Investigation on interaction between Ligupurpuroside docking methods

Spectrochimica Acta - Part A: Molecular and Biomolecular Spe 135, 256-263

DOI: 10.1016/j.saa.2014.06.087

Citation Report

#	Article	IF	Citations
1	The soluble recombinant N-terminal domain of HMW 1Dx5 and its aggregation behavior. Food Research International, 2015, 78, 201-208.	2.9	23
2	Molecular interactions of flavonoids to pepsin: Insights from spectroscopic and molecular docking studies. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 151, 576-590.	2.0	39
3	Investigation of the Binding Between Pepsin and Nucleoside Analogs by Spectroscopy and Molecular Simulation. Journal of Fluorescence, 2015, 25, 451-463.	1.3	18
4	Interaction Behavior Between Niclosamide and Pepsin Determined by Spectroscopic and Docking Methods. Journal of Fluorescence, 2015, 25, 1681-1693.	1.3	18
5	Studies on the binding of pepsin with three pyrethroid insecticides by multi-spectroscopic approaches and molecular docking. Journal of Molecular Recognition, 2016, 29, 476-484.	1.1	20
6	Probing the Interaction between Acotiamide Hydrochloride and Pepsin by Multispectral Methods, Electrochemical Measurements, and Docking Studies. Journal of Biochemical and Molecular Toxicology, 2016, 30, 350-359.	1.4	3
7	Study on the interaction of $\hat{l}^2\hat{a}\in \hat{c}$ arotene and astaxanthin with trypsin and pepsin by spectroscopic techniques. Luminescence, 2016, 31, 782-792.	1.5	23
8	Probing the binding mechanisms of \hat{l} ±-tocopherol to trypsin and pepsin using isothermal titration calorimetry, spectroscopic, and molecular modeling methods. Journal of Biological Physics, 2016, 42, 415-434.	0.7	19
9	Influence of CuO nanoparticles and nanographene platelets on the photosonocatalytic performance of Fe ₃ O ₄ /TiO ₂ nanocomposites. Journal of Physics: Conference Series, 2016, 776, 012022.	0.3	3
10	Spectroscopy and molecular docking study on the interaction of daidzein and genistein with pepsin. Luminescence, 2016, 31, 1524-1531.	1.5	16
11	Binding of glutathione and melatonin to pepsin occurs via different binding mechanisms. European Biophysics Journal, 2016, 45, 165-174.	1.2	15
12	Probing the binding of procyanidin B3 to trypsin and pepsin: A multi-technique approach. International Journal of Biological Macromolecules, 2016, 85, 168-178.	3. 6	14
13	Interaction mechanism of pepsin with a natural inhibitor gastrodin studied by spectroscopic methods and molecular docking. Medicinal Chemistry Research, 2017, 26, 405-413.	1.1	18
14	Probing deep into the binding mechanisms of folic acid with $\hat{l}\pm$ -amylase, pepsin and trypsin: An experimental and computational study. Food Chemistry, 2017, 226, 128-134.	4.2	32
15	Mechanism and Nature of Inhibition of Trypsin by Ligupurpuroside A, a Ku-Ding Tea Extract, Studied by Spectroscopic and Docking Methods. Food Biophysics, 2017, 12, 78-87.	1.4	22
16	Interaction between azo dye Acid Red 14 and pepsin by multispectral methods and docking studies. Luminescence, 2017, 32, 1123-1130.	1.5	17
17	Characterization and analysis of binding of Thioflavin T with partially folded and native states of $\hat{l}\pm\hat{a}\in$ "lactalbumin protein by calorimetric and spectroscopic techniques. International Journal of Biological Macromolecules, 2017, 95, 376-384.	3.6	5
18	Investigation and comparison of the binding between tolvaptan and pepsin and trypsin: Multiâ€spectroscopic approaches and molecular docking. Journal of Molecular Recognition, 2017, 30, e2598.	1.1	17

#	ARTICLE	IF	CITATIONS
19	Dissecting the Disulfide Linkage of the N-Terminal Domain of HMW 1Dx5 and Its Contributions to Dough Functionality. Journal of Agricultural and Food Chemistry, 2017, 65, 6264-6273.	2.4	21
20	Conformation change of trypsin induced by acteoside as studied using multiple spectroscopic and molecular docking methods. International Journal of Food Properties, 2018, 21, 301-312.	1.3	17
21	Effects of acetazolamide on the conformations and activities of digestive enzymes: pepsin and trypsin. Medicinal Chemistry Research, 2018, 27, 1549-1557.	1.1	2
22	Exploring the binding pattern between pepsin and deferasirox using detailed experimental and computer simulation methods. RSC Advances, 2018, 8, 37208-37218.	1.7	8
23	Multi-spectroscopic studies on the interaction between traditional Chinese herb, helicid with pepsin. Molecular Biology Reports, 2018, 45, 1637-1646.	1.0	11
24	Binding mechanism of lipase to Ligupurpuroside B extracted from Ku-Ding tea as studied by multi-spectroscopic and molecular docking methods. International Journal of Biological Macromolecules, 2018, 120, 1345-1352.	3.6	26
25	Interaction between trelagliptin and pepsin through spectroscopy methods and molecular dynamics simulation. Spectroscopy Letters, 2018, 51, 332-339.	0.5	4
26	Exploring inhibition mechanism and nature of lipase by Ligupurpuroside A extracted from Ku-Ding tea. Medicinal Chemistry Research, 2018, 27, 1822-1833.	1.1	10
27	Investigation on the Interaction Behavior Between Oenothein B and Pepsin by Isothermal Titration Calorimetry and Spectral Studies. Journal of Food Science, 2019, 84, 2412-2420.	1.5	4
28	Probing the interaction of pepsin with imidacloprid via DFT calculation, spectroscopic approaches and molecular docking. Journal of Molecular Structure, 2019, 1197, 210-216.	1.8	36
29	Trypsin inhibition by Ligupurpuroside B as studied using spectroscopic, CD, and molecular docking techniques. Journal of Biomolecular Structure and Dynamics, 2019, 37, 3379-3387.	2.0	5
30	Dissection of binding of trypsin to its natural inhibitor Gensenoside-Rg1 using spectroscopic methods and molecular modeling. Journal of Biomolecular Structure and Dynamics, 2019, 37, 4070-4079.	2.0	5
31	Comprehensive Insights into the Interactions of Two Emerging Bromophenolic DBPs with Human Serum Albumin by Multispectroscopy and Molecular Docking. ACS Omega, 2019, 4, 563-572.	1.6	40
32	Binding of triclosan and triclocarban to pepsin: DFT, spectroscopic and dynamic simulation studies. Chemosphere, 2019, 214, 278-287.	4.2	27
33	Interactions of indole alkaloids with myoglobin: A mass spectrometry based spectrometric and computational method. Rapid Communications in Mass Spectrometry, 2020, 34, e8656.	0.7	3
34	Spectroscopic and molecular docking studies of the interaction between meloxicam and pepsin. Spectroscopy Letters, 2020, 53, 32-43.	0.5	4
35	Multi spectroscopy and molecular modeling aspects related to drug interaction of aspirin and warfarin with pepsin; structural change and protease activity. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 228, 117813.	2.0	13
36	Interaction of food-grade titanium dioxide nanoparticles with pepsin in simulated gastric fluid. LWT - Food Science and Technology, 2020, 134, 110208.	2.5	16

3

#	ARTICLE	IF	CITATIONS
37	Investigations of conformational structures and activities of trypsin and pepsin affected by food colourant allura red. Journal of Molecular Liquids, 2020, 319, 114359.	2.3	14
38	"Rigid―structure is a key determinant for the low digestibility of myoglobin. Food Chemistry: X, 2020, 7, 100094.	1.8	13
39	Interaction behavior between five flavonoids and pepsin: Spectroscopic analysis and molecular docking. Journal of Molecular Structure, 2021, 1223, 128978.	1.8	18
40	Cholesterol-lowering drugs the simvastatin and atorvastatin change the protease activity of pepsin: An experimental and computational study. International Journal of Biological Macromolecules, 2021, 167, 1414-1423.	3.6	5
41	Interaction mechanism of a natural medicine product helicid with a typical digestive enzyme trypsin. Spectroscopy Letters, 2021, 54, 99-112.	0.5	0
42	Interactions and effects of food additive dye Allura red on pepsin structure and protease activity; experimental and computational supports. Research in Pharmaceutical Sciences, 2021, 16, 58.	0.6	2
43	Exploring the binding mechanism of Ginsenoside Rd to Bovine Serum Albumin: Experimental studies and computational simulations. Journal of Dispersion Science and Technology, 0, , 1-12.	1.3	0
44	Investigation on the Molecular and Physicochemical Changes of Protein and Starch of Wheat Flour during Heating. Foods, 2021, 10, 1419.	1.9	1
45	Insights on the interaction mechanism of exemestane to three digestive enzymes by multi-spectroscopy and molecular docking. International Journal of Biological Macromolecules, 2021, 187, 54-65.	3.6	6
46	Investigation on the interaction behavior between safranal and pepsin by spectral and MD simulation studies. Journal of Molecular Liquids, 2021, 344, 117903.	2.3	14
47	Application of Molecular Docking in Studies on the Binding Mechanism of Three Enzymes with Natural Products. Advances in Medical Technologies and Clinical Practice Book Series, 2016, , 81-126.	0.3	0
48	Investigation on detoxication effects of 2-hydroxypropyl- \hat{l}^2 -cyclodextrin over two halogenated aromatic DBPs 2,4,6-trichlorophenol and 2,4,6-tribromophenol binding with human serum albumin. Food Chemistry, 2022, 382, 132349.	4.2	3
49	Inhibitory interaction of narcissoside on α-glucosidase from Aspergillus niger and Saccharomyces cerevisiae by spectral analysis and molecular docking. Journal of Molecular Structure, 2022, 1264, 133262.	1.8	7
50	The interactions between Reactive Black 5 and human serum albumin: combined spectroscopic and molecular dynamics simulation approaches. Environmental Science and Pollution Research, 2022, 29, 70114-70124.	2.7	8
51	Structural change study of pepsin in the presence of spermidine trihydrochloride: Insights from spectroscopic to molecular dynamics methods. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2023, 291, 122264.	2.0	1
52	Molecular interaction of di-ester bonded cationic Gemini surfactants with pepsin: <i>inÂvitro</i> and <i>in silico</i> perspectives. Journal of Biomolecular Structure and Dynamics, 0, , 1-16.	2.0	1
53	Recent advances in the effect of ultrasound on the binding of proteinâ "polyphenol complexes in foodstuff. Food Frontiers, 2023, 4, 721-732.	3.7	2