. leaf extract. AEJ - Alexandria Engineering Journal, 2024, 92, 231-237.	6.4	0
3792	Investigation of advanced biological properties of carbon, carbonâ€boron quantum dots, and copper (II) phthalocyanine nanoconjugates. Applied Organometallic Chemistry, 2024, 38,	3.5	0

#	Article	IF	CITATIONS
3793	Fluorescent carbon quantum dots with controllable physicochemical properties fantastic for emerging applications: A review. , 2024, 3, 245-284.		0
3794	Review of Opportunities and Challenges for Food Waste Circular Economy Advancement via Hydrothermal Carbonization. Chemical Engineering Research and Design, 2024, , .	5.6	0
3795	Nanoparticleâ€Empowered Core–Shell Microcapsules: From Architecture Design to Fabrication and Functions. Small, 0, , .	10.0	0
3796	Afterglow of Dualâ€Confined Carbon Dots Ranging from Blue to Nearâ€Infrared. Advanced Functional Materials, 0, , .	14.9	0
3797	Arsenic field test kits based on solid-phase fluorescence filter effect induced by silver nanoparticle formation. Journal of Hazardous Materials, 2024, 470, 134038.	12.4	0
3798	Carbon Nanomaterial Fluorescent Probes and Their Biological Applications. Chemical Reviews, 2024, 124, 3085-3185.	47.7	0
3799	One-step microwave synthesis of high-efficiency solid-state luminescent carbon dots with aggregation-induced emission. Optical Materials, 2024, 150, 115219.	3.6	0
3800	Molecular and Supramolecular Materials: From Light-Harvesting to Quantum Information Science and Technology. Journal of Physical Chemistry Letters, 2024, 15, 3294-3316.	4.6	0
3801	Ultra-broadband triple-peak white light-emitting carbonized polymer dots materials based on Förster resonance energy transfer. Journal of Luminescence, 2024, 271, 120561.	3.1	0
3802	Carbon quantum dots: A comprehensive review of green Synthesis, characterization and investigation their applications in bioimaging. Inorganic Chemistry Communication, 2024, 162, 112279.	3.9	0
3803	Green synthesis of carbon quantum dots from teak leaves biomass for in situ precipitation and regenerative-removal of methylene blue-dye. Environmental Science and Pollution Research, 0, , .	5.3	0
3804	Sensing, detoxification and bactericidal applications of nitrogen-doped carbon dots. Diamond and Related Materials, 2024, 144, 111013.	3.9	0
3805	A review on synthesis, challenges as well as future prospects of graphene quantum dot (GQD). Pramana - Journal of Physics, 2024, 98, .	1.5	0
3806	Exploring the Application of Graphene Oxide-Based Nanomaterials in the Repair of Osteoporotic Fractures. Nanomaterials, 2024, 14, 553.	4.1	0
3807	First-principles study of penta-CN2 quantum dots for efficient Hydrogen Evolution Reaction. International Journal of Hydrogen Energy, 2024, 63, 517-527.	7.1	0
3808	Formulation of double nanoemulsions based on pH-sensitive carboxymethyl cellulose /Starch copper doped carbon quantum dots for quercetin controlled release. Journal of Molecular Liquids, 2024, 400, 124543.	4.9	0
3809	Carbon-based composites in biomedical applications: a comprehensive review of properties, applications, and future directions. Advanced Composites and Hybrid Materials, 2024, 7, .	21.1	0
3810	Carbon Quantum Dots Confined into Covalent Triazine Frameworks for Efficient Overall Photocatalytic H ₂ O ₂ Production. Advanced Functional Materials, 0, , .	14.9	0

#	Article	IF	CITATIONS
3811	A Dual-Functional BSA-MnO ₂ Quantum Dots-Based Ratiometric Sensor for the Detection of Acid Phosphatase. ACS Applied Nano Materials, 2024, 7, 8299-8306.	5.0	0