Novel drugs for older patients with acute myeloid leuke

Leukemia 29, 760-769 DOI: 10.1038/leu.2014.244

Citation Report

#	Article	IF	CITATIONS
1	Panobinostat as part of induction and maintenance for elderly patients with newly diagnosed acute myeloid leukemia: phase lb/II panobidara study. Haematologica, 2015, 100, 1294-1300.	1.7	27
2	The interplay of autophagy and β-Catenin signaling regulates differentiation in acute myeloid leukemia. Cell Death Discovery, 2015, 1, 15031.	2.0	26
3	Myelodysplastic syndromes: 2015 Update on diagnosis, riskâ€stratification and management. American Journal of Hematology, 2015, 90, 831-841.	2.0	101
4	Volasertib for AML: clinical use and patient consideration. OncoTargets and Therapy, 2015, 8, 1761.	1.0	13
5	Idarubicin, cytarabine, and pravastatin as induction therapy for untreated acute myeloid leukemia and highâ€risk myelodysplastic syndrome. American Journal of Hematology, 2015, 90, 483-486.	2.0	21
6	Design of FLT3 Inhibitor - Gold Nanoparticle Conjugates as Potential Therapeutic Agents for the Treatment of Acute Myeloid Leukemia. Nanoscale Research Letters, 2015, 10, 466.	3.1	29
7	The ferroptosis inducer erastin enhances sensitivity of acute myeloid leukemia cells to chemotherapeutic agents. Molecular and Cellular Oncology, 2015, 2, e1054549.	0.3	301
8	ARHGEF3 controls HDACi-induced differentiation via RhoA-dependent pathways in acute myeloid leukemias. Epigenetics, 2015, 10, 6-18.	1.3	29
10	BCL-2 is dispensable for thrombopoiesis and platelet survival. Cell Death and Disease, 2015, 6, e1721-e1721.	2.7	68
11	Novel Therapeutics for Therapy-Related Acute Myeloid Leukemia: 2014. Clinical Lymphoma, Myeloma and Leukemia, 2015, 15, S91-S93.	0.2	10
12	Drugging the unfolded protein response in acute leukemias. Journal of Hematology and Oncology, 2015, 8, 87.	6.9	22
14	Metabolomics profiles delineate uridine deficiency contributes to mitochondria-mediated apoptosis induced by celastrol in human acute promyelocytic leukemia cells. Oncotarget, 2016, 7, 46557-46572.	0.8	24
15	Prognostic and therapeutic role of targetable lesions in B-lineage acute lymphoblastic leukemia without recurrent fusion genes. Oncotarget, 2016, 7, 13886-13901.	0.8	20
16	Therapeutic Resistance in Acute Myeloid Leukemia: The Role of Non-Coding RNAs. International Journal of Molecular Sciences, 2016, 17, 2080.	1.8	58
17	Quantitative proteomic analysis of histone modifications in decitabine sensitive and resistant leukemia cell lines. Clinical Proteomics, 2016, 13, 14.	1.1	11
19	Cabozantinib is selectively cytotoxic in acute myeloid leukemia cells with FLT3-internal tandem duplication (FLT3-ITD). Cancer Letters, 2016, 376, 218-225.	3.2	28
20	Panobinostat for the treatment of acute myelogenous leukemia. Expert Opinion on Investigational Drugs, 2016, 25, 1117-1131.	1.9	23
21	NKCT1 (purified Naja kaouthia protein toxin) conjugated gold nanoparticles induced Akt/mTOR inactivation mediated autophagic and caspase 3 activated apoptotic cell death in leukemic cell. Toxicon, 2016, 121, 86-97.	0.8	19

#	Article	IF	CITATIONS
22	The role of the gastrointestinal microbiome in infectious complications during induction chemotherapy for acute myeloid leukemia. Cancer, 2016, 122, 2186-2196.	2.0	121
23	Targeting transcription factors by small compounds—Current strategies and future implications. Biochemical Pharmacology, 2016, 107, 1-13.	2.0	69
24	Role of drug transport and metabolism in the chemoresistance of acute myeloid leukemia. Blood Reviews, 2016, 30, 55-64.	2.8	39
25	Anti-mitotic agents: Are they emerging molecules for cancer treatment?. , 2017, 173, 67-82.		55
26	Characterization of oral and gut microbiome temporal variability in hospitalized cancer patients. Genome Medicine, 2017, 9, 21.	3.6	80
27	Low-dose lenalidomide plus cytarabine in very elderly, unfit acute myeloid leukemia patients: Final result of a phase II study. Leukemia Research, 2017, 62, 77-83.	0.4	15
28	Inhibition of Suicidal Erythrocyte Death by Volasertib. Cellular Physiology and Biochemistry, 2017, 43, 1472-1486.	1.1	10
30	Targeting acute myeloid leukemia with TP53-independent vosaroxin. Future Oncology, 2017, 13, 125-133.	1.1	5
31	Immunotherapy in Pediatric Acute Leukemia: A Novel Magic Bullet or an Illusory Hope?. , 0, , .		0
32	Efficacy and safety of decitabine in treatment of elderly patients with acute myeloid leukemia: A systematic review and meta-analysis. Oncotarget, 2017, 8, 41498-41507.	0.8	58
33	Establishment of a high-throughput detection system for DNA demethylating agents. Epigenetics, 2018, 13, 147-155.	1.3	10
34	Myelodysplastic syndromes: 2018 update on diagnosis, riskâ€stratification and management. American Journal of Hematology, 2018, 93, 129-147.	2.0	154
35	Overexpression of TEL-MN1 Fusion Enhances Resistance of HL-60 Cells to Idarubicin. Chemotherapy, 2018, 63, 308-314.	0.8	1
36	Natural Products as Sources of Anticancer Agents: Current Approaches and Perspectives. , 2018, , 309-331.		10
37	Therapy-Related Acute Myelogenous Leukemia. , 2018, , 465-482.		0
38	Therapeutic Antibodies for Myeloid Neoplasms—Current Developments and Future Directions. Frontiers in Oncology, 2018, 8, 152.	1.3	30
39	Inhibition of protein disulfide isomerase induces differentiation of acute myeloid leukemia cells. Haematologica, 2018, 103, 1843-1852.	1.7	8
40	Advances in treatment formulations for acute myeloid leukemia. Drug Discovery Today, 2018, 23, 1936-1949.	3.2	40

CITATION REPORT

#	Article	IF	Citations
41	New drugs in AML: uses and abuses. Leukemia, 2018, 32, 1479-1481.	3.3	12
42	Realâ€world experience with decitabine as a firstâ€ŀine treatment in 306 elderly acute myeloid leukaemia patients unfit for intensive chemotherapy. Hematological Oncology, 2019, 37, 447-455.	0.8	25
43	Exploiting metabolic vulnerabilities for personalized therapy in acute myeloid leukemia. BMC Biology, 2019, 17, 57.	1.7	31
44	Oncoprotein Inhibitor Rigosertib Loaded in ApoE-Targeted Smart Polymersomes Reveals High Safety and Potency against Human Glioblastoma in Mice. Molecular Pharmaceutics, 2019, 16, 3711-3719.	2.3	32
45	Pilot Study on the Cost of Some Oncohematology Diseases in Bulgaria. Frontiers in Public Health, 2019, 7, 70.	1.3	2
46	HDAC Inhibitors in Acute Myeloid Leukemia. Cancers, 2019, 11, 1794.	1.7	118
47	A glimmer of hope for older people with acute myeloid leukaemia. Lancet Haematology,the, 2020, 7, e700-e701.	2.2	0
48	Targeting Pharmacokinetic Drug Resistance in Acute Myeloid Leukemia Cells with CDK4/6 Inhibitors. Cancers, 2020, 12, 1596.	1.7	13
49	LT-171-861, a novel FLT3 inhibitor, shows excellent preclinical efficacy for the treatment of FLT3 mutant acute myeloid leukemia. Theranostics, 2021, 11, 93-106.	4.6	13
50	Targeting LSD1 for acute myeloid leukemia (AML) treatment. Pharmacological Research, 2021, 164, 105335.	3.1	44
51	The role of CD44 in cancer chemoresistance: A concise review. European Journal of Pharmacology, 2021, 903, 174147.	1.7	49
52	Zwitterion-functionalized hollow mesoporous Prussian blue nanoparticles for targeted and synergetic chemo-photothermal treatment of acute myeloid leukemia. Journal of Materials Chemistry B, 2021, 9, 5245-5254.	2.9	15
53	Epimutational profile of hematologic malignancies as attractive target for new epigenetic therapies. Oncotarget, 2016, 7, 57327-57350.	0.8	24
54	Azacitidine or intensive chemotherapy for older patients with secondary or therapy-related acute myeloid leukemia. Oncotarget, 2017, 8, 79126-79136.	0.8	30
55	Cancer-selective cytotoxic Ca2+ overload in acute myeloid leukemia cells and attenuation of disease progression in mice by synergistically acting polyphenols curcumin and carnosic acid. Oncotarget, 2016, 7, 31847-31861.	0.8	52
56	Development of personalized molecular therapy for acute myeloid leukemia. Current Pharmaceutical Biotechnology, 2015, 17, 20-29.	0.9	4
57	Gold Nanorods Exhibit Intrinsic Therapeutic Activity via Controlling <i>N</i> 6-Methyladenosine-Based Epitranscriptomics in Acute Myeloid Leukemia. ACS Nano, 2021, 15, 17689-17704.	7.3	36
58	Akute LeukÃ m ien des Erwachsenen. , 2016, , 119-133.		0

CITATION REPORT

#	Article	IF	CITATIONS
59	Hypomethylating Agents in Oncohematology. Klinicheskaya Onkogematologiya/Clinical Oncohematology, 2016, 9, 369-382.	0.1	2
61	Purine-based anticancer drugs. , 2022, , 69-105.		1
62	The Increase in the Drug Resistance of Acute Myeloid Leukemia THP-1 Cells in High-Density Cell Culture Is Associated with Inflammatory-like Activation and Anti-Apoptotic Bcl-2 Proteins. International Journal of Molecular Sciences, 2022, 23, 7881.	1.8	6
63	HDAC inhibitors suppress protein poly(ADP-ribosyl)ation and DNA repair protein levels and phosphorylation status in hematologic cancer cells: Implications for their use in combination with PARP inhibitors and chemotherapeutic drugs. Oncotarget, 2022, 13, 1122-1135.	0.8	5