One, four or 100 genera? A new classification of the con

Journal of Molluscan Studies 81, 1-23 DOI: 10.1093/mollus/eyu055

Citation Report

#	Article	IF	CITATIONS
1	The Generification of the Fossil Record. Paleobiology, 2014, 40, 511-528.	1.3	79
2	Molecular phylogeny and evolution of the cone snails (Gastropoda, Conoidea). Molecular Phylogenetics and Evolution, 2014, 78, 290-303.	1.2	140
3	Case 3683 Cylindrus Fitzinger, 1833 (Mollusca, Gastropoda, helicidae): proposed conservation. Bulletin of Zoological Nomenclature, 2015, 72, 269-273.	0.2	3
4	Glowing Seashells: Diversity of Fossilized Coloration Patterns on Coral Reef-Associated Cone Snail (Gastropoda: Conidae) Shells from the Neogene of the Dominican Republic. PLoS ONE, 2015, 10, e0120924.	1.1	18
5	Comparison of the Venom Peptides and Their Expression in Closely RelatedConusSpecies: Insights into Adaptive Post-speciation Evolution ofConusExogenomes. Genome Biology and Evolution, 2015, 7, 1797-1814.	1.1	37
6	Prey-Capture Strategies of Fish-Hunting Cone Snails: Behavior, Neurobiology and Evolution. Brain, Behavior and Evolution, 2015, 86, 58-74.	0.9	81
7	Specialized insulin is used for chemical warfare by fish-hunting cone snails. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 1743-1748.	3.3	134
8	Supraspecific taxonomy in the Vertiginidae (Gastropoda: Stylommatophora). Journal of Molluscan Studies, 2015, , eyv034.	0.4	3
9	Insights into the origins of fish hunting in venomous cone snails from studies of <i>Conus tessulatus</i> . Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 5087-5092.	3.3	60
10	Ecology of Conus on Seychelles reefs at mid-twentieth century: comparative habitat use and trophic roles of co-occurring congeners. Marine Biology, 2015, 162, 2391-2407.	0.7	7
11	Combined Use of Morphological and Molecular Tools to Resolve Species Mis-Identifications in the Bivalvia The Case of Glycymeris glycymeris and G. pilosa. PLoS ONE, 2016, 11, e0162059.	1.1	6
12	Small Packages, Big Returns: Uncovering the Venom Diversity of Small Invertebrate Conoidean Snails. Integrative and Comparative Biology, 2016, 56, 962-972.	0.9	14
13	Identification and qualification of 500 nuclear, single opy, orthologous genes for the Eupulmonata (Gastropoda) using transcriptome sequencing and exon capture. Molecular Ecology Resources, 2016, 16, 1107-1123.	2.2	40
14	Diversity, habitats and size-frequency distribution of the gastropod genus <i>Conus</i> at Dahab in the Gulf of Aqaba, Northern Red Sea. Zoology in the Middle East, 2016, 62, 125-136.	0.2	4
15	The presence of Teredo clappi (Bivalvia: Teredinidae) in Venezuelan coastal waters. Revista Mexicana De Biodiversidad, 2016, 87, 516-518.	0.4	2
16	Thermoregulatory behaviour and thermal tolerance of three species of Conidae in the Eastern Pacific and Gulf of California coasts of Baja California, Mexico. Molluscan Research, 2016, 36, 247-254.	0.2	3
17	The role of defensive ecological interactions in theÂevolution of conotoxins. Molecular Ecology, 2016, 25, 598-615.	2.0	52
18	Mitogenomic phylogeny of cone snails endemic to Senegal. Molecular Phylogenetics and Evolution, 2017. 112. 79-87.	1.2	15

ATION REDO

#	Article	IF	CITATIONS
19	αO-Conotoxin GeXIVA disulfide bond isomers exhibit differential sensitivity for various nicotinic acetylcholine receptors but retain potency and selectivity for the human α9α10 subtype. Neuropharmacology, 2017, 127, 243-252.	2.0	29
20	Initiatives, prospects, and challenges in tropical marine biosciences in Jagna Bay, Bohol Island, Philippines. AIP Conference Proceedings, 2017, , .	0.3	0
21	Pharmacology of predatory and defensive venom peptides in cone snails. Molecular BioSystems, 2017, 13, 2453-2465.	2.9	27
22	Conorfamide-Sr3, a structurally novel specific inhibitor of the Shaker K+ channel. Toxicon, 2017, 138, 53-58.	0.8	13
23	A Veliconcha Unveiled: Observations on the Larva and Radula of <i>Conus spurius</i> , with Implications for the Origin of Molluscivory in <i>Conus</i> . American Malacological Bulletin, 2017, 35, 111-118.	0.2	5
24	A question of rank: DNA sequences and radula characters reveal a new genus of cone snails (Gastropoda: Conidae). Journal of Molluscan Studies, 2017, 83, 200-210.	0.4	5
25	Contryphan Genes and Mature Peptides in the Venom of Nine Cone Snail Species by Transcriptomic and Mass Spectrometric Analysis. Journal of Proteome Research, 2017, 16, 763-772.	1.8	17
26	Beyond Conus: Phylogenetic relationships of Conidae based on complete mitochondrial genomes. Molecular Phylogenetics and Evolution, 2017, 107, 142-151.	1.2	40
27	Revised Classification, Nomenclator and Typification of Gastropod and Monoplacophoran Families. Malacologia, 2017, 61, 1-526.	0.2	463
28	Phylogenetic relationships of cone snails endemic to Cabo Verde based on mitochondrial genomes. BMC Evolutionary Biology, 2017, 17, 231.	3.2	26
29	Modeling shell morphology of an epitoniid species with parametric equations. AIP Conference Proceedings, 2017, , .	0.3	0
30	How big is a genus? Towards a nomothetic systematics. Zoological Journal of the Linnean Society, 2018, 183, 237-252.	1.0	24
31	αâ€Conotoxins active at α3â€containing nicotinic acetylcholine receptors and their molecular determinants for selective inhibition. British Journal of Pharmacology, 2018, 175, 1855-1868.	2.7	20
32	The complete mitochondrial genome of Conus quercinus (Neogastropoda: Conidae). Mitochondrial DNA Part B: Resources, 2018, 3, 933-934.	0.2	2
33	Discovery Methodology of Novel Conotoxins from Conus Species. Marine Drugs, 2018, 16, 417.	2.2	27
35	Novel analgesic ω-conotoxins from the vermivorous cone snail Conus moncuri provide new insights into the evolution of conopeptides. Scientific Reports, 2018, 8, 13397.	1.6	22
36	Diversity and preserved shell coloration patterns of Miocene Conidae (Neogastropoda) from an exposure of the Gatun Formation, Colón Province, Panama. Journal of Paleontology, 2018, 92, 804-837.	0.5	7
37	Conidae (Mollusca, Gastropoda) of Lakshadweep, IndiaÂ. Zootaxa, 2018, 4441, 467-494.	0.2	4

#	Article	IF	CITATIONS
38	Conotoxin Diversity in Chelyconus ermineus (Born, 1778) and the Convergent Origin of Piscivory in the Atlantic and Indo-Pacific Cones. Genome Biology and Evolution, 2018, 10, 2643-2662.	1.1	28
39	Synthesis, Structure and Biological Activity of CIA and CIB, Two α-Conotoxins from the Predation-Evoked Venom of Conus catus. Toxins, 2018, 10, 222.	1.5	20
40	Marine peptides as immunomodulators: <i>Californiconus californicus</i> -derived synthetic conotoxins induce IL-10 production by regulatory T cells (CD4 ⁺ Foxp3 ⁺). Immunopharmacology and Immunotoxicology, 2019, 41, 463-468.	1.1	7
41	Venomics Reveals Venom Complexity of the Piscivorous Cone Snail, Conus tulipa. Marine Drugs, 2019, 17, 71.	2.2	20
42	Effects of Predator-Prey Interactions on Predator Traits: Differentiation of Diets and Venoms of a Marine Snail. Toxins, 2019, 11, 299.	1.5	9
43	Conus striatus venom exhibits non-hepatotoxic and non-nephrotoxic potent analgesic activity in mice. Molecular Biology Reports, 2019, 46, 5479-5486.	1.0	2
44	Lack of Signal for the Impact of Conotoxin Gene Diversity on Speciation Rates in Cone Snails. Systematic Biology, 2019, 68, 781-796.	2.7	16
45	High-Throughput Identification and Analysis of Novel Conotoxins from Three Vermivorous Cone Snails by Transcriptome Sequencing. Marine Drugs, 2019, 17, 193.	2.2	18
46	The α1-adrenoceptor inhibitor ϕTIA facilitates net hunting in piscivorous Conus tulipa. Scientific Reports, 2019, 9, 17841.	1.6	4
47	Phylogenetic classification of the family Terebridae (Neogastropoda: Conoidea). Journal of Molluscan Studies, 2019, 85, 359-387.	0.4	6
48	Towards a â€~Sea‣evel Sensitive' dynamic model: impact of island ontogeny and glacioâ€eustasy on global patterns of marine island biogeography. Biological Reviews, 2019, 94, 1116-1142.	4.7	33
49	Mollusc Fauna Associated with Late Pleistocene Coral Reef Systems of the Saudi Arabian Side of the Gulf of Aqaba. , 2019, , 367-387.		1
50	Identifying novel conopepetides from the venom ducts of Conus litteratus through integrating transcriptomics and proteomics. Journal of Proteomics, 2019, 192, 346-357.	1.2	11
51	Backbone Cyclization Turns a Venom Peptide into a Stable and Equipotent Ligand at Both Muscle and Neuronal Nicotinic Receptors. Journal of Medicinal Chemistry, 2020, 63, 12682-12692.	2.9	13
52	Curses or Cures: A Review of the Numerous Benefits Versus the Biosecurity Concerns of Conotoxin Research. Biomedicines, 2020, 8, 235.	1.4	27
53	Studies of Conorfamide-Sr3 on Human Voltage-Gated Kv1 Potassium Channel Subtypes. Marine Drugs, 2020, 18, 425.	2.2	8
54	Diversity of Conopeptides and Their Precursor Genes of Conus Litteratus. Marine Drugs, 2020, 18, 464.	2.2	11
55	Marine Toxins Targeting Kv1 Channels: Pharmacological Tools and Therapeutic Scaffolds. Marine Drugs, 2020, 18, 173.	2.2	32

CITATION REPORT

#	Article	IF	CITATIONS
56	Where the snails have no name: a molecular phylogeny of Raphitomidae (Neogastropoda: Conoidea) uncovers vast unexplored diversity in the deep seas of temperate southern and eastern Australia. Zoological Journal of the Linnean Society, 2021, 191, 961-1000.	1.0	6
57	Raising names from the dead: A time-calibrated phylogeny of frog shells (Bursidae, Tonnoidea,) Tj ETQq1 1 0.7843	14 rgBT /0 1.2	Oyerlock 10
58	Proteogenomic Assessment of Intraspecific Venom Variability: Molecular Adaptations in the Venom Arsenal of Conus purpurascens. Molecular and Cellular Proteomics, 2021, 20, 100100.	2.5	6
59	Synthesis, Structural and Pharmacological Characterizations of CIC, a Novel α-Conotoxin with an Extended N-Terminal Tail. Marine Drugs, 2021, 19, 141.	2.2	3
60	Venom duct origins of prey capture and defensive conotoxins in piscivorous Conus striatus. Scientific Reports, 2021, 11, 13282.	1.6	7
61	A phylogeny-aware approach reveals unexpected venom components in divergent lineages of cone snails. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20211017.	1.2	7
62	Potential Therapeutic Applications of Synthetic Conotoxin s-cal14.2b, Derived from Californiconus californicus, for Treating Type 2 Diabetes. Biomedicines, 2021, 9, 936.	1.4	4
63	A Combined Transcriptomics and Proteomics Approach Reveals the Differences in the Predatory and Defensive Venoms of the Molluscivorous Cone Snail Cylinder ammiralis (Caenogastropoda: Conidae). Toxins, 2021, 13, 642.	1.5	8
64	Molecular phylogenetic analysis of the problematic genus Cardicola (Digenea: Aporocotylidae) indicates massive polyphyly, dramatic morphological radiation and host-switching. Molecular Phylogenetics and Evolution, 2021, 164, 107290.	1.2	7
65	Revising the Role of Defense and Predation in Cone Snail Venom Evolution. Toxinology, 2017, , 105-123.	0.2	2
66	Systematics and Evolution of the Conoidea. , 2016, , 1-32.		2
67	Venomic Interrogation Reveals the Complexity of Conus striolatus Venom. Australian Journal of Chemistry, 2020, 73, 357.	0.5	5
68	Fish-hunting cone snail venoms are a rich source of minimized ligands of the vertebrate insulin receptor. ELife, 2019, 8, .	2.8	49
69	MIDDLE MIOCENE CONOIDEAN GASTROPODS FROM WESTERN UKRAINE (PARATETHYS): INTEGRATIVE TAXONOMY, PALAEOCLIMATOGICAL AND PALAEOBIOGEOGRAPHICAL IMPLICATIONS. Acta Palaeontologica Polonica, 0, , .	0.4	2
70	Conus hughmorrisoni, a new species of cone snail from New Ireland, Papua New Guinea (Gastropoda:) Tj ETQq0 0	0 rgBT /O	verlock 10 1
71	Revising the Role of Defense and Predation in Cone Snail Venom Evolution. , 2016, , 1-18.		Ο

73	Systematics and Evolution of the Conoidea. Toxinology, 2017, , 367-398.	0.2	2
77	and Venom: A New Source of Conopeptides with Analgesic Activity. Avicenna Journal of Medical Biotechnology, 2020, 12, 179-185.	0.2	0

CITATION REPORT

#	Article	IF	CITATIONS
78	Biomedical Potential of the Neglected Molluscivorous and Vermivorous Conus Species. Marine Drugs, 2022, 20, 105.	2.2	6
79	Venomics Reveals a Non-Compartmentalised Venom Gland in the Early Diverged Vermivorous Conus distans. Toxins, 2022, 14, 226.	1.5	2
80	A short framework-III (mini-M-2) conotoxin from the venom of a vermivorous species, Conus archon, inhibits human neuronal nicotinic acetylcholine receptors. Peptides, 2022, 153, 170785.	1.2	1
81	Late Miocene Conidae (Mollusca: Gastropoda) of Crete (Greece). Part 2. European Journal of Taxonomy, 0, 816, 1-70.	0.6	1
82	Isolation and characterization of five novel disulfide-poor conopeptides from Conus marmoreus venom. Journal of Venomous Animals and Toxins Including Tropical Diseases, 0, 28, .	0.8	3
84	Classifying organisms and artefacts by their outline shapes. Journal of the Royal Society Interface, 2022, 19, .	1.5	2
85	Evolutionary norm-breaking and extinction in the marine tropics. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	2
86	Cone snail species off the Brazilian coast and their venoms: a review and update. Journal of Venomous Animals and Toxins Including Tropical Diseases, 0, 29, .	0.8	1
87	Toxinology of Marine Venomous Snails. Iranian South Medical Journal, 2021, 24, 505-581.	0.2	0