A Survey of Distributed Data Aggregation Algorithms

IEEE Communications Surveys and Tutorials 17, 381-404 DOI: 10.1109/comst.2014.2354398

Citation Report

#	ARTICLE	IF	CITATIONS
1	The Capture-Recapture approach for population estimation in computer networks. Computer Networks, 2015, 89, 107-122.	3.2	5
2	Flow updating: Fault-tolerant aggregation for dynamic networks. Journal of Parallel and Distributed Computing, 2015, 78, 53-64.	2.7	17
3	Survey on Secure Data Aggregation in Wireless Sensor Networks. , 2015, , .		6
4	Qol-aware tradeoff between communication and computation in wireless ad-hoc networks. , 2016, , .		7
5	A survey on clustering techniques for cooperative wireless networks. Ad Hoc Networks, 2016, 47, 53-81.	3.4	63
6	Big Data Meet Green Challenges: Greening Big Data. IEEE Systems Journal, 2016, 10, 873-887.	2.9	189
7	Improved throughput for Power Line Communication (PLC) for smart meters using fog computing based data aggregation approach. , 2016, , .		34
8	Sensor data aggregation in a multi-layer Big Data framework. , 2016, , .		3
9	Cluster-Based Control Information Exchange in Multi-Channel Ad Hoc Networks With Spectrum Heterogeneity. IEEE Access, 2017, 5, 2720-2735.	2.6	3
10	A delay-aware schedule method for distributed information fusion with elastic and inelastic traffic. Information Fusion, 2017, 36, 68-79.	11.7	12
12	Alert correlation framework for malware detection by anomaly-based packet payload analysis. Journal of Network and Computer Applications, 2017, 97, 11-22.	5.8	17
13	Optimal trade-off between accuracy and network cost of distributed learning in Mobile Edge Computing: An analytical approach. , 2017, , .		7
14	Fault-tolerant aggregation: Flow-Updating meets Mass-Distribution. Distributed Computing, 2017, 30, 281-291.	0.7	4
15	Data Aggregation in Wireless Sensor Networks: Previous Research, Current Status and Future Directions. Wireless Personal Communications, 2017, 97, 3355-3425.	1.8	109
16	Overgrid: A Fully Distributed Demand Response Architecture Based on Overlay Networks. IEEE Transactions on Automation Science and Engineering, 2017, 14, 471-481.	3.4	40
17	Low-Latency and High-Reliability Cooperative WSN for Indoor Industrial Monitoring. , 2017, , .		2
18	Data aggregation among mobile devices for upload traffic reduction in crowdsensing systems. , 2017, ,		1
19	Aggregation protocols in light of reliable communication. , 2017, , .		0

	С	tation Report	
# 20	ARTICLE An Event-Based Data Aggregation Scheme Using PCA and SVR for WSNs. , 2017, , .	IF	CITATIONS 3
21	Distributed Privacy-Aware Fast Selection Algorithm for Large-Scale Data. IEEE Transactions on Parallel and Distributed Systems, 2018, 29, 365-376.	4.0	6
22	A Robust Distributed Economic Dispatch Strategy of Virtual Power Plant Under Cyber-Attacks. IEEE Transactions on Industrial Informatics, 2018, 14, 4343-4352.	7.2	108
23	Information-Theoretic Performance Analysis of Sensor Networks via Markov Modeling of Time Series Data. IEEE Transactions on Cybernetics, 2018, 48, 1898-1909.	6.2	13
24	Practical Continuous Aggregation in Wireless Edge Environments. , 2018, , .		3
25	Adaptive Control of Statistical Data Aggregation to Minimize Latency in IoT Gateway. , 2018, , .		7
26	Utilizing Position-based Routing for Data Aggregation in Crowdsensing Systems. , 2018, , .		2
27	For An Efficient Internet of Bikes. , 2018, , .		0
28	LODGE: LOcal Decisions on Global statEs in programmable data planes. , 2018, , .		11
29	Highly Reliable Decision-Making Using Reliability Factor Feedback for Factory Condition Monitoring via WSNs. Wireless Communications and Mobile Computing, 2018, 2018, 1-9.	0.8	3
30	Internet of Bikes: A DTN Protocol with Data Aggregation for Urban Data Collection. Sensors, 2018, 18 2819.	3, 2.1	21
31	Adaptive Transmission Range Based Topology Control Scheme for Fast and Reliable Data Collection. Wireless Communications and Mobile Computing, 2018, 2018, 1-21.	0.8	17
32	Sensing, communication and security planes: A new challenge for a smart city system design. Computer Networks, 2018, 144, 163-200.	3.2	86
33	Mr.Tree: Multiple Realities in Tree-based Monitoring Overlays for Peer-to-Peer Networks. , 2018, , .		2
34	Data Summarization in the Node by Parameters (DSNP): Local Data Fusion in an IoT Environment. Sensors, 2018, 18, 799.	2.1	22
35	A review on the applications of multiagent systems in wireless sensor networks. International Journal of Distributed Sensor Networks, 2019, 15, 155014771985076.	1.3	36
36	Secure Data Aggregation of Lightweight E-Healthcare IoT Devices With Fair Incentives. IEEE Internet c Things Journal, 2019, 6, 8714-8726.	of 5.5	83
37	Threshold-Based Widespread Event Detection. , 2019, 2019, 399-408.		0

ARTICLE

IF CITATIONS

Data aggregation processes: a survey, a taxonomy, and design guidelines. Computing (Vienna/New) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5

39	Trust Based Data Gathering in Wireless Sensor Network. Wireless Personal Communications, 2019, 108, 1697-1717.	1.8	3
40	Data Aggregation in Massive Machine Type Communication: Challenges and Solutions. IEEE Access, 2019, 7, 41921-41946.	2.6	41
41	Overlay Indexes: Efficiently Supporting Aggregate Range Queries and Authenticated Data Structures in Off-the-Shelf Databases. IEEE Access, 2019, 7, 175642-175670.	2.6	4
42	Distributed Optimization Framework for In-Network Data Processing. IEEE/ACM Transactions on Networking, 2019, 27, 2432-2443.	2.6	8
43	Lifetime improvement of wireless sensor network by information sensitive aggregation method for railway condition monitoring. Ad Hoc Networks, 2019, 87, 128-145.	3.4	15
44	Communication-Efficient Data Aggregation Tree Construction for Complex Queries in IoT Applications. IEEE Internet of Things Journal, 2019, 6, 3352-3363.	5.5	51
45	CSDA: a novel cluster-based secure data aggregation scheme for WSNs. Cluster Computing, 2019, 22, 5233-5244.	3.5	33
46	CG-E2S2: Consistency-guaranteed and energy-efficient sleep scheduling algorithm with data aggregation for IoT. Future Generation Computer Systems, 2019, 92, 1093-1102.	4.9	23
47	PAAL: A Framework Based on Authentication, Aggregation, and Local Differential Privacy for Internet of Multimedia Things. IEEE Internet of Things Journal, 2020, 7, 2501-2508.	5.5	18
48	The curse of indecomposable aggregates for big data exploratory analysis with a case for frequent pattern cubes. Journal of Supercomputing, 2020, 76, 688-707.	2.4	3
49	Data consistency matrix based data processing model for efficient data storage in wireless sensor networks. Computer Communications, 2020, 151, 172-182.	3.1	2
50	Grid clustering and fuzzy reinforcementâ€learning based energyâ€efficient data aggregation scheme for distributed WSN. IET Communications, 2020, 14, 2840-2848.	1.5	25
51	A survey on subjecting electronic product code and nonâ€ŀD objects to IP identification. Engineering Reports, 2020, 2, e12171.	0.9	2
52	Energy-Saving Data Aggregation for Multi-UAV System. IEEE Transactions on Vehicular Technology, 2020, 69, 9002-9016.	3.9	15
53	Data Aggregation using Difference transfer for Load Reduction in Periodic Sensor Networks. Wireless Personal Communications, 2020, 115, 1507-1524.	1.8	3
54	Classification of data aggregation functions in wireless sensor networks. Computer Networks, 2020, 178, 107342.	3.2	10
55	Cyber security for fog-based smart grid SCADA systems: Solutions and challenges. Journal of Information Security and Applications, 2020, 52, 102500.	1.8	46

	CITA	TION REPORT	
#	Article	IF	CITATIONS
56	Privacy-Preserving Overgrid: Secure Data Collection for the Smart Grid. Sensors, 2020, 20, 2249.	2.1	8
57	Monitoring urban black-odorous water by using hyperspectral data and machine learning. Environmental Pollution, 2021, 269, 116166.	3.7	22
59	QoS-Aware Energy Management and Node Scheduling Schemes for Sensor Network-Based Surveillance Applications. IEEE Access, 2021, 9, 3065-3096.	2.6	11
60	Review on secure data aggregation in Wireless Sensor Networks. IOP Conference Series: Materials Science and Engineering, 2021, 1076, 012053.	0.3	11
61	An energy efficient data gathering scheme for wireless sensor networks using hybrid crow search algorithm. IET Communications, 2021, 15, 906-916.	1.5	7
62	A hierarchical secure data aggregation method using the dragonfly algorithm in wireless sensor networks. Peer-to-Peer Networking and Applications, 2021, 14, 1917-1942.	2.6	48
63	Comparative Study of Distributed Consensus Gossip Algorithms for Network Size Estimation in Multi-Agent Systems. Future Internet, 2021, 13, 134.	2.4	15
64	Marginal and average weight-enabled data aggregation mechanism for the resource-constrained networks. Computer Communications, 2021, 174, 101-108.	3.1	8
65	Traffic Reduction Technologies and Data Aggregation Control to Minimize Latency in IoT Systems. IEICE Transactions on Communications, 2021, E104.B, 706-715.	0.4	2
66	Fog Computing: Applications and Secure Data Aggregation. , 2020, , 475-492.		5
67	Grizzly: Efficient Stream Processing Through Adaptive Query Compilation. , 2020, , .		21
68	coSense. ACM/IMS Transactions on Data Science, 2020, 1, 1-21.	2.1	3
69	Finding bugs in database systems via query partitioning. , 2020, 4, 1-30.		30
70	Queueing Delay Analysis and Optimization of Statistical Data Aggregation and Transmission Systems. IEICE Transactions on Communications, 2018, E101.B, 2186-2195.	0.4	7
71	Distributed Data Aggregation protocol for improving lifetime of Wireless Sensor Networks. Qalaai Zanist Scientific Journal, 2017, 2, .	0.2	7
72	DATA AGGREGATION IN WIRELESS SENSOR NETWORKS: EMERGING RESEARCH AREAS. Journal of Mathematical Sciences & Computational Mathematics, 2021, 3, .	0.1	1
73	In the land of data streams where synopses are missing, one framework to bring them all. Proceedings of the VLDB Endowment, 2021, 14, 1818-1831.	2.1	7
74	The Hidden Elegance of Causal Interaction Models. Lecture Notes in Computer Science, 2019, , 38-51.	1.0	0

#	Article	IF	CITATIONS
75	Distributed Aggregation over Homomorphically Encrypted Data under Switching Networks. , 2020, , .		1
76	Distributed Linear Summing in Wireless Sensor Networks with Implemented Stopping Criteria. Advances in Science, Technology and Engineering Systems, 2020, 5, 19-27.	0.4	3
77	Energy Management Techniques for WSNs (2): Data-Driven Approach. Signals and Communication Technology, 2020, , 259-398.	0.4	0
78	Incremental Evaluation of Continuous Analytic Queries in HIFUN. Communications in Computer and Information Science, 2020, , 53-67.	0.4	0
79	UnsServ: unstructured peer-to-peer library for deploying services in smart environments. , 2020, , .		0
80	Data Redundancy Reduction for Energy-Efficiency in Wireless Sensor Networks: A Comprehensive Review. IEEE Access, 2021, 9, 157859-157888.	2.6	10
81	An evolutionary algorithm for data aggregation tree construction in three-dimensional wireless sensor networks. , 2020, , .		1
82	A Data Aggregation Approach Exploiting Spatial and Temporal Correlation among Sensor Data in Wireless Sensor Networks. Electronics (Switzerland), 2022, 11, 989.	1.8	22
83	SemanticPeer: A distributional semantic peer-to-peer lookup protocol for large content spaces at internet-scale. Future Generation Computer Systems, 2022, 132, 239-253.	4.9	3
84	SOAR., 2021,,.		5
85	Efficient Asynchronous GCN Training on a GPU Cluster. , 2021, , .		0
87	Online approximative SPARQL query processing for COUNT-DISTINCT queries with web preemption. Semantic Web, 2022, 13, 735-755.	1.1	1
88	Constrained In-network Computing with Low Congestion in Datacenter Networks. , 2022, , .		6
89	Aggregate processes as distributed adaptive services for the Industrial Internet of Things. Pervasive and Mobile Computing, 2022, 85, 101658.	2.1	9
90	CoNet: Co-Embedding by Reinforcing Graph Feature and Topology Information. , 2022, , .		2
91	Resilient Approximation-Based Distributed Nonconvex Optimization. , 2022, , .		1
92	A Survey of Data Aggregation Protocols for Energy Conservation in WSN and IoT. Wireless Communications and Mobile Computing, 2022, 2022, 1-28.	0.8	3
93	CluRMA: A cluster-based RSU-enabled message aggregation scheme for vehicular ad hoc networks. Vehicular Communications, 2023, 39, 100564.	2.7	6

CITATION REPORT

#	Article	IF	CITATIONS
94	Controlling the Correctness of Aggregation Operations During Sessions of Interactive Analytic Queries. Journal of Data and Information Quality, 2023, 15, 1-41.	1.5	0
95	Data aggregation protocols for WSN and IoT applications – A comprehensive survey. Journal of King Saud University - Computer and Information Sciences, 2023, 35, 651-681.	2.7	7
96	Temporal Multimodal Data-Processing Algorithms Based on Algebraic System of Aggregates. Algorithms, 2023, 16, 186.	1.2	0
99	Efficient Computation of Quantiles over Joins. , 2023, , .		0
100	Community-Based Gossip Algorithm forÂDistributed Averaging. Lecture Notes in Computer Science, 2023, , 37-53.	1.0	0
101	Advanced Sensor Systems forÂRobotics and Autonomous Vehicles. Studies in Computational Intelligence, 2023, , 439-459.	0.7	0
103	Adding Pull toÂPush Sum forÂApproximate Data Aggregation. Lecture Notes in Computer Science, 2023, , 75-89.	1.0	0
105	Traffic Data Analysis and Forecasting. , 2023, , .		0
106	Low-Latency Data Compression and Aggregation for High-Frequency Data Acquisition in Low-Voltage Substation Area. , 2023, , .		0

CITATION REPORT