In Vivo Acoustic Super-Resolution and Super-Resolved Microbubbles

IEEE Transactions on Medical Imaging 34, 433-440

DOI: 10.1109/tmi.2014.2359650

Citation Report

#	Article	IF	Citations
1	Super-resolution imaging of microbubble contrast agents., 2015,,.		0
2	High resolution depth-resolved imaging from multi-focal images for medical ultrasound. , 2015, 2015, 7067-70.		2
3	Experimental demonstration of passive acoustic imaging in the human skull cavity using CTâ€based aberration corrections. Medical Physics, 2015, 42, 4385-4400.	1.6	58
4	A Variational Bayesian Superresolution Approach Using Adaptive Image Prior Model. Mathematical Problems in Engineering, 2015, 2015, 1-13.	0.6	6
5	Super-resolution velocity estimation in microvessels using Multiple Hypothesis Tracking. , 2015, , .		O
6	The polydisperse acoustic signature of rigid microbubbles. , 2015, 2015, 133-6.		O
7	Super-resolution ultrasound. Nature, 2015, 527, 451-452.	13.7	36
8	Ultrafast ultrasound localization microscopy for deep super-resolution vascular imaging. Nature, 2015, 527, 499-502.	13.7	884
9	Resolution limits of ultrafast ultrasound localization microscopy. Physics in Medicine and Biology, 2015, 60, 8723-8740.	1.6	117
10	Modeling of Cerebral Oxygen Transport Based on In vivo Microscopic Imaging of Microvascular Network Structure, Blood Flow, and Oxygenation. Frontiers in Computational Neuroscience, 2016, 10, 82.	1.2	60
11	Cardiac imaging with high frame rate contrast enhanced ultrasound: In-vivo demonstration. , 2016, , .		11
12	Characterizing the subharmonic response of four new microbubble formulations compared with three commercially-available ultrasound contrast agents. , 2016, , .		O
13	Ultrasound resolution beats the diffraction limit. Physics Today, 2016, 69, 14-16.	0.3	2
14	Evaluation of bubble tracking algorithms for super-resolution imaging of microvessels. , 2016, , .		7
15	Robust microbubble tracking for super resolution imaging in ultrasound. , $2016, \ldots$		19
16	Super-Resolution Ultrasound Imaging in Vivo with Transient Laser-Activated Nanodroplets. Nano Letters, 2016, 16, 2556-2559.	4.5	104
17	Review of ultrasound image guidance in external beam radiotherapy part II: intra-fraction motion management and novel applications. Physics in Medicine and Biology, 2016, 61, R90-R137.	1.6	80
18	Super-localization of contrast agents in moving organs, first experiments in a rat kidney. , 2016, , .		5

#	ARTICLE	IF	Citations
19	Super resolution contrast ultrasound imaging: Analysis of imaging resolution and application to imaging tumor angiogenesis. , $2016, , .$		14
20	Towards Dynamic Contrast Specific Ultrasound Tomography. Scientific Reports, 2016, 6, 34458.	1.6	3
21	A novel array processing method for precise depth detection of ultrasound point scatter., 2016,,.		2
22	Acoustic angiography: a new high frequency contrast ultrasound technique for biomedical imaging. Proceedings of SPIE, 2016, , .	0.8	0
23	Ultrasound Imaging with Microbubbles [Life Sciences]. IEEE Signal Processing Magazine, 2016, 33, 111-117.	4.6	21
24	Detection and Tracking of Multiple Microbubbles in Ultrasound B-Mode Images. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2016, 63, 72-82.	1.7	129
25	Subwavelength motion-correction for ultrafast ultrasound localization microscopy. Ultrasonics, 2017, 77, 17-21.	2.1	102
26	Experimental performance assessment of the sub-band minimum variance beamformer for ultrasound imaging. Ultrasonics, 2017, 79, 87-95.	2.1	34
27	Value of combining dynamic contrast enhanced ultrasound and optoacoustic tomography for hypoxia imaging. Photoacoustics, 2017, 8, 15-27.	4.4	13
28	Neutrophil-inspired propulsion in a combined acoustic and magnetic field. Nature Communications, 2017, 8, 770.	5.8	175
29	First-in-Human Study of Acoustic Angiography in the Breast and Peripheral Vasculature. Ultrasound in Medicine and Biology, 2017, 43, 2939-2946.	0.7	17
30	Toward optimization of <i>in vivo</i> superâ€resolution ultrasound imaging using sizeâ€selected microbubble contrast agents. Medical Physics, 2017, 44, 6304-6313.	1.6	45
31	Ultrasound localization microscopy to image and assess microvasculature in a rat kidney. Scientific Reports, 2017, 7, 13662.	1.6	112
32	Microbubble Axial Localization Errors in Ultrasound Super-Resolution Imaging. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2017, 64, 1644-1654.	1.7	70
33	Super-resolution thermographic imaging using blind structured illumination. Applied Physics Letters, 2017, 111, .	1.5	22
34	Enhanced pre-operative axillary staging using intradermal microbubbles and contrast-enhanced ultrasound to detect and biopsy sentinel lymph nodes in breast cancer: a potential replacement for axillary surgery. British Journal of Radiology, 2018, 91, 20170626.	1.0	19
35	A Temporal and Spatial Analysis Approach to Automated Segmentation of Microbubble Signals in Contrast-Enhanced Ultrasound Images: Application to Quantification of Active Vascular Density in Human Lower Limbs. Ultrasound in Medicine and Biology, 2017, 43, 2221-2234.	0.7	0
36	Acoustic window planning for ultrasound acquisition. International Journal of Computer Assisted Radiology and Surgery, 2017, 12, 993-1001.	1.7	13

#	ARTICLE	IF	Citations
37	Optimizing Sensitivity of Ultrasound Contrast-Enhanced Super-Resolution Imaging by Tailoring Size Distribution of Microbubble Contrast Agent. Ultrasound in Medicine and Biology, 2017, 43, 2488-2493.	0.7	44
38	High Resolution Ultrasound Superharmonic Perfusion Imaging: In Vivo Feasibility and Quantification of Dynamic Contrast-Enhanced Acoustic Angiography. Annals of Biomedical Engineering, 2017, 45, 939-948.	1.3	23
39	Characterization of Contrast Agent Microbubbles for Ultrasound Imaging and Therapy Research. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2017, 64, 232-251.	1.7	48
40	Fast Vascular Ultrasound Imaging With Enhanced Spatial Resolution and Background Rejection. IEEE Transactions on Medical Imaging, 2017, 36, 169-180.	5.4	98
41	3-D <i>In Vitro</i> Acoustic Super-Resolution and Super-Resolved Velocity Mapping Using Microbubbles. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2017, 64, 1478-1486.	1.7	48
42	Two Stage Sub-Wavelength Motion Correction in Human Microvasculature for CEUS Imaging., 2017,,.		5
43	Acoustic response of targeted nanodroplets post-activation using high frame rate imaging., 2017,,.		9
44	Monitoring early tumor response to vascular targeted therapy using super-resolution ultrasound imaging. , 2017, , .		7
45	Investigation of microbubble detection methods for super-resolution imaging of microvasculature. , 2017, , .		1
46	Two stage sub-wavelength motion correction in human microvasculature for CEUS imaging. , 2017, , .		6
47	Super-resolution ultrasound imaging of the microvasculature in skeletal muscle: A new tool in diabetes research. , 2017, , .		1
48	Localisation of multiple non-isolated microbubbles with frequency decomposition in super-resolution imaging. , 2017, , .		6
49	Ultrasound super-resolution with microbubble contrast agents. , 2017, , .		0
50	Overcoming the acoustic diffraction limit in photoacoustic imaging by the localization of flowing absorbers. Optics Letters, 2017, 42, 4379.	1.7	33
51	Determination of adequate measurement times for super-resolution characterization of tumor vascularization. , 2017, , .		1
52	Axillary Nodal Staging with Contrast-Enhanced Ultrasound. Current Breast Cancer Reports, 2017, 9, 259-263.	0.5	18
53	Adaptive beamforming contrast enhanced super resolution imaging for improved sensitivity and resolution in deep tissues. , 2017, , .		0
54	Investigation of microbubble detection methods for super-resolution imaging of microvasculature. , 2017, , .		2

#	Article	IF	CITATIONS
55	Adaptive beamforming contrast enhanced super resolution imaging for improved sensitivity and resolution in deep tissues. , 2017, , .		0
56	3-D Ultrasound Localization Microscopy for Identifying Microvascular Morphology Features of Tumor Angiogenesis at a Resolution Beyond the Diffraction Limit of Conventional Ultrasound. Theranostics, 2017, 7, 196-204.	4.6	202
57	Acoustical structured illumination for super-resolution ultrasound imaging. Communications Biology, 2018, 1, 3.	2.0	36
58	Advanced Ultrasound Technologies for Diagnosis and Therapy. Journal of Nuclear Medicine, 2018, 59, 740-746.	2.8	47
59	Super-Resolution Axial Localization of Ultrasound Scatter Using Multi-Focal Imaging. IEEE Transactions on Biomedical Engineering, 2018, 65, 1840-1851.	2.5	20
60	Improved Super-Resolution Ultrasound Microvessel Imaging With Spatiotemporal Nonlocal Means Filtering and Bipartite Graph-Based Microbubble Tracking. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2018, 65, 149-167.	1.7	181
61	Evolving imaging techniques for staging axillary lymph nodes in breast cancer. Clinical Radiology, 2018, 73, 396-409.	0.5	22
62	Two-Stage Motion Correction for Super-Resolution Ultrasound Imaging in Human Lower Limb. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2018, 65, 803-814.	1.7	89
63	Super-Resolution Imaging With Ultrafast Ultrasound Imaging of Optically Triggered Perfluorohexane Nanodroplets. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2018, 65, 2277-2285.	1.7	27
64	Super-Resolved Ultrasound Echo Spectra With Simultaneous Localization Using Parametric Statistical Estimation. IEEE Access, 2018, 6, 14188-14203.	2.6	8
65	The effect of resonance on transient microbubble acoustic response: Experimental observations and numerical simulations. Journal of the Acoustical Society of America, 2018, 143, 1392-1406.	0.5	7
66	ASAP: Super-Contrast Vasculature Imaging Using Coherence Analysis and High Frame-Rate Contrast Enhanced Ultrasound. IEEE Transactions on Medical Imaging, 2018, 37, 1847-1856.	5.4	35
67	Microbubble Localization for Three-Dimensional Superresolution Ultrasound Imaging Using Curve Fitting and Deconvolution Methods. IEEE Transactions on Biomedical Engineering, 2018, 65, 2692-2703.	2.5	23
68	3-D Motion Correction for Volumetric Super-Resolution Ultrasound Imaging. , 2018, 2018, .		8
69	Contrast vs Non-Contrast Enhanced Microvascular Imaging Using Acoustic Sub-Aperture Processing (ASAP): In Vivo Demonstration. , 2018, , .		1
70	Assessment of Diabetic Kidney Disease Using Ultrasound Localization Microscopy: An in Vivo Feasibility Study in Rats. , 2018, , .		10
71	Bayesian Spectrum Analysis of Non-Linear Ultrasound Contrast Microbubble Signals. , 2018, , .		1
72	3D in Vitro Ultrasound Super-Resolution Imaging Using a Clinical System. , 2018, , .		5

#	Article	IF	Citations
73	Individual Perfluorocarbon Nanodrop Vaporization with 18-MHz Plane Waves., 2018,,.		0
74	Design of a Novel Zig-Zag 192+192 Row Column Addressed Array Transducer: A Simulation Study. , 2018, , .		3
75	SUSHI: Sparsity-Based Ultrasound Super-Resolution Hemodynamic Imaging. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2018, 65, 2365-2380.	1.7	76
76	3-D Super-Resolution Ultrasound Imaging Using a 2-D Sparse Array with High Volumetric Imaging Rate. , 2018, , .		4
77	Development of Simultaneous Optical Imaging and Super-Resolution Ultrasound to Improve Microbubble Localization Accuracy. , $2018, \ldots$		0
78	Microbubble-Mediated Delivery for Cancer Therapy. Fluids, 2018, 3, 74.	0.8	10
79	Super-resolution ultrasound imaging method for microvasculature in vivo with a high temporal accuracy. Scientific Reports, 2018, 8, 13918.	1.6	67
80	Switchable Fluorophores for Single-Molecule Localization Microscopy. Chemical Reviews, 2018, 118, 9412-9454.	23.0	223
81	Ultrasound Localization Microscopy and Super-Resolution: A State of the Art. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2018, 65, 1304-1320.	1.7	213
82	High-Frame-Rate Contrast Echocardiography Using Diverging Waves: Initial <i>In Vitro</i> and <i>In Vivo</i> Evaluation. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2018, 65, 2212-2221.	1.7	12
83	Acoustic wave sparsely activated localization microscopy (AWSALM): Super-resolution ultrasound imaging using acoustic activation and deactivation of nanodroplets. Applied Physics Letters, 2018, 113, .	1.5	59
84	Motion model ultrasound localization microscopy for preclinical and clinical multiparametric tumor characterization. Nature Communications, 2018, 9, 1527.	5.8	161
85	On the Effects of Spatial Sampling Quantization in Super-Resolution Ultrasound Microvessel Imaging. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2018, 65, 2264-2276.	1.7	37
86	Adaptive Multifocus Beamforming for Contrast-Enhanced-Super-Resolution Ultrasound Imaging in Deep Tissue. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2018, 65, 2255-2263.	1.7	11
87	A High-Efficiency Super-Resolution Reconstruction Method for Ultrasound Microvascular Imaging. Applied Sciences (Switzerland), 2018, 8, 1143.	1.3	4
88	Resolving Ultrasound Contrast Microbubbles Using Minimum Variance Beamforming. IEEE Transactions on Medical Imaging, 2019, 38, 194-204.	5.4	23
89	Suppressing Clutter Components In Ultrasound Color Flow Imaging Using Robust Matrix Completion Algorithm: Simulation And Phantom Study. , 2019 , , .		3
90	Exploiting Flow Dynamics for Superresolution in Contrast-Enhanced Ultrasound. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2019, 66, 1573-1586.	1.7	34

#	Article	IF	CITATIONS
91	Poisson Statistical Model of Ultrasound Super-Resolution Imaging Acquisition Time. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2019, 66, 1246-1254.	1.7	40
92	Coherent Multi-Transducer Ultrasound Imaging. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2019, 66, 1316-1330.	1.7	34
93	A comparison between image and signal sharpness-based axial localization of ultrasound scatterers. , 2019, , .		0
94	Realistic Super-Resolution Image Analysis for State of the Art 2D Contrast Enhanced Ultrasound Imaging. , 2019, , .		0
95	Superâ€Resolution Ultrasound Imaging of Skeletal Muscle Microvascular Dysfunction in an Animal Model of Type 2 Diabetes. Journal of Ultrasound in Medicine, 2019, 38, 2589-2599.	0.8	53
96	Investigation of Microbubble Detection Methods for Super-Resolution Imaging of Microvasculature. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2019, 66, 676-691.	1.7	29
97	Differentiation of Vascular Characteristics Using Contrast-Enhanced Ultrasound Imaging. Ultrasound in Medicine and Biology, 2019, 45, 2444-2455.	0.7	11
98	Deep Learning for Super-resolution Vascular Ultrasound Imaging. , 2019, , .		43
99	Super-resolution Using Flow Estimation in Contrast Enhanced Ultrasound Imaging., 2019,,.		0
100	Fast Acoustic Wave Sparsely Activated Localization Microscopy: Ultrasound Super-Resolution Using Plane-Wave Activation of Nanodroplets. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2019, 66, 1039-1046.	1.7	53
101	3D Super-Resolution US Imaging of Rabbit Lymph Node Vasculature in Vivo by Using Microbubbles. Radiology, 2019, 291, 642-650.	3.6	82
102	3-D Microvascular Imaging Using High Frame Rate Ultrasound and ASAP Without Contrast Agents: Development and Initial <i>In Vivo</i> Evaluation on Nontumor and Tumor Models. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2019, 66, 939-948.	1.7	11
103	Microvascular flow dictates the compromise between spatial resolution and acquisition time in Ultrasound Localization Microscopy. Scientific Reports, 2019, 9, 2456.	1.6	106
104	Diagnosing and Managing the Malignant Axilla in Breast Cancer. Current Breast Cancer Reports, 2019, 11, 1-8.	0.5	2
105	Super Harmonic Ultrasound Localization Microscopy., 2019,,.		0
106	Tissue Motion Estimation and Correction in Super Resolution Imaging. , 2019, , .		8
107	<p>Preparation Of Nanobubbles Modified With A Small-Molecule CXCR4 Antagonist For Targeted Drug Delivery To Tumors And Enhanced Ultrasound Molecular Imaging</p> . International Journal of Nanomedicine, 2019, Volume 14, 9139-9157.	3.3	17
108	Response of Chemically-Crosslinked Microbubble Clusters to Low-Intensity Pulsed Ultrasound. , 2019, , .		0

#	Article	IF	Citations
109	Super-Resolution Ultrasound Image Filtering with Machine-Learning to Reduce the Localization Error. , 2019, , .		4
110	Coherent Multi-Transducer Ultrasound Imaging with Microbubble Contrast Agents. , 2019, , .		3
111	Photoacoustic Super-Resolution Imaging using Laser Activation of Low-Boiling-Point Dye-Coated Nanodroplets in vitro and in vivo. , 2019, , .		5
112	Ultrasound Multiple Point Target Detection and Localization using Deep Learning. , 2019, , .		7
113	Construction of an ultrasound phantom with micrometer-sized wall-less vessels., 2019,,.		1
114	Super-Resolution Ultrasound Imaging of Rat Kidneys before and after Ischemia-Reperfusion. , 2019, , .		13
115	Minimum Variance beamforming for closely spaced microbubbles., 2019,,.		1
116	Do raw signal data provide better localisation than image data for super-resolution imaging?. , 2019, , .		0
117	Ultrasound diffraction attenuation microscopy in human quadriceps femoris muscle blood flow imaging. , 2019, , .		3
118	Activation and 3D Imaging of Phase-change Nanodroplet Contrast Agents with a 2D Ultrasound Probe. , 2019, , .		2
119	Three-dimensional Super-Resolution Ultrasound Microvessel Imaging with Bipartite Graph-based Microbubble Tracking using a Verasonics 256-channel Ultrasound System., 2019,,.		2
120	Acoustic Wave Sparsely-Activated Localization Microscopy (AWSALM): In Vivo Fast Ultrasound Super-Resolution Imaging using Nanodroplets. , 2019, , .		9
121	Deep learning in spatiotemporal filtering for super-resolution ultrasound imaging., 2019,,.		10
122	Super-Resolution Contrast-Enhanced Ultrasound Methodology for the Identification of In Vivo Vascular Dynamics in 2D. Investigative Radiology, 2019, 54, 500-516.	3 . 5	29
123	3D Printed Calibration Micro-phantoms for Validation of Super-Resolution Ultrasound Imaging. , 2019, , .		2
124	Maximum-Likelihood Estimation to Assess the Degree of Reconstruction of Microvasculature from Super-Resolution US Imaging. , 2019, , .		1
125	3-D Super Resolution Imaging using a 62+62 Elements Row-Column Array. , 2019, , .		4
126	Development of Super-Resolution Sharpness-Based Axial Localization for Ultrasound Imaging. IEEE Access, 2019, 7, 6297-6309.	2.6	2

#	Article	IF	CITATIONS
127	Clinical Pilot Application of Super-Resolution US Imaging in Breast Cancer. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2019, 66, 517-526.	1.7	56
128	On the Feasibility of Ultrasound Imaging Enrichment by Medium-Temperature Changes. Ultrasonic Imaging, 2019, 41, 17-34.	1.4	5
129	Deep Unfolded Robust PCA With Application to Clutter Suppression in Ultrasound. IEEE Transactions on Medical Imaging, 2020, 39, 1051-1063.	5.4	117
130	Wide Field-of-View Ultrafast Curved Array Imaging Using Diverging Waves. IEEE Transactions on Biomedical Engineering, 2020, 67, 1638-1649.	2.5	15
131	Super-Resolution Imaging Through the Human Skull. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2020, 67, 25-36.	1.7	39
132	Three-Dimensional Super-Resolution Imaging Using a Row–Column Array. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2020, 67, 538-546.	1.7	44
133	3-D Super-Resolution Ultrasound Imaging With a 2-D Sparse Array. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2020, 67, 269-277.	1.7	74
134	Blake, bubbles and boundary element methods. IMA Journal of Applied Mathematics, 2020, 85, 190-213.	0.8	1
135	Photoacoustic Imaging in Tissue Engineering and Regenerative Medicine. Tissue Engineering - Part B: Reviews, 2020, 26, 79-102.	2.5	28
136	Low Rank and Sparse Decomposition of Ultrasound Color Flow Images for Suppressing Clutter in Real-Time. IEEE Transactions on Medical Imaging, 2020, 39, 1073-1084.	5.4	13
137	Imaging Methods for Ultrasound Contrast Agents. Ultrasound in Medicine and Biology, 2020, 46, 498-517.	0.7	93
138	From Anatomy to Functional and Molecular Biomarker Imaging and Therapy: Ultrasound Is Safe, Ultrafast, Portable, and Inexpensive. Investigative Radiology, 2020, 55, 559-572.	3.5	30
139	Super-Resolution Imaging with Ultrasound for Visualization of the Renal Microvasculature in Rats Before and After Renal Ischemia: A Pilot Study. Diagnostics, 2020, 10, 862.	1.3	18
140	Tracking of Microbubbles with a Recurrent Neural Network for Super-Resolution Imaging. , 2020, , .		0
141	Effects of Mechanical Index on Repeated Sparse Activation of Nanodroplets In Vivo. , 2020, , .		1
142	Singular value decomposition and 2D crosscorrelation based localization of gas vesicles for super-resolution ultrasound imaging. , 2020, , .		2
143	Elastic Deformation of Soft Tissue-Mimicking Materials Using a Single Microbubble and Acoustic Radiation Force. Ultrasound in Medicine and Biology, 2020, 46, 3327-3338.	0.7	12
144	Impact of Aperture, Depth, and Acoustic Clutter on the Performance of Coherent Multi-Transducer Ultrasound Imaging. Applied Sciences (Switzerland), 2020, 10, 7655.	1.3	18

#	Article	IF	CITATIONS
145	Clutter suppression in ultrasound: performance evaluation and review of low-rank and sparse matrix decomposition methods. BioMedical Engineering OnLine, 2020, 19, 37.	1.3	9
146	Breaking the resolution limit in photoacoustic imaging using non-negativity and sparsity. Photoacoustics, 2020, 19, 100191.	4.4	10
147	PathSRGAN: Multi-Supervised Super-Resolution for Cytopathological Images Using Generative Adversarial Network. IEEE Transactions on Medical Imaging, 2020, 39, 2920-2930.	5.4	30
148	Quantitative sub-resolution blood velocity estimation using ultrasound localization microscopy <i>ex-vivo</i> and <i>in-vivo</i> Biomedical Physics and Engineering Express, 2020, 6, 035019.	0.6	9
149	Contrast-Enhanced Ultrasound for Musculoskeletal Applications: A World Federation for Ultrasound in Medicine and Biology Position Paper. Ultrasound in Medicine and Biology, 2020, 46, 1279-1295.	0.7	26
150	Assessing Vessel Reconstruction in Ultrasound Localization Microscopy by Maximum Likelihood Estimation of a Zero-Inflated Poisson Model. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2020, 67, 1603-1612.	1.7	17
151	Detection and Localization of Ultrasound Scatterers Using Convolutional Neural Networks. IEEE Transactions on Medical Imaging, 2020, 39, 3855-3867.	5.4	25
152	Validation of Ultrasound Super-Resolution Imaging of Vasa Vasorum in Rabbit Atherosclerotic Plaques. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2020, 67, 1725-1729.	1.7	14
153	Microvascular Ultrasonic Imaging of Angiogenesis Identifies Tumors in a Murine Spontaneous Breast Cancer Model. International Journal of Biomedical Imaging, 2020, 2020, 1-10.	3.0	7
154	Ultrasound Microvascular Imaging Based on Superâ€Resolution Radial Fluctuations. Journal of Ultrasound in Medicine, 2020, 39, 1507-1516.	0.8	17
155	Ultrasound super-resolution imaging provides aÂnoninvasive assessment of renal microvasculature changes during mouse acute kidney injury. Kidney International, 2020, 98, 355-365.	2.6	55
156	Ultrasound localization microscopy of renal tumor xenografts in chicken embryo is correlated to hypoxia. Scientific Reports, 2020, 10, 2478.	1.6	53
157	<i>In Vivo</i> Visualization of Eye Vasculature Using Super-Resolution Ultrasound Microvessel Imaging. IEEE Transactions on Biomedical Engineering, 2020, 67, 2870-2880.	2.5	23
158	Superharmonic Ultrasound for Motion-Independent Localization Microscopy: Applications to Microvascular Imaging From Low to High Flow Rates. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2020, 67, 957-967.	1.7	26
159	Super-resolution Ultrasound Imaging. Ultrasound in Medicine and Biology, 2020, 46, 865-891.	0.7	253
160	Photoacoustic reconstruction from photothermal measurements including prior information. Photoacoustics, 2020, 19, 100175.	4.4	13
161	Short Acquisition Time Super-Resolution Ultrasound Microvessel Imaging via Microbubble Separation. Scientific Reports, 2020, 10, 6007.	1.6	67
162	Deep Learning for Ultrasound Localization Microscopy. IEEE Transactions on Medical Imaging, 2020, 39, 3064-3078.	5.4	72

#	Article	IF	Citations
163	Kalman Filter-Based Microbubble Tracking for Robust Super-Resolution Ultrasound Microvessel Imaging. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2020, 67, 1738-1751.	1.7	70
164	Deep Learning of Spatiotemporal Filtering for Fast Super-Resolution Ultrasound Imaging. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2020, 67, 1820-1829.	1.7	42
165	<i>In Vivo</i> Confocal Imaging of Fluorescently Labeled Microbubbles: Implications for Ultrasound Localization Microscopy. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2020, 67, 1811-1819.	1.7	20
166	Ultrasound Super-Resolution Flow Measurement of Suspensions in Narrow Channels. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2021, 68, 807-817.	1.7	9
167	Super-Resolution Ultrasound Localization Microscopy Through Deep Learning. IEEE Transactions on Medical Imaging, 2021, 40, 829-839.	5.4	77
168	Enhanced axillary assessment using intradermally injected microbubbles and contrast-enhanced ultrasound (CEUS) before neoadjuvant systemic therapy (NACT) identifies axillary disease missed by conventional B-mode ultrasound that may be clinically relevant. Breast Cancer Research and Treatment, 2021, 185, 413-422.	1.1	3
169	Fast 3-D Velocity Estimation in 4-D Using a 62 + 62 Row–Column Addressed Array. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2021, 68, 608-623.	1.7	12
170	Filtering Super-Resolution Scan Conversion of Medical Ultrasound Frames. Wireless Personal Communications, 2021, 116, 883-905.	1.8	2
171	A preliminary study of post-progressive nail-art effects on in vivo nail plate using optical coherence tomography-based intensity profiling assessment. Scientific Reports, 2021, 11, 666.	1.6	6
172	Compressed Sensing-Based Super-Resolution Ultrasound Imaging for Faster Acquisition and High Quality Images. IEEE Transactions on Biomedical Engineering, 2021, 68, 3317-3326.	2.5	15
173	Evaluation of Nonlinear Contrast Pulse Sequencing for Use in Super-Resolution Ultrasound Imaging. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2021, 68, 3347-3361.	1.7	12
174	Fast super-resolution ultrasound microvessel imaging using spatiotemporal data with deep fully convolutional neural network. Physics in Medicine and Biology, 2021, 66, 075005.	1.6	20
175	Current Development and Applications of Super-Resolution Ultrasound Imaging. Sensors, 2021, 21, 2417.	2.1	23
176	Three-dimensional visualization and improved quantification with super-resolution ultrasound imaging - validation framework for analysis of microvascular morphology using a chicken embryo model. Physics in Medicine and Biology, 2021, 66, 085008.	1.6	11
177	Sparse channel sampling for ultrasound localization microscopy (SPARSE-ULM). Physics in Medicine and Biology, 2021, 66, 095008.	1.6	7
178	Super-resolution ultrasound localization microscopy based on a high frame-rate clinical ultrasound scanner: an in-human feasibility study. Physics in Medicine and Biology, 2021, 66, 08NT01.	1.6	61
179	A Deep Learning Framework for Spatiotemporal Ultrasound Localization Microscopy. IEEE Transactions on Medical Imaging, 2021, 40, 1428-1437.	5.4	44
180	Selection on Golay complementary sequences in binary pulse compression for microbubble detection. Japanese Journal of Applied Physics, 2021, 60, 066501.	0.8	3

#	Article	IF	Citations
181	Single laser-shot super-resolution photoacoustic tomography with fast sparsity-based reconstruction. Photoacoustics, 2021, 22, 100258.	4.4	1
183	Morphological Reconstruction Improves Microvessel Mapping in Super-Resolution Ultrasound. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2021, 68, 2141-2149.	1.7	7
184	3D printed calibration micro-phantoms for super-resolution ultrasound imaging validation. Ultrasonics, 2021, 114, 106353.	2.1	11
185	Structural and Functional Imaging of the Retina in Central Retinal Artery Occlusion – Current Approaches and Future Directions. Journal of Stroke and Cerebrovascular Diseases, 2021, 30, 105828.	0.7	13
186	Super-Resolution Ultrasound Localization Microscopy on a Rabbit Liver VX2 Tumor Model: An Initial Feasibility Study. Ultrasound in Medicine and Biology, 2021, 47, 2416-2429.	0.7	20
187	Ultrasound microvasculature imaging with entropy-based radiality super-resolution (ERSR). Physics in Medicine and Biology, 2021, 66, 215012.	1.6	1
188	Sentinel lymph node detection by combining nonradioactive techniques with contrast agents: State of the art and prospects. Journal of Biophotonics, 2022, 15, e202100149.	1.1	5
189	Super-Resolution Microscopy: Shedding New Light on In Vivo Imaging. Frontiers in Chemistry, 2021, 9, 746900.	1.8	18
190	<i>In Vivo</i> Motion Correction in Super-Resolution Imaging of Rat Kidneys. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2021, 68, 3082-3093.	1.7	24
191	Functional Ultrasound Imaging: A New Imaging Modality for Neuroscience. Neuroscience, 2021, 474, 110-121.	1.1	55
192	The Advent of Biomolecular Ultrasound Imaging. Neuroscience, 2021, 474, 122-133.	1.1	14
193	Measuring Image Resolution in Ultrasound Localization Microscopy. IEEE Transactions on Medical Imaging, 2021, 40, 3812-3819.	5.4	32
194	Localization optoacoustic tomography. Light: Science and Applications, 2018, 7, 18004-18004.	7.7	59
196	Simultaneous Evalulation of Contrast Pulse Sequences for Super-Resolution Ultrasound Imaging – Preliminary In Vitro and In Vivo Results. , 2020, 2020, 2121-2124.		4
197	Three-dimensional evaluation of microvascular networks using contrast-enhanced ultrasound and microbubble tracking. , 2020, , .		3
198	Microbubble resonators combined with a digital optical frequency comb for high-precision air-coupled ultrasound detectors. Photonics Research, 2020, 8, 303.	3.4	30
199	Super-Resolution Ultrasound Localization Microscopy for Visualization of the Ocular Blood Flow. IEEE Transactions on Biomedical Engineering, 2022, 69, 1585-1594.	2.5	14
200	Characterization of Anti-Angiogenic Chemo-Sensitization via Longitudinal Ultrasound Localization Microscopy in Colorectal Carcinoma Tumor Xenografts. IEEE Transactions on Biomedical Engineering, 2022, 69, 1449-1460.	2.5	8

#	Article	IF	CITATIONS
203	Super-resolution ultrasound imaging with Gaussian fitting method and plane wave transmission. , 2018, , .		0
204	A balanced super-resolution optical fluctuation imaging method for super-resolution ultrasound. , 2018, , .		1
205	Effect of PSF on super-resolution ultrasound imaging implemented by bSOFI method., 2018,,.		1
206	Improving Visual Contrast Between Fat and Muscle Tissues in B-Mode Images Using CBE: A Simulation Study. IFMBE Proceedings, 2020, , 1343-1349.	0.2	0
207	Label-free STORM principle realized by super-Rayleigh speckle in photoacoustic imaging. Optics Letters, 2019, 44, 4642.	1.7	5
208	<i>In Vivo</i> Ultrasound Localization Microscopy Imaging of the Kidney's Microvasculature With Block-Matching 3-D Denoising. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2022, 69, 523-533.	1.7	8
209	Ultrasound Imaging. Recent Results in Cancer Research, 2020, 216, 135-154.	1.8	2
210	Model-based Deep Learning on Ultrasound Channel Data for Fast Ultrasound Localization Microscopy., 2021,,.		2
211	Non-Localization Super-Resolution Velocity Evaluation Based on the Trail of Point Spread Functions (TPSF). , 2021, , .		2
212	Effects of Aberration on Super-Resolution Ultrasound Imaging using Microbubbles. , 2021, , .		0
213	Super-Resolution Passive Cavitation Mapping with Diagnostic Ultrasound Arrays: A Preliminary Study. , 2021, , .		0
214	Localization of High-concentration Microbubbles for Ultrasound Localization Microscopy by Self-Supervised Deep Learning. , 2021, , .		6
215	Super-Resolution Ultrasound Imaging with Low Number of Frames Enhanced by Adaptive Beamforming. , 2021, , .		2
216	Automatic Classification of Arterial and Venous Flow in Super-resolution Ultrasound Images of Rat Kidneys. , 2021, , .		3
217	Volumetric Super-Resolution Ultrasound with a 1D array probe: a simulation study., 2021,,.		0
218	Automatic optical failure detection on large ultrasonic arrays. , 2021, , .		0
219	Improvement of Microbubbles Localization Using Adaptive Beamforming in Super-Resolution Ultrasound Imaging. , 2021, , .		4
221	Highlights of the development in ultrasound during the last 70 years: A historical review. Acta Radiologica, 2021, 62, 1499-1514.	0.5	13

#	Article	IF	CITATIONS
222	3D Transcranial Ultrasound Localization Microscopy in the Rat Brain With a Multiplexed Matrix Probe. IEEE Transactions on Biomedical Engineering, 2022, 69, 2132-2142.	2.5	47
223	Super-resolution Ultrasound Imaging of the Renal Microvasculature in Rats with Metabolic syndrome. , 2020, , .		1
224	Quantitative Microvessel Analysis with 3-D Super-Resolution Ultrasound and Velocity Mapping. , 2020, , .		5
225	Multi-resolution Data Processing for Accelerated and Robust Ultrasound Localization Microscopy. , 2020, , .		0
226	Enhanced Shrinking Reconstruction for Ultrasound Super-resolution Imaging with High Microbubble Concentration. , 2020, , .		0
227	Deep Learning Models for Fast Ultrasound Localization Microscopy. , 2020, , .		7
228	Tracking Performance in Ultrasound Super-Resolution Imaging. , 2020, , .		4
229	Aging-related cerebral microvascular changes visualized using ultrasound localization microscopy in the living mouse. Scientific Reports, 2022, 12, 619.	1.6	41
230	Dual-Mode Volumetric Optoacoustic and Contrast Enhanced Ultrasound Imaging With Spherical Matrix Arrays. IEEE Transactions on Medical Imaging, 2022, 41, 846-856.	5.4	6
231	Cerebral microcirculation mapped by echo particle tracking velocimetry quantifies the intracranial pressure and detects ischemia. Nature Communications, 2022, 13, 666.	5.8	14
233	Ultrasound super-resolution imaging with a hierarchical Kalman tracker. Ultrasonics, 2022, 122, 106695.	2.1	18
234	Super-Resolution Ultrasound Through Sparsity-Based Deconvolution and Multi-Feature Tracking. IEEE Transactions on Medical Imaging, 2022, 41, 1938-1947.	5.4	22
235	Performance benchmarking of microbubble-localization algorithms for ultrasound localization microscopy. Nature Biomedical Engineering, 2022, 6, 605-616.	11.6	70
236	A Review of Clinical Applications for Super-resolution Ultrasound Localization Microscopy. Current Medical Science, 2022, 42, 1-16.	0.7	12
237	In vivo assessment of hypertensive nephrosclerosis using ultrasound localization microscopy. Medical Physics, 2022, 49, 2295-2308.	1.6	16
238	Fast super resolution ultrasound imaging using the erythrocytes. , 2022, , .		11
239	Deep Learning-Based Microbubble Localization for Ultrasound Localization Microscopy. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2022, 69, 1312-1325.	1.7	26
240	Fast super resolution ultrasound imaging by tracking of erythrocytes using different velocity constraints., 2022,,.		4

#	Article	IF	CITATIONS
241	Microbubble tracking with a forward-backward strategy., 2022,,.		5
242	Evaluation of 2D super-resolution ultrasound imaging of the rat renal vasculature using ex vivo micro-computed tomography. Scientific Reports, 2021, 11, 24335.	1.6	11
243	In vivo whole brain microvascular imaging in mice using transcranial 3D Ultrasound Localization Microscopy. EBioMedicine, 2022, 79, 103995.	2.7	45
244	Curvelet Transform-Based Sparsity Promoting Algorithm for Fast Ultrasound Localization Microscopy. IEEE Transactions on Medical Imaging, 2022, 41, 2385-2398.	5.4	9
245	Ultrasonic Methods for Brain Imaging: Techniques and Implications. IEEE Transactions on Biomedical Engineering, 2022, 69, 3526-3537.	2.5	2
246	Endoscopic Ultrasound Localization Microscopy for the Evaluation of the Microvasculature of Gastrointestinal Tract Tumors in Rabbits. IEEE Transactions on Biomedical Engineering, 2022, 69, 3438-3448.	2.5	5
247	Characterization of Direct Localization Algorithms for Ultrasound Super-Resolution Imaging in a Multibubble Environment: A Numerical and Experimental Study. IEEE Access, 2022, 10, 49991-49999.	2.6	1
248	Super-Resolution Ultrasound Imaging Can Quantify Alterations in Microbubble Velocities in the Renal Vasculature of Rats. Diagnostics, 2022, 12, 1111.	1.3	6
249	Ultrafast ultrasound localization microscopy method for spinal cord mircovasculature imaging. Wuli Xuebao/Acta Physica Sinica, 2022, 71, 174302.	0.2	11
250	A theranostic 3D ultrasound imaging system for high resolution image-guided therapy. Theranostics, 2022, 12, 4949-4964.	4.6	2
251	Anatomic and Functional Imaging Using Row–Column Arrays. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2022, 69, 2722-2738.	1.7	21
252	Functional ultrasound localization microscopy reveals brain-wide neurovascular activity on a microscopic scale. Nature Methods, 2022, 19, 1004-1012.	9.0	41
253	Kontrastmittelsonografie des muskuloskeletalen Systems. , 2022, , 229-265.		0
254	Acoustic molecular imaging beyond the diffraction limit <i>in vivo</i> . IEEE Open Journal of Ultrasonics, Ferroelectrics, and Frequency Control, 2022, , 1-1.	0.9	0
257	Ultrasound Molecular Imaging and Its Applications in Cancer Diagnosis and Therapy. ACS Sensors, 2022, 7, 2857-2864.	4.0	17
259	Ultrasound super-resolution imaging for the differential diagnosis of thyroid nodules: A pilot study. Frontiers in Oncology, 0, 12, .	1.3	4
260	Contrast-Enhanced Ultrasound with Optimized Aperture Patterns and Bubble Segmentation Based on Echo Phase. Ultrasound in Medicine and Biology, 2022, , .	0.7	0
261	Ultrasound super-resolution imaging for differential diagnosis of breast masses. Frontiers in Oncology, 0, 12, .	1.3	3

#	Article	IF	CITATIONS
262	Retrieving Pulsatility in Ultrasound Localization Microscopy. IEEE Open Journal of Ultrasonics, Ferroelectrics, and Frequency Control, 2022, 2, 283-298.	0.9	2
263	Ultrafast Ultrasound Localization Microscopy by Conditional Generative Adversarial Network. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2023, 70, 25-40.	1.7	0
264	Fast and Selective Super-Resolution Ultrasound In Vivo With Acoustically Activated Nanodroplets. IEEE Transactions on Medical Imaging, 2023, 42, 1056-1067.	5.4	3
265	MR for ULTRA-SR: Improved Localization with Morphological Image Processing. , 2022, , .		0
266	Compensation for Velocity Underestimation in 2D Super-Resolution Ultrasound. , 2022, , .		1
267	In Vivo Super Resolution Ultrasound Imaging using the Erythrocytes - SURE. , 2022, , .		3
268	Super resolution ultrasound imaging U sing deep learning based micro-bubbles localization., 2022,,.		0
269	Analytic Optimization-Based Microbubble Tracking in Ultrasound Super-Resolution Microscopy. , 2022, , .		2
270	Achievable Localization Precision of Clinical 3D Ultrasound Localization Microscopy (ULM)., 2022,,.		2
271	Super Resolution Ultrasound using Recursive Imaging of Highly Dense Scatterers. , 2022, , .		3
272	Modified Residual Dense Network based super-resolution localization method for high-concentration microbubbles. , 2022, , .		0
273	In vivo 3D Super-Resolution Ultrasound Imaging of a Rat Kidney using a Row-Column Array. , 2022, , .		2
274	In-Vivo Monitoring of Liver Regeneration by Ultrasound Localization Microscopy: A Feasibility Study., 2022,,.		1
276	Fast 3D Super-Resolution Ultrasound With Adaptive Weight-Based Beamforming. IEEE Transactions on Biomedical Engineering, 2023, 70, 2752-2761.	2.5	4
277	Frame rate effects and their compensation on super-resolution microvessel imaging using ultrasound localization microscopy. Ultrasonics, 2023, 132, 107009.	2.1	4
278	Microbubbles for human diagnosis and therapy. Biomaterials, 2023, 294, 122025.	5 .7	7
279	Localization Free Super-Resolution Microbubble Velocimetry Using a Long Short-Term Memory Neural Network. IEEE Transactions on Medical Imaging, 2023, 42, 2374-2385.	5.4	8
280	Assessment of Takayasu's arteritis activity by ultrasound localization microscopy. EBioMedicine, 2023, 90, 104502.	2.7	5

#	Article	IF	CITATIONS
281	Contrast-enhanced ultrasound imaging using capacitive micromachined ultrasonic transducers. Journal of the Acoustical Society of America, 2023, 153, 1887-1897.	0.5	1
282	Acoustic super-resolved spatiotemporal monitoring of theranostic nanodroplets with tuned post-activation dynamics. Applied Physics Letters, 2023, 122, .	1.5	2
283	Detecting Early Ocular Choroidal Melanoma Using Ultrasound Localization Microscopy. Bioengineering, 2023, 10, 428.	1.6	2
284	Velocity field estimation in transcranial small vessel using super-resolution ultrasound imaging velocimetry. Ultrasonics, 2023, 132, 107016.	2.1	0
285	Hybrid photoacoustic and fast super-resolution ultrasound imaging. Nature Communications, 2023, 14, .	5.8	4
305	Influence of Image Discretization and Patch Size on ULM Localization Precision. , 2023, , .		0
306	Improved Ultrasound Localization Microscopy Using United Spatial and Angular Adaptive Scaling Wiener Postfilter Based Beamformer., 2023, , .		0
307	Adaptive beamforming combined with decision theory-based detection for ultrasound localization microscopy., 2023,,.		0
308	Recursive Imaging for Tracking High Density Scatterers in Super-Resolution Imaging. , 2023, , .		0
310	Ongoing Research Areas in Ultrasound Beamforming. , 2024, , 307-358.		0