Electromagnetic interference shielding through MWNT Fe₃O₄ nanoparticles in PC/SA

Journal of Materials Chemistry A 3, 656-669

DOI: 10.1039/c4ta04559a

Citation Report

#	Article	IF	CITATIONS
1	Extraordinary Synergy in Attenuating Microwave Radiation with Cobaltâ€Decorated Graphene Oxide and Carbon Nanotubes in Polycarbonate/Poly(styreneâ€ <i>co</i> â€acrylonitrile) Blends. ChemNanoMat, 2015, 1, 603-614.	1.5	24
2	Tailoring the dispersion of multiwall carbon nanotubes in co-continuous PVDF/ABS blends to design materials with enhanced electromagnetic interference shielding. Journal of Materials Chemistry A, 2015, 3, 7974-7985.	5.2	109
3	Peculiar morphological transitions induced by nanoparticles in polymeric blends: retarded relaxation or altered interfacial tension?. Physical Chemistry Chemical Physics, 2015, 17, 14470-14478.	1.3	37
4	In situ synthesis of ternary BaTiO ₃ /MWNT/PBO electromagnetic microwave absorption composites with excellent mechanical properties and thermostabilities. Journal of Materials Chemistry A, 2015, 3, 8205-8214.	5.2	41
5	Tailored electrical conductivity, electromagnetic shielding and thermal transport in polymeric blends with graphene sheets decorated with nickel nanoparticles. Physical Chemistry Chemical Physics, 2015, 17, 14922-14930.	1.3	76
6	Engineering nanostructured polymer blends with controlled nanoparticle location for excellent microwave absorption: a compartmentalized approach. Nanoscale, 2015, 7, 11334-11351.	2.8	98
7	A carbon fiber based three-phase heterostructure composite CF/Co _{0.2} Fe _{2.8} O ₄ /PANI as an efficient electromagnetic wave absorber in the K _u band. RSC Advances, 2015, 5, 50024-50032.	1.7	36
8	Tailor-Made Distribution of Nanoparticles in Blend Structure toward Outstanding Electromagnetic Interference Shielding. ACS Applied Materials & Interfaces, 2015, 7, 25448-25463.	4.0	93
9	Hyperbranched copper phthalocyanine decorated Fe ₃ O ₄ microspheres with extraordinary microwave absorption properties. RSC Advances, 2015, 5, 7018-7022.	1.7	25
10	Enzymatically degradable EMI shielding materials derived from PCL based nanocomposites. RSC Advances, 2015, 5, 17716-17725.	1.7	32
11	Microwave absorbers designed from PVDF/SAN blends containing multiwall carbon nanotubes anchored cobalt ferrite via a pyrene derivative. Journal of Materials Chemistry A, 2015, 3, 12413-12426.	5.2	81
12	Engineering Nanostructures by Decorating Magnetic Nanoparticles onto Graphene Oxide Sheets to Shield Electromagnetic Radiations. ACS Applied Materials & Interfaces, 2015, 7, 16266-16278.	4.0	82
13	Tailored interface and enhanced elastic modulus in epoxy-based composites in presence of branched poly(ethyleneimine) grafted multiwall carbon nanotubes. Physical Chemistry Chemical Physics, 2015, 17, 7907-7913.	1.3	14
14	Fabrication and electromagnetic loss properties of Fe3O4 nanofibers. Journal of Materials Science: Materials in Electronics, 2015, 26, 3474-3478.	1.1	38
15	Mesocarbon microsphere composites with Fe ₃ O ₄ nanoparticles for outstanding electromagnetic interference shielding effectiveness. RSC Advances, 2015, 5, 43279-43289.	1.7	29
16	3D Fe ₃ O ₄ nanocrystals decorating carbon nanotubes to tune electromagnetic properties and enhance microwave absorption capacity. Journal of Materials Chemistry A, 2015, 3, 12621-12625.	5.2	284
17	Attenuating microwave radiation by absorption through controlled nanoparticle localization in PC/PVDF blends. Physical Chemistry Chemical Physics, 2015, 17, 27698-27712.	1.3	46
18	Electrically conductive and electromagnetic interference shielding of polyethylene composites with devisable carbon nanotube networks. Journal of Materials Chemistry C, 2015, 3, 9369-9378.	2.7	227

ARTICLE IF CITATIONS An efficient strategy to develop microwave shielding materials with enhanced attenuation constant. 19 1.7 21 RSC Advances, 2015, 5, 89461-89471. A comparative study of structure and electromagnetic interference shielding performance for silver nanostructure hybrid polyimide foams. RSC Advances, 2015, 5, 65283-65296. 1.7 106 A Unique Double Percolated Polymer Composite for Highly Efficient Electromagnetic Interference 21 1.7 62 Shielding. Macromolecular Materials and Engineering, 2016, 301, 1232-1241. Stepâ€byâ€Step Strategy for Constructing Multilayer Structured Coatings toward Highâ€Efficiency 1.9 Electromagnetic Interference Shielding. Advanced Materials Interfaces, 2016, 3, 1500476. Simultaneous Improvement in Structural Properties and Microwave Shielding of Polymer Blends with 23 1.5 25 Carbon Nanotubes. ChemNanoMat, 2016, 2, 140-148. Dynamic mechanical properties of multiwall carbon nanotube reinforced ABS composites and their correlation with entanglement density, adhesion, reinforcement and C factor. RSC Advances, 2016, 6, 1.7 3997-4006. Electrically conductive strain sensing polyurethane nanocomposites with synergistic carbon 25 2.8 464 nanotubes and graphene bifillers. Nanoscale, 2016, 8, 12977-12989. High performance electromagnetic wave absorbers derived from PC/SAN blends containing multiwall carbon nanotubes and Fe₃O₄ decorated onto graphene oxide sheets. RSC 1.7 26 Advances, 2016, 6, 37633-37645. Super-paramagnetic core-shell material with tunable magnetic behavior by regulating electron 27 2.0 12 transfer efficiency and structure stability of the shell. Results in Physics, 2016, 6, 606-613. Polycarbonate Composites Containing Carbon Encapsulated "Brickâ€Like―Fe₃O₄ Nanoparticles as Efficient Microwave Absorbers with a Large Bandwidth. ChemistrySelect, 2016, 1, 3829-3838. The Preparation of Compressible and Fireâ€Resistant Spongeâ€Supported Reduced Graphene Oxide Aerogel 29 1.7 39 for Electromagnetic Interference Shielding. Chemistry - an Asian Journal, 2016, 11, 2586-2593. Excellent Electromagnetic Interference Shielding by Graphene― MnFe₂O₄â€Multiwalled Carbon Nanotube Hybrids at Very Low Weight Percentage in Polymer Matrix. ChemistrySelect, 2016, 1, 5995-6003. Tuning the microwave absorption through engineered nanostructures in co-continuous polymer $\mathbf{31}$ 0.8 31 blends. Materials Research Express, 2016, 3, 064002. Graphene nanosheets/BaTiO₃ ceramics as highly efficient electromagnetic interference 2.7 167 shielding materials in the X-band. Journal of Materials Chemistry C, 2016, 4, 371-375. Designing of Multiphase Fly Ash/MWCNT/PU Composite Sheet Against Electromagnetic Environmental 33 1.0 7 Pollution. Journal of Electronic Materials, 2016, 45, 3142-3148. High frequency millimetre wave absorbers derived from polymeric nanocomposites. Polymer, 2016, 84, 1.8 191 398-419. Epoxy composites containing cobalt(<scp>ii</scp>)-porphine anchored multiwalled carbon nanotubes as thin electromagnetic interference shields, adhesives and coatings. Journal of Materials Chemistry 35 2.7 16 C, 2016, 4, 352-361. Mechanistic Insight into the Critical Concentration of Barium Hexaferrite and the Conductive Polymeric Phase with Respect to Synergistically Electromagnetic Interference (EMI) Shielding. ChemistrySelect, 2017, 2, 830-841.

#	Article	IF	CITATIONS
37	Microwave-synthesized freestanding iron-carbon nanotubes on polyester composites of woven Kevlar fibre and silver nanoparticle-decorated graphene. Scientific Reports, 2017, 7, 40386.	1.6	38
38	Phase specific dispersion of functional nanoparticles in soft nanocomposites resulting in enhanced electromagnetic screening ability dominated by absorption. Physical Chemistry Chemical Physics, 2017, 19, 467-479.	1.3	30
39	Unique Multilayered Assembly Consisting of "Flower-Like―Ferrite Nanoclusters Conjugated with MWCNT as Millimeter Wave Absorbers. Journal of Physical Chemistry C, 2017, 121, 13998-14009.	1.5	51
41	Lightweight, multifunctional microcellular PMMA/Fe 3 O 4 @MWCNTs nanocomposite foams with efficient electromagnetic interference shielding. Composites Part A: Applied Science and Manufacturing, 2017, 100, 128-138.	3.8	214
42	High Strain Tolerant EMI Shielding Using Carbon Nanotube Network Stabilized Rubber Composite. Advanced Materials Technologies, 2017, 2, 1700078.	3.0	153
43	Hybrid modification of highâ€density polyethylene with hyperbranched polyethyleneâ€functionalized multiwalled carbon nanotubes and few″ayered graphene. Journal of Applied Polymer Science, 2017, 134, 44848.	1.3	15
44	Segregated Hybrid Poly(methyl methacrylate)/Graphene/Magnetite Nanocomposites for Electromagnetic Interference Shielding. ACS Applied Materials & Interfaces, 2017, 9, 14171-14179.	4.0	291
45	EMI shielding effectiveness of graphene decorated with graphene quantum dots and silver nanoparticles reinforced PVDF nanocomposites. Composite Interfaces, 2017, 24, 861-882.	1.3	63
46	Synergistic interactions between silver decorated graphene and carbon nanotubes yield flexible composites to attenuate electromagnetic radiation. Nanotechnology, 2017, 28, 025201.	1.3	29
47	In situ polymerized polyaniline nanofiber-based functional cotton and nylon fabrics as millimeter-wave absorbers. Polymer Journal, 2017, 49, 391-399.	1.3	43
48	Hollow Fe3O4@DA-SO3H: an efficient and reusable heterogeneous nano-magnetic acid catalyst for synthesis of dihydropyridine and dioxodecahydroacridine derivatives. Journal of the Iranian Chemical Society, 2017, 14, 791-801.	1.2	17
49	Transparent Conducting Graphene Hybrid Films To Improve Electromagnetic Interference (EMI) Shielding Performance of Graphene. ACS Applied Materials & Interfaces, 2017, 9, 34221-34229.	4.0	112
50	Magnetic Alloyâ€MWNT Heterostructure as Efficient Electromagnetic Wave Suppressors in Soft Nanocomposites. ChemistrySelect, 2017, 2, 7831-7844.	0.7	37
51	Graphene Derivatives Doped with Nickel Ferrite Nanoparticles as Excellent Microwave Absorbers in Soft Nanocomposites. ChemistrySelect, 2017, 2, 5984-5999.	0.7	14
52	Superb electromagnetic wave-absorbing composites based on large-scale graphene and carbon nanotube films. Scientific Reports, 2017, 7, 2349.	1.6	51
53	Ferromagnetic resonance of NiCoFe ₂ O ₄ nanoparticles and microwave absorption properties of flexible NiCoFe ₂ O ₄ –carbon black/poly(vinyl) Tj ETQq1 1	0.78 43 14 rg	BT4/20verlock
54	Flexible and efficient electromagnetic interference shielding materials from ground tire rubber. Carbon, 2017, 121, 267-273.	5.4	150
55	Carbon encapsulated nanoscale iron/iron-carbide/graphite particles for EMI shielding and microwave absorption. Physical Chemistry Chemical Physics, 2017, 19, 23268-23279.	1.3	148

#	Article	IF	CITATIONS
56	Controllable fabrication of a novel porous Ni-alginate hybrid material for hydrogenation. Applied Catalysis B: Environmental, 2017, 218, 721-730.	10.8	28
57	A Novel Strategy for Synthesis of Polystyrene/Fe ₃ O ₄ Nanocomposite: RAFT Polymerization, Functionalization, and Coordination Techniques. Polymer-Plastics Technology and Engineering, 2017, 56, 873-882.	1.9	16
58	Tailored distribution of nanoparticles in bi-phasic polymeric blends as emerging materials for suppressing electromagnetic radiation: challenges and prospects. Journal of Materials Chemistry C, 2018, 6, 3120-3142.	2.7	73
59	Synthesis, characterization and dielectric properties of one-step pyrolyzed / activated resorcinol-formaldehyde based carbon aerogels for electromagnetic interference shielding applications. Materials Chemistry and Physics, 2018, 213, 492-501.	2.0	33
60	A review on the mechanical, electrical and EMI shielding properties of carbon nanotubes and graphene reinforced polycarbonate nanocomposites. Polymers for Advanced Technologies, 2018, 29, 1547-1567.	1.6	94
61	Synthesis of PPy/RGO-based hierarchical material with super-paramagnetic behavior and understanding its robust photo current driven by visible light. Synthetic Metals, 2018, 241, 17-25.	2.1	6
62	Electromagnetic Shielding Materials in GHz Range. Chemical Record, 2018, 18, 1000-1009.	2.9	105
63	Double percolated MWCNTs loaded PC/SAN nanocomposites as an absorbing electromagnetic shield. European Polymer Journal, 2018, 100, 209-218.	2.6	42
64	Polyaniline-stabilized electromagnetic wave absorption composites of reduced graphene oxide on magnetic carbon nanotube film. Nanotechnology, 2018, 29, 155201.	1.3	23
65	Suppressing Electromagnetic Radiation by Trapping Ferrite Nanoparticles and Carbon Nanotubes in Hierarchical Nanoporous Structures Designed by Crystallizationâ€Induced Phase Separation. ChemistrySelect, 2018, 3, 1189-1201.	0.7	23
66	Dynamic and regional constructive electromagnetic protecting materials made by MWNT/Fe3O4/poly pyrrole doped vitrimers. Composites Science and Technology, 2018, 158, 61-66.	3.8	20
67	A ReaxFF-Based Molecular Dynamics Simulation of the Pyrolysis Mechanism for Polycarbonate. Energy & Fuels, 2018, 32, 2156-2162.	2.5	62
68	Fabrication of a flexible electromagnetic interference shielding Fe3O4@reduced graphene oxide/natural rubber composite with segregated network. Chemical Engineering Journal, 2018, 344, 184-193.	6.6	277
69	Detailed dynamic mechanical analysis of thermomechanically stable meltâ€processed PEK–MWCNT nanocomposites. Polymer Composites, 2018, 39, 2587-2596.	2.3	24
70	Vapor sensing performance as a diagnosis probe to estimate the distribution of multi-walled carbon nanotubes in poly(lactic acid)/polypropylene conductive composites. Sensors and Actuators B: Chemical, 2018, 255, 2809-2819.	4.0	41
71	Alginate and polyethyleneimine dually mediated synthesis of nanosilver-containing composites for efficient p-nitrophenol reduction. Carbohydrate Polymers, 2018, 181, 744-751.	5.1	43
72	Conducting melt blending of polystyrene and <scp>EVA</scp> copolymer with carbon nanotube assisted by phosphoniumâ€based ionic liquid. Journal of Applied Polymer Science, 2018, 135, 45564.	1.3	32
73	Correlation between the magnetic-microstructure and microwave mitigation ability of M _x Co _(1Ⱂx) Fe ₂ O ₄ based ferrite–carbon black/PVA composites. Physical Chemistry Chemical Physics, 2018, 20, 26431-26442.	1.3	13

#	Article	IF	CITATIONS
74	Repeatable, room-temperature-processed baroplastic-carbon nanotube composites for electromagnetic interference shielding. Journal of Materials Chemistry C, 2018, 6, 12955-12964.	2.7	17
77	Influence of Nickel Layer on Electromagnetic Interference Shielding Effectiveness of CuSâ€Polyacrylonitrile Fibers. Bulletin of the Korean Chemical Society, 2018, 39, 1406-1411.	1.0	12
78	Does the Processing Method Resulting in Different States of an Interconnected Network of Multiwalled Carbon Nanotubes in Polymeric Blend Nanocomposites Affect EMI Shielding Properties?. ACS Omega, 2018, 3, 5771-5782.	1.6	58
79	Oxidized multiwall carbon nanotube/silicone foam composites with effective electromagnetic interference shielding and high gamma radiation stability. RSC Advances, 2018, 8, 24236-24242.	1.7	13
80	Carbon Nanostructures Based Mechanically Robust Conducting Cotton Fabric for Improved Electromagnetic Interference Shielding. Fibers and Polymers, 2018, 19, 1064-1073.	1.1	69
81	Synergistic effect of carbon nanotube and graphene nanoplates on the mechanical, electrical and electromagnetic interference shielding properties of polymer composites and polymer composite foams. Chemical Engineering Journal, 2018, 353, 381-393.	6.6	245
82	Research on high electromagnetic interference shielding effectiveness of a foldable buckypaper/polyacrylonitrile composite film via interface reinforcing. Composites Part A: Applied Science and Manufacturing, 2018, 113, 132-140.	3.8	30
83	Physical Insight into the Mechanism of Electromagnetic Shielding in Polymer Nanocomposites Containing Multiwalled Carbon Nanotubes and Inverse-Spinel Ferrites. Journal of Physical Chemistry C, 2018, 122, 19425-19437.	1.5	27
84	Injection-molded microcellular PLA/graphite nanocomposites with dramatically enhanced mechanical and electrical properties for ultra-efficient EMI shielding applications. Journal of Materials Chemistry C, 2018, 6, 6847-6859.	2.7	136
85	Thermally Driven Transport and Relaxation Switching Selfâ€Powered Electromagnetic Energy Conversion. Small, 2018, 14, e1800987.	5.2	733
86	Simultaneous improvement of mechanical properties and electromagnetic interference shielding performance in eco-friendly polylactide composites via reactive blending and MWCNTs induced morphological optimization. Composites Part B: Engineering, 2019, 178, 107452.	5.9	29
87	Hybrid polymer composites for EMI shielding application- a review. Materials Research Express, 2019, 6, 082008.	0.8	69
88	Enhanced microwave absorption properties of PMMA modified MnFe ₂ O ₄ –polyaniline nanocomposites. Physical Chemistry Chemical Physics, 2019, 21, 5068-5077.	1.3	37
89	Detailed study of dynamic mechanical analysis for nanocomposites. Emerging Materials Research, 2019, 8, 408-417.	0.4	6
90	Organic vapor sensing behavior of polycarbonate/polystyrene/multi-walled carbon nanotube blend composites with different microstructures. Materials and Design, 2019, 179, 107897.	3.3	8
91	Excellent electromagnetic shield derived from MWCNT reinforced NR/PP blend nanocomposites with tailored microstructural properties. Composites Part B: Engineering, 2019, 173, 106798.	5.9	65
92	Nitrogen doping as a fundamental way to enhance the EMI shielding behavior of cobalt particle-embedded carbonaceous nanostructures. New Journal of Chemistry, 2019, 43, 5568-5580.	1.4	49
93	High conductive and mechanical robust carbon nanotubes/waterborne polyurethane composite films for efficient electromagnetic interference shielding. Composites Part A: Applied Science and Manufacturing, 2019, 121, 411-417.	3.8	98

#	Article	IF	CITATIONS
94	Review of electromagnetic interference shielding materials fabricated by iron ingredients. Nanoscale Advances, 2019, 1, 1640-1671.	2.2	317
95	Effect of Processing Techniques on EMI SE of Immiscible PS/PMMA Blends Containing MWCNT: Enhanced Intertube and Interphase Scattering. Industrial & Engineering Chemistry Research, 2019, 58, 11576-11584.	1.8	50
96	Recent advances in carbon-based polymer nanocomposites for electromagnetic interference shielding. Progress in Materials Science, 2019, 103, 319-373.	16.0	490
97	Electromagnetic Interference Shielding Polymers and Nanocomposites - A Review. Polymer Reviews, 2019, 59, 280-337.	5.3	512
98	Fabrication of Self-Healable Magnetic Nanocomposites via Dielsâ^ Alder Click Chemistry. Applied Sciences (Switzerland), 2019, 9, 506.	1.3	11
99	Dielectric and electromagnetic interference shielding properties of high entropy (Zn,Fe,Ni,Mg,Cd)Fe2O4 ferrite. Scientific Reports, 2019, 9, 20078.	1.6	108
100	Macroporous epoxy-carbon fiber structures with a sacrificial 3D printed polymeric mesh suppresses electromagnetic radiation. Chemical Engineering Journal, 2019, 357, 384-394.	6.6	62
101	Fabrication of CNT/ION hybrids and their impact on the biomedical applicability of PCLâ€based composite films. Polymer Composites, 2019, 40, E1818-E1830.	2.3	2
102	Highly Conductive and Machineâ€Washable Textiles for Efficient Electromagnetic Interference Shielding. Advanced Materials Technologies, 2019, 4, 1800503.	3.0	101
103	Self-assembled nanostructures of 3D hierarchical faceted-iron oxide containing vertical carbon nanotubes on reduced graphene oxide hybrids for enhanced electromagnetic interface shielding. Composites Part B: Engineering, 2019, 168, 66-76.	5.9	88
104	Electrical properties of epoxy nanocomposites containing Fe3O4 nanoparticles and Fe3O4 nanoparticles deposited on the surface of electrochemically exfoliated and oxidized graphite. Applied Surface Science, 2019, 474, 66-77.	3.1	26
105	Highâ€performance electromagnetic interference shielding material based on an effective mixing protocol. Polymer International, 2019, 68, 637-647.	1.6	16
106	Fe3O4/Fe/C composites prepared by a facile thermal decomposition method and their application as microwave absorbers. Journal of Alloys and Compounds, 2019, 784, 1123-1129.	2.8	30
107	Constructing multiple interfaces in polydimethylsiloxane/multi-walled carbon nanotubes nanocomposites by the incorporation of cotton fibers for high-performance electromagnetic interference shielding and mechanical enhancement. Applied Surface Science, 2019, 466, 657-665.	3.1	82
108	Electromagnetic interference shielding polymer composites with magnetic and conductive FeCo/reduced graphene oxide 3D networks. Journal of Materials Science: Materials in Electronics, 2019, 30, 2045-2056.	1.1	10
109	Synergistic effect of conducting and insulating fillers in polymer nanocomposite films for attenuation of X-band. Journal of Materials Science, 2019, 54, 1304-1325.	1.7	24
110	Tailoring MWCNT Dispersion, Blend Morphology and EMI Shielding Properties by Sequential Mixing Strategy in Immiscible PS/PVDF Blends. Journal of Electronic Materials, 2020, 49, 1588-1600.	1.0	31
111	Facile Preparation of Lightweight and Flexible PVA/PEDOT:PSS/MWCNT Ternary Composite for High-Performance EMI Shielding in the X-Band Through Absorption Mechanism. Journal of Electronic Materials, 2020, 49, 1689-1701.	1.0	21

#	Article	IF	CITATIONS
112	Core/shell PA6 @ Fe3O4 nanofibers: Magnetic and shielding behavior. Journal of Dispersion Science and Technology, 2020, 41, 1711-1719.	1.3	18
113	Achieve high performance microwave shielding in poly(Îμ-caprolactone)/multi-wall carbon nanotube composites via balancing absorption in conductive domains and multiple scattering at interfaces. Applied Surface Science, 2020, 508, 145178.	3.1	46
114	Superhydrophobic and multi-responsive fabric composite with excellent electro-photo-thermal effect and electromagnetic interference shielding performance. Chemical Engineering Journal, 2020, 391, 123537.	6.6	99
115	Radio-frequency transparent carbon nanotube electrothermal film for radome de-icing application. Journal of Materials Research and Technology, 2020, 9, 10854-10862.	2.6	11
116	Preparation and electromagnetic wave absorption properties of carbon nanotubes loaded Fe3O4 composites. Journal of Magnetism and Magnetic Materials, 2020, 513, 167259.	1.0	37
117	Carbon nanotube/ZnO nanowire/polyvinylidene fluoride hybrid nanocomposites for enhanced electromagnetic interference shielding. Canadian Journal of Chemical Engineering, 2020, 98, 1036-1046.	0.9	25
118	Effect of lanthanum doping on the structural, electrical, and magnetic properties of Mn0.5Cu0.5La Fe2â^'O4 nanoferrites. Ceramics International, 2020, 46, 19634-19638.	2.3	16
119	Electromagnetic Interference Shielding Performance of Anisotropic Polyimide/Graphene Composite Aerogels. ACS Applied Materials & Interfaces, 2020, 12, 30990-31001.	4.0	208
120	The influence of Fe3O4@GNP hybrids on enhancing the EMI shielding effectiveness of epoxy composites in the X-band. Synthetic Metals, 2020, 265, 116374.	2.1	25
121	Implications from Broadband Microwave Absorption of Metal-Modified SiC Fiber Mats. ACS Applied Materials & Interfaces, 2020, 12, 31823-31829.	4.0	38
122	Polymeric blends as EMI shielding materials. , 2020, , 145-164.		1
123	Nanomaterials with potential EMI shielding properties. , 2020, , 179-199.		1
124	Review of Polymer Composites with Diverse Nanofillers for Electromagnetic Interference Shielding. Nanomaterials, 2020, 10, 541.	1.9	96
125	Influence of Nanoparticles on Thermal and Electrical Conductivity of Composites. Polymers, 2020, 12, 742.	2.0	89
126	Polypropylene/carbon nanotubes composite materials with enhanced electromagnetic interference shielding performance: Properties and modeling. Composites Part B: Engineering, 2020, 189, 107866.	5.9	65
127	Waterproof MXene-decorated wood-pulp fabrics for high-efficiency electromagnetic interference shielding and Joule heating. Composites Part B: Engineering, 2020, 198, 108250.	5.9	103
128	Flexible Fe3O4/graphene foam/poly dimethylsiloxane composite for high-performance electromagnetic interference shielding. Composites Science and Technology, 2020, 189, 108012.	3.8	69
129	PC light-scattering material containing "pomegranate-like―SAN-SiO2 microspheres with excellent effective scattering range based the large-screen display. Composites Science and Technology, 2021, 201, 108532.	3.8	6

# 130	ARTICLE The journey of PDMS-based nanocomposites for EMI shielding applications: from bench to translational research. Materials Advances, 2021, 2, 5580-5592.	IF 2.6	CITATIONS
131	Advances in Hybrid Conducting Polymer Technology for EMI Shielding Materials. Engineering Materials, 2021, , 201-247.	0.3	0
132	Advances in electromagnetic shielding properties of composite foams. Journal of Materials Chemistry A, 2021, 9, 8896-8949.	5.2	184
133	Electromagnetic-wave shielding promulgation of cluster like FZ@MWCNT composite incorporated in GO matrices by polarization relaxation and potential degradation. Materials Characterization, 2021, 172, 110884.	1.9	9
135	Role of graphitization-controlled conductivity in enhancing absorption dominated EMI shielding behavior of pyrolysis-derived Fe3C@C-PVDF nanocomposites. Materials Chemistry and Physics, 2021, 263, 124429.	2.0	18
136	The journey of polycarbonate-based composites towards suppressing electromagnetic radiation. Functional Composite Materials, 2021, 2, .	0.9	14
137	The influence of the transparent layer thickness on the absorption capacity of epoxy/carbon nanotube buckypaper at <scp>Xâ€band</scp> . Journal of Applied Polymer Science, 2021, 138, 51407.	1.3	3
138	Highly flexible electromagnetic interference shielding films based on ultrathin Ni/Ag composites on paper substrates. Journal of Materials Science, 2021, 56, 5570-5580.	1.7	13
139	Magnetically Recyclable Graphene Oxide Demulsifier Adapting Wide pH Conditions on Detachment of Oil in the Crude Oil-in-Water Emulsion. ACS Applied Materials & Interfaces, 2021, 13, 6748-6757.	4.0	30
140	Tuning the Structure and Performance of Bulk and Porous Vapor Sensors Based on Co-continuous Carbon Nanotube-Filled Blends of Poly(vinylidene fluoride) and Polycarbonates by Varying Melt Viscosity. ACS Applied Materials & Interfaces, 2020, 12, 45404-45419.	4.0	17
141	High Microwave Absorption of Multi-Walled Carbon Nanotubes (Outer Diameter 10 – 20 nm)-Epoxy Composites in R–Band. Physical Science International Journal, 2015, 8, 1-10.	0.3	1
142	Magnetic Energy Morphing, Capacitive Concept for Ni _{0.3} Zn _{0.4} Ca _{0.3} Fe ₂ O ₄ Nanoparticles Embedded in Graphene Oxide Matrix, and Studies of Wideband Tunable Microwave Absorption. ACS Applied Materials & amp: Interfaces. 2021. 13. 46967-46979.	4.0	23
143	Selective localization of carbon nanotubes and its effect on the structure and properties of polymer blends. Progress in Polymer Science, 2021, 123, 101471.	11.8	55
144	Room temperature self-healing and recyclable conductive composites for flexible electronic devices based on imine reversible covalent bond. Journal of Alloys and Compounds, 2022, 894, 162433.	2.8	13
145	The Role of Phase Migration of Carbon Nanotubes in Melt-Mixed PVDF/PE Polymer Blends for High Conductivity and EMI Shielding Applications. Molecules, 2022, 27, 933.	1.7	15
146	Nanomaterials for electromagnetic interference shielding application. , 2022, , 749-772.		1
147	The effect of polymer molecular weights on the electrical, rheological, and vapor sensing behavior of polycarbonate/multiâ€walled carbon nanotube nanocomposites. Polymer Composites, 2022, 43, 5095-5106.	2.3	6
148	Multicomponent Flexible Electromagnetic Absorber in X-Band. SSRN Electronic Journal, 0, , .	0.4	Ο

#	Article	IF	CITATIONS
149	Electromagnetic interference shielding thermoplastic composites reinforced with carbon based hybrid materials: a review. Composite Interfaces, 2022, 29, 1413-1470.	1.3	2
150	From waste to wealth: A critical review on advanced materials for EMI shielding. Journal of Applied Polymer Science, 2022, 139, .	1.3	12
151	Porous nickel–zinc ferrite/polyaniline/polyimide composite based on improved impedance matching for electromagnetic microwave absorption. Polymer Composites, 2022, 43, 8737-8748.	2.3	5
152	Carbon Nanotube Migration in Melt-Compounded PEO/PE Blends and Its Impact on Electrical and Rheological Properties. Nanomaterials, 2022, 12, 3772.	1.9	4
153	Self-Healing Nanocomposites with Carbon Nanotube/Graphene/Fe ₃ O ₄ Nanoparticle Tricontinuous Networks for Electromagnetic Radiation Shielding. ACS Applied Nano Materials, 2022, 5, 16423-16439.	2.4	11
154	Interfacial distribution and compatibilization of imidazolium functionalized CNTs in poly(lactic) Tj ETQq1 1 0.7843	14 rgBT / 3.6	Overlock 10 8
	International Journal of Biological Macromolecules, 2023, 227, 1182-1190.		
155	Research of Ferric Ion Regulation on a Polyimide/C-MXene Microcellular Composite Film. Langmuir, 2022, 38, 16156-16162.	1.6	0
156	Flexible Electromagnetic Absorber in X-Band Using a Polymer Electrolyte Having Mixed Conduction. SSRN Electronic Journal, 0, , .	0.4	Ο
157	Flexible electromagnetic absorber in X-band using a polymer electrolyte having mixed conduction. Journal of Materials Research, 2023, 38, 2422-2438.	1.2	4
158	Nanoferrites for electromagnetic interference shielding application. , 2023, , 11-41.		1
160	Platinum Years of Metallurgical and Materials Education and Research—The IISc Saga. Indian Institute of Metals Series, 2024, , 333-363.	0.2	0
165	Electromagnetic (EM radiation) interference shielding material epicenter to carbon filler-based composite. , 2024, , 155-194.		Ο
166	Thermoplastic nanocomposite foams for electromagnetic interference shielding. , 2024, , 135-159.		0