Precision microbiome reconstitution restores bile acid a difficile

Nature 517, 205-208 DOI: 10.1038/nature13828

Citation Report

#	Article	IF	CITATIONS
1	Clostridium difficile. Clinics in Laboratory Medicine, 2010, 30, 329-342.	0.7	21
3	Grand challenges in space synthetic biology. Journal of the Royal Society Interface, 2015, 12, 20150803.	1.5	55
4	Application of density gradient for the isolation of the fecal microbial stool component and the potential use thereof. Scientific Reports, 2015, 5, 16807.	1.6	44
5	Administration of defined microbiota is protective in a murine Salmonella infection model. Scientific Reports, 2015, 5, 16094.	1.6	38
6	A Comprehensive Assessment Across the Healthcare Continuum: Risk of Hospital-Associated <i>Clostridium difficile</i> Infection Due to Outpatient and Inpatient Antibiotic Exposure. Infection Control and Hospital Epidemiology, 2015, 36, 1409-1416.	1.0	42
7	Metabolic network modeling ofÂmicrobial communities. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2015, 7, 317-334.	6.6	95
8	Building the microbiome in health and disease: niche construction and social conflict in bacteria. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140298.	1.8	63
9	Interactions between the intestinal microbiota and bile acids in gallstones patients. Environmental Microbiology Reports, 2015, 7, 874-880.	1.0	142
10	Asymptomatic Clostridium difficile colonization: epidemiology and clinical implications. BMC Infectious Diseases, 2015, 15, 516.	1.3	159
11	Systematic review: bile acids and intestinal inflammationâ€luminal aggressors or regulators of mucosal defence?. Alimentary Pharmacology and Therapeutics, 2015, 42, 802-817.	1.9	106
12	Disruption of the Gut Microbiome: Clostridium difficile Infection and the Threat of Antibiotic Resistance. Genes, 2015, 6, 1347-1360.	1.0	82
13	The Microbiome and Sustainable Healthcare. Healthcare (Switzerland), 2015, 3, 100-129.	1.0	44
14	Antimicrobial Resistance and Reduced Susceptibility in Clostridium difficile: Potential Consequences for Induction, Treatment, and Recurrence of C. difficile Infection. Antibiotics, 2015, 4, 267-298.	1.5	56
15	Selective Manipulation of the Gut Microbiota Improves Immune Status in Vertebrates. Frontiers in Immunology, 2015, 6, 512.	2.2	145
16	Antimicrobial Use, Human Gut Microbiota and Clostridium difficile Colonization and Infection. Antibiotics, 2015, 4, 230-253.	1.5	53
17	Metagenomics: A New Way to Illustrate the Crosstalk between Infectious Diseases and Host Microbiome. International Journal of Molecular Sciences, 2015, 16, 26263-26279.	1.8	28
18	Mechanisms of Microbe–Host Interaction in Crohn's Disease: Dysbiosis vs. Pathobiont Selection. Frontiers in Immunology, 2015, 6, 555.	2.2	83
19	Microbiomes: unifying animal and plant systems through the lens of community ecology theory. Frontiers in Microbiology, 2015, 6, 869.	1.5	118

ATION REDO

#	ARTICLE Implementation of a Pan-Genomic Approach to Investigate Holobiont-Infecting Microbe Interaction: A	IF	CITATIONS
20	Case Report of a Leukemic Patient with Invasive Mucormycosis. PLoS ONE, 2015, 10, e0139851.	1.1	47
21	Distinct but Spatially Overlapping Intestinal Niches for Vancomycin-Resistant Enterococcus faecium and Carbapenem-Resistant Klebsiella pneumoniae. PLoS Pathogens, 2015, 11, e1005132.	2.1	100
22	Identification of a Novel Lipoprotein Regulator of Clostridium difficile Spore Germination. PLoS Pathogens, 2015, 11, e1005239.	2.1	66
23	<i>Clostridium difficile</i> Drug Pipeline: Challenges in Discovery and Development of New Agents. Journal of Medicinal Chemistry, 2015, 58, 5164-5185.	2.9	99
24	Staphylococcus aureus MnhF Mediates Cholate Efflux and Facilitates Survival under Human Colonic Conditions. Infection and Immunity, 2015, 83, 2350-2357.	1.0	17
25	Update on Fecal Microbiota Transplantation 2015: Indications, Methodologies, Mechanisms, and Outlook. Gastroenterology, 2015, 149, 223-237.	0.6	460
26	Multiscale analysis of the murine intestine for modeling human diseases. Integrative Biology (United) Tj ETQq0 0	0 rgBT /O\	verlock 10 T
27	Fecal microbiota transplantation (FMT) for Clostridium difficile infection: Focus on immunocompromised patients. Journal of Infection and Chemotherapy, 2015, 21, 230-237.	0.8	65
28	Biliary Mucosal Barrier and Microbiome. Visceral Medicine, 2015, 31, 156-161.	0.5	53
29	Pathogenesis of Clostridium difficile Infection and Its Potential Role in Inflammatory Bowel Disease. Inflammatory Bowel Diseases, 2015, 21, 1957-1966.	0.9	34
30	From Hype to Hope: The Gut Microbiota in Enteric Infectious Disease. Cell, 2015, 163, 1326-1332.	13.5	156
31	The host effects of Gambusia affinis with an antibiotic-disrupted microbiome. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2015, 178, 163-168.	1.3	35
32	Pseudomonas aeruginosa adaptation to human hosts. Nature Genetics, 2015, 47, 2-3.	9.4	15
33	Dysfunctional Families: Clostridium scindens and Secondary Bile Acids Inhibit the Growth of Clostridium difficile. Cell Metabolism, 2015, 21, 9-10.	7.2	29
35	Systematic discovery of probiotics. Nature Biotechnology, 2015, 33, 47-48.	9.4	16
36	Characterization of the Dynamic Germination of Individual Clostridium difficile Spores Using Raman Spectroscopy and Differential Interference Contrast Microscopy. Journal of Bacteriology, 2015, 197, 2361-2373.	1.0	60
37	Cross-talk between bile acids and intestinal microbiota in host metabolism and health. Journal of Zhejiang University: Science B, 2015, 16, 436-446.	1.3	91
38	The role of the local microbial ecosystem in respiratory health and disease. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140294.	1.8	215

#	Article	IF	CITATIONS
39	Innate Immune Defenses Mediated by Two ILC Subsets Are Critical for Protection against Acute Clostridium difficile Infection. Cell Host and Microbe, 2015, 18, 27-37.	5.1	240
40	Fecal Microbiota Transplantation Eliminates Clostridium difficile in a Murine Model of Relapsing Disease. Infection and Immunity, 2015, 83, 3838-3846.	1.0	116
41	A biosynthetic pathway for a prominent class of microbiota-derived bile acids. Nature Chemical Biology, 2015, 11, 685-690.	3.9	304
42	Antibiotic-Induced Alterations of the Murine Gut Microbiota and Subsequent Effects on Colonization Resistance against Clostridium difficile. MBio, 2015, 6, e00974.	1.8	235
43	Proton Pump Inhibitors Alter Specific Taxa in the Human Gastrointestinal Microbiome: A Crossover Trial. Gastroenterology, 2015, 149, 883-885.e9.	0.6	268
44	Effectiveness of fecal-derived microbiota transfer using orally administered capsules for recurrent Clostridium difficile infection. BMC Infectious Diseases, 2015, 15, 191.	1.3	129
45	Insight into alteration of gut microbiota in Clostridium difficile infection and asymptomatic C. difficile colonization. Anaerobe, 2015, 34, 1-7.	1.0	107
46	Loss of Microbiota-Mediated Colonization Resistance to <i>Clostridium difficile</i> Infection With Oral Vancomycin Compared With Metronidazole. Journal of Infectious Diseases, 2015, 212, 1656-1665.	1.9	157
47	Toward a True Bacteriotherapy for Clostridium difficile Infection. New England Journal of Medicine, 2015, 372, 1566-1568.	13.9	18
48	No Vacancy: How Beneficial Microbes Cooperate with Immunity To Provide Colonization Resistance to Pathogens. Journal of Immunology, 2015, 194, 4081-4087.	0.4	268
49	Integrating host gene expression and the microbiome to explore disease pathogenesis. Genome Biology, 2015, 16, 70.	3.8	6
50	Sepsis: a roadmap for future research. Lancet Infectious Diseases, The, 2015, 15, 581-614.	4.6	827
51	The human gut sterolbiome: bile acid-microbiome endocrine aspects and therapeutics. Acta Pharmaceutica Sinica B, 2015, 5, 99-105.	5.7	153
52	Manipulation of the Quorum Sensing Signal AI-2 Affects the Antibiotic-Treated Gut Microbiota. Cell Reports, 2015, 10, 1861-1871.	2.9	313
53	Microbiota—implications for immunity and transplantation. Nature Reviews Nephrology, 2015, 11, 342-353.	4.1	47
54	An Integrative View of Microbiome-Host Interactions in Inflammatory Bowel Diseases. Cell Host and Microbe, 2015, 17, 577-591.	5.1	235
55	Immune biomarkers: the promises and pitfalls of personalized medicine. Nature Reviews Immunology, 2015, 15, 323-329.	10.6	89
56	Chemical communication in the gut: Effects of microbiota-generated metabolites on gastrointestinal bacterial pathogens. Anaerobe, 2015, 34, 106-115.	1.0	101

		EPUKI	
#	Article	IF	CITATIONS
57	Five critical elements to ensure the precision medicine. Cancer and Metastasis Reviews, 2015, 34, 313-318.	2.7	44
58 59	Recurrent Clostridium difficile infection: From colonization to cure. Anaerobe, 2015, 34, 59-73. Cancer and the microbiota. Science, 2015, 348, 80-86.	1.0 6.0	79 942
60	Indigenous Bacteria from the Gut Microbiota Regulate Host Serotonin Biosynthesis. Cell, 2015, 161,	13.5	2,423
61	264-276. Clostridium difficile Infection. Clinical and Translational Gastroenterology, 2015, 6, e92.	1.3	5
62	Spore Cortex Hydrolysis Precedes Dipicolinic Acid Release during Clostridium difficile Spore Germination. Journal of Bacteriology, 2015, 197, 2276-2283.	1.0	85
63	Bile Acid-Activated Receptors, Intestinal Microbiota, and the Treatment of Metabolic Disorders. Trends in Molecular Medicine, 2015, 21, 702-714.	3.5	368
64	Interactions Between the Gastrointestinal Microbiome and <i>Clostridium difficile</i> . Annual Review of Microbiology, 2015, 69, 445-461.	2.9	256
65	Pancreatic Cancer Metabolism: Breaking It Down to Build It Back Up. Cancer Discovery, 2015, 5, 1247-1261.	7.7	178
66	TGR5 and Immunometabolism: Insights from Physiology and Pharmacology. Trends in Pharmacological Sciences, 2015, 36, 847-857.	4.0	114
67	Therapeutic targeting of bile acids. American Journal of Physiology - Renal Physiology, 2015, 309, G209-G215.	1.6	63
68	Humanized microbiota mice as a model of recurrent Clostridium difficile disease. Microbiome, 2015, 3, 35.	4.9	68
69	Reference ranges of serum bile acids in children and adolescents. Clinical Chemistry and Laboratory Medicine, 2015, 53, 1807-13.	1.4	24
70	Pathways and functions of gut microbiota metabolism impacting host physiology. Current Opinion in Biotechnology, 2015, 36, 137-145.	3.3	140
71	Probiotics and chronic kidney disease. Kidney International, 2015, 88, 958-966.	2.6	181
72	Are Proton Pump Inhibitors Affecting Intestinal Microbiota Health?. Gastroenterology, 2015, 149, 848-850.	0.6	5
73	Microbiota reconstitution for resistance to Clostridium difficile infection—fight fire with fire?. Nature Reviews Gastroenterology and Hepatology, 2015, 12, 4-4.	8.2	0
74	Dynamics and Establishment of Clostridium difficile Infection in the Murine Gastrointestinal Tract. Infection and Immunity, 2015, 83, 934-941.	1.0	140

#	Article	IF	CITATIONS
75	Development of Fecal Microbiota Transplantation Suitable for Mainstream Medicine. Clinical Gastroenterology and Hepatology, 2015, 13, 246-250.	2.4	46
76	Perturbations of mucosal homeostasis through interactions of intestinal microbes with myeloid cells. Immunobiology, 2015, 220, 227-235.	0.8	6
77	The rest of the story: the microbiome and gastrointestinal infections. Current Opinion in Microbiology, 2015, 23, 121-125.	2.3	22
78	12. Clostridium difficile und andere gastrointestinale Infektionen. , 2016, , .		0
79	20. FÃ k ale Mikrobiota-Transplantation. , 2016, , .		0
80	The complexities of bacterial-fungal interactions in the mammalian gastrointestinal tract. Microbial Cell, 2016, 3, 191-195.	1.4	5
81	<i>Helicobacter pylori</i> and Gastric Microbiota. The Korean Journal of Helicobacter and Upper Gastrointestinal Research, 2016, 16, 59.	0.1	0
82	Pathogenic role of the gut microbiota in gastrointestinal diseases. Intestinal Research, 2016, 14, 127.	1.0	108
83	Antimicrobial Effect of Probiotics against Common Pathogens. , 0, , .		35
84	Local and Long-Distance Calling: Conversations between the Gut Microbiota and Intra- and Extra-Gastrointestinal Tract Infections. Frontiers in Cellular and Infection Microbiology, 2016, 6, 41.	1.8	28
85	Functional Intestinal Bile Acid 7α-Dehydroxylation by Clostridium scindens Associated with Protection from Clostridium difficile Infection in a Gnotobiotic Mouse Model. Frontiers in Cellular and Infection Microbiology, 2016, 6, 191.	1.8	151
86	Using "Omics―and Integrated Multi-Omics Approaches to Guide Probiotic Selection to Mitigate Chytridiomycosis and Other Emerging Infectious Diseases. Frontiers in Microbiology, 2016, 7, 68.	1.5	135
87	Bacterial Communities: Interactions to Scale. Frontiers in Microbiology, 2016, 7, 1234.	1.5	465
88	Gradual Changes of Gut Microbiota in Weaned Miniature Piglets. Frontiers in Microbiology, 2016, 7, 1727.	1.5	164
89	Advances in the Microbiome: Applications to Clostridium difficile Infection. Journal of Clinical Medicine, 2016, 5, 83.	1.0	23
90	An Integrated Metabolomic and Microbiome Analysis Identified Specific Gut Microbiota Associated with Fecal Cholesterol and Coprostanol in Clostridium difficile Infection. PLoS ONE, 2016, 11, e0148824.	1.1	90
91	On the Origins and Control of Community Types in the Human Microbiome. PLoS Computational Biology, 2016, 12, e1004688.	1.5	69
92	Changes in Colonic Bile Acid Composition following Fecal Microbiota Transplantation Are Sufficient to Control Clostridium difficile Germination and Growth. PLoS ONE, 2016, 11, e0147210.	1.1	130

#	Article	IF	CITATIONS
93	Recent Developments in Systems Biology and Metabolic Engineering of Plant–Microbe Interactions. Frontiers in Plant Science, 2016, 7, 1421.	1.7	73
94	Individual-specific changes in the human gut microbiota after challenge with enterotoxigenic Escherichia coli and subsequent ciprofloxacin treatment. BMC Genomics, 2016, 17, 440.	1.2	55
95	Microbial Neuro-Immune Interactions and the Pathophysiology of IBD. , 0, , .		1
96	Clostridium difficile Infection. Inflammatory Bowel Diseases, 2016, 22, 648-653.	0.9	15
97	A Commensal Bacterium Promotes Virulence of an Opportunistic Pathogen via Cross-Respiration. MBio, 2016, 7, .	1.8	67
98	Interactions between intestinal pathogens, enteropathy and malnutrition in developing countries. Current Opinion in Infectious Diseases, 2016, 29, 229-236.	1.3	83
99	The complex interplay of diet, xenobiotics, and microbial metabolism in the gut: Implications for clinical outcomes. Clinical Pharmacology and Therapeutics, 2016, 99, 588-599.	2.3	24
100	Microbial contributions to chronic inflammation and metabolic disease. Current Opinion in Clinical Nutrition and Metabolic Care, 2016, 19, 257-262.	1.3	19
101	Microbiota as Therapeutic Targets. Digestive Diseases, 2016, 34, 558-565.	0.8	14
102	Gut barrier impairment by highâ€fat diet in mice depends on housing conditions. Molecular Nutrition and Food Research, 2016, 60, 897-908.	1.5	49
104	Short bowel syndrome (SBS)â€associated alterations within the gutâ€liver axis evolve early and persist longâ€term in the piglet model of short bowel syndrome. Journal of Gastroenterology and Hepatology (Australia), 2016, 31, 1946-1955.	1.4	21
105	Interactions between the microbiota and pathogenic bacteria in the gut. Nature, 2016, 535, 85-93.	13.7	974
106	Microbiome-wide association studies link dynamic microbial consortia to disease. Nature, 2016, 535, 94-103.	13.7	595
107	Sociomicrobiology and Pathogenic Bacteria. Microbiology Spectrum, 2016, 4, .	1.2	20
108	Bile Acids and the Potential Role in Primary Biliary Cirrhosis. Digestion, 2016, 94, 145-153.	1.2	28
109	Integrating the microbiome into precision medicine. Expert Review of Precision Medicine and Drug Development, 2016, 1, 475-477.	0.4	2
110	Gut microbiota from metabolic disease-resistant, macrophage-specific RIP140 knockdown mice improves metabolic phenotype and gastrointestinal integrity. Scientific Reports, 2016, 6, 38599.	1.6	5
111	Complete Microbiota Engraftment Is Not Essential for Recovery from Recurrent Clostridium difficile Infection following Fecal Microbiota Transplantation, MBio, 2016, 7, .	1.8	97

#	Article	IF	Citations
112	The Human Intestinal Microbiome in Health and Disease. New England Journal of Medicine, 2016, 375, 2369-2379.	13.9	2,383
113	Current status of the microbiome in renal transplantation. Current Opinion in Nephrology and Hypertension, 2016, 25, 570-576.	1.0	22
114	Antibiotics as deep modulators of gut microbiota: between good and evil. Gut, 2016, 65, 1906-1915.	6.1	463
115	Predicting microbial interactions through computational approaches. Methods, 2016, 102, 12-19.	1.9	49
116	Beyond killing. Evolution, Medicine and Public Health, 2016, 2016, 148-157.	1.1	87
117	A roadmap for gene system development in Clostridium. Anaerobe, 2016, 41, 104-112.	1.0	90
118	Gut microbiota, metabolites and host immunity. Nature Reviews Immunology, 2016, 16, 341-352.	10.6	2,212
119	Probiotics as adjunctive therapy for preventing Clostridium difficile infection – What are we waiting for?. Anaerobe, 2016, 41, 51-57.	1.0	32
120	Administration of probiotic kefir to mice with Clostridium difficile infection exacerbates disease. Anaerobe, 2016, 40, 54-57.	1.0	20
121	Bile Acids Function Synergistically To Repress Invasion Gene Expression in Salmonella by Destabilizing the Invasion Regulator HilD. Infection and Immunity, 2016, 84, 2198-2208.	1.0	38
122	The microbiota and immune response during Clostridium difficile infection. Anaerobe, 2016, 41, 79-84.	1.0	28
123	Consequences of bile salt biotransformations by intestinal bacteria. Gut Microbes, 2016, 7, 22-39.	4.3	697
124	Neutrophil-mediated inflammation in the pathogenesis of Clostridium difficile infections. Anaerobe, 2016, 41, 85-90.	1.0	47
125	Porous Cellulose Microgel Particle: A Fascinating Host for the Encapsulation, Protection, and Delivery of <i>Lactobacillus plantarum</i> . Journal of Agricultural and Food Chemistry, 2016, 64, 3430-3436.	2.4	37
126	Helminth infection promotes colonization resistance via type 2 immunity. Science, 2016, 352, 608-612.	6.0	347
127	The effects of antibiotics on the microbiome throughout development and alternative approaches for therapeutic modulation. Genome Medicine, 2016, 8, 39.	3.6	676
128	Environmental management in the gut: fecal transplantation to restore the intestinal ecosystem. Infectious Diseases, 2016, 48, 593-595.	1.4	10
129	Holes in the Hologenome: Why Host-Microbe Symbioses Are Not Holobionts. MBio, 2016, 7, e02099.	1.8	260

#	Article	IF	CITATIONS
130	High definition for systems biology of microbial communities: metagenomics gets genome-centric and strain-resolved. Current Opinion in Biotechnology, 2016, 39, 174-181.	3.3	30
131	Durable coexistence of donor and recipient strains after fecal microbiota transplantation. Science, 2016, 352, 586-589.	6.0	461
132	Resurrecting the intestinal microbiota to combat antibiotic-resistant pathogens. Science, 2016, 352, 535-538.	6.0	341
133	Clostridium difficile Infection in Patients with Inflammatory Bowel Disease. Current Infectious Disease Reports, 2016, 18, 19.	1.3	13
134	Microbiome therapeutics — Advances and challenges. Advanced Drug Delivery Reviews, 2016, 105, 44-54.	6.6	198
135	Microbiome mediation of infections in the cancer setting. Genome Medicine, 2016, 8, 40.	3.6	71
136	Novel perspectives on therapeutic modulation of the gut microbiota. Therapeutic Advances in Gastroenterology, 2016, 9, 580-593.	1.4	63
137	Clostridium difficile infection. Nature Reviews Disease Primers, 2016, 2, 16020.	18.1	588
138	Antibiotics in Hematopoietic Cell Transplantation: Adversaries or Allies?. Biology of Blood and Marrow Transplantation, 2016, 22, 972-974.	2.0	1
139	Antibiotic-Induced Changes in the Intestinal Microbiota and Disease. Trends in Molecular Medicine, 2016, 22, 458-478.	3.5	630
140	Impact of microbial derived secondary bile acids on colonization resistance against Clostridium difficile in the gastrointestinal tract. Anaerobe, 2016, 41, 44-50.	1.0	124
141	Linking the Microbiota, Chronic Disease, and the Immune System. Trends in Endocrinology and Metabolism, 2016, 27, 831-843.	3.1	195
142	Disease Progression and Resolution in Rodent Models of Clostridium difficile Infection and Impact of Antitoxin Antibodies and Vancomycin. Antimicrobial Agents and Chemotherapy, 2016, 60, 6471-6482.	1.4	28
143	<i>Clostridium difficile</i> Infection in Production Animals and Avian Species: A Review. Foodborne Pathogens and Disease, 2016, 13, 647-655.	0.8	43
144	Microbiota—myeloid cell crosstalk beyond the gut. Journal of Leukocyte Biology, 2016, 100, 865-879.	1.5	76
145	The Role of the Microbiota in Shaping Infectious Immunity. Trends in Immunology, 2016, 37, 647-658.	2.9	81
146	Dietary zinc alters the microbiota and decreases resistance to Clostridium difficile infection. Nature Medicine, 2016, 22, 1330-1334.	15.2	201
147	When pathogenic bacteria meet the intestinal microbiota. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150504.	1.8	100

		CITATION REPORT		
#	ARTICLE		IF	Citations
148	Group living and pathogen infection revisited. Current Opinion in Behavioral Sciences,	2016, 12, 66-72.	2.0	77
149	Spatial and Temporal Shifts in Bacterial Biogeography and Gland Occupation during th of a Chronic Infection. MBio, 2016, 7, .	e Development	1.8	41
150	Long-term effects on luminal and mucosal microbiota and commonly acquired taxa in microbiota transplantation for recurrent Clostridium difficile infection. BMC Medicine,		2.3	86
151	Microbiome in Transplantation. , 2016, , 939-949.			0
152	Rapid change of fecal microbiome and disappearance of Clostridium difficile in a colon after transition from breast milk to cow milk. Microbiome, 2016, 4, 53.	ized infant	4.9	59
153	Gut microbiome predictors of treatment response and recurrence in primary <i>Clostr difficile</i> infection. Alimentary Pharmacology and Therapeutics, 2016, 44, 715-727.	idium	1.9	94
154	Down to the Molecular Mechanisms of Host–Pathogen Interactions. Journal of Mole 2016, 428, 3353-3354.	cular Biology,	2.0	2
156	Antibiotic-associated diarrhoea in emergency department observation unit patients. Ep Infection, 2016, 144, 2176-2183.	bidemiology and	1.0	5
157	Getting fat from an inflamed relationship? The revenge of the holobiont. BioEssays, 20	16, 38, 119-119.	1.2	6
158	Microbiota and host immune responses: a love–hate relationship. Immunology, 201	6, 147, 1-10.	2.0	98
159	Ultrastructure Variability of the Exosporium Layer of Clostridium difficile Spores from S Cultures and Biofilms. Applied and Environmental Microbiology, 2016, 82, 5892-5898.	porulating	1.4	46
160	Any Future for Fecal Microbiota Transplantation as Treatment Strategy for Inflammato Diseases?. Digestive Diseases, 2016, 34, 74-81.	ry Bowel	0.8	22
161	<i>Bacteroidales</i> Secreted Antimicrobial Proteins Target Surface Molecules Necess Colonization and Mediate Competition <i>In Vivo</i> . MBio, 2016, 7, .	ary for Gut	1.8	63
162	Clostridium difficile colitis: pathogenesis and host defence. Nature Reviews Microbiolo 609-620.	gy, 2016, 14,	13.6	436
163	The gut microbiota: A treasure for human health. Biotechnology Advances, 2016, 34, 1	210-1224.	6.0	158
164	Acyldepsipeptide antibiotics as a potential therapeutic agent against <i>Clostridium d recurrent infections. Future Microbiology, 2016, 11, 1179-1189.</i>	ifficile	1.0	14
165	Effect of antibiotic pre-treatment and pathogen challenge on the intestinal microbiota Pathogens, 2016, 8, 60.	in mice. Gut	1.6	22
166	Gut microbiota composition and Clostridium difficile infection in hospitalized elderly ir metagenomic study. Scientific Reports, 2016, 6, 25945.	idividuals: a	1.6	207

			_
#	ARTICLE	IF	CITATIONS
167	Longitudinal Investigation of Carriage Rates, Counts, and Genotypes of Toxigenic Clostridium difficile in Early Infancy. Applied and Environmental Microbiology, 2016, 82, 5806-5814.	1.4	18
168	Cyp2c70 is responsible for the species difference in bile acid metabolism between mice and humans. Journal of Lipid Research, 2016, 57, 2130-2137.	2.0	221
169	Therapeutic manipulation of the microbiota: past, present, and considerations for the future. Clinical Microbiology and Infection, 2016, 22, 905-909.	2.8	42
170	Microbiology, philosophy and education. FEMS Microbiology Letters, 2016, 363, fnw182.	0.7	2
171	Recurrent <i>Clostridium difficile</i> infection associates with distinct bile acid and microbiome profiles. Alimentary Pharmacology and Therapeutics, 2016, 43, 1142-1153.	1.9	151
172	Strain competition restricts colonization of an enteric pathogen and prevents colitis. EMBO Reports, 2016, 17, 1281-1291.	2.0	151
173	The Traveling Microbiome. Current Infectious Disease Reports, 2016, 18, 29.	1.3	28
174	Antibiotics and the Intestinal MicrobiomeIntestinal microbiome : Individual Responses, Resilience of the Ecosystem, and the Susceptibility to Infections. Current Topics in Microbiology and Immunology, 2016, 398, 123-146.	0.7	27
175	Gut microbiota and Clostridium difficile infections. Human Microbiome Journal, 2016, 2, 10-14.	3.8	22
176	Role of gut flora after bone marrow transplantation. Nature Microbiology, 2016, 1, 16036.	5.9	36
177	Exploiting a host-commensal interaction to promote intestinal barrier function and enteric pathogen tolerance. Science Immunology, 2016, 1, .	5.6	64
179	Unique Features of Ethnic Mongolian Gut Microbiome revealed by metagenomic analysis. Scientific Reports, 2016, 6, 34826.	1.6	78
180	Intestinal microbiome changes and stem cell transplantation: Lessons learned. Virulence, 2016, 7, 930-938.	1.8	15
181	Translating nutritional immunology into drug development for inflammatory bowel disease. Current Opinion in Gastroenterology, 2016, 32, 443-449.	1.0	4
182	Variable responses of human microbiomes to dietary supplementation with resistant starch. Microbiome, 2016, 4, 33.	4.9	269
183	The human microbiome: Opportunities for dynamics, systems, and control (based on the IFAC blog post) Tj ETQq	1 1 0.784	314 rgBT /0
184	Understanding Luminal Microorganisms and Their Potential Effectiveness in Treating Intestinal Inflammation. Inflammatory Bowel Diseases, 2016, 22, 194-201.	0.9	8
185	Complete Genome Sequence of Enterococcus faecium ATCC 700221. Genome Announcements, 2016, 4, .	0.8	9

#	Article	IF	CITATIONS
186	Dynamics of the fecal microbiome in patients with recurrent and nonrecurrent Clostridium difficile infection. Genome Medicine, 2016, 8, 47.	3.6	100
187	Structural and functional changes within the gut microbiota and susceptibility to Clostridium difficile infection. Anaerobe, 2016, 41, 37-43.	1.0	60
188	Accounting for reciprocal host–microbiome interactions in experimental science. Nature, 2016, 534, 191-199.	13.7	205
189	Universality of human microbial dynamics. Nature, 2016, 534, 259-262.	13.7	225
190	MDSINE: Microbial Dynamical Systems INference Engine for microbiome time-series analyses. Genome Biology, 2016, 17, 121.	3.8	209
191	@MInter: automated text-mining of microbial interactions. Bioinformatics, 2016, 32, 2981-2987.	1.8	30
192	Ursodeoxycholic Acid Inhibits Clostridium difficile Spore Germination and Vegetative Growth, and Prevents the Recurrence of Ileal Pouchitis Associated With the Infection. Journal of Clinical Gastroenterology, 2016, 50, 624-630.	1.1	93
193	The intestinal microbiome and surgical disease. Current Problems in Surgery, 2016, 53, 257-293.	0.6	24
194	Active and Secretory IgA-Coated Bacterial Fractions Elucidate Dysbiosis in Clostridium difficile Infection. MSphere, 2016, 1, .	1.3	20
195	Clostridium difficileInfection: An Emerging Cause of Death in the Twenty-First Century. Biodemography and Social Biology, 2016, 62, 198-207.	0.4	7
196	Understanding the mechanisms of faecal microbiota transplantation. Nature Reviews Gastroenterology and Hepatology, 2016, 13, 508-516.	8.2	377
197	New insights into therapeutic strategies for gut microbiota modulation in inflammatory diseases. Clinical and Translational Immunology, 2016, 5, e87.	1.7	85
198	Microbiota and pathogen â€~pas de deux': setting up and breaking down barriers to intestinal infection. Pathogens and Disease, 2016, 74, ftw051.	0.8	20
199	Bile acid sensitivity and inÂvivo virulence of clinical Clostridium difficile isolates. Anaerobe, 2016, 41, 32-36.	1.0	25
200	Antibiotic-Induced Alterations of the Gut Microbiota Alter Secondary Bile Acid Production and Allow for Clostridium difficile Spore Germination and Outgrowth in the Large Intestine. MSphere, 2016, 1, .	1.3	349
201	Bloom and bust: intestinal microbiota dynamics in response to hospital exposures and Clostridium difficile colonization or infection. Microbiome, 2016, 4, 12.	4.9	96
202	Efficacy of antineoplastic treatment is associated with the use of antibiotics that modulate intestinal microbiota. Oncolmmunology, 2016, 5, e1150399.	2.1	94
203	Reprogrammable microbial cell-based therapeutics against antibiotic-resistant bacteria. Drug Resistance Updates, 2016, 27, 59-71.	6.5	39

ARTICLE IF CITATIONS # Microbiota-Regulated IL-25 Increases Eosinophil Number to Provide Protection during Clostridium 204 2.9 113 difficile Infection. Cell Reports, 2016, 16, 432-443. Predominance of <i>Lactobacillus </i>spp. Among Patients Who Do Not Acquire Multidrug-Resistant Organisms. Clinical Infectious Diseases, 2016, 63, 937-943. 206 Adapting Koch's postulates. Science, 2016, 351, 224-226. 6.0 151 Microbiota Manipulation With Prebiotics and Probiotics in Patients Undergoing Stem Cell Transplantation. Current Hematologic Malignancy Reports, 2016, 11, 19-28. Bile Acid Modifications at the Microbe-Host Interface: Potential for Nutraceutical and Pharmaceutical Interventions in Host Health. Annual Review of Food Science and Technology, 2016, 7, 208 5.1 161 313-333. Novel therapeutic strategies for Clostridium difficile infections. Expert Opinion on Therapeutic Targets, 2016, 20, 269-285. 209 1.5 210 Proton pump inhibitors affect the gut microbiome. Gut, 2016, 65, 740-748. 6.1 885 The Microbiome, Systemic Immune Function, and Allotransplantation. Clinical Microbiology Reviews, 5.7 2016, 29, 191-199. 212 Stress as a Normal Cue in the Symbiotic Environment. Trends in Microbiology, 2016, 24, 414-424. 3.5 36 Investigating a holobiont: Microbiota perturbations and transkingdom networks. Gut Microbes, 2016, 4.3 7, 126-135. Absence of MHC class II on cDCs results in microbial-dependent intestinal inflammation. Journal of 214 4.2 110 Experimental Medicine, 2016, 213, 517-534. Taurocholic acid metabolism by gut microbes and colon cancer. Gut Microbes, 2016, 7, 201-215. 4.3 224 Has provoking microbiota aggression driven the obesity epidemic?. BioEssays, 2016, 38, 122-128. 216 1.2 31 Commensal microbiota affects ischemic stroke outcome by regulating intestinal ^ĵaĵ´T cells. Nature 217 15.2 Medicine, 2016, 22, 516-523. Intestinal microbiome disruption in patients in a long-term acute care hospital: A case for development of microbiome disruption indices to improve infection prevention. American Journal of 218 43 1.1 Infection Control, 2016, 44, 830-836. Manipulating Bacterial Communities by in situ Microbiome Engineering. Trends in Genetics, 2016, 32, 216 189-200. Correlation detection strategies in microbial data sets vary widely in sensitivity and precision. ISME 220 593 4.4 Journal, 2016, 10, 1669-1681. A Novel Microbiome Therapeutic Increases Gut Microbial Diversity and Prevents Recurrent<i>Clostridium difficile</i>Infection. Journal of Infectious Diseases, 2016, 214, 173-181.

#	Article	IF	CITATIONS
222	Gastric Helicobacter pylori Infection Affects Local and Distant Microbial Populations and Host Responses. Cell Reports, 2016, 14, 1395-1407.	2.9	122
223	Breakthroughs in the treatment and prevention of Clostridium difficile infection. Nature Reviews Gastroenterology and Hepatology, 2016, 13, 150-160.	8.2	128
224	Exploring and Understanding the Biochemical Diversity of the Human Microbiota. Cell Chemical Biology, 2016, 23, 18-30.	2.5	115
225	Chemical conversations in the gut microbiota. Gut Microbes, 2016, 7, 163-170.	4.3	57
227	Human symbionts inject and neutralize antibacterial toxins to persist in the gut. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3639-3644.	3.3	190
228	The human microbiota: novel targets for hospital-acquired infections and antibiotic resistance. Annals of Epidemiology, 2016, 26, 342-347.	0.9	35
229	Signaling in Host-Associated Microbial Communities. Cell, 2016, 164, 1288-1300.	13.5	130
230	Crosstalk between microbiota, pathogens and the innate immune responses. International Journal of Medical Microbiology, 2016, 306, 257-265.	1.5	34
231	The microbial pharmacists within us: a metagenomic view of xenobiotic metabolism. Nature Reviews Microbiology, 2016, 14, 273-287.	13.6	552
232	Persistence of Clostridium difficile RT 237 infection in a Western Australian piggery. Anaerobe, 2016, 37, 62-66.	1.0	19
233	Recurrent Clostridium difficile infection and the microbiome. Journal of Gastroenterology, 2016, 51, 1-10.	2.3	27
234	Regulation of Clostridium difficile spore germination by the CspA pseudoprotease domain. Biochimie, 2016, 122, 243-254.	1.3	60
235	A human gut ecosystem protects against C. difficile disease by targeting TcdA. Journal of Gastroenterology, 2017, 52, 452-465.	2.3	28
236	A <i>Clostridium difficile</i> -Specific, Gel-Forming Protein Required for Optimal Spore Germination. MBio, 2017, 8, .	1.8	37
237	Translating Omics to Food Microbiology. Annual Review of Food Science and Technology, 2017, 8, 113-134.	5.1	82
238	Treatment of recurrent Clostridium difficile infection using fecal microbiota transplantation in patients with inflammatory bowel disease. Gut Microbes, 2017, 8, 303-309.	4.3	64
239	Microbes and Cancer. Annual Review of Immunology, 2017, 35, 199-228.	9.5	202
240	Impact of Antibiotics on Necrotizing Enterocolitis and Antibiotic-Associated Diarrhea. Gastroenterology Clinics of North America, 2017, 46, 61-76.	1.0	79

	CHAHON R		
#	Article	IF	CITATIONS
241	Effects of environmental pollutants on gut microbiota. Environmental Pollution, 2017, 222, 1-9.	3.7	477
242	The influence of proton pump inhibitors and other commonly used medication on the gut microbiota. Gut Microbes, 2017, 8, 351-358.	4.3	136
243	Updates on Clostridium difficile spore biology. Anaerobe, 2017, 45, 3-9.	1.0	38
244	The role of the gut microbiota in sepsis. The Lancet Gastroenterology and Hepatology, 2017, 2, 135-143.	3.7	198
246	The human gut microbiome as source of innovation for health: Which physiological and therapeutic outcomes could we expect?. Therapie, 2017, 72, 21-38.	0.6	28
247	Inhibition of spore germination, growth, and toxin activity of clinically relevant C.Âdifficile strains by gut microbiota derived secondary bile acids. Anaerobe, 2017, 45, 86-100.	1.0	175
248	Community dynamics drive punctuated engraftment of the fecal microbiome following transplantation using freeze-dried, encapsulated fecal microbiota. Gut Microbes, 2017, 8, 276-288.	4.3	39
250	Disease-Associated Changes in Bile Acid Profiles and Links to Altered Gut Microbiota. Digestive Diseases, 2017, 35, 169-177.	0.8	84
251	Dysbiosis and the immune system. Nature Reviews Immunology, 2017, 17, 219-232.	10.6	1,102
252	Secondary bile acid-induced dysbiosis promotes intestinal carcinogenesis. International Journal of Cancer, 2017, 140, 2545-2556.	2.3	164
253	Marine Ecosystems as Complex Adaptive Systems: Emergent Patterns, Critical Transitions, and Public Goods. Ecosystems, 2017, 20, 458-476.	1.6	33
254	Antibiotic-Induced Depletion of Anti-inflammatory Clostridia Is Associated with the Development of Graft-versus-Host Disease in Pediatric Stem Cell Transplantation Patients. Biology of Blood and Marrow Transplantation, 2017, 23, 820-829.	2.0	130
255	Roles of the intestinal microbiota in pathogen protection. Clinical and Translational Immunology, 2017, 6, e128.	1.7	142
256	Cardiac Ultrasound Is a Competency of Critical Care Medicine. Critical Care Medicine, 2017, 45, 1555-1557.	0.4	7
257	The Absence of Fever Is Associated With Higher Mortality and Decreased Antibiotic and IV Fluid Administration in Emergency Department Patients With Suspected Septic Shock. Critical Care Medicine, 2017, 45, e575-e582.	0.4	44
258	Effects of IV Acetaminophen on Core Body Temperature and Hemodynamic Responses in Febrile Critically III Adults: A Randomized Controlled Trial. Critical Care Medicine, 2017, 45, 1199-1207.	0.4	24
259	Salmonella Typhimurium Diarrhea Reveals Basic Principles of Enteropathogen Infection and Disease-Promoted DNA Exchange. Cell Host and Microbe, 2017, 21, 443-454.	5.1	98
260	Factors Leading to Transmission Risk of Acinetobacter baumannii*. Critical Care Medicine, 2017, 45, e633-e639.	0.4	28

#	Article	IF	CITATIONS
261	Effects of Hypercapnia and Hypercapnic Acidosis on Hospital Mortality in Mechanically Ventilated Patients*. Critical Care Medicine, 2017, 45, e649-e656.	0.4	66
262	Core Domains for Clinical Research in Acute Respiratory Failure Survivors: An International Modified Delphi Consensus Study. Critical Care Medicine, 2017, 45, 1001-1010.	0.4	68
263	The Economic and Clinical Impact of Sustained Use of a Progressive Mobility Program in a Neuro-ICU*. Critical Care Medicine, 2017, 45, 1037-1044.	0.4	18
264	Electroencephalography Predicts Poor and Good Outcomes After Cardiac Arrest: A Two-Center Study*. Critical Care Medicine, 2017, 45, e674-e682.	0.4	113
265	Cutaneous Burn Injury Modulates Urinary Antimicrobial Peptide Responses and the Urinary Microbiome. Critical Care Medicine, 2017, 45, e543-e551.	0.4	15
266	Applying the design-build-test paradigm in microbiome engineering. Current Opinion in Biotechnology, 2017, 48, 85-93.	3.3	13
267	Brain Gray Matter MRI Morphometry for Neuroprognostication After Cardiac Arrest. Critical Care Medicine, 2017, 45, e763-e771.	0.4	16
268	Early Systolic Dysfunction Following Traumatic Brain Injury: A Cohort Study. Critical Care Medicine, 2017, 45, 1028-1036.	0.4	44
269	Homeostatic Immunity and the Microbiota. Immunity, 2017, 46, 562-576.	6.6	840
270	Gut microbiota-mediated protection against diarrheal infections. Journal of Travel Medicine, 2017, 24, S39-S43.	1.4	62
271	Allied Commensal Forces against Vancomycin-Resistant Enterococci. Cell Host and Microbe, 2017, 21, 559-560.	5.1	11
272	Cooperating Commensals Restore Colonization Resistance to Vancomycin-Resistant Enterococcus faecium. Cell Host and Microbe, 2017, 21, 592-602.e4.	5.1	237
273	Bacterial community dynamics and functional variation during the long-term decomposition of cyanobacterial blooms in-vitro. Science of the Total Environment, 2017, 598, 77-86.	3.9	58
274	Antibiotic-Associated Apoptotic Enterocolitis in the Absence of a Defined Pathogen: The Role of Intestinal Microbiota Depletion*. Critical Care Medicine, 2017, 45, e600-e606.	0.4	38
275	Gut Homeostasis, Microbial Dysbiosis, and Opioids. Toxicologic Pathology, 2017, 45, 150-156.	0.9	86
276	11β-hydroxysteroid dehydrogenase-1 deficiency alters the gut microbiome response to Western diet. Journal of Endocrinology, 2017, 232, 273-283.	1.2	11
277	Making a microbiome: the many determinants of host-associated microbial community composition. Current Opinion in Microbiology, 2017, 35, 23-29.	2.3	201
278	Microbiota-Based Therapies for <i>Clostridium difficile</i> and Antibiotic-Resistant Enteric Infections. Annual Review of Microbiology, 2017, 71, 157-178.	2.9	45

#	Article	IF	CITATIONS
279	Interactions between gut bacteria and bile in health and disease. Molecular Aspects of Medicine, 2017, 56, 54-65.	2.7	341
280	Covalent attachment and Proâ€Pro endopeptidase (PPEPâ€1)â€mediated release of <i>Clostridium difficile</i> cell surface proteins involved in adhesion. Molecular Microbiology, 2017, 105, 663-673.	1.2	13
281	Chemical transformation of xenobiotics by the human gut microbiota. Science, 2017, 356, .	6.0	657
282	Evolution of commensal bacteria in the intestinal tract of mice. Current Opinion in Microbiology, 2017, 38, 114-121.	2.3	33
283	Global metabolic interaction network of the human gut microbiota for context-specific community-scale analysis. Nature Communications, 2017, 8, 15393.	5.8	216
284	Commensal microbes provide first line defense against <i>Listeria monocytogenes</i> infection. Journal of Experimental Medicine, 2017, 214, 1973-1989.	4.2	173
285	The path towards microbiome-based metabolite treatment. Nature Microbiology, 2017, 2, 17075.	5.9	103
286	Modeling new immunoregulatory therapeutics as antimicrobial alternatives for treating Clostridium difficile infection. Artificial Intelligence in Medicine, 2017, 78, 1-13.	3.8	28
287	Faecal microbiota transplantation: Where did it start? What have studies taught us? Where is it going?. SAGE Open Medicine, 2017, 5, 205031211770871.	0.7	8
288	Transmission of the gut microbiota: spreading of health. Nature Reviews Microbiology, 2017, 15, 531-543.	13.6	150
289	Protective Factors in the Intestinal Microbiome Against Clostridium difficile Infection in Recipients of Allogeneic Hematopoietic Stem Cell Transplantation. Journal of Infectious Diseases, 2017, 215, 1117-1123.	1.9	81
290	Acid-Suppressive Therapy and Risk of Infections: Pros and Cons. Clinical Drug Investigation, 2017, 37, 587-624.	1.1	23
291	Clostridium difficile. Clinics in Laboratory Medicine, 2017, 37, 341-369.	0.7	28
292	Microbiota-targeted therapies on the intensive care unit. Current Opinion in Critical Care, 2017, 23, 167-174.	1.6	47
293	The gut microbiome takes center stage in critical care. Current Opinion in Critical Care, 2017, 23, 140-142.	1.6	4
294	Microbiota in Functional Gastrointestinal Disorders in Infancy: Implications for Management. Nestle Nutrition Institute Workshop Series, 2017, 88, 107-115.	1.5	6
295	Gut microbiome as a clinical tool in gastrointestinal disease management: are we there yet?. Nature Reviews Gastroenterology and Hepatology, 2017, 14, 315-320.	8.2	96
296	Community structure of the gut microbiota in sympatric species of wild <i>Drosophila</i> . Ecology Letters, 2017, 20, 629-639.	3.0	118

ARTICLE IF CITATIONS Inferring human microbial dynamics from temporal metagenomics data: Pitfalls and lessons. 297 1.2 65 BioEssays, 2017, 39, 1600188. The emerging metabolic view of Clostridium difficile pathogenesis. Current Opinion in Microbiology, 298 2.3 2017, 35, 42-47. Bile salt hydrolase-mediated inhibitory effect of Bacteroides ovatus on growth of Clostridium 299 46 1.3 difficile. Journal of Microbiology, 2017, 55, 892-899. Separation and determination of peptide metabolite of <i>Bacillus licheniformis</i> in a microbial fuel cell by high-speed capillary micellar electrokinetic chromatography. Journal of Separation Science, 2017, 40, 4446-4452. 300 Novel Targets for Drug Development., 2017, , 1583-1608. 301 0 <i>Clostridium difficile</i>infection: new approaches to prevention, non-antimicrobial treatment, and stewardship. Expert Review of Anti-Infective Therapy, 2017, 15, 1027-1040. 303 Dysbiosis and Its Discontents. MBio, 2017, 8, . 1.8 216 Identification of microbiota dynamics using robust parameter estimation methods. Mathematical 304 Biosciences, 2017, 294, 71-84. Levofloxacin Prophylaxis During Induction Therapy for Pediatric Acute Lymphoblastic Leukemia. 305 2.9 62 Clinical Infectious Diseases, 2017, 65, 1790-1798. The intestinal microbiota: Antibiotics, colonization resistance, and enteric pathogens. Immunological 2.8 Reviews, 2017, 279, 90-105. Gut microbiota: Role in pathogen colonization, immune responses, and inflammatory disease. 307 1.015 2.8 Immunological Reviews, 2017, 279, 70-89. Biochemical Mechanisms of Pathogen Restriction by Intestinal Bacteria. Trends in Biochemical 308 39 Sciences, 2017, 42, 887-898. Postinfection Irritable Bowel Syndrome. Journal of Clinical Gastroenterology, 2017, 51, 869-877. 309 1.1 31 Soluble Dietary Fiber Reduces Trimethylamine Metabolism via Gut Microbiota and Coâ€Regulates Host 1.5 AMPK Pathways. Molecular Nutrition and Food Research, 2017, 61, 1700473. Metagenomic Shotgun Sequencing and Unbiased Metabolomic Profiling Identify Specific Human Gut 311Microbiota and Metabolites Associated with Immune Checkpoint Therapy Efficacy in Melanoma 2.3475 Patients. Neoplasia, 2017, 19, 848-855. The intricate connection between diet, microbiota, and cancer: A jigsaw puzzle. Seminars in Immunology, 2017, 32, 35-42. Intestinal colonisation patterns in breastfed and formula-fed infants during the first 12 weeks of life 313 1.6 115 reveal sequential microbiota signatures. Scientific Reports, 2017, 7, 8327. Mathematical Modeling of the Effects of Nutrient Competition and Bile Acid Metabolism by the Gut 314 Microbiota on Colonization Resistance Against Clostridium difficile. Association for Women in 0.1 Mathematics Series, 2017, , 137-161.

#	Article	IF	CITATIONS
315	Therapeutic pipeline for atopic dermatitis: End of the drought?. Journal of Allergy and Clinical Immunology, 2017, 140, 633-643.	1.5	171
316	Examination of Host Phenotypes in Gambusia affinis Following Antibiotic Treatment. Journal of Visualized Experiments, 2017, , .	0.2	2
317	Regulation of inflammation by microbiota interactions with the host. Nature Immunology, 2017, 18, 851-860.	7.0	467
318	Potential for Monitoring Gut Microbiota for Diagnosing Infections and Graft-versus-Host Disease in Cancer and Stem Cell Transplant Patients. Clinical Chemistry, 2017, 63, 1685-1694.	1.5	7
319	Impact of the Microbiota on Bacterial Infections during Cancer Treatment. Trends in Microbiology, 2017, 25, 992-1004.	3.5	36
320	Antimicrobial resistance in the next 30Âyears, humankind, bugs and drugs: a visionary approach. Intensive Care Medicine, 2017, 43, 1464-1475.	3.9	199
321	Microbiome and metabolome data integration provides insight into health and disease. Translational Research, 2017, 189, 51-64.	2.2	58
322	The evolution of the host microbiome as an ecosystem on a leash. Nature, 2017, 548, 43-51.	13.7	687
323	Next-Generation Probiotics Targeting Clostridium difficile through Precursor-Directed Antimicrobial Biosynthesis. Infection and Immunity, 2017, 85, .	1.0	65
324	Meeting Report on the ASM Conference on Mechanisms of Interbacterial Cooperation and Competition. Journal of Bacteriology, 2017, 199, e00403-17.	1.0	7
325	Pathogenicity Locus, Core Genome, and Accessory Gene Contributions to <i>Clostridium difficile</i> Virulence. MBio, 2017, 8, .	1.8	51
326	Mechanistic modeling of salmonellosis: Update and future directions. Human and Ecological Risk Assessment (HERA), 2017, 23, 1830-1856.	1.7	5
327	Modeling time-series data from microbial communities. ISME Journal, 2017, 11, 2526-2537.	4.4	52
328	The Intestinal Microbiome in Infectious Diseases: The Clinical Relevance of a Rapidly Emerging Field. Open Forum Infectious Diseases, 2017, 4, ofx144.	0.4	51
329	Mapping the ecological networks of microbial communities. Nature Communications, 2017, 8, 2042.	5.8	125
330	High-resolution profiling of the gut microbiome reveals the extent of Clostridium difficile burden. Npj Biofilms and Microbiomes, 2017, 3, 35.	2.9	55
331	Capsules for Fecal Microbiota Transplantation in Recurrent <i>Clostridium difficile</i> Infection. JAMA - Journal of the American Medical Association, 2017, 318, 1979.	3.8	14
332	Evaluating the effect of Clostridium difficile conditioned medium on fecal microbiota community structure. Scientific Reports, 2017, 7, 16448.	1.6	9

#	Article	IF	CITATIONS
333	Contemporary Applications of Fecal Microbiota Transplantation to Treat Intestinal Diseases in Humans. Archives of Medical Research, 2017, 48, 766-773.	1.5	37
334	Enterococci and Their Interactions with the Intestinal Microbiome. Microbiology Spectrum, 2017, 5, .	1.2	131
335	Scientific data and theories for salmonellosis dose–response assessment. Human and Ecological Risk Assessment (HERA), 2017, 23, 1857-1876.	1.7	7
336	Fecal Microbiota Therapy With a Focus on Clostridium difficile Infection. Psychosomatic Medicine, 2017, 79, 868-873.	1.3	10
337	Colonization with multidrug-resistant bacteria — on the efficiency of local decolonization procedures. European Journal of Microbiology and Immunology, 2017, 7, 99-111.	1.5	3
338	Factors affecting separation and detection of bile acids by liquid chromatography coupled with mass spectrometry in negative mode. Analytical and Bioanalytical Chemistry, 2017, 409, 5533-5545.	1.9	37
339	A Nutrient-Regulated Cyclic Diguanylate Phosphodiesterase Controls Clostridium difficile Biofilm and Toxin Production during Stationary Phase. Infection and Immunity, 2017, 85, .	1.0	74
340	The remedy within: will the microbiome fulfill its therapeutic promise?. Journal of Molecular Medicine, 2017, 95, 1021-1027.	1.7	30
341	Feeding the microbiota: transducer of nutrient signals for the host. Gut, 2017, 66, 1709-1717.	6.1	124
342	Generalized herd effects and vaccine evaluation: impact of live influenza vaccine on off-target bacterial colonisation. Journal of Infection, 2017, 74, S101-S107.	1.7	8
343	Gleaning Insights from Fecal Microbiota Transplantation and Probiotic Studies for the Rational Design of Combination Microbial Therapies. Clinical Microbiology Reviews, 2017, 30, 191-231.	5.7	67
344	Detection of Clostridium difficile in Feces of Asymptomatic Patients Admitted to the Hospital. Journal of Clinical Microbiology, 2017, 55, 403-411.	1.8	39
345	α-Defensin 5 gene expression is regulated by gut microbial metabolites. Bioscience, Biotechnology and Biochemistry, 2017, 81, 242-248.	0.6	22
346	Introducing the Microbiome into Precision Medicine. Trends in Pharmacological Sciences, 2017, 38, 81-91.	4.0	84
347	General antibiotic exposure is associated with increased risk of developing chronic rhinosinusitis. Laryngoscope, 2017, 127, 296-302.	1.1	21
348	A tale of two yeasts: <i>Saccharomyces cerevisiae</i> as a therapeutic against candidiasis. Virulence, 2017, 8, 15-17.	1.8	7
349	Interaction of gut microbiota with bile acid metabolism and its influence on disease states. Applied Microbiology and Biotechnology, 2017, 101, 47-64.	1.7	387
350	Natural products as mediators of disease. Natural Product Reports, 2017, 34, 194-219.	5.2	59

#	ARTICLE Oral Administration of a Select Mixture of Bacillus Probiotics Affects the Gut Microbiota and Goblet	IF	CITATIONS
351	Cell Function following Escherichia coli Challenge in Newly Weaned Pigs of Genotype <i>MUC4</i> That Are Supposed To Be Enterotoxigenic E. coli F4ab/ac Receptor Negative. Applied and Environmental Microbiology, 2017, 83, .	1.4	101
352	Microbiome at the Frontier of Personalized Medicine. Mayo Clinic Proceedings, 2017, 92, 1855-1864.	1.4	138
353	8. Infektiöse Durchfallerkrankungen. , 2017, , .		0
354	Microbiome disruption and recovery in the fish Cambusia affinis following exposure to broad-spectrum antibiotic. Infection and Drug Resistance, 2017, Volume 10, 143-154.	1.1	81
355	Characterization of Chicken IgY Specific to Clostridium difficile R20291 Spores and the Effect of Oral Administration in Mouse Models of Initiation and Recurrent Disease. Frontiers in Cellular and Infection Microbiology, 2017, 7, 365.	1.8	39
356	Perspectives and Challenges in Microbial Communities Metabolic Modeling. Frontiers in Genetics, 2017, 8, 88.	1.1	36
357	Protective Microbiota: From Localized to Long-Reaching Co-Immunity. Frontiers in Immunology, 2017, 8, 1678.	2.2	128
358	Characterization of the Culturable Subpopulations of Lactobacillus in the Chicken Intestinal Tract as a Resource for Probiotic Development. Frontiers in Microbiology, 2017, 8, 1389.	1.5	37
359	From Genes to Ecosystems in Microbiology: Modeling Approaches and the Importance of Individuality. Frontiers in Microbiology, 2017, 8, 2299.	1.5	37
360	The Role of Carrageenan and Carboxymethylcellulose in the Development of Intestinal Inflammation. Frontiers in Pediatrics, 2017, 5, 96.	0.9	93
361	Host-microbial Cross-talk in Inflammatory Bowel Disease. Immune Network, 2017, 17, 1.	1.6	147
362	The microbiome in hematopoietic stem cell transplant recipients and cancer patients: Opportunities for clinical advances that reduce infection. PLoS Pathogens, 2017, 13, e1006342.	2.1	13
363	Experimental design and quantitative analysis of microbial community multiomics. Genome Biology, 2017, 18, 228.	3.8	143
364	Identifying predictive features of Clostridium difficile infection recurrence before, during, and after primary antibiotic treatment. Microbiome, 2017, 5, 148.	4.9	36
366	Overview of Clostridium difficile Infection: Life Cycle, Epidemiology, Antimicrobial Resistance and Treatment. , 0, , .		9
367	FMT in Clostridium difficile and Other Potential Uses. , 2017, , 315-326.		Ο
368	Integrating molecular and ecological approaches to identify potential polymicrobial pathogens over a shrimp disease progression. Applied Microbiology and Biotechnology, 2018, 102, 3755-3764.	1.7	44
369	The Human Gut Microbiome: From Association to Modulation. Cell, 2018, 172, 1198-1215.	13.5	558

#	Article	IF	Citations
370	Gut Microbiome Composition Predicts Infection Risk During Chemotherapy in Children With Acute Lymphoblastic Leukemia. Clinical Infectious Diseases, 2018, 67, 541-548.	2.9	122
371	The role of bacteria in the inflammatory bowel disease development: a narrative review. Apmis, 2018, 126, 275-283.	0.9	49
372	Impact of Oral Fidaxomicin Administration on the Intestinal Microbiota and Susceptibility to Clostridium difficile Colonization in Mice. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	35
373	Morphine induces changes in the gut microbiome and metabolome in a morphine dependence model. Scientific Reports, 2018, 8, 3596.	1.6	166
374	Antibiotic treatment and stewardship in the era of microbiota-oriented diagnostics. European Journal of Clinical Microbiology and Infectious Diseases, 2018, 37, 795-798.	1.3	4
375	Clostridium scindens Is Present in the Gut Microbiota during Clostridium difficile Infection: a Metagenomic and Culturomic Analysis. Journal of Clinical Microbiology, 2018, 56, .	1.8	17
376	Alterations in gut microbial function following liver transplant. Liver Transplantation, 2018, 24, 752-761.	1.3	63
377	Genomic and phenotypic diversity of Clostridium difficile during long-term sequential recurrences of infection. International Journal of Medical Microbiology, 2018, 308, 364-377.	1.5	14
378	Pneumocystis Cytochrome b Mutants Associated With Atovaquone Prophylaxis Failure as the Cause of Pneumocystis Infection Outbreak Among Heart Transplant Recipients. Clinical Infectious Diseases, 2018, 67, 913-919.	2.9	23
379	Pre-colonization with the commensal fungus <i>Candida albicans</i> reduces murine susceptibility to <i>Clostridium difficile</i> infection. Gut Microbes, 2018, 9, 1-13.	4.3	57
380	Fecal microbiota transplantation reverses antibiotic and chemotherapy-induced gut dysbiosis in mice. Scientific Reports, 2018, 8, 6219.	1.6	99
381	Impact of gut colonization with butyrate producing microbiota on respiratory viral infection following allo-HCT. Blood, 2018, 131, blood-2018-01-828996.	0.6	155
382	A systems biology approach to predict and characterize human gut microbial metabolites in colorectal cancer. Scientific Reports, 2018, 8, 6225.	1.6	14
383	Microbiota-accessible carbohydrates suppress Clostridium difficile infection in a murine model. Nature Microbiology, 2018, 3, 662-669.	5.9	185
384	Restoration of short chain fatty acid and bile acid metabolism following fecal microbiota transplantation in patients with recurrent Clostridium difficile infection. Anaerobe, 2018, 53, 64-73.	1.0	144
385	How uterine microbiota might be responsible for a receptive, fertile endometrium. Human Reproduction Update, 2018, 24, 393-415.	5.2	176
386	The <i>Vibrio cholerae</i> type VI secretion system can modulate host intestinal mechanics to displace gut bacterial symbionts. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E3779-E3787.	3.3	141
387	Immune regulation by microbiome metabolites. Immunology, 2018, 154, 220-229.	2.0	223

#	Article	IF	CITATIONS
388	Metabolomic responses to lumacaftor/ivacaftor in cystic fibrosis. Pediatric Pulmonology, 2018, 53, 583-591.	1.0	18
389	Methodological Strategies in Microbiome Research and their Explanatory Implications. Perspectives on Science, 2018, 26, 239-265.	0.3	14
390	pH-Sensitive Compounds for Selective Inhibition of Acid-Producing Bacteria. ACS Applied Materials & Interfaces, 2018, 10, 8566-8573.	4.0	31
391	Gut microbiota injury in allogeneic haematopoietic stem cell transplantation. Nature Reviews Cancer, 2018, 18, 283-295.	12.8	204
392	Investigating the effect of supplementation on Clostridioides (Clostridium) difficile spore recovery in two solid agars. Anaerobe, 2018, 50, 38-43.	1.0	2
393	Microbiota-Derived Metabolic Factors Reduce Campylobacteriosis in Mice. Gastroenterology, 2018, 154, 1751-1763.e2.	0.6	68
394	Risk factors for <i>Clostridium difficile</i> infection in intestinal transplant recipients during the first year postâ€transplant. Transplant Infectious Disease, 2018, 20, e12858.	0.7	3
395	Temporal probabilistic modeling of bacterial compositions derived from 16S rRNA sequencing. Bioinformatics, 2018, 34, 372-380.	1.8	42
396	Longitudinal profiling of the lung microbiome in the AERIS study demonstrates repeatability of bacterial and eosinophilic COPD exacerbations. Thorax, 2018, 73, 422-430.	2.7	201
397	Sieving through gut models of colonization resistance. Nature Microbiology, 2018, 3, 132-140.	5.9	54
398	Safety, Clinical Response, and Microbiome Findings Following Fecal Microbiota Transplant in Children With Inflammatory Bowel Disease. Inflammatory Bowel Diseases, 2018, 24, 410-421.	0.9	106
399	Microbiologic factors affecting Clostridium difficile recurrence. Clinical Microbiology and Infection, 2018, 24, 476-482.	2.8	51
400	Update of treatment algorithms for Clostridium difficile infection. Clinical Microbiology and Infection, 2018, 24, 452-462.	2.8	103
401	Extended-pulsed fidaxomicin versus vancomycin for Clostridium difficile infection in patients 60 years and older (EXTEND): a randomised, controlled, open-label, phase 3b/4 trial. Lancet Infectious Diseases, The, 2018, 18, 296-307.	4.6	141
402	Engineered Human Gastrointestinal Cultures to Study the Microbiome and Infectious Diseases. Cellular and Molecular Gastroenterology and Hepatology, 2018, 5, 241-251.	2.3	82
404	The germ-organ theory of non-communicable diseases. Nature Reviews Microbiology, 2018, 16, 103-110.	13.6	117
405	The Local Defender and Functional Mediator: Gut Microbiome. Digestion, 2018, 97, 137-145.	1.2	26
406	LACTATEing Salmonella: A Host-Derived Fermentation Product Fuels Pathogen Growth. Cell Host and Microbe, 2018, 23, 3-4	5.1	11

#	Article	IF	CITATIONS
407	Formula Feeding Predisposes Neonatal Piglets to Clostridium difficile Gut Infection. Journal of Infectious Diseases, 2018, 217, 1442-1452.	1.9	18
408	Detection of Gut Dysbiosis due to Reduced Clostridium Subcluster XIVa Using the Fecal or Serum Bile Acid Profile. Inflammatory Bowel Diseases, 2018, 24, 1035-1044.	0.9	40
409	Mass spectrometry approaches to metabolic profiling of microbial communities within the human gastrointestinal tract. Methods, 2018, 149, 13-24.	1.9	21
410	Functional microbiomics: Evaluation of gut microbiota-bile acid metabolism interactions in health and disease. Methods, 2018, 149, 49-58.	1.9	76
412	Lactobacillus paracasei CNCM I-3689 reduces vancomycin-resistant Enterococcus persistence and promotes Bacteroidetes resilience in the gut following antibiotic challenge. Scientific Reports, 2018, 8, 5098.	1.6	37
413	Clostridium difficile Infection and the Tangled Web of Interactions Among Host, Pathogen, and Microbiota. Gastroenterology, 2018, 154, 1573-1576.	0.6	3
414	Shifts in the Gut Metabolome and Clostridium difficile Transcriptome throughout Colonization and Infection in a Mouse Model. MSphere, 2018, 3, .	1.3	90
415	<i>Clostridium difficile</i> Exposures, Colonization, and the Microbiome: Implications for Prevention. Infection Control and Hospital Epidemiology, 2018, 39, 596-602.	1.0	10
416	Pulmonary Colonization Resistance to Pathogens via Noncanonical Wnt and Interleukin-17A by Intranasal pep27 Mutant Immunization. Journal of Infectious Diseases, 2018, 217, 1977-1986.	1.9	10
417	Understanding Clostridium difficile Colonization. Clinical Microbiology Reviews, 2018, 31, .	5.7	206
418	Lung Microbiota and Its Impact on the Mucosal Immune Phenotype. Microbiology Spectrum, 2017, 5, .	1.2	34
419	Innate Immune Response and Outcome of Clostridium difficile Infection Are Dependent on Fecal Bacterial Composition in the Aged Host. Journal of Infectious Diseases, 2018, 217, 188-197.	1.9	25
420	What Is a Host? Attributes of Individual Susceptibility. Infection and Immunity, 2018, 86, .	1.0	57
421	Clinical Practice and Infrastructure Review of Fecal Microbiota Transplantation for Clostridium difficile Infection. Chest, 2018, 153, 266-277.	0.4	43
422	Control of <i>Clostridium difficile</i> Infection by Defined Microbial Communities. Microbiology Spectrum, 2017, 5, .	1.2	26
423	Clostridium difficile, Aging, and the Gut: Can Microbiome Rejuvenation Keep Us Young and Healthy?. Journal of Infectious Diseases, 2018, 217, 174-176.	1.9	11
424	Ecological Therapeutic Opportunities for Oral Diseases. Microbiology Spectrum, 2017, 5, .	1.2	62

#	Article	IF	CITATIONS
426	Diagnosis and management of gastrointestinal complications in adult cancer patients: 2017 updated evidence-based guidelines of the Infectious Diseases Working Party (AGIHO) of the German Society of Hematology and Medical Oncology (DGHO). Annals of Hematology, 2018, 97, 31-49.	0.8	31
427	Probiotics for prevention of Clostridium difficile infection. Current Opinion in Gastroenterology, 2018, 34, 3-10.	1.0	133
428	Gut microbiome: a new player in gastrointestinal disease. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2018, 472, 159-172.	1.4	59
429	Adverse Effects of Intravenous Vancomycin-Based Prophylaxis during Therapy for Pediatric Acute Myeloid Leukemia. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	5
430	Commensal Koch's postulates: establishing causation in human microbiota research. Current Opinion in Microbiology, 2018, 42, 47-52.	2.3	84
431	Assessing gut microbiota perturbations during the early phase of infectious diarrhea in Vietnamese children. Gut Microbes, 2018, 9, 38-54.	4.3	66
432	Role of the microbiota in cancer growth and necrosis: the challenges and opportunities of bacteriotherapy for cancer and its complications. Reviews in Medical Microbiology, 2018, 29, 20-23.	0.4	1
433	Gut Microbial and Metabolic Responses to Salmonella enterica Serovar Typhimurium and Candida albicans. MBio, 2018, 9, .	1.8	31
434	Qualitative and Quantitative DNA- and RNA-Based Analysis of the Bacterial Stomach Microbiota in Humans, Mice, and Gerbils. MSystems, 2018, 3, .	1.7	21
435	FXR-Dependent Modulation of the Human Small Intestinal Microbiome by the Bile Acid Derivative Obeticholic Acid. Gastroenterology, 2018, 155, 1741-1752.e5.	0.6	82
436	Microbiome modulates intestinal homeostasis against inflammatory diseases. Veterinary Immunology and Immunopathology, 2018, 205, 97-105.	0.5	25
437	PrsA2 (CD630_35000) of Clostridioides difficile Is an Active Parvulin-Type PPlase and a Virulence Modulator. Frontiers in Microbiology, 2018, 9, 2913.	1.5	13
438	Intrinsic Class D \hat{I}^2 -Lactamases of <i>Clostridium difficile</i> . MBio, 2018, 9, .	1.8	39
439	Inhibitory Effect of Ursodeoxycholic Acid on Clostridium difficile Germination Is Insufficient to Prevent Colitis: A Study in Hamsters and Humans. Frontiers in Microbiology, 2018, 9, 2849.	1.5	11
440	Echinococcus granulosus Infection Results in an Increase in Eisenbergiella and Parabacteroides Genera in the Gut of Mice. Frontiers in Microbiology, 2018, 9, 2890.	1.5	19
441	Alterations of Gut Microbiota in Cholestatic Infants and Their Correlation With Hepatic Function. Frontiers in Microbiology, 2018, 9, 2682.	1.5	42
442	A Microbiota-Derived Bacteriocin Targets the Host to Confer Diarrhea Resistance in Early-Weaned Piglets. Cell Host and Microbe, 2018, 24, 817-832.e8.	5.1	184
443	Inhibiting Growth of Clostridioides difficile by Restoring Valerate, Produced by the Intestinal Microbiota. Gastroenterology, 2018, 155, 1495-1507.e15.	0.6	127

#	Article	IF	CITATIONS
444	Reconstitution of the gut microbiota of antibiotic-treated patients by autologous fecal microbiota transplant. Science Translational Medicine, 2018, 10, .	5.8	258
445	Therapeutic Potential of the Gut Microbiota in the Prevention and Treatment of Sepsis. Frontiers in Immunology, 2018, 9, 2042.	2.2	103
446	Pathogenic functions of host microbiota. Microbiome, 2018, 6, 174.	4.9	70
447	The "Gut Feeling― Breaking Down the Role of Gut Microbiome in Multiple Sclerosis. Neurotherapeutics, 2018, 15, 109-125.	2.1	117
448	The gut microbiota: cause and cure of gut diseases. Medical Journal of Australia, 2018, 209, 312-317.	0.8	10
449	The effects of amine-modified single-walled carbon nanotubes on the mouse microbiota. International Journal of Nanomedicine, 2018, Volume 13, 5275-5286.	3.3	2
450	Molecular Basis of Resilience. , 2018, , .		1
451	Bacterial Infectious Disease Threat. , 2018, , 97-122.		0
452	Germinant Synergy Facilitates Clostridium difficile Spore Germination under Physiological Conditions. MSphere, 2018, 3, .	1.3	35
453	Protocol for faecal microbiota transplantation in ulcerative colitis (FMTUC): a randomised feasibility study. BMJ Open, 2018, 8, e021987.	0.8	5
454	Infection Complications in Hematopoietic Stem Cells Transplant Recipients: Do Genetics Really Matter?. Frontiers in Microbiology, 2018, 9, 2317.	1.5	12
455	<i>Clostridioides difficile</i> uses amino acids associated with gut microbial dysbiosis in a subset of patients with diarrhea. Science Translational Medicine, 2018, 10, .	5.8	128
456	One Health Relationships Between Human, Animal, and Environmental Microbiomes: A Mini-Review. Frontiers in Public Health, 2018, 6, 235.	1.3	122
457	Norovirus interactions with the commensal microbiota. PLoS Pathogens, 2018, 14, e1007183.	2.1	25
458	Bacterial antagonism in host-associated microbial communities. Science, 2018, 361, .	6.0	236
459	Predicting recurrence of Clostridium difficile infection following encapsulated fecal microbiota transplantation. Microbiome, 2018, 6, 166.	4.9	73
460	Modulation of the gut microbiota to improve innate resistance. Current Opinion in Immunology, 2018, 54, 137-144.	2.4	28
461	Para-cresol production by Clostridium difficile affects microbial diversity and membrane integrity of Gram-negative bacteria. PLoS Pathogens, 2018, 14, e1007191.	2.1	98

#	Article	IF	CITATIONS
462	Interkingdom Community Interactions in Disease Ecology. Advances in Environmental Microbiology, 2018, , 3-38.	0.1	1
463	Bistability in a system of two species interacting through mutualism as well as competition: Chemostat vs. Lotka-Volterra equations. PLoS ONE, 2018, 13, e0197462.	1.1	27
464	Consequences of colonialism: A microbial perspective to contemporary Indigenous health. American Journal of Physical Anthropology, 2018, 167, 423-437.	2.1	12
465	Carbapenems and alternative β-lactams for the treatment of infections due to extended-spectrum β-lactamase-producing Enterobacteriaceae: What impact on intestinal colonisation resistance?. International Journal of Antimicrobial Agents, 2018, 52, 762-770.	1.1	48
466	Probiotic Product Enhances Susceptibility of Mice to Cryptosporidiosis. Applied and Environmental Microbiology, 2018, 84, .	1.4	35
467	Changes in microbiota composition, bile and fatty acid metabolism, in successful faecal microbiota transplantation for Clostridioides difficile infection. BMC Gastroenterology, 2018, 18, 131.	0.8	67
468	Lung Microbiota and Its Impact on the Mucosal Immune Phenotype. , 2018, , 161-186.		0
469	Enterococci and Their Interactions with the Intestinal Microbiome. , 2018, , 309-330.		7
470	Ecological Therapeutic Opportunities for Oral Diseases. , 2018, , 235-265.		0
471	Control of <i>Clostridium difficile</i> Infection by Defined Microbial Communities. , 0, , 267-289.		1
472	Mitochondrial function — gatekeeper of intestinal epithelial cell homeostasis. Nature Reviews Gastroenterology and Hepatology, 2018, 15, 497-516.	8.2	190
473	Interplay between gut microbiota metabolism and inflammation in HIV infection. ISME Journal, 2018, 12, 1964-1976.	4.4	48
474	Gut microbiome–mediated bile acid metabolism regulates liver cancer via NKT cells. Science, 2018, 360, .	6.0	931
475	BaiCD gene cluster abundance is negatively correlated with Clostridium difficile infection. PLoS ONE, 2018, 13, e0196977.	1.1	34
476	Mucosal homeostasis is altered in the ileum of gnotobiotic mice. Journal of Surgical Research, 2018, 231, 331-337.	0.8	7
477	The Significance of the Intestinal Microbiome for Vaccinology: From Correlations to Therapeutic Applications. Drugs, 2018, 78, 1063-1072.	4.9	21
478	Community interactions and spatial structure shape selection on antibiotic resistant lineages. PLoS Computational Biology, 2018, 14, e1006179.	1.5	69
479	Diet Effects on Gut Microbiome Composition, Function, and Host Physiology. , 2018, , 755-766.		1

#	Article	IF	CITATIONS
480	Efficacy and safety of fidaxomicin for the treatment of Clostridioides (Clostridium) difficile infection in a randomized, double-blind, comparative Phase III study in Japan. Journal of Infection and Chemotherapy, 2018, 24, 744-752.	0.8	52
481	Culturing the human microbiota and culturomics. Nature Reviews Microbiology, 2018, 16, 540-550.	13.6	521
482	<i>Clostridium difficile</i> Alters the Structure and Metabolism of Distinct Cecal Microbiomes during Initial Infection To Promote Sustained Colonization. MSphere, 2018, 3, .	1.3	73
483	Deciphering microbial interactions in synthetic human gut microbiome communities. Molecular Systems Biology, 2018, 14, e8157.	3.2	361
485	Gut microbiota dysbiosis is associated with malnutrition and reduced plasma amino acid levels: Lessons from genome-scale metabolic modeling. Metabolic Engineering, 2018, 49, 128-142.	3.6	65
486	Enteric Microbiota–Gut–Brain Axis from the Perspective of Nuclear Receptors. International Journal of Molecular Sciences, 2018, 19, 2210.	1.8	21
487	From hairballs to hypotheses–biological insights from microbial networks. FEMS Microbiology Reviews, 2018, 42, 761-780.	3.9	374
488	Guts and Gall: Bile Acids in Regulation of Intestinal Epithelial Function in Health and Disease. Physiological Reviews, 2018, 98, 1983-2023.	13.1	184
489	Learning from bacterial competition in the host to develop antimicrobials. Nature Medicine, 2018, 24, 1097-1103.	15.2	70
490	Complementary intestinal mucosa and microbiota responses to caloric restriction. Scientific Reports, 2018, 8, 11338.	1.6	37
491	Microbiome and Diseases: Pathogen Infection. , 2018, , 209-230.		0
492	Diagnosis of Clostridium difficile infection using an UPLC–MS based metabolomics method. Metabolomics, 2018, 14, 102.	1.4	17
493	Microbial communities as dynamical systems. Current Opinion in Microbiology, 2018, 44, 41-49.	2.3	121
494	A Gut Commensal-Produced Metabolite Mediates Colonization Resistance to Salmonella Infection. Cell Host and Microbe, 2018, 24, 296-307.e7.	5.1	329
495	Signatures of ecological processes in microbial community time series. Microbiome, 2018, 6, 120.	4.9	81
496	Enhanced preservation of the human intestinal microbiota by ridinilazole, a novel Clostridium difficile-targeting antibacterial, compared to vancomycin. PLoS ONE, 2018, 13, e0199810.	1.1	44
497	Innate Immunity in the Persistent Inflammation, Immunosuppression, and Catabolism Syndrome and Its Implications for Therapy. Frontiers in Immunology, 2018, 9, 595.	2.2	119
498	Novel Antimicrobials for the Treatment of Clostridium difficile Infection. Frontiers in Medicine, 2018, 5, 96.	1.2	55

	CITATION I	Report	
#	Article	IF	CITATIONS
499	Clostridium difficile $\hat{a} \in $ From Colonization to Infection. Frontiers in Microbiology, 2018, 9, 646.	1.5	118
500	A Small Molecule-Screening Pipeline to Evaluate the Therapeutic Potential of 2-Aminoimidazole Molecules Against Clostridium difficile. Frontiers in Microbiology, 2018, 9, 1206.	1.5	17
501	Mechanistic Insights in the Success of Fecal Microbiota Transplants for the Treatment of Clostridium difficile Infections. Frontiers in Microbiology, 2018, 9, 1242.	1.5	69
502	Standardized Preparation for Fecal Microbiota Transplantation in Pigs. Frontiers in Microbiology, 2018, 9, 1328.	1.5	42
503	The gut microbiota of critically ill patients: first steps in an unexplored world. Intensive Care Medicine, 2018, 44, 1561-1564.	3.9	21
504	Multifaceted Defense against Listeria monocytogenes in the Gastro-Intestinal Lumen. Pathogens, 2018, 7, 1.	1.2	40
505	Effect of the Synthetic Bile Salt Analog CamSA on the Hamster Model of Clostridium difficile Infection. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	23
506	The Gut Microbiota in Cardiovascular Diseases: From Biomarkers and Potential Targets to Personalized Interventions. Current Pharmacogenomics and Personalized Medicine, 2018, 16, 75-85.	0.2	11
507	Mathematical and computational approaches in understanding the immunobiology of granulomatous diseases. Current Opinion in Systems Biology, 2018, 12, 1-11.	1.3	5
508	Low diversity gut microbiota dysbiosis: drivers, functional implications and recovery. Current Opinion in Microbiology, 2018, 44, 34-40.	2.3	262
509	Engineering microbes for targeted strikes against human pathogens. Cellular and Molecular Life Sciences, 2018, 75, 2719-2733.	2.4	24
510	Developmental Immunotoxicology Testing (DIT). , 2018, , 467-497.		2
511	Temporal Regulation of the Bacterial Metabolite Deoxycholate during Colonic Repair Is Critical for Crypt Regeneration. Cell Host and Microbe, 2018, 24, 353-363.e5.	5.1	46
512	Microbiome: Focus on Causation and Mechanism. Cell, 2018, 174, 785-790.	13.5	188
513	Microbiota and Dose Response: Evolving Paradigm of Health Triangle. Risk Analysis, 2018, 38, 2013-2028.	1.5	7
514	Synthetic gene circuits for the detection, elimination and prevention of disease. Nature Biomedical Engineering, 2018, 2, 399-415.	11.6	88
515	From Nutritional Immunology to Drug Development. , 2018, , 41-56.		0
516	Analysis of human C24 bile acids metabolome in serum and urine based on enzyme digestion of conjugated bile acids and LC-MS determination of unconjugated bile acids. Analytical and Bioanalytical Chemistry, 2018, 410, 5287-5300.	1.9	28

#	Article	IF	CITATIONS
517	In silico analysis of antibiotic-induced Clostridium difficile infection: Remediation techniques and biological adaptations. PLoS Computational Biology, 2018, 14, e1006001.	1.5	10
518	Prevention and treatment of Clostridium difficile associated diarrhea by reconstitution of the microbiota. Human Vaccines and Immunotherapeutics, 2019, 15, 1453-1456.	1.4	7
519	A review of Clostridioides [Clostridium] difficile occurrence through the food chain. Food Microbiology, 2019, 77, 118-129.	2.1	56
520	Conventional culture methods with commercially available media unveil the presence of novel culturable bacteria. Gut Microbes, 2019, 10, 77-91.	4.3	72
521	Assessment of urinary 3-indoxyl sulfate as a marker for gut microbiota diversity and abundance of <i>Clostridiales</i> . Gut Microbes, 2019, 10, 133-141.	4.3	15
522	Terrestriality and bacterial transfer: a comparative study of gut microbiomes in sympatric Malagasy mammals. ISME Journal, 2019, 13, 50-63.	4.4	59
523	Interbacterial mechanisms of colonization resistance and the strategies pathogens use to overcome them. Mucosal Immunology, 2019, 12, 1-9.	2.7	177
524	Diversity of Bacteria Exhibiting Bile Acid-inducible 7α-dehydroxylation Genes in the Human Gut. Computational and Structural Biotechnology Journal, 2019, 17, 1016-1019.	1.9	84
525	Targeting the gutâ€skin axis—Probiotics as new tools for skin disorder management?. Experimental Dermatology, 2019, 28, 1210-1218.	1.4	88
526	Massive metagenomic data analysis using abundance-based machine learning. Biology Direct, 2019, 14, 12.	1.9	29
527	Recent advances in gut Microbiota mediated therapeutic targets in inflammatory bowel diseases: Emerging modalities for future pharmacological implications. Pharmacological Research, 2019, 148, 104344.	3.1	53
528	The evolution of the use of faecal microbiota transplantation and emerging therapeutic indications. Lancet, The, 2019, 394, 420-431.	6.3	234
529	Microbiota-derived lantibiotic restores resistance against vancomycin-resistant Enterococcus. Nature, 2019, 572, 665-669.	13.7	176
530	Facing a new challenge. Chinese Medical Journal, 2019, 132, 1135-1138.	0.9	90
531	Clostridioides difficile LuxS mediates inter-bacterial interactions within biofilms. Scientific Reports, 2019, 9, 9903.	1.6	37
532	Microbial metabolite deoxycholic acid shapes microbiota against Campylobacter jejuni chicken colonization. PLoS ONE, 2019, 14, e0214705.	1.1	23
533	Healthspan and lifespan extension by fecal microbiota transplantation into progeroid mice. Nature Medicine, 2019, 25, 1234-1242.	15.2	352
534	Modelling approaches for studying the microbiome. Nature Microbiology, 2019, 4, 1253-1267.	5.9	114

#	Article	IF	CITATIONS
535	The significance of microbiome in personalized medicine. Clinical and Translational Medicine, 2019, 8, 16.	1.7	67
536	Durable Long-Term Bacterial Engraftment following Encapsulated Fecal Microbiota Transplantation To Treat Clostridium difficile Infection. MBio, 2019, 10, .	1.8	58
537	Developing Gut Microbiota Exerts Colonisation Resistance to Clostridium (syn. Clostridioides) difficile in Piglets. Microorganisms, 2019, 7, 218.	1.6	22
538	Modeling the temporal dynamics of the gut microbial community in adults and infants. PLoS Computational Biology, 2019, 15, e1006960.	1.5	42
539	Antibiotic-Induced Shifts in Fecal Microbiota Density and Composition during Hematopoietic Stem Cell Transplantation. Infection and Immunity, 2019, 87, .	1.0	51
540	Fresh Ideas Bloom in Gut Healthcare to Cross-Fertilize Lake Management. Environmental Science & Technology, 2019, 53, 14099-14112.	4.6	2
541	Metabolic output defines Escherichia coli as a health-promoting microbe against intestinal Pseudomonas aeruginosa. Scientific Reports, 2019, 9, 14463.	1.6	30
542	Demystifying the manipulation of host immunity, metabolism, and extraintestinal tumors by the gut microbiome. Signal Transduction and Targeted Therapy, 2019, 4, 41.	7.1	150
543	Gastrointestinal Tract Dysbiosis Enhances Distal Tumor Progression through Suppression of Leukocyte Trafficking. Cancer Research, 2019, 79, 5999-6009.	0.4	21
544	Microbial metabolite deoxycholic acid controls Clostridium perfringens-induced chicken necrotic enteritis through attenuating inflammatory cyclooxygenase signaling. Scientific Reports, 2019, 9, 14541.	1.6	26
545	The microbiota and infectious diseases. , 2019, , 445-457.		0
546	Antibiotic-modulated microbiome suppresses lethal inflammation and prolongs lifespan in Treg-deficient mice. Microbiome, 2019, 7, 145.	4.9	20
547	The differing roles of lactobacilli in critical illness. Nature Medicine, 2019, 25, 1651-1653.	15.2	3
548	Longitudinal development of the gut microbiota in healthy and diarrheic piglets induced by ageâ€related dietary changes. MicrobiologyOpen, 2019, 8, e923.	1.2	44
549	Recoding the metagenome: microbiome engineering in situ. Current Opinion in Microbiology, 2019, 50, 28-34.	2.3	12
550	Infectious Threats, the Intestinal Barrier, and Its Trojan Horse: Dysbiosis. Frontiers in Microbiology, 2019, 10, 1676.	1.5	92
551	Microbiota-Nourishing Immunity: A Guide to Understanding Our Microbial Self. Immunity, 2019, 51, 214-224.	6.6	24
552	Therapeutic Opportunities in Inflammatory Bowel Disease: Mechanistic Dissection of Host-Microbiome Relationships. Cell, 2019, 178, 1041-1056.	13.5	156

	C	CITATION REPORT		
#	Article	IF	CITATIONS	
553	Pursuing Human-Relevant Gut Microbiota-Immune Interactions. Immunity, 2019, 51, 225-239.	6.6	105	
554	An expectation-maximization algorithm enables accurate ecological modeling using longitudinal microbiome sequencing data. Microbiome, 2019, 7, 118.	4.9	28	
555	Diet-induced remission in chronic enteropathy is associated with altered microbial community structure and synthesis of secondary bile acids. Microbiome, 2019, 7, 126.	4.9	108	
556	Urinary lead concentration and composition of the adult gut microbiota in a cross-sectional population-based sample. Environment International, 2019, 133, 105122.	4.8	49	
557	Deprivation of dietary fiber enhances susceptibility of mice to cryptosporidiosis. PLoS Neglected Tropical Diseases, 2019, 13, e0007411.	1.3	15	
558	Microbiota of MR1 deficient mice confer resistance against Clostridium difficile infection. PLoS ONE, 2019, 14, e0223025.	1.1	19	
559	The Effect of Clostridium butyricum on Gut Microbiota, Immune Response and Intestinal Barrier Function During the Development of Necrotic Enteritis in Chickens. Frontiers in Microbiology, 2019, 10, 2309.	1.5	43	
560	Synthetic ecology of the human gut microbiota. Nature Reviews Microbiology, 2019, 17, 754-763.	13.6	117	
561	Gut microbiota in colorectal cancer: mechanisms of action and clinical applications. Nature Reviews Gastroenterology and Hepatology, 2019, 16, 690-704.	8.2	686	
562	A metagenomic strategy for harnessing the chemical repertoire of the human microbiome. Science, 2019, 366, .	6.0	101	
563	Microbiome control of innate reactivity. Current Opinion in Immunology, 2019, 56, 107-113.	2.4	35	
564	IL-33 drives group 2 innate lymphoid cell-mediated protection during Clostridium difficile infection. Nature Communications, 2019, 10, 2712.	5.8	93	
565	Equol inhibits growth and spore formation of Clostridioides difficile. Journal of Applied Microbiology, 2019, 127, 932-940.	1.4	11	
566	Clostridial Genetics: Genetic Manipulation of the Pathogenic Clostridia. Microbiology Spectrum, 2019 7, .	9, 1.2	10	
567	Towards a Better Understanding of Microbial Community Dynamics through High-Throughput Cultivation and Data Integration. MSystems, 2019, 4, .	1.7	12	
568	Targeting Bile Acid-Activated Receptors in Bariatric Surgery. Handbook of Experimental Pharmacolog, 2019, 256, 359-378.	y, 0.9	4	
569	Dynamic Modulation of the Gut Microbiota and Metabolome by Bacteriophages in a Mouse Model. C Host and Microbe, 2019, 25, 803-814.e5.	ell 5.1	317	
570	Gut Microbiota and Colonization Resistance against Bacterial Enteric Infection. Microbiology and Molecular Biology Reviews, 2019, 83, .	2.9	272	

#	Article	IF	CITATIONS
571	Understanding Competition and Cooperation withinÂthe Mammalian Gut Microbiome. Current Biology, 2019, 29, R538-R544.	1.8	181
572	Massively parallel screening of synthetic microbial communities. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 12804-12809.	3.3	182
573	Minimal Interspecies Interaction Adjustment (MIIA): Inference of Neighbor-Dependent Interactions in Microbiology, 2019, 10, 1264.	1.5	12
574	Fecal Microbiome, Metabolites, and Stem Cell Transplant Outcomes: A Single-Center Pilot Study. Open Forum Infectious Diseases, 2019, 6, ofz173.	0.4	32
575	Deciphering the Chemical Lexicon of Host–Gut Microbiota Interactions. Trends in Pharmacological Sciences, 2019, 40, 430-445.	4.0	100
576	Pathogen Colonization Resistance in the Gut and Its Manipulation for Improved Health. American Journal of Pathology, 2019, 189, 1300-1310.	1.9	31
577	A microbiota-generated bile salt induces biofilm formation in Clostridium difficile. Npj Biofilms and Microbiomes, 2019, 5, 14.	2.9	85
578	The Variation of Nasal Microbiota Caused by Low Levels of Gaseous Ammonia Exposure in Growing Pigs. Frontiers in Microbiology, 2019, 10, 1083.	1.5	19
579	Gut microbiota in wild and captive Guizhou snubâ€nosed monkeys, <i>Rhinopithecus brelichi</i> . American Journal of Primatology, 2019, 81, e22989.	0.8	55
580	Interactions of bile acids and the gut microbiota: learning from the differences in <i>Clostridium difficile</i> infection between children and adults. Physiological Genomics, 2019, 51, 218-223.	1.0	16
581	Bacterial community structure and function distinguish gut sites in captive redâ€shanked doucs (Pygathrix nemaeus). American Journal of Primatology, 2019, 81, e22977.	0.8	9
582	Butyrate Protects Mice from Clostridium difficile-Induced Colitis through an HIF-1-Dependent Mechanism. Cell Reports, 2019, 27, 750-761.e7.	2.9	212
583	Mucispirillum schaedleri Antagonizes Salmonella Virulence to Protect Mice against Colitis. Cell Host and Microbe, 2019, 25, 681-694.e8.	5.1	205
584	Intestinal Bile Acids Induce a Morphotype Switch in Vancomycin-Resistant Enterococcus that Facilitates Intestinal Colonization. Cell Host and Microbe, 2019, 25, 695-705.e5.	5.1	45
585	Destiny of <i>Dendrobium officinale</i> Polysaccharide after Oral Administration: Indigestible and Nonabsorbing, Ends in Modulating Gut Microbiota. Journal of Agricultural and Food Chemistry, 2019, 67, 5968-5977.	2.4	99
586	HIV and the Gut Microbiota: Composition, Consequences, and Avenues for Amelioration. Current HIV/AIDS Reports, 2019, 16, 204-213.	1.1	92
587	Modified Mouse Model of Clostridioides difficile Infection as a Platform for Probiotic Efficacy Studies. Antimicrobial Agents and Chemotherapy, 2019, 63, .	1.4	8
588	Precision Nutrition and the Microbiome, Part I: Current State of the Science. Nutrients, 2019, 11, 923.	1.7	220

#	Article	IF	CITATIONS
589	Modelling microbiome recovery after antibiotics using a stability landscape framework. ISME Journal, 2019, 13, 1845-1856.	4.4	98
590	Microbiome diurnal rhythmicity and its impact on host physiology and disease risk. EMBO Reports, 2019, 20, .	2.0	66
591	Mapping the microbial interactome: Statistical and experimental approaches for microbiome network inference. Experimental Biology and Medicine, 2019, 244, 445-458.	1.1	34
592	Saccharomyces boulardii CNCM I-745 Modulates the Fecal Bile Acids Metabolism During Antimicrobial Therapy in Healthy Volunteers. Frontiers in Microbiology, 2019, 10, 336.	1.5	18
593	A theoretical framework for controlling complex microbial communities. Nature Communications, 2019, 10, 1045.	5.8	70
594	Lactobacillus gasseri APC 678 Reduces Shedding of the Pathogen Clostridium difficile in a Murine Model. Frontiers in Microbiology, 2019, 10, 273.	1.5	9
595	Status of vaccine research and development for Clostridium difficile. Vaccine, 2019, 37, 7300-7306.	1.7	31
596	Mining the microbiota for microbial and metabolite-based immunotherapies. Nature Reviews Immunology, 2019, 19, 305-323.	10.6	211
597	Differential View on the Bile Acid Stress Response of Clostridioides difficile. Frontiers in Microbiology, 2019, 10, 258.	1.5	24
598	Nutrient-based diet modifications impact on the gut microbiome of the Javan slow loris (Nycticebus) Tj ETQq1 1	0.784314 1.6	rgBT /Overloo
599	Domestic canines do not display evidence of gut microbial dysbiosis in the presence of Clostridioides (Clostridium) difficile, despite cellular susceptibility to its toxins. Anaerobe, 2019, 58, 53-72.	1.0	20
600	Longitudinal assessment of microbial dysbiosis, fecal unconjugated bile acid concentrations, and disease activity in dogs with steroidâ€responsive chronic inflammatory enteropathy. Journal of Veterinary Internal Medicine, 2019, 33, 1295-1305.	0.6	63
601	Gut Microbiome in Health and Disease. Gastroenterology Clinics of North America, 2019, 48, 221-235.	1.0	23
602	The intestinal microbiota predisposes to traveler's diarrhea and to the carriage of multidrug-resistant Enterobacteriaceae after traveling to tropical regions. Gut Microbes, 2019, 10, 631-641.	4.3	34
603	Identification of novel autoinducer-2 receptors in Clostridia reveals plasticity in the binding site of the LsrB receptor family. Journal of Biological Chemistry, 2019, 294, 4450-4463.	1.6	24
604	Intestinal Microbiota as a Host Defense Mechanism to Infectious Threats. Frontiers in Microbiology, 2018, 9, 3328.	1.5	101
605	Role of the Microbiome in Intestinal Barrier Function and Immune Defense. , 2019, , 127-138.		3
606	Current Options for Fecal Transplantation in Clostridium difficile Infection. , 2019, , 177-184.		О

#	Article	IF	CITATIONS
607	Gut Microbiome in the Elderly Hospitalized Patient. , 2019, , 287-296.		1
608	Potential biomarkers to predict outcome of faecal microbiota transfer for recurrent Clostridioides difficile infection. Digestive and Liver Disease, 2019, 51, 944-951.	0.4	13
609	Clostridium scindens ATCC 35704: Integration of Nutritional Requirements, the Complete Genome Sequence, and Global Transcriptional Responses to Bile Acids. Applied and Environmental Microbiology, 2019, 85, .	1.4	35
610	Microbial bile salt hydrolases mediate the efficacy of faecal microbiota transplant in the treatment of recurrent <i>Clostridioides difficile</i> infection. Gut, 2019, 68, 1791-1800.	6.1	182
611	Comparative effect of black, green, oolong, and white tea intake on weight gain and bile acid metabolism. Nutrition, 2019, 65, 208-215.	1.1	40
612	Transition metals and host-microbe interactions in the inflamed intestine. BioMetals, 2019, 32, 369-384.	1.8	10
613	The human microbiota and infection prevention. Infection Control and Hospital Epidemiology, 2019, 40, 585-589.	1.0	8
614	Composition of gut microbiota in patients with toxigenic Clostridioides (Clostridium) difficile: Comparison between subgroups according to clinical criteria and toxin gene load. PLoS ONE, 2019, 14, e0212626.	1.1	35
615	Relationship between remote cholecystectomy and incident Clostridioides difficile infection. Clinical Microbiology and Infection, 2019, 25, 994-999.	2.8	7
616	The Therapeutic Potential of the $\hat{a} \in \hat{c}$ Yin-Yang $\hat{a} \in \hat{c}$ Garden in Our Gut. , 2019, , .		2
617	Consortium of Probiotics Attenuates Colonization of Clostridioides difficile. Frontiers in Microbiology, 2019, 10, 2871.	1.5	19
618	Heterogeneity of Vascular Endothelial Cells, De Novo Arteriogenesis and Therapeutic Implications in Pancreatic Neuroendocrine Tumors. Journal of Clinical Medicine, 2019, 8, 1980.	1.0	23
619	Why expect causation at all? A pessimistic parallel with neuroscience. Biology and Philosophy, 2019, 34, 1.	0.7	2
620	How causal are microbiomes? A comparison with the Helicobacter pylori explanation of ulcers. Biology and Philosophy, 2019, 34, 1.	0.7	45
621	SGLT-2 inhibitors in heart failure: a new therapeutic avenue. Nature Medicine, 2019, 25, 1653-1654.	15.2	6
622	The Phylogeny and Biological Function of Gastric Juice—Microbiological Consequences of Removing Gastric Acid. International Journal of Molecular Sciences, 2019, 20, 6031.	1.8	45
623	Clostridioides (Clostridium) Difficile in Food-Producing Animals, Horses and Household Pets: A Comprehensive Review. Microorganisms, 2019, 7, 667.	1.6	26
624	Microbiome: In Search of Mechanistic Information and Relevance. American Journal of Gastroenterology, 2019, 114, 1014-1016.	0.2	4

#	Article	IF	Citations
625	Manipulation of the Gut-Liver Axis Using Microbiome Restoration Therapy in Primary Sclerosing Cholangitis. American Journal of Gastroenterology, 2019, 114, 1027-1029.	0.2	7
626	Bile acid metabolites control TH17 and Treg cell differentiation. Nature, 2019, 576, 143-148.	13.7	695
627	Effective fecal microbiota transplantation for recurrent <i>Clostridioides difficile</i> infection in humans is associated with increased signalling in the bile acid-farnesoid X receptor-fibroblast growth factor pathway. Gut Microbes, 2019, 10, 142-148.	4.3	44
628	A Review on Gut Remediation of Selected Environmental Contaminants: Possible Roles of Probiotics and Gut Microbiota. Nutrients, 2019, 11, 22.	1.7	76
629	<i>In vitro</i> and <i>in vivo</i> characterization of <i>Clostridium scindens</i> bile acid transformations. Gut Microbes, 2019, 10, 481-503.	4.3	70
630	Concept of microbial gatekeepers: Positive guys?. Applied Microbiology and Biotechnology, 2019, 103, 633-641.	1.7	20
631	Continuum of Host-Gut Microbial Co-metabolism: Host CYP3A4/3A7 are Responsible for Tertiary Oxidations of Deoxycholate Species. Drug Metabolism and Disposition, 2019, 47, 283-294.	1.7	19
632	Role of Bile in Infectious Disease: the Gall of 7α-Dehydroxylating Gut Bacteria. Cell Chemical Biology, 2019, 26, 1-3.	2.5	36
633	The impact of early-life sub-therapeutic antibiotic treatment (STAT) on excessive weight is robust despite transfer of intestinal microbes. ISME Journal, 2019, 13, 1280-1292.	4.4	47
634	Not by (Cood) Microbes Alone: Towards Immunocommensal Therapies. Trends in Microbiology, 2019, 27, 294-302.	3.5	11
635	Bile Acid 7α-Dehydroxylating Gut Bacteria Secrete Antibiotics that Inhibit Clostridium difficile: Role of Secondary Bile Acids. Cell Chemical Biology, 2019, 26, 27-34.e4.	2.5	134
636	Gastrointestinal Microbiota Disruption and Risk of Colonization With Carbapenem-resistant Pseudomonas aeruginosa in Intensive Care Unit Patients. Clinical Infectious Diseases, 2019, 69, 604-613.	2.9	43
637	Enlisting commensal microbes to resist antibiotic-resistant pathogens. Journal of Experimental Medicine, 2019, 216, 10-19.	4.2	51
638	The gut microbiome: Relationships with disease and opportunities for therapy. Journal of Experimental Medicine, 2019, 216, 20-40.	4.2	547
639	Underscoring interstrain variability and the impact of growth conditions on associated antimicrobial susceptibilities in preclinical testing of novel antimicrobial drugs. Critical Reviews in Microbiology, 2019, 45, 51-64.	2.7	3
640	Thinking Outside the Cereal Box: Noncarbohydrate Routes for Dietary Manipulation of the Gut Microbiota. Applied and Environmental Microbiology, 2019, 85, .	1.4	14
641	Impact of early-life events on the susceptibility to Clostridium difficile colonisation and infection in the offspring of the pig. Gut Microbes, 2019, 10, 251-259.	4.3	14
642	Association of serum bilirubin in newborns affected by jaundice with gut microbiota dysbiosis. Journal of Nutritional Biochemistry, 2019, 63, 54-61.	1.9	36

#	Article	IF	CITATIONS
643	Targeting the gut microbiota by dietary nutrients: A new avenue for human health. Critical Reviews in Food Science and Nutrition, 2019, 59, 181-195.	5.4	38
644	The â€~ <i>in vivo</i> lifestyle' of bile acid 7α-dehydroxylating bacteria: comparative genomics, metatranscriptomic, and bile acid metabolomics analysis of a defined microbial community in gnotobiotic mice. Gut Microbes, 2020, 11, 381-404.	4.3	80
645	Neuroinflammation in Murine Cirrhosis Is Dependent on the Gut Microbiome and Is Attenuated by Fecal Transplant. Hepatology, 2020, 71, 611-626.	3.6	76
646	Generation and robustness of Boolean networks to model Clostridium difficile infection. Natural Computing, 2020, 19, 111-134.	1.8	2
647	Roles of Regulatory T Cells in Tissue Pathophysiology and Metabolism. Cell Metabolism, 2020, 31, 18-25.	7.2	90
648	Diversification of host bile acids by members of the gut microbiota. Gut Microbes, 2020, 11, 158-171.	4.3	278
649	Rifampicin, not vitamin E, suppresses parenteral nutrition-associated liver disease development through the pregnane X receptor pathway in piglets. American Journal of Physiology - Renal Physiology, 2020, 318, G41-G52.	1.6	13
650	Building upon current knowledge and techniques of indoor microbiology to construct the next era of theory into microorganisms, health, and the built environment. Journal of Exposure Science and Environmental Epidemiology, 2020, 30, 219-235.	1.8	75
651	Problems with the concept of gut microbiota dysbiosis. Microbial Biotechnology, 2020, 13, 423-434.	2.0	132
652	The gut microbiota in transplant patients. Blood Reviews, 2020, 39, 100614.	2.8	24
653	Drugging the gut microbiota: towardÂrational modulation of bacterial composition in the gut. Current Opinion in Chemical Biology, 2020, 56, 10-15.	2.8	11
654			
	Nigral overexpression of αâ€synuclein in a rat Parkinson's disease model indicates alterations in the enteric nervous system and the gut microbiome. Neurogastroenterology and Motility, 2020, 32, e13726.	1.6	61
655	Nigral overexpression of αâ€synuclein in a rat Parkinson's disease model indicates alterations in the enteric nervous system and the gut microbiome. Neurogastroenterology and Motility, 2020, 32, e13726. Enhanced inference of ecological networks by parameterizing ensembles of population dynamics models constrained with prior knowledge. BMC Ecology, 2020, 20, 3.	1.6 3.0	61 3
655 656	enteric nervous system and the gut microbiome. Neurogastroenterology and Motility, 2020, 32, e13726. Enhanced inference of ecological networks by parameterizing ensembles of population dynamics		
	enteric nervous system and the gut microbiome. Neurogastroenterology and Motility, 2020, 32, e13726. Enhanced inference of ecological networks by parameterizing ensembles of population dynamics models constrained with prior knowledge. BMC Ecology, 2020, 20, 3. Impact of Antibiotic-Resistant Bacteria on Immune Activation and Clostridioides difficile Infection in	3.0	3
656	 enteric nervous system and the gut microbiome. Neurogastroenterology and Motility, 2020, 32, e13726. Enhanced inference of ecological networks by parameterizing ensembles of population dynamics models constrained with prior knowledge. BMC Ecology, 2020, 20, 3. Impact of Antibiotic-Resistant Bacteria on Immune Activation and Clostridioides difficile Infection in the Mouse Intestine. Infection and Immunity, 2020, 88, . Bacterial steroid-17,20-desmolase is a taxonomically rare enzymatic pathway that converts prednisone to 1,4-androstanediene-3,11,17-trione, a metabolite that causes proliferation of prostate cancer cells. 	3.0 1.0	3 15
656 657	 enteric nervous system and the gut microbiome. Neurogastroenterology and Motility, 2020, 32, e13726. Enhanced inference of ecological networks by parameterizing ensembles of population dynamics models constrained with prior knowledge. BMC Ecology, 2020, 20, 3. Impact of Antibiotic-Resistant Bacteria on Immune Activation and Clostridioides difficile Infection in the Mouse Intestine. Infection and Immunity, 2020, 88, . Bacterial steroid-17,20-desmolase is a taxonomically rare enzymatic pathway that converts prednisone to 1,4-androstanediene-3,11,17-trione, a metabolite that causes proliferation of prostate cancer cells. Journal of Steroid Biochemistry and Molecular Biology, 2020, 199, 105567. Chemical Reporters for Exploring Microbiology and Microbiota Mechanisms. ChemBioChem, 2020, 21, 	3.0 1.0 1.2	3 15 28

#	Article	IF	Citations
661	The intestinal regionalization of acute norovirus infection is regulated by the microbiota via bile acid-mediated priming of type III interferon. Nature Microbiology, 2020, 5, 84-92.	5.9	87
662	Antibiotic-induced gut metabolome and microbiome alterations increase the susceptibility to Candida albicans colonization in the gastrointestinal tract. FEMS Microbiology Ecology, 2020, 96, .	1.3	57
663	Bile salt metabolism is not the only factor contributing to <i>Clostridioides</i> (<i>Clostridium</i>) <i>difficile</i> disease severity in the murine model of disease. Gut Microbes, 2020, 11, 481-496.	4.3	12
664	Shrimp disease progression increases the gut bacterial network complexity and abundances of keystone taxa. Aquaculture, 2020, 517, 734802.	1.7	49
666	Prevalence, Colonization, Epidemiology, and Public Health Significance of Clostridioides difficile in Companion Animals. Frontiers in Veterinary Science, 2020, 7, 512551.	0.9	7
667	The Initial Gut Microbiota and Response to Antibiotic Perturbation Influence Clostridioides difficile Clearance in Mice. MSphere, 2020, 5, .	1.3	17
668	Rational design of a microbial consortium of mucosal sugar utilizers reduces Clostridiodes difficile colonization. Nature Communications, 2020, 11, 5104.	5.8	177
669	The intrinsic and extrinsic elements regulating inflammation. Life Sciences, 2020, 260, 118258.	2.0	23
670	Clostridioides difficile carriage in animals and the associated changes in the host fecal microbiota. Anaerobe, 2020, 66, 102279.	1.0	8
671	Streptococcus pneumoniae Endopeptidase O Promotes the Clearance of Staphylococcus aureus and Streptococcus pneumoniae via SH2 Domain-Containing Inositol Phosphatase 1-Mediated Complement Receptor 3 Upregulation. Frontiers in Cellular and Infection Microbiology, 2020, 10, 358.	1.8	4
672	The (p)ppGpp Synthetase RSH Mediates Stationary-Phase Onset and Antibiotic Stress Survival in Clostridioides difficile. Journal of Bacteriology, 2020, 202, .	1.0	10
673	Risk factors and intestinal microbiota: Clostridioides difficile infection in patients receiving enteral nutrition at Intensive Care Units. Critical Care, 2020, 24, 426.	2.5	9
674	Biogeography of microbial bile acid transformations along the murine gut. Journal of Lipid Research, 2020, 61, 1450-1463.	2.0	61
675	The Intestinal Microbiome Restricts Alphavirus Infection and Dissemination through a Bile Acid-Type I IFN Signaling Axis. Cell, 2020, 182, 901-918.e18.	13.5	98
676	Impact of deoxycholate on Clostridioides difficile growth, toxin production, and sporulation. Heliyon, 2020, 6, e03717.	1.4	9
677	Optimization of an Assay To Determine Colonization Resistance to Clostridioides difficile in Fecal Samples from Healthy Subjects and Those Treated with Antibiotics. Antimicrobial Agents and Chemotherapy, 2020, 65, .	1.4	4
678	Refocusing Human Microbiota Research in Infectious and Immune-mediated Diseases: Advancing to the Next Stage. Journal of Infectious Diseases, 2021, 224, 5-8.	1.9	6
680	Ruggedness testing of liquid chromatography-tandem mass spectrometry system components using microbiome-relevant methods and matrices. Journal of Microbiological Methods, 2020, 177, 106020.	0.7	1

#	Article	IF	CITATIONS
681	Mobility of β-Lactam Resistance Under Bacterial Co-infection and Ampicillin Treatment in a Mouse Model. Frontiers in Microbiology, 2020, 11, 1591.	1.5	5
682	Antimicrobial resistance in enteric bacteria: current state and next-generation solutions. Gut Microbes, 2020, 12, 1799654.	4.3	41
683	From Microbial Communities to Distributed Computing Systems. Frontiers in Bioengineering and Biotechnology, 2020, 8, 834.	2.0	19
684	How Food Affects Colonization Resistance Against Enteropathogenic Bacteria. Annual Review of Microbiology, 2020, 74, 787-813.	2.9	27
685	Dilution as a Solution: Targeting Microbial Populations with a Simplified Dilution Strategy. MSphere, 2020, 5, .	1.3	1
686	Lipid Species in the GI Tract are Increased by the Commensal Fungus Candida albicans and Decrease the Virulence of Clostridioides difficile. Journal of Fungi (Basel, Switzerland), 2020, 6, 100.	1.5	5
687	Identification of Simplified Microbial Communities That Inhibit Clostridioides difficile Infection through Dilution/Extinction. MSphere, 2020, 5, .	1.3	15
688	Systems biology analysis of the Clostridioides difficile core-genome contextualizes microenvironmental evolutionary pressures leading to genotypic and phenotypic divergence. Npj Systems Biology and Applications, 2020, 6, 31.	1.4	15
689	The trans-kingdom battle between donor and recipient gut microbiome influences fecal microbiota transplantation outcome. Scientific Reports, 2020, 10, 18349.	1.6	25
690	Comparative analysis of the tonsillar microbiota in IgA nephropathy and other glomerular diseases. Scientific Reports, 2020, 10, 16206.	1.6	14
691	Mechanisms underpinning the efficacy of faecal microbiota transplantation in treating gastrointestinal disease. Therapeutic Advances in Gastroenterology, 2020, 13, 175628482094690.	1.4	21
692	Multi-omic Analysis of the Interaction between Clostridioides difficile Infection and Pediatric Inflammatory Bowel Disease. Cell Host and Microbe, 2020, 28, 422-433.e7.	5.1	45
693	Linking Strain Engraftment in Fecal Microbiota Transplantation With Maintenance of Remission in Crohn's Disease. Gastroenterology, 2020, 159, 2193-2202.e5.	0.6	41
694	Understanding the mechanisms of efficacy of fecal microbiota transplant in treating recurrent <i>Clostridioides difficile</i> infection and beyond: the contribution of gut microbial-derived metabolites. Gut Microbes, 2020, 12, 1810531.	4.3	32
695	Modeling microbial cross-feeding at intermediate scale portrays communityÂdynamics and species coexistence. PLoS Computational Biology, 2020, 16, e1008135.	1.5	32
696	Mechanisms of Colonization Resistance Against <i>Clostridioides difficile</i> . Journal of Infectious Diseases, 2021, 223, S194-S200.	1.9	19
697	Gut Microbiome in Microbial Pathogenicity. , 2020, , 1-36.		0
698	Intergenerational transfer of Dechlorane Plus and the associated long-term effects on the structure and function of gut microbiota in offspring. Environment International, 2020, 141, 105770.	4.8	11

#	Article	IF	CITATIONS
699	Existence and asymptotic behaviour of positive solutions to a stochastic multispecies Holling type II model. Stat, 2020, 9, e266.	0.3	3
700	The Bacterial Gut Microbiota of Adult Patients Infected, Colonized or Noncolonized by Clostridioides difficile. Microorganisms, 2020, 8, 677.	1.6	25
701	Cutibacterium subtype distribution on the skin of primary and revision shoulder arthroplasty patients. Journal of Shoulder and Elbow Surgery, 2020, 29, 2051-2055.	1.2	7
702	Functional and Genomic Variation between Human-Derived Isolates of Lachnospiraceae Reveals Inter- and Intra-Species Diversity. Cell Host and Microbe, 2020, 28, 134-146.e4.	5.1	210
703	Opioid system influences gut-brain axis: Dysbiosis and related alterations. Pharmacological Research, 2020, 159, 104928.	3.1	30
704	Gut Microbiota Dysbiosis Associated with Bile Acid Metabolism in Neonatal Cholestasis Disease. Scientific Reports, 2020, 10, 7686.	1.6	21
705	Surface Modifications for Improved Delivery and Function of Therapeutic Bacteria. Small, 2020, 16, e2001705.	5.2	30
706	A dysregulated bile acid-gut microbiota axis contributes to obesity susceptibility. EBioMedicine, 2020, 55, 102766.	2.7	128
707	Interaction between drugs and the gut microbiome. Gut, 2020, 69, 1510-1519.	6.1	451
708	Antibiotics can be used to contain drug-resistant bacteria by maintaining sufficiently large sensitive populations. PLoS Biology, 2020, 18, e3000713.	2.6	50
709	Gut Microbiota Metabolism and Interaction with Food Components. International Journal of Molecular Sciences, 2020, 21, 3688.	1.8	88
711	Butyrate Reprograms Expression of Specific Interferon-Stimulated Genes. Journal of Virology, 2020, 94, .	1.5	45
712	The skin microbiome of elasmobranchs follows phylosymbiosis, but in teleost fishes, the microbiomes converge. Microbiome, 2020, 8, 93.	4.9	37
713	The mechanisms and safety of probiotics against toxigenic <i>clostridium difficile</i> . Expert Review of Anti-Infective Therapy, 2020, 18, 967-975.	2.0	9
714	Role of Microbiota-Derived Bile Acids in Enteric Infections. Cell, 2020, 181, 1452-1454.	13.5	17
715	A metabolic pathway for bile acid dehydroxylation by the gut microbiome. Nature, 2020, 582, 566-570.	13.7	262
716	Investigation of Intestinal Microbiota and Fecal Calprotectin in Non-Toxigenic and Toxigenic Clostridioides difficile Colonization and Infection. Microorganisms, 2020, 8, 882.	1.6	8
717	Manipulation of epithelial integrity and mucosal immunity by host and microbiotaâ€derived metabolites. European Journal of Immunology, 2020, 50, 921-931.	1.6	31

		CITATION REPORT		
#	Article		IF	Citations
718	Conceptualizing the Vertebrate Sterolbiome. Applied and Environmental Microbiology,	, 2020, 86, .	1.4	16
719	Milk phospholipid supplementation mediates colonization resistance of mice against <i>Salmonella</i> infection in association with modification of gut microbiota. I Function, 2020, 11, 6078-6090.	Food and	2.1	9
720	Microbial Chemical Ecology in the Human Microbiome. , 2020, , 97-123.			0
721	Leucine-Rich Immune Factor APL1 Is Associated With Specific Modulation of Enteric M the Asian Malaria Mosquito Anopheles stephensi. Frontiers in Microbiology, 2020, 11,	icrobiome Taxa in 306.	1.5	20
722	Gut Microbiome Toxicity: Connecting the Environment and Gut Microbiome-Associated Toxics, 2020, 8, 19.	d Diseases.	1.6	66
723	A secondary bile acid from microbiota metabolism attenuates ileitis and bile acid reduc subclinical necrotic enteritis in chickens. Journal of Animal Science and Biotechnology,	tion in 2020, 11, 37.	2.1	19
724	Intestinal bile acids directly modulate the structure and function of <i>C. difficile</i> T Proceedings of the National Academy of Sciences of the United States of America, 202		3.3	55
725	Considering the Immune System during Fecal Microbiota Transplantation for Clostridic Infection. Trends in Molecular Medicine, 2020, 26, 496-507.	bides difficile	3.5	25
726	Host microbiomes and disease. , 2020, , 122-153.			1
727	Systems approaches for the clinical diagnosis of Clostridioides difficile infection. Trans Research, 2020, 220, 57-67.	lational	2.2	6
728	Immune-Microbiota Interplay and Colonization Resistance in Infection. Molecular Cell, 597-613.	2020, 78,	4.5	50
729	Follow your Gut: Microbiome-Based Approaches in the Developmental Pipeline for the Adjunctive Treatment of Clostridioides difficile Infection (CDI). Current Infectious Dises 2020, 22, 1.		1.3	4
730	Ridinilazole, a narrow spectrum antibiotic for treatment of <i>Clostridioides difficileenhances preservation of microbiota-dependent bile acids. American Journal of Physiol Physiology, 2020, 319, G227-G237.</i>	> infection, ogy - Renal	1.6	29
731	The use of fecal microbiota transplant in sepsis. Translational Research, 2020, 226, 12-	-25.	2.2	25
732	Fighting Microbes with Microbes. , 2020, , 335-347.			4
733	Microbiota-associated Risk Factors for <i>Clostridioides difficile</i> Acquisition in Hosp Patients: A Prospective, Multicentric Study. Clinical Infectious Diseases, 2021, 73, e26.		2.9	6
734	An ecological framework to understand the efficacy of fecal microbiota transplantation Communications, 2020, 11, 3329.	n. Nature	5.8	59
735	Compositional Lotka-Volterra describes microbial dynamics in the simplex. PLoS Comp Biology, 2020, 16, e1007917.	utational	1.5	46

#	Article	IF	CITATIONS
736	Diarrhoeal events can trigger long-term Clostridium difficile colonization with recurrent blooms. Nature Microbiology, 2020, 5, 642-650.	5.9	21
737	Clostridium species as probiotics: potentials and challenges. Journal of Animal Science and Biotechnology, 2020, 11, 24.	2.1	234
738	Investigation of the effect of the adsorbent DAV131A on the propensity of moxifloxacin to induce simulated Clostridioides (Clostridium) difficile infection (CDI) in an in vitro human gut model. Journal of Antimicrobial Chemotherapy, 2020, 75, 1458-1465.	1.3	2
739	Dysbiosis-Induced Secondary Bile Acid Deficiency Promotes Intestinal Inflammation. Cell Host and Microbe, 2020, 27, 659-670.e5.	5.1	404
740	Interleukin-22-mediated host glycosylation prevents Clostridioides difficile infection by modulating the metabolic activity of the gut microbiota. Nature Medicine, 2020, 26, 608-617.	15.2	136
741	Gut Microbiota, Antibiotic Therapy and Antimicrobial Resistance: A Narrative Review. Microorganisms, 2020, 8, 269.	1.6	55
742	Gut microbiota-derived metabolites as key actors in inflammatory bowel disease. Nature Reviews Gastroenterology and Hepatology, 2020, 17, 223-237.	8.2	893
743	Molecular mechanisms of probiotic prevention of antibiotic-associated diarrhea. Current Opinion in Biotechnology, 2020, 61, 226-234.	3.3	93
744	Microbe–microbe interactions during Clostridioides difficile infection. Current Opinion in Microbiology, 2020, 53, 19-25.	2.3	32
745	Clostridioides difficile Spores: Bile Acid Sensors and Trojan Horses of Transmission. Clinics in Colon and Rectal Surgery, 2020, 33, 058-066.	0.5	4
746	Improving Risk–Benefit in Faecal Transplantation through Microbiome Screening. Trends in Microbiology, 2020, 28, 331-339.	3.5	19
747	The Impact of pH on Clostridioides difficile Sporulation and Physiology. Applied and Environmental Microbiology, 2020, 86, .	1.4	39
748	Mechanistic insights into bacterial metabolic reprogramming from omics-integrated genome-scale models. Npj Systems Biology and Applications, 2020, 6, 1.	1.4	62
749	Effect of antibiotic to induce Clostridioides difficile-susceptibility and infectious strain in a mouse model of Clostridioides difficile infection and recurrence. Anaerobe, 2020, 62, 102149.	1.0	6
750	Metabolic Adaptations to Infections at the Organismal Level. Trends in Immunology, 2020, 41, 113-125.	2.9	56
751	A Complex Scenario of Nonsteroidal Anti-inflammatory Drugs Induced Prostaglandin E2 Production and Gut Microbiota Alteration in Clostridium difficile-Infected Mice. MBio, 2020, 11, .	1.8	3
752	Interaction variability shapes succession of synthetic microbial ecosystems. Nature Communications, 2020, 11, 309.	5.8	33
753	The gut microbiota and its interactions with cardiovascular disease. Microbial Biotechnology, 2020, 13, 637-656.	2.0	97

#	Article	IF	CITATIONS
754	Microbial-Based and Microbial-Targeted Therapies for Inflammatory Bowel Diseases. Digestive Diseases and Sciences, 2020, 65, 757-788.	1.1	97
755	Klebsiella michiganensis transmission enhances resistance to Enterobacteriaceae gut invasion by nutrition competition. Nature Microbiology, 2020, 5, 630-641.	5.9	67
756	Ursodeoxycholic Acid (UDCA) Mitigates the Host Inflammatory Response during Clostridioides difficile Infection by Altering Gut Bile Acids. Infection and Immunity, 2020, 88, .	1.0	47
757	Strain-Dependent Inhibition of <i>Clostridioides difficile</i> by Commensal <i>Clostridia</i> Carrying the Bile Acid-Inducible (<i>bai</i>) Operon. Journal of Bacteriology, 2020, 202, .	1.0	28
758	Identification of Clostridioides difficile-Inhibiting Gut Commensals Using Culturomics, Phenotyping, and Combinatorial Community Assembly. MSystems, 2020, 5, .	1.7	39
759	Considerations for the design and conduct of human gut microbiota intervention studies relating to foods. European Journal of Nutrition, 2020, 59, 3347-3368.	1.8	17
760	From Association to Causality: the Role of the Gut Microbiota and Its Functional Products on Host Metabolism. Molecular Cell, 2020, 78, 584-596.	4.5	177
761	Gut dysbacteriosis and intestinal disease: mechanism and treatment. Journal of Applied Microbiology, 2020, 129, 787-805.	1.4	55
762	Flexible Cobamide Metabolism in <i>Clostridioides</i> (<i>Clostridium</i>) <i>difficile</i> 630 Δ <i>erm</i> . Journal of Bacteriology, 2020, 202, .	1.0	13
763	An Oral Inoculation Infant Rabbit Model for <i>Shigella</i> Infection. MBio, 2020, 11, .	1.8	7
764	Gastrointestinal host-pathogen interaction in the age of microbiome research. Current Opinion in Microbiology, 2020, 53, 78-89.	2.3	27
765	Microbiota Metabolites in Health and Disease. Annual Review of Immunology, 2020, 38, 147-170.	9.5	138
766	Species Differences of Bile Acid Redox Metabolism: Tertiary Oxidation of Deoxycholate is Conserved in Preclinical Animals. Drug Metabolism and Disposition, 2020, 48, 499-507.	1.7	16
767	Dietary Xanthan Gum Alters Antibiotic Efficacy against the Murine Gut Microbiota and Attenuates <i>Clostridioides difficile</i> Colonization. MSphere, 2020, 5, .	1.3	26
768	Identifying Potential Polymicrobial Pathogens: Moving Beyond Differential Abundance to Driver Taxa. Microbial Ecology, 2020, 80, 447-458.	1.4	26
769	Microbiome causality: further reflections (a response to our commentators). Biology and Philosophy, 2020, 35, 1.	0.7	4
770	Food ingredients in human health: Ecological and metabolic perspectives implicating gut microbiota function. Trends in Food Science and Technology, 2020, 100, 103-117.	7.8	18
771	From Nursery to Nursing Home: Emerging Concepts in Clostridioides difficile Pathogenesis. Infection and Immunity, 2020, 88, .	1.0	11

		CITATION R	EPORT	
#	Article		IF	CITATIONS
772	The Route to Palatable Fecal Microbiota Transplantation. AAPS PharmSciTech, 2020, 21	, 114.	1.5	16
773	Resident microbial communities inhibit growth and antibiotic-resistance evolution of Es coli in human gut microbiome samples. PLoS Biology, 2020, 18, e3000465.	cherichia	2.6	47
774	<i>In-vivo</i> biotransformation of citrus functional components and their effects on h Critical Reviews in Food Science and Nutrition, 2021, 61, 756-776.	ealth.	5.4	30
775	Microbiome composition comparison in oral and atherosclerotic plaque from patients v without periodontitis. Odontology / the Society of the Nippon Dental University, 2021,		0.9	4
776	Lipopeptide(s) associated with human microbiome as potent cancer drug. Seminars in (2021, 70, 128-133.	Cancer Biology,	4.3	12
777	Interaction between IgA and gut microbiota and its role in controlling metabolic syndro Reviews, 2021, 22, e13155.	me. Obesity	3.1	12
778	Molecular physiology of bile acid signaling in health, disease, and aging. Physiological R 101, 683-731.	eviews, 2021,	13.1	184
779	A newly isolated E. thailandicus strain d5B with exclusively antimicrobial activity against might be a novel therapy for controlling CDI. Genomics, 2021, 113, 475-483.	: C. difficile	1.3	9
780	A contemporary review of <i>Clostridioides difficile</i> infections in patients with haem diseases. Journal of Internal Medicine, 2021, 289, 293-308.	natologic	2.7	8
781	Gut microbiome stability and resilience: elucidating the response to perturbations in oro modulate gut health. Gut, 2021, 70, 595-605.	der to	6.1	265
782	Aging, Frailty, and the Microbiome—How Dysbiosis Influences Human Aging and Disea Gastroenterology, 2021, 160, 507-523.	15e.	0.6	67
783	Bile Acid Signaling in Inflammatory Bowel Diseases. Digestive Diseases and Sciences, 20	021, 66, 674-693.	1.1	102
784	<i>Salmonella</i> versus the Microbiome. Microbiology and Molecular Biology Reviews	, 2021, 85, .	2.9	88
785	Antibiotic use during cytarabine consolidation in acute myeloid leukemia. Annals of Her 100, 79-84.	natology, 2021,	0.8	3
786	Eravacycline, a novel tetracycline derivative, does not induce <i>Clostridioides difficile<!--<br-->in an<i>in vitro</i>human gut model. Journal of Antimicrobial Chemotherapy, 2021, 76</i>		1.3	7
787	Faecal microbiota transplantation for Clostridioides difficile: mechanisms and pharmacc Reviews Gastroenterology and Hepatology, 2021, 18, 67-80.	ology. Nature	8.2	91
788	Microbiome in Human Gastrointestinal Cancers. Physiology in Health and Disease, 2021	l,,27-61.	0.2	2
789	Antibiotic-Associated Diarrhea and Update on Probiotics Recommendations. , 2021, , 1	41-166.		0

#	Article	IF	CITATIONS
790	An Introduction to Whole-Metagenome Shotgun Sequencing Studies. Methods in Molecular Biology, 2021, 2243, 107-122.	0.4	8
791	Gut Microbiota and Antibiotics: Dysbiosis and Antimicrobial Resistance. , 2022, , 374-386.		0
793	Bile Acids and Microbiota: Multifaceted and Versatile Regulators of the Liver–Gut Axis. International Journal of Molecular Sciences, 2021, 22, 1397.	1.8	59
794	The contribution of bile acid metabolism to the pathogenesis of <i>Clostridioides difficile</i> infection. Therapeutic Advances in Gastroenterology, 2021, 14, 175628482110177.	1.4	24
795	Bacterial Quorum-Sensing Systems and Their Role in Intestinal Bacteria-Host Crosstalk. Frontiers in Microbiology, 2021, 12, 611413.	1.5	59
796	Medication and Health Risks Associated With Neglected Side Effects on Gut Microbiota. , 2021, , .		0
798	Probiotics for Atopic Dermatitis. , 2021, , 335-362.		0
799	The high prevalence of <i>Clostridioides difficile</i> among nursing home elders associates with a dysbiotic microbiome. Gut Microbes, 2021, 13, 1-15.	4.3	10
800	Bioactive small molecules produced by the human gut microbiome modulate <i>Vibrio cholerae</i> sessile and planktonic lifestyles. Gut Microbes, 2021, 13, 1-19.	4.3	4
801	Critical roles of bile acids in regulating intestinal mucosal immune responses. Therapeutic Advances in Gastroenterology, 2021, 14, 175628482110180.	1.4	38
802	Updating changes in human gut microbial communities associated with <i>Clostridioides difficile</i> infection. Gut Microbes, 2021, 13, 1966277.	4.3	5
804	Teaching old mice new tricks: the utility of aged mouse models of C. difficile infection to study pathogenesis and rejuvenate immune response. Gut Microbes, 2021, 13, 1966255.	4.3	1
805	Synthetic gut microbiome: Advances and challenges. Computational and Structural Biotechnology Journal, 2021, 19, 363-371.	1.9	19
806	Studies of xenobiotic-induced gut microbiota dysbiosis: from correlation to mechanisms. Gut Microbes, 2021, 13, 1921912.	4.3	19
807	MicroRNAs and extracellular vesicles in the gut: new host modulators of the microbiome?. MicroLife, 2021, 2, .	1.0	3
808	Diversity–Function Relationships and the Underlying Ecological Mechanisms in Host-Associated Microbial Communities. Advances in Environmental Microbiology, 2021, , 297-326.	0.1	1
809	The Human Gut Microbiota in all its States: From Disturbance to Resilience. , 2022, , 161-178.		4
811	Contribution of Inhibitory Metabolites and Competition for Nutrients to Colonization Resistance against Clostridioides difficile by Commensal Clostridium. Microorganisms, 2021, 9, 371.	1.6	17

#	Article	IF	CITATIONS
813	Editorial for the Special Issue: Clostridium difficile. Microorganisms, 2021, 9, 368.	1.6	0
814	Lower endoscopic delivery of freeze-dried intestinal microbiota results in more rapid and efficient engraftment than oral administration. Scientific Reports, 2021, 11, 4519.	1.6	5
815	The sum is greater than the parts: exploiting microbial communities to achieve complex functions. Current Opinion in Biotechnology, 2021, 67, 149-157.	3.3	25
817	Synthetic biology in the clinic: engineering vaccines, diagnostics, and therapeutics. Cell, 2021, 184, 881-898.	13.5	56
818	Host immunity modulates the efficacy of microbiota transplantation for treatment of Clostridioides difficile infection. Nature Communications, 2021, 12, 755.	5.8	40
819	Ecological rules for the assembly of microbiome communities. PLoS Biology, 2021, 19, e3001116.	2.6	67
820	Quo vadis? Central Rules of Pathogen and Disease Tropism. Frontiers in Cellular and Infection Microbiology, 2021, 11, 640987.	1.8	6
821	Biomarkers of human gut microbiota diversity and dysbiosis. Biomarkers in Medicine, 2021, 15, 139-150.	0.6	7
822	Dissecting Individual Interactions between Pathogenic and Commensal Bacteria within a Multispecies Gut Microbial Community. MSphere, 2021, 6, .	1.3	10
823	Clostridioides difficile biofilms: A mechanism of persistence in the gut?. PLoS Pathogens, 2021, 17, e1009348.	2.1	31
824	Compilation of longitudinal microbiota data and hospitalome from hematopoietic cell transplantation patients. Scientific Data, 2021, 8, 71.	2.4	19
825	The Potential Role of the Gut Microbiota in Kidney Transplantation. Kidney360, 2021, 2, 890-893.	0.9	4
826	Non-responder phenotype reveals apparent microbiome-wide antibiotic tolerance in the murine gut. Communications Biology, 2021, 4, 316.	2.0	2
828	Fecal Microbiota Transplantation during and Post-COVID-19 Pandemic. International Journal of Molecular Sciences, 2021, 22, 3004.	1.8	25
829	Defined gut microbial communities: promising tools to understand and combat disease. Microbes and Infection, 2021, 23, 104816.	1.0	6
830	Postoperative Complications Are Associated with Long-Term Changes in the Gut Microbiota Following Colorectal Cancer Surgery. Life, 2021, 11, 246.	1.1	8
831	Rapid transcriptional and metabolic adaptation of intestinal microbes to host immune activation. Cell Host and Microbe, 2021, 29, 378-393.e5.	5.1	52
834	mSphere of Influence: Drivers of Host-Associated Microbial Community Structure and Change. MSphere, 2021, 6, .	1.3	1

#	Article	IF	CITATIONS
835	Antibiotic prophylaxis and the gastrointestinal resistome in paediatric patients with acute lymphoblastic leukaemia: a cohort study with metagenomic sequencing analysis. Lancet Microbe, The, 2021, 2, e159-e167.	3.4	10
836	Early life host regulation of the mammalian enteric microbiota composition. International Journal of Medical Microbiology, 2021, 311, 151498.	1.5	0
837	Protection from Lethal Clostridioides difficile Infection via Intraspecies Competition for Cogerminant. MBio, 2021, 12, .	1.8	20
838	Dysbiosis in Metabolic Genes of the Gut Microbiomes of Patients with an Ileo-anal Pouch Resembles That Observed in Crohn's Disease. MSystems, 2021, 6, .	1.7	19
840	Incidence and predictive biomarkers of Clostridioides difficile infection in hospitalized patients receiving broad-spectrum antibiotics. Nature Communications, 2021, 12, 2240.	5.8	21
841	A plasmid locus associated with Klebsiella clinical infections encodes a microbiome-dependent gut fitness factor. PLoS Pathogens, 2021, 17, e1009537.	2.1	20
842	Isolation and genomic characterization of five novel strains of Erysipelotrichaceae from commercial pigs. BMC Microbiology, 2021, 21, 125.	1.3	29
843	Colorectal cancer and Blastocystis sp. infection. Parasites and Vectors, 2021, 14, 200.	1.0	20
844	Establishing causality in Salmonella-microbiota-host interaction: The use of gnotobiotic mouse models and synthetic microbial communities. International Journal of Medical Microbiology, 2021, 311, 151484.	1.5	27
846	Recipient factors in faecal microbiota transplantation: one stool does not fit all. Nature Reviews Gastroenterology and Hepatology, 2021, 18, 503-513.	8.2	74
847	Microbiota-mediated protection against antibiotic-resistant pathogens. Genes and Immunity, 2021, 22, 255-267.	2.2	19
848	Chickpea Extract Ameliorates Metabolic Syndrome Symptoms via Restoring Intestinal Ecology and Metabolic Profile in Type 2 Diabetic Rats. Molecular Nutrition and Food Research, 2021, 65, e2100007.	1.5	16
849	Individuals at risk for rheumatoid arthritis harbor differential intestinal bacteriophage communities with distinct metabolic potential. Cell Host and Microbe, 2021, 29, 726-739.e5.	5.1	52
850	Faecal Microbiome Transplantation as a Solution to Chronic Enteropathies in Dogs: A Case Study of Beneficial Microbial Evolution. Animals, 2021, 11, 1433.	1.0	12
851	DUOX2 variants associate with preclinical disturbances in microbiota-immune homeostasis and increased inflammatory bowel disease risk. Journal of Clinical Investigation, 2021, 131, .	3.9	35
852	Clearance of Clostridioides difficile Colonization Is Associated with Antibiotic-Specific Bacterial Changes. MSphere, 2021, 6, .	1.3	15
853	A strain of Bacteroides thetaiotaomicron attenuates colonization of Clostridioides difficile and affects intestinal microbiota and bile acids profile in a mouse model. Biomedicine and Pharmacotherapy, 2021, 137, 111290.	2.5	8
854	Enlightening the taxonomy darkness of human gut microbiomes with a cultured biobank. Microbiome, 2021, 9, 119.	4.9	479

#	Article	IF	CITATIONS
855	Bile Salt Hydrolases: At the Crossroads of Microbiota and Human Health. Microorganisms, 2021, 9, 1122.	1.6	33
856	Host microbiota can facilitate pathogen infection. PLoS Pathogens, 2021, 17, e1009514.	2.1	80
857	Bile acids LCA and CDCA inhibited porcine deltacoronavirus replication in vitro. Veterinary Microbiology, 2021, 257, 109097.	0.8	19
858	A prospective, observational study of fidaxomicin use for <i>Clostridioides difficile</i> infection in France. Journal of International Medical Research, 2021, 49, 030006052110212.	0.4	5
860	The Nursing Home Older Adult Gut Microbiome Composition Shows Time-dependent Dysbiosis and Is Influenced by Medication Exposures, Age, Environment, and Frailty. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2021, 76, 1930-1938.	1.7	7
861	Gut microbial pathways for bile acid metabolism. Hepatobiliary Surgery and Nutrition, 2021, 10, 379-381.	0.7	0
863	Profiling of Intestinal Microbiota in Patients Infected with Respiratory Influenza A and B Viruses. Pathogens, 2021, 10, 761.	1.2	13
864	Caloric restriction disrupts the microbiota and colonization resistance. Nature, 2021, 595, 272-277.	13.7	109
865	Altered profiles of fecal bile acids correlate with gut microbiota and inflammatory responses in patients with ulcerative colitis. World Journal of Gastroenterology, 2021, 27, 3609-3629.	1.4	56
866	The Intestinal Microbiota: Impacts of Antibiotics Therapy, Colonization Resistance, and Diseases. International Journal of Molecular Sciences, 2021, 22, 6597.	1.8	37
868	Impact of Nosema Disease and American Foulbrood on Gut Bacterial Communities of Honeybees Apis mellifera. Insects, 2021, 12, 525.	1.0	11
869	Metabolic adaption to extracellular pyruvate triggers biofilm formation in <i>Clostridioides difficile</i> . ISME Journal, 2021, 15, 3623-3635.	4.4	20
870	Decreased secondary faecal bile acids in children with ulcerative colitis and <i>Clostridioides difficile</i> infection. Alimentary Pharmacology and Therapeutics, 2021, 54, 792-804.	1.9	6
871	Metagenomic and metatranscriptomic profiling of Lactobacillus casei Zhang in the human gut. Npj Biofilms and Microbiomes, 2021, 7, 55.	2.9	14
872	Microbiota and epigenetics: promising therapeutic approaches?. Environmental Science and Pollution Research, 2021, 28, 49343-49361.	2.7	15
874	Intestinal immune compartmentalization: implications of tissue specific determinants in health and disease. Mucosal Immunology, 2021, 14, 1259-1270.	2.7	26
876	Cause or effect? The spatial organization of pathogens and the gut microbiota in disease. Microbes and Infection, 2021, 23, 104815.	1.0	18
877	A Gut-Restricted Lithocholic Acid Analog as an Inhibitor of Gut Bacterial Bile Salt Hydrolases. ACS Chemical Biology, 2021, 16, 1401-1412.	1.6	25

#	Article	IF	CITATIONS
878	A Fructo-Oligosaccharide Prebiotic Is Well Tolerated in Adults Undergoing Allogeneic Hematopoietic Stem Cell Transplantation: A Phase I Dose-Escalation Trial. Transplantation and Cellular Therapy, 2021, 27, 932.e1-932.e11.	0.6	18
879	Clostridium butyricum enhances colonization resistance against Clostridioides difficile by metabolic and immune modulation. Scientific Reports, 2021, 11, 15007.	1.6	23
881	2′FL and LNnT Exert Antipathogenic Effects against C. difficile ATCC 9689 In Vitro, Coinciding with Increased Levels of Bifidobacteriaceae and/or Secondary Bile Acids. Pathogens, 2021, 10, 927.	1.2	11
882	Toward the development of defined microbial therapeutics. International Immunology, 2021, 33, 761-766.	1.8	8
883	Longitudinal linked-read sequencing reveals ecological and evolutionary responses of a human gut microbiome during antibiotic treatment. Genome Research, 2021, 31, 1433-1446.	2.4	55
886	Umibato: estimation of time-varying microbial interaction using continuous-time regression hidden Markov model. Bioinformatics, 2021, 37, i16-i24.	1.8	3
887	Novel bile acid biosynthetic pathways are enriched in the microbiome of centenarians. Nature, 2021, 599, 458-464.	13.7	251
888	Clostridioides difficile SpoVAD and SpoVAE Interact and Are Required for Dipicolinic Acid Uptake into Spores. Journal of Bacteriology, 2021, 203, e0039421.	1.0	9
891	The promise of the gut microbiome as part of individualized treatment strategies. Nature Reviews Gastroenterology and Hepatology, 2022, 19, 7-25.	8.2	60
892	Significance of the Gut Microbiome for Viral Diarrheal and Extra-Intestinal Diseases. Viruses, 2021, 13, 1601.	1.5	6
893	Does caloric restriction prime the microbiome for pathogenic bacteria?. Cell Host and Microbe, 2021, 29, 1209-1211.	5.1	3
894	Towards a deeper understanding of microbial communities: integrating experimental data with dynamic models. Current Opinion in Microbiology, 2021, 62, 84-92.	2.3	24
896	Specific Secondary Bile Acids Control Chicken Necrotic Enteritis. Pathogens, 2021, 10, 1041.	1.2	9
897	Descriptive Study of Gut Microbiota in Infected and Colonized Subjects by Clostridiodes difficile. Microorganisms, 2021, 9, 1727.	1.6	2
898	A Modern-World View of Host–Microbiota–Pathogen Interactions. Journal of Immunology, 2021, 207, 1710-1718.	0.4	10
899	Wolf in Sheep's Clothing: Clostridioides difficile Biofilm as a Reservoir for Recurrent Infections. Microorganisms, 2021, 9, 1922.	1.6	17
901	Examining Evidence of Benefits and Risks for Pasteurizing Donor Breastmilk. Applied Microbiology, 2021, 1, 408-425.	0.7	3
902	Precise quantification of bacterial strains after fecal microbiota transplantation delineates long-term engraftment and explains outcomes. Nature Microbiology, 2021, 6, 1309-1318.	5.9	60

#	Article	IF	CITATIONS
903	A bacterial bile acid metabolite modulates Treg activity through the nuclear hormone receptor NR4A1. Cell Host and Microbe, 2021, 29, 1366-1377.e9.	5.1	111
904	BEEM-Static: Accurate inference of ecological interactions from cross-sectional microbiome data. PLoS Computational Biology, 2021, 17, e1009343.	1.5	2
906	Microbiome-pathogen interactions drive epidemiological dynamics of antibiotic resistance: A modeling study applied to nosocomial pathogen control. ELife, 2021, 10, .	2.8	6
907	Bacteriophage-mediated modulation of microbiota for diseases treatment. Advanced Drug Delivery Reviews, 2021, 176, 113856.	6.6	18
908	Controlled Complexity: Optimized Systems to Study the Role of the Gut Microbiome in Host Physiology. Frontiers in Microbiology, 2021, 12, 735562.	1.5	2
909	Chains of evidence from correlations to causal molecules in microbiome-linked diseases. Nature Chemical Biology, 2021, 17, 1046-1056.	3.9	40
910	The use of first-generation cephalosporin antibiotics, cefalexin and cefradine, is not associated with induction of simulated <i>Clostridioides difficile</i> infection. Journal of Antimicrobial Chemotherapy, 2021, 77, 148-154.	1.3	7
911	Gut microbiota-derived metabolites as key mucosal barrier modulators in obesity. World Journal of Gastroenterology, 2021, 27, 5555-5565.	1.4	14
913	Dynamic changes in the intestinal microbial community of two time-aged soils under combined cadmium and ciprofloxacin contaminated conditions. Science of the Total Environment, 2022, 806, 150558.	3.9	2
914	Commensal inter-bacterial interactions shaping the microbiota. Current Opinion in Microbiology, 2021, 63, 158-171.	2.3	30
915	Listening in on the conversation between the human gut microbiome and its host. Current Opinion in Microbiology, 2021, 63, 150-157.	2.3	5
916	Perturbations associated with hungry gut microbiome and postbiotic perspectives to strengthen the microbiome health. Future Foods, 2021, 4, 100043.	2.4	12
917	Microbiome Therapeutics: A Path Toward Sustainable Healthcare. , 2022, , 234-245.		0
918	Integrating gut microbiome and host immune markers to understand the pathogenesis of <i>Clostridioides difficile</i> infection. Gut Microbes, 2021, 13, 1-18.	4.3	35
919	Gut Microbial Dysbiosis and Cardiovascular Diseases. , 2021, , .		0
920	Enhancing Pathogen Resistance: The Gut Microbiota and Malaria. , 2022, , 143-167.		2
921	An enriched biosignature of gut microbiota-dependent metabolites characterizes maternal plasma in a mouse model of fetal alcohol spectrum disorder. Scientific Reports, 2021, 11, 248.	1.6	21
922	The impact of interactions on invasion and colonization resistance in microbial communities. PLoS Computational Biology, 2021, 17, e1008643.	1.5	40

#	Article	IF	CITATIONS
923	Gut Microbial Signatures in Sporadic and Hereditary Colorectal Cancer. International Journal of Molecular Sciences, 2021, 22, 1312.	1.8	14
924	The interplay between gut bacteria and the yeast <i>Candida albicans</i> . Gut Microbes, 2021, 13, 1979877.	4.3	27
925	Invasions of Host-Associated Microbiome Networks. Advances in Ecological Research, 2017, , 201-281.	1.4	19
926	Clostridioides difficile proline fermentation in response to commensal clostridia. Anaerobe, 2020, 63, 102210.	1.0	13
927	The Human Microbiota, Infectious Disease, and Global Health: Challenges and Opportunities. ACS Infectious Diseases, 2018, 4, 14-26.	1.8	34
928	Effects of defined gut microbial ecosystem components on virulence determinants of Clostridioides difficile. Scientific Reports, 2019, 9, 885.	1.6	19
929	Microbiota in vitro modulated with polyphenols shows decreased colonization resistance against Clostridioides difficile but can neutralize cytotoxicity. Scientific Reports, 2020, 10, 8358.	1.6	15
930	Probiotics and fecal microbiota transplantation in surgical disorders. Seminars in Colon and Rectal Surgery, 2018, 29, 37-43.	0.2	4
931	Changes in IgA-targeted microbiota following fecal transplantation for recurrent <i>Clostridioides difficile</i> infection. Gut Microbes, 2021, 13, 1-12.	4.3	10
932	Hierarchical social networks shape gut microbial composition in wild Verreaux's sifaka. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20172274.	1.2	82
933	Manual curation and reannotation of the genomes of Clostridium difficile 630Δerm and C. difficile 630. Journal of Medical Microbiology, 2017, 66, 286-293.	0.7	117
934	Harnessing bacterial interactions to manage infections: a review on the opportunistic pathogen Pseudomonas aeruginosa as a case example. Journal of Medical Microbiology, 2020, 69, 147-161.	0.7	26
935	Computational genomic discovery of diverse gene clusters harbouring Fe-S flavoenzymes in anaerobic gut microbiota. Microbial Genomics, 2020, 6, .	1.0	5
955	Editorial: The microbiome as a source of new enterprises and job creation. Microbial Biotechnology, 2018, 11, 145-148.	2.0	2
956	Utilization and control of ecological interactions in polymicrobial infections and community-based microbial cell factories. F1000Research, 2016, 5, 421.	0.8	2
957	How to Use a Chemotherapeutic Agent When Resistance to It Threatens the Patient. PLoS Biology, 2017, 15, e2001110.	2.6	103
958	Inference of Network Dynamics and Metabolic Interactions in the Gut Microbiome. PLoS Computational Biology, 2015, 11, e1004338.	1.5	106
959	The Gut Microbiota of Wild Mice. PLoS ONE, 2015, 10, e0134643.	1.1	103

#	Article	IF	CITATIONS
960	Systems Modeling of Interactions between Mucosal Immunity and the Gut Microbiome during Clostridium difficile Infection. PLoS ONE, 2015, 10, e0134849.	1.1	25
961	Disturbance in the Mucosa-Associated Commensal Bacteria Is Associated with the Exacerbation of Chronic Colitis by Repeated Psychological Stress; Is That the New Target of Probiotics?. PLoS ONE, 2016, 11, e0160736.	1.1	13
962	Growth-altering microbial interactions are responsive to chemical context. PLoS ONE, 2017, 12, e0164919.	1.1	15
963	Arsenic exposure and intestinal microbiota in children from Sirajdikhan, Bangladesh. PLoS ONE, 2017, 12, e0188487.	1.1	41
964	A Gut Odyssey: The Impact of the Microbiota on Clostridium difficile Spore Formation and Germination. PLoS Pathogens, 2015, 11, e1005157.	2.1	53
965	Influence of the Lung Microbiota Dysbiosis in Chronic Obstructive Pulmonary Disease Exacerbations: The Controversial Use of Corticosteroid and Antibiotic Treatments and the Role of Eosinophils as a Disease Marker. Journal of Clinical Medicine Research, 2019, 11, 667-675.	0.6	24
967	Size does not matter: commensal microorganisms forge tumor-promoting inflammation and anti-tumor immunity. Oncoscience, 2015, 2, 239-246.	0.9	9
968	Impact of Tigecycline Versus Other Antibiotics on the Fecal Metabolome and on Colonization Resistance to Clostridium difficile in Mice. Pathogens and Immunity, 2017, 2, 1.	1.4	10
969	Perceptions of fecal microbiota transplantation for Clostridium difficile infection: factors that predict acceptance. Annals of Gastroenterology, 2016, 30, 83-88.	0.4	13
970	Dysbiosis-Induced Secondary Bile Acid Deficiency Promotes Intestinal Inflammation. SSRN Electronic Journal, 0, , .	0.4	1
971	Metabolic Modeling of Microbial Community Interactions for Health, Environmental and Biotechnological Applications. Current Genomics, 2018, 19, 712-722.	0.7	28
972	è,é"èŒç¾≇œ¨é±¼ç±»ç−¾ç−å'Œåç−«ä¸ä½œç"¨çš"ç"ç©¶èչ›å±•. Zoological Research, 2019, 40, 70-76.	0.9	102
973	A General Perspective of Microbiota in Human Health and Disease. , 2020, 11, .		3
974	Gut microbiome in primary sclerosing cholangitis: A review. World Journal of Gastroenterology, 2020, 26, 2768-2780.	1.4	75
975	Gastrointestinal dysbiosis and the use of fecal microbial transplantation inClostridium difficileinfection. World Journal of Gastrointestinal Pathophysiology, 2015, 6, 169.	0.5	12
976	Computer-guided design of optimal microbial consortia for immune system modulation. ELife, 2018, 7, .	2.8	65
977	Integrated culturing, modeling and transcriptomics uncovers complex interactions and emergent behavior in a three-species synthetic gut community. ELife, 2018, 7, .	2.8	62
978	Enterococcus faecium secreted antigen A generates muropeptides to enhance host immunity and limit bacterial pathogenesis. ELife, 2019, 8, .	2.8	59

#	ARTICLE	IF	CITATIONS
979	Adjusting for age improves identification of gut microbiome alterations in multiple diseases. ELife, 2020, 9, .	2.8	113
980	A widely distributed metalloenzyme class enables gut microbial metabolism of host- and diet-derived catechols. ELife, 2020, 9, .	2.8	40
981	Cancer systems immunology. ELife, 2020, 9, .	2.8	14
982	An adjunctive therapy administered with an antibiotic prevents enrichment of antibiotic-resistant clones of a colonizing opportunistic pathogen. ELife, 2020, 9, .	2.8	15
983	Factors affecting the composition of the gut microbiota, and its modulation. PeerJ, 2019, 7, e7502.	0.9	360
984	Microbiome Therapeutics: Emerging Concepts and Challenges. , 2021, , 217-238.		0
985	Neonatal Piglets Are Protected from Clostridioides difficile Infection by Age-Dependent Increase in Intestinal Microbial Diversity. Microbiology Spectrum, 2021, 9, e0124321.	1.2	4
986	Microbiome Engineering and Its Applications: A Rapid Review. Applied Ecology and Environmental Sciences, 2021, 9, 865-872.	0.1	0
987	25-hydroxycholesterol: Gatekeeper of intestinal IgA. Immunity, 2021, 54, 2182-2185.	6.6	3
988	Can manipulation of gut microbiota really be transformed into an intervention strategy for cardiovascular disease management?. Folia Microbiologica, 2021, 66, 897-916.	1.1	5
989	Cultivating Healthy Connections: Exploring and Engineering the Microbial Flow That Shapes Microbiomes. MSystems, 2021, 6, e0086321.	1.7	0
990	The Role of Microbiota in Infant Health: From Early Life to Adulthood. Frontiers in Immunology, 2021, 12, 708472.	2.2	87
991	The cholesterol metabolite 25-hydroxycholesterol restrains the transcriptional regulator SREBP2 and limits intestinal IgA plasma cell differentiation. Immunity, 2021, 54, 2273-2287.e6.	6.6	41
992	A short chain fatty acid–centric view of Clostridioides difficile pathogenesis. PLoS Pathogens, 2021, 17, e1009959.	2.1	23
993	Bile acid-independent protection against Clostridioides difficile infection. PLoS Pathogens, 2021, 17, e1010015.	2.1	46
994	Gut-microbiota derived bioactive metabolites and their functions in host physiology. Biotechnology and Genetic Engineering Reviews, 2021, 37, 105-153.	2.4	18
995	Enhancing Human Superorganism Ecosystem Resilience by Holistically â€~Managing Our Microbes'. Applied Microbiology, 2021, 1, 471-497.	0.7	4
996	InÂvivo commensal control of Clostridioides difficile virulence. Cell Host and Microbe, 2021, 29, 1693-1708.e7.	5.1	62

#	Article	IF	CITATIONS
997	Negative interactions determine <i>Clostridioides difficile</i> growth in synthetic human gut communities. Molecular Systems Biology, 2021, 17, e10355.	3.2	27
998	Klebsiella oxytoca causes colonization resistance against multidrug-resistant K.Âpneumoniae in the gut via cooperative carbohydrate competition. Cell Host and Microbe, 2021, 29, 1663-1679.e7.	5.1	53
999	The potential of microbiome replacement therapies for Clostridium difficile infection. Current Opinion in Gastroenterology, 2022, 38, 1-6.	1.0	10
1000	Clostridium difficile infection: an Australian clinical perspective. Microbiology Australia, 2015, 36, 106.	0.1	0
1008	Molecular Targets for Therapy. Respiratory Medicine, 2017, , 89-104.	0.1	0
1010	è,å†ç∽èŒå¢ã®æ©Ÿèf¹⁄2ç†è§£ã«å'ãíã┥. Kagaku To Seibutsu, 2017, 55, 637-643.	0.0	0
1014	-Infektion. , 2018, , 187-199.		0
1015	A Quantitative Theory of War and Peace in the Gut Microbiota. SSRN Electronic Journal, 0, , .	0.4	0
1022	Research progress on human microecology and infectious diseases. Infection International, 2018, 7, 94-100.	0.1	0
1026	Recent advances in understanding cross-talk between Bile Acids and Gut Microbiota. , 0, , 024-034.		0
1028	The Gut Microbiome in Inflammatory Bowel Disease. , 2019, , 347-377.		0
1029	Microbial-Based Cancer Therapy: Diagnostic Tools and Therapeutic Strategies. Microorganisms for Sustainability, 2019, , 53-82.	0.4	0
1030	Characteristics of Faecal Microbiota in Korean Patients with <i>Clostridioides difficile</i> -associated Diarrhea. Infection and Chemotherapy, 2019, 51, 365.	1.0	5
1046	Clostridial Genetics: Genetic Manipulation of the Pathogenic Clostridia. , 0, , 927-939.		0
1047	Microbiome and human aging (literature review). Journal of the National Academy of Medical Sciences of Ukraine, 2019, , 463-475.	0.1	1
1050	Physical Exercise Does Not Improve Colon Inflammation in Mice Induced Lambda Carrageenan. Jurnal Medik Veteriner, 2020, 3, 57.	0.1	0
1053	Review article: insights into the bile acidâ€gut microbiota axis in intestinal failureâ€associated liver disease—redefining the treatment approach. Alimentary Pharmacology and Therapeutics, 2022, 55, 49-63.	1.9	4
1054	Does Physical Inactivity Induce Significant Changes in Human Gut Microbiota? New Answers Using the Dry Immersion Hypoactivity Model. Nutrients, 2021, 13, 3865.	1.7	12

#	Article	IF	CITATIONS
1055	Comparative Genomic and Physiological Analysis against Clostridium scindens Reveals Eubacterium sp. c-25 as an Atypical Deoxycholic Acid Producer of the Human Gut Microbiota. Microorganisms, 2021, 9, 2254.	1.6	7
1059	Plant-Microbe Interaction: Current Developments and Future Challenges. Microorganisms for Sustainability, 2020, , 1-38.	0.4	3
1061	Determinants of the Gut Microbiota. , 2020, , 19-62.		0
1062	Metagenome Mining. , 2020, , 50-89.		0
1064	Effects of the Bio-accumulative Environmental Pollutants on the Gut Microbiota. , 2020, , 109-143.		1
1065	Utilization of Faecal Microbiota in Humans and Animals. Journal of Agriculture & Life Science, 2020, 54, 1-18.	0.1	0
1069	Cross-Host Protection of Marine Bacteria Against Macroalgal Disease. Microbial Ecology, 2022, 84, 1288-1293.	1.4	9
1070	Evaluation of the therapeutic effect and dose–effect of Bifidobacterium breve on the primary Clostridioides difficile infected mice. Applied Microbiology and Biotechnology, 2021, 105, 9243-9260.	1.7	7
1071	Evaluation of the Levels of Metabolites in Feces of Patients with Inflammatory Bowel Diseases. Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry, 2020, 14, 312-319.	0.2	1
1073	A comprehensive human minimal gut metagenome extends the host's metabolic potential. Microbial Genomics, 2020, 6, .	1.0	1
1077	The association between gut microbiota, cholesterol gallstones, and colorectal cancer. Gastroenterology and Hepatology From Bed To Bench, 2019, 12, S8-S13.	0.6	5
1078	Understanding the Effects of Metabolites on the Gut Microbiome and Severe Acute Pancreatitis. BioMed Research International, 2021, 2021, 1516855.	0.9	0
1079	Clostridioides difficile spore germination: initiation to DPA release. Current Opinion in Microbiology, 2022, 65, 101-107.	2.3	12
1080	Second messenger signaling in Clostridioides difficile. Current Opinion in Microbiology, 2022, 65, 138-144.	2.3	4
1081	Diet-mediated metaorganismal relay biotransformation: health effects and pathways. Critical Reviews in Food Science and Nutrition, 2023, 63, 4599-4617.	5.4	2
1082	Bile Acid Regulates the Colonization and Dissemination of Candida albicans from the Gastrointestinal Tract by Controlling Host Defense System and Microbiota. Journal of Fungi (Basel, Switzerland), 2021, 7, 1030.	1.5	8
1083	Antimicrobial Properties of Chitosan and Chitosan Derivatives in the Treatment of Enteric Infections. Molecules, 2021, 26, 7136.	1.7	126
1084	Pediococcus pentosaceus Enhances Host Resistance Against Pathogen by Increasing IL-1Î ² Production: Understanding Probiotic Effectiveness and Administration Duration. Frontiers in Immunology, 2021, 12, 766401.	2.2	9

#	Article	IF	CITATIONS
1085	Therapeutic Advances in Gut Microbiome Modulation in Patients with Inflammatory Bowel Disease from Pediatrics to Adulthood. International Journal of Molecular Sciences, 2021, 22, 12506.	1.8	17
1086	Alteration of gut microbial composition associated with the therapeutic efficacy of fecal microbiota transplantation in Clostridium difficile infection. Journal of the Formosan Medical Association, 2022, 121, 1636-1646.	0.8	4
1089	Synthetic Microbiomes on the Rise—Application in Deciphering the Role of Microbes in Host Health and Disease. Nutrients, 2021, 13, 4173.	1.7	10
1090	Unclouding Clostridiodes difficile virulence with systems biology. Cell Host and Microbe, 2021, 29, 1608-1610.	5.1	0
1091	Multicenter clinical trial on dental implants survival rate: a FDS76® study. Minerva Dental and Oral Science, 2021, 70, .	0.5	1
1092	Gastrointestinal tract microbial community of <i>Babylonia areolata</i> and its diversity are closely correlated with the outbreak of disease. Aquaculture Research, 2022, 53, 1636-1648.	0.9	1
1093	Clostridioides difficile: innovations in target discovery and potential for therapeutic success. Expert Opinion on Therapeutic Targets, 2021, , 1-15.	1.5	5
1094	The role of the microbiota in the management of intensive care patients. Annals of Intensive Care, 2022, 12, 3.	2.2	29
1095	The role of gut microbiota in infectious diseases. WIREs Mechanisms of Disease, 2022, 14, e1551.	1.5	4
1096	Microbiome-based therapeutics. Nature Reviews Microbiology, 2022, 20, 365-380.	13.6	165
1097	The Influence of the Western Diet on Microbiota and Gastrointestinal Immunity. Annual Review of Food Science and Technology, 2022, 13, 489-512.	5.1	11
1098	Gut microbiota and age shape susceptibility to clostridial enteritis in lorikeets under human care. Animal Microbiome, 2022, 4, 7.	1.5	2
1099	Understanding the Effects of Metabolites on the Gut Microbiome and Severe Acute Pancreatitis. BioMed Research International, 2021, 2021, 1-10.	0.9	8
1100	Gut Dysbiosis and Clostridioides difficile Infection in Neonates and Adults. Frontiers in Microbiology, 2021, 12, 651081.	1.5	14
1101	The Mouse Gastrointestinal Bacteria Catalogue enables translation between the mouse and human gut microbiotas via functional mapping. Cell Host and Microbe, 2022, 30, 124-138.e8.	5.1	59
1102	Genetic manipulation of gut microbes enables single-gene interrogation in a complex microbiome. Cell, 2022, 185, 547-562.e22.	13.5	61
1103	Chemoproteomic Analysis of Microbiota Metabolite–Protein Targets and Mechanisms. Biochemistry, 2022, 61, 2822-2834.	1.2	7
1104	Accurate and robust inference of microbial growth dynamics from metagenomic sequencing reveals personalized growth rates. Genome Research, 2022, 32, 558-568.	2.4	23

#	Article	IF	CITATIONS
1106	Microbiome Resilience despite a Profound Loss of Minority Microbiota following Clindamycin Challenge in Humanized Gnotobiotic Mice. Microbiology Spectrum, 2022, , e0196021.	1.2	4
1107	Biomarkers of gastrointestinal functionality in dogs: A systematic review and meta-analysis. Animal Feed Science and Technology, 2022, 283, 115183.	1.1	27
1109	The Emerging Role of Bile Acids in the Pathogenesis of Inflammatory Bowel Disease. Frontiers in Immunology, 2022, 13, 829525.	2.2	53
1110	Membrane Vesicles Derived From Clostridium botulinum and Related Clostridial Species Induce Innate Immune Responses via MyD88/TRIF Signaling in vitro. Frontiers in Microbiology, 2022, 13, 720308.	1.5	4
1111	Cellular adaptation of <i>Clostridioides difficile</i> to high salinity encompasses a compatible soluteâ€responsive change in cell morphology. Environmental Microbiology, 2022, 24, 1499-1517.	1.8	8
1112	Intestinal toxicity of micro- and nano-particles of foodborne titanium dioxide in juvenile mice: Disorders of gut microbiota–host co-metabolites and intestinal barrier damage. Science of the Total Environment, 2022, 821, 153279.	3.9	13
1113	Probiotics in the Intensive Care Unit. Antibiotics, 2022, 11, 217.	1.5	5
1114	Gut microbiota-derived metabolites in host physiology. , 2022, , 515-534.		1
1115	Interplays between drugs and the gut microbiome. Gastroenterology Report, 2022, 10, goac009.	0.6	16
1116	Microbiota, Microbiome, and Retinal Diseases. International Ophthalmology Clinics, 2022, 62, 197-214.	0.3	1
1117	Epidemiology in the human body. , 2022, , 83-107.		0
1120	A Computational Model of Bacterial Population Dynamics in Gastrointestinal Yersinia enterocolitica Infections in Mice. Biology, 2022, 11, 297.	1.3	0
1121	Operational tolerance after hematopoietic stem cell transplantation is characterized by distinct transcriptional, phenotypic, and metabolic signatures. Science Translational Medicine, 2022, 14, eabg3083.	5.8	5
1122	Experimental evaluation of ecological principles to understand and modulate the outcome of bacterial strain competition in gut microbiomes. ISME Journal, 2022, 16, 1594-1604.	4.4	24
1123	Disordered Gut Microbiota Correlates With Altered Fecal Bile Acid Metabolism and Post-cholecystectomy Diarrhea. Frontiers in Microbiology, 2022, 13, 800604.	1.5	12
1124	The Stickland Reaction Precursor <i>trans</i> -4-Hydroxy- <scp>l</scp> -Proline Differentially Impacts the Metabolism of Clostridioides difficile and Commensal <i>Clostridia</i> . MSphere, 2022, 7, e0092621.	1.3	8
1125	Recent Advances in Fungal Infections: From Lung Ecology to Therapeutic Strategies With a Focus on Aspergillus spp Frontiers in Medicine, 2022, 9, 832510.	1.2	6
1126	Bile Acids: Key Players in Inflammatory Bowel Diseases?. Cells, 2022, 11, 901.	1.8	19

#	Article	IF	CITATIONS
1127	Predicting microbiome compositions from species assemblages through deep learning. , 2022, 1, .		21
1128	Impact of Primary and Secondary Bile Acids on <i>Clostridioides difficile</i> Infection. Polish Journal of Microbiology, 2022, 71, 11-18.	0.6	5
1129	Spatial distribution of live gut microbiota and bile acid metabolism in various parts of human large intestine. Scientific Reports, 2022, 12, 3593.	1.6	4
1130	Destination and Specific Impact of Different Bile Acids in the Intestinal Pathogen Clostridioides difficile. Frontiers in Microbiology, 2022, 13, 814692.	1.5	7
1131	Viewing Bacterial Colonization through the Lens of Systems Biology. MSystems, 2022, 7, e0138321.	1.7	6
1132	Therapeutic Effects of Bifidobacterium breve YH68 in Combination with Vancomycin and Metronidazole in a Primary Clostridioides difficile-Infected Mouse Model. Microbiology Spectrum, 2022, 10, e0067222.	1.2	5
1133	The potential utility of fecal (or intestinal) microbiota transplantation in controlling infectious diseases. Gut Microbes, 2022, 14, 2038856.	4.3	16
1134	Microbiota-targeted therapies in inflammation resolution. Seminars in Immunology, 2022, 59, 101599.	2.7	10
1135	Exploration of the Potential Relationship Between Gut Microbiota Remodeling Under the Influence of High-Protein Diet and Crohn's Disease. Frontiers in Microbiology, 2022, 13, 831176.	1.5	6
1136	Unique Features of Alarmone Metabolism in Clostridioides difficile. Journal of Bacteriology, 2022, 204, e0057521.	1.0	6
1137	Disordered Intestinal Microbial Communities During Clostridioides difficile Colonization and Subsequent Infection of Hepatic Cirrhosis Patients in a Tertiary Care Hospital in China. Frontiers in Cellular and Infection Microbiology, 2022, 12, 825189.	1.8	0
1138	The Age of Next-Generation Therapeutic-Microbe Discovery: Exploiting Microbe-Microbe and Host-Microbe Interactions for Disease Prevention. Infection and Immunity, 2022, 90, e0058921.	1.0	10
1139	Evaluation of the Risk of Clostridium difficile Infection Using a Serum Bile Acid Profile. Metabolites, 2022, 12, 331.	1.3	1
1140	Mathematical models to study the biology of pathogens and the infectious diseases they cause. IScience, 2022, 25, 104079.	1.9	8
1141	Recovering metagenome-assembled genomes from shotgun metagenomic sequencing data: Methods, applications, challenges, and opportunities. Microbiological Research, 2022, 260, 127023.	2.5	17
1142	Dietary fat promotes antibiotic-induced Clostridioides difficile mortality in mice. Npj Biofilms and Microbiomes, 2022, 8, 15.	2.9	6
1143	Gut microbiota and inflammatory bowel disease. WIREs Mechanisms of Disease, 2022, 14, e1540.	1.5	15
1145	Comparison of Gut Microbiota and Metabolic Status of Sows With Different Litter Sizes During Pregnancy. Frontiers in Veterinary Science, 2021, 8, 793174.	0.9	8

#	Article	IF	CITATIONS
1146	Nourishing the Human Holobiont to Reduce the Risk of Non-Communicable Diseases: A Cow's Milk Evidence Map Example. Applied Microbiology, 2022, 2, 25-52.	0.7	2
1148	Freeze-Thaw Pretreatment Can Improve Efficiency of Bacterial DNA Extraction From Meconium. Frontiers in Microbiology, 2021, 12, 753688.	1.5	8
1149	Mechanism of the Gut Microbiota Colonization Resistance and Enteric Pathogen Infection. Frontiers in Cellular and Infection Microbiology, 2021, 11, 716299.	1.8	79
1151	Interplay between gut microbiota and bile acids in diarrhoea-predominant irritable bowel syndrome: a review. Critical Reviews in Microbiology, 2022, 48, 696-713.	2.7	10
1152	The Emerging Biotherapeutic Agent: Akkermansia. Indian Journal of Microbiology, 2022, 62, 1-10.	1.5	23
1154	Multicenter clinical trial on dental implants survival rate: a FDS76® study. Minerva Dental and Oral Science, 2021, 70, 190-195.	0.5	1
1155	Microbiota in relation to cancer. , 2022, , 279-309.		0
1156	The influence of gut microbiota alteration on age-related neuroinflammation and cognitive decline. Neural Regeneration Research, 2022, 17, 2407.	1.6	19
1157	The development of live biotherapeutics against <i>Clostridioides difficile</i> infection towards reconstituting gut microbiota. Gut Microbes, 2022, 14, 2052698.	4.3	9
1158	An engineered live biotherapeutic for the prevention of antibiotic-induced dysbiosis. Nature Biomedical Engineering, 2022, 6, 910-921.	11.6	36
1159	Positive biofilms to guide surface microbial ecology in livestock buildings. Biofilm, 2022, 4, 100075.	1.5	11
1160	A single-cell nanocoating of probiotics for enhanced amelioration of antibiotic-associated diarrhea. Nature Communications, 2022, 13, 2117.	5.8	74
1161	Colonization of the live biotherapeutic product VE303 and modulation of the microbiota and metabolites in healthy volunteers. Cell Host and Microbe, 2022, 30, 583-598.e8.	5.1	51
1162	Molecular interactions between the intestinal microbiota and the host. Molecular Microbiology, 2022, 117, 1297-1307.	1.2	19
1163	Environmentally Acquired Bacillus and Their Role in C. difficile Colonization Resistance. Biomedicines, 2022, 10, 930.	1.4	0
1164	Statistical Methods for Microbiome Compositional Data Network Inference: A Survey. Journal of Computational Biology, 2022, , .	0.8	5
1212	Capturing the environment of the Clostridioides difficile infection cycle. Nature Reviews Gastroenterology and Hepatology, 2022, 19, 508-520.	8.2	22
1213	Efficacy and Safety of Fecal Microbiota Transplant for recurrent Clostridium Difficile Infection in Inflammatory Bowel Disease Patients: A Systematic Review and Meta-Analysis. Revista Espanola De Enfermedades Digestivas, 2022, , .	0.1	1

#	Article	IF	CITATIONS
1214	Distal Consequences of Mucosal Infections in Intestinal and Lung Inflammation. Frontiers in Immunology, 2022, 13, 877533.	2.2	8
1215	A Low Glycemic Index Mediterranean Diet Combined with Aerobic Physical Activity Rearranges the Gut Microbiota Signature in NAFLD Patients. Nutrients, 2022, 14, 1773.	1.7	24
1216	Systems biology approach to functionally assess the <i>Clostridioides difficile</i> pangenome reveals genetic diversity with discriminatory power. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2119396119.	3.3	5
1217	Fast quantification of gut bacterial species in cocultures using flow cytometry and supervised classification. ISME Communications, 2022, 2, .	1.7	6
1218	Host-microbe interactions and outcomes in multiple myeloma and hematopoietic stem cell transplantation. Cancer and Metastasis Reviews, 2022, 41, 367-382.	2.7	6
1220	The effect of intrinsic factors and mechanisms in shaping human gut microbiota. Medicine in Microecology, 2022, 12, 100054.	0.7	1
1221	Host—microbial interactions in metabolic diseases: from diet to immunity. Journal of Microbiology, 2022, , 1.	1.3	3
1222	Recent Trends of Microbiota-Based Microbial Metabolites Metabolism in Liver Disease. Frontiers in Medicine, 2022, 9, .	1.2	13
1223	Probiotics: insights and new opportunities for <i>Clostridioides difficile</i> intervention. Critical Reviews in Microbiology, 2023, 49, 414-434.	2.7	6
1224	Ecological modelling approaches for predicting emergent properties in microbial communities. Nature Ecology and Evolution, 2022, 6, 855-865.	3.4	54
1225	Review article: the future of microbiomeâ€based therapeutics. Alimentary Pharmacology and Therapeutics, 2022, 56, 192-208.	1.9	21
1226	Making Sense of Quorum Sensing at the Intestinal Mucosal Interface. Cells, 2022, 11, 1734.	1.8	10
1227	Discovery of bioactive microbial gene products in inflammatory bowel disease. Nature, 2022, 606, 754-760.	13.7	38
1228	Akkermansia muciniphila Ameliorates Clostridioides difficile Infection in Mice by Modulating the Intestinal Microbiome and Metabolites. Frontiers in Microbiology, 2022, 13, .	1.5	15
1229	Ecological dynamics of the gut microbiome in response to dietary fiber. ISME Journal, 2022, 16, 2040-2055.	4.4	38
1231	Local barriers configure systemic communications between the host and microbiota. Science, 2022, 376, 950-955.	6.0	20
1234	Gut microbiota-derived ursodeoxycholic acid from neonatal dairy calves improves intestinal homeostasis and colitis to attenuate extended-spectrum β-lactamase-producing enteroaggregative Escherichia coli infection. Microbiome, 2022, 10, .	4.9	51
1236	Interspecies commensal interactions have nonlinear impacts on host immunity. Cell Host and Microbe, 2022, 30, 988-1002.e6.	5.1	23

#	Article	IF	CITATIONS
1237	Translating Microbiome Research From and To the Clinic. Annual Review of Microbiology, 2022, 76, 435-460.	2.9	12
1239	Long-distance relationships - regulation of systemic host defense against infections by the gut microbiota. Mucosal Immunology, 2022, 15, 809-818.	2.7	17
1240	Gut metabolites predict Clostridioides difficile recurrence. Microbiome, 2022, 10, .	4.9	17
1243	Identification and Characterization of Major Bile Acid 7α-Dehydroxylating Bacteria in the Human Gut. MSystems, 2022, 7, .	1.7	12
1244	Host-Microbiota Interplay in IBD: The Emerging Role of Extracellular Vesicles, Perinatal Immune Priming, and Gut-Resident Immune Cells. , 0, , .		0
1246	Global trends in gut microbiota and clostridioides difficile infection research: A visualized study. Journal of Infection and Public Health, 2022, 15, 806-815.	1.9	6
1247	Fecal microbiota transplantation for diseases: Therapeutic potential, methodology, risk management in clinical practice. Life Sciences, 2022, 304, 120719.	2.0	13
1248	Gut microbiome in gastrointestinal cancer: a friend or foe?. International Journal of Biological Sciences, 2022, 18, 4101-4117.	2.6	21
1249	Imaging Clostridioides difficile Spore Germination and Germination Proteins. Journal of Bacteriology, 2022, 204, .	1.0	5
1250	Review: Levofloxacin Prophylaxis in Pediatric Oncology Patients. Current Treatment Options in Pediatrics, 0, , .	0.2	0
1252	Bile Acid-Related Regulation of Mucosal Inflammation and Intestinal Motility: From Pathogenesis to Therapeutic Application in IBD and Microscopic Colitis. Nutrients, 2022, 14, 2664.	1.7	16
1253	Gut Microbiota Composition Associated with Clostridioides difficile Colonization and Infection. Pathogens, 2022, 11, 781.	1.2	17
1254	Gut microbiota gestalt. Cell Host and Microbe, 2022, 30, 899-901.	5.1	1
1255	Gut associated metabolites and their roles in <i>Clostridioides difficile</i> pathogenesis. Gut Microbes, 2022, 14, .	4.3	14
1256	Engineering probiotics to inhibit Clostridioides difficile infection by dynamic regulation of intestinal metabolism. Nature Communications, 2022, 13, .	5.8	29
1257	Functional and Metagenomic Evaluation of Ibezapolstat for Early Evaluation of Anti-Recurrence Effects in Clostridioides difficile Infection. Antimicrobial Agents and Chemotherapy, 2022, 66, .	1.4	5
1258	Compromised Hindgut Microbial Digestion, Rather Than Chemical Digestion in the Foregut, Leads to Decreased Nutrient Digestibility in Pigs Fed Low-Protein Diets. Nutrients, 2022, 14, 2793.	1.7	2
1259	Host and microbial-derived metabolites for Clostridioides difficile infection: Contributions, mechanisms and potential applications. Microbiological Research, 2022, 263, 127113.	2.5	5

#	Article	IF	CITATIONS
1260	Age-related diseases, therapies and gut microbiome: A new frontier for healthy aging. Mechanisms of Ageing and Development, 2022, 206, 111711.	2.2	14
1261	The Gut Bacterial Community Potentiates Clostridioides difficile Infection Severity. MBio, 2022, 13, .	1.8	18
1265	Traumatic brain injury alters the gut-derived serotonergic system and associated peripheral organs. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2022, 1868, 166491.	1.8	5
1266	Apyrase-mediated amplification of secretory IgA promotes intestinal homeostasis. Cell Reports, 2022, 40, 111112.	2.9	4
1267	Human gut bifidobacteria inhibit the growth of the opportunistic fungal pathogen <i>Candida albicans</i> . FEMS Microbiology Ecology, 2022, 98, .	1.3	10
1268	Sex-dependent Lupus Blautia (Ruminococcus) gnavus strain induction of zonulin-mediated intestinal permeability and autoimmunity. Frontiers in Immunology, 0, 13, .	2.2	18
1269	Diluted Fecal Community Transplant Restores Clostridioides difficile Colonization Resistance to Antibiotic-Perturbed Murine Communities. MBio, 2022, 13, .	1.8	2
1270	Bile acids in immunity: Bidirectional mediators between the host and the microbiota. Frontiers in Immunology, 0, 13, .	2.2	18
1271	Gut microbiota: A new target for T2DM prevention and treatment. Frontiers in Endocrinology, 0, 13, .	1.5	29
1272	Computational approach to modeling microbiome landscapes associated with chronic human disease progression. PLoS Computational Biology, 2022, 18, e1010373.	1.5	3
1273	A framework for testing the impact of co-infections on host gut microbiomes. Animal Microbiome, 2022, 4, .	1.5	5
1274	Microbial Metabolites Orchestrate a Distinct Multi-Tiered Regulatory Network in the Intestinal Epithelium That Directs P-Clycoprotein Expression. MBio, 2022, 13, .	1.8	8
1275	14. Recent Topics of Intestinal Infections. The Journal of the Japanese Society of Internal Medicine, 2021, 110, 2005-2012.	0.0	0
1277	Emergence of antibiotic resistance in gut microbiota and its effect on human health. , 2022, , 211-232.		Ο
1278	Significance of the normal microflora of the body. , 2022, , 21-38.		0
1279	Multi stress system: Microplastics in freshwater and their effects on host microbiota. Science of the Total Environment, 2023, 856, 159106.	3.9	2
1280	FXR Signaling-Mediated Bile Acid Metabolism Is Critical for Alleviation of Cholesterol Gallstones by <i>Lactobacillus</i> Strains. Microbiology Spectrum, 2022, 10, .	1.2	17
1281	Enterobacter ludwigii protects DSS-induced colitis through choline-mediated immune tolerance. Cell Reports, 2022, 40, 111308.	2.9	12

		CITATION RE	IPORT	
#	Article		IF	CITATIONS
1282	Local and systemic effects of microbiomeâ€derived metabolites. EMBO Reports, 2022, 2	.3, .	2.0	15
1283	Impact of environmental conditions and gut microbiota on the <i>in vitro</i> germinatic growth of <i>Clostridioides difficile</i> . FEMS Microbiology Letters, 0, , .	n and	0.7	1
1285	Novel technologies to characterize and engineer the microbiome in inflammatory bowel Microbes, 2022, 14, .	disease. Gut	4.3	4
1286	The emerging microbiomeâ€based approaches to <scp>IBD</scp> therapy: From <scp>S urolithin A. Journal of Digestive Diseases, 2022, 23, 412-434.</scp>	CFAs to	0.7	5
1287	Anti-infective bile acids bind and inactivate a Salmonella virulence regulator. Nature Cher Biology, 2023, 19, 91-100.	nical	3.9	10
1288	Microcin Mccl47 selectively inhibits enteric bacteria and reduces carbapenem-resistant < pneumoniae colonization <i>in vivo</i> when administered <i>via</i> an engineered biotherapeutic. Gut Microbes, 2022, 14, .		4.3	14
1290	Long-term ecological and evolutionary dynamics in the gut microbiomes of carbapenema Enterobacteriaceae colonized subjects. Nature Microbiology, 2022, 7, 1516-1524.	ase-producing	5.9	9
1291	Gut Microbiota and Inflammatory Bowel Disease. , 0, , .			0
1292	Dietary-protein sources modulate host susceptibility to Clostridioides difficile infection t gut microbiota. Cell Reports, 2022, 40, 111332.	hrough the	2.9	7
1293	Design, construction, and inÂvivo augmentation of a complex gut microbiome. Cell, 202 3617-3636.e19.	2, 185,	13.5	84
1294	Lactobacillus supports Clostridiales to restrict gut colonization by multidrug-resistant Enterobacteriaceae. Nature Communications, 2022, 13, .		5.8	22
1295	c-di-AMP signaling is required for bile salt resistance, osmotolerance, and long-term host colonization by <i>Clostridioides difficile</i> . Science Signaling, 2022, 15, .		1.6	15
1297	The relationship between gut microbiota, chronic systemic inflammation, and endotoxen with heart failure with preserved ejection fraction. Cardiovascular Therapy and Preventio	nia in patients n (Russian) Tj ETQqO O O	∙rg B4 /Ονε	erlack 10 Tf 5
1298	Drug-Induced Microbiome Changes: Considerations in Pregnancy. American Journal of Lif Medicine, 0, , 155982762211302.	festyle	0.8	1
1299	Metagenomic and Bile Acid Metabolomic Analysis of Fecal Microbiota Transplantation fo Clostridiodes Difficile and/or Inflammatory Bowel Diseases. Medical Research Archives, 2		0.1	5
1300	Exploring the Potential of Microbial Engineering: The Prospect, Promise, and Essence. , 20	022, , 3-40.		0
1301	Dietary phytate primes epithelial antibacterial immunity in the intestine. Frontiers in Imm	iunology, 0, 13,	2.2	0
1302	Bile acids and the gut microbiota: metabolic interactions and impacts on disease. Nature Microbiology, 2023, 21, 236-247.	Reviews	13.6	136

		CITATION R	EPORT	
#	Article		IF	Citations
1303	Targeting the gut microbiota for cancer therapy. Nature Reviews Cancer, 2022, 22, 703-	722.	12.8	61
1304	Apple Polyphenol Extract Suppresses Clostridioides difficile Infection in a Mouse Model. 2022, 12, 1042.	Metabolites,	1.3	3
1305	Therapeutic role of ursodeoxycholic acid in colitis-associated cancer via gut microbiota n Molecular Therapy, 2023, 31, 585-598.	nodulation.	3.7	4
1307	High-Density Lipoprotein Cholesterol as a Potential Medium between Depletion of <i>Lachnospiraceae</i> Genera and Hypertension under a High-Calorie Diet. Microbiolog 2022, 10, .	y Spectrum,	1.2	4
1308	Clostridium diffi cile infection and its eff ect on the course of infl ammatory bowel diseas Klinicheskaia Meditsina, 2022, 100, 346-356.	ses.	0.2	0
1309	Assessing the clinical value of faecal bile acid profiling to predict recurrence in primary <i>Clostridioides difficile</i> infection. Alimentary Pharmacology and Therapeutics, 202: 1556-1569.	2, 56,	1.9	4
1310	Methods of quantifying interactions among populations using Lotka-Volterra models. Fr Systems Biology, 0, 2, .	ontiers in	0.5	7
1311	Identification of a Bile Acid-Binding Transcription Factor in <i>Clostridioides difficile</i> Chemical Proteomics. ACS Chemical Biology, 2022, 17, 3086-3099.	Using	1.6	5
1312	Resistance is futile? Mucosal immune mechanisms in the context of microbial ecology ar Mucosal Immunology, 2022, 15, 1188-1198.	1d evolution.	2.7	0
1313	Gut microbiome dysbiosis in antibiotic-treated COVID-19 patients is associated with mic translocation and bacteremia. Nature Communications, 2022, 13, .	robial	5.8	67
1314	Targeting keystone species helps restore the dysbiosis of butyrate â $\!\!\!\!\!\!\!\!\!\!\!\!\!$ producing bacteria fatty liver disease. , 2022, 1, .	in nonalcoholic		11
1315	Intra-Amniotic Administration—An Emerging Method to Investigate Necrotizing Enterc (Gallus gallus). Nutrients, 2022, 14, 4795.	colitis, In Vivo	1.7	2
1316	The impact of dietary fibers on Clostridioides difficile infection in a mouse model. Frontie Cellular and Infection Microbiology, 0, 12, .	ers in	1.8	5
1317	Bile Acids: A Bridge Linking Gut Microbiota and NAFLD. , 2022, 2022, 1-14.			2
1318	Enterococci enhance Clostridioides difficile pathogenesis. Nature, 2022, 611, 780-786.		13.7	48
1319	Enteroendocrine peptides, growth, and the microbiome during the porcine weaning tran Microbiome, 2022, 4, .	sition. Animal	1.5	3
1320	Distinct dynamic phases observed in bacterial microcosms. Engineering Microbiology, 20)23, 3, 100063.	2.2	2
1321	The role of the gut microbiome in colonization resistance and recurrent <i>Clostridioide difficile</i> infection. Therapeutic Advances in Gastroenterology, 2022, 15, 1756284823		1.4	14

	СІТАТІО	on Report	
#	Article	IF	CITATIONS
1322	Pathogenicity and virulence of <i>Clostridioides difficile</i> . Virulence, 2023, 14, .	1.8	24
1323	Gut Microbiota and Cardiovascular System: An Intricate Balance of Health and the Diseased State. Life, 2022, 12, 1986.	1.1	8
1324	Clostridioides difficile bile salt hydrolase activity has substrate specificity and affects biofilm formation. Npj Biofilms and Microbiomes, 2022, 8, .	2.9	5
1326	Lactiplantibacillus plantarum ST-III-fermented milk improves autistic-like behaviors in valproic acid-induced autism spectrum disorder mice by altering gut microbiota. Frontiers in Nutrition, 0, 9, .	1.6	4
1327	<i>Saussurea involucrata</i> oral liquid regulates gut microbiota and serum metabolism during alleviation of collagenâ€induced arthritis in rats. Phytotherapy Research, 2023, 37, 1242-1259.	2.8	5
1329	Defining the Benefits of Antibiotic Resistance in Commensals and the Scope for Resistance Optimization. MBio, 2023, 14, .	1.8	2
1330	Microbiota-mediated colonization resistance: mechanisms and regulation. Nature Reviews Microbiology, 2023, 21, 347-360.	13.6	49
1331	Interbacterial Chemical Communicationâ€īriggered Nascent Proteomics. Angewandte Chemie, 0, , .	1.6	0
1332	Interbacterial Chemical Communicationâ€īriggered Nascent Proteomics. Angewandte Chemie - International Edition, 2023, 62, .	7.2	2
1333	Chemical reaction-mediated covalent localization of bacteria. Nature Communications, 2022, 13, .	5.8	20
1334	Butyrate Ameliorates Intraocular Bacterial Infection by Promoting Autophagy and Attenuating the Inflammatory Response. Infection and Immunity, 2023, 91, .	1.0	4
1336	Stably transmitted defined microbial community in honeybees preserves Hafnia alvei inhibition by regulating the immune system. Frontiers in Microbiology, 0, 13, .	1.5	2
1337	Microbiome therapeutics for the treatment of recurrent <i>Clostridioides difficile</i> infection. Expert Opinion on Biological Therapy, 2023, 23, 89-101.	1.4	3
1338	Microbiome-mediated fructose depletion restricts murine gut colonization by vancomycin-resistant Enterococcus. Nature Communications, 2022, 13, .	5.8	8
1339	Evaluation of gut dysbiosis using serum and fecal bile acid profiles. World Journal of Clinical Cases, 0, 10, 12484-12493.	0.3	0
1340	Ecological dynamics imposes fundamental challenges in communityâ€based microbial source tracking. , 2023, 2, .		3
1341	Effects of a milk oligosaccharide biosimilar on fecal characteristics, microbiota, and bile acid, calprotectin, and immunoglobulin concentrations of healthy adult dogs treated with metronidazole. Journal of Animal Science, 2023, 101, .	0.2	5
1342	Immunometabolism and microbial metabolites at the gut barrier: Lessons for therapeutic intervention in inflammatory bowel disease. Mucosal Immunology, 2023, 16, 72-85.	2.7	5

		CITATION R	EPORT	
#	Article		IF	CITATIONS
1343	Immunological consequences of microbiome-based therapeutics. Frontiers in Immunolo	ogy, 0, 13, .	2.2	7
1345	Human Fecal Bile Acid Analysis after Investigational Microbiota-Based Live Biotherapeut Recurrent Clostridioides difficile Infection. Microorganisms, 2023, 11, 135.	tic Delivery for	1.6	6
1346	Clostridium scindens metabolites trigger prostate cancer progression through androge signaling. Journal of Microbiology, Immunology and Infection, 2023, 56, 246-256.	n receptor	1.5	2
1348	Microbial coexistence in the rhizosphere and the promotion of plant stress resistance: Environmental Research, 2023, 222, 115298.	A review.	3.7	17
1349	Biological tuners to reshape the bile acid pool for therapeutic purposes in non-alcoholic disease. Clinical Science, 2023, 137, 65-85.	: fatty liver	1.8	4
1350	Microbiota and Liver Cancer. , 2023, , 67-90.			1
1351	Encoding bacterial colonization and therapeutic modality by wrapping with an adhesive nanocoating. Materials Today, 2023, 62, 98-110.	? drug-loadable	8.3	10
1352	Ecological landscapes guide the assembly of optimal microbial communities. PLoS Com Biology, 2023, 19, e1010570.	putational	1.5	6
1353	Symbiotic microbes from the human gut. , 2023, , 533-549.			0
1354	Strain-specific alterations in gut microbiome and host immune responses elicited by tol Bifidobacterium pseudolongum. Scientific Reports, 2023, 13, .	erogenic	1.6	8
1355	Microbiota-directed biotherapeutics: considerations for quality and functional assessme Microbes, 2023, 15, .	ent. Gut	4.3	5
1356	The Implication of the Gut Microbiome in Heart Failure. Cells, 2023, 12, 1158.		1.8	19
1358	A review on Impact of dietary interventions, drugs, and traditional herbal supplements of microbiome. Microbiological Research, 2023, 271, 127346.	on the gut	2.5	3
1359	Proportional stochastic generalized Lotka–Volterra model with an application to learn community structures. Applied Mathematics and Computation, 2023, 448, 127932.	ning microbial	1.4	1
1360	Current Challenges in Research with Exploring the Microbial Pathomechanisms of Auto Diseases. , 2022, , 469-488.	immune		0
1361	The Evolving Landscape of Fecal Microbial Transplantation. Clinical Reviews in Allergy a Immunology, 2023, 65, 101-120.	nd	2.9	5
1362	HexSDF Is Required for Synthesis of a Novel Glycolipid That Mediates Daptomycin and B Resistance in C. difficile. MBio, 2023, 14, .	Bacitracin	1.8	5
1363	The pan-cancer landscape of abnormal DNA methylation and intratumor microorganism 2023, 37, 100882.	ns. Neoplasia,	2.3	0

#	Article	IF	Citations
1364	Controlling the human microbiome. Cell Systems, 2023, 14, 135-159.	2.9	2
1366	Mouse models for bacterial enteropathogen infections: insights into the role of colonization resistance. Gut Microbes, 2023, 15, .	4.3	12
1369	A high-sucrose diet causes microbiota composition shift and promotes the susceptibility of mice to <i>Salmonella</i> Typhimurium infection. Food and Function, 2023, 14, 2836-2846.	2.1	0
1370	<i>Clostridioides difficile</i> infection in patients with nonalcoholic fatty liver disease-current status. World Journal of Hepatology, 0, 15, 208-215.	0.8	0
1371	Seminars in immunology special issue: Nutrition, microbiota and immunity The unexplored microbes in health and disease. Seminars in Immunology, 2023, 66, 101735.	2.7	1
1372	Clostridioides difficile infection: traversing host–pathogen interactions in the gut. Microbiology (United Kingdom), 2023, 169, .	0.7	3
1373	The Role of Microbiota in Liver Transplantation and Liver Transplantation-Related Biliary Complications. International Journal of Molecular Sciences, 2023, 24, 4841.	1.8	4
1374	Glucose oxidase as an alternative to antibiotic growth promoters improves the immunity function, antioxidative status, and cecal microbiota environment in white-feathered broilers. Frontiers in Microbiology, 0, 14, .	1.5	1
1375	Biomaterials for the Next Generation of Dental Restoratives: Our Design and Materials Performance. Journal of the California Dental Association, 2019, 47, 329-336.	0.0	0
1377	Synthetic microbial communities (SynComs) of the human gut: design, assembly, and applications. FEMS Microbiology Reviews, 2023, 47, .	3.9	10
1378	The analysis of gut microbiota in patients with bile acid diarrhoea treated with colesevelam. Frontiers in Microbiology, 0, 14, .	1.5	2
1379	Staphylococcus aureus FadB is a dehydrogenase that mediates cholate resistance and survival under human colonic conditions. Microbiology (United Kingdom), 2023, 169, .	0.7	0
1380	Longitudinal Bile Acid Composition Changes Following Faecal Microbiota Transplantation for <i>Clostridioides difficile</i> Infection in Children with and Without Underlying Inflammatory Bowel Disease. Journal of Crohn's and Colitis, 0, , .	0.6	0
1381	Clostridioides difficile, a New "Superbug― Microorganisms, 2023, 11, 845.	1.6	10
1382	Live and pasteurized Akkermansia muciniphila decrease susceptibility to Salmonella Typhimurium infection in mice. Journal of Advanced Research, 2023, 52, 89-102.	4.4	6
1383	Assembling symbiotic bacterial species into live therapeutic consortia that reconstitute microbiome functions. Cell Host and Microbe, 2023, 31, 472-484.	5.1	12
1384	CDBN-YGXZ, a Novel Small-Molecule Drug, Shows Efficacy against Clostridioides difficile Infection and Recurrence in Mouse and Hamster Infection Models. Antimicrobial Agents and Chemotherapy, 0, , .	1.4	0
1385	Intrahost evolution of the gut microbiota. Nature Reviews Microbiology, 2023, 21, 590-603.	13.6	8

CITATION REPORT	~		<u> </u>	
	ITA'	τιον	KED	ORT

#	Article	IF	CITATIONS
1393	Metabolism of Dietary Substrates by Intestinal Bacteria and Consequences for the Host Intestine. , 2023, , 45-144.		0
1394	Proton pump inhibitor-induced gut dysbiosis and immunomodulation: current knowledge and potential restoration by probiotics. Pharmacological Reports, 2023, 75, 791-804.	1.5	6
1406	Selective digestive decontamination- Not sure. Intensive Care Medicine, 2023, 49, 984-986.	3.9	2
1423	Microbial Technology for Neurological Disorders. , 2023, , 299-339.		0
1433	Antibiotic-induced collateral damage to the microbiota and associated infections. Nature Reviews Microbiology, 2023, 21, 789-804.	13.6	7
1438	Exploring the complex role of gut microbiome in the development of precision medicine strategies for targeting microbial imbalance-induced colon cancer. Folia Microbiologica, 2023, 68, 691-701.	1.1	1
1451	Drug-microbiota interactions: an emerging priority for precision medicine. Signal Transduction and Targeted Therapy, 2023, 8, .	7.1	5
1458	The Interplay Between Environmental Pollutants, Gut Microbiota, and Infections. Health Information Systems and the Advancement of Medical Practice in Developing Countries, 2023, , 173-207.	0.1	1
1480	Antipseudomonal Therapy and Quorum Quenching: A Prospective Marker. , 2023, , 59-82.		0
1481	Clostridioides difficile Sporulation. Advances in Experimental Medicine and Biology, 2024, , 273-314.	0.8	1