Metal–organic framework nanosheets in polymer cor

Nature Materials

14, 48-55

DOI: 10.1038/nmat4113

Citation Report

#	Article	IF	CITATIONS
6	Quantum spin Hall phase in multilayer graphene. Physical Review B, 2015, 91, .	3.2	4
7	Highâ€Efficiency Waterâ€Transport Channels using the Synergistic Effect of a Hydrophilic Polymer and Graphene Oxide Laminates. Advanced Functional Materials, 2015, 25, 5809-5815.	14.9	177
8	Ultrathin 2D Metal–Organic Framework Nanosheets. Advanced Materials, 2015, 27, 7372-7378.	21.0	943
10	Synthetic Covalent and Nonâ€Covalent 2D Materials. Angewandte Chemie - International Edition, 2015, 54, 13876-13894.	13.8	157
11	Confinement of Ionic Liquids in Nanocages: Tailoring the Molecular Sieving Properties of ZIFâ€8 for Membraneâ€Based CO ₂ Capture. Angewandte Chemie - International Edition, 2015, 54, 15483-15487.	13.8	303
12	Significantly Enhanced Separation using ZIFâ€8 Membranes by Partial Conversion of Calcined Layered Double Hydroxide Precursors. ChemSusChem, 2015, 8, 3582-3586.	6.8	44
15	Biological Chitin–MOF Composites with Hierarchical Pore Systems for Airâ€Filtration Applications. Angewandte Chemie - International Edition, 2015, 54, 12588-12591.	13.8	108
16	Graphene related magnetic materials: micromechanical exfoliation of 2D layered magnets based on bimetallic anilate complexes with inserted [Fe ^{III} (acac ₂ -trien)] ⁺ and [Fe ^{III} (sal ₂ -trien)] ⁺ molecules. Chemical Science, 2015, 6, 4665-4673.	7.4	123
17	Metal organic frameworks from extended, conjugated pentiptycene-based ligands. CrystEngComm, 2015, 17, 4912-4918.	2.6	13
18	Facile and fast, one pot microwave synthesis of metal organic framework copper terephthalate and study CO2 and CH4 adsorption on it. Journal of Porous Materials, 2015, 22, 1161-1169.	2.6	24
19	Electrosynthesis of Metal–Organic Frameworks: Challenges and Opportunities. ChemElectroChem, 2015, 2, 462-474.	3.4	199
20	Probing Reactive Platinum Sites in UiO-67 Zirconium Metal–Organic Frameworks. Chemistry of Materials, 2015, 27, 1042-1056.	6.7	105
21	Carbon nitride with simultaneous porous network and O-doping for efficient solar-energy-driven hydrogen evolution. Nano Energy, 2015, 12, 646-656.	16.0	537
22	Elevated pervaporation performance of polysiloxane membrane using channels and active sites of metal organic framework CuBTC. Journal of Membrane Science, 2015, 481, 73-81.	8.2	56
23	Remarkably Enhanced Gas Separation by Partial Selfâ€Conversion of a Laminated Membrane to Metal–Organic Frameworks. Angewandte Chemie, 2015, 127, 3071-3075.	2.0	43
24	Matrimid-Based Mixed Matrix Membranes: Interpretation and Correlation of Experimental Findings for Zeolitic Imidazolate Frameworks as Fillers in H ₂ /CO ₂ Separation. Industrial & amp; Engineering Chemistry Research, 2015, 54, 1103-1112.	3.7	54
25	Mixed-matrix membranes containing functionalized porous metal–organic polyhedrons for the effective separation of CO ₂ –CH ₄ mixture. Chemical Communications, 2015, 51, 4249-4251.	4.1	72
26	Remarkably Enhanced Gas Separation by Partial Selfâ€Conversion of a Laminated Membrane to Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2015, 54, 3028-3032.	13.8	125

#	ARTICLE	IF	CITATIONS
27	Metal–organic framework based mixed matrix membranes: a solution for highly efficient CO ₂ capture?. Chemical Society Reviews, 2015, 44, 2421-2454.	38.1	732
28	Interfacial Growth of Metal Organic Framework/Graphite Oxide Composites through Pickering Emulsion and Their CO ₂ Capture Performance in the Presence of Humidity. Langmuir, 2015, 31, 7410-7417.	3.5	70
29	Synthesis of Ce ions doped metal–organic framework for promoting catalytic H ₂ production from ammonia borane under visible light irradiation. Journal of Materials Chemistry A, 2015, 3, 14134-14141.	10.3	102
30	Tuning the size and morphology of zeolitic imidazolate framework-8 in a membrane dispersion reactor. New Journal of Chemistry, 2015, 39, 5890-5894.	2.8	3
31	MOF based MMMs with enhanced selectivity due to hindered linker distortion. Journal of Membrane Science, 2015, 492, 181-186.	8.2	58
32	One Step Backward Is Two Steps Forward: Enhancing the Hydrolysis Rate of UiO-66 by Decreasing [OH ^{â€"}]. ACS Catalysis, 2015, 5, 4637-4642.	11.2	84
33	Zeolite membranes – a review and comparison with MOFs. Chemical Society Reviews, 2015, 44, 7128-7154.	38.1	594
34	Precisely tailoring ZIF-67 nanostructures from cobalt carbonate hydroxide nanowire arrays: toward high-performance battery-type electrodes. Journal of Materials Chemistry A, 2015, 3, 16688-16694.	10.3	74
35	Organic–Inorganic Hybrid Nanocomposite-Based Gas Sensors for Environmental Monitoring. Chemical Reviews, 2015, 115, 4571-4606.	47.7	429
36	Metal–organic frameworks and their derived nanostructures for electrochemical energy storage and conversion. Energy and Environmental Science, 2015, 8, 1837-1866.	30.8	1,483
37	Photoinduced Postsynthetic Polymerization of a Metal–Organic Framework toward a Flexible Standâ€Alone Membrane. Angewandte Chemie - International Edition, 2015, 54, 4259-4263.	13.8	235
39	Molecular sieve membranes: From 3D zeolites to 2D MOFs. Chinese Journal of Catalysis, 2015, 36, 692-697.	14.0	23
40	Facile synthesis of an IRMOF-3 membrane on porous Al2O3 substrate via a sonochemical route. Microporous and Mesoporous Materials, 2015, 213, 161-168.	4.4	23
41	Metalâ^'organic framework composite membranes: Synthesis and separation applications. Chemical Engineering Science, 2015, 135, 232-257.	3.8	208
42	Controlled synthesis and enhanced electrochemical performance of Prussian blue analogue-derived hollow FeCo ₂ O ₄ nanospheres as lithium-ion battery anodes. RSC Advances, 2015, 5, 36575-36581.	3.6	55
43	Vertical 2D Heterostructures. Annual Review of Materials Research, 2015, 45, 85-109.	9.3	153
44	Solvent determines the formation and properties of metal–organic frameworks. RSC Advances, 2015, 5, 37691-37696.	3.6	95
45	Selective carbon dioxide adsorption by mixed-ligand porous coordination polymers. CrystEngComm, 2015, 17, 8388-8413.	2.6	50

#	Article	IF	CITATIONS
46	Ultrathin Two-Dimensional Nanomaterials. ACS Nano, 2015, 9, 9451-9469.	14.6	1,726
47	Functionalized Ruthenium–Phosphine Metal–Organic Framework for Continuous Vapor-Phase Dehydrogenation of Formic Acid. ACS Catalysis, 2015, 5, 7099-7103.	11.2	45
48	Halo and Pseudohalo Cu(I)-Pyridinato Double Chains with Tunable Physical Properties. Inorganic Chemistry, 2015, 54, 10738-10747.	4.0	19
49	Adsorption-Driven Heat Pumps: The Potential of Metal–Organic Frameworks. Chemical Reviews, 2015, 115, 12205-12250.	47.7	410
50	Three-dimensional hierarchical Prussian blue composed of ultrathin nanosheets: enhanced hetero-catalytic and adsorption properties. Chemical Communications, 2015, 51, 17568-17571.	4.1	53
51	Epitaxial Growth of Hetero-Nanostructures Based on Ultrathin Two-Dimensional Nanosheets. Journal of the American Chemical Society, 2015, 137, 12162-12174.	13.7	218
52	Mixed matrix membranes composed of two-dimensional metal–organic framework nanosheets for pre-combustion CO ₂ capture: a relationship study of filler morphology versus membrane performance. Journal of Materials Chemistry A, 2015, 3, 20801-20810.	10.3	121
53	Development of a multifunctional TiO ₂ /MWCNT hybrid composite grafted on a stainless steel grating. RSC Advances, 2015, 5, 103255-103264.	3.6	24
54	Effect of Elastomeric Nanoparticles on Polystyrene/Organic Nanocomposites. International Journal of Polymer Science, 2016, 2016, 1-9.	2.7	5
55	Origins and Evolution of Inorganic-Based and MOF-Based Mixed-Matrix Membranes for Gas Separations. Processes, 2016, 4, 32.	2.8	42
56	PDMS membranes containing ZIF-coated mesoporous silica spheres for efficient ethanol recovery via pervaporation. Journal of Materials Chemistry A, 2016, 4, 12790-12798.	10.3	60
57	Metal Organic Framework Crystals in Mixedâ€Matrix Membranes: Impact of the Filler Morphology on the Gas Separation Performance. Advanced Functional Materials, 2016, 26, 3154-3163.	14.9	225
58	Zeolitic Imidazolate Framework/Graphene Oxide Hybrid Nanosheets as Seeds for the Growth of Ultrathin Molecular Sieving Membranes. Angewandte Chemie - International Edition, 2016, 55, 2048-2052.	13.8	281
59	Porous Organic Cage Thin Films and Molecular‧ieving Membranes. Advanced Materials, 2016, 28, 2629-2637.	21.0	275
60	Functionalized metalâ€organic polyhedra hybrid membranes for aromatic hydrocarbons recovery. AICHE Journal, 2016, 62, 3706-3716.	3.6	43
61	PEDOT-PSS embedded comb copolymer membranes with improved CO2 capture. Journal of Membrane Science, 2016, 518, 21-30.	8.2	20
62	SALEâ€Ing a MOFâ€Based "Ship of Theseus.―Sequential Buildingâ€Block Replacement for Complete Reformulation of a Pillaredâ€Paddlewheel Metalâ€Organic Framework. European Journal of Inorganic Chemistry, 2016, 2016, 4345-4348.	2.0	21
63	Synthesis and Functionalization of Oriented Metal–Organicâ€Framework Nanosheets: Toward a Series of 2D Catalysts. Advanced Functional Materials, 2016, 26, 3268-3281.	14.9	227

#	ARTICLE	IF	CITATIONS
64	Bioinspired Design of Ultrathin 2D Bimetallic Metal–Organicâ€Framework Nanosheets Used as Biomimetic Enzymes. Advanced Materials, 2016, 28, 4149-4155.	21.0	440
65	Mixed matrix membranes prepared from non-dried MOFs for CO ₂ /CH ₄ separations. RSC Advances, 2016, 6, 114505-114512.	3.6	20
66	Tunable molecular separation by nanoporous membranes. Nature Communications, 2016, 7, 13872.	12.8	208
67	Poly(ionic liquid)/lonic Liquid Ion-Gels with High "Free―lonic Liquid Content: Platform Membrane Materials for CO ₂ /Light Gas Separations. Accounts of Chemical Research, 2016, 49, 724-732.	15.6	182
68	Influence of ZIF-8 particle size in the performance of polybenzimidazole mixed matrix membranes for pre-combustion CO2 capture and its validation through interlaboratory test. Journal of Membrane Science, 2016, 515, 45-53.	8.2	145
69	Novel bipyridinyl oxadiazole-based metal coordination complexes: High efficient and green synthesis of 3,4-dihydropyrimidin-2(1H)-ones through the Biginelli reactions. Journal of Solid State Chemistry, 2016, 241, 86-98.	2.9	18
70	Synthesis of Two-Dimensional CoS _{1.097} /Nitrogen-Doped Carbon Nanocomposites Using Metal–Organic Framework Nanosheets as Precursors for Supercapacitor Application. Journal of the American Chemical Society, 2016, 138, 6924-6927.	13.7	591
71	Cuboctahedron-based indium–organic frameworks for gas sorption and selective cation exchange. Chemical Communications, 2016, 52, 7978-7981.	4.1	41
72	An unprecedented single platform via cross-linking of zeolite and MOFs. Chemical Communications, 2016, 52, 6773-6776.	4.1	21
73	Metal-organic frameworks: structure, properties, methods of synthesis and characterization. Russian Chemical Reviews, 2016, 85, 280-307.	6.5	300
74	A copper(<scp>ii</scp>)-based MOF film for highly efficient visible-light-driven hydrogen production. Journal of Materials Chemistry A, 2016, 4, 7174-7177.	10.3	65
75	Enhanced ethylene separation and plasticization resistance in polymer membranes incorporating metal–organic framework nanocrystals. Nature Materials, 2016, 15, 845-849.	27.5	413
76	Fabrication of mixed-matrix membrane containing metal–organic framework composite with task-specific ionic liquid for efficient CO ₂ separation. Journal of Materials Chemistry A, 2016, 4, 7281-7288.	10.3	142
77	Polymer nanofilms with enhanced microporosity by interfacial polymerization. Nature Materials, 2016, 15, 760-767.	27.5	594
78	Plasticization-resistant Ni ₂ (dobdc)/polyimide composite membranes for the removal of CO ₂ from natural gas. Energy and Environmental Science, 2016, 9, 2031-2036.	30.8	89
79	Synthesis and property modification of MCM-41 composited with Cu(BDC) MOF for improvement of CO 2 adsorption Selectivity. Journal of CO2 Utilization, 2016, 14, 126-134.	6.8	41
80	Tuning the performance of CO2 separation membranes by incorporating multifunctional modified silica microspheres into polymer matrix. Journal of Membrane Science, 2016, 514, 73-85.	8.2	35
81	MOFs nanosheets derived porous metal oxide-coated three-dimensional substrates for lithium-ion battery applications. Nano Energy, 2016, 26, 57-65.	16.0	224

#	Article	IF	CITATIONS
82	Current trends in interfacial polymerization chemistry. Progress in Polymer Science, 2016, 63, 86-142.	24.7	282
83	A Structurally Variable Porous Organic Salt Based on a Multidirectional Supramolecular Cluster. Chemistry - A European Journal, 2016, 22, 15430-15436.	3.3	19
84	Toward an Understanding of the Microstructure and Interfacial Properties of PIMs/ZIF-8 Mixed Matrix Membranes. ACS Applied Materials & Samp; Interfaces, 2016, 8, 27311-27321.	8.0	93
85	Zinc-substituted ZIF-67 nanocrystals and polycrystalline membranes for propylene/propane separation. Chemical Communications, 2016, 52, 12578-12581.	4.1	81
86	Interpenetration in π-Rich Mixed-Ligand Coordination Polymers. Crystal Growth and Design, 2016, 16, 6294-6303.	3.0	30
87	Mixed-Matrix Membranes Containing Carbon Nanotubes Composite with Hydrogel for Efficient CO ₂ Separation. ACS Applied Materials & Interfaces, 2016, 8, 29044-29051.	8.0	111
88	Two-dimensional metal–organic framework nanosheets as a matrix for laser desorption/ionization of small molecules and monitoring enzymatic reactions at high salt concentrations. Chemical Communications, 2016, 52, 12984-12987.	4.1	61
89	Encapsulation of coumarin dye within lanthanide MOFs as highly efficient white-light-emitting phosphors for white LEDs. CrystEngComm, 2016, 18, 8366-8371.	2.6	33
90	Polymorphism/pseudopolymorphism of metal–organic frameworks composed of zinc(<scp>ii</scp>) and 2-methylimidazole: synthesis, stability, and application in gas storage. RSC Advances, 2016, 6, 89148-89156.	3.6	79
91	Competitive coordination strategy for the synthesis of hierarchical-pore metal–organic framework nanostructures. Chemical Science, 2016, 7, 7101-7105.	7.4	125
92	Photon Upconversion at Crystalline Organic–Organic Heterojunctions. Advanced Materials, 2016, 28, 8477-8482.	21.0	125
93	Gas transport through mixed matrix membranes composed of polysulfone and copper terephthalate particles. Microporous and Mesoporous Materials, 2016, 235, 120-134.	4.4	15
94	Diastereoselective Synthesis of Pyranoquinolines on Zirconiumâ€Containing UiOâ€66 Metalâ€Organic Frameworks. European Journal of Inorganic Chemistry, 2016, 2016, 4512-4516.	2.0	43
95	Nanoscale Polymer Metal–Organic Framework Hybrids for Effective Photothermal Therapy of Colon Cancers. Advanced Materials, 2016, 28, 9320-9325.	21.0	194
96	MOFâ€5â€Polystyrene: Direct Production from Monomer, Improved Hydrolytic Stability, and Unique Guest Adsorption. Angewandte Chemie, 2016, 128, 12278-12282.	2.0	11
97	Oneâ€Pot Preparation of Hierarchical Nanosheetâ€Constructed Fe ₃ O ₄ /MILâ€88B(Fe) Magnetic Microspheres with High Efficiency Photocatalytic Degradation of Dye. ChemCatChem, 2016, 8, 3510-3517.	3.7	52
98	Azineâ€Linked Covalent Organic Framework (COF)â€Based Mixedâ€Matrix Membranes for CO ₂ /CH ₄ Separation. Chemistry - A European Journal, 2016, 22, 14467-14470.	3.3	161
99	Particle-Size Effects on Gas Transport Properties of 6FDA-Durene/ZIF-71 Mixed Matrix Membranes. Industrial & Description of the Properties of 6FDA-Durene/ZIF-71 Mixed Matrix Membranes.	3.7	96

#	Article	IF	CITATIONS
100	MOFâ€5â€Polystyrene: Direct Production from Monomer, Improved Hydrolytic Stability, and Unique Guest Adsorption. Angewandte Chemie - International Edition, 2016, 55, 12099-12103.	13.8	90
101	Yolk–Shell MnO@ZnMn ₂ O ₄ /N–C Nanorods Derived from <i>α</i> â€MnO ₂ /ZIFâ€8 as Anode Materials for Lithium Ion Batteries. Small, 2016, 12, 5564-5571.	10.0	130
102	Controllable synthesis of ultra-small metal–organic framework nanocrystals composed of copper(<scp>ii</scp>) carboxylates. Nanoscale, 2016, 8, 16725-16732.	5.6	22
103	Ruthenium Metal–Organic Frameworks with Different Defect Types: Influence on Porosity, Sorption, and Catalytic Properties. Chemistry - A European Journal, 2016, 22, 14297-14307.	3.3	72
104	Eyeâ€Catching Dualâ€Fluorescent Dynamic Metal–Organic Framework Senses Traces of Water: Experimental Findings and Theoretical Correlation. Chemistry - A European Journal, 2016, 22, 14998-15005.	3.3	69
105	Ultrathin metal–organic framework nanosheets for electrocatalytic oxygen evolution. Nature Energy, 2016, 1, .	39.5	1,979
106	Nanolaminated composite materials: structure, interface role and applications. RSC Advances, 2016, 6, 109361-109385.	3.6	50
107	Templateâ€based Synthesis of a Formate Metal–Organic Framework/Activated Carbon Fiber Composite for Highâ€performance Methane Adsorptive Separation. Chemistry - an Asian Journal, 2016, 11, 3014-3017.	3.3	19
108	A microporous europium–organic framework anchored with open –COOH groups for selective cation sensing. CrystEngComm, 2016, 18, 7955-7958.	2.6	10
109	Controllable synthesis of polyoxovanadate-based coordination polymer nanosheets with extended exposure of catalytic sites. Nano Research, 2016, 9, 3858-3867.	10.4	27
110	Cobaltâ€based metal coordination polymers with 4,4′â€bipyridinyl groups: highly efficient catalysis for oneâ€pot synthesis of 3,4â€dihydropyrimidinâ€2(1 <i>H</i>)â€ones under solventâ€free conditions. Applied Organometallic Chemistry, 2016, 30, 1009-1021.	3.5	18
111	Membranen aus zweidimensionalen Materialien: eine neue Familie hochleistungsfÄ ¤ iger Trennmembranen. Angewandte Chemie, 2016, 128, 13580-13595.	2.0	37
112	Liquid exfoliation of alkyl-ether functionalised layered metal–organic frameworks to nanosheets. Chemical Communications, 2016, 52, 10474-10477.	4.1	98
113	Singleâ€Layered Hybrid Materials Based on 1D Associated Metalorganic Nanoribbons for Controlled Release of Pheromones. Angewandte Chemie - International Edition, 2016, 55, 11026-11030.	13.8	14
114	Flexible and Porous Nanocellulose Aerogels with High Loadings of Metal–Organicâ€Framework Particles for Separations Applications. Advanced Materials, 2016, 28, 7652-7657.	21.0	369
115	Twoâ€Dimensionalâ€Material Membranes: A New Family of Highâ€Performance Separation Membranes. Angewandte Chemie - International Edition, 2016, 55, 13384-13397.	13.8	605
116	In Situ Synthesis of Metal Sulfide Nanoparticles Based on 2D Metalâ€Organic Framework Nanosheets. Small, 2016, 12, 4669-4674.	10.0	101
117	Electrochemical Li-lon Intercalation in Octacyanotungstate-Bridged Coordination Polymer with Evidence of Three Magnetic Regimes. Inorganic Chemistry, 2016, 55, 7637-7646.	4.0	19

#	Article	IF	CITATIONS
118	Freezing the Nonclassical Crystal Growth of a Coordination Polymer Using Controlled Dynamic Gradients. Advanced Materials, 2016, 28, 8150-8155.	21.0	22
119	Solvent-Controlled Assembly of Ionic Metal–Organic Frameworks Based on Indium and Tetracarboxylate Ligand: Topology Variety and Gas Sorption Properties. Crystal Growth and Design, 2016, 16, 5554-5562.	3.0	46
120	Ionic Liquids as the MOFs/Polymer Interfacial Binder for Efficient Membrane Separation. ACS Applied Materials & Samp; Interfaces, 2016, 8, 32041-32049.	8.0	157
121	Chemically Delaminated Freeâ€Standing Ultrathin Covalent Organic Nanosheets. Angewandte Chemie - International Edition, 2016, 55, 15604-15608.	13.8	242
122	Chemically Delaminated Freeâ€Standing Ultrathin Covalent Organic Nanosheets. Angewandte Chemie, 2016, 128, 15833-15837.	2.0	52
123	Mediating Order and Modulating Porosity by Controlled Hydrolysis in a Phosphonate Monoester Metal–Organic Framework. Angewandte Chemie, 2016, 128, 14834-14837.	2.0	11
124	Electronic origins of photocatalytic activity in d0 metal organic frameworks. Scientific Reports, 2016, 6, 23676.	3.3	196
125	High performance carbon molecular sieving membranes derived from pyrolysis of metal–organic framework ZIF-108 doped polyimide matrices. Chemical Communications, 2016, 52, 13779-13782.	4.1	22
126	Submonolayered Ru Deposited on Ultrathin Pd Nanosheets used for Enhanced Catalytic Applications. Advanced Materials, 2016, 28, 10282-10286.	21.0	148
127	Biomimetic Liquid-Sieving through Covalent Molecular Meshes. Chemistry of Materials, 2016, 28, 8044-8050.	6.7	4
128	Mediating Order and Modulating Porosity by Controlled Hydrolysis in a Phosphonate Monoester Metal-Organic Framework. Angewandte Chemie - International Edition, 2016, 55, 14614-14617.	13.8	48
129	Organic–inorganic supramolecular solid catalyst boosts organic reactions in water. Nature Communications, 2016, 7, 10835.	12.8	49
130	Transformation of metal-organic frameworks for molecular sieving membranes. Nature Communications, 2016, 7, 11315.	12.8	140
131	MOFâ€Based Mixedâ€Matrix Membranes in Gas Separation – Mystery and Reality. Chemie-Ingenieur-Technik, 2016, 88, 1788-1797.	0.8	22
132	Singleâ€Layered Hybrid Materials Based on 1D Associated Metalorganic Nanoribbons for Controlled Release of Pheromones. Angewandte Chemie, 2016, 128, 11192-11196.	2.0	4
133	Oriented Nano–Microstructureâ€Assisted Controllable Fabrication of Metal–Organic Framework Membranes onÂNickel Foam. Advanced Materials, 2016, 28, 2374-2381.	21.0	99
134	Metal Organic Frameworkâ€Derived Metal Phosphates as Electrode Materials for Supercapacitors. Advanced Energy Materials, 2016, 6, 1501833.	19.5	212
135	Zeolitic Imidazolate Framework/Graphene Oxide Hybrid Nanosheets as Seeds for the Growth of Ultrathin Molecular Sieving Membranes. Angewandte Chemie, 2016, 128, 2088-2092.	2.0	70

#	Article	IF	CITATIONS
136	Openâ€Pore Twoâ€Dimensional MFI Zeolite Nanosheets for the Fabrication of Hydrocarbonâ€Isomerâ€Selective Membranes on Porous Polymer Supports. Angewandte Chemie - International Edition, 2016, 55, 7184-7187.	13.8	100
137	Sulfanilamide and silver nanoparticles-loaded polyvinyl alcohol-chitosan composite electrospun nanofibers: Synthesis and evaluation on synergism in wound healing. Journal of Industrial and Engineering Chemistry, 2016, 39, 127-135.	5.8	75
138	NH 2 -MIL-125 as membrane for carbon dioxide sequestration: Thin supported MOF layers contra Mixed-Matrix-Membranes. Journal of Membrane Science, 2016, 516, 185-193.	8.2	58
139	Alginate Hydrogel: A Shapeable and Versatile Platform for <i>in Situ</i> i> Preparation of Metal–Organic Framework–Polymer Composites. ACS Applied Materials & Interfaces, 2016, 8, 17395-17401.	8.0	127
140	Metal–organic framework nanosheets for fast-response and highly sensitive luminescent sensing of Fe ³⁺ . Journal of Materials Chemistry A, 2016, 4, 10900-10905.	10.3	412
141	Emerging applications of metal–organic frameworks. CrystEngComm, 2016, 18, 6532-6542.	2.6	125
142	Embedded plasmonic nanostructures: synthesis, fundamental aspects and their surface enhanced Raman scattering applications. International Reviews in Physical Chemistry, 2016, 35, 353-398.	2.3	58
143	An alumina-coated, egg-shell Pd/α-Al2O3@SiC catalyst with enhanced ethylene selectivity in the selective hydrogenation of acetylene. RSC Advances, 2016, 6, 57174-57182.	3.6	6
144	Tunable Electrical Conductivity and Magnetic Property of the Two Dimensional Metal Organic Framework [Cu(TPyP)Cu ₂ (O ₂ CCH ₃) ₄]. ACS Applied Materials & Difference (Sub)	8.0	92
145	Organic Linker Defines the Excitedâ€State Decay of Photocatalytic MILâ€125(Ti)â€Type Materials. ChemSusChem, 2016, 9, 388-395.	6.8	84
146	Layer-by-Layer Assembly of Metal-Organic Frameworks in Macroporous Polymer Monolith and Their Use for Enzyme Immobilization. Macromolecular Rapid Communications, 2016, 37, 551-557.	3.9	51
147	Multifunctional mixed ligand metal organic frameworks: X-ray structure, adsorption, luminescence and electrical conductivity with theoretical correlation. CrystEngComm, 2016, 18, 5754-5763.	2.6	23
148	Interfacial Design of Mixed Matrix Membranes for Improved Gas Separation Performance. Advanced Materials, 2016, 28, 3399-3405.	21.0	337
149	Openâ€Pore Twoâ€Dimensional MFI Zeolite Nanosheets for the Fabrication of Hydrocarbonâ€Isomerâ€Selective Membranes on Porous Polymer Supports. Angewandte Chemie, 2016, 128, 7300-7303.	2.0	9
150	Metal–Organic Frameworks Containing Missingâ€Linker Defects Leading to High Hydroxideâ€lon Conductivity. Chemistry - A European Journal, 2016, 22, 1646-1651.	3.3	48
151	CD-MOF: A Versatile Separation Medium. Journal of the American Chemical Society, 2016, 138, 2292-2301.	13.7	269
152	Control of interpenetration of copper-based MOFs on supported surfaces by electrochemical synthesis. CrystEngComm, 2016, 18, 4018-4022.	2.6	26
153	MasterChem: cooking 2D-polymers. Chemical Communications, 2016, 52, 4113-4127.	4.1	104

#	Article	IF	Citations
154	Synthesis, structure and characterization of a layered coordination polymer based on Zn(<scp>ii</scp>) and 6-(methylmercapto)purine. RSC Advances, 2016, 6, 260-268.	3.6	9
155	Conversion of xylose into furfural in a MOF-based mixed matrix membrane reactor. Chemical Engineering Journal, 2016, 305, 12-18.	12.7	39
156	Freestanding MOF Microsheets with Defined Size and Geometry Using Superhydrophobic–Superhydrophilic Arrays. Advanced Materials Interfaces, 2016, 3, 1500392.	3.7	32
157	Amphiphilic Graft Copolymer Nanospheres: From Colloidal Self-Assembly to CO ₂ Capture Membranes. ACS Applied Materials & Samp; Interfaces, 2016, 8, 9454-9461.	8.0	11
158	Seed-Mediated Synthesis of Metal–Organic Frameworks. Journal of the American Chemical Society, 2016, 138, 5316-5320.	13.7	104
159	Challenges and recent advances in MOF–polymer composite membranes for gas separation. Inorganic Chemistry Frontiers, 2016, 3, 896-909.	6.0	278
160	A thin film opening. Nature Chemistry, 2016, 8, 294-296.	13.6	12
161	Straining to react. Nature Chemistry, 2016, 8, 296-297.	13.6	18
162	Electrochemical fabrication of copper-containing metal–organic framework films as amperometric detectors for bromate determination. Dalton Transactions, 2016, 45, 7728-7736.	3.3	37
163	Propylene/propane selective mixed matrix membranes with grape-branched MOF/CNT filler. Journal of Materials Chemistry A, 2016, 4, 6084-6090.	10.3	65
164	Mixed matrix membranes fabricated by a facile in situ biomimetic mineralization approach for efficient CO2 separation. Journal of Membrane Science, 2016, 508, 84-93.	8.2	27
165	Mixed Matrix Membranes (MMMs) Comprising Exfoliated 2D Covalent Organic Frameworks (COFs) for Efficient CO ₂ Separation. Chemistry of Materials, 2016, 28, 1277-1285.	6.7	541
166	Subnanometer Two-Dimensional Graphene Oxide Channels for Ultrafast Gas Sieving. ACS Nano, 2016, 10, 3398-3409.	14.6	330
167	One step synthesis of MOF–polymer composites. RSC Advances, 2016, 6, 17314-17317.	3.6	34
168	Facile synthesis of MOF 235 and its superior photocatalytic capability under visible light irradiation. RSC Advances, 2016, 6, 16395-16403.	3.6	66
169	Mixed Matrix Membranes Containing UiO-66(Hf)-(OH) ₂ Metal–Organic Framework Nanoparticles for Efficient H ₂ /CO ₂ Separation. Industrial & Discrete Regineering Chemistry Research, 2016, 55, 7933-7940.	3.7	44
170	Observation and analysis of the Coulter effect through carbon nanotube and graphene nanopores. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374, 20150357.	3.4	12
171	Isoreticular zirconium-based metal–organic frameworks: discovering mechanical trends and elastic anomalies controlling chemical structure stability. Physical Chemistry Chemical Physics, 2016, 18, 9079-9087.	2.8	46

#	Article	IF	CITATIONS
172	Experimental evidence for the influence of charge on the adsorption capacity of carbon dioxide on charged fullerenes. Physical Chemistry Chemical Physics, 2016, 18, 3048-3055.	2.8	19
173	Multifunctional lanthanide–organic frameworks for fluorescent sensing, gas separation and catalysis. Dalton Transactions, 2016, 45, 3743-3749.	3.3	74
174	Nanofiller-tuned microporous polymer molecular sieves for energy and environmental processes. Journal of Materials Chemistry A, 2016, 4, 270-279.	10.3	69
175	Metal–organic frameworks for the control and management of air quality: advances and future direction. Journal of Materials Chemistry A, 2016, 4, 345-361.	10.3	120
176	Enhanced permeation arising from dual transport pathways in hybrid polymer–MOF membranes. Energy and Environmental Science, 2016, 9, 922-931.	30.8	178
177	Enhancement of molecular-sieving properties by constructing surface nano-metric layer via vapor cross-linking. Journal of Membrane Science, 2016, 497, 248-258.	8.2	44
178	Dual-ligand zeolitic imidazolate framework crystals and oriented films derived from metastable mono-ligand ZIF-108. Microporous and Mesoporous Materials, 2016, 219, 190-198.	4.4	22
179	Two-dimensional polymers: concepts and perspectives. Chemical Communications, 2016, 52, 18-34.	4.1	185
180	Recent developments in zeolite membranes for gas separation. Journal of Membrane Science, 2016, 499, 65-79.	8.2	435
181	Mixed-matrix membranes of zeolitic imidazolate framework (ZIF-8)/Matrimid nanocomposite: Thermo-mechanical stability and viscoelasticity underpinning membrane separation performance. Journal of Membrane Science, 2016, 498, 276-290.	8.2	132
182	Multi-scale crystal engineering of metal organic frameworks. Coordination Chemistry Reviews, 2016, 307, 147-187.	18.8	239
183	Synthesis, crystal structures, and thermal properties of Co(II), Ni(II), Cd(II), and Mn(II) coordination polymers based on 5-hydroxyiso phthalic acid and $1,1\hat{a}\in^2$ -(1,4-butanediyl) bis (imidazole). Inorganic and Nano-Metal Chemistry, 2017, 47, 41-49.	1.6	1
184	Preparation and applications of monolithic structures containing metal–organic frameworks. Journal of Separation Science, 2017, 40, 272-287.	2.5	54
185	From 2-methylimidazole to 1,2,3-triazole: a topological transformation of ZIF-8 and ZIF-67 by post-synthetic modification. Chemical Communications, 2017, 53, 2028-2031.	4.1	61
186	Tuning the Pore Size of Nanoporous Membranes Using Layerâ€byâ€Layer Crossâ€Linking Polymerization. Bulletin of the Korean Chemical Society, 2017, 38, 130-132.	1.9	2
187	Epitaxial Stitching and Stacking Growth of Atomically Thin Transitionâ€Metal Dichalcogenides (TMDCs) Heterojunctions. Advanced Functional Materials, 2017, 27, 1603884.	14.9	73
188	Nanoscale tailor-made membranes for precise and rapid molecular sieve separation. Nanoscale, 2017, 9, 2942-2957.	5.6	83
189	A Twoâ€Dimensional Lamellar Membrane: MXene Nanosheet Stacks. Angewandte Chemie - International Edition, 2017, 56, 1825-1829.	13.8	831

#	Article	IF	CITATIONS
190	A facile strategy towards a highly accessible and hydrostable MOF-phase within hybrid polyHIPEs through in situ metal-oxide recrystallization. Journal of Materials Chemistry A, 2017, 5, 1967-1971.	10.3	37
191	A Twoâ€Dimensional Lamellar Membrane: MXene Nanosheet Stacks. Angewandte Chemie, 2017, 129, 1851-1855.	2.0	95
192	Pebax-based composite membranes with high gas transport properties enhanced by ionic liquids for CO ₂ separation. RSC Advances, 2017, 7, 6422-6431.	3.6	100
193	Effect of copolymer microphase-separated structures on the gas separation performance and aging properties of SBC-derived membranes. Journal of Membrane Science, 2017, 529, 63-71.	8.2	10
194	<i>Ab Initio</i> Simulations To Understand the Leaf-Shape Crystal Morphology of ZIF-L with Two-Dimensional Layered Network. Journal of Physical Chemistry C, 2017, 121, 2221-2227.	3.1	35
195	Fabrication of Metal–Organic Framework and Infinite Coordination Polymer Nanosheets by the Spray Technique. Langmuir, 2017, 33, 1060-1065.	3.5	53
196	Metal–Organic Framework Photosensitized TiO ₂ Coâ€catalyst: A Facile Strategy to Achieve a High Efficiency Photocatalytic System. Chemistry - A European Journal, 2017, 23, 3931-3937.	3.3	30
197	Templated nanoporous membranes based on hierarchically self-assembled materials. Journal of Materials Chemistry C, 2017, 5, 2033-2042.	5.5	24
198	Metal-organic framework mixed-matrix disks: Versatile supports for automated solid-phase extraction prior to chromatographic separation. Journal of Chromatography A, 2017, 1488, 1-9.	3.7	61
199	Lining up metal–organic frameworks. Nature Materials, 2017, 16, 283-284.	27.5	6
200	Acid Gas Adsorption on Metal–Organic Framework Nanosheets as a Model of an "All-Surface― Material. Journal of Chemical Theory and Computation, 2017, 13, 1341-1350.	5.3	23
201	Regulating the spatial distribution of metal nanoparticles within metal-organic frameworks to enhance catalytic efficiency. Nature Communications, 2017, 8, 14429.	12.8	179
202	Reversed thermo-switchable molecular sieving membranes composed of two-dimensional metal-organic nanosheets for gas separation. Nature Communications, 2017, 8, 14460.	12.8	382
203	Immobilisation of catalytically active proline on H2N-MIL-101(Al) accompanied with reversal in enantioselectivity. Catalysis Communications, 2017, 95, 12-15.	3.3	26
204	Recent advances of nanomaterial-based membrane for water purification. Applied Materials Today, 2017, 7, 144-158.	4.3	154
205	Two-Dimensional (2D) Nanomaterials towards Electrochemical Nanoarchitectonics in Energy-Related Applications. Bulletin of the Chemical Society of Japan, 2017, 90, 627-648.	3.2	369
206	Two zigzag chain-like lanthanide(III) coordination polymers based on the rigid 1,3-adamantanedicarboxylic acid ligand: Crystal structure, luminescence and magnetic properties. Polyhedron, 2017, 126, 17-22.	2.2	11
207	Pushing CO ₂ -philic membrane performance to the limit by designing semi-interpenetrating networks (SIPN) for sustainable CO ₂ separations. Energy and Environmental Science, 2017, 10, 1339-1344.	30.8	175

#	Article	IF	CITATIONS
208	Orthogonal self-assembly of a trigonal triptycene triacid: signaling of exfoliation of porous 2D metalâ \in organic layers by fluorescence and selective CO ₂ capture by the hydrogen-bonded MOF. Journal of Materials Chemistry A, 2017, 5, 5402-5412.	10.3	105
209	Continuous Flow Processing of ZIF-8 Membranes on Polymeric Porous Hollow Fiber Supports for CO ₂ Capture. ACS Applied Materials & Interfaces, 2017, 9, 5678-5682.	8.0	74
210	Targeted Drug Delivery in Covalent Organic Nanosheets (CONs) via Sequential Postsynthetic Modification. Journal of the American Chemical Society, 2017, 139, 4513-4520.	13.7	475
211	An Organoselective Zirconiumâ€Based Metal–Organicâ€Framework UiOâ€66 Membrane for Pervaporation. European Journal of Inorganic Chemistry, 2017, 2017, 2094-2099.	2.0	53
212	Crystalline Graphdiyne Nanosheets Produced at a Gas/Liquid or Liquid/Liquid Interface. Journal of the American Chemical Society, 2017, 139, 3145-3152.	13.7	438
213	In ₄ SnS ₈ ultrathin nanosheets: a ternary sulfide with fast adsorption–visible-light photocatalysis dual function. RSC Advances, 2017, 7, 4555-4562.	3.6	9
214	Twoâ€Dimensional Metal Oxide Nanomaterials for Nextâ€Generation Rechargeable Batteries. Advanced Materials, 2017, 29, 1700176.	21.0	317
215	An Untrodden Path: Versatile Fabrication of Selfâ€Supporting Polymerâ€Stabilized Percolation Membranes (PSPMs) for Gas Separation. Chemistry - A European Journal, 2017, 23, 6522-6526.	3.3	6
216	CO ₂ Capture and Separations Using MOFs: Computational and Experimental Studies. Chemical Reviews, 2017, 117, 9674-9754.	47.7	837
217	Hybrid membranes of nanostructrual copolymer and ionic liquid for carbon dioxide capture. Chemical Engineering Journal, 2017, 322, 254-262.	12.7	33
218	Ball-in-cage nanocomposites of metal–organic frameworks and three-dimensional carbon networks: synthesis and capacitive performance. Nanoscale, 2017, 9, 6478-6485.	5.6	37
219	High-performance thin PVC-POEM/ZIF-8 mixed matrix membranes on alumina supports for CO2/CH4 separation. Journal of Industrial and Engineering Chemistry, 2017, 53, 127-133.	5.8	21
220	Large-Scale Synthesis of Monodisperse UiO-66 Crystals with Tunable Sizes and Missing Linker Defects via Acid/Base Co-Modulation. ACS Applied Materials & https://www.acid/base.co.modulation.acs.acid/base.co.modulation.acs.acid/base.co.modulation.acs.acid/base.co.modulation.acs.acid/base.co.modulation.acs.acid/base.co.modulation.acs.acid/base.co.modulation.acs.acid/base.co.modulation.acid/	8.0	127
221	Polymers of intrinsic microporosity/metal–organic framework hybrid membranes with improved interfacial interaction for high-performance CO ₂ separation. Journal of Materials Chemistry A, 2017, 5, 10968-10977.	10.3	127
222	Diffusion and photoswitching in nanoporous thin films of metal-organic frameworks. Journal Physics D: Applied Physics, 2017, 50, 193004.	2.8	33
223	Increasing both selectivity and permeability of mixed-matrix membranes: Sealing the external surface of porous MOF nanoparticles. Journal of Membrane Science, 2017, 535, 350-356.	8.2	75
224	Coordinative Layer-by-Layer Assembly of Thin Films Based on Metal Ion Complexes of Ligand-Substituted Polystyrene Copolymers and Their Use as Separation Membranes. Macromolecular Chemistry and Physics, 2017, 218, 1700052.	2,2	11
225	Three-dimensional architecture constructed from a graphene oxide nanosheet–polymer composite for high-flux forward osmosis membranes. Journal of Materials Chemistry A, 2017, 5, 12183-12192.	10.3	37

#	Article	IF	CITATIONS
226	Metalâ€Organic Frameworkâ€Derived Nonâ€Precious Metal Nanocatalysts for Oxygen Reduction Reaction. Advanced Energy Materials, 2017, 7, 1700363.	19.5	297
227	Optochemically Responsive 2D Nanosheets of a 3D Metal–Organic Framework Material. Advanced Materials, 2017, 29, 1701463.	21.0	99
228	Poly(Ionic Liquid)â€Derived Carbon with Siteâ€Specific Nâ€Doping and Biphasic Heterojunction for Enhanced CO ₂ Capture and Sensing. Angewandte Chemie - International Edition, 2017, 56, 7557-7563.	13.8	119
229	2D MOF Nanoflake-Assembled Spherical Microstructures for Enhanced Supercapacitor and Electrocatalysis Performances. Nano-Micro Letters, 2017, 9, 43.	27.0	234
230	Recent progress on submicron gas-selective polymeric membranes. Journal of Materials Chemistry A, 2017, 5, 8860-8886.	10.3	68
231	Macroscopically Oriented Porous Materials with Periodic Ordered Structures: From Zeolites and Metal–Organic Frameworks to Liquidâ€Crystalâ€√emplated Mesoporous Materials. Advanced Materials, 2017, 29, 1605974.	21.0	40
232	An updated roadmap for the integration of metal–organic frameworks with electronic devices and chemical sensors. Chemical Society Reviews, 2017, 46, 3185-3241.	38.1	987
233	Coordination nanosheets (CONASHs): strategies, structures and functions. Chemical Communications, 2017, 53, 5781-5801.	4.1	144
234	Chemically Modulated Microwave-Assisted Synthesis of MOF-74(Ni) and Preparation of Metal–Organic Framework-Matrix Based Membranes for Removal of Metal Ions from Aqueous Media. Crystal Growth and Design, 2017, 17, 156-162.	3.0	61
235	Electronic and optical properties of pentagonal-B ₂ C monolayer: A first-principles calculation. International Journal of Modern Physics B, 2017, 31, 1750044.	2.0	32
236	A New Strategy to Construct Functional Porous Crystals by Mixed Crystallization through Charge-transfer Interactions. Chemistry Letters, 2017, 46, 225-227.	1.3	5
237	A hydrazone-carboxyl ligand-linked cellulose nanocrystal aerogel with high elasticity and fast oil/water separation. Cellulose, 2017, 24, 797-809.	4.9	32
238	Anodized Aluminum Oxide Templated Synthesis of Metal–Organic Frameworks Used as Membrane Reactors. Angewandte Chemie - International Edition, 2017, 56, 578-581.	13.8	57
239	Maximizing the right stuff: The trade-off between membrane permeability and selectivity. Science, 2017, 356, .	12.6	1,864
240	Mixedâ€Matrixâ€Membranen. Angewandte Chemie, 2017, 129, 9420-9439.	2.0	69
241	Preparation, Properties and the Application of Hybrid Nanomaterials in Sensing Environmental Pollutants., 2017,, 321-347.		1
242	Microstructural Engineering and Architectural Design of Metal–Organic Framework Membranes. Advanced Materials, 2017, 29, 1606949.	21.0	150
243	Poly(Ionic Liquid)â€Derived Carbon with Siteâ€Specific Nâ€Doping and Biphasic Heterojunction for Enhanced CO ₂ Capture and Sensing. Angewandte Chemie, 2017, 129, 7665-7671.	2.0	27

#	Article	IF	CITATIONS
244	Interdiffusion Reaction-Assisted Hybridization of Two-Dimensional Metal–Organic Frameworks and Ti ₃ C ₂ T _{<i>x</i>} Nanosheets for Electrocatalytic Oxygen Evolution. ACS Nano, 2017, 11, 5800-5807.	14.6	557
245	Growth of Hierarchically 3D Silver–Silica Hybrid Nanostructures by Metastable State Assisted Atomic Layer Deposition (MSâ€ALD). Advanced Materials Technologies, 2017, 2, 1700015.	5.8	11
246	Growth of Au Nanoparticles on 2D Metalloporphyrinic Metalâ€Organic Framework Nanosheets Used as Biomimetic Catalysts for Cascade Reactions. Advanced Materials, 2017, 29, 1700102.	21.0	384
247	Niobate nanosheet membranes with enhanced stability for nanofiltration. Chemical Communications, 2017, 53, 7929-7932.	4.1	14
248	Aminoâ€Functionalized ZIFâ€7 Nanocrystals: Improved Intrinsic Separation Ability and Interfacial Compatibility in Mixedâ€Matrix Membranes for CO ₂ /CH ₄ Separation. Advanced Materials, 2017, 29, 1606999.	21.0	229
249	Twoâ€Dimensional Metal–Organic Framework Nanosheets for Membraneâ€Based Gas Separation. Angewandte Chemie - International Edition, 2017, 56, 9757-9761.	13.8	371
250	Twoâ€Dimensional Metal–Organic Framework Nanosheets for Membraneâ€Based Gas Separation. Angewandte Chemie, 2017, 129, 9889-9893.	2.0	298
251	Controllable and scalable synthesis of ordered mesoporous silica nanosheets by using acidified g-C3N4 as a lamellar surfactant. Nanotechnology, 2017, 28, 29LT01.	2.6	6
252	Ultrathin mixed matrix membranes containing two-dimensional metal-organic framework nanosheets for efficient CO2/CH4 separation. Journal of Membrane Science, 2017, 539, 213-223.	8.2	163
253	Design Strategies toward Advanced MOFâ€Derived Electrocatalysts for Energyâ€Conversion Reactions. Advanced Energy Materials, 2017, 7, 1700518.	19.5	539
254	A tale of two membranes: from poly (ionic liquid) to metal–organic framework hybrid nanoporous membranes <i>via</i> pseudomorphic replacement. Materials Horizons, 2017, 4, 681-687.	12.2	39
255	Two-Dimensional Metal–Organic Framework Nanosheets as an Enzyme Inhibitor: Modulation of the α-Chymotrypsin Activity. Journal of the American Chemical Society, 2017, 139, 8312-8319.	13.7	157
256	Precursor-reforming protocol to 3D mesoporous g-C 3 N 4 established by ultrathin self-doped nanosheets for superior hydrogen evolution. Nano Energy, 2017, 38, 72-81.	16.0	596
257	PVP-assisted synthesis of monodisperse UiO-66 crystals with tunable sizes. Inorganic Chemistry Communication, 2017, 82, 68-71.	3.9	21
258	lonic Liquid/Metal–Organic Framework Composites: From Synthesis to Applications. ChemSusChem, 2017, 10, 2842-2863.	6.8	210
259	Mild metal-organic-gel route for synthesis of stable sub-5-nm metal-organic framework nanocrystals. Nano Research, 2017, 10, 3621-3628.	10.4	17
260	PillarÂ[5]arene/Matrimidâ,,¢ materials for high-performance methane purification membranes. Journal of Membrane Science, 2017, 539, 224-228.	8.2	40
261	Two-dimensional polyaniline nanosheets via liquid-phase exfoliation. Chinese Physics B, 2017, 26, 048102.	1.4	0

#	Article	IF	CITATIONS
262	Enhancing Mixed-Matrix Membrane Performance with Metalâ \in Organic Framework Additives. Crystal Growth and Design, 2017, 17, 4467-4488.	3.0	123
263	Hybridization of MOFs and polymers. Chemical Society Reviews, 2017, 46, 3108-3133.	38.1	708
264	Mixedâ€Matrix Membranes. Angewandte Chemie - International Edition, 2017, 56, 9292-9310.	13.8	545
265	Nanoscale crystalline architectures of Hofmann-type metal–organic frameworks. Coordination Chemistry Reviews, 2017, 346, 123-138.	18.8	80
266	Selfâ€Exfoliated Metalâ€Organic Nanosheets through Hydrolytic Unfolding of Metalâ€Organic Polyhedra. Chemistry - A European Journal, 2017, 23, 7361-7366.	3.3	45
267	Porous Structure Design of Polymeric Membranes for Gas Separation. Small Methods, 2017, 1, 1600051.	8.6	21
268	High-performance nanocomposite membranes realized by efficient molecular sieving with CuBDC nanosheets. Chemical Communications, 2017, 53, 4254-4257.	4.1	116
269	Metal–Organic Nanosheets Formed via Defect-Mediated Transformation of a Hafnium Metal–Organic Framework. Journal of the American Chemical Society, 2017, 139, 5397-5404.	13.7	224
270	Fabrication of a polymeric composite incorporating metal-organic framework nanosheets for solid-phase microextraction of polycyclic aromatic hydrocarbons from water samples. Analytica Chimica Acta, 2017, 971, 48-54.	5.4	55
271	Preparation of nanoporous graphene oxide by nanocrystal-masked etching: toward a nacre-mimetic metal–organic framework molecular sieving membrane. Journal of Materials Chemistry A, 2017, 5, 16255-16262.	10.3	42
272	Electrochemically Assisted Self-Assembly Technique for the Fabrication of Mesoporous Metal–Organic Framework Thin Films: Composition of 3D Hexagonally Packed Crystals with 2D Honeycomb-like Mesopores. Journal of the American Chemical Society, 2017, 139, 4753-4761.	13.7	125
273	Recent Advances in Ultrathin Two-Dimensional Nanomaterials. Chemical Reviews, 2017, 117, 6225-6331.	47.7	3,940
274	Metal–Organic Framework UiO-66 Layer: A Highly Oriented Membrane with Good Selectivity and Hydrogen Permeance. ACS Applied Materials & Samp; Interfaces, 2017, 9, 12878-12885.	8.0	138
275	Recent advances and challenges of metal–organic framework membranes for gas separation. Journal of Materials Chemistry A, 2017, 5, 10073-10091.	10.3	314
276	Anodized Aluminum Oxide Templated Synthesis of Metal–Organic Frameworks Used as Membrane Reactors. Angewandte Chemie, 2017, 129, 593-596.	2.0	18
277	Synthesis, size and structural evolution of metal–organic framework-199 via a reaction–diffusion process at room temperature. CrystEngComm, 2017, 19, 608-612.	2.6	33
278	Twoâ€Dimensional Metal–Organic Framework Nanosheets. Small Methods, 2017, 1, 1600030.	8.6	364
279	Enhanced organophilic separations with mixed matrix membranes of polymers of intrinsic microporosity and graphene-like fillers. Journal of Membrane Science, 2017, 526, 437-449.	8.2	57

#	Article	IF	CITATIONS
280	Widening CO2-facilitated transport passageways in SPEEK matrix using polymer brushes functionalized double-shelled organic submicrocapsules for efficient gas separation. Journal of Membrane Science, 2017, 525, 330-341.	8.2	15
281	Syntheses, structures and magnetic properties of nine coordination polymers based on terphenyl-tetracarboxylic acid ligands. Dalton Transactions, 2017, 46, 430-444.	3.3	30
282	Sprayable, Largeâ€Area Metal–Organic Framework Films and Membranes of Varying Thickness. Chemistry - A European Journal, 2017, 23, 2294-2298.	3.3	73
283	Covalent organic frameworks as supports for a molecular Ni based ethylene oligomerization catalyst for the synthesis of long chain olefins. Journal of Catalysis, 2017, 345, 270-280.	6.2	60
284	Selective nitrogen capture by porous hybrid materials containing accessible transition metal ion sites. Nature Materials, 2017, 16, 526-531.	27. 5	201
285	Enhanced permeation performance of polyether-polyamide block copolymer membranes through incorporating ZIF-8 nanocrystals. Chinese Journal of Chemical Engineering, 2017, 25, 882-891.	3.5	34
286	Two metal–organic frameworks based on a flexible benzimidazole carboxylic acid ligand: selective gas sorption and luminescence. Dalton Transactions, 2017, 46, 15118-15123.	3.3	19
287	A Stable Amino-Functionalized Interpenetrated Metal–Organic Framework Exhibiting Gas Selectivity and Pore-Size-Dependent Catalytic Performance. Inorganic Chemistry, 2017, 56, 13634-13637.	4.0	34
288	AFM Nanoindentation To Quantify Mechanical Properties of Nano- and Micron-Sized Crystals of a Metal–Organic Framework Material. ACS Applied Materials & Los Applied Materia	8.0	54
289	<i>50th Anniversary Perspective</i> : Polymers and Mixed Matrix Membranes for Gas and Vapor Separation: A Review and Prospective Opportunities. Macromolecules, 2017, 50, 7809-7843.	4.8	709
290	Luminescent two-dimensional CdII coordination polymer for selective sensing Fe3+ and 2,4,6-trinitrophenol with high sensitivity in water. Inorganic Chemistry Communication, 2017, 86, 262-266.	3.9	14
291	Co@Carbon and Co 3 O4@Carbon nanocomposites derived from a single MOF for supercapacitors. Scientific Reports, 2017, 7, 12588.	3.3	92
292	Recent advance in MXenes: A promising 2D material for catalysis, sensor and chemical adsorption. Coordination Chemistry Reviews, 2017, 352, 306-327.	18.8	484
293	Metal–organic frameworks grown on a porous planar template with an exceptionally high surface area: promising nanofiller platforms for CO ₂ separation. Journal of Materials Chemistry A, 2017, 5, 22500-22505.	10.3	37
294	Liquid metal–organic frameworks. Nature Materials, 2017, 16, 1149-1154.	27.5	326
295	Molecular Modeling of MOF Membranes for Gas Separations. , 2017, , 97-143.		0
296	Building Additional Passageways in Polyamide Membranes with Hydrostable Metal Organic Frameworks To Recycle and Remove Organic Solutes from Various Solvents. ACS Applied Materials & Los Amp; Interfaces, 2017, 9, 38877-38886.	8.0	93
297	From lamellar to hierarchical: overcoming the diffusion barriers of sulfide-intercalated layered double hydroxides for highly efficient water treatment. Journal of Materials Chemistry A, 2017, 5, 22506-22511.	10.3	26

#	Article	IF	CITATIONS
298	A new copper(I) coordination polymer from 2,6-bis(1H-benzotriazol-1-ylmethyl)pyridine: Synthesis, characterization, and use as additive in transparent submicron UV filters. Journal of Coordination Chemistry, 2017, 70, 3363-3378.	2.2	4
299	Bimetallic metal–organic framework derived Co ₃ O ₄ –CoFe ₂ O ₄ composites with different Fe/Co molar ratios as anode materials for lithium ion batteries. Dalton Transactions, 2017, 46, 15947-15953.	3.3	43
300	Air/Liquid Interfacial Nanoassembly of Molecular Building Blocks into Preferentially Oriented Porous Organic Nanosheet Crystals <i>via</i> Hydrogen Bonding. ACS Nano, 2017, 11, 10875-10882.	14.6	23
301	Nanoparticles@rGO membrane enabling highly enhanced water permeability and structural stability with preserved selectivity. AICHE Journal, 2017, 63, 5054-5063.	3.6	107
302	Spiers Memorial Lecture: : Progress and prospects of reticular chemistry. Faraday Discussions, 2017, 201, 9-45.	3.2	85
303	Confining Metal–Organic Framework Nanocrystals within Mesoporous Materials: A General Approach via "Solid-State―Synthesis. Chemistry of Materials, 2017, 29, 9628-9638.	6.7	39
304	A new layer-stacked porous framework showing sorption selectivity for CO ₂ and luminescence. Dalton Transactions, 2017, 46, 11722-11727.	3.3	20
305	Graphene membranes with tuneable nanochannels by intercalating self-assembled porphyrin molecules for organic solvent nanofiltration. Carbon, 2017, 124, 263-270.	10.3	46
306	Enhanced CO2 selectivities by incorporating CO2-philic PEG-POSS into polymers of intrinsic microporosity membrane. Journal of Membrane Science, 2017, 543, 69-78.	8.2	60
307	A metal-organic framework based PCR-free biosensor for the detection of gastric cancer associated microRNAs. Journal of Inorganic Biochemistry, 2017, 177, 138-142.	3.5	26
308	Study on the poly(lactic acid)/nano MOFs composites: Insights into the MOFs-induced crystallization mechanism and the effects of MOFs on the properties of the composites. Thermochimica Acta, 2017, 657, 39-46.	2.7	14
309	The Catalytic Properties of a Copper-Based Nanoscale Coordination Polymer Fabricated by a Solvent-Etching Top-Down Route. European Journal of Inorganic Chemistry, 2017, 2017, 4803-4807.	2.0	4
310	Synthesis of Coordination Polymer Nanoparticles using Selfâ€Assembled Block Copolymers as Template. Chemistry - A European Journal, 2017, 23, 18093-18100.	3.3	32
311	Ultrathin Cobaltâ€Based Metal–Organic Framework Nanosheets with Both Metal and Ligand Redox Activities for Superior Lithium Storage. Chemistry - A European Journal, 2017, 23, 15984-15990.	3.3	77
312	Oriented attachment growth of anisotropic meso/nanoscale MOFs: tunable surface area and CO ₂ separation. Journal of Materials Chemistry A, 2017, 5, 20959-20968.	10.3	33
313	A new zeolitic hydroxymethylimidazolate material and its use in mixed matrix membranes based on 6FDA-DAM for gas separation. Journal of Membrane Science, 2017, 544, 88-97.	8.2	11
314	Interactions on External MOF Surfaces: Desorption of Water and Ethanol from CuBDC Nanosheets. Langmuir, 2017, 33, 10153-10160.	3.5	27
315	Selective Molecular Separation by Interfacially Crystallized Covalent Organic Framework Thin Films. Journal of the American Chemical Society, 2017, 139, 13083-13091.	13.7	695

#	Article	IF	CITATIONS
316	Multistimuli Response Micro―and Nanolayers of a Coordination Polymer Based on Cu ₂ 1 ₂ Chains Linked by 2â€Aminopyrazine. Small, 2017, 13, 1700965.	10.0	43
317	High-throughput Identification and Characterization of Two-dimensional Materials using Density functional theory. Scientific Reports, 2017, 7, 5179.	3.3	173
318	Recent progress of fillers in mixed matrix membranes for CO 2 separation: A review. Separation and Purification Technology, 2017, 188, 431-450.	7.9	340
319	Bottom-up approach for the preparation of hybrid nanosheets based on coordination polymers made of metalâ€"diethyloxaloacetate complexes linked by 4,4′-bipyridine. CrystEngComm, 2017, 19, 4972-4982.	2.6	6
320	Few Atomic Layered Lithium Cathode Materials to Achieve Ultrahigh Rate Capability in Lithiumâ€ion Batteries. Advanced Materials, 2017, 29, 1700605.	21.0	39
321	ZIF-67 derived cobalt-based nanomaterials for electrocatalysis and nonenzymatic detection of glucose: Difference between the calcination atmosphere of nitrogen and air. Journal of Electroanalytical Chemistry, 2017, 799, 512-518.	3.8	33
322	Polycationic Polymer-Regulated Assembling of 2D MOF Nanosheets for High-Performance Nanofiltration. ACS Applied Materials & Samp; Interfaces, 2017, 9, 28079-28088.	8.0	152
323	CoxZn1â^'x ZIF-derived binary Co3O4/ZnO wrapped by 3D reduced graphene oxide for asymmetric supercapacitor: Comparison of pure and heat-treated bimetallic MOF. Ceramics International, 2017, 43, 14413-14425.	4.8	91
324	Thin film composite membranes functionalized with montmorillonite and hydrotalcite nanosheets for CO2/N2 separation. Separation and Purification Technology, 2017, 189, 128-137.	7.9	33
325	In situ synthesis of ultrathin metal–organic framework nanosheets: a new method for 2D metal-based nanoporous carbon electrocatalysts. Journal of Materials Chemistry A, 2017, 5, 18610-18617.	10.3	162
326	Precise Solution-Based Deposition of Ultrathin Covalent Molecular Networks by Layer-by-Layer Cross-Linking Polymerization of Tetra- and Bifunctional Amine/Isocyanate Pairs. Macromolecules, 2017, 50, 6796-6803.	4.8	1
327	Twoâ€Dimensional Materials as Prospective Scaffolds for Mixedâ€Matrix Membraneâ€Based CO ₂ Separation. ChemSusChem, 2017, 10, 3304-3316.	6.8	77
328	Inâ€Situ Fabrication of MOFâ€Derived Coâ^'Co Layered Double Hydroxide Hollow Nanocages/Graphene Composite: A Novel Electrode Material with Superior Electrochemical Performance. Chemistry - A European Journal, 2017, 23, 14839-14847.	3.3	89
329	Ultrathin Manganese-Based Metal–Organic Framework Nanosheets: Low-Cost and Energy-Dense Lithium Storage Anodes with the Coexistence of Metal and Ligand Redox Activities. ACS Applied Materials & Interfaces, 2017, 9, 29829-29838.	8.0	131
330	Enzyme-embedded metal–organic framework membranes on polymeric substrates for efficient CO ₂ capture. Journal of Materials Chemistry A, 2017, 5, 19954-19962.	10.3	74
331	Enhanced selectivity in mixed matrix membranes for CO2 capture through efficient dispersion of amine-functionalized MOF nanoparticles. Nature Energy, 2017, 2, .	39.5	428
332	Temperature-induced oriented growth of large area, few-layer 2D metal–organic framework nanosheets. Chemical Communications, 2017, 53, 13161-13164.	4.1	54
333	Fe ₃ O ₄ -AuNPs anchored 2D metal–organic framework nanosheets with DNA regulated switchable peroxidase-like activity. Nanoscale, 2017, 9, 18699-18710.	5.6	122

#	Article	IF	CITATIONS
334	Amine assisted top-down delamination of the two-dimensional metal–organic framework Cu ₂ (bdc) ₂ . Dalton Transactions, 2017, 46, 16480-16484.	3.3	29
335	Transition-Metal Phosphide–Carbon Nanosheet Composites Derived from Two-Dimensional Metal-Organic Frameworks for Highly Efficient Electrocatalytic Water-Splitting. ACS Applied Materials & Samp; Interfaces, 2017, 9, 40171-40179.	8.0	83
336	Nanoscale MOF/organosilica membranes on tubular ceramic substrates for highly selective gas separation. Energy and Environmental Science, 2017, 10, 1812-1819.	30.8	95
337	Surface-supported metal–organic framework thin films: fabrication methods, applications, and challenges. Chemical Society Reviews, 2017, 46, 5730-5770.	38.1	549
338	Block co-polyMOFs: assembly of polymer–polyMOF hybrids via iterative exponential growth and "click―chemistry. Polymer Chemistry, 2017, 8, 4488-4493.	3.9	44
339	Perspective: Outstanding theoretical questions in polymer-nanoparticle hybrids. Journal of Chemical Physics, 2017, 147, 020901.	3.0	154
340	Manipulation of confined structure in alcohol-permselective pervaporation membranes. Chinese Journal of Chemical Engineering, 2017, 25, 1616-1626.	3.5	18
341	Mixed-Matrix Membranes of the Air-Stable MOF-5 Analogue [Co ₄ (ν ₄ +O)(Me ₂ pzba) ₃] with a Mixed-Functional Pyrazolate-Carboxylate Linker for CO ₂ /CH ₄ Separation. Crystal Growth and Design. 2017. 17. 4090-4099.	3.0	25
342	Nanoporous MoS ₂ monolayer as a promising membrane for purifying hydrogen and enriching methane. Journal of Physics Condensed Matter, 2017, 29, 375201.	1.8	26
343	Embedding Molecular Amine Functionalized Polydopamine Submicroparticles into Polymeric Membrane for Carbon Capture. Industrial & Engineering Chemistry Research, 2017, 56, 8103-8110.	3.7	19
344	Controlled Intercalation and Chemical Exfoliation of Layered Metal–Organic Frameworks Using a Chemically Labile Intercalating Agent. Journal of the American Chemical Society, 2017, 139, 9136-9139.	13.7	369
345	Wellâ€Defined Cyanometallate Coordinationâ€Polymer Nanoarchitectures Realized by Wetâ€Chemical Manipulation. ChemNanoMat, 2017, 3, 780-789.	2.8	12
346	Composite ultrafiltration membrane tailored by MOF@GO with highly improved water purification performance. Chemical Engineering Journal, 2017, 313, 890-898.	12.7	257
347	Water-resistant porous coordination polymers for gas separation. Coordination Chemistry Reviews, 2017, 332, 48-74.	18.8	331
348	Membraneâ€Based Gas Separation Accelerated by Hollow Nanosphere Architectures. Advanced Materials, 2017, 29, 1603797.	21.0	48
349	Two-dimensional transition metal dichalcogenide nanomaterials for biosensing applications. Materials Chemistry Frontiers, 2017, 1, 24-36.	5.9	173
350	Microporous organic polymers based on hexaphenylbiadamantane: Synthesis, ultra-high stability and gas capture. Materials Letters, 2017, 187, 76-79.	2.6	11
351	Probing Structure and Reactivity of Metal Centers in Metal–Organic Frameworks by XAS Techniques. , 2017, , 397-430.		4

#	Article	IF	CITATIONS
352	Syntheses, crystal structures and luminescent properties of three metal coordination polymers based on aromatic carboxylic acids and 2-(pyridine-4-yl)-(1H)-benzoimidazole. Polyhedron, 2017, 121, 252-263.	2.2	25
353	Selective Molecular Sieving in Selfâ€Standing Porous Covalentâ€Organicâ€Framework Membranes. Advanced Materials, 2017, 29, 1603945.	21.0	524
354	Harnessing Ag nanofilm as an electrons transfer mediator for enhanced visible light photocatalytic performance of Ag@AgCl/Ag nanofilm/ZIF-8 photocatalyst. Applied Catalysis B: Environmental, 2017, 202, 64-71.	20.2	105
355	The active roles of ZIF-8 on the enhanced visible photocatalytic activity of Ag/AgCl: Generation of superoxide radical and adsorption. Journal of Alloys and Compounds, 2017, 693, 543-549.	5 . 5	98
356	A new MOF-505@GO composite with high selectivity for CO 2 /CH 4 and CO 2 /N 2 separation. Chemical Engineering Journal, 2017, 308, 1065-1072.	12.7	230
357	Pervaporation performance comparison of hybrid membranes filled with two-dimensional ZIF-L nanosheets and zero-dimensional ZIF-8 nanoparticles. Journal of Membrane Science, 2017, 523, 185-196.	8.2	176
358	Novel cake-like N-doped anatase/rutile mixed phase TiO2 derived from metal-organic frameworks for visible light photocatalysis. Ceramics International, 2017, 43, 835-840.	4.8	54
359	Surface-etched halloysite nanotubes in mixed matrix membranes for efficient gas separation. Separation and Purification Technology, 2017, 173, 63-71.	7.9	50
360	Preparation and characterization of two new Cu ^{II} supramolecular coordination polymers incorporating sulfobenzoate and flexible heterocyclic ligands. Acta Crystallographica Section C, Structural Chemistry, 2017, 73, 1087-1097.	0.5	2
361	1.6 Advanced Polymeric and Organic–Inorganic Membranes for Pressure-Driven Processes. , 2017, , 120-136.		7
362	Fabrication of Monodisperse Flower-Like Coordination Polymers (CP) Microparticles by Spray Technique. Nanomaterials, 2017, 7, 237.	4.1	7
363	1.14 Graphene Membranes. , 2017, , 358-385.		1
364	Atomically Dispersed Metal Sites in MOFâ€Based Materials for Electrocatalytic and Photocatalytic Energy Conversion. Angewandte Chemie - International Edition, 2018, 57, 9604-9633.	13.8	452
365	DOPO-Modified Two-Dimensional Co-Based Metal–Organic Framework: Preparation and Application for Enhancing Fire Safety of Poly(lactic acid). ACS Applied Materials & Interfaces, 2018, 10, 8274-8286.	8.0	146
366	Mixed Matrix Membranes for Natural Gas Upgrading: Current Status and Opportunities. Industrial & Engineering Chemistry Research, 2018, 57, 4139-4169.	3.7	110
367	Atomar dispergierte Metallzentren in Metallâ€organischen Gerüststrukturen für die elektrokatalytische und photokatalytische Energieumwandlung. Angewandte Chemie, 2018, 130, 9750-9780.	2.0	58
368	Ag ₃ PO ₄ @UMOFNs Coreâ€"Shell Structure: Two-Dimensional MOFs Promoted Photoinduced Charge Separation and Photocatalysis. ACS Applied Materials & Lamp; Interfaces, 2018, 10, 8758-8769.	8.0	102
369	Recent Developments in 2D Nanomaterials for Chemiresistive-Type Gas Sensors. Electronic Materials Letters, 2018, 14, 221-260.	2.2	197

#	Article	IF	CITATIONS
370	A facile modular approach to the 2D oriented assembly MOF electrode for non-enzymatic sweat biosensors. Nanoscale, 2018, 10, 6629-6638.	5.6	73
371	Locating the binding domains in a highly selective mixed matrix membrane <i>via</i> synchrotron IR microspectroscopy. Chemical Communications, 2018, 54, 2866-2869.	4.1	9
372	Fabrication of mixedâ€matrix membranes with MOFâ€derived porous carbon for CO ₂ separation. AICHE Journal, 2018, 64, 3400-3409.	3.6	27
373	Two facile routes to an AB&Cu-MOF composite with improved hydrogen evolution reaction. Journal of Alloys and Compounds, 2018, 753, 228-233.	5.5	41
374	Tailoring CO2/CH4 separation properties of mixed-matrix membranes via combined use of two- and three-dimensional metal-organic frameworks. Journal of Membrane Science, 2018, 557, 30-37.	8.2	63
375	Facile synthesis of Co ₃ O ₄ nanosheets from MOF nanoplates for high performance anodes of lithium-ion batteries. Inorganic Chemistry Frontiers, 2018, 5, 1602-1608.	6.0	47
376	Reactive Adsorption of Humid SO ₂ on Metal–Organic Framework Nanosheets. Journal of Physical Chemistry C, 2018, 122, 10413-10422.	3.1	35
377	pHâ€Responsive, Light‶riggered onâ€Demand Antibiotic Release from Functional Metal–Organic Framework for Bacterial Infection Combination Therapy. Advanced Functional Materials, 2018, 28, 1800011.	14.9	137
378	Ultrathin Chiral Metal–Organicâ€Framework Nanosheets for Efficient Enantioselective Separation. Angewandte Chemie, 2018, 130, 6989-6993.	2.0	18
379	Ultrathin Chiral Metal–Organicâ€Framework Nanosheets for Efficient Enantioselective Separation. Angewandte Chemie - International Edition, 2018, 57, 6873-6877.	13.8	115
380	Room-Temperature Synthesis of Two-Dimensional Metal–Organic Frameworks with Controllable Size and Functionality for Enhanced CO ₂ Sorption. Crystal Growth and Design, 2018, 18, 3209-3214.	3.0	36
381	NanoMOFs: little crystallites for substantial applications. Journal of Materials Chemistry A, 2018, 6, 7338-7350.	10.3	79
382	Direct growth of metal-organic frameworks thin film arrays on glassy carbon electrode based on rapid conversion step mediated by copper clusters and hydroxide nanotubes for fabrication of a high performance non-enzymatic glucose sensing platform. Biosensors and Bioelectronics, 2018, 112, 100-107.	10.1	92
383	Heterostructured Bi ₂ S ₃ @NH ₂ -MIL-125(Ti) nanocomposite as a bifunctional photocatalyst for Cr(<scp>vi</scp>) reduction and rhodamine B degradation under visible light. RSC Advances, 2018, 8, 12459-12470.	3.6	84
384	Influence of Filler Pore Structure and Polymer on the Performance of MOFâ€Based Mixedâ€Matrix Membranes for CO ₂ Capture. Chemistry - A European Journal, 2018, 24, 7949-7956.	3.3	44
385	Twoâ€Dimensional Co@Nâ€Carbon Nanocomposites Facilely Derived from Metal–Organic Framework Nanosheets for Efficient Bifunctional Electrocatalysis. Chemistry - an Asian Journal, 2018, 13, 1485-1491.	3.3	39
386	A Highly Solventâ€Stable Metal–Organic Framework Nanosheet: Morphology Control, Exfoliation, and Luminescent Property. Small, 2018, 14, e1703873.	10.0	88
387	Solventâ€Responsive and Switchable Nanofiltration Membranes based on Hypercrosslinked Polymers with Permanent Porosity. ChemNanoMat, 2018, 4, 562-567.	2.8	12

#	Article	IF	CITATIONS
388	Bottom-Up Fabrication of Ultrathin 2D Zr Metal–Organic Framework Nanosheets through a Facile Continuous Microdroplet Flow Reaction. Chemistry of Materials, 2018, 30, 3048-3059.	6.7	85
389	Mitochondria-targeted zirconium metal–organic frameworks for enhancing the efficacy of microwave thermal therapy against tumors. Biomaterials Science, 2018, 6, 1535-1545.	5.4	52
390	A Novel Nanocomposite with Superior Antibacterial Activity: A Silverâ€Based Metal Organic Framework Embellished with Graphene Oxide. Advanced Materials Interfaces, 2018, 5, 1701365.	3.7	107
391	Computer-aided discovery of a metal–organic framework with superior oxygen uptake. Nature Communications, 2018, 9, 1378.	12.8	136
392	A sensing platform for hypoxanthine detection based on amino-functionalized metal organic framework nanosheet with peroxidase mimic and fluorescence properties. Sensors and Actuators B: Chemical, 2018, 267, 312-319.	7.8	86
393	Photochromic 2D Metal-Organic Framework Nanosheets (MONs): Design, Synthesis, and Functional MON-Ormosil Composite. CheM, 2018, 4, 1059-1079.	11.7	71
394	Oneâ€Step Synthesis of Hybrid Core–Shell Metal–Organic Frameworks. Angewandte Chemie, 2018, 130, 3991-3996.	2.0	33
395	Oneâ€Step Synthesis of Hybrid Coreâ€"Shell Metalâ€"Organic Frameworks. Angewandte Chemie - International Edition, 2018, 57, 3927-3932.	13.8	125
396	Supramolecular cyclodextrin-based metal-organic frameworks as efficient carrier for anti-inflammatory drugs. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 127, 112-119.	4.3	94
397	Two-dimensional materials: an emerging platform for gas separation membranes. Current Opinion in Chemical Engineering, 2018, 20, 28-38.	7.8	53
399	Highâ€Flux Membranes Based on the Covalent Organic Framework COF‣ZU1 for Selective Dye Separation by Nanofiltration. Angewandte Chemie - International Edition, 2018, 57, 4083-4087.	13.8	584
400	Mixed matrix formulations with MOF molecular sieving for key energy-intensive separations. Nature Materials, 2018, 17, 283-289.	27.5	449
401	Synergistic effects of zeolite imidazole framework@graphene oxide composites in humidified mixed matrix membranes on CO ₂ separation. RSC Advances, 2018, 8, 6099-6109.	3.6	93
402	Metal–organic framework technologies for water remediation: towards a sustainable ecosystem. Journal of Materials Chemistry A, 2018, 6, 4912-4947.	10.3	369
403	Morphogenesis of Metal–Organic Mesocrystals Mediated by Double Hydrophilic Block Copolymers. Journal of the American Chemical Society, 2018, 140, 2947-2956.	13.7	69
404	The rapid emergence of two-dimensional nanomaterials for high-performance separation membranes. Journal of Materials Chemistry A, 2018, 6, 3773-3792.	10.3	223
406	Wasserâ∈Hochflussmembranen auf Basis der kovalenten organischen Gerüststruktur COFâ€LZU1 für die Farbstoffabtrennung durch Nanofiltration. Angewandte Chemie, 2018, 130, 4147-4151.	2.0	35
407	Advanced Composite 2D Energy Materials by Simultaneous Anodic and Cathodic Exfoliation. Advanced Energy Materials, 2018, 8, 1702794.	19.5	41

#	Article	IF	Citations
408	Unusual Formation of CoO@C "Dandelions―Derived from 2D Kagóme MOLs for Efficient Lithium Storage. Advanced Energy Materials, 2018, 8, 1703242.	19.5	122
409	Synthetic Two-dimensional Organic Structures. Chinese Journal of Polymer Science (English Edition), 2018, 36, 425-444.	3.8	27
410	Biomimetic synthesis of coordination network materials: Recent advances in MOFs and MPNs. Applied Materials Today, 2018, 10, 93-105.	4.3	62
411	High-yield bottom-up synthesis of 2D metal–organic frameworks and their derived ultrathin carbon nanosheets for energy storage. Journal of Materials Chemistry A, 2018, 6, 2166-2175.	10.3	203
412	Enhanced C3H6/C3H8 separation performance in poly(vinyl acetate) membrane blended with ZIF-8 nanocrystals. Chemical Engineering Science, 2018, 179, 1-12.	3.8	66
413	Manipulation of interactions at membrane interfaces for energy and environmental applications. Progress in Polymer Science, 2018, 80, 125-152.	24.7	56
414	Metal organic frameworks-derived sensing material of SnO2/NiO composites for detection of triethylamine. Applied Surface Science, 2018, 437, 304-313.	6.1	52
415	Engineered Transport in Microporous Materials and Membranes for Clean Energy Technologies. Advanced Materials, 2018, 30, 1704953.	21.0	85
416	Functional Two-Dimensional Coordination Polymeric Layer as a Charge Barrier in Li–S Batteries. ACS Nano, 2018, 12, 836-843.	14.6	76
417	Crystal Growth of ZIF-8, ZIF-67, and Their Mixed-Metal Derivatives. Journal of the American Chemical Society, 2018, 140, 1812-1823.	13.7	496
418	A pH-responsive and magnetic Fe ₃ O ₄ @silica@MIL-100(Fe)(β-CD nanocomposite as a drug nanocarrier: loading and release study of cephalexin. New Journal of Chemistry, 2018, 42, 9690-9701.	2.8	73
419	Hybrid 2D Dualâ€Metal–Organic Frameworks for Enhanced Water Oxidation Catalysis. Advanced Functional Materials, 2018, 28, 1801554.	14.9	550
420	Polymer‧tabilized Percolation Membranes Based on Nanosized Zeolitic Imidazolate Frameworks for H ₂ /CO ₂ Separation. ChemNanoMat, 2018, 4, 698-703.	2.8	4
421	Figuration of Zr-based MOF@cotton fabric composite for potential kidney application. Carbohydrate Polymers, 2018, 195, 460-467.	10.2	108
422	Two-dimensional porous cuprous oxide nanoplatelets derived from metal–organic frameworks (MOFs) for efficient photocatalytic dye degradation under visible light. Dalton Transactions, 2018, 47, 7694-7700.	3.3	35
423	Tunable luminescent behaviors of Ag-containing metal coordination polymers with N-heterocyclic and sulfonate group. Polyhedron, 2018, 147, 26-35.	2.2	16
424	GO-guided direct growth of highly oriented metal–organic framework nanosheet membranes for H ₂ /CO ₂ separation. Chemical Science, 2018, 9, 4132-4141.	7.4	116
425	Generation of 3D representative volume elements for heterogeneous materials: A review. Progress in Materials Science, 2018, 96, 322-384.	32.8	308

#	Article	IF	CITATIONS
427	Syntheses and single crystal X-ray diffraction analysis of five isostructural 2D MOCCs. Polyhedron, 2018, 147, 49-54.	2.2	2
428	Growth-modulating agents for the synthesis of Al-MOF-type materials based on assembled 1D structural subdomains. Dalton Transactions, 2018, 47, 5492-5502.	3.3	8
429	Emerging Two-Dimensional Nanomaterials for Electrocatalysis. Chemical Reviews, 2018, 118, 6337-6408.	47.7	1,552
430	A two dimensional metal–organic framework nanosheets-based fluorescence resonance energy transfer aptasensor with circular strand-replacement DNA polymerization target-triggered amplification strategy for homogenous detection of antibiotics. Analytica Chimica Acta, 2018, 1020, 1-8.	5.4	60
431	Ultrathin 2D Zirconium Metal–Organic Framework Nanosheets: Preparation and Application in Photocatalysis. Small, 2018, 14, e1703929.	10.0	171
432	Towards sustainable ultrafast molecular-separation membranes: From conventional polymers to emerging materials. Progress in Materials Science, 2018, 92, 258-283.	32.8	253
433	Is Physisorption Useful for Fine Pore Structure Control? Control of Pore Structure and Properties of SBA-15 by Paraffin Physisorption. Chemistry Letters, 2018, 47, 27-30.	1.3	0
434	Bimetallic metal-organic frameworks nanocages as multi-functional fillers for water-selective membranes. Journal of Membrane Science, 2018, 545, 19-28.	8.2	44
435	Enhanced dehydration performance of hybrid membranes by incorporating lanthanide-based MOFs. Journal of Membrane Science, 2018, 546, 31-40.	8.2	26
436	Metal–organic frameworks for solar energy conversion by photoredox catalysis. Coordination Chemistry Reviews, 2018, 373, 83-115.	18.8	146
437	Metal–Organic Framework Mediated Synthesis of Smallâ€Sized γâ€Alumina as a Highly Active Catalyst for the Dehydration of Glycerol to Acrolein. ChemCatChem, 2018, 10, 381-386.	3.7	15
438	Growth of ZnO self-converted 2D nanosheet zeolitic imidazolate framework membranes by an ammonia-assisted strategy. Nano Research, 2018, 11, 1850-1860.	10.4	72
439	Sonochemical synthesis of amide-functionalized metal-organic framework/graphene oxide nanocomposite for the adsorption of methylene blue from aqueous solution. Ultrasonics Sonochemistry, 2018, 41, 189-195.	8.2	75
440	Reconstructing the microstructure of polyimide–silicalite mixedâ€matrix membranes and their particle connectivity using FIBâ€SEM tomography. Journal of Microscopy, 2018, 269, 230-246.	1.8	3
441	Highly efficient CH ₄ purification by LaBTB PCP-based mixed matrix membranes. Journal of Materials Chemistry A, 2018, 6, 599-606.	10.3	32
442	<i>para</i> â€Xylene Ultraâ€selective Zeolite MFI Membranes Fabricated from Nanosheet Monolayers at the Air–Water Interface. Angewandte Chemie - International Edition, 2018, 57, 480-485.	13.8	130
443	Direct Synthesis of 7 nm-Thick Zinc(II)–Benzimidazole–Acetate Metal–Organic Framework Nanosheets. Chemistry of Materials, 2018, 30, 69-73.	6.7	40
444	Reversible Thermochromic Polymeric Thin Films Made of Ultrathin 2D Crystals of Coordination Polymers Based on Copper(I)â€Thiophenolates. Advanced Functional Materials, 2018, 28, 1704040.	14.9	53

#	Article	IF	CITATIONS
445	The enhanced hydrogen separation performance of mixed matrix membranes by incorporation of two-dimensional ZIF-L into polyimide containing hydroxyl group. Journal of Membrane Science, 2018, 549, 260-266.	8.2	82
446	A Semiconducting Copper(II) Coordination Polymer with (4,4) Square Grid Topology: Synthesis, Characterization, and Application in the Formation of a Photoswitch. Crystal Growth and Design, 2018, 18, 651-659.	3.0	55
447	para â€Xylene Ultraâ€selective Zeolite MFI Membranes Fabricated from Nanosheet Monolayers at the Air–Water Interface. Angewandte Chemie, 2018, 130, 489-494.	2.0	42
448	Biomineralization-mimetic preparation of hybrid membranes with ultra-high loading of pristine metal–organic frameworks grown on silk nanofibers for hazard collection in water. Journal of Materials Chemistry A, 2018, 6, 3402-3413.	10.3	120
449	Metal–organic framework composites as electrocatalysts for electrochemical sensing applications. Coordination Chemistry Reviews, 2018, 357, 105-129.	18.8	262
450	Fabrication of hybrid coating material of polypropylene itaconate containing MOF-5 for CO2 capture. Progress in Organic Coatings, 2018, 115, 49-55.	3.9	23
451	Metal organic framework based mixed matrix membranes: an overview on filler/polymer interfaces. Journal of Materials Chemistry A, 2018, 6, 293-312.	10.3	377
452	Stimuliâ€Responsive Metalâ€Organic Frameworks with Photoswitchable Azobenzene Side Groups. Macromolecular Rapid Communications, 2018, 39, 1700239.	3.9	80
453	Mesoporous Metal–Organic Frameworks: Synthetic Strategies and Emerging Applications. Small, 2018, 14, e1801454.	10.0	133
454	A high-capacity and long-life aqueous rechargeable zinc battery using a porous metal–organic coordination polymer nanosheet cathode. Inorganic Chemistry Frontiers, 2018, 5, 3067-3073.	6.0	27
455	Fluorescent 2D metal–organic framework nanosheets (MONs): design, synthesis and sensing of explosive nitroaromatic compounds (NACs). Nanoscale, 2018, 10, 22389-22399.	5.6	67
456	Metallic MoN ultrathin nanosheets boosting high performance photocatalytic H ₂ production. Journal of Materials Chemistry A, 2018, 6, 23278-23282.	10.3	37
457	Synthesis of spiny metal–phenolic coordination crystals as a sensing platform for sequence-specific detection of nucleic acids. CrystEngComm, 2018, 20, 7626-7630.	2.6	14
458	Ultrafine bimetallic phosphide nanoparticles embedded in carbon nanosheets: two-dimensional metal–organic framework-derived non-noble electrocatalysts for the highly efficient oxygen evolution reaction. Nanoscale, 2018, 10, 19774-19780.	5.6	31
459	Primary amine modulated synthesis of two-dimensional porous nanocarbons with tunable ultramicropores. Journal of Materials Chemistry A, 2018, 6, 24285-24290.	10.3	23
460	Molybdenum carbide promotion on Fe–N-doped carbon nanolayers facilely prepared for enhanced oxygen reduction. Nanoscale, 2018, 10, 21944-21950.	5.6	12
461	Interweaving metal–organic framework-templated Co–Ni layered double hydroxide nanocages with nanocellulose and carbon nanotubes to make flexible and foldable electrodes for energy storage devices. Journal of Materials Chemistry A, 2018, 6, 24050-24057.	10.3	95
462	Synthesis of Two-Dimensional (2-D) Polymer in the Realm of Liquid–Liquid Interfaces. , 2018, , 453-471.		3

#	ARTICLE	IF	CITATIONS
464	Two-dimensional nanosheet-based gas separation membranes. Journal of Materials Chemistry A, 2018, 6, 23169-23196.	10.3	109
465	Functionalized Boron Nitride Nanosheets: A Thermally Rearranged Polymer Nanocomposite Membrane for Hydrogen Separation. Angewandte Chemie - International Edition, 2018, 57, 16056-16061.	13.8	39
466	Functionalized Boron Nitride Nanosheets: A Thermally Rearranged Polymer Nanocomposite Membrane for Hydrogen Separation. Angewandte Chemie, 2018, 130, 16288-16293.	2.0	30
467	Enhanced Polymer Crystallinity in Mixed-Matrix Membranes Induced by Metal–Organic Framework Nanosheets for Efficient CO ₂ Capture. ACS Applied Materials & Diterfaces, 2018, 10, 43095-43103.	8.0	55
468	Novel 2D Nanosheets with Potential Applications in Heavy Metal Purification: A Review. Advanced Materials Interfaces, 2018, 5, 1801094.	3.7	67
469	Selective and Sensitive Sensing of Hydrogen Peroxide by a Boronic Acid Functionalized Metal–Organic Framework and Its Application in Live-Cell Imaging. Inorganic Chemistry, 2018, 57, 14574-14581.	4.0	49
470	Recent advances in emerging 2D nanomaterials for biosensing and bioimaging applications. Materials Today, 2018, 21, 164-177.	14.2	145
471	Nanospace within metal–organic frameworks for gas storage and separation. Materials Today Nano, 2018, 2, 21-49.	4.6	77
472	Novel anti-ultraviolet performances of thin films polyurethane containing nano-mixed oxides CeO ₂ -TiO ₂ . Advances in Mechanical Engineering, 2018, 10, 168781401881677.	1.6	6
474	CO2 Selective, Zeolitic Imidazolate Framework-7 Based Polymer Composite Mixed-Matrix Membranes. Journal of Materials Science Research, 2018, 7, 1.	0.1	4
475	Albumin-Stabilized Metal–Organic Nanoparticles for Effective Delivery of Metal Complex Anticancer Drugs. ACS Applied Materials & Drugs. ACS Applied Mate	8.0	40
476	Facile manufacture of porous organic framework membranes for precombustion CO ₂ capture. Science Advances, 2018, 4, eaau1698.	10.3	98
477	Hfâ€based Metalâ€Organic Frameworks in Heterogeneous Catalysis. Israel Journal of Chemistry, 2018, 58, 1062-1074.	2.3	21
478	Propylene-Selective Thin Zeolitic Imidazolate Framework Membranes on Ceramic Tubes by Microwave Seeding and Solvothermal Secondary Growth. Crystals, 2018, 8, 373.	2.2	12
479	Facile and template-free solvothermal synthesis of mesoporous/macroporous metal–organic framework nanosheets. RSC Advances, 2018, 8, 33059-33064.	3.6	16
480	2D Metal Organic Frameworkâ€Graphitic Carbon Nanocomposites as Precursors for Highâ€Performance O ₂ â€Evolution Electrocatalysts. Advanced Energy Materials, 2018, 8, 1802404.	19.5	43
481	Ultimate Control over Hydrogen Bond Formation and Reaction Rates for Scalable Synthesis of Highly Crystalline vdW MOF Nanosheets with Large Aspect Ratio. Advanced Materials, 2018, 30, e1802497.	21.0	30
482	Bubble Point Pressures of Hydrocarbon Mixtures in Multiscale Volumes from Density Functional Theory. Langmuir, 2018, 34, 14058-14068.	3.5	22

#	Article	IF	CITATIONS
483	Paving Metal–Organic Frameworks with Upconversion Nanoparticles via Self-Assembly. Journal of the American Chemical Society, 2018, 140, 15507-15515.	13.7	85
484	Exfoliating Polyoxometalateâ€Encapsulating Metalâ€Organic Framework into Twoâ€Dimensional Nanosheets for Superior Oxidative Desulfurization. ChemCatChem, 2018, 10, 5386-5390.	3.7	28
485	Synthesis of Metal–Organic Framework Nanosheets with High Relaxation Rate and Singlet Oxygen Yield. Chemistry of Materials, 2018, 30, 7511-7520.	6.7	75
486	Ultrathin Metal–Organic Framework Nanosheets as a Gutter Layer for Flexible Composite Gas Separation Membranes. ACS Nano, 2018, 12, 11591-11599.	14.6	118
487	A Review on Recent Advances for Electrochemical Reduction of Carbon Dioxide to Methanol Using Metal–Organic Framework (MOF) and Non-MOF Catalysts: Challenges and Future Prospects. ACS Sustainable Chemistry and Engineering, 2018, 6, 15895-15914.	6.7	188
488	Ultrathin 2D Cobalt Zeoliteâ€lmidazole Framework Nanosheets for Electrocatalytic Oxygen Evolution. Advanced Science, 2018, 5, 1801029.	11.2	92
489	Coffee Ring–Inspired Approach toward Oriented Selfâ€Assembly of Biomimetic Murray MOFs as Sweat Biosensor. Small, 2018, 14, e1802670.	10.0	34
490	Enrichment of Phosphorylated Peptides with Metal–Organic Framework Nanosheets for Serum Profiling of Diabetes and Phosphoproteomics Analysis. Analytical Chemistry, 2018, 90, 13796-13805.	6.5	54
491	Enrichment of Hydrogen from a Hydrogen/Propylene Gas Mixture Using ZIF-8/Water-Glycol Slurry. Energies, 2018, 11, 1890.	3.1	13
492	Paralyzed membrane: Current-driven synthesis of a metal-organic framework with sharpened propene/propane separation. Science Advances, 2018, 4, eaau1393.	10.3	234
493	Construction of Anti-Ultraviolet "Shielding Clothes―on Poly(<i>p</i> p>phenylene benzobisoxazole) Fibers: Metal Organic Framework-Mediated Absorption Strategy. ACS Applied Materials & Samp; Interfaces, 2018, 10, 43262-43274.	8.0	51
494	Superlong Single-Crystal Metal–Organic Framework Nanotubes. Journal of the American Chemical Society, 2018, 140, 15393-15401.	13.7	230
495	Ultrasonic Exfoliation of Hydrophobic and Hydrophilic Metal–Organic Frameworks To Form Nanosheets. Chemistry - A European Journal, 2018, 24, 17986-17996.	3.3	22
496	Selfâ€Templated Formation of Pt@ZIFâ€8/SiO ₂ Composite with 3Dâ€Ordered Macropores and Sizeâ€Selective Catalytic Properties. Small Methods, 2018, 2, 1800219.	8.6	34
497	Decoration of Cisplatin on 2D Metal–Organic Frameworks for Enhanced Anticancer Effects through Highly Increased Reactive Oxygen Species Generation. ACS Applied Materials & Samp; Interfaces, 2018, 10, 30930-30935.	8.0	85
498	Two-dimensional metal-organic frameworks nanosheets: Synthesis strategies and applications. Inorganica Chimica Acta, 2018, 483, 550-564.	2.4	48
499	Liquid, glass and amorphous solid states of coordination polymers and metal–organic frameworks. Nature Reviews Materials, 2018, 3, 431-440.	48.7	314
500	Enabling Fluorinated MOFâ€Based Membranes for Simultaneous Removal of H ₂ S and CO ₂ from Natural Gas. Angewandte Chemie - International Edition, 2018, 57, 14811-14816.	13.8	176

#	Article	IF	CITATIONS
501	Electrosynthesis of Well-Defined Metal–Organic Framework Films and the Carbon Nanotube Network Derived from Them toward Electrocatalytic Applications. ACS Applied Materials & Samp; Interfaces, 2018, 10, 34494-34501.	8.0	42
502	Enabling Fluorinated MOFâ€Based Membranes for Simultaneous Removal of H ₂ S and CO ₂ from Natural Gas. Angewandte Chemie, 2018, 130, 15027-15032.	2.0	17
503	Enzyme-immobilized metal–organic framework nanosheets as tandem catalysts for the generation of nitric oxide. Chemical Communications, 2018, 54, 11176-11179.	4.1	52
504	Hierarchical Nanosheet-Built CoNi ₂ S ₄ Nanotubes Coupled with Carbon-Encapsulated Carbon Nanotubes@Fe ₂ O ₃ Composites toward High-Performance Aqueous Hybrid Supercapacitor Devices. ACS Applied Materials & Samp; Interfaces, 2018. 10. 34254-34264.	8.0	46
505	One-Pot Preparation of Mechanically Robust, Transparent, Highly Conductive, and Memristive Metal–Organic Ultrathin Film. ACS Nano, 2018, 12, 10171-10177.	14.6	15
506	Poly(1-trimethylsilyl-1-propyne)-Based Hybrid Membranes: Effects of Various Nanofillers and Feed Gas Humidity on CO2 Permeation. Membranes, 2018, 8, 76.	3.0	26
507	Ultrathin two-dimensional metal-organic framework nanosheets for functional electronic devices. Coordination Chemistry Reviews, 2018, 377, 44-63.	18.8	182
508	Metal–Organic Framework-Based Nanoplatform for Intracellular Environment-Responsive Endo/Lysosomal Escape and Enhanced Cancer Therapy. ACS Applied Materials & Diterfaces, 2018, 10, 31998-32005.	8.0	77
509	Mixed matrix membranes composed of WS2 nanosheets and fluorinated poly(2,6-dimethyl-1,4-phenylene) Tj ETC 226-232.)q0 0 0 rgE 8.2	BT /Overlock 19
	220-232.		
510	Study on the formation of thin film nanocomposite (TFN) membranes of polymers of intrinsic microporosity and graphene-like fillers: Effect of lateral flake size and chemical functionalization. Journal of Membrane Science, 2018, 565, 390-401.	8.2	38
510 511	Study on the formation of thin film nanocomposite (TFN) membranes of polymers of intrinsic microporosity and graphene-like fillers: Effect of lateral flake size and chemical functionalization.	8.2 7.8	38
	Study on the formation of thin film nanocomposite (TFN) membranes of polymers of intrinsic microporosity and graphene-like fillers: Effect of lateral flake size and chemical functionalization. Journal of Membrane Science, 2018, 565, 390-401. Tellurophene-based metal-organic framework nanosheets for high-performance organic solar cells.		
511	Study on the formation of thin film nanocomposite (TFN) membranes of polymers of intrinsic microporosity and graphene-like fillers: Effect of lateral flake size and chemical functionalization. Journal of Membrane Science, 2018, 565, 390-401. Tellurophene-based metal-organic framework nanosheets for high-performance organic solar cells. Journal of Power Sources, 2018, 401, 13-19. Endowing Cu-BTC with Improved Hydrothermal Stability and Catalytic Activity: Hybridization with Natural Clay Attapulgite via Vapor-Induced Crystallization. ACS Sustainable Chemistry and	7.8	44
511 512	Study on the formation of thin film nanocomposite (TFN) membranes of polymers of intrinsic microporosity and graphene-like fillers: Effect of lateral flake size and chemical functionalization. Journal of Membrane Science, 2018, 565, 390-401. Tellurophene-based metal-organic framework nanosheets for high-performance organic solar cells. Journal of Power Sources, 2018, 401, 13-19. Endowing Cu-BTC with Improved Hydrothermal Stability and Catalytic Activity: Hybridization with Natural Clay Attapulgite via Vapor-Induced Crystallization. ACS Sustainable Chemistry and Engineering, 2018, 6, 13217-13225. Zr-MOFs-incorporated thin film nanocomposite Pebax 1657 membranes dip-coated on polymethylpentyne layer for efficient separation of CO ₂ /CH ₄ . Journal of	7.8 6.7	35
511 512 513	Study on the formation of thin film nanocomposite (TFN) membranes of polymers of intrinsic microporosity and graphene-like fillers: Effect of lateral flake size and chemical functionalization. Journal of Membrane Science, 2018, 565, 390-401. Tellurophene-based metal-organic framework nanosheets for high-performance organic solar cells. Journal of Power Sources, 2018, 401, 13-19. Endowing Cu-BTC with Improved Hydrothermal Stability and Catalytic Activity: Hybridization with Natural Clay Attapulgite via Vapor-Induced Crystallization. ACS Sustainable Chemistry and Engineering, 2018, 6, 13217-13225. Zr-MOFs-incorporated thin film nanocomposite Pebax 1657 membranes dip-coated on polymethylpentyne layer for efficient separation of CO ₂ /CH ₄ . Journal of Materials Chemistry A, 2018, 6, 12380-12392.	7.8 6.7 10.3	44 35 74
511 512 513	Study on the formation of thin film nanocomposite (TFN) membranes of polymers of intrinsic microporosity and graphene-like fillers: Effect of lateral flake size and chemical functionalization. Journal of Membrane Science, 2018, 565, 390-401. Tellurophene-based metal-organic framework nanosheets for high-performance organic solar cells. Journal of Power Sources, 2018, 401, 13-19. Endowing Cu-BTC with Improved Hydrothermal Stability and Catalytic Activity: Hybridization with Natural Clay Attapulgite via Vapor-Induced Crystallization. ACS Sustainable Chemistry and Engineering, 2018, 6, 13217-13225. Zr-MOFs-incorporated thin film nanocomposite Pebax 1657 membranes dip-coated on polymethylpentyne layer for efficient separation of CO⟨sub⟩2⟨ sub⟩ /CH⟨sub⟩4⟨ sub⟩. Journal of Materials Chemistry A, 2018, 6, 12380-12392. MOF Scaffold for a Highâ€Performance Mixedâ€Matrix Membrane. Angewandte Chemie - International Edition, 2018, 57, 8597-8602. A 2D Conductive Organic–Inorganic Hybrid with Extraordinary Volumetric Capacitance at Minimal	7.8 6.7 10.3	44357450
511 512 513 514 515	Study on the formation of thin film nanocomposite (TFN) membranes of polymers of intrinsic microporosity and graphene-like fillers: Effect of lateral flake size and chemical functionalization. Journal of Membrane Science, 2018, 565, 390-401. Tellurophene-based metal-organic framework nanosheets for high-performance organic solar cells. Journal of Power Sources, 2018, 401, 13-19. Endowing Cu-BTC with Improved Hydrothermal Stability and Catalytic Activity: Hybridization with Natural Clay Attapulgite via Vapor-Induced Crystallization. ACS Sustainable Chemistry and Engineering, 2018, 6, 13217-13225. Zr-MOFs-incorporated thin film nanocomposite Pebax 1657 membranes dip-coated on polymethylpentyne layer for efficient separation of CO ₂ (CH ₄ . Journal of Materials Chemistry A, 2018, 6, 12380-12392. MOF Scaffold for a Highâ€Performance Mixedâ€Matrix Membrane. Angewandte Chemie - International Edition, 2018, 57, 8597-8602. A 2D Conductive Organic–Inorganic Hybrid with Extraordinary Volumetric Capacitance at Minimal Swelling. Advanced Materials, 2018, 30, e1800400. Spin-Crossover in an Exfoliated 2D Coordination Polymer and Its Implementation in Thermochromic	7.8 6.7 10.3 13.8 21.0	4435745034

#	Article	IF	CITATIONS
519	Synthetic Strategies for Constructing Twoâ€Dimensional Metalâ€Organic Layers (MOLs): A Tutorial Review. Chinese Journal of Chemistry, 2018, 36, 754-764.	4.9	61
520	Dual-Emitting UiO-66(Zr&Eu) Metal–Organic Framework Films for Ratiometric Temperature Sensing. ACS Applied Materials & Interfaces, 2018, 10, 20854-20861.	8.0	76
521	MOF Scaffold for a Highâ€Performance Mixedâ€Matrix Membrane. Angewandte Chemie, 2018, 130, 8733-8738.	2.0	22
522	Hierarchical Two-Dimensional Conductive Metal–Organic Framework/Layered Double Hydroxide Nanoarray for a High-Performance Supercapacitor. Inorganic Chemistry, 2018, 57, 6202-6205.	4.0	86
523	On the direct synthesis of Cu(BDC) MOF nanosheets and their performance in mixed matrix membranes. Journal of Membrane Science, 2018, 549, 312-320.	8.2	116
524	Activation Entropy for Diffusion of Gases Through Mixed Matrix Membranes. , 2018, , 547-572.		1
525	Towards High Performance Metal–Organic Framework–Microporous Polymer Mixed Matrix Membranes: Addressing Compatibility and Limiting Aging by Polymer Doping. Chemistry - A European Journal, 2018, 24, 12796-12800.	3.3	24
526	Metal–Organic Frameworks for Separation. Advanced Materials, 2018, 30, e1705189.	21.0	835
527	Nickel metal-organic framework 2D nanosheets with enhanced peroxidase nanozyme activity for colorimetric detection of H2O2. Talanta, 2018, 189, 254-261.	5.5	157
528	Conductive Leaflike Cobalt Metal–Organic Framework Nanoarray on Carbon Cloth as a Flexible and Versatile Anode toward Both Electrocatalytic Glucose and Water Oxidation. Inorganic Chemistry, 2018, 57, 8422-8428.	4.0	99
529	Solution-Phase Synthesis of Platinum Nanoparticle-Decorated Metal-Organic Framework Hybrid Nanomaterials as Biomimetic Nanoenzymes for Biosensing Applications. ACS Applied Materials & Lamp; Interfaces, 2018, 10, 24108-24115.	8.0	117
530	Simplest MOF Units for Effective Photodriven Hydrogen Evolution Reaction. Journal of the American Chemical Society, 2018, 140, 9159-9166.	13.7	59
531	Ultrasmall Au Nanoparticles Embedded in 2D Mixedâ€Ligand Metal–Organic Framework Nanosheets Exhibiting Highly Efficient and Sizeâ€Selective Catalysis. Advanced Functional Materials, 2018, 28, 1802021.	14.9	115
532	Synthesis, characterization and PVD assisted thin film fabrication of the nano-structured bimetallic Ni3S2/MnS2 composite. Surfaces and Interfaces, 2018, 12, 190-195.	3.0	11
533	Two-dimensional metal–organic framework nanosheets: synthesis and applications. Chemical Society Reviews, 2018, 47, 6267-6295.	38.1	978
534	Two-Dimensional Metal Nanomaterials: Synthesis, Properties, and Applications. Chemical Reviews, 2018, 118, 6409-6455.	47.7	711
535	Under Diffusion Control: from Structuring Matter to Directional Motion. Advanced Materials, 2018, 30, e1707029.	21.0	39
536	Two-dimensional light-emitting materials: preparation, properties and applications. Chemical Society Reviews, 2018, 47, 6128-6174.	38.1	167

#	Article	IF	CITATIONS
537	Twoâ€Dimensional Metalâ€Organic Framework Nanosheets: A Rapidly Growing Class of Versatile Nanomaterials for Gas Separation, MALDIâ€TOF Matrix and Biomimetic Applications. Chemistry - A European Journal, 2018, 24, 15131-15142.	3.3	65
538	Rimelike Structure-Inspired Approach toward in Situ-Oriented Self-Assembly of Hierarchical Porous MOF Films as a Sweat Biosensor. ACS Applied Materials & Samp; Interfaces, 2018, 10, 27936-27946.	8.0	34
539	Performance of Mixed Matrix Membranes Containing Porous Two-Dimensional (2D) and Three-Dimensional (3D) Fillers for CO2 Separation: A Review. Membranes, 2018, 8, 50.	3.0	66
540	An efficient electrochemical glucose sensor based on porous nickel-based metal organic framework/carbon nanotubes composite (Ni-MOF/CNTs). Journal of Alloys and Compounds, 2018, 767, 651-656.	5 . 5	138
541	Single-Layered Two-Dimensional Metal–Organic Framework Nanosheets as an in Situ Visual Test Paper for Solvents. ACS Applied Materials & Samp; Interfaces, 2018, 10, 28860-28867.	8.0	64
542	Pressureâ€Induced Amorphization of MOFâ€5: A First Principles Study. ChemistrySelect, 2018, 3, 8056-8063.	1.5	18
543	Advanced Porous Materials in Mixed Matrix Membranes. Advanced Materials, 2018, 30, e1802401.	21.0	229
544	Continuous synthesis of high quality metal–organic framework HKUST-1 crystals and composites via aerosol-assisted synthesis. Polyhedron, 2018, 153, 226-233.	2.2	13
545	Sol–gel asynchronous crystallization of ultra-selective metal–organic framework membranes for gas separation. Journal of Materials Chemistry A, 2018, 6, 16333-16340.	10.3	47
546	Self-Quenched Metal–Organic Particles as Dual-Mode Therapeutic Agents for Photoacoustic Imaging-Guided Second Near-Infrared Window Photochemotherapy. ACS Applied Materials & Samp; Interfaces, 2018, 10, 25203-25212.	8.0	63
547	High-Pressure Methane Adsorption in Porous Lennard-Jones Crystals. Journal of Physical Chemistry Letters, 2018, 9, 4275-4281.	4.6	9
548	Bimetallic zeolitic imidazolate framework as an active excipient of curcumin under physiological condition. Biomedical Physics and Engineering Express, 2018, 4, 055004.	1.2	16
549	Introduction of Molecular Building Blocks to Improve the Stability of Metal–Organic Frameworks for Efficient Mercury Removal. Inorganic Chemistry, 2018, 57, 6118-6123.	4.0	44
550	Recent progress in two-dimensional polymers for energy storage and conversion: design, synthesis, and applications. Journal of Materials Chemistry A, 2018, 6, 21676-21695.	10.3	78
551	Morphological Map of ZIF-8 Crystals with Five Distinctive Shapes: Feature of Filler in Mixed-Matrix Membranes on C ₃ H ₆ /C ₃ H ₈ Separation. Chemistry of Materials, 2018, 30, 3467-3473.	6.7	94
552	Metal–organic framework nanosheets (MONs): a new dimension in materials chemistry. Journal of Materials Chemistry A, 2018, 6, 16292-16307.	10.3	126
553	Pebax/ionic liquid modified graphene oxide mixed matrix membranes for enhanced CO2 capture. Journal of Membrane Science, 2018, 565, 370-379.	8.2	165
554	Harnessing Filler Materials for Enhancing Biogas Separation Membranes. Chemical Reviews, 2018, 118, 8655-8769.	47.7	239

#	Article	IF	CITATIONS
555	Smart composite films of nanometric thickness based on copper–iodine coordination polymers. Toward sensors. Chemical Science, 2018, 9, 8000-8010.	7.4	44
556	2-Methylimidazole-assisted synthesis of a two-dimensional MOF-5 catalyst with enhanced catalytic activity for the Knoevenagel condensation reaction. CrystEngComm, 2018, 20, 5327-5331.	2.6	47
557	Benzimidazole linked polymers (BILPs) in mixed-matrix membranes: Influence of filler porosity on the CO2/N2 separation performance. Journal of Membrane Science, 2018, 566, 213-222.	8.2	20
558	Isoreticular two-dimensional magnetic coordination polymers prepared through pre-synthetic ligand functionalization. Nature Chemistry, 2018, 10, 1001-1007.	13.6	94
559	Construction of graphene oxide based mixed matrix membranes with CO ₂ -philic sieving gas-transport channels through strong π–π interactions. Journal of Materials Chemistry A, 2018, 6, 17854-17860.	10.3	35
561	CO ₂ -philic WS ₂ laminated membranes with a nanoconfined ionic liquid. Journal of Materials Chemistry A, 2018, 6, 16566-16573.	10.3	39
562	The selectively fluorescent sensing detection and adsorptive removal of Pb2+ with a stable [Î-Mo8O26]-based hybrid. Journal of Colloid and Interface Science, 2018, 532, 598-604.	9.4	22
563	Facile synthesis of Cu-BDC/Poly(N-methylol acrylamide) HIPE monoliths via CO2-in-water Emulsion stabilized by metal-organic framework. Polymer, 2018, 153, 17-23.	3.8	31
564	Metal–Organic Framework Thin Films on High-Curvature Nanostructures Toward Tandem Electrocatalysis. ACS Applied Materials & Interfaces, 2018, 10, 31225-31232.	8.0	57
565	Ultra-high selectivity COF-based membranes for biobutanol production. Journal of Materials Chemistry A, 2018, 6, 17602-17611.	10.3	56
566	Molecular-Scale Hybrid Membranes Derived from Metal-Organic Polyhedra for Gas Separation. ACS Applied Materials & Samp; Interfaces, 2018, 10, 21381-21389.	8.0	55
567	Synthesis of Fluidized CO 2 Sorbents Based on Diamine Coordinated to Metal–Organic Frameworks by Direct Conversion of Metal Oxides Supported on Mesoporous Silica. Chemistry - A European Journal, 2018, 24, 10612-10616.	3.3	9
568	Recent advances on mixed-matrix membranes for gas separation: Opportunities and engineering challenges. Korean Journal of Chemical Engineering, 2018, 35, 1577-1600.	2.7	108
569	Mixed Matrix Membranes Based on Metal–Organic Frameworks with Tunable Pore Size for CO2 Separation. Crystal Growth and Design, 2018, 18, 4365-4371.	3.0	31
570	Preparation of 2D material dispersions and their applications. Chemical Society Reviews, 2018, 47, 6224-6266.	38.1	459
571	Vertically aligned MnO2 nanosheets coupled with carbon nanosheets derived from Mn-MOF nanosheets for supercapacitor electrodes. Journal of Materials Science, 2018, 53, 13111-13125.	3.7	33
572	Copper-1, 3, 5-benzenetricarboxylate framework nanocrystals on polyaniline: Fabrication, characteristics, and electrochemical application for oxygen reduction reaction. Journal of Electroanalytical Chemistry, 2018, 823, 176-183.	3.8	2
573	Ultrathin two-dimensional cobalt–organic framework nanosheets for high-performance electrocatalytic oxygen evolution. Journal of Materials Chemistry A, 2018, 6, 22070-22076.	10.3	249

#	Article	IF	CITATIONS
574	Sol–Gel Synthesis of Metal–Phenolic Coordination Spheres and Their Derived Carbon Composites. Angewandte Chemie, 2018, 130, 9986-9991.	2.0	39
575	Sol–Gel Synthesis of Metal–Phenolic Coordination Spheres and Their Derived Carbon Composites. Angewandte Chemie - International Edition, 2018, 57, 9838-9843.	13.8	127
576	Interface-Assisted Synthesis of 2D Materials: Trend and Challenges. Chemical Reviews, 2018, 118, 6189-6235.	47.7	505
577	Degradation paths of manganese-based MOF materials in a model oxidative environment: a computational study. Physical Chemistry Chemical Physics, 2018, 20, 20785-20795.	2.8	10
578	Tailoring exciton and excimer emission in an exfoliated ultrathin 2D metal-organic framework. Nature Communications, 2018, 9, 2401.	12.8	129
579	Ultrahigh efficient laser desorption ionization of saccharides by Ti-based metal-organic frameworks nanosheets. Analytica Chimica Acta, 2018, 1032, 91-98.	5.4	21
580	Zirconium metal-organic framework nanocrystal as microwave sensitizer for enhancement of tumor therapy. Chinese Chemical Letters, 2019, 30, 481-484.	9.0	16
581	Zn-MOF@SPES composite membranes: synthesis, characterization and its electrochemical performance. Separation Science and Technology, 2019, 54, 377-385.	2.5	14
582	Hybrid membranes with Cu(II) loaded metal organic frameworks for enhanced desulfurization performance. Separation and Purification Technology, 2019, 210, 258-267.	7.9	31
583	Metal organic framework-derived hollow cactus-like carbon sheets for oxygen reduction. Journal of Materials Chemistry A, 2019, 7, 20162-20168.	10.3	25
584	Morphology-Controlled Synthesis of Ni-MOFs with Highly Enhanced Electrocatalytic Performance for Urea Oxidation. Inorganic Chemistry, 2019, 58, 11449-11457.	4.0	69
585	Computer-aided discovery of connected metal-organic frameworks. Nature Communications, 2019, 10, 3620.	12.8	71
586	Creating Giant Secondary Building Layers via Alkali-Etching Exfoliation for Precise Synthesis of Metal–Organic Frameworks. Chemistry of Materials, 2019, 31, 7584-7589.	6.7	35
587	Significantly Enhanced Carbon Dioxide Capture by Anion-Functionalized Liquid Pillar[5]arene through Multiple-Site Interactions. Industrial & Engineering Chemistry Research, 2019, 58, 16894-16900.	3.7	12
588	2D Metal–Organic Frameworks as Multifunctional Materials in Heterogeneous Catalysis and Electro/Photocatalysis. Advanced Materials, 2019, 31, e1900617.	21.0	309
589	Assembling Metal–Organic Frameworks into the Fractal Scale for Sweat Sensing. ACS Applied Materials & Samp; Interfaces, 2019, 11, 32310-32319.	8.0	33
590	A ratiometric multicolor fluorescence biosensor for visual detection of alkaline phosphatase activity via a smartphone. Biosensors and Bioelectronics, 2019, 143, 111605.	10.1	89
591	Preparation and characterization of silica-polymer/Ag hybrid nanocomposites via surface-initiated single electron transfer living radical polymerization. Molecular Crystals and Liquid Crystals, 2019, 679, 102-110.	0.9	2

#	Article	IF	CITATIONS
592	Recent progress in carbon-based materials as catalysts for electrochemical and photocatalytic water splitting., 2019,, 173-200.		2
593	Introducing hydrophilic ultra-thin ZIF-L into mixed matrix membranes for CO ₂ /CH ₄ separation. RSC Advances, 2019, 9, 23390-23399.	3.6	36
594	Increasing Alkyl Chain Length in a Series of Layered Metal–Organic Frameworks Aids Ultrasonic Exfoliation to Form Nanosheets. Inorganic Chemistry, 2019, 58, 10837-10845.	4.0	23
595	Facile Exfoliation of 3D Pillared Metal–Organic Frameworks (MOFs) to Produce MOF Nanosheets with Functionalized Surfaces. Inorganic Chemistry, 2019, 58, 11020-11027.	4.0	51
596	2D molecular crystal lattices: advances in their synthesis, characterization, and application. Journal of Materials Chemistry A, 2019, 7, 23537-23562.	10.3	33
597	Processing of covalent organic frameworks: an ingredient for a material to succeed. Chemical Society Reviews, 2019, 48, 4375-4386.	38.1	139
598	Low volume change composite lithium metal anodes. Nano Energy, 2019, 64, 103910.	16.0	68
599	Expandable Layered Hybrid Materials Based on Individual 1D Metalorganic Nanoribbons. Materials, 2019, 12, 1953.	2.9	2
600	Ruthenium and cobalt bimetal encapsulated in nitrogen-doped carbon material derived of ZIF-67 as enhanced hydrogen evolution electrocatalyst. Applied Surface Science, 2019, 494, 101-110.	6.1	53
601	Surfactant assisted synthesis of hierarchical porous metal-organic frameworks nanosheets. Nanotechnology, 2019, 30, 435601.	2.6	44
602	Target-Architecture Engineering of a Novel Two-dimensional Metalâ€"Organic Framework for High Catalytic Performance. Crystal Growth and Design, 2019, 19, 4239-4245.	3.0	14
603	Sorptionâ€Enhanced Mixed Matrix Membranes with Facilitated Hydrogen Transport for Hydrogen Purification and CO ₂ Capture. Advanced Functional Materials, 2019, 29, 1904357.	14.9	45
604	Layered metal–organic framework based on tetracyanonickelate as a cathode material for <i>in situ</i> i> Li-ion storage. RSC Advances, 2019, 9, 21363-21370.	3.6	32
605	Fabrication of oriented metal-organic framework nanosheet membrane coated stainless steel meshes for highly efficient oil/water separation. Separation and Purification Technology, 2019, 229, 115835.	7.9	54
606	A Surfactantâ€Free and Scalable General Strategy for Synthesizing Ultrathin Twoâ€Dimensional Metal–Organic Framework Nanosheets for the Oxygen Evolution Reaction. Angewandte Chemie, 2019, 131, 13699-13706.	2.0	64
607	A Surfactantâ€Free and Scalable General Strategy for Synthesizing Ultrathin Twoâ€Dimensional Metal–Organic Framework Nanosheets for the Oxygen Evolution Reaction. Angewandte Chemie - International Edition, 2019, 58, 13565-13572.	13.8	205
608	The relaxation times of unentangled polymer melts with different molecular architectures. Journal of Polymer Research, 2019, 26, 1.	2.4	4
609	Broad Mid-Infrared Luminescence in a Metal–Organic Framework Glass. ACS Omega, 2019, 4, 12081-12087.	3.5	41

#	Article	IF	CITATIONS
610	Shapeâ€Assisted 2D MOF/Graphene Derived Hybrids as Exceptional Lithiumâ€ion Battery Electrodes. Advanced Functional Materials, 2019, 29, 1902539.	14.9	118
611	Engineering of the Filler/Polymer Interface in Metal–Organic Frameworkâ€Based Mixedâ€Matrix Membranes to Enhance Gas Separation. Chemistry - an Asian Journal, 2019, 14, 3502-3514.	3.3	67
612	The effect of pore size and layer number of metal–porphyrin coordination nanosheets on sensing DNA. Journal of Materials Chemistry C, 2019, 7, 10240-10246.	5.5	27
613	High-permeance polymer-functionalized single-layer graphene membranes that surpass the postcombustion carbon capture target. Energy and Environmental Science, 2019, 12, 3305-3312.	30.8	100
614	lonic liquid and spatially confined gold nanoparticles enhanced photoelectrochemical response of zinc-metal organic frameworks and immunosensing squamous cell carcinoma antigen. Biosensors and Bioelectronics, 2019, 142, 111540.	10.1	37
615	Rational construction of triangle-like nickel-cobalt bimetallic metal-organic framework nanosheets arrays as battery-type electrodes for hybrid supercapacitors. Journal of Colloid and Interface Science, 2019, 555, 42-52.	9.4	131
616	Formation of a thin and continuous MOF membrane with 2-D MOF nanosheets as seeds <i>via</i> layer-by-layer growth. Chemical Communications, 2019, 55, 10146-10149.	4.1	42
617	Untwisted restacking of two-dimensional metal-organic framework nanosheets for highly selective isomer separations. Nature Communications, 2019, 10, 2911.	12.8	90
618	Porous metal-organic frameworks for gas storage and separation: Status and challenges. EnergyChem, 2019, 1, 100006.	19.1	434
619	Construction of NH2-UiO-66/BiOBr composites with boosted photocatalytic activity for the removal of contaminants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 579, 123625.	4.7	85
620	Pd Nanoparticles Immobilized in Layered ZIFs as Efficient Catalysts for Heterogeneous Catalysis. Industrial & Description of the Catalysts for Heterogeneous Catalysis.	3.7	10
621	A Multicolor Fluorescence Nanoprobe Platform Using Two-Dimensional Metal Organic Framework Nanosheets and Double Stirring Bar Assisted Target Replacement for Multiple Bioanalytical Applications. ACS Applied Materials & Diterfaces, 2019, 11, 41506-41515.	8.0	46
622	Ultrasound-treated metal-organic framework with efficient electrocatalytic oxygen evolution activity. Ultrasonics Sonochemistry, 2019, 59, 104714.	8.2	34
623	Boosting Enantioselectivity of Chiral Organocatalysts with Ultrathin Two-Dimensional Metal–Organic Framework Nanosheets. Journal of the American Chemical Society, 2019, 141, 17685-17695.	13.7	128
626	Metal–organic frameworks: a promising platform for constructing non-noble electrocatalysts for the oxygen-reduction reaction. Journal of Materials Chemistry A, 2019, 7, 1964-1988.	10.3	165
627	Analysis of Low-level Temperature Inversions and Their Effects on Aerosols in the Lower Atmosphere. Advances in Atmospheric Sciences, 2019, 36, 1235-1250.	4.3	21
628	Transport Properties of Mixed-Matrix Membranes: A Kinetic Monte Carlo Study. Physical Review Applied, 2019, 12, .	3.8	12
631	Synthesis of Nano/Microsized MIL-101Cr Through Combination of Microwave Heating and Emulsion Technology for Mixed-Matrix Membranes. Frontiers in Chemistry, 2019, 7, 777.	3.6	8

#	Article	IF	CITATIONS
632	Photoactive Porphyrinâ€Based Metalâ€Organic Framework Nanosheets. European Journal of Inorganic Chemistry, 2019, 2019, 4815-4819.	2.0	13
633	Preparation of thermally rearranged poly(benzoxazole-co-imide) membranes containing heteroaromatic moieties for CO2/CH4 separation. Polymer, 2019, 185, 121945.	3.8	19
634	Water Desalination with Two-Dimensional Metal–Organic Framework Membranes. Nano Letters, 2019, 19, 8638-8643.	9.1	119
635	Enhanced Ferromagnetism from Organic–Cerium Oxide Hybrid Ultrathin Nanosheets. ACS Applied Materials & Interfaces, 2019, 11, 44601-44608.	8.0	8
636	Observation of Metal Micro-Nanoparticles in an Epoxy Matrix during Thermal Annealing Using Synchrotron X-ray Imaging Techniques. Journal of the Korean Physical Society, 2019, 75, 503-507.	0.7	0
637	Designed Synthesis of Multiluminescent Materials Using Lanthanide Metal-Organic Frameworks and Carbon Dots as Building-Blocks. European Journal of Inorganic Chemistry, 2019, 2019, 3925-3932.	2.0	15
638	Metal-organic framework nanosheets: a class of glamorous low-dimensional materials with distinct structural and chemical natures. Science China Chemistry, 2019, 62, 1561-1575.	8.2	31
639	The synthetic strategies of metal–organic framework membranes, films and 2D MOFs and their applications in devices. Journal of Materials Chemistry A, 2019, 7, 21004-21035.	10.3	94
640	Recent advances in covalent organic frameworks (COFs) as a smart sensing material. Chemical Society Reviews, 2019, 48, 5266-5302.	38.1	630
641	Ligand geometry controlling Zn-MOF partial structures for their catalytic performance in Knoevenagel condensation. RSC Advances, 2019, 9, 25170-25176.	3.6	14
642	Recent progress in two-dimensional nanomaterials: Synthesis, engineering, and applications. FlatChem, 2019, 18, 100133.	5.6	52
643	A Novel Approach to Highâ€Performance Aliovalentâ€Substituted Catalysts—2D Bimetallic MOFâ€Derived CeCuO <i></i> Microsheets. Small, 2019, 15, e1903525.	10.0	46
644	Ultrathin 2D nickel zeolitic imidazolate framework nanosheets for electrocatalytic reduction of CO ₂ . Chemical Communications, 2019, 55, 11634-11637.	4.1	54
645	Insight into the Catalytic Effects of Open Metal Sites in Metal–Organic Frameworks on Hydride Dehydrogenation via Nanoconfinement. ACS Sustainable Chemistry and Engineering, 2019, 7, 16013-16025.	6.7	27
646	High-throughput droplet microfluidic synthesis of hierarchical metal-organic framework nanosheet microcapsules. Nano Research, 2019, 12, 2736-2742.	10.4	23
647	Photo-exfoliation of a highly photo-responsive two-dimensional metal–organic framework. Chemical Communications, 2019, 55, 11715-11718.	4.1	24
648	Solid-state facilitated transport of carbon monoxide through mixed matrix membranes. Journal of Membrane Science, 2019, 592, 117373.	8.2	13
649	Multi-bidder First Price Auction with Beliefs. Studies in Microeconomics, 2019, 7, 140-160.	0.6	0

#	Article	IF	CITATIONS
650	Tuning the net topology of a ternary Ag(i)-1,2,4,5-tetra(4-pyridyl)benzene-carboxylate framework: structures and photoluminescence. CrystEngComm, 2019, 21, 6446-6451.	2.6	9
651	Recent Advances in Graphene-like 2D Materials for Spintronics Applications. Chemistry of Materials, 2019, 31, 8260-8285.	6.7	119
652	Current and emerging applications of nanostructured metal–organic frameworks in cancer-targeted theranostics. Materials Science and Engineering C, 2019, 105, 110091.	7.3	27
653	Metal-organic frameworks as catalysts for sugar conversion into platform chemicals: State-of-the-art and prospects. Coordination Chemistry Reviews, 2019, 401, 213064.	18.8	45
654	Metal Oxide Nanosheets Synthesized by Bottom-up Approach: Applications to Catalyst and Separation Membranes. Journal of the Japan Petroleum Institute, 2019, 62, 53-60.	0.6	7
655	Reversible Polycondensation-Termination Growth of Covalent-Organic-Framework Spheres, Fibers, and Films. Matter, 2019, 1, 1592-1605.	10.0	84
656	Heterogeneous ZIF-L membranes with improved hydrophilicity and anti-bacterial adhesion for potential application in water treatment. RSC Advances, 2019, 9, 1591-1601.	3.6	51
657	Synthesis of 2D and 3D MOFs with tuneable Lewis acidity from preformed 1D hybrid sub-domains. Chemical Science, 2019, 10, 2053-2066.	7.4	23
658	Supramolecular membranes: A robust platform to develop separation strategies towards water-based applications. Separation and Purification Technology, 2019, 215, 441-453.	7.9	20
659	Cathodized copper porphyrin metal–organic framework nanosheets for selective formate and acetate production from CO ₂ electroreduction. Chemical Science, 2019, 10, 2199-2205.	7.4	191
660	Nanosheets of MIL-53(Al) applied in membranes with improved CO ₂ /N ₂ and CO ₂ /CH ₄ selectivities. Dalton Transactions, 2019, 48, 3392-3403.	3.3	21
661	Synthesis of magnesium based metal organic framework by microwave hydrothermal process. Inorganic Chemistry Communication, 2019, 101, 172-176.	3.9	5
662	2D/2D Heterojunctions for Catalysis. Advanced Science, 2019, 6, 1801702.	11.2	224
663	Direct ink writing of catalytically active UiO-66 polymer composites. Chemical Communications, 2019, 55, 2190-2193.	4.1	57
664	Powerful combination of MOFs and C3N4 for enhanced photocatalytic performance. Applied Catalysis B: Environmental, 2019, 247, 24-48.	20.2	309
665	Carbon dots embedded metal-organic framework@molecularly imprinted nanoparticles for highly sensitive and selective detection of quercetin. Sensors and Actuators B: Chemical, 2019, 286, 321-327.	7.8	117
666	Highly efficient CO ₂ capture by mixed matrix membranes containing three-dimensional covalent organic framework fillers. Journal of Materials Chemistry A, 2019, 7, 4549-4560.	10.3	108
667	Waterâ€Stable Chemicalâ€Protective Textiles via Euhedral Surfaceâ€Oriented 2D Cu–TCPP Metalâ€Organic Frameworks. Small, 2019, 15, e1805133.	10.0	72

#	Article	IF	CITATIONS
668	Ni–Co hydroxide nanosheets on plasma-reduced Co-based metal–organic nanocages for electrocatalytic water oxidation. Journal of Materials Chemistry A, 2019, 7, 4950-4959.	10.3	73
669	Solvent-tuned chemoselective carboazidation and diazidation of alkenes <i>via</i> iron catalysis. Organic Chemistry Frontiers, 2019, 6, 512-516.	4.5	35
670	A new paradigm of ultrathin 2D nanomaterial adsorbents in aqueous media: graphene and GO, MoS ₂ , MXenes, and 2D MOFs. Journal of Materials Chemistry A, 2019, 7, 16598-16621.	10.3	95
671	An adjustable permeation membrane up to the separation for multicomponent gas mixture. Scientific Reports, 2019, 9, 7380.	3.3	12
672	2D-enabled membranes: materials and beyond. BMC Chemical Engineering, 2019, 1, .	3.4	27
673	Highly Selective Capture of Monophosphopeptides by Two-Dimensional Metal–Organic Framework Nanosheets. Analytical Chemistry, 2019, 91, 9093-9101.	6.5	30
674	Fabrication of 2D metal–organic framework nanosheet@fiber composites by spray technique. Chemical Communications, 2019, 55, 8293-8296.	4.1	26
675	Rational design of positive-hexagon-shaped two-dimensional ZIF-derived materials as improved bifunctional oxygen electrocatalysts for use as long-lasting rechargeable Zn–Air batteries. Applied Catalysis B: Environmental, 2019, 256, 117871.	20.2	70
676	Mixed-matrix membranes based on 6FDA-ODA polyimide and silicalite-1 with homogeneous spatial distribution of particles. Polymer, 2019, 178, 121576.	3.8	2
677	Micro and Nano Smart Composite Films Based on Copper-Iodine Coordination Polymer as Thermochromic Biocompatible Sensors. Polymers, 2019, 11, 1047.	4.5	8
678	Constructing Unique Cross-Sectional Structured Mixed Matrix Membranes by Incorporating Ultrathin Microporous Nanosheets for Efficient CO ₂ Separation. ACS Applied Materials & Lamp; Interfaces, 2019, 11, 24618-24626.	8.0	69
679	Crystal Transformation of Î ² -CD-MOF Facilitates Loading of Dimercaptosuccinic Acid. AAPS PharmSciTech, 2019, 20, 224.	3.3	22
680	Epitaxial Growth and Integration of Insulating Metal–Organic Frameworks in Electrochemistry. Journal of the American Chemical Society, 2019, 141, 11322-11327.	13.7	98
681	Recent development in graphitic carbon nitride based photocatalysis for hydrogen generation. Applied Catalysis B: Environmental, 2019, 257, 117855.	20.2	244
682	Non-enzymatic electrochemical hydrogen peroxide sensing using a nanocomposite prepared from silver nanoparticles and copper (II)-porphyrin derived metal-organic framework nanosheets. Mikrochimica Acta, 2019, 186, 482.	5.0	42
683	Metal-organic framework nanosheets: An emerging family of multifunctional 2D materials. Coordination Chemistry Reviews, 2019, 395, 25-45.	18.8	184
684	Interfacial engineering of metal–organic frameworks/graphene oxide composite membrane by polyethyleneimine for efficient H ₂ /CH ₄ gas separation. Inorganic Chemistry Frontiers, 2019, 6, 2043-2049.	6.0	17
685	Ultrathin metal/covalent–organic framework membranes towards ultimate separation. Chemical Society Reviews, 2019, 48, 3811-3841.	38.1	334

#	Article	IF	CITATIONS
686	Water vapor transport properties of interfacially polymerized thin film nanocomposite membranes modified with graphene oxide and GO-TiO2 nanofillers. Chemical Engineering Journal, 2019, 373, 1190-1202.	12.7	92
687	An Atomistic Simulation Study on POC/PIM Mixed-Matrix Membranes for Gas Separation. Journal of Physical Chemistry C, 2019, 123, 15113-15121.	3.1	22
688	Ferrocene-based metal–organic framework nanosheets loaded with palladium as a super-high active hydrogenation catalyst. Journal of Materials Chemistry A, 2019, 7, 15975-15980.	10.3	66
689	Electrochemical Determination of Aflatoxin B1 (AFB1) Using a Copper-Based Metal-Organic Framework (Cu-MOF) and Gold Nanoparticles (AuNPs) with Exonuclease III (Exo III) Assisted Recycling by Differential Pulse Voltammetry (DPV). Analytical Letters, 2019, 52, 2439-2453.	1.8	12
690	Effect of ionic liquids (ILs) on MOFs/polymer interfacial enhancement in mixed matrix membranes. Journal of Membrane Science, 2019, 587, 117157.	8.2	74
691	Modular Programming of Hierarchy and Diversity in Multivariate Polymer/Metal–Organic Framework Hybrid Composites. Journal of the American Chemical Society, 2019, 141, 10342-10349.	13.7	42
692	High yield cycloaddition of carbon dioxide to epoxides catalyzed by metal–organic frameworks. Materials Today Sustainability, 2019, 5, 100021.	4.1	5
693	Ultrathin 2D Cu-porphyrin MOF nanosheets as a heterogeneous catalyst for styrene oxidation. Materials Chemistry Frontiers, 2019, 3, 1580-1585.	5.9	45
694	Microwaveâ€Assisted Hydrothermal Synthesis of [Al(OH)(1,4â€NDC)] Membranes with Superior Separation Performances. Chemistry - an Asian Journal, 2019, 14, 2072-2076.	3.3	18
695	Metal-free core-shell structured N-doped carbon/carbon heterojunction for efficient CO2 capture. Carbon, 2019, 150, 43-51.	10.3	22
696	Metal-Organic Frameworks for Chemiresistive Sensors. CheM, 2019, 5, 1938-1963.	11.7	419
697	Porous Fe2O3/Fe3O4@Carbon octahedron arrayed on three-dimensional graphene foam for lithium-ion battery. Composites Part B: Engineering, 2019, 171, 130-137.	12.0	61
698	Rising Up: Hierarchical Metal–Organic Frameworks in Experiments and Simulations. Advanced Materials, 2019, 31, e1901744.	21.0	103
699	A novel electrochemical sensor based on 2D CuTCPP nanosheets and platelet ordered mesoporous carbon composites for hydroxylamine and chlorogenic acid. Analytica Chimica Acta, 2019, 1075, 71-80.	5.4	55
700	An exceptionally stable core–shell MOF/COF bifunctional catalyst for a highly efficient cascade deacetalization–Knoevenagel condensation reaction. Chemical Communications, 2019, 55, 6377-6380.	4.1	107
701	Restricting Lattice Flexibility in Polycrystalline Metal–Organic Framework Membranes for Carbon Capture. Advanced Materials, 2019, 31, e1900855.	21.0	122
702	A MOF@COF Composite with Enhanced Uptake through Interfacial Pore Generation. Angewandte Chemie - International Edition, 2019, 58, 9512-9516.	13.8	79
703	A MOF@COF Composite with Enhanced Uptake through Interfacial Pore Generation. Angewandte Chemie, 2019, 131, 9612-9616.	2.0	36

#	Article	IF	Citations
704	Visible-light-driven MIL-53(Fe)/BiOCl composite assisted by persulfate: Photocatalytic performance and mechanism. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 380, 111862.	3.9	57
705	Chemically Robust, Cu-based Porous Coordination Polymer Nanosheets for Efficient Hydrogen Evolution: Experimental and Theoretical Studies. ACS Applied Materials & Experimental and Theoretical Studies. ACS Applied Materials & Experimental and Theoretical Studies. ACS Applied Materials & Experimental Application (1986) 11, 21086-21093.	8.0	22
706	Structural Engineering of Lowâ€Dimensional Metal–Organic Frameworks: Synthesis, Properties, and Applications. Advanced Science, 2019, 6, 1802373.	11.2	214
707	Surfactants as promising media in the field of metal-organic frameworks. Coordination Chemistry Reviews, 2019, 391, 30-43.	18.8	296
708	Electropolymerization of Molecularâ€Sieving Polythiophene Membranes for H ₂ Separation. Angewandte Chemie, 2019, 131, 8860-8864.	2.0	20
709	Electropolymerization of Molecularâ€Sieving Polythiophene Membranes for H ₂ Separation. Angewandte Chemie - International Edition, 2019, 58, 8768-8772.	13.8	39
710	Light-mediated formation and dissociation of a two-dimensional supramolecular polymer sheet: one step closer to sustainability. Journal of Materials Chemistry A, 2019, 7, 13180-13187.	10.3	5
711	A water-stable fcu-MOF material with exposed amino groups for the multi-functional separation of small molecules. Science China Materials, 2019, 62, 1315-1322.	6.3	41
712	Metal–organic framework nanosheets with flower-like structure as probes for H ₂ S detection and <i>in situ</i> singlet-oxygen production. Chemical Communications, 2019, 55, 6385-6388.	4.1	44
713	Reactive sites rich porous tubular yolk-shell g-C3N4 via precursor recrystallization mediated microstructure engineering for photoreduction. Applied Catalysis B: Environmental, 2019, 253, 196-205.	20.2	91
714	Rational matching between MOFs and polymers in mixed matrix membranes for propylene/propane separation. Chemical Engineering Science, 2019, 204, 151-160.	3.8	49
715	Layer-by-layer assembly of metal-organic framework nanosheets with polymer. Nanotechnology, 2019, 30, 345602.	2.6	5
716	Bottom-up synthesis of 2D Co-based metal–organic framework nanosheets by an ammonia-assisted strategy for tuning the crystal morphology. CrystEngComm, 2019, 21, 3199-3208.	2.6	30
717	Enhanced CO2 separation of mixed matrix membranes with ZIF-8@GO composites as fillers: Effect of reaction time of ZIF-8@GO. Separation and Purification Technology, 2019, 223, 113-122.	7.9	55
718	<i>110th Anniversary: </i> Mixed Matrix Membranes with Fillers of Intrinsic Nanopores for Gas Separation. Industrial & Description of the Separation of the	3.7	54
719	Sequential Ligand Exchange of Coordination Polymers Hybridized with In Situ Grown and Aligned Au Nanowires for Rapid and Selective Gas Sensing. ACS Applied Materials & Samp; Interfaces, 2019, 11, 13624-13631.	8.0	14
720	Ultra-facile aqueous synthesis of nanoporous zeolitic imidazolate framework membranes for hydrogen purification and olefin/paraffin separation. Journal of Materials Chemistry A, 2019, 7, 10898-10904.	10.3	107
721	Synthesis strategies and potential applications of metal-organic frameworks for electrode materials for rechargeable lithium ion batteries. Coordination Chemistry Reviews, 2019, 388, 293-309.	18.8	104

#	Article	IF	CITATIONS
722	Rapid, Roomâ€Temperature and Templateâ€Free Synthesis of Metalâ€Organic Framework Nanowires in Alcohol. ChemCatChem, 2019, 11, 2058-2062.	3.7	16
723	A poly(amidoamine) nanoparticle cross-linked two-dimensional metal–organic framework nanosheet membrane for water purification. Chemical Communications, 2019, 55, 3935-3938.	4.1	25
724	Tunable 2D-gallium arsenide and graphene bandgaps in a graphene/GaAs heterostructure: an <i>ab initio</i> study. Journal of Physics Condensed Matter, 2019, 31, 265502.	1.8	6
725	Metal-organic framework nanosheets: Preparation and applications. Coordination Chemistry Reviews, 2019, 388, 79-106.	18.8	167
726	Electrokinetically Controlled Asymmetric Ion Transport through 1D/2D Nanofluidic Heterojunctions. Advanced Materials Technologies, 2019, 4, 1800742.	5.8	31
727	Electrochemical Synthesis of NiBTC Metal Organic Framework Thin Layer on Nickel Foam: An Efficient Electrocatalyst for the Hydrogen Evolution Reaction. Journal of Inorganic and Organometallic Polymers and Materials, 2019, 29, 1565-1574.	3.7	30
728	Ultrathin Two-Dimensional Metal–Organic Framework Nanosheets with the Inherent Open Active Sites as Electrocatalysts in Aprotic Li–O ₂ Batteries. ACS Applied Materials & Discrete Sites & Discrete	8.0	108
729	Ultrathin Phthalocyanine-Conjugated Polymer Nanosheet-Based Electrochemical Platform for Accurately Detecting H ₂ O ₂ in Real Time. ACS Applied Materials & Detection (among the control of the contr	8.0	38
730	Largeâ€Scale, Bottomâ€Up Synthesis of Binary Metal–Organic Framework Nanosheets for Efficient Water Oxidation. Angewandte Chemie, 2019, 131, 7125-7130.	2.0	98
731	Largeâ€Scale, Bottomâ€Up Synthesis of Binary Metal–Organic Framework Nanosheets for Efficient Water Oxidation. Angewandte Chemie - International Edition, 2019, 58, 7051-7056.	13.8	386
732	Ultrathin 2D metal–organic framework nanosheets prepared <i>via</i> sonication exfoliation of membranes from interfacial growth and exhibition of enhanced catalytic activity by their gold nanocomposites. RSC Advances, 2019, 9, 9386-9391.	3.6	31
733	Molecularly imprinted polymers based on zeolite imidazolate framework-8 for selective removal of 2,4-dichlorophenoxyacetic acid. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 570, 244-250.	4.7	29
734	Mn-based MOFs as efficient catalysts for catalytic conversion of carbon dioxide into cyclic carbonates and DFT studies. Chemical Engineering Science, 2019, 201, 288-297.	3.8	38
735	Mixedâ€Matrix Membranes Formed from Multiâ€Dimensional Metal–Organic Frameworks for Enhanced Gas Transport and Plasticization Resistance. ChemSusChem, 2019, 12, 2355-2360.	6.8	45
736	Hofmann Metal–Organic Framework Monolayer Nanosheets as an Axial Coordination Platform for Biosensing. ACS Applied Materials & Samp; Interfaces, 2019, 11, 12986-12992.	8.0	32
737	Ultrathin 2D metal–organic framework (nanosheets and nanofilms)-based <i>x</i> D–2D hybrid nanostructures as biomimetic enzymes and supercapacitors. Journal of Materials Chemistry A, 2019, 7, 9086-9098.	10.3	117
738	ZnO Nanoparticles Encapsulated in Nitrogen-Doped Carbon Material and Silicalite-1 Composites for Efficient Propane Dehydrogenation. IScience, 2019, 13, 269-276.	4.1	33
739	Metal–organic framework composites and their electrochemical applications. Journal of Materials Chemistry A, 2019, 7, 7301-7327.	10.3	284

#	Article	IF	CITATIONS
740	Design of thin and tubular MOFs-polymer mixed matrix membranes for highly selective separation of H2 and CO2. Separation and Purification Technology, 2019, 220, 197-205.	7.9	26
741	2D Freeâ€Standing Nitrogenâ€Doped Niâ€Ni ₃ S ₂ @Carbon Nanoplates Derived from Metal–Organic Frameworks for Enhanced Oxygen Evolution Reaction. Small, 2019, 15, e1900348.	10.0	88
742	Ultrathin noble metal nanoplates decorated metal-organic framework nanosheets as 2D/2D heterojunction nanobionic catalysts for explosive residues monitoring. 2D Materials, 2019, 6, 035008.	4.4	16
743	Synthesis of Soluble Metal Organic Framework Composites for Mixed Matrix Membranes. ACS Applied Materials & Samp; Interfaces, 2019, 11, 15638-15645.	8.0	9
744	Two dimensional nanomaterialâ€based separation membranes. Electrophoresis, 2019, 40, 2029-2040.	2.4	47
745	Interpenetrated structures appeared in supramolecular cages, MOFs, COFs. Coordination Chemistry Reviews, 2019, 389, 119-140.	18.8	103
747	Synthesis of Bimetallic Conductive 2D Metal–Organic Framework (Co <i>_x</i> Ni <i>_y</i> ECAT) and Its Mass Production: Enhanced Electrochemical Oxygen Reduction Activity. Small, 2019, 15, e1805232.	10.0	100
748	Plasticization resistance-enhanced CO2 separation at elevated pressures by mixed matrix membranes containing flexible metal-organic framework fillers. Journal of Membrane Science, 2019, 582, 103-110.	8.2	48
749	Facet-dependent photocatalytic hydrogen production of metal–organic framework NH ₂ -MIL-125(Ti). Chemical Science, 2019, 10, 4834-4838.	7.4	133
750	2D nanoporous materials: membrane platform for gas and liquid separations. 2D Materials, 2019, 6, 042002.	4.4	37
751	Enhancing plasticization-resistance of mixed-matrix membranes with exceptionally high CO2/CH4 selectivity through incorporating ZSM-25 zeolite. Journal of Membrane Science, 2019, 583, 23-30.	8.2	42
752	Two-dimensional niobate nanosheet membranes for water treatment: Effect of nanosheet preparation method on membrane performance. Separation and Purification Technology, 2019, 219, 222-229.	7.9	13
753	Delamination of 2D coordination polymers: The role of solvent and ultrasound. Ultrasonics Sonochemistry, 2019, 55, 186-195.	8.2	19
754	Fabrication of Ultrathin 2D Cuâ€BDC Nanosheets and the Derived Integrated MOF Nanocomposites. Advanced Functional Materials, 2019, 29, 1806720.	14.9	123
755	Hollow Functional Materials Derived from Metal–Organic Frameworks: Synthetic Strategies, Conversion Mechanisms, and Electrochemical Applications. Advanced Materials, 2019, 31, e1804903.	21.0	370
756	Studies on catalytic activity of MIL-53(Al) and structure analogue DUT-5(Al) using bdc- and bpdc-ligands functionalized with l-proline in a solid-solution mixed-linker approach. Molecular Catalysis, 2019, 467, 70-77.	2.0	18
757	Energy-efficient sonochemical approach for the preparation of nanohybrid composites from graphene oxide and metal-organic framework. Inorganic Chemistry Communication, 2019, 102, 185-191.	3.9	56
758	Microporous materials formed via intercalation of ultrathin coordination polymers in a layered silicate. Nano Energy, 2019, 59, 162-168.	16.0	8

#	Article	IF	CITATIONS
759	2D Nanosheets and Their Composite Membranes for Water, Gas, and Ion Separation. Angewandte Chemie, 2019, 131, 17674-17689.	2.0	68
760	2D Nanosheets and Their Composite Membranes for Water, Gas, and Ion Separation. Angewandte Chemie - International Edition, 2019, 58, 17512-17527.	13.8	186
761	Effect of Co(II) dopant on the removal of Methylene Blue by a dense copper terephthalate. Journal of Environmental Sciences, 2019, 81, 68-79.	6.1	14
762	Microporous Metal–Organic Framework with Dual Functionalities for Efficient Separation of Acetylene from Light Hydrocarbon Mixtures. ACS Sustainable Chemistry and Engineering, 2019, 7, 4897-4902.	6.7	65
763	Metal organic frameworks in electrochemical and optical sensing platforms: a review. Mikrochimica Acta, 2019, 186, 196.	5.0	138
764	Redoxâ€Reversible 2D Metal–Organic Framework Nanosheets (MONs) Based on the Hydroquinone/Quinone Couple. Chemistry - A European Journal, 2019, 25, 3835-3842.	3.3	20
765	Two-Dimensional Excitonic Metal–Organic Framework: Design, Synthesis, Regulation, and Properties. Inorganic Chemistry, 2019, 58, 3145-3155.	4.0	17
766	Fluorometric determination of the activity of inorganic pyrophosphatase and its inhibitors by exploiting the peroxidase mimicking properties of a two-dimensional metal organic framework. Mikrochimica Acta, 2019, 186, 190.	5.0	23
767	Templated growth of vertically aligned 2D metal–organic framework nanosheets. Journal of Materials Chemistry A, 2019, 7, 5811-5818.	10.3	40
768	High efficiency of toluene adsorption over a novel ZIF-67 membrane coating on paper-like stainless steel fibers. Journal of Solid State Chemistry, 2019, 279, 120976.	2.9	21
769	Mixed-matrix membranes for CO $<$ sub $>$ 2 $<$ /sub $>$ separation: role of the third component. Journal of Materials Chemistry A, 2019, 7, 24738-24759.	10.3	104
770	Ultrathin 2D Niâ€UMOF Composites for Highlyâ€Efficient 4â€Nitrophenol Hydrogenation. ChemistrySelect, 2019, 4, 14300-14308.	1.5	4
771	Amorphous FeNi-bimetallic infinite coordination polymers as advanced electrocatalysts for the oxygen evolution reaction. Chemical Communications, 2019, 55, 12567-12570.	4.1	24
772	Two-dimensional group-VA nanomaterials beyond black phosphorus: synthetic methods, properties, functional nanostructures and applications. Journal of Materials Chemistry A, 2019, 7, 25712-25771.	10.3	49
773	Phosphorus dual-site driven CoS ₂ @S, N co-doped porous carbon nanosheets for flexible quasi-solid-state supercapacitors. Journal of Materials Chemistry A, 2019, 7, 26618-26630.	10.3	82
774	Janus electrochemical exfoliation of two-dimensional materials. Journal of Materials Chemistry A, 2019, 7, 25691-25711.	10.3	41
775	CO2 separation using composites consisting of 1-butyl-3-methylimidazolium tetrafluoroborate/CdO/1-aminopyridinium iodide. Scientific Reports, 2019, 9, 16563.	3.3	4
776	Hierarchically Assembled Graphene Oxide Composite Membrane with Self-Healing and High-Efficiency Water Purification Performance. ACS Applied Materials & Samp; Interfaces, 2019, 11, 46251-46260.	8.0	49

#	Article	IF	CITATIONS
777	Two-Dimensional Nanomaterials-Based Polymer Composites: Fabrication and Energy Storage Applications. Advances in Polymer Technology, 2019, 2019, 1-15.	1.7	13
778	On-water surface synthesis of crystalline, few-layer two-dimensional polymers assisted by surfactant monolayers. Nature Chemistry, 2019, 11, 994-1000.	13.6	262
779	The Fabrication of 2D Cu-Based MOF Nanosheets for DNA Detection. Australian Journal of Chemistry, 2019, 72, 939.	0.9	3
780	Beyond graphene oxides: Emerging 2D molecular sieve membranes for efficient separation. Chinese Journal of Chemical Engineering, 2019, 27, 1257-1271.	3.5	13
781	Mechanical Properties of a Metal–Organic Framework formed by Covalent Cross-Linking of Metal–Organic Polyhedra. Journal of the American Chemical Society, 2019, 141, 1045-1053.	13.7	89
782	Recent progress in covalent organic framework thin films: fabrications, applications and perspectives. Chemical Society Reviews, 2019, 48, 488-516.	38.1	564
783	Ultrathin MOF nanosheet assembled highly oriented microporous membrane as an interlayer for lithium-sulfur batteries. Energy Storage Materials, 2019, 21, 14-21.	18.0	182
784	DFT study of the two dimensional metal–organic frameworks X3(HITP)2 as the cathode electrocatalysts for fuel cell. Applied Surface Science, 2019, 471, 256-262.	6.1	43
785	Perspectives of the smart Cu-lodine coordination polymers: A portage to the world of new nanomaterials and composites. Coordination Chemistry Reviews, 2019, 381, 65-78.	18.8	75
786	Fabrication of two-dimensional metal-organic frameworks on electrospun nanofibers and their derived metal doped carbon nanofibers for an advanced asymmetric supercapacitor with a high energy density. Journal of Power Sources, 2019, 413, 50-58.	7.8	67
787	Selective Gas Permeation in Mixed Matrix Membranes Accelerated by Hollow Ionic Covalent Organic Polymers. ACS Sustainable Chemistry and Engineering, 2019, 7, 1564-1573.	6.7	26
788	Catalytic applications of enzymes encapsulated in metal–organic frameworks. Coordination Chemistry Reviews, 2019, 381, 151-160.	18.8	214
789	Ordered distributed nickel sulfide nanoparticles across graphite nanosheets for efficient oxygen evolution reaction electrocatalyst. International Journal of Hydrogen Energy, 2019, 44, 1544-1554.	7.1	20
790	Synthesis and characterization of new silver(I) naphthalenedisulfonate complexes with heterocyclic N-donor ligands: Packing analyses and antibacterial studies. Polyhedron, 2019, 159, 275-283.	2.2	5
791	Membrane Separation in Organic Liquid: Technologies, Achievements, and Opportunities. Advanced Materials, 2019, 31, e1806090.	21.0	178
792	Bottom-up fabrication of two-dimensional Co-based zeolitic imidazolate framework tubular membranes consisting of nanosheets by vapor phase transformation of Co-based gel for H2/CO2 separation. Journal of Membrane Science, 2019, 573, 200-209.	8.2	58
793	A GO-Induced Assembly Strategy To Repair MOF Nanosheet-Based Membrane for Efficient H ₂ /CO ₂ Separation. ACS Applied Materials & Samp; Interfaces, 2019, 11, 990-997.	8.0	63
794	Allâ€Nanoporous Hybrid Membranes: Redefining Upper Limits on Molecular Separation Properties. Angewandte Chemie - International Edition, 2019, 58, 236-239.	13.8	35

#	Article	IF	CITATIONS
795	Intensification of hydrogen adsorption by novel Cu-BDC@rGO composite material synthesized in a microwave-assisted circular micro-channel. Chemical Engineering and Processing: Process Intensification, 2019, 135, 245-257.	3.6	13
796	Allâ€Nanoporous Hybrid Membranes: Redefining Upper Limits on Molecular Separation Properties. Angewandte Chemie, 2019, 131, 242-245.	2.0	14
797	Metal–organic frameworks: Structures and functional applications. Materials Today, 2019, 27, 43-68.	14.2	627
798	Tripleâ€Shelled Manganese–Cobalt Oxide Hollow Dodecahedra with Highly Enhanced Performance for Rechargeable Alkaline Batteries. Angewandte Chemie - International Edition, 2019, 58, 996-1001.	13.8	104
799	2D Metal–Organic Framework Nanosheets with Timeâ€Dependent and Multilevel Memristive Switching. Advanced Functional Materials, 2019, 29, 1806637.	14.9	101
800	Tripleâ€Shelled Manganese–Cobalt Oxide Hollow Dodecahedra with Highly Enhanced Performance for Rechargeable Alkaline Batteries. Angewandte Chemie, 2019, 131, 1008-1013.	2.0	17
801	2D and 3D Metal–Organic Framework at the Oil/Water Interface: A Case Study of Copper Benzenedicarboxylate. Advanced Materials Interfaces, 2019, 6, 1801139.	3.7	25
802	The application of different typological and structural MOFs-based materials for the dyes adsorption. Coordination Chemistry Reviews, 2019, 380, 471-483.	18.8	302
803	Preparation of ZnO nanoparticleâ€reinforced polyamide 6 composite by in situ â€coproduced method and their properties. Journal of Polymer Science Part A, 2019, 57, 165-170.	2.3	4
804	Mixed matrix membranes containing MOF@COF hybrid fillers for efficient CO2/CH4 separation. Journal of Membrane Science, 2019, 573, 97-106.	8.2	182
805	Substantial breakthroughs on function-led design of advanced materials used in mixed matrix membranes (MMMs): A new horizon for efficient CO2 separation. Progress in Materials Science, 2019, 102, 222-295.	32.8	179
806	Direct Catalytic Conversion of CO2 to Cyclic Organic Carbonates under Mild Reaction Conditions by Metal—Organic Frameworks. Catalysts, 2019, 9, 34.	3.5	47
807	3D covalent organic framework for morphologically induced high-performance membranes with strong resistance toward physical aging. Journal of Membrane Science, 2019, 574, 235-242.	8.2	51
808	Versatile Processing of Metal–Organic Framework–Fluoropolymer Composite Inks with Chemical Resistance and Sensor Applications. ACS Applied Materials & Samp; Interfaces, 2019, 11, 4385-4392.	8.0	29
809	Vapor-phase crosslinked mixed matrix membranes with UiO-66-NH2 for organic solvent nanofiltration. Journal of Membrane Science, 2019, 574, 124-135.	8.2	63
810	Luminescence properties of a family of lanthanide metal-organic frameworks. Microporous and Mesoporous Materials, 2019, 279, 400-406.	4.4	62
811	Partial and Complete Substitution of the 1,4-Benzenedicarboxylate Linker in UiO-66 with 1,4-Naphthalenedicarboxylate: Synthesis, Characterization, and H ₂ -Adsorption Properties. Inorganic Chemistry, 2019, 58, 1607-1620.	4.0	42
812	Scalable and Sustainable Synthesis of Advanced Porous Materials. ACS Sustainable Chemistry and Engineering, 2019, 7, 3647-3670.	6.7	54

#	Article	IF	CITATIONS
813	Ultrathin two-dimension metal-organic framework nanosheets/multi-walled carbon nanotube composite films for the electrochemical detection of H2O2. Journal of Electroanalytical Chemistry, 2019, 835, 178-185.	3.8	48
814	Two-dimensional metal-organic framework and covalent-organic framework: synthesis and their energy-related applications. Materials Today Chemistry, 2019, 12, 34-60.	3.5	105
815	Facile fabrication of BUCâ€21/gâ€C ₃ N ₄ composites and their enhanced photocatalytic Cr(VI) reduction performances under simulated sunlight. Applied Organometallic Chemistry, 2019, 33, e4621.	3.5	53
816	Thin mixed matrix and dual layer membranes containing metal-organic framework nanosheets and Polyactiveâ,,¢ for CO2 capture. Journal of Membrane Science, 2019, 570-571, 226-235.	8.2	52
817	Porous Polymers as Multifunctional Material Platforms toward Taskâ€Specific Applications. Advanced Materials, 2019, 31, e1802922.	21.0	315
818	Recent progress on fabrication methods of polymeric thin film gas separation membranes for CO2 capture. Journal of Membrane Science, 2019, 572, 38-60.	8.2	210
819	Modulating photoelectronic performance of metal–organic frameworks for premium photocatalysis. Coordination Chemistry Reviews, 2019, 380, 201-229.	18.8	112
820	Oriented Zeolitic imidazolate framework membranes within polymeric matrices for effective N2/CO2 separation. Journal of Membrane Science, 2019, 572, 82-91.	8.2	20
821	Nanoporous gold induced vertically standing 2D NiCo bimetal-organic framework nanosheets for non-enzymatic glucose biosensing. Sensors and Actuators B: Chemical, 2019, 281, 652-658.	7.8	72
822	In situ fabrication of MOF nanoparticles in PDMS membrane via interfacial synthesis for enhanced ethanol permselective pervaporation. Journal of Membrane Science, 2019, 573, 344-358.	8.2	97
823	Ultrathin Nickel-Based Metal–Organic Framework Nanosheets as Reusable Heterogeneous Catalyst for Ethylene Dimerization. ACS Applied Nano Materials, 2019, 2, 136-142.	5.0	24
824	Confined Ionic Liquid in an Ionic Porous Aromatic Framework for Gas Separation. ACS Applied Polymer Materials, 2019, 1, 95-102.	4.4	20
825	Color-tunable lanthanide metal–organic framework gels. Chemical Science, 2019, 10, 1644-1650.	7.4	101
826	Dimensional Impact of Metal–Organic Frameworks in Catalyzing Photoinduced Hydrogen Evolution and Cyanosilylation Reactions. ACS Applied Energy Materials, 2019, 2, 298-304.	5.1	35
827	Porous metal organic framework CuBDC nanosheet incorporated thin-film nanocomposite membrane for high-performance forward osmosis. Journal of Membrane Science, 2019, 573, 46-54.	8.2	97
828	One-Dimensional Looped Chain and Two-Dimensional Square Grid Coordination Polymers: Encapsulation of Bis(1,2,4-Triazole)-trans -cyclohexane into the Voids. European Journal of Inorganic Chemistry, 2019, 2019, 585-591.	2.0	14
829	Controllable synthesis of highly monodispersed nanoscale Fe-soc-MOF and the construction of Fe-soc-MOF@polypyrrole core-shell nanohybrids for cancer therapy. Chemical Engineering Journal, 2019, 358, 369-378.	12.7	81
830	A calcium-based microporous metal-organic framework for efficient adsorption separation of light hydrocarbons. Chemical Engineering Journal, 2019, 358, 446-455.	12.7	75

#	ARTICLE	IF	CITATIONS
831	Metal organic frameworks as potent treatment media for odorants and volatiles in air. Environmental Research, 2019, 168, 336-356.	7.5	44
832	Immobilization of Metal–Organic Frameworks on Supports for Sample Preparation and Chromatographic Separation. Chromatographia, 2019, 82, 361-375.	1.3	33
833	Confined Synthesis of 2D Nanostructured Materials toward Electrocatalysis. Advanced Energy Materials, 2020, 10, 1900486.	19.5	123
834	High-pressure CO2/CH4 separation of Zr-MOFs based mixed matrix membranes. Separation and Purification Technology, 2020, 230, 115858.	7.9	94
835	Cu-metal-organic framework supported on chitosan for efficient condensation of aromatic aldehydes and malononitrile. Carbohydrate Polymers, 2020, 228, 115393.	10.2	33
836	New opportunities for emerging 2D materials in bioelectronics and biosensors. Current Opinion in Biomedical Engineering, 2020, 13, 32-41.	3.4	48
837	A porous tetraphenylethylene-based polymer for fast-response fluorescence sensing of Fe(III) ion and nitrobenzene. Dyes and Pigments, 2020, 173, 107929.	3.7	15
838	High proton conductivity of MOFs-polymer composite membranes by phosphoric acid impregnation. Microporous and Mesoporous Materials, 2020, 292, 109763.	4.4	30
839	A metal organic framework-ultrafiltration hybrid system for removing selected pharmaceuticals and natural organic matter. Chemical Engineering Journal, 2020, 382, 122920.	12.7	47
840	Manufacturing Nanoporous Materials for Energy-Efficient Separations. , 2020, , 33-81.		8
841	A zirconium-porphyrin MOF-based ratiometric fluorescent biosensor for rapid and ultrasensitive detection of chloramphenicol. Biosensors and Bioelectronics, 2020, 149, 111801.	10.1	126
842	Metalâ€Organic Frameworks in Polymer Science: Polymerization Catalysis, Polymerization Environment, and Hybrid Materials. Macromolecular Rapid Communications, 2020, 41, e1900333.	3.9	109
843	Toward Sustainable Chemical Processing With Graphene-Based Materials., 2020,, 195-229.		0
844	Design of niobate nanosheet-graphene oxide composite nanofiltration membranes with improved permeability. Journal of Membrane Science, 2020, 595, 117598.	8.2	25
845	The first complete mitochondrial genome of the sand dollar Sinaechinocyamus mai (Echinoidea:) Tj ETQq0 0 0 rgl	3T/Qverlo	ck 10 Tf 50 1
846	Laminar Graphene Oxide Membranes Towards Selective Ionic and Molecular Separations: Challenges and Progress. Chemical Record, 2020, 20, 344-354.	5.8	57
847	Eco-friendly method for synthesis of zeolitic imidazolate framework 8 decorated graphene oxide for antibacterial activity enhancement. Particuology, 2020, 49, 24-32.	3.6	18
848	Efficient mercury chloride capture by ultrathin 2D metal-organic framework nanosheets. Chemical Engineering Journal, 2020, 379, 122337.	12.7	41

#	Article	IF	CITATIONS
849	2D Nanomaterials for Cancer Theranostic Applications. Advanced Materials, 2020, 32, e1902333.	21.0	375
850	Hydrothermal stable ZIF-67 nanosheets via morphology regulation strategy to construct mixed-matrix membrane for gas separation. Journal of Membrane Science, 2020, 593, 117404.	8.2	95
851	Ultra-thin metal-organic framework nanoribbons. National Science Review, 2020, 7, 46-52.	9.5	38
852	Adsorptive removal of lead (II) ion from water and wastewater media using carbon-based nanomaterials as unique sorbents: A review. Journal of Environmental Management, 2020, 254, 109814.	7.8	110
853	Ultrasmall 2 D Co _{<i>x</i>} Zn _{2â°'<i>x</i>} (Benzimidazole) ₄ Metal–Organic Framework Nanosheets and their Derived Co Nanodots@Co,Nâ€Codoped Graphene for Efficient Oxygen Reduction Reaction. ChemSusChem, 2020, 13, 1556-1567.	6.8	36
854	Postâ€synthetic Modification of DUTâ€5â€based Metal Organic Frameworks for the Generation of Singleâ€site Catalysts and their Application in Selective Epoxidation Reactions. ChemCatChem, 2020, 12, 1134-1142.	3.7	16
855	High gas permselectivity in ZIFâ€302/polyimide selfâ€consistent mixedâ€matrix membrane. Journal of Applied Polymer Science, 2020, 137, 48513.	2.6	31
856	Sulfonated chitosan oligosaccharide alleviates the inhibitory effect of basic fibroblast growth factor on osteogenic differentiation of human periodontal ligament stem cells. Journal of Periodontology, 2020, 91, 975-985.	3.4	10
857	2D Materials in Light: Excitedâ€State Dynamics and Applications. Chemical Record, 2020, 20, 413-428.	5.8	10
858	Modified staging classification of gallbladder carcinoma on the basis of the 8th edition of the American Joint Commission on Cancer (AJCC) staging system. European Journal of Surgical Oncology, 2020, 46, 527-533.	1.0	7
859	Filamentous virus-based membrane prepared by chemical cross-linking at liquid/liquid interface for a tailored molecular separation system. Journal of Membrane Science, 2020, 595, 117595.	8.2	1
860	Polymer/MOF-derived multilayer fibrous membranes for moisture-wicking and efficient capturing both fine and ultrafine airborne particles. Separation and Purification Technology, 2020, 235, 116183.	7.9	64
861	Metal-organic framework-based CO2 capture: From precise material design to high-efficiency membranes. Frontiers of Chemical Science and Engineering, 2020, 14, 188-215.	4.4	31
862	A General Approach to Direct Growth of Oriented Metal–Organic Framework Nanosheets on Reduced Graphene Oxides. Advanced Science, 2020, 7, 1901480.	11.2	25
863	Metalâ€Organic Sheets for Efficient Drug Delivery and Bioimaging. ChemMedChem, 2020, 15, 416-419.	3.2	15
864	MOF-Polymer Hybrid Materials: From Simple Composites to Tailored Architectures. Chemical Reviews, 2020, 120, 8267-8302.	47.7	512
865	Chemical fixation of CO ₂ into cyclic carbonates catalyzed by bimetal mixed MOFs: the role of the interaction between Co and Zn. Dalton Transactions, 2020, 49, 312-321.	3.3	52
866	Organic–inorganic hybrids for CO2 sensing, separation and conversion. Nanoscale Horizons, 2020, 5, 431-453.	8.0	25

#	Article	IF	CITATIONS
867	Sharply promoted CO2 diffusion in a mixed matrix membrane with hierarchical supra-nanostructured porous coordination polymer filler. Journal of Membrane Science, 2020, 597, 117772.	8.2	23
868	Fabrication of a sensitive and fast response electrochemical glucose sensing platform based on co-based metal-organic frameworks obtained from rapid in situ conversion of electrodeposited cobalt hydroxide intermediates. Talanta, 2020, 210, 120696.	5.5	60
869	High-Performance CO ₂ -Selective Hybrid Membranes by Exploiting MOF-Breathing Effects. ACS Applied Materials & Diterfaces, 2020, 12, 2952-2961.	8.0	32
870	Pushing Rubbery Polymer Membranes To Be Economic for CO ₂ Separation: Embedment with Ti ₃ C ₂ T _{<i>x</i>>} MXene Nanosheets. ACS Applied Materials & literfaces, 2020, 12, 3984-3992.	8.0	105
871	Microflowers Comprised of Cu/Cu _{<i>x</i>} O/NC Nanosheets as Electrocatalysts and Horseradish Peroxidase Mimics. ACS Applied Nano Materials, 2020, 3, 617-623.	5.0	30
872	Metal–Organic Frameworks as Metal Ion Precursors for the Synthesis of Nanocomposites for Lithiumâ€lon Batteries. Angewandte Chemie, 2020, 132, 4793-4799.	2.0	7
873	Metal–Organic Frameworks as Metal Ion Precursors for the Synthesis of Nanocomposites for Lithiumâ€lon Batteries. Angewandte Chemie - International Edition, 2020, 59, 4763-4769.	13.8	52
875	Uniform Tb-based coordination polymer microspheres and their film: synthesis, characterization, and luminescence properties. Chemical Papers, 2020, 74, 1417-1427.	2.2	1
876	Effects of structural properties of fillers on performances of Matrimid \hat{A}^{\otimes} 5218 mixed matrix membranes. Separation and Purification Technology, 2020, 236, 116277.	7.9	3
877	Encapsulating metal organic framework into hollow mesoporous carbon sphere as efficient oxygen bifunctional electrocatalyst. National Science Review, 2020, 7, 609-619.	9.5	95
878	Synaptic Plasticity and Filtering Emulated in Metal–Organic Frameworks Nanosheets Based Transistors. Advanced Electronic Materials, 2020, 6, 1900978.	5.1	49
879	Enhanced permeability in mixed matrix membranes for CO2 capture through the structural regulation of the amino-functionalized Co/ZIF-8 heterometallic nanoparticles. Chemical Engineering Journal, 2020, 383, 123137.	12.7	34
880	Recyclable Printed Circuit Boards and Alkali Reduction Wastewater: Approach to a Sustainable Copper-Based Metal–Organic Framework. ACS Sustainable Chemistry and Engineering, 2020, 8, 1371-1379.	6.7	21
881	Two-dimensional metal–organic frameworks and their derivatives for electrochemical energy storage and electrocatalysis. Nanoscale Advances, 2020, 2, 536-562.	4.6	109
882	Synthesis of micro/nanoscaled metal–organic frameworks and their direct electrochemical applications. Chemical Society Reviews, 2020, 49, 301-331.	38.1	685
883	Mg-MOF-74/Polyvinyl acetate (PVAc) mixed matrix membranes for CO2 separation. Separation and Purification Technology, 2020, 238, 116411.	7.9	52
885	Metal–Organic Frameworks with Double Channels for Rapid and Reversible Adsorption of 1,2-Ethylenediamine and Gases. ACS Applied Materials & Samp; Interfaces, 2020, 12, 1412-1418.	8.0	14
886	Wear-resistant carbon nanorod-embedded poly(vinylidene fluoride) composites with excellent tribological performance. Composites Part A: Applied Science and Manufacturing, 2020, 129, 105721.	7.6	17

#	Article	IF	CITATIONS
887	A Decade of UiO-66 Research: A Historic Review of Dynamic Structure, Synthesis Mechanisms, and Characterization Techniques of an Archetypal Metal–Organic Framework. Crystal Growth and Design, 2020, 20, 1347-1362.	3.0	306
888	Layered Metal Hydroxides and Their Derivatives: Controllable Synthesis, Chemical Exfoliation, and Electrocatalytic Applications. Advanced Energy Materials, 2020, 10, 1902535.	19.5	90
889	Controllable Synthesis of Porphyrinâ€Based 2D Lanthanide Metal–Organic Frameworks with Thickness― and Metalâ€Nodeâ€Dependent Photocatalytic Performance. Angewandte Chemie, 2020, 132, 3326-3332.	2.0	31
890	Controllable Synthesis of Porphyrinâ€Based 2D Lanthanide Metal–Organic Frameworks with Thickness― and Metalâ€Nodeâ€Dependent Photocatalytic Performance. Angewandte Chemie - International Edition, 2020, 59, 3300-3306.	13.8	148
892	Peeling and Mesoscale Dissociation of Silk Fibers for Hybridization of Electrothermic Fibrous Composites. ACS Sustainable Chemistry and Engineering, 2020, 8, 248-255.	6.7	12
893	The flammability and mechanical properties of poly (lactic acid) composites containing Ni-MOF nanosheets with polyhydroxy groups. Composites Part B: Engineering, 2020, 183, 107568.	12.0	66
894	Mixed matrix membranes comprising a polymer of intrinsic microporosity loaded with surface-modified non-porous pearl-necklace nanoparticles. Journal of Membrane Science, 2020, 597, 117627.	8.2	18
895	Advanced Photoresponsive Materials Using the Metal–Organic Framework Approach. Advanced Materials, 2020, 32, e1905227.	21.0	184
896	A review on emerging organic-containing microporous material membranes for carbon capture and separation. Chemical Engineering Journal, 2020, 391, 123575.	12.7	82
897	Enhanced CO ₂ /CH ₄ Separation Performances of Mixed Matrix Membranes Incorporated with Two-Dimensional Ni-Based MOF Nanosheets. ACS Sustainable Chemistry and Engineering, 2020, 8, 642-648.	6.7	37
898	Preparation of Zeolitic Imidazolate Framework-91 and its modeling for pervaporation separation of water/ethanol mixtures. Separation and Purification Technology, 2020, 237, 116330.	7.9	33
899	Recent Progress in Twoâ€Dimensional Ferroelectric Materials. Advanced Electronic Materials, 2020, 6, 1900818.	5.1	236
900	Band structure tunable synthesis of photocatalytic porous aromatic frameworks via Scholl reaction. Materials and Design, 2020, 186, 108371.	7.0	12
901	Constructing 2D MOFs from 2D LDHs: a highly efficient and durable electrocatalyst for water oxidation. Journal of Materials Chemistry A, 2020, 8, 190-195.	10.3	93
902	Superhydrophilic alkynyl carbon composite nanofiltration membrane for water purification. Applied Surface Science, 2020, 508, 144788.	6.1	16
903	Metal-organic framework membranes: From synthesis to electrocatalytic applications. Chinese Chemical Letters, 2020, 31, 2189-2201.	9.0	61
904	Synthesis of nano-sheets seeds for secondary growth of highly hydrogen permselective ZIF-95 membranes. Journal of Membrane Science, 2020, 597, 117629.	8.2	42
905	Experimental and theoretical validations of a one-pot sequential sensing of Hg2+ and biothiols by a 3D Cu-based zwitterionic metalâ^'organic framework. Talanta, 2020, 210, 120596.	5.5	34

#	Article	IF	CITATIONS
906	2D Metalâ€Organic Framework Materials for Membraneâ€Based Separation. Advanced Materials Interfaces, 2020, 7, 1901514.	3.7	80
907	Electrochemical preparation of Cu/Cu2O-Cu(BDC) metal-organic framework electrodes for photoelectrocatalytic reduction of CO2. Journal of CO2 Utilization, 2020, 42, 101299.	6.8	40
908	Facile synthesis of difunctional NiV LDH@ZIF-67 p-n junction: Serve as prominent photocatalyst for hydrogen evolution and supercapacitor electrode as well. Renewable Energy, 2020, 162, 535-549.	8.9	83
909	MOF Nanosheet-Based Mixed Matrix Membranes with Metal–Organic Coordination Interfacial Interaction for Gas Separation. ACS Applied Materials & Description of the Coordination of the C	8.0	78
910	Sn-MOF@CNT nanocomposite: An efficient electrochemical sensor for detection of hydrogen peroxide. Environmental Research, 2020, 191, 110005.	7. 5	65
911	Room-Temperature Rapid Synthesis of Two-Dimensional Metal–Organic Framework Nanosheets with Tunable Hierarchical Porosity for Enhanced Adsorption Desulfurization Performance. Industrial & Lamp; Engineering Chemistry Research, 2020, 59, 18857-18864.	3.7	78
912	Nanomaterial-based fluorescent biosensors for monitoring environmental pollutants: A critical review. Talanta Open, 2020, 2, 100006.	3.7	58
913	Green synthesis of Zr-based metal–organic framework hydrogel composites and their enhanced adsorptive properties. Inorganic Chemistry Frontiers, 2020, 7, 4813-4821.	6.0	18
914	A Sensitive FRET Biosensor Based on Carbon Dots-Modified Nanoporous Membrane for 8-hydroxy-2′-Deoxyguanosine (8-OHdG) Detection with Au@ZIF-8 Nanoparticles as Signal Quenchers. Nanomaterials, 2020, 10, 2044.	4.1	12
915	Computational study of the effect of functionalization on natural gas components separation and adsorption in NUM-3a MOF. Journal of Molecular Graphics and Modelling, 2020, 101, 107731.	2.4	8
916	Two-dimensional metal-organic framework materials for energy conversion and storage. Journal of Power Sources, 2020, 477, 228919.	7.8	34
917	Destruction of Metal–Organic Frameworks: Positive and Negative Aspects of Stability and Lability. Chemical Reviews, 2020, 120, 13087-13133.	47.7	294
918	Amino-functionalized copper-based metal–organic frameworks for highly selective and sensitive detection of hypochlorite. New Journal of Chemistry, 2020, 44, 19753-19758.	2.8	15
919	Revisiting Metal–Organic Frameworks for Oxygen Evolution: A Case Study. Inorganic Chemistry, 2020, 59, 15335-15342.	4.0	29
920	Recent advances in construction of hybrid nano-structures for flame retardant polymers application. Applied Materials Today, 2020, 20, 100762.	4.3	31
921	Bridging the Gap between Reality and Ideality of Graphdiyne: The Advances of Synthetic Methodology. CheM, 2020, 6, 1933-1951.	11.7	54
922	Two-dimensional Metal-organic Frameworks and Derivatives for Electrocatalysis. Chemical Research in Chinese Universities, 2020, 36, 662-679.	2.6	27
923	Microporous Materials in Scalable Shapes: Fiber Sorbents. Chemistry of Materials, 2020, 32, 7081-7104.	6.7	15

#	Article	IF	CITATIONS
924	Dynamic single-site polysulfide immobilization in long-range disorder Cu-MOFs. Chemical Communications, 2020, 56, 10074-10077.	4.1	1
925	Exploiting the effects of zirconium-based metal organic framework decorated carbon nanofibers to improve CO2/CH4 separation performance of thin film nanocomposite membranes. Journal of Industrial and Engineering Chemistry, 2020, 85, 102-110.	5.8	34
926	Molecular sieving mixed matrix membranes embodying nano-fillers with extremely narrow pore-openings. Journal of Membrane Science, 2020, 601, 117880.	8.2	16
927	Understanding CO ₂ /CH ₄ Separation in Pristine and Defective 2D MOF CuBDC Nanosheets via Nonequilibrium Molecular Dynamics. Langmuir, 2020, 36, 13591-13600.	3.5	27
928	2D Material Based Advanced Membranes for Separations in Organic Solvents. Small, 2020, 16, e2003400.	10.0	31
930	Peptide-Mediated Synthesis of Zeolitic Imidazolate Framework-8 with Controllable Morphology and Size. Langmuir, 2020, 36, 13981-13988.	3.5	15
931	Boosting gas separation performance and suppressing the physical aging of polymers of intrinsic microporosity (PIM-1) by nanomaterial blending. Nanoscale, 2020, 12, 23333-23370.	5.6	81
932	Supracolloidal Atomium. ACS Nano, 2020, 14, 15748-15756.	14.6	16
933	Frontiers in hybrid and interfacial materials chemistry research. MRS Bulletin, 2020, 45, 951-964.	3.5	6
934	Fabrication of Homogeneous Non-Noble Metal Nanoparticles within Metal–Organic Framework Nanosheets for Catalytic Reduction of 4-Nitrophenol. Crystal Growth and Design, 2020, 20, 6217-6225.	3.0	24
935	MOF mixed matrix membranes for CO2 separation. , 2020, , 331-355.		4
936	Investigation of the carbon dioxide adsorption behavior and the heterogeneous catalytic efficiency of a novel Ni-MOF with nitrogen-rich channels. RSC Advances, 2020, 10, 29772-29779.	3.6	5
937	2D Materials Decorated with Ultrathin and Porous Graphene Oxide for High Stability and Selective Surface Activity. Advanced Materials, 2020, 32, e2002723.	21.0	33
938	Custom Formulation of Multicomponent Mixed-Matrix Membranes for Efficient Post-combustion Carbon Capture. Cell Reports Physical Science, 2020, 1, 100113.	5.6	10
939	Effects of the Morphology of the ZIF on the CO ₂ Separation Performance of MMMs. Industrial & Lamp; Engineering Chemistry Research, 2020, 59, 14458-14466.	3.7	37
940	Preparation of carbon molecular sieve membranes with remarkable CO2/CH4 selectivity for high-pressure natural gas sweetening. Journal of Membrane Science, 2020, 614, 118529.	8.2	46
941	The rise of MOFs and their derivatives for flame retardant polymeric materials: A critical review. Composites Part B: Engineering, 2020, 199, 108265.	12.0	98
942	Recent development of two-dimensional metal–organic framework derived electrocatalysts for hydrogen and oxygen electrocatalysis. Nanoscale, 2020, 12, 18497-18522.	5.6	69

#	Article	IF	CITATIONS
943	Indium-Based Metal–Organic Framework for High-Performance Electroreduction of CO ₂ to Formate. Inorganic Chemistry, 2020, 59, 11298-11304.	4.0	35
944	Synthesis of Nanosheets Containing Uniformly Dispersed PdII lons at an Aqueous/Aqueous Interface: Development of a Highly Active Nanosheet Catalyst for Mizoroki–Heck Reaction. ACS Omega, 2020, 5, 18484-18489.	3.5	6
945	Functional metal–organic frameworks as effective sensors of gases and volatile compounds. Chemical Society Reviews, 2020, 49, 6364-6401.	38.1	784
946	Free-standing metal–organic framework (MOF) monolayers by self-assembly of polymer-grafted nanoparticles. Chemical Science, 2020, 11, 8433-8437.	7.4	28
947	A novel water-stable two-dimensional zeolitic imidazolate frameworks thin-film composite membrane for enhancements in water permeability and nanofiltration performance. Chemosphere, 2020, 261, 127717.	8.2	12
948	Polyimide based mixed matrix membranes incorporating Cu-BDC nanosheets for impressive helium separation. Separation and Purification Technology, 2020, 253, 117430.	7.9	15
949	Carbon Quantum Dot-Enabled Tuning of the Microphase Structures of Poly(ether- <i>b</i> -amide) Membrane for CO ₂ Separation. Industrial & Engineering Chemistry Research, 2020, 59, 14960-14969.	3.7	13
950	Iontronics Using V ₂ CT _{<i>x</i>} MXene-Derived Metal–Organic Framework Solid Electrolytes. ACS Nano, 2020, 14, 9840-9847.	14.6	27
951	Anisotropic reticular chemistry. Nature Reviews Materials, 2020, 5, 764-779.	48.7	149
952	The preparation of black phosphorus in RP/Sn/I2 system: its nucleation agent and relatively optimal temperature program. Journal of Materials Science: Materials in Electronics, 2020, 31, 19093-19105.	2.2	4
953	ZIF-67 with precursor concentration-dependence morphology for aerobic oxidation of toluene. Journal of Organometallic Chemistry, 2020, 930, 121597.	1.8	10
954	Immobilized dyes within anionic indium coordination polymer for photocatalytic 1O2 generation. Microporous and Mesoporous Materials, 2020, 308, 110568.	4.4	6
955	Removal of arsenic(<scp>iii</scp>) from water by 2D zeolitic imidazolate framework-67 nanosheets. Environmental Science: Nano, 2020, 7, 3616-3626.	4.3	23
956	Metal–Organic Layers for Electrocatalysis and Photocatalysis. ACS Central Science, 2020, 6, 2149-2158.	11.3	54
957	Diatomite-Metal-Organic Framework Composite with Hierarchical Pore Structures for Adsorption/Desorption of Hydrogen, Carbon Dioxide and Water Vapor. Materials, 2020, 13, 4700.	2.9	13
958	A Facile Electrosynthesis of Terephthalate (tp)â€Based Metalâ€Organic Framework, Ni 3 (OH) 2 (H 2 O) 2 (tp) 2 with Superior Catalytic Activity for Hydrogen Evolution Reaction. European Journal of Inorganic Chemistry, 2020, 2020, 4215-4224.	2.0	6
959	Synthesis of a novel <scp>Znâ€MOF</scp> / <scp>PVA</scp> nanofibrous composite as bioorganic material: Design, systematic study and an efficient arsenic removal. Polymer Engineering and Science, 2020, 60, 2793-2803.	3.1	15
960	Recent Progress of Twoâ€Dimensional Metalâ€Organic Frameworks and Their Derivatives for Oxygen Evolution Electrocatalysis. ChemElectroChem, 2020, 7, 4695-4712.	3.4	21

#	Article	IF	CITATIONS
961	Rational design and synthesis of ultramicroporous metal-organic frameworks for gas separation. Coordination Chemistry Reviews, 2020, 423, 213485.	18.8	127
962	State of the art recent progress in two dimensional MXenes based gas sensors and biosensors: A comprehensive review. Coordination Chemistry Reviews, 2020, 424, 213514.	18.8	169
963	Just add water: for instant and scalable conversion of metal acetates to metal–organic frameworks. Analytical Methods, 2020, 12, 4635-4637.	2.7	5
964	Ion-molecule reactions catalyzed by a single gold atom. Chemical Science, 2020, 11, 8502-8505.	7.4	4
965	Fast-synthesis and catalytic property of heterogeneous Co-MOF catalysts for the epoxidation of \hat{l}_{\pm} -pinene with air. New Journal of Chemistry, 2020, 44, 17413-17421.	2.8	11
966	Metal–organic framework <scp>â€based mixedâ€matrix</scp> membranes for gas separation: An overview. Journal of Polymer Science, 2020, 58, 2518-2546.	3.8	41
967	Two-dimensional iron MOF nanosheet as a highly efficient nanozyme for glucose biosensing. Journal of Materials Chemistry B, 2020, 8, 9295-9303.	5.8	67
968	Nonlinear Optical Features of Zeolitic Imidazolate Framework-67 Nanocrystals for Mid-Infrared Pulse Generation. Crystal Growth and Design, 2020, 20, 6683-6690.	3.0	19
969	Synthesis of Zn-based 1D and 2D coordination polymer nanoparticles in block copolymer micelles. Nanoscale Advances, 2020, 2, 4557-4565.	4.6	4
970	Metal–Organic Framework Nanosheets for Thin-Film Composite Membranes with Enhanced Permeability and Selectivity. ACS Applied Nano Materials, 2020, 3, 9238-9248.	5.0	57
971	Graphitic Carbon Nitride Microtubes for Efficient Photocatalytic Overall Water Splitting: The Morphology Derived Electrical Field Enhancement. ACS Sustainable Chemistry and Engineering, 2020, 8, 14386-14396.	6.7	39
972	Nanomechanical behavior and interfacial deformation beyond the elastic limit in 2D metal–organic framework nanosheets. Nanoscale Advances, 2020, 2, 5181-5191.	4.6	18
973	Gasâ€"Solid Two-Phase Flow Synthesis Equipment: A New Method for Continuous, Large-Scale Preparation of Metalâ€"Organic Frameworks with No Solvent. Industrial & Diplementing Chemistry Research, 2020, 59, 15791-15795.	3.7	4
974	Size-controlled synthesis of metal–organic frameworks and their performance as fluorescence sensors. Analyst, The, 2020, 145, 7349-7356.	3.5	12
975	The Applications of 2D Nanomaterials in Energy-Related Process. ACS Symposium Series, 2020, , 219-251.	0.5	1
976	Mixed matrix membranes containing polymerâ€embedded metalâ€organic framework microspheres. AICHE Journal, 2020, 66, e17028.	3.6	14
977	Hydrogen Bonds Significantly Enhance Out-of-Plane Thermal and Electrical Transport in 2D Graphamid: Implications for Energy Conversion and Storage. ACS Applied Nano Materials, 2020, 3, 11090-11097.	5.0	5
978	Two-Dimensional Metal Organic Framework Nanosheets as Bifunctional Catalyst for Electrochemical and Photoelectrochemical Water Oxidation. Frontiers in Chemistry, 2020, 8, 604239.	3.6	12

#	Article	IF	CITATIONS
979	Nanocomposite Membranes for Liquid and Gas Separations from the Perspective of Nanostructure Dimensions. Membranes, 2020, 10, 297.	3.0	17
980	Graphene Oxide-Supported Lanthanide Metal–Organic Frameworks with Boosted Stabilities and Detection Sensitivities. Analytical Chemistry, 2020, 92, 15550-15557.	6.5	38
981	ZnS, Fe, and P co-doped N enriched carbon derived from MOFs as efficient electrocatalyst for oxygen reduction reaction. International Journal of Hydrogen Energy, 2020, 45, 31863-31870.	7.1	10
982	Gas–solid two-phase flow (GSF) mechanochemical synthesis of dual-metal–organic frameworks and research on electrochemical properties. Nanoscale Advances, 2020, 2, 5682-5687.	4.6	4
983	Metal–Organic Frameworks with Enhanced Photodynamic Therapy: Synthesis, Erythrocyte Membrane Camouflage, and Aptamer-Targeted Aggregation. ACS Applied Materials & Samp; Interfaces, 2020, 12, 23697-23706.	8.0	101
984	Construction of NH2-MIL-125(Ti) nanoplates modified Bi2WO6 microspheres with boosted visible-light photocatalytic activity. Research on Chemical Intermediates, 2020, 46, 3311-3326.	2.7	20
985	Two-dimensional material membranes for critical separations. Inorganic Chemistry Frontiers, 2020, 7, 2560-2581.	6.0	65
986	Selective Separation of CO ₂ from Flue Gas Using Carbon and Boron Nitride Nanotubes as a Membrane. Energy & Description of CO ₂ from Flue Gas Using Carbon and Boron Nitride Nanotubes as a Membrane. Energy & Description of CO _{34, 7223-7231.}	5.1	7
987	Porphyrinic Metal–Organic Framework Nanorod-Based Dual-Modal Nanoprobe for Sensing and Bioimaging of Phosphate. ACS Applied Materials & Samp; Interfaces, 2020, 12, 26391-26398.	8.0	47
988	Nonlinear-Optical Response in Zeolitic Imidazolate Framework Glass. Inorganic Chemistry, 2020, 59, 8380-8386.	4.0	35
989	2D magnetic MOFs with micron-lateral size by liquid exfoliation. Chemical Communications, 2020, 56, 7657-7660.	4.1	21
990	Effect of comonomer on the Cu-BDC/Poly(NMA-coSAS) foams templating from CO2-in-water emulsion: Adsorptive and bacteriostatic applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 602, 124959.	4.7	1
991	Metal organic frameworks for adsorption-based separation of fluorocompounds: a review. Materials Advances, 2020, 1, 310-320.	5.4	53
992	The Effect of PVP Concentration on Particle Size, Morphological and Optical Properties of Cassiterite Nanoparticles. IEEE Access, 2020, 8, 93444-93454.	4.2	9
993	Mixed matrix membranes (MMMs) using an emerging metal-organic framework (MUF-15) for CO2 separation. Journal of Membrane Science, 2020, 609, 118245.	8.2	42
994	A Wearable and Highly Sensitive Textile-based Pressure Sensor with Ti3C2Tx Nanosheets. Sensors and Actuators A: Physical, 2020, 311, 112081.	4.1	32
995	Recent Progress in Stimulus-Responsive Two-Dimensional Metal–Organic Frameworks. , 2020, 2, 779-797.		187
996	Chemically stable two-dimensional MXene@UIO-66-(COOH)2 composite lamellar membrane for multi-component pollutant-oil-water emulsion separation. Composites Part B: Engineering, 2020, 197, 108188.	12.0	79

#	Article	IF	CITATIONS
997	Performance enhancement of oxygen evolution reaction through incorporating bimetallic electrocatalysts in two-dimensional metal–organic frameworks. Catalysis Science and Technology, 2020, 10, 3897-3903.	4.1	34
998	<i>In situ</i> structural evolution of the multi-site alloy electrocatalyst to manipulate the intermediate for enhanced water oxidation reaction. Energy and Environmental Science, 2020, 13, 2200-2208.	30.8	101
999	MOF-Based Polymeric Nanocomposite Films as Potential Materials for Drug Delivery Devices in Ocular Therapeutics. ACS Applied Materials & Samp; Interfaces, 2020, 12, 30189-30197.	8.0	62
1000	Twofold Interpenetrated 2D MOF Nanosheets Generated by an Instant In Situ Exfoliation Method: Morphology Control and Fluorescent Sensing. Advanced Materials Interfaces, 2020, 7, 2000813.	3.7	33
1001	Air-thermal processing of hierarchically porous metal–organic frameworks. Nanoscale, 2020, 12, 14171-14179.	5.6	7
1002	Structural and Morphological Transformation of Two-Dimensional Metal–Organic Frameworks Accompanied by Controlled Preparation Using the Spray Method. Langmuir, 2020, 36, 7392-7399.	3.5	7
1003	Highly efficient phosphor-glass composites by pressureless sintering. Nature Communications, 2020, 11, 2805.	12.8	129
1004	The synergistic effect of heterostructured dissimilar metal–organic framework thin films on adsorption properties. Journal of Materials Chemistry A, 2020, 8, 12990-12995.	10.3	15
1005	Nanoporous materials derived from metal-organic framework for supercapacitor application. Journal of Energy Storage, 2020, 30, 101525.	8.1	39
1006	MOF-derived Zn, S, and P co-doped nitrogen-enriched carbon as an efficient electrocatalyst for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2020, 45, 19174-19180.	7.1	11
1007	Defect-free mixed-matrix membranes consisting of anion-pillared metal-organic frameworks and poly(ionic liquid)s for separation of acetylene from ethylene. Journal of Membrane Science, 2020, 611, 118329.	8.2	17
1008	Metal–organic framework derived nitrogen-doped carbon-RhNi alloys anchored on graphene for highly efficient hydrogen evolution reaction. Inorganic Chemistry Frontiers, 2020, 7, 2676-2684.	6.0	6
1009	Copper oxide hierarchical morphology derived from MOF precursors for enhancing ethanol vapor sensing performance. Journal of Materials Chemistry C, 2020, 8, 9671-9677.	5.5	29
1010	Modulating Hierarchical Micro/Mesoporosity by a Mixed Solvent Approach in Alâ€MOF: Stabilization of MAPbBr 3 Quantum Dots. Chemistry - A European Journal, 2020, 26, 14671-14678.	3.3	9
1011	Mechanical and tribological properties of nanocomposites incorporated with two-dimensional materials. Friction, 2020, 8, 813-846.	6.4	79
1012	Seawater Desalination Using MOF-Incorporated Cu-Based Alginate Beads without Energy Consumption. ACS Applied Materials & Desamp; Interfaces, 2020, 12, 16319-16326.	8.0	48
1013	CO2 controls the oriented growth of metal-organic framework with highly accessible active sites. Nature Communications, 2020, 11, 1431.	12.8	51
1014	Achieving Morphological Control over Lamellar Manganese Metalâ€Organic Framework through Modulated Biâ€Phase Growth. Angewandte Chemie - International Edition, 2020, 59, 9408-9413.	13.8	6

#	Article	IF	CITATIONS
1015	Facet engineering in metal organic frameworks to improve their electrochemical activity for water oxidation. Chemical Communications, 2020, 56, 4316-4319.	4.1	32
1016	A Tetrakis(terpyridine) Ligand–Based Cobalt(II) Complex Nanosheet as a Stable Dual″on Battery Cathode Material. Small, 2020, 16, e1905204.	10.0	30
1017	General synthesis of hierarchical sheet/plate-like M-BDC (M = Cu, Mn, Ni, and Zr) metal–organic frameworks for electrochemical non-enzymatic glucose sensing. Chemical Science, 2020, 11, 3644-3655.	7.4	205
1018	Thermally annealed polyimide-based mixed matrix membrane containing ZIF-67 decorated porous graphene oxide nanosheets with enhanced propylene/propane selectivity. Journal of Membrane Science, 2020, 603, 118019.	8.2	30
1019	Rational Synthesis of a Hierarchical Supramolecular Porous Material Created via Self-Assembly of Metal–Organic Framework Nanosheets. Inorganic Chemistry, 2020, 59, 3983-3992.	4.0	16
1020	Boosting Aerobic Oxidation of Alcohols via Synergistic Effect between TEMPO and a Composite Fe ₃ O ₄ /Cu-BDC/GO Nanocatalyst. ACS Omega, 2020, 5, 5182-5191.	3.5	7 3
1021	Efficient metal ion sieving in rectifying subnanochannels enabled by metal–organic frameworks. Nature Materials, 2020, 19, 767-774.	27.5	275
1022	Achieving Morphological Control over Lamellar Manganese Metalâ€Organic Framework through Modulated Biâ€Phase Growth. Angewandte Chemie, 2020, 132, 9494-9499.	2.0	0
1023	A Catalyst of Pd@MILâ€101@SGO Catalyzes Epoxidation and Hydroxymethoxylation Tandem Reactions of Styrene. ChemistrySelect, 2020, 5, 3724-3729.	1.5	11
1024	Graphene oxide membranes: controlling their transport pathways. Journal of Materials Chemistry A, 2020, 8, 15319-15340.	10.3	118
1025	A Density Functional Theory Study of the Two-Dimensional Bis(iminothiolato)metal Monolayers as Efficient Electrocatalysts for Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2020, 124, 7803-7811.	3.1	10
1026	Ion-gated carbon molecular sieve gas separation membranes. Journal of Membrane Science, 2020, 604, 118013.	8.2	15
1027	Mechanistic and Experimental Study of the Formation of MoS ₂ /HKUST-1 Core–Shell Composites on MoS ₂ Quantum Dots with an Enhanced CO ₂ Adsorption Capacity. Industrial & Dots with an Enhanced CO ₂ Adsorption Capacity. Industrial & Dots with an Enhanced CO ₂	3.7	12
1028	PEG@ZIF-8/PVDF Nanocomposite Membrane for Efficient Pervaporation Desulfurization via a Layer-by-Layer Technology. ACS Applied Materials & Interfaces, 2020, 12, 20664-20671.	8.0	43
1029	Metal–Organic Framework Hexagonal Nanoplates: Bottom-up Synthesis, Topotactic Transformation, and Efficient Oxygen Evolution Reaction. Journal of the American Chemical Society, 2020, 142, 7317-7321.	13.7	140
1030	Engineering pristine 2D metal–organic framework nanosheets for electrocatalysis. Journal of Materials Chemistry A, 2020, 8, 8143-8170.	10.3	180
1031	A thin and high loading two-dimensional MOF nanosheet based mixed-matrix membrane for high permeance nanofiltration. Journal of Membrane Science, 2020, 603, 118049.	8.2	70
1032	Morphology and size controlled synthesis of Co-doped MIL-96 by different alkaline modulators for sensitively detecting alpha-fetoprotein. Chinese Chemical Letters, 2020, 31, 2263-2267.	9.0	16

#	ARTICLE	IF	CITATIONS
1033	Gas Separation via Hybrid Metal–Organic Framework/Polymer Membranes. Trends in Chemistry, 2020, 2, 254-269.	8.5	71
1034	Control of ZIF-7-III aspect ratio using water-in-oil microemulsion. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 603, 125157.	4.7	6
1035	Two-dimensional porous coordination polymers and nano-composites for electrocatalysis and electrically conductive applications. Journal of Materials Chemistry A, 2020, 8, 14356-14383.	10.3	33
1036	MOF-Based Membranes for Gas Separations. Chemical Reviews, 2020, 120, 8161-8266.	47.7	755
1037	Rheological Behavior of Polymer/Carbon Nanotube Composites: An Overview. Materials, 2020, 13, 2771.	2.9	31
1038	A Study of the Reinforcement Effect of MWCNTs onto Polyimide Flat Sheet Membranes. Polymers, 2020, 12, 1381.	4.5	7
1039	Formation, Structure, and Function of Hydrogenated and Fluorinated Longâ€Chain Phosphonateâ€Modified Singleâ€Walled Carbon Nanotubes with Bidentate Bonds. ChemistrySelect, 2020, 5, 6594-6607.	1.5	6
1040	Ultrathin two-dimensional metal–organic framework nanosheets—an emerging class of catalytic nanomaterials. Dalton Transactions, 2020, 49, 11073-11084.	3.3	19
1041	Synthesis of Robust MOFs@COFs Porous Hybrid Materials via an Azaâ€Diels–Alder Reaction: Towards Highâ€Performance Supercapacitor Materials. Angewandte Chemie, 2020, 132, 19770-19777.	2.0	13
1042	Monomer-dependent synthesis of secondary amine-linked triazine-based two-dimensional polymers nanosheets. Science China Chemistry, 2020, 63, 966-972.	8.2	7
1043	Heavy metal removal from industrial effluents using biopolymer membranes. , 2020, , 333-358.		1
1044	Intensification of helium separation from CH4 and N2 by size-reduced Cu-BTC particles in Matrimid matrix. Separation and Purification Technology, 2020, 251, 117317.	7.9	14
1045	Metal Organic Framework â€" Based Mixed Matrix Membranes for Carbon Dioxide Separation: Recent Advances and Future Directions. Frontiers in Chemistry, 2020, 8, 534.	3.6	54
1046	Topology Meets Reticular Chemistry for Chemical Separations: MOFs as a Case Study. CheM, 2020, 6, 1613-1633.	11.7	62
1047	Tailoring microenvironment of adsorbents to achieve excellent <scp>CO₂</scp> uptakes from wet gases. AICHE Journal, 2020, 66, e16645.	3.6	16
1048	Synthesis of Robust MOFs@COFs Porous Hybrid Materials via an Azaâ€Diels–Alder Reaction: Towards Highâ€Performance Supercapacitor Materials. Angewandte Chemie - International Edition, 2020, 59, 19602-19609.	13.8	133
1049	Ultrasound-assisted synthesis of layered zeolitic imidazolate framework: crystal formation and characteristics. Journal of Coordination Chemistry, 2020, 73, 317-332.	2.2	6
1050	Twoâ€Dimensional Microporous Materialâ€based Mixed Matrix Membranes for Gas Separation. Chemistry - an Asian Journal, 2020, 15, 2303-2315.	3.3	24

#	Article	IF	CITATIONS
1051	A Set of phenyl sulfonate metal coordination complexes triggered Biginelli reaction for the high efficient synthesis of 3,4â€dihydropyrimidinâ€2(1 <i>H</i>)â€ones under solventâ€free conditions. Applied Organometallic Chemistry, 2020, 34, e5542.	3.5	13
1052	NiO/Cu-TCPP Hybrid Nanosheets as an Efficient Substrate for Supercapacitor and Sensing Applications. Journal of the Electrochemical Society, 2020, 167, 027534.	2.9	23
1053	General Approach to Metal-Organic Framework Nanosheets With Controllable Thickness by Using Metal Hydroxides as Precursors. Frontiers in Materials, 2020, 7, .	2.4	21
1054	Air-Flow Impacting Synthesis of Metal Organic Frameworks: A Continuous, Highly Efficient, Large-Scale Mechanochemical Synthetic Method. ACS Sustainable Chemistry and Engineering, 2020, 8, 4037-4043.	6.7	18
1055	The preparation of hollow Fe3O4/Pd@C NCs to stabilize subminiature Pd nanoparticles for the reduction of 4-nitrophenol. New Journal of Chemistry, 2020, 44, 4869-4876.	2.8	7
1057	A Metal–Organic Framework Nanosheetâ€Assembled Frame Film with High Permeability and Stability. Advanced Science, 2020, 7, 1903180.	11.2	24
1058	Shear Exfoliated Metal–Organic Framework Nanosheet-Enabled Flexible Sensor for Real-Time Monitoring of Superoxide Anion. ACS Applied Materials & Samp; Interfaces, 2020, 12, 5429-5436.	8.0	49
1059	CoNi-based metal–organic framework nanoarrays supported on carbon cloth as bifunctional electrocatalysts for efficient water-splitting. New Journal of Chemistry, 2020, 44, 1694-1698.	2.8	21
1060	Luminescent MOF crystals embedded in PMMA/PDMS transparent films as effective NO ₂ gas sensors. Molecular Systems Design and Engineering, 2020, 5, 1048-1056.	3.4	34
1061	Two-dimensional nanochannel membranes for molecular and ionic separations. Chemical Society Reviews, 2020, 49, 1071-1089.	38.1	242
1062	Metalloporphyrinic metal-organic frameworks: Controlled synthesis for catalytic applications in environmental and biological media. Advances in Colloid and Interface Science, 2020, 277, 102108.	14.7	34
1063	Matrimid \hat{A}^{\otimes} 5218 based mixed matrix membranes containing metal organic frameworks (MOFs) for helium separation. Chemical Engineering and Processing: Process Intensification, 2020, 148, 107804.	3.6	25
1064	Biomass derived carboxylated carbon nanosheets blended polyetherimide membranes for enhanced CO2/CH4 separation. Journal of Natural Gas Science and Engineering, 2020, 75, 103156.	4.4	33
1065	Chromism, positional, conformational and structural isomerism in a series of Zn(II) and Cd(II) coordination polymers based on methylated azine N,N′-donor linkers. Polyhedron, 2020, 180, 114411.	2.2	12
1066	Bimetal–MOF nanosheets as efficient bifunctional electrocatalysts for oxygen evolution and nitrogen reduction reaction. Journal of Materials Chemistry A, 2020, 8, 3658-3666.	10.3	119
1067	Large-scale synthesis of crystalline g-C ₃ N ₄ nanosheets and high-temperature H ₂ sieving from assembled films. Science Advances, 2020, 6, eaay9851.	10.3	105
1068	Preparing two-dimensional crystalline conjugated polymer films by synergetic polymerization and self-assembly at air/water interface. Polymer Chemistry, 2020, 11, 1572-1579.	3.9	9
1069	Ionic Liquid-Assisted Exfoliation of Two-Dimensional Metal–Organic Frameworks for Luminescent Sensing. ACS Sustainable Chemistry and Engineering, 2020, 8, 2167-2175.	6.7	27

#	Article	IF	CITATIONS
1070	Incorporating nano-sized ZIF-67 to enhance selectivity of polymers of intrinsic microporosity membranes for biogas upgrading. Chemical Engineering Science, 2020, 216, 115497.	3.8	23
1071	Exfoliation of metal–organic frameworks into efficient single-layer metal–organic nanosheet electrocatalysts by the synergistic action of host–guest interactions and sonication. Nanoscale, 2020, 12, 3623-3629.	5.6	62
1072	Scalable and precise synthesis of two-dimensional metal organic framework nanosheets in a high shear annular microreactor. Chemical Engineering Journal, 2020, 388, 124133.	12.7	17
1073	Recent Advances of Gas Transport Channels Constructed with Different Dimensional Nanomaterials in Mixedâ€Matrix Membranes for CO ₂ Separation. Small Methods, 2020, 4, 1900749.	8.6	48
1074	Applications of metal–organic framework-derived materials in fuel cells and metal-air batteries. Coordination Chemistry Reviews, 2020, 409, 213214.	18.8	182
1075	Fabrication of a freestanding metal organic framework predominant hollow fiber mat and its potential applications in gas separation and catalysis. Journal of Materials Chemistry A, 2020, 8, 3803-3813.	10.3	31
1076	Be3BN3 monolayer with ultrawide band gap and promising stability for deep ultraviolet applications. Computational Materials Science, 2020, 177, 109552.	3.0	1
1077	Smart ZIF-L mesh films with switchable superwettability synthesized via a rapid energy-saving process. Separation and Purification Technology, 2020, 240, 116647.	7.9	24
1078	Heteroepitaxial growth of vertically orientated zeolitic imidazolate framework‣ (Co/Znâ€ZIF‣) molecular sieve membranes. AICHE Journal, 2020, 66, e16935.	3.6	21
1079	Twoâ€Dimensional Membranes: New Paradigms for Highâ€Performance Separation Membranes. Chemistry - an Asian Journal, 2020, 15, 2241-2270.	3.3	36
1080	Ultrathin Supramolecular Architectures Self-Assembled from a <i>C</i> ₃ -Symmetric Synthon for Selective Metal Binding. ACS Applied Materials & Samp; Interfaces, 2020, 12, 9673-9681.	8.0	4
1081	Properties of multifunctional composite materials based on nanomaterials: a review. RSC Advances, 2020, 10, 16390-16403.	3.6	60
1082	Morphologically Tunable MOF Nanosheets in Mixed Matrix Membranes for CO ₂ Separation. Chemistry of Materials, 2020, 32, 4174-4184.	6.7	82
1083	Electrochemical synthesis of MOFs. , 2020, , 177-195.		5
1084	FeCo-based hybrid MOF derived active species for effective oxygen evolution. Progress in Natural Science: Materials International, 2020, 30, 185-191.	4.4	40
1085	Controlling the morphology of metal–organic frameworks and porous carbon materials: metal oxides as primary architecture-directing agents. Chemical Society Reviews, 2020, 49, 3348-3422.	38.1	190
1086	Ultrathin permselective membranes: the latent way for efficient gas separation. RSC Advances, 2020, 10, 12653-12670.	3.6	69
1087	Sheathed in situ heteroepitaxial growth metal-organic framework probe for detection of polycyclic aromatic hydrocarbons in river water and living fish. Science of the Total Environment, 2020, 729, 138971.	8.0	20

#	ARTICLE	IF	CITATIONS
1088	Encapsulation of metal oxide nanoparticles inside metal-organic frameworks via surfactant-assisted nanoconfined space. Nanotechnology, 2020, 31, 255604.	2.6	5
1089	Dimeric complexes of copper (II) arylcarboxylate with 4-cyanopyridine: synthesis, structural characterization and linear absorption properties. Journal of Chemical Sciences, 2020, 132, 1.	1.5	1
1090	Fabrication of mesoporous MOF nanosheets via surfactant-template method for C–S coupling reactions. Microporous and Mesoporous Materials, 2020, 303, 110254.	4.4	19
1091	Enhancing the gas separation properties of mixed matrix membranes via impregnation of sieve phases with metal and nonmetal promoters. Separation and Purification Technology, 2020, 245, 116859.	7.9	10
1092	Deformable Metal–Organic Framework Nanosheets for Heterogeneous Catalytic Reactions. Journal of the American Chemical Society, 2020, 142, 9408-9414.	13.7	50
1093	Molecular transport in ionic liquid/nanomembrane hybrids. Physical Chemistry Chemical Physics, 2020, 22, 9808-9814.	2.8	9
1094	Rational design of two-dimensional nanofillers for polymer nanocomposites toward multifunctional applications. Progress in Materials Science, 2021, 115, 100708.	32.8	150
1095	Two-dimensional (2D) materials beyond graphene in cancer drug delivery, photothermal and photodynamic therapy, recent advances and challenges ahead: A review. Journal of Drug Delivery Science and Technology, 2021, 61, 101830.	3.0	39
1096	<scp>Twoâ€dimensional</scp> metal organic frameworks for biomedical applications. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2021, 13, e1674.	6.1	27
1097	Fabrication strategies and Cr(VI) elimination activities of the MOF-derivatives and their composites. Chemical Engineering Journal, 2021, 405, 126648.	12.7	92
1098	2D MOF-derived CoS1.097 nanoparticle embedded S-doped porous carbon nanosheets for high performance sodium storage. Chemical Engineering Journal, 2021, 405, 126638.	12.7	21
1099	Preparation of MOF Film/Aerogel Composite Catalysts via Substrateâ€Seeding Secondaryâ€Growth for the Oxygen Evolution Reaction and CO 2 Cycloaddition. Angewandte Chemie, 2021, 133, 711-715.	2.0	6
1100	Sensor array for rapid pathogens identification fabricated with peptide-conjugated 2D metal-organic framework nanosheets. Chemical Engineering Journal, 2021, 405, 126707.	12.7	36
1101	Tunable electrochemical of electrosynthesized layer-by-layer multilayer films based on multi-walled carbon nanotubes and metal-organic framework as high-performance electrochemical sensor for simultaneous determination cadmium and lead. Sensors and Actuators B: Chemical, 2021, 326, 128957.	7.8	45
1102	Coordinationâ€Driven Assembly of Metal–Organic Framework Coating for Catalytically Active Superhydrophobic Surface. Advanced Materials Interfaces, 2021, 8, 2001202.	3.7	21
1103	Multifunctional covalent organic framework (COF)-Based mixed matrix membranes for enhanced CO2 separation. Journal of Membrane Science, 2021, 618, 118693.	8.2	88
1104	Fabrication of ultra-thin 2D covalent organic framework nanosheets and their application in functional electronic devices. Coordination Chemistry Reviews, 2021, 429, 213616.	18.8	67
1105	Emerging porous nanosheets: From fundamental synthesis to promising applications. Nano Research, 2021, 14, 1-28.	10.4	69

#	Article	IF	CITATIONS
1106	The nonlinear optical properties of two-dimensional metal-organic framework. Journal of Alloys and Compounds, 2021, 855, 157433.	5. 5	11
1107	Introducing two-dimensional metal-organic frameworks with axial coordination anion into Pebax for CO2/CH4 separation. Separation and Purification Technology, 2021, 259, 118107.	7.9	36
1108	MXene versus graphene oxide: Investigation on the effects of 2D nanosheets in mixed matrix membranes for CO2 separation. Journal of Membrane Science, 2021, 620, 118850.	8.2	65
1109	Microporous framework membranes for precise molecule/ion separations. Chemical Society Reviews, 2021, 50, 986-1029.	38.1	191
1110	Modification strategies for metal-organic frameworks targeting at membrane-based gas separations. Green Chemical Engineering, 2021, 2, 17-26.	6.3	20
1111	Research progress of ultrafine alumina fiber prepared by sol-gel method: A review. Chemical Engineering Journal, 2021, 421, 127744.	12.7	29
1112	Smart recycling of PET to sorbents for insecticides through in situ MOF growth. Applied Materials Today, 2021, 22, 100910.	4.3	17
1113	Hierarchical ZIF-8 composite membranes: Enhancing gas separation performance by exploiting molecular dynamics in hierarchical hybrid materials. Journal of Membrane Science, 2021, 620, 118943.	8.2	15
1114	Fabrication of ultrathin single-layer 2D metal–organic framework nanosheets with excellent adsorption performance <i>via</i> a facile exfoliation approach. Journal of Materials Chemistry A, 2021, 9, 546-555.	10.3	55
1115	Aktuelle Trends zu Metallâ€organischen und kovalenten organischen Netzwerken als Membranmaterialien. Angewandte Chemie, 2021, 133, 15281-15293.	2.0	6
1116	Prospective applications of nanometer-scale pore size biomimetic and bioinspired membranes. Journal of Membrane Science, 2021, 620, 118968.	8.2	40
1117	2D framework materials for energy applications. Chemical Science, 2021, 12, 1600-1619.	7.4	7 3
1118	Current Trends in Metal–Organic and Covalent Organic Framework Membrane Materials. Angewandte Chemie - International Edition, 2021, 60, 15153-15164.	13.8	96
1119	PKU-2: An intrinsically microporous aluminoborate with the potential in selective gas separation of CO2/CH4 and C2H2/C2H4. Microporous and Mesoporous Materials, 2021, 312, 110782.	4.4	1
1120	Pristine Hollow Metal–Organic Frameworks: Design, Synthesis and Application. Angewandte Chemie - International Edition, 2021, 60, 17314-17336.	13.8	124
1121	Metal–organic frameworks and their derivatives for electrically-transduced gas sensors. Coordination Chemistry Reviews, 2021, 426, 213479.	18.8	145
1122	Theoretical study on the two-dimensional bis(iminothiolato)rhodium as oxygen reduction reaction catalyst. Molecular Physics, 2021, 119, e1817593.	1.7	0
1123	Pristine Hollow Metal–Organic Frameworks: Design, Synthesis and Application. Angewandte Chemie, 2021, 133, 17455-17477.	2.0	9

#	Article	IF	CITATIONS
1124	Multimodal channel cancer chemotherapy by 2D functional gadolinium metal–organic framework. National Science Review, 2021, 8, nwaa221.	9.5	31
1125	Preparation of MOF Film/Aerogel Composite Catalysts via Substrateâ€Seeding Secondaryâ€Growth for the Oxygen Evolution Reaction and CO ₂ Cycloaddition. Angewandte Chemie - International Edition, 2021, 60, 701-705.	13.8	107
1126	Diffusion coefficients in nanoporous solids derived from membrane permeation measurements. Adsorption, 2021, 27, 283-293.	3.0	11
1127	Metal-organic frameworks as diverse chemical applications. , 2021, , 349-364.		0
1128	Visualizing defects and pore connectivity within metal–organic frameworks by X-ray transmission tomography. Chemical Science, 2021, 12, 8458-8467.	7.4	10
1129	Throwing light on the current developments of two-dimensional metal–organic framework nanosheets (2D MONs). Materials Advances, 2021, 2, 4914-4944.	5.4	15
1130	Nano/Micro MOF-Based Materials. , 2021, , 1-40.		0
1131	The modulation effect of charge transfer on photoluminescence in metal–organic frameworks. Nanoscale, 2021, 13, 4505-4511.	5.6	32
1132	Artificial channels for confined mass transport at the sub-nanometre scale. Nature Reviews Materials, 2021, 6, 294-312.	48.7	263
1133	Two-dimensional biomaterials: material science, biological effect and biomedical engineering applications. Chemical Society Reviews, 2021, 50, 11381-11485.	38.1	129
1134	Heterogeneous photocatalytic reversible deactivation radical polymerization. Polymer Chemistry, 2021, 12, 2357-2373.	3.9	32
1135	Detection of hydrogen peroxide and glucose with a novel fluorescent probe by the enzymatic reaction of amino functionalized MOF nanosheets. Analytical Methods, 2021, 13, 4228-4237.	2.7	5
1136	Constructing Strong Interfacial Interactions under Mild Conditions in MOF-Incorporated Mixed Matrix Membranes for Gas Separation. ACS Applied Materials & Samp; Interfaces, 2021, 13, 3166-3174.	8.0	48
1137	3D printed MOF-based mixed matrix thin-film composite membranes. RSC Advances, 2021, 11, 25658-25663.	3.6	15
1138	Recent progress of two-dimensional nanosheet membranes and composite membranes for separation applications. Frontiers of Chemical Science and Engineering, 2021, 15, 793-819.	4.4	36
1139	Organic molecular sieve membranes for chemical separations. Chemical Society Reviews, 2021, 50, 5468-5516.	38.1	170
1140	Metal-Organic Frameworks for Environmental Applications. Engineering Materials, 2021, , 1-39.	0.6	0
1141	Newly Emerging Metal–Organic Frameworks (MOF), MXenes, and Zeolite Nanosheets in Solutes Removal from Water. Springer Series on Polymer and Composite Materials, 2021, , 219-247.	0.7	0

#	Article	IF	CITATIONS
1142	Adsorption properties of acetylene, ethylene and ethane in UiO-66 with linker defects and NO2 functionalization. Materials Advances, 2021, 2, 426-433.	5 . 4	3
1143	Synthesis of biaryl compounds via Suzuki homocoupling reactions catalyzed by metal organic frameworks encapsulated with palladium nanoparticles. Inorganic Chemistry Communication, 2021, 123, 108368.	3.9	8
1144	Substrate-independent three-dimensional polymer nanosheets induced by solution casting. Chemical Science, 2021, 12, 11748-11755.	7.4	1
1145	Concentration gradient induced <i>in situ</i> formation of MOF tubes. Chemical Communications, 2021, 57, 7300-7303.	4.1	1
1146	Effective enhancement of capacitive performance by the facile exfoliation of bulk metal–organic frameworks into 2D-functionalized nanosheets. Nanoscale, 2021, 13, 13273-13284.	5.6	10
1147	MOF-based electrocatalysts for high-efficiency CO ₂ conversion: structure, performance, and perspectives. Journal of Materials Chemistry A, 2021, 9, 22710-22728.	10.3	20
1148	Bias-tunable two-dimensional magnetic and topological materials. Nanoscale, 2021, 13, 12513-12520.	5 . 6	1
1149	Two-dimensional Ti ₃ C ₂ MXene-based nanostructures for emerging optoelectronic applications. Materials Horizons, 2021, 8, 2929-2963.	12.2	37
1150	Defect engineering and characterization of active sites for efficient electrocatalysis. Nanoscale, 2021, 13, 3327-3345.	5.6	60
1151	Carbon capture Using Metal–Organic Frameworks. , 2021, , 155-204.		1
1152	A post-synthetically modified metal–organic framework for copper catalyzed denitrative C–N coupling of nitroarenes under heterogeneous conditions. New Journal of Chemistry, 2021, 45, 5568-5575.	2.8	8
1153	Metal-organic frameworks: preparation and application in electrocatalytic CO2 reduction reaction. , 2021, , 331-347.		0
1154	Metal–organic frameworks/biopolymer nanocomposites: from fundamentals toward recent applications in modern technology. New Journal of Chemistry, 2021, 45, 8409-8426.	2.8	14
1155	Computational modelling of adsorption and diffusion properties of CO ₂ and CH ₄ in ZIF-8 for gas separation applications: a density functional theory approach. Reaction Chemistry and Engineering, 2021, 6, 990-1001.	3.7	10
1156	Solvent-assisted delamination of layered copper dithienothiophene-dicarboxylate (DUT-134). Inorganic Chemistry Frontiers, 2021, 8, 3308-3316.	6.0	7
1157	Two-dimensional stable and ultrathin cluster-based metal–organic layers for efficient electrocatalytic water oxidation. CrystEngComm, 2021, 23, 4700-4707.	2.6	4
1158	Recent progress on pristine two-dimensional metal–organic frameworks as active components in supercapacitors. Dalton Transactions, 2021, 50, 11331-11346.	3.3	118
1159	Rationally constructing a hierarchical two-dimensional NiCo metal–organic framework/graphene hybrid for highly efficient Li ⁺ ion storage. Materials Chemistry Frontiers, 2021, 5, 4589-4595.	5.9	16

#	Article	IF	CITATIONS
1160	2D metal–organic framework-based materials for electrocatalytic, photocatalytic and thermocatalytic applications. Nanoscale, 2021, 13, 3911-3936.	5.6	176
1161	Monolayer nanosheets formed by liquid exfoliation of charge-assisted hydrogen-bonded frameworks. Chemical Science, 2021, 12, 3322-3327.	7.4	28
1162	Triazolate-based pillarplexes: shape-adaptive metallocavitands via rim modification of macrocyclic ligands. Organic Chemistry Frontiers, 2021, 8, 4061-4070.	4.5	9
1163	Pebaxâ€based mixed matrix membranes loaded with graphene oxide/core shell <scp>ZIF</scp> â€8@ <scp>ZIF</scp> â€67 nanocomposites improved <scp>CO₂</scp> permeability and selectivity. Journal of Applied Polymer Science, 2021, 138, 50553.	2.6	24
1164	Fabrication of inâ€situ polymerized <scp>UiO</scp> â€66/ <scp>PVDF</scp> supramolecular membranes with high antiâ€fouling performance. Journal of Applied Polymer Science, 2021, 138, 50519.	2.6	8
1165	Application of near-ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) in an in-situ analysis of the stability of the surface-supported metal-organic framework HKUST-1 in water, methanol and pyridine atmospheres. Journal of Electron Spectroscopy and Related Phenomena, 2021, 247, 147042.	1.7	11
1166	Two-Dimensional Metal-Organic Framework Materials: Synthesis, Structures, Properties and Applications. Chemical Reviews, 2021, 121, 3751-3891.	47.7	442
1167	Ultrathin Reduced Graphene Oxide/Organosilica Hybrid Membrane for Gas Separation. Jacs Au, 2021, 1, 328-335.	7.9	16
1168	Study of the products of the reaction of cobalt(II) acetate with 2-iodoterephthalic acid and 1,10-phenanthroline. Journal of Coordination Chemistry, 2021, 74, 649-662.	2.2	2
1169	Multifunctional Platforms: Metal-Organic Frameworks for Cutaneous and Cosmetic Treatment. CheM, 2021, 7, 450-462.	11.7	12
1170	Binding Site Effect in Metalâ€Organic Frameworks for Property Regulation of Metal Nanoparticles. Small Structures, 2021, 2, 2000119.	12.0	12
1171	Recent Advances in MXeneâ€based Separation Membranes. ChemBioEng Reviews, 2021, 8, 110-120.	4.4	50
1172	Computational scanning tunneling microscope image database. Scientific Data, 2021, 8, 57.	5. 3	15
1173	Incorporation of open-pore MFI zeolite nanosheets in polydimethylsiloxane (PDMS) to isomer-selective mixed matrix membranes. Microporous and Mesoporous Materials, 2021, 315, 110930.	4.4	18
1174	Single-Crystalline Ultrathin 2D Porous Nanosheets of Chiral Metal–Organic Frameworks. Journal of the American Chemical Society, 2021, 143, 3509-3518.	13.7	80
1175	Chlorination of a Zeolitic-Imidazolate Framework Tunes Packing and van der Waals Interaction of Carbon Dioxide for Optimized Adsorptive Separation. Journal of the American Chemical Society, 2021, 143, 4962-4968.	13.7	21
1176	Bimetallic oxygen electrocatalyst derived from metallocenes doped MOFs. Nanotechnology, 2021, 32, 225603.	2.6	8
1177	MOF-derived Co, Ni, Mn co-doped N-enriched hollow carbon for efficient hydrogen evolution reaction catalysis. Journal of Solid State Chemistry, 2021, 295, 121912.	2.9	16

#	Article	IF	CITATIONS
1178	Is Porosity at the MOF/Polymer Interface Necessarily an Obstacle to Optimal Gas-Separation Performances in Mixed Matrix Membranes?., 2021, 3, 344-350.		24
1179	Metal–organic frameworks for biogas upgrading: Recent advancements, challenges, and future recommendations. Applied Materials Today, 2021, 22, 100925.	4.3	16
1181	Metal–Organic Frameworks and Their Derivatives: Designing Principles and Advances toward Advanced Cathode Materials for Alkali Metal Ion Batteries. Small, 2021, 17, e2006424.	10.0	55
1182	Polymerization-Induced Reassembly of Gemini Molecules toward Generating Porous Two-Dimensional Polymers. Journal of Physical Chemistry Letters, 2021, 12, 2340-2347.	4.6	5
1183	Recent Progress on Conductive Metalâ€Organic Framework Films. Advanced Materials Interfaces, 2021, 8, 2002151.	3.7	37
1184	HNb3O8 Nanosheet–Graphene Oxide Composite Membranes for Molecular Separation. ACS Applied Nano Materials, 2021, 4, 3455-3466.	5.0	11
1185	Fibre-based composites from the integration of metal–organic frameworks and polymers. Nature Reviews Materials, 2021, 6, 605-621.	48.7	128
1186	Fabrication of subnanochannels by metal–organic frameworks. Matter, 2021, 4, 772-774.	10.0	11
1187	High-Yield Two-Dimensional Metal–Organic Framework Derivatives for Wideband Electromagnetic Wave Absorption. ACS Applied Materials & Samp; Interfaces, 2021, 13, 20459-20466.	8.0	55
1188	Highly CO Selective Trimetallic Metal-Organic Framework Electrocatalyst for the Electrochemical Reduction of CO2. Catalysts, 2021, 11, 537.	3.5	8
1189	Tunable Hydrophobicity via Dimensionally Confined Polymerization of Organometallic Adducts. Angewandte Chemie, 2021, 133, 14048-14055.	2.0	2
1190	Twoâ€Dimensional Metal–Organic Frameworks and Covalent–Organic Frameworks for Electrocatalysis: Distinct Merits by the Reduced Dimension. Advanced Energy Materials, 2022, 12, 2003990.	19.5	78
1191	Micro/Nanoâ€Scaled Metalâ€Organic Frameworks and Their Derivatives for Energy Applications. Advanced Energy Materials, 2022, 12, 2003970.	19.5	64
1192	Tunable Hydrophobicity via Dimensionally Confined Polymerization of Organometallic Adducts. Angewandte Chemie - International Edition, 2021, 60, 13929-13936.	13.8	5
1193	Molecular simulations of the adsorption and separation of hydrogen sulfide, carbon dioxide, methane, and nitrogen and their binary mixtures (H2S/CH4), (CO2/CH4) on NUM-3a metal-organic frameworks. Journal of Molecular Modeling, 2021, 27, 133.	1.8	5
1194	From Macro- to Nanoscale: Finite Size Effects on Metal–Organic Framework Switchability. Trends in Chemistry, 2021, 3, 291-304.	8.5	41
1195	Recent progress in emerging 2D layered materials for organic solar cells. Solar Energy, 2021, 218, 621-638.	6.1	17
1196	Two-dimensional nanomaterials with engineered bandgap: Synthesis, properties, applications. Nano Today, 2021, 37, 101059.	11.9	82

#	ARTICLE	IF	CITATIONS
1197	Strong, Ductile MOF–Poly(urethane urea) Composites. Chemistry of Materials, 2021, 33, 3164-3171.	6.7	25
1198	State-of-the-art progress of switch fluorescence biosensors based on metal-organic frameworks and nucleic acids. Mikrochimica Acta, 2021, 188, 168.	5.0	21
1199	Turn-On Fluorescence Enantioselective Sensing of Hydroxyl Carboxylic Enantiomers by Metal–Organic Framework Nanosheets with a Homochiral Tetracarboxylate of Cyclohexane Diamide. ACS Applied Materials & Diamide. 3, 20821-20829.	8.0	34
1200	A microporous polymer TFC membrane with 2-D MOF nanosheets gutter layer for efficient H2 separation. Separation and Purification Technology, 2021, 261, 118283.	7.9	20
1201	Recent progress in 2D metal-organic framework photocatalysts: synthesis, photocatalytic mechanism and applications. JPhys Energy, 2021, 3, 032010.	5.3	51
1202	Two-Dimensional Metal–Organic Framework Nanostructures Based on 4,4′-Sulfonyldibenzoate for Photocatalytic Degradation of Organic Dyes. Crystal Growth and Design, 2021, 21, 3364-3374.	3.0	26
1203	A label-free aptasensor for ochratoxin a detection with signal amplification strategies on ultrathin micron-sized 2D MOF sheets. Sensors and Actuators B: Chemical, 2021, 334, 129682.	7.8	19
1204	Recent Advances in Metal–Organic Frameworks Derived Nanocomposites for Photocatalytic Applications in Energy and Environment. Advanced Science, 2021, 8, e2100625.	11.2	118
1205	Three Pb _{<i>x</i>} (COO) _{<i>y</i>} Cluster Frameworks Based on a Flexible Triazinetricarboxylic Acid Ligand: Syntheses, Structures, and Fluorescent Sensing Application for Nitrophenols. Inorganic Chemistry, 2021, 60, 7887-7899.	4.0	14
1206	In Situ Encapsulation of Cellulase in a Novel Mesoporous Metal–Organic Framework. Catalysis Letters, 2022, 152, 699-706.	2.6	10
1207	Solutionâ€Processable Metal–Organic Framework Nanosheets with Variable Functionalities. Advanced Materials, 2021, 33, e2101257.	21.0	33
1208	Metal-organic frameworks and their derivatives-modified photoelectrodes for photoelectrochemical applications. Coordination Chemistry Reviews, 2021, 434, 213780.	18.8	50
1209	Nonâ€Destructive Threeâ€Dimensional Imaging of Metal Organic Framework Mixed Matrix Membranes using Labâ€based Xâ€ray Computed Tomography. Chemistry Methods, 2021, 1, 210-213.	3.8	0
1210	Largeâ€Area Crystalline Zeolitic Imidazolate Framework Thin Films. Angewandte Chemie, 2021, 133, 14243-14249.	2.0	4
1211	Separation and Purification of Hydrocarbons with Porous Materials. Angewandte Chemie - International Edition, 2021, 60, 18930-18949.	13.8	118
1212	Metal organic framework-derived Ni-Cu bimetallic electrocatalyst for efficient oxygen evolution reaction. Journal of King Saud University - Science, 2021, 33, 101379.	3.5	19
1213	Two-dimensional MOF and COF nanosheets for next-generation optoelectronic applications. Coordination Chemistry Reviews, 2021, 435, 213781.	18.8	88
1214	Separation and Purification of Hydrocarbons with Porous Materials. Angewandte Chemie, 2021, 133, 19078-19097.	2.0	2

#	ARTICLE	IF	CITATIONS
1215	Largeâ€Area Crystalline Zeolitic Imidazolate Framework Thin Films. Angewandte Chemie - International Edition, 2021, 60, 14124-14130.	13.8	30
1216	Capsulation of AuNCs with AIE Effect into Metal–Organic Framework for the Marriage of a Fluorescence and Colorimetric Biosensor to Detect Organophosphorus Pesticides. Analytical Chemistry, 2021, 93, 7275-7282.	6.5	177
1217	Improved Gas Permeation Properties of 6FDA-TrMPD Mixed-Matrix Membrane with SAPO-34 Crystals Toward CO ₂ Separation. Energy & En	5.1	5
1218	Current and future trends in polymer membrane-based gas separation technology: A comprehensive review. Journal of Industrial and Engineering Chemistry, 2021, 98, 103-129.	5.8	154
1220	Discovery of Quantitative Electronic Structureâ€OER Activity Relationship in Metalâ€Organic Framework Electrocatalysts Using an Integrated Theoreticalâ€Experimental Approach. Advanced Functional Materials, 2021, 31, 2102066.	14.9	114
1221	Modeling the Layer-by-Layer Growth of HKUST-1 Metal-Organic Framework Thin Films. Nanomaterials, 2021, 11, 1631.	4.1	4
1222	Advances in Zeolite Imidazolate Frameworks (ZIFs) Derived Bifunctional Oxygen Electrocatalysts and Their Application in Zinc–Air Batteries. Advanced Energy Materials, 2021, 11, 2100514.	19.5	132
1223	Nano-sheets of two-dimensional polymers with dinuclear (arene)ruthenium nodes, synthesised at a liquid/liquid interface. Nanotechnology, 2021, 32, 355603.	2.6	0
1224	Progress in Multifunctional Metal–Organic Frameworks/Polymer Hybrid Membranes. Chemistry - A European Journal, 2021, 27, 12940-12952.	3.3	14
1225	Progress in light-to-frequency conversion circuits based on low dimensional semiconductors. Nano Research, 2021, 14, 2938-2964.	10.4	4
1226	Graphitic Carbon Nitride–Graphene Oxide Hybrid Membranes for Hydrogen Purification. Industrial & Lamp; Engineering Chemistry Research, 2021, 60, 9189-9195.	3.7	11
1227	Highly CO selective Ca and Zn hybrid metal-organic framework electrocatalyst for the electrochemical reduction of CO2. Current Applied Physics, 2021, 27, 31-37.	2.4	11
1228	Plasmonic metalâ€organic frameworks. SmartMat, 2021, 2, 446-465.	10.7	49
1229	Structure Dependent Water Transport in Membranes Based on Two-Dimensional Materials. Industrial & Engineering Chemistry Research, 2021, 60, 10917-10959.	3.7	12
1230	A review on the recent advances in mixed matrix membranes for gas separation processes. Renewable and Sustainable Energy Reviews, 2021, 145, 111062.	16.4	132
1231	Research progress in chemical and biological protective materials with integrated conventional "decontamination-and-sensing―functions. Materials Science and Engineering Reports, 2021, 145, 100626.	31.8	7
1232	Two-dimensional metal-organic framework nanosheet composites: Preparations and applications. Chinese Chemical Letters, 2022, 33, 693-702.	9.0	51
1233	Gas Adsorption in R ₂ â€MOFâ€5 Difunctionalized with Alkyl Groups. European Journal of Inorganic Chemistry, 2021, 2021, 3185-3190.	2.0	6

#	Article	IF	CITATIONS
1234	Cryogenic Electron Microscopy for Energy Materials. Accounts of Chemical Research, 2021, 54, 3505-3517.	15.6	19
1235	Metal–Organic Framework Nanosheets: Programmable 2D Materials for Catalysis, Sensing, Electronics, and Separation Applications. Advanced Functional Materials, 2021, 31, 2103723.	14.9	77
1236	Effects of MXene on Nonisothermal Crystallization Kinetics of Isotactic Polypropylene. ACS Omega, 2021, 6, 19973-19982.	3.5	7
1237	Regulating composition and structure of nanofillers in thin film nanocomposite (TFN) membranes for enhanced separation performance: A critical review. Separation and Purification Technology, 2021, 266, 118567.	7.9	122
1238	Structural visualization of ultrathin chiral porous metal-organic framework nanosheet. Matter, 2021, 4, 2669-2671.	10.0	3
1239	Laterally Engineering Lanthanideâ€MOFs Epitaxial Heterostructures for Spatially Resolved Planar 2D Photonic Barcoding. Angewandte Chemie - International Edition, 2021, 60, 24519-24525.	13.8	27
1240	Pyrazolate-based porphyrinic metal-organic frameworks as catechol oxidase mimic enzyme for fluorescent and colorimetric dual-mode detection of dopamine with high sensitivity and specificity. Sensors and Actuators B: Chemical, 2021, 341, 130000.	7.8	29
1241	Fabrication of 2D Metal–Organic Framework Nanosheets with Highly Colloidal Stability and High Yield through Coordination Modulation. ACS Applied Materials & Interfaces, 2021, 13, 39755-39762.	8.0	15
1242	Recent Progress in Mixed-Matrix Membranes for Hydrogen Separation. Membranes, 2021, 11, 666.	3.0	28
1244	Metal–Organic Frameworks for Electrocatalysis: Beyond Their Derivatives. Small Science, 2021, 1, 2100015.	9.9	94
1245	Metal–organic frameworks-derived heteroatom-doped carbon electrocatalysts for oxygen reduction reaction. Nano Energy, 2021, 86, 106073.	16.0	107
1246	Controllable amorphization engineering on bimetallic metal–organic frameworks for ultrafast oxygen evolution reaction. Chemical Engineering Journal, 2021, 418, 129330.	12.7	51
1247	Laterally Engineering Lanthanideâ€MOFs Epitaxial Heterostructures for Spatially Resolved Planar 2D Photonic Barcoding. Angewandte Chemie, 2021, 133, 24724.	2.0	6
1248	Rapid detection of cadmium ions in meat by a multi-walled carbon nanotubes enhanced metal-organic framework modified electrochemical sensor. Food Chemistry, 2021, 357, 129762.	8.2	47
1249	Covalent organic frameworks: Advances in synthesis and applications. Materials Today Communications, 2021, 28, 102612.	1.9	18
1250	Macromolecular Design for Oxygen/Nitrogen Permselective Membranesâ€"Top-Performing Polymers in 2020â€". Polymers, 2021, 13, 3012.	4.5	13
1251	Synthesis and characterization of iron oxide/MIL-101 composite via microwave solvothermal treatment. Surface Science, 2022, 716, 121952.	1.9	5
1252	Sifting weakly-coordinated solvents within solvation sheath through an electrolyte filter for high-voltage lithium-metal batteries. Energy Storage Materials, 2022, 44, 360-369.	18.0	14

#	Article	IF	CITATIONS
1253	Bottom-up synthesis of graphene films hosting atom-thick molecular-sieving apertures. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	14
1254	Water-stable Al-TCPP MOF nanosheets with hierarchical porous structure for removal of chlorantraniliprole in water. Microporous and Mesoporous Materials, 2021, 324, 111272.	4.4	18
1255	Synthesis of FeNiCo Ternary Hydroxides through Green Grinding Method with Metalâ€Organic Frameworks as Precursors for Oxygen Evolution Reaction. ChemSusChem, 2021, 14, 5042-5048.	6.8	5
1256	Fabrication of Ultrathin Membranes Using 2Dâ€MOF Nanosheets for Tunable Gas Separation. Chemistry - an Asian Journal, 2021, 16, 3413-3418.	3.3	6
1257	Solid solution approach to the design of copper mixed-triazolate multivariate-MOFs for the efficient adsorption of triclosan. Microporous and Mesoporous Materials, 2021, 324, 111297.	4.4	7
1258	Strategies to improve electrochemical performances of pristine metalâ€organic frameworksâ€based electrodes for lithium/sodiumâ€ion batteries. SmartMat, 2021, 2, 488-518.	10.7	52
1259	Magnetic Enhancement of Oxygen Evolution in CoNi@C Nanosheets. ACS Sustainable Chemistry and Engineering, 2021, 9, 12376-12384.	6.7	21
1260	2D Porphyrinic Metal–Organic Framework Nanosheets as Multidimensional Photocatalysts for Functional Materials. Angewandte Chemie, 2021, 133, 22846.	2.0	4
1261	2D Porphyrinic Metal–Organic Framework Nanosheets as Multidimensional Photocatalysts for Functional Materials. Angewandte Chemie - International Edition, 2021, 60, 22664-22671.	13.8	56
1262	One-step carbonization of ZIF-8 in Mn-containing ambience to prepare Mn, N co-doped porous carbon as efficient oxygen reduction reaction electrocatalyst. International Journal of Hydrogen Energy, 2021, 46, 36742-36752.	7.1	15
1263	A review on metal-organic frameworks as filler in mixed matrix membrane: Recent strategies to surpass upper bound for CO2 separation. Journal of CO2 Utilization, 2021, 51, 101616.	6.8	35
1264	The structural appeal of metal–organic frameworks in antimicrobial applications. Coordination Chemistry Reviews, 2021, 442, 214007.	18.8	51
1265	Twoâ€dimensional MOFs: Design & Synthesis and Applications. Chemistry - an Asian Journal, 2021, 16, 3281-3298.	3.3	23
1266	Mixed matrix membranes based on NH2-MIL-53 (Al) and 6FDA-ODA polyimide for CO2 separation: Effect of the processing route on improving MOF-polymer interfacial interaction. Separation and Purification Technology, 2021, 270, 118786.	7.9	35
1267	Homoporous hybrid membranes containing metal-organic cages for gas separation. Journal of Membrane Science, 2021, 636, 119564.	8.2	27
1268	2D metal-organic frameworks with square grid structure: A promising new-generation superlubricating material. Nano Today, 2021, 40, 101262.	11.9	42
1269	Bimetallic CoZn-MOFs easily derived from CoZn-LDHs, as a suitable platform in fabrication of a non-enzymatic electrochemical sensor for detecting glucose in human fluids. Sensors and Actuators B: Chemical, 2021, 344, 130254.	7.8	50
1270	Tortuous mixed matrix membranes: A subtle balance between microporosity and compatibility. Journal of Membrane Science, 2021, 635, 119517.	8.2	9

#	Article	IF	CITATIONS
1271	Exploitation of 2D Cu-MOF nanosheets as a unique electroactive material for ultrasensitive Cu(II) ion estimation in various real samples. Analytica Chimica Acta, 2021, 1181, 338924.	5.4	5
1272	PIM-based mixed-matrix membranes containing MOF-801/ionic liquid nanocomposites for enhanced CO2 separation performance. Journal of Membrane Science, 2021, 636, 119581.	8.2	64
1273	Photocatalytic degradation of hazardous organic pollutants in water by Fe-MOFs and their composites: A review. Journal of Environmental Chemical Engineering, 2021, 9, 105967.	6.7	47
1274	In-situ coating of multifunctional FeCo-bimetal organic framework nanolayers on hematite photoanode for superior oxygen evolution. Applied Catalysis B: Environmental, 2021, 297, 120406.	20.2	41
1275	In-situ electrosynthesis Cu-PtBTC MOF-derived nanocomposite modified glassy carbon electrode for highly performance electrocatalysis of hydrogen evolution reaction. Journal of Electroanalytical Chemistry, 2021, 900, 115716.	3.8	9
1276	Fabricating compact covalent organic framework membranes with superior performance in dye separation. Journal of Membrane Science, 2021, 637, 119667.	8.2	26
1277	Manipulating interfacial polymerization for polymeric nanofilms of composite separation membranes. Progress in Polymer Science, 2021, 122, 101450.	24.7	90
1278	Engineering of UiO-66-NH2 as selective and reusable adsorbent to enhance the removal of Au(III) from water: Kinetics, isotherm and thermodynamics. Journal of Colloid and Interface Science, 2021, 601, 272-282.	9.4	22
1279	Multifunctional PAN UF membrane modified with 3D-MXene/O-MWCNT nanostructures for the removal of complex oil and dyes from industrial wastewater. Separation and Purification Technology, 2021, 275, 119135.	7.9	51
1280	Two-dimensional coordination polymers containing permethylated motifs - promising candidates for 2D emerging materials. Structural, behavioral and functional particularities. Reactive and Functional Polymers, 2021, 168, 105039.	4.1	4
1281	Fabrication of a novel hybrid poly(amide-co-arylate)/MOF thin film membranes for organic solvent nanofiltration: optimization of membrane separation performance. Microporous and Mesoporous Materials, 2021, 328, 111443.	4.4	6
1282	Two-dimensional nanosheets of metal–organic frameworks with tailorable morphologies. Materials Today Chemistry, 2021, 22, 100517.	3.5	10
1283	Oriented 2D metal organic framework coating on bacterial cellulose for nitrobenzene removal from water by filtration. Separation and Purification Technology, 2021, 276, 119366.	7.9	10
1284	ZIF-L based mixed matrix membranes for acetone-butanol-ethanol (ABE) recovery from diluted aqueous solution. Separation and Purification Technology, 2021, 276, 119085.	7.9	8
1285	Veiled metal organic frameworks nanofillers for mixed matrix membranes with enhanced CO2/CH4 separation performance. Separation and Purification Technology, 2021, 279, 119707.	7.9	12
1286	CoNi nanoalloys embedded in N-doped carbon nanofibers derived from layered bimetal-organic framework and as efficient oxygen electrocatalyst. Journal of Alloys and Compounds, 2021, 888, 161588.	5.5	10
1287	Adsorptive removal of dyes from wastewater using a metal-organic framework: A review. Chemosphere, 2021, 284, 131314.	8.2	230
1288	Environmental decomposition and remodeled phytotoxicity of framework-based nanomaterials. Journal of Hazardous Materials, 2022, 422, 126846.	12.4	18

#	Article	IF	Citations
1289	Enhanced catalytic sulfamethoxazole degradation via peroxymonosulfate activation over amorphous CoSx@SiO2 nanocages derived from ZIF-67. Journal of Hazardous Materials, 2022, 423, 126998.	12.4	119
1290	Review of adsorption–membrane hybrid systems for water and wastewater treatment. Chemosphere, 2022, 286, 131916.	8.2	83
1291	Amino-functionalized NUS-8 nanosheets as fillers in PIM-1 mixed matrix membranes for CO2 separations. Journal of Membrane Science, 2022, 641, 119912.	8.2	50
1292	Reversible lithium storage in sp2 hydrocarbon frameworks. Journal of Energy Chemistry, 2022, 66, 161-167.	12.9	1
1293	Transformation of Al-CDC from 3D crystals to 2D nanosheets in macroporous polyacrylates with enhanced CH4/N2 separation efficiency and stability. Chemical Engineering Journal, 2022, 429, 132285.	12.7	18
1294	Fabrication of a robust MOF/aerogel composite <i>via</i> a covalent post-assembly method. Chemical Communications, 2021, 57, 5961-5964.	4.1	15
1295	Preparation of hollow metal–organic frameworks <i>via</i> epitaxial protection and selective etching. Faraday Discussions, 2021, 231, 181-193.	3.2	3
1296	Preparation of Two-Dimensional Metal-Organic Framework Membranes and Their Applications in Separation. Acta Chimica Sinica, 2021, 79, 869.	1.4	12
1297	2D bimetallic Ni/Fe MOF nanosheet composites as a peroxidase-like nanozyme for colorimetric assay of multiple targets. Analytical Methods, 2021, 13, 2066-2074.	2.7	32
1298	Metal organic framework (MOF)-based micro/nanoscaled materials for heavy metal ions removal: The cutting-edge study on designs, synthesis, and applications. Coordination Chemistry Reviews, 2021, 427, 213554.	18.8	197
1299	Two-dimensional MOF-based liquid marbles: surface energy calculations and efficient oil–water separation using a ZIF-9-III@PVDF membrane. Journal of Materials Chemistry A, 2021, 9, 23651-23659.	10.3	20
1300	Nanomaterials: a review of synthesis methods, properties, recent progress, and challenges. Materials Advances, 2021, 2, 1821-1871.	5.4	1,049
1301	Two-dimensional metal–organic framework with perpendicular one-dimensional nano-channel as precise polysulfide sieves for highly efficient lithium–sulfur batteries. Journal of Materials Chemistry A, 2021, 9, 4870-4879.	10.3	24
1302	Recent strategies to improve the photoactivity of metal–organic frameworks. Dalton Transactions, 2021, 50, 2342-2349.	3.3	64
1303	A two-year water-stable 2D MOF with aqueous NIR photothermal conversion ability. Dalton Transactions, 2021, 50, 1374-1383.	3.3	12
1304	A two-dimensional MXene-supported metal–organic framework for highly selective ambient electrocatalytic nitrogen reduction. Nanoscale, 2021, 13, 2843-2848.	5.6	81
1305	Postsynthesis Strategy of Functional Zn-MOF Sensors for the Detection of ClO ^{â€"} and DPA. Inorganic Chemistry, 2021, 60, 2590-2597.	4.0	23
1306	Nanoarchitectonics for Hybrid and Related Materials for Bioâ€Oriented Applications. Advanced Functional Materials, 2018, 28, 1702905.	14.9	149

#	Article	IF	CITATIONS
1307	2D Metal Organic Framework Nanosheet: A Universal Platform Promoting Highly Efficient Visibleâ€Lightâ€Induced Hydrogen Production. Advanced Energy Materials, 2019, 9, 1803402.	19.5	200
1308	A Comprehensive Thermogravimetric Analysis Multifaceted Method for the Exact Determination of the Composition of Multifunctional Metalâ€Organic Framework Materials. European Journal of Inorganic Chemistry, 2020, 2020, 4284-4294.	2.0	29
1309	Electrochemical Reduction of Carbon Dioxide to Methanol Using Metal-Organic Frameworks and Non-metal-Organic Frameworks Catalyst. Environmental Chemistry for A Sustainable World, 2020, , 91-131.	0.5	1
1310	Functionalized halloysite nanotubes: an "ecofriendly―nanomaterial in environmental industry. , 2020, , 417-433.		6
1311	Fracture toughness of a metal–organic framework glass. Nature Communications, 2020, 11, 2593.	12.8	76
1312	Metal–Organic Frameworks (MOFs) as Potential Hybrid Ferroelectric Materials. RSC Smart Materials, 2019, , 197-244.	0.1	2
1313	The surfactant-free bottom-up synthesis of ultrathin MOF nanosheets for the oxidation of isoeugenol to vanillin. Materials Advances, 2020, 1, 326-328.	5.4	6
1314	Competitive formation between 2D and 3D metal-organic frameworks: insights into the selective formation and lamination of a 2D MOF. IUCrJ, 2019, 6, 681-687.	2.2	11
1315	A survey of interactions in crystal structures of pyrazine-based compounds. Acta Crystallographica Section C, Structural Chemistry, 2019, 75, 231-247.	0.5	19
1316	Reviewâ€"2D Layered Metal Organic Framework Nanosheets as an Emerging Platform for Electrochemical Sensing. Journal of the Electrochemical Society, 2020, 167, 136502.	2.9	28
1317	Reviewâ€"Recent Trend on Two-Dimensional Metal-Organic Frameworks for Electrochemical Biosensor Application. Journal of the Electrochemical Society, 2020, 167, 136509.	2.9	42
1318	Optical modulation characteristics of zeolitic imidazolate framework-67 (ZIF-67) in the near infrared regime. Optics Letters, 2019, 44, 5892.	3.3	28
1319	The CO2/CH4 Separation Potential of ZIF-8/Polysulfone Mixed Matrix Membranes at Elevated Particle Loading for Biogas Upgradation Process. International Journal of Renewable Energy Development, 2021, 10, 213-219.	2.4	5
1320	SYNTHESIS AND OPTICAL PROPERTIES OF THE NOVEL Ho(5-SSA), (5-SSA = 5-SULFOSALICYLIC ACID) CAGE STRUCTURE. MuÄŸla Journal of Science and Technology, 0, , 116-122.	0.1	2
1321	Metal and Covalent Organic Frameworks for Membrane Applications. Membranes, 2020, 10, 107.	3.0	38
1322	Evaluation of the synthetic methods for preparing metal organic frameworks with transition metals. AIMS Materials Science, 2018, 5, 467-478.	1.4	18
1323	Hydrangea-like architectures composed of Zr-based metal $\hat{a}\in$ organic framework nanosheets with enhanced iodine capture. Dalton Transactions, 2021, 50, 16468-16472.	3.3	4
1324	Interface engineering and integration of two-dimensional polymeric and inorganic materials for advanced hybrid structures. New Journal of Chemistry, 2021, 45, 20972-20986.	2.8	0

#	Article	IF	CITATIONS
1325	A 2D/2D NiCo-MOF/Ti ₃ C ₂ heterostructure for the simultaneous detection of acetaminophen, dopamine and uric acid by differential pulse voltammetry. Dalton Transactions, 2021, 50, 16593-16600.	3.3	12
1326	pH-Responsive Size-Shrinkable and Golgi-Targeted Fluorescence Carbon Dots Derived from Metal-Organic Frameworks for Imaging Guided Drug Delivery and Tumor In-Deep Treatment. SSRN Electronic Journal, 0, , .	0.4	0
1327	Highly Selective and Sensitive Detection of Volatile Sulfur Compounds by Ionically Conductive Metalâ€Organic Frameworks. Advanced Materials, 2021, 33, e2104120.	21.0	25
1328	Freestanding Metal Organic Frameworkâ€Based Multifunctional Membranes Fabricated via Pseudomorphic Replication toward Liquid―and Gasâ€Hazards Abatement. Advanced Materials Interfaces, 2021, 8, 2101178.	3.7	3
1329	Cuâ€MOFs Derived Porous Cu Nanoribbons with Strengthened Electric Field for Selective CO ₂ Electroreduction to C ₂₊ Fuels. Advanced Energy Materials, 2021, 11, 2102447.	19.5	53
1330	Metalâ^'Organic Frameworks: Why Make Them Small?. Small Structures, 2022, 3, 2100126.	12.0	18
1331	Facile manufacture of COF-based mixed matrix membranes for efficient CO2 separation. Chemical Engineering Journal, 2022, 430, 133001.	12.7	54
1332	Assembly of Two-Dimensional Metal Organic Framework Superstructures <i>via</i> Solvent-Mediated Oriented Attachment. Journal of Physical Chemistry C, 2021, 125, 22837-22847.	3.1	7
1333	A modest method of synthesis Cu- based metal-organic frameworks using benzene dicarbocxylate as a ligan for promising candidate of flue gas CO2 adsorption. Jurnal Natural, 2021, 21, 128-134.	0.3	0
1334	Few-Layered Metal–Organic Framework Nanosheets as Catalysts for the Synthesis of 2,3-Dihydroquinazolinone and Propargylamines. ACS Applied Nano Materials, 2021, 4, 12108-12118.	5. 0	3
1335	Acidâ€Resistance and Selfâ€Repairing Supramolecular Nanoparticle Membranes via Hydrogenâ€Bonding for Sustainable Molecules Separation. Advanced Science, 2021, 8, e2102594.	11.2	30
1336	Gas/Vapor Transport. , 2015, , 1-13.		0
1337	A Mass Transfer Model for Pervaporation Separation Processes in Mixed Matrix Membrane., 0,,.		0
1339	Propylene/Nitrogen Separation Membranes Based on Amphiphilic Copolymer Grafted from Poly(1-trimethylsilyl-1-propyne). Membrane Journal, 2019, 29, 88-95.	0.4	1
1340	From atacamite to Cu(II)â€1,4â€benzenedicarboxylate for enhanced adsorption of methyl blue. Micro and Nano Letters, 2019, 14, 556-559.	1.3	0
1342	Bottom-up synthesis of two-dimensional composite via CuBDC-ns growth on multilayered MoS2 to boost CO2 permeability and selectivity in Pebax-based mixed matrix membranes. Separation and Purification Technology, 2022, 282, 120007.	7.9	26
1343	Atomically Thin Materials for Next-Generation Rechargeable Batteries. Chemical Reviews, 2022, 122, 957-999.	47.7	87
1344	Coordination polymers driven by 2,5-dibromoterephthalic acid and chelating co-ligands: Syntheses, structures and luminescent properties. Journal of Solid State Chemistry, 2020, 292, 121721.	2.9	2

#	Article	IF	CITATIONS
1345	Highly steam-stable CHA-type zeolite imidazole framework ZIF-302 membrane for hydrogen separation. Separation and Purification Technology, 2022, 281, 119875.	7.9	11
1346	Interface regulation of mixed matrix membranes by ultrathin MOF nanosheet for faster CO2 transfer. Journal of Membrane Science, 2022, 642, 119991.	8.2	17
1347	Research Progress on the Friction and Wear Properties of Graphene Materials. Material Sciences, 2020, 10, 312-319.	0.0	0
1349	A novel core-shell coordination assembled hybrid via postsynthetic metal exchange for simultaneous detection and removal of tetracycline. Analytica Chimica Acta, 2022, 1190, 339247.	5. 4	10
1350	Advanced Membranes Functionalized with Non-carbon-based 2D Nanomaterials for Liquid Separation. Chemistry in the Environment, 2021, , 108-136.	0.4	0
1351	High performance of PES-GNs MMMs for gas separation and selectivity. Arabian Journal of Chemistry, 2022, 15, 103565.	4.9	25
1352	Passively Q-switched Tm:YAP laser with a zeolitic imidalate framework-67 saturable absorber operating at 3H4â†'3H5 transition. Optics and Laser Technology, 2022, 147, 107679.	4.6	15
1353	Self-Assembly of a 3D Hollow BiOBr@Bi-MOF Heterostructure with Enhanced Photocatalytic Degradation of Dyes. ACS Applied Materials & Samp; Interfaces, 2021, 13, 56171-56180.	8.0	88
1354	Derivatives of metal-organic frameworks for heterogeneous Fenton-like processes: From preparation to performance and mechanisms in wastewater purification – A mini review. Environmental Research, 2022, 206, 112414.	7.5	61
1355	Activatable autophagy inhibition-primed chemodynamic therapy via targeted sandwich-like two-dimensional nanosheets. Chemical Engineering Journal, 2022, 431, 133470.	12.7	17
1356	Pyrazineâ€interiorâ€embodied <scp>MOF</scp> â€₹4 for selective <scp>CO₂</scp> adsorption. AICHE Journal, 2022, 68, e17528.	3.6	11
1357	Conformational-change-induced selectivity enhancement of CAU-10-PDC membrane for H2/CH4 and CO2/CH4 separation., 2021, 1, 100005.		7
1358	Emerging Two-Dimensional Covalent and Coordination Polymers for Stable Lithium Metal Batteries: From Liquid to Solid. ACS Nano, 2021, 15, 19026-19053.	14.6	20
1359	Tunable arrangement of hydrogel and cyclodextrin-based metal organic frameworks suitable for drug encapsulation and release. Carbohydrate Polymers, 2022, 278, 118915.	10.2	18
1360	Ultrathin Metal–Organic Framework Nanosheets as Nanoâ€Floatingâ€Gate for High Performance Transistor Memory Device. Advanced Functional Materials, 2022, 32, 2110784.	14.9	10
1361	Metal–Organic Frameworks/Polymer Composite Membranes. RSC Smart Materials, 2021, , 98-141.	0.1	0
1362	High–aspect ratio zeolitic imidazolate framework (ZIF) nanoplates for hydrocarbon separation membranes. Science Advances, 2022, 8, eabl6841.	10.3	40
1363	Monolayer Nanosheets Exfoliated from Cage-Based Cationic Metal–Organic Frameworks. Inorganic Chemistry, 2022, 61, 1521-1529.	4.0	6

#	Article	IF	Citations
1364	Colorimetric immunosensor constructed using 2D metal–organic framework nanosheets as enzyme mimics for the detection of protein biomarkers. Journal of Materials Chemistry B, 2022, 10, 450-455.	5.8	23
1365	Fabrication of 2D bimetallic metal-organic framework ultrathin membranes by vapor phase transformation of hydroxy double salts. Journal of Membrane Science, 2022, 644, 120167.	8.2	14
1366	Threading the MOF-derived mesoporous carbon host with CNT network: An effective modification layer for high-areal-capacity Li metal anodes. Chemical Engineering Journal, 2022, 431, 134194.	12.7	10
1367	Self-assembly of nano/microstructured 2D Ti3CNTx MXene-based composites for electromagnetic pollution elimination and Joule energy conversion application. Carbon, 2022, 189, 305-318.	10.3	55
1368	Highly-stable cobalt metal organic framework with sheet-like structure for ultra-efficient water oxidation at high current density. Journal of Colloid and Interface Science, 2022, 611, 599-608.	9.4	43
1369	Rapid and sensitive detection of PD-L1 exosomes using Cu-TCPP 2D MOF as a SPR sensitizer. Biosensors and Bioelectronics, 2022, 201, 113954.	10.1	43
1370	Metal-organic frameworks derived transition metal phosphides for electrocatalytic water splitting. Journal of Energy Chemistry, 2022, 68, 494-520.	12.9	70
1371	Ultrathin metal–organic framework nanosheets and devices. Oxford Open Materials Science, 2020, 1, .	1.8	0
1372	Exploration of structural transition phenomenon in flexible metal–organic framework formed on polymer substrate. CrystEngComm, 2021, 23, 8498-8505.	2.6	1
1373	The Adsorption of Small Molecules on the Copper Paddle-Wheel: Influence of the Multi-Reference Ground State. Molecules, 2022, 27, 912.	3.8	2
1374	Potential and design of imine-linked two-dimensional covalent organic framework membranes for Ethane/Methane separation. Applied Surface Science, 2022, 585, 152601.	6.1	5
1375	Light-responsive metal–organic framework sheets constructed smart membranes with tunable transport channels for efficient gas separation. RSC Advances, 2021, 12, 517-527.	3. 6	10
1376	<scp>Twoâ€Dimensional Metalâ€Organic</scp> Frameworks and Covalent Organic Frameworks. Chinese Journal of Chemistry, 2022, 40, 1359-1385.	4.9	31
1377	Adsorption and diffusion behavior of CO2/H2 mixture in calcite slit pores: A molecular simulation study. Journal of Molecular Liquids, 2022, 346, 118306.	4.9	18
1379	Meniscus-Guided 3D Microprinting of Pure Metal–Organic Frameworks with High Gas-Uptake Performance. ACS Applied Materials & Details & Samp; Interfaces, 2022, 14, 7184-7191.	8.0	7
1380	Manipulating Active Sites of 2D Metal–Organic Framework Nanosheets with Fluorescent Materials for Enhanced Colorimetric and Fluorescent Ammonia Sensing. Advanced Materials Interfaces, 2022, 9, .	3.7	15
1381	Highly safe and stable lithium–metal batteries based on a quasi-solid-state electrolyte. Journal of Materials Chemistry A, 2022, 10, 651-663.	10.3	32
1383	Plasmonic Nanozymes: Localized Surface Plasmonic Resonance Regulates Reaction Kinetics and Antibacterial Performance. Journal of Physical Chemistry Letters, 2022, 13, 312-323.	4.6	31

#	Article	IF	Citations
1384	Fluorescent sensing using metal-organic and covalent-organic framework nanosheets., 2022, , 143-174.		1
1385	Metal–organic frameworks for advanced transducer based gas sensors: review and perspectives. Nanoscale Advances, 2022, 4, 697-732.	4.6	33
1386	A review of recent progress in modified metal–organic frameworks as photocatalysts. Journal of Materials Science: Materials in Electronics, 2022, 33, 4737-4754.	2.2	5
1387	Fabrication of Two-Dimensional Metal–Organic Framework Nanosheets through Crystal Dissolution–Growth Kinetics. ACS Applied Materials & Interfaces, 2022, 14, 7192-7199.	8.0	13
1388	Synthesis and electrocatalytic performance of ultrathin noble metal nanosheets. CrystEngComm, 2022, 24, 1319-1333.	2.6	5
1389	Evidence of One-Dimensional Channels in Hydrogen-Bonded Organic Porous Thin Films Fabricated at the Air/Liquid Interface. Langmuir, 2022, 38, 1910-1914.	3.5	1
1391	Twoâ€Dimensional Metal–Organic Framework Nanosheets: Synthesis and Applications in Electrocatalysis and Photocatalysis. ChemSusChem, 2022, 15, .	6.8	33
1392	A biological luminescent metal–organic framework with high fluorescence quantum yield for the selective detection of amino acids and monosaccharides. Dalton Transactions, 2022, 51, 2883-2889.	3.3	5
1393	Flexible Softâ€Solid Metal–Organic Framework Composite Membranes for H ₂ /CO ₂ Separation. Angewandte Chemie - International Edition, 2022, 61, .	13.8	41
1394	Recent trends in therapeutic application of engineered blood purification materials for kidney disease. Biomaterials Research, 2022, 26, 5.	6.9	10
1395	Flexible Softâ€Solid Metal–Organic Framework Composite Membranes for H ₂ /CO ₂ Separation. Angewandte Chemie, 2022, 134, .	2.0	3
1396	The relationship between surface structure and super-lubrication performance based on 2D MOFs. Applied Materials Today, 2022, 26, 101382.	4.3	7
1397	Polybenzoxazine - an enticing precursor for engineering heteroatom-doped porous carbon materials with applications beyond energy, environment and catalysis. Materials Today Chemistry, 2022, 23, 100734.	3.5	7
1398	Plasticization-enhanced trimethylbenzene functionalized polyethersulfone hollow fiber membranes for propylene and propane separation. Journal of Membrane Science, 2022, 647, 120293.	8.2	7
1399	Enhanced 2-D MOFs nanosheets/PIM-PMDA-OH mixed matrix membrane for efficient CO2 separation. Journal of Environmental Chemical Engineering, 2022, 10, 107274.	6.7	16
1400	å·æœ‰é«~ä»·æ°§åŒ−æ€çš"è¶è−"二维Ni-MOFé«~性能电å,¬åŒ−å‰,甓于苯甲醇氧åŒ−å应.	Sci en 4ia Si	nic a Chimica
1401	Chapter 1. Recent Developments and Perspectives on Solar-driven Fine Chemicals Synthesis: From the Reaction System to 2D Photocatalysts. Inorganic Materials Series, 2022, , 1-64.	0.7	1
1402	Large-Area 2D Covalent Organic Framework Membranes with Tunable Single-Digit Nanopores for Predictable Mass Transport. ACS Nano, 2022, 16, 2407-2418.	14.6	65

#	Article	IF	CITATIONS
1403	Simple electrodeposition of a novel lanthanide-based porous tri-metallic metal–organic framework grown onto Ni-foam support as a novel binder-free electrode for supercapacitors. Ionics, 2022, 28, 2389-2396.	2.4	10
1404	Recent advances in enzyme immobilization based on novel porous framework materials and its applications in biosensing. Coordination Chemistry Reviews, 2022, 459, 214414.	18.8	114
1405	Advances, challenges, and perspectives of biogas cleaning, upgrading, and utilisation. Fuel, 2022, 317, 123085.	6.4	63
1406	Saturable absorption property and laser modulation performance of zeolitic imidazolate framework-67 (ZIF-67) at 2.85µm. Optics and Laser Technology, 2022, 150, 107901.	4.6	3
1407	Molecular Recognition with Covalent-Organic-Framework Nanofilms at Terahertz Band. SSRN Electronic Journal, 0, , .	0.4	0
1408	High-performance quasi-solid-state flexible supercapacitors based on a flower-like NiCo metal–organic framework. RSC Advances, 2022, 12, 5910-5918.	3 . 6	13
1409	Hierarchical Amine-Functionalized Zif-8 Mixed-Matrix Membranes with Engineered Interface and Transport Pathway for Efficient Gas Separation. SSRN Electronic Journal, 0, , .	0.4	0
1410	Fabrication Strategies of Conjugated Microporous Polymer Membranes for Molecular Separation. Acta Chimica Sinica, 2022, 80, 168.	1.4	1
1411	Structural regulation of Co-based coordination polymers by adjusting solvent polarity toward electrocatalytic hydrogen evolution performance. New Journal of Chemistry, 2022, 46, 7355-7365.	2.8	2
1412	State of the Art and Prospects in Metal-Organic Framework-Derived Microwave Absorption Materials. Nano-Micro Letters, 2022, 14, 68.	27.0	117
1413	Structures, properties, and challenges of emerging $<$ scp $>$ 2D $<$ /scp $>$ materials in bioelectronics and biosensors. InformaÄnÄ-MateriÄįly, 2022, 4, .	17.3	40
1414	Two 3D Cd(II) coordination polymers pillared by linear ligand: synthesis, structure and luminescent properties. Inorganic and Nano-Metal Chemistry, 0 , , 1 - 7 .	1.6	2
1415	Metal-organic framework enables ultraselective polyamide membrane for desalination and water reuse. Science Advances, 2022, 8, eabm4149.	10.3	87
1416	Cooperative Assembly of 2Dâ€MOF Nanoplatelets into Hierarchical Carpets and Tubular Superstructures for Advanced Air Filtration. Angewandte Chemie - International Edition, 2022, , .	13.8	2
1417	2D Materials for Wearable Energy Harvesting. Advanced Materials Technologies, 2022, 7, .	5 . 8	16
1418	Cooperative Assembly of 2Dâ€MOF Nanoplatelets into Hierarchical Carpets and Tubular Superstructures for Advanced Air Filtration. Angewandte Chemie, 2022, 134, .	2.0	1
1419	Infinite coordination polymer for enhancing the thermoelectric performance of Bi0.5Sb1.5Te3 for low-grade waste heat recovery. Materials Today Energy, 2022, 26, 100994.	4.7	7
1420	Thermal expansion-quench of nickel metal-organic framework into nanosheets for efficient visible light CO2 reduction. Chinese Chemical Letters, 2023, 34, 107335.	9.0	6

#	Article	IF	CITATIONS
1421	Application of metal organic framework in wastewater treatment. Green Energy and Environment, 2023, 8, 698-721.	8.7	61
1422	Current Progress and Scalable Approach toward the Synthesis of 2D Metal–Organic Frameworks. Advanced Materials Interfaces, 2022, 9, .	3.7	9
1423	Poly(ionic liquid)-Functionalized UiO-66-(OH) ₂ : Improved Interfacial Compatibility and Separation Ability in Mixed Matrix Membranes for CO ₂ Separation. Industrial & Engineering Chemistry Research, 2022, 61, 7626-7633.	3.7	21
1424	Ultrathin Membranes for Separations: A New Era Driven by Advanced Nanotechnology. Advanced Materials, 2022, 34, e2108457.	21.0	58
1425	Shaping of metal-organic frameworks, a critical step toward industrial applications. Matter, 2022, 5, 1070-1091.	10.0	35
1426	Enhanced 2-D MOFs nanosheets/PES-g-PEG mixed matrix membrane for efficient CO2 separation. Chemical Engineering Research and Design, 2022, 180, 79-89.	5.6	10
1427	Two Bi-MOFs with pyridylmulticarboxylate ligands showing distinct crystal structures and phosphorescence properties. Journal of Solid State Chemistry, 2022, 309, 123005.	2.9	3
1428	Chemical vapor deposition of guest-host dual metal-organic framework heterosystems for high-performance mixed matrix membranes. Applied Materials Today, 2022, 27, 101462.	4.3	2
1429	Recent advances in membrane-enabled water desalination by 2D frameworks: Graphene and beyond. Desalination, 2022, 531, 115684.	8.2	50
1430	Sulfonated TiO2 quantum dots enabled constructing of bicarbonate highways in quaternary ammonium poly (ether ether ketone) membranes for efficient CO2 separation. Journal of Membrane Science, 2022, 652, 120491.	8.2	2
1431	Synthesis of various dimensional metal organic frameworks (MOFs) and their hybrid composites for emerging applications – A review. Chemosphere, 2022, 298, 134184.	8.2	82
1432	Edge engineering of platinum nanoparticles via porphyrin-based ultrathin 2D metal–organic frameworks for enhanced photocatalytic hydrogen generation. Chemical Engineering Journal, 2022, 442, 136144.	12.7	31
1433	Cu-Based Metal–Organic Framework Nanosheets Synthesized via a Three-Layer Bottom-Up Method for the Catalytic Conversion of ⟨i⟩S⟨/i⟩-Nitrosoglutathione to Nitric Oxide. ACS Applied Nano Materials, 2022, 5, 486-496.	5.0	2
1434	Recent advances in dual-filler mixed matrix membranes. Reviews in Chemical Engineering, 2020, .	4.4	1
1435	Advances and challenges in the development of nanosheet membranes. Reviews in Chemical Engineering, 2023, 39, 631-668.	4.4	4
1437	Two-dimensional noble transition-metal dichalcogenides for nanophotonics and optoelectronics: Status and prospects. Nano Research, 2022, 15, 3675-3694.	10.4	22
1438	Analysis of the Water Adsorption Isotherms in UiO-Based Metal–Organic Frameworks. Journal of Physical Chemistry C, 2022, 126, 1107-1114.	3.1	21
1439	Membrane engineering in gas separation. , 2022, , 123-147.		0

#	Article	IF	CITATIONS
1440	Tailoring the Solvation Sheath of Cations by Constructing Electrode Frontâ€Faces for Rechargeable Batteries. Advanced Materials, 2022, 34, e2201339.	21.0	66
1441	Degradation of G-Type Nerve Agent Simulant with Phase-Inverted Spherical Polymeric-MOF Catalysts. ACS Applied Materials & Degradation of G-Type Nerve Agent Simulant with Phase-Inverted Spherical Polymeric-MOF Catalysts.	8.0	15
1442	Confinement of Luminescent Guests in Metal–Organic Frameworks: Understanding Pathways from Synthesis and Multimodal Characterization to Potential Applications of LG@MOF Systems. Chemical Reviews, 2022, 122, 10438-10483.	47.7	106
1443	Ultrathin two-dimensional bimetal NiCo-based MOF nanosheets as ultralight interlayer in lithium-sulfur batteries. Chinese Chemical Letters, 2023, 34, 107427.	9.0	9
1444	MOF–COF "Alloy―Membranes for Efficient Propylene/Propane Separation. Advanced Materials, 2022, 34, e2201423.	21.0	39
1445	Pesticide detection with covalent-organic-framework nanofilms at terahertz band. Biosensors and Bioelectronics, 2022, 209, 114274.	10.1	13
1446	Architecting MOFs-based mixed matrix membrane for efficient CO2 separation: Ameliorating strategies toward non-ideal interface. Chemical Engineering Journal, 2022, 443, 136290.	12.7	19
1447	Two-dimensional MoS2/Mn-MOF/multi-walled carbon nanotubes composite material for high-performance supercapacitors. Microchemical Journal, 2022, 179, 107506.	4.5	25
1448	CHAPTER 8. Photocatalysis: Past Achievements and Future Trends. RSC Green Chemistry, 0, , 227-269.	0.1	0
1454	Enhanced dielectric properties of PVDF-based composite film with BaTiO ₃ @SrTiO ₃ nanoparticles. New Journal of Chemistry, 2022, 46, 10577-10583.	2.8	5
1455	Metal–Organic Nanosheets (MONs): Exfoliation by Mechanical Grinding and Iodine Capture. Advanced Materials Interfaces, 2022, 9, .	3.7	5
1456	Highly dispersive AuNCs/ChOx@ZIF-8/PEI nanocomplexes for fluorescent detection of cholesterol in human serum. Mikrochimica Acta, 2022, 189, 203.	5.0	7
1457	2D Layer Structure in Two New Cu(II) Crystals: Structural Evolvement and Properties. Crystals, 2022, 12, 585.	2.2	0
1458	Progress on 3Dâ€Printed Metalâ€Organic Frameworks with Hierarchical Structures. Advanced Materials Technologies, 2022, 7, .	5.8	10
1459	Ultrathin Two-Dimensional Bimetal–Organic Framework Nanosheets as High-Performance Electrocatalysts for Benzyl Alcohol Oxidation. Inorganic Chemistry, 2022, 61, 7308-7317.	4.0	10
1461	Electrochemical synthesis of 2D copper coordination-polymers: Layer-stacking deviation induced by the solvent and its effect on the adsorptive properties. Microporous and Mesoporous Materials, 2022, 337, 111938.	4.4	1
1462	Delicate and Fast Photochemical Surface Modification of 2D Photoresponsive Organosilicon Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2022, 61, e202204568.	13.8	12
1463	Space-confined growth of 2D MOF sheets between GO layers at room temperature for superior PDMS membrane-based ester/water separation. Journal of Membrane Science, 2022, 656, 120605.	8.2	11

#	Article	IF	CITATIONS
1464	Delicate and Fast Photochemical Surface Modification of 2D Photoresponsive Organosilicon Metalâ€'Organic Frameworks. Angewandte Chemie, 0, , .	2.0	0
1465	Construction of a Hierarchical Structure of Bimetallic Oxide Derived from Metal–Organic Frameworks. Inorganic Chemistry, 2022, 61, 8043-8052.	4.0	5
1466	In-situ growth of MOF nanosheets with controllable thickness on copper foam for photoelectrocatalytic CO2 reduction. Journal of Materials Science: Materials in Electronics, 2022, 33, 14568-14580.	2.2	2
1467	Multiscale design of 3D metal–organic frameworks (Mâ^'BTC, M: Cu, Co, Ni) via PLAL enabling bifunctional electrocatalysts for robust overall water splitting. Chemical Engineering Journal, 2022, 446, 137045.	12.7	95
1468	ZIF-based carbon dots with lysosome-Golgi transport property as visualization platform for deep tumour therapy <i>via</i> hierarchical size/charge dual-transform and transcytosis. Nanoscale, 2022, 14, 8510-8524.	5.6	6
1469	Efficient Ch4 Separation and Vapor Uptakes in a Porous Mof Featuring 2d Interlaced Channels: Experiment and Simulation Exploration. SSRN Electronic Journal, 0, , .	0.4	0
1470	Flexible 2D Cu Metal: Organic Framework@MXene Film Electrode with Excellent Durability for Highly Selective Electrocatalytic NH ₃ Synthesis. Research, 2022, 2022, .	5.7	16
1471	The electro-oxidation of primary alcohols via a coral-shaped cobalt metal–organic framework modified graphite electrode in neutral media. Scientific Reports, 2022, 12, .	3.3	11
1472	Synthesis and electromagnetic properties of NH2-MIL-88B(Fe) crystals with morphology and size controllable through synergistic effects of surfactant and water. Journal of Materials Science: Materials in Electronics, 2022, 33, 14228-14239.	2.2	3
1473	Rational design of mixed-matrix metal-organic framework membranes for molecular separations. Science, 2022, 376, 1080-1087.	12.6	160
1474	Singleâ€Crystal Capacitive Sensors with Micropatterned Electrodes via Spaceâ€Confined Growth of the Metal–Organic Framework HKUSTâ€1. Advanced Functional Materials, 0, , 2204065.	14.9	4
1475	Azobenzene modified metal-organic framework: For solar energy storage. Journal of Energy Storage, 2022, 52, 104971.	8.1	2
1476	Biorenewable Nanocomposite Materials in Membrane Separations. ACS Symposium Series, 0, , 189-235.	0.5	1
1477	Nano-Sonosensitized Sonodynamic Nanomedicine Augments Tumor-Selective Catalytic Tumor Eradication. Frontiers in Materials, 0, 9, .	2.4	4
1478	Linker Scissoring Strategy Enables Precise Shaping of Metal–Organic Frameworks for Chromatographic Separation. Angewandte Chemie, 2022, 134, .	2.0	1
1479	2D MOF with Compact Catalytic Sites for the Oneâ€pot Synthesis of 2,5â€Dimethylfuran from Saccharides via Tandem Catalysis. Angewandte Chemie - International Edition, 2022, 61, .	13.8	29
1480	2D MOF with Compact Catalytic Sites for the Oneâ€pot Synthesis of 2,5â€Dimethylfuran from Saccharides via Tandem Catalysis. Angewandte Chemie, 2022, 134, .	2.0	7
1481	Linker Scissoring Strategy Enables Precise Shaping of Metal–Organic Frameworks for Chromatographic Separation. Angewandte Chemie - International Edition, 2022, 61, .	13.8	15

#	Article	IF	CITATIONS
1482	Metal–Organic Frameworks on Palladium Nanoparticle–Functionalized Carbon Nanotubes for Monitoring Hydrogen Storage. ACS Applied Nano Materials, 2022, 5, 13779-13786.	5.0	9
1483	Thin Films Based on Polyimide/Metal–Organic Framework Nanoparticle Composite Membranes with Substantially Improved Stability for CO ₂ /CH ₄ Separation. ACS Applied Nano Materials, 2022, 5, 8997-9007.	5.0	11
1484	Creation of metal–organic framework nanosheets by the Langmuir-Blodgett technique. Coordination Chemistry Reviews, 2022, 469, 214650.	18.8	21
1485	Unraveling the role of operating pressure in the rapid formation of Cu-BDC MOF via a microdroplet approach. Chemical Engineering Journal, 2022, 447, 137544.	12.7	7
1486	Carboxylated-Covalent Organic Frameworks and Chitosan Assembled Membranes for Precise and Efficient Dye Separation. SSRN Electronic Journal, 0, , .	0.4	0
1487	Complete twin suppression in oriented NH $<$ sub $>$ 2 $<$ /sub $>$ -MIL-125 film $<$ i $>>$ via $<$ /i $>$ facile coordination modulation. Chemical Communications, 0, , .	4.1	3
1488	Switching gas permeation through smart membranes by external stimuli: a review. Journal of Materials Chemistry A, 2022, 10, 16743-16760.	10.3	13
1489	Rapid Synthesis of Graphdiyne Films on Hydrogel at the Superspreading Interface for Antibacteria. ACS Nano, 2022, 16, 11338-11345.	14.6	30
1490	Direct Synthesis of Ultrathin Two-Dimensional Co-Based Metal–Organic Framework Membranes by the Conversion of Co(OH) ₂ Sheets for Gas Separation. Industrial & Engineering Chemistry Research, 2022, 61, 9847-9855.	3.7	1
1491	Copper-based non-precious metal catalysts derived from the in-situ and ex-situ loading of copper-bipyridine metal-organic framework on activated carbon for oxygen reduction reaction. Journal of Chemical Sciences, 2022, 134, .	1.5	2
1492	Emerging Synthesis Strategies of 2D MOFs for Electrical Devices and Integrated Circuits. Small, 2022, 18, .	10.0	19
1493	Thin film nanocomposite membranes of PIM-1 and graphene oxide/ZIF-8 nanohybrids for organophilic pervaporation. Separation and Purification Technology, 2022, 299, 121693.	7.9	6
1494	Efficient CH4 separation and vapor uptakes in a porous MOF featuring 2D interlaced channels: experiment and simulation exploration. Separation and Purification Technology, 2022, 298, 121645.	7.9	4
1495	2D CuBDC and IRMOF-1 as reverse osmosis membranes for seawater desalination: A molecular dynamics study. Applied Surface Science, 2022, 601, 154088.	6.1	5
1496	SARS-CoV-2 virus label-free electrochemical nanohybrid MIP-aptasensor based on Ni3(BTC)2 MOF as a high-performance surface substrate. Mikrochimica Acta, 2022, 189, .	5.0	27
1497	Tri-MX: New group-IV monochalcogenide monolayers with excellent piezoelectricity and special optical properties. Applied Surface Science, 2022, 602, 154391.	6.1	4
1498	Interlayer superlubricity of layered Metal-organic frameworks and its heterojunctions enabled by highly oriented crystalline films. Chemical Engineering Journal, 2022, 450, 138249.	12.7	5
1499	Two-dimensional material membranes for gas separation and their applications. Chinese Science Bulletin, 2023, 68, 53-71.	0.7	1

#	Article	IF	CITATIONS
1500	Alkaline-Stable Peroxidase Mimics Based on Biological Metal–Organic Frameworks for Recyclable Scavenging of Hydrogen Peroxide and Detecting Glucose in Apple Fruits. ACS Sustainable Chemistry and Engineering, 2022, 10, 10685-10698.	6.7	4
1501	A <scp>2D</scp> metalâ€organic framework with dualâ€acidic sites for the valorization of saccharides to 5â€hydroxymethylfurfural. AICHE Journal, 0, , .	3.6	1
1502	Infusion of variable chemical structure to tune stacking among metalâ€organic layers in 2D Nano MOF. Chemistry - A European Journal, 0, , .	3.3	3
1503	Hierarchical Amine-Functionalized ZIF-8 Mixed-Matrix Membranes with an Engineered Interface and Transport Pathway for Efficient Gas Separation. ACS Applied Polymer Materials, 2022, 4, 6426-6439.	4.4	12
1504	MOFâ€Based Chemiresistive Gas Sensors: Toward New Functionalities. Advanced Materials, 2023, 35, .	21.0	59
1506	Solid-State Nuclear Magnetic Resonance Spectroscopy-Assisted Structure Determination of Coordination Polymers. Chemistry of Materials, 2022, 34, 7678-7691.	6.7	2
1508	Metal-organic frameworks in separations: A review. Analytica Chimica Acta, 2022, 1234, 340208.	5.4	20
1509	Metal–organic frameworks and covalent organic frameworks as disruptive membrane materials for energy-efficient gas separation. Nature Nanotechnology, 2022, 17, 911-923.	31.5	156
1511	Insights into Solid-To-Solid Transformation of MOF Amorphous Phases. Inorganic Chemistry, 2022, 61, 13992-14003.	4.0	10
1512	Two-dimensional basic cobalt carbonate supported ZIF-67 composites towards mixed matrix membranes for efficient CO2/N2 separation. Journal of Membrane Science, 2022, 661, 120928.	8.2	7
1513	2D MOFs and their derivatives for electrocatalytic applications: Recent advances and new challenges. Coordination Chemistry Reviews, 2022, 472, 214777.	18.8	109
1514	Interface-engineered MoS2/CoS/NF bifunctional catalysts for highly-efficient water electrolysis. Journal of Energy Chemistry, 2022, 75, 16-25.	12.9	21
1515	Efficient Purification of 2,6-Lutidine by Nonporous Adaptive Crystals of Pillararenes. ACS Applied Materials & Samp; Interfaces, 2022, 14, 41072-41078.	8.0	8
1516	Molecular insights into the CO2 separation mechanism of GO supported deep eutectic solvent membrane. Journal of Molecular Liquids, 2022, 366, 120248.	4.9	6
1517	Two-dimensional metal-organic frameworks: From synthesis to biomedical, environmental, and energy conversion applications. Coordination Chemistry Reviews, 2022, 473, 214817.	18.8	22
1518	Preparation of Thin-Film Composite Membranes with Ultrahigh Mofs Loading Through Polymer-Template Mofs Induction Secondary Interfacial Polymerization. SSRN Electronic Journal, 0, , .	0.4	0
1519	Multi-Assembled Nanofiltration Membranes with Excellent Separation and Catalytic Performance. SSRN Electronic Journal, 0, , .	0.4	0
1520	Advances in metal–organic framework-based membranes. Chemical Society Reviews, 2022, 51, 8300-8350.	38.1	98

#	Article	IF	CITATIONS
1521	Calix[6]arene functionalized lanthanide metal–organic frameworks with boosted performance in identifying an anti-epidemic pharmaceutical. Chemical Communications, 2022, 58, 11697-11700.	4.1	3
1522	State-of-the-art advancements of atomically thin two-dimensional photocatalysts for energy conversion. Chemical Communications, 2022, 58, 9594-9613.	4.1	10
1523	Pore engineering in covalent organic framework membrane for gas separation., 2022, 2, 100037.		5
1524	Multi-Assembled Nanofiltration Membranes with Excellent Separation and Catalytic Performance. SSRN Electronic Journal, 0, , .	0.4	0
1525	Advances in Metal-Organic Framework (MOFs) based biosensors for diagnosis: An update. Current Topics in Medicinal Chemistry, 2022, 22, .	2.1	2
1526	A Facile Method to Prepare Defectâ€Sealed Zeolitic Imidazolate Framework Membrane on Cu Net for Gas Separation. Advanced Materials Interfaces, 2022, 9, .	3.7	3
1527	Highâ€Efficiency Electrogenerated Chemiluminescence of Novel Zrâ€Based Metal–Organic Frameworks through Organic Linkers Regulation. ChemElectroChem, 2022, 9, .	3.4	4
1528	Metalâ€organic framework derived porous structures towards lithium rechargeable batteries. EcoMat, 2023, 5, .	11.9	33
1529	2D Metal–Organic Frameworks for Electrochemical Energy Storage. Energy and Environmental Materials, 2023, 6, .	12.8	8
1530	Dialytic Synthesis of Two-Dimensional Cu-Based Metal–Organic Frameworks for Gas Separation: Designable MOF–Polymer Interface. Inorganic Chemistry, 2022, 61, 16197-16202.	4.0	3
1531	A Dual Sensing Platform for Human Exhaled Breath Enabled by Feâ€MILâ€101â€NH ₂ Metal–Organic Frameworks and its Derived Co/Ni/Fe Trimetallic Oxides. Small, 2022, 18, .	10.0	13
1532	Ultrathin Metal–Organic Framework Nanosheets Exhibiting Exceptional Catalytic Activity. Journal of the American Chemical Society, 2022, 144, 17487-17495.	13.7	48
1533	Construction of Halogen-Bonded Organic Frameworks (XOFs) as Novel Efficient Iodinating Agents. ACS Applied Materials & Samp; Interfaces, 2022, 14, 43621-43627.	8.0	10
1534	Design of Pd–Zn Bimetal MOF Nanosheets and MOF-Derived Pd3.9Zn6.1/CNS Catalyst for Selective Hydrogenation of Acetylene under Simulated Front-End Conditions. Molecules, 2022, 27, 5736.	3.8	5
1535	A facile synthesis of CeO2 from the GO@Ce-MOF precursor and its efficient performance in the oxygen evolution reaction. Frontiers in Chemistry, 0, 10 , .	3.6	4
1536	Facile synthesis of nickel-based bimetallic metalorganic frameworks with different cobalt ratios as electrode material for electrochemical supercapacitors. Applied Physics A: Materials Science and Processing, 2022, 128, .	2.3	2
1537	Preparation hierarchical porous MOF membranes with island-like structure for efficient gas separation. Journal of Membrane Science, 2022, 663, 121036.	8.2	21
1538	Environmental remediation through various composite membranes moieties: Performances and thermomechanical properties. Chemosphere, 2022, 309, 136613.	8.2	2

#	Article	IF	Citations
1539	Two-dimensional Magnetic Bimetallic Organic Framework Nanosheets for Highly Efficient Enrichment of Phosphopeptides. Journal of Materials Chemistry B, O, , .	5.8	2
1540	Metal–organic framework (MOF)-derived hollow hybrid Cu ₂ O/Cu/Au for non-enzymatic H ₂ O ₂ sensing. CrystEngComm, 2022, 24, 7751-7757.	2.6	3
1541	Assessing the colloidal stability of copper doped ZIF-8 in water and serum. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 656, 130452.	4.7	3
1542	Synthesis Strategies and Electrochemical Research Progress of Nano/Microscale Metal–Organic Frameworks. Small Science, 2022, 2, .	9.9	4
1543	Multidimensional Building Blocks for Molecular Sieve Membranes. Accounts of Chemical Research, 2022, 55, 3162-3177.	15.6	8
1544	Enhanced compatibility and selectivity in mixed matrix membranes for propylene/propane separation. AICHE Journal, 2023, 69, .	3.6	4
1545	Fabrication of nanocomposite membrane based on post-synthetic modification of two-dimensional metal-organic framework nanosheet. Inorganic Chemistry Communication, 2022, 146, 110137.	3.9	4
1546	Dimensional Control of Highly Anisotropic and Transparent Conductive Coordination Polymers for Solutionâ€Processable Largeâ€Scale 2D Sheets. Advanced Materials, 2023, 35, .	21.0	1
1547	Metalâ€Organic Frameworks and Electrospinning: A Happy Marriage for Wastewater Treatment. Advanced Functional Materials, 2022, 32, .	14.9	66
1548	Polymeric membranes with aligned zeolite nanosheets for sustainable energy storage. Nature Sustainability, 2022, 5, 1080-1091.	23.7	33
1549	Fabrication of Zr-BTB@TiO ₂ @Fe ₃ O ₄ Nanosheets via Combining Dielectric Barrier Discharge and In Situ Growth Method for the Enrichment of Phosphopeptides. ACS Sustainable Chemistry and Engineering, 2022, 10, 14220-14229.	6.7	2
1550	Carboxylated-covalent organic frameworks and chitosan assembled membranes for precise and efficient dye separation. Journal of Membrane Science, 2022, 663, 121075.	8.2	10
1551	Selective and highly efficient recovery of Au(III) by poly(ethylene sulfide)-functionalized UiO-66-NH2: Characterization and mechanisms. Journal of Molecular Liquids, 2022, 367, 120584.	4.9	6
1552	A bottom-up sonication-assisted synthesis of Zn-BTC MOF nanosheets and the ppb-level acetone detection of their derived ZnO nanosheets. Sensors and Actuators B: Chemical, 2023, 375, 132854.	7.8	16
1553	Mixed matrix membranes for H2/CO2 gas separation- a critical review. Fuel, 2023, 333, 126285.	6.4	27
1554	Improvement of the fluorescent sensing biomarker 3-nitrotyrosine for a new luminescent coordination polymer by size regulation. CrystEngComm, 2022, 24, 8286-8293.	2.6	5
1555	Room temperature synthesis of pillared-layer metal–organic frameworks (MOFs). RSC Advances, 2022, 12, 32652-32658.	3.6	3
1556	Fabrication of nanocage structured based electrocatalyst for oxygen evolution reactions. Materials Letters, 2023, 331, 133416.	2.6	4

#	Article	IF	CITATIONS
1557	Synthesis and performance evaluation of copper and magnesium-based metal organic framework supported ionic liquid membrane for CO2/N2 separation. Chemosphere, 2023, 311, 136913.	8.2	14
1558	Rationally Reconstructed Metal–Organic Frameworks as Robust Oxygen Evolution Electrocatalysts. Advanced Materials, 2023, 35, .	21.0	33
1559	Immiscible Polymer Blends Compatibilized through Noncovalent Forces: Construction of a "Quasi-Block/Graft Copolymer―by Interfacial Stereocomplex Crystallites. ACS Applied Polymer Materials, 2022, 4, 9378-9387.	4.4	6
1560	Fabrication of Copper-Terephthalate Frameworks and N-Doped Carbon Dots Composite for Boosting Photocatalytic Performance. Topics in Catalysis, 2023, 66, 104-116.	2.8	2
1561	Particulate toxicity of metal-organic framework UiO-66 to white rot fungus Phanerochaete chrysosporium. Ecotoxicology and Environmental Safety, 2022, 247, 114275.	6.0	6
1562	Comparative study of sonication-assisted liquid phase exfoliation of six layered coordination polymers. Chemical Communications, 2022, 59, 55-58.	4.1	2
1563	Size and morphology control of two-dimensional metal-organic frameworks through coordination modulation. Microporous and Mesoporous Materials, 2023, 348, 112379.	4.4	1
1564	Towards large-scale application of nanoporous materials in membranes for separation of energy-relevant gas mixtures. Separation and Purification Technology, 2023, 308, 122919.	7.9	13
1565	Honeycomb-like Hofmann-type metal-organic framework membranes for C2H2/CO2 and H2/CO2 separation. Journal of Membrane Science, 2023, 669, 121282.	8.2	6
1566	Preparation of thin-film composite membranes with ultrahigh MOFs loading through polymer-template MOFs induction secondary interfacial polymerization. Applied Surface Science, 2023, 614, 156186.	6.1	9
1567	Unexpectedly efficient ion desorption of graphene-based materials. Nature Communications, 2022, 13, .	12.8	9
1568	PES/ZIF‣ mixedâ€matrix membrane for CO ₂ permeation: Influence of ionic liquid in pre―and postâ€modification treatment. Asia-Pacific Journal of Chemical Engineering, 0, , .	1.5	3
1569	Biosafety of inorganic nanomaterials for theranostic applications. Emergent Materials, 2022, 5, 1995-2029.	5.7	7
1570	Microwave-assisted synthesis of Cu2O activated metal organic framework for selective adsorption of Au(III). Journal of Solid State Chemistry, 2022, , 123813.	2.9	1
1571	Metalâ€Organic Frameworks for Greenhouse Gas Applications. Small, 2023, 19, .	10.0	17
1572	In-situ interfacial crosslinking of NH2-MIL-53 and polyimide in MOF-incorporated mixed matrix membranes for efficient H2 purification. Fuel, 2023, 339, 126938.	6.4	4
1573	CuO Nanosheets for Use in Photoelectrochemical Photodetectors. ACS Applied Nano Materials, 2023, 6, 784-791.	5.0	8
1574	Morphology evolution of zeolite MFI nanosheet fragments during secondary growths. Microporous and Mesoporous Materials, 2023, 349, 112424.	4.4	2

#	Article	IF	CITATIONS
1575	Truly combining the advantages of polymeric and zeolite membranes for gas separations. Science, 2022, 378, 1189-1194.	12.6	37
1576	Dense Conductive Metal–Organic Frameworks as Robust Electrocatalysts for Biosensing. Analytical Chemistry, 2022, 94, 17177-17185.	6.5	14
1577	A new fluorescent biosensor based on inner filter effect and competitive coordination with the europium ion of non-luminescent Eu-MOF nanosheets for the determination of alkaline phosphatase activity in human serum. Sensors and Actuators B: Chemical, 2023, 380, 133379.	7.8	8
1578	Hierarchical copper-based metal-organic frameworks nanosheet assemblies for electrochemical ascorbic acid sensing. Colloids and Surfaces B: Biointerfaces, 2023, 223, 113149.	5.0	8
1579	Micro/nano metal–organic frameworks meet energy chemistry: A review of materials synthesis and applications. EScience, 2023, 3, 100092.	41.6	47
1580	Tailoring Motif and Channel Terminating Groups of Conventional Copper MOFs for Their Enhanced Activity, Selectivity, and Stability toward the Electroreduction of CO ₂ to Hydrocarbons. ACS Applied Energy Materials, 2023, 6, 1378-1388.	5.1	2
1581	Porous framework materials for energy & Environment relevant applications: A systematic review. Green Energy and Environment, 2024, 9, 217-310.	8.7	12
1582	Progress on 2D–2D heterostructured hybrid materials for efficient electrocatalysis. Energy Advances, 2023, 2, 280-292.	3.3	1
1583	2D Metal-Organic Frameworks: Properties, Synthesis, and Applications in Electrochemical and Optical Biosensors. Biosensors, 2023, 13, 123.	4.7	5
1584	Metal-organic frameworks for high performance desalination through thickness control and structural fine-tuning. Water Research, 2023, 230, 119576.	11.3	4
1585	Covalent Organic Frameworks: Recent Progress in Biomedical Applications. ACS Nano, 2023, 17, 1879-1905.	14.6	71
1586	Rapid Fabrication of Highâ€Permeability Mixed Matrix Membranes at Mild Condition for CO ₂ Capture. Small, 2023, 19, .	10.0	12
1587	Metal-organic layers: Preparation and applications. Science China Materials, 2023, 66, 839-858.	6.3	3
1588	2D supramolecular organic framework with tunable luminescence <i>via</i> cucurbit[<i>n</i>]uril-based hydrogen bonds, outer-surface interactions and host–guest interactions. Materials Chemistry Frontiers, 2023, 7, 1354-1364.	5.9	6
1589	Theoretical prediction of two-dimensional II-V compounds. Physical Review Materials, 2023, 7, .	2.4	0
1590	SERS determination of hydroxy-α-sanshool in spicy hotpot seasoning: The strategy to restrain the interference of capsaicin and its mechanism. Food Chemistry, 2023, 413, 135644.	8.2	4
1591	Altered electronic structure of trimetallic FeNiCo-MOF nanosheets for efficient oxygen evolution. Chemical Communications, 2023, 59, 4750-4753.	4.1	17
1592	A LDH Template Triggers the Formation of a Highly Compact MILâ€53 Metalâ€Organic Framework Membrane for Acid Upgrading. Angewandte Chemie, 2023, 135, .	2.0	1

#	Article	IF	Citations
1593	Tackling orientation of metal-organic frameworks (MOFs): The quest to enhance MOF performance. Coordination Chemistry Reviews, 2023, 481, 215043.	18.8	65
1594	Inâ€situ Etching Synthesis of Defective CuBTC for CO ₂ /CH ₄ Separation. European Journal of Inorganic Chemistry, 0, , .	2.0	0
1595	Robust 2D porphyrin metal–organic framework nanosheets for high-efficiency photoreduction-assisted uranium recovery from wastewater. Separation and Purification Technology, 2023, 314, 123601.	7.9	5
1596	SiO2/MOFs-based synergistic flame retardants provide enhanced fire safety for epoxy resins. Materials Today Communications, 2023, 35, 105805.	1.9	4
1597	Crosslinking two-dimensional metalloporphyrin (Me-TCPP) nanosheet with poly(ethylene) glycol semi-interpenetrating polymer network for ultrahigh CO2/N2 separation selectivity via "rubber-band― straightening effect. Journal of Membrane Science, 2023, 676, 121537.	8.2	4
1598	Application and modification of nickel-based metal-organic frameworks in electrochemical sensing. , 2023, 2, 100053.		8
1599	MOF-based composites as photoluminescence sensing platforms for pesticides: Applications and mechanisms. Environmental Research, 2023, 226, 115664.	7.5	11
1600	Multi-interfacial dendritic engineering facilitating congruous intrinsic activity of oxide-carbide/MOF nanostructured multimodal electrocatalyst for hydrogen and oxygen electrocatalysis. Applied Catalysis B: Environmental, 2023, 331, 122711.	20.2	18
1601	Thickness-dependent \hat{l}^2/\hat{l}^3 -NiOOH transformation of Ni-MOFs in oxygen evolution reaction. Applied Surface Science, 2023, 623, 156991.	6.1	6
1602	Ratiometric fluorescence assay for sulfide ions with fluorescent MOF-based nanozyme. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2023, 295, 122620.	3.9	8
1603	Enhancement of the intrinsic fluorescence of ZIF-8 via post-synthetic cation exchange with Cd2+ and its incorporation into PDMS films for selective sulfide optical sensing. Materials Today Chemistry, 2023, 28, 101366.	3.5	1
1604	Zeolite/polyimide mixed-matrix membranes with enhanced natural gas purification performance: Importance of filler structural integrity. Journal of Membrane Science, 2023, 672, 121462.	8.2	4
1606	Photoswitchable Nanoporous Metal–Organic Framework Monolayer Film for Light-Gated Ion Nanochannel. ACS Applied Nano Materials, 2023, 6, 2813-2821.	5.0	2
1607	Ab Initio Study of Adsorption of Polymers on Metal–Organic Framework Surfaces. Journal of Physical Chemistry C, 2023, 127, 3715-3725.	3.1	2
1608	Recent Advances and New Challenges: Two-Dimensional Metal–Organic Framework and Their Composites/Derivatives for Electrochemical Energy Conversion and Storage. International Journal of Energy Research, 2023, 2023, 1-47.	4.5	3
1609	Highly Selective CO ₂ Electroreduction to C ₂₊ Products over Cu ₂ O-Decorated 2D Metal–Organic Frameworks with Rich Heterogeneous Interfaces. Nano Letters, 2023, 23, 1474-1480.	9.1	20
1610	Challenges in Developing MOF-Based Membranes for Gas Separation. Langmuir, 2023, 39, 2871-2880.	3.5	25
1611	Controlling the Flexibility of Carbazoleâ€Based Metal–Organic Frameworks by Substituent Effects. Chemistry - A European Journal, 0, , .	3.3	0

#	Article	IF	CITATIONS
1612	MXene Fiber-based Wearable Textiles in Sensing and Energy Storage Applications. Fibers and Polymers, 2023, 24, 1167-1182.	2.1	4
1613	Fabrication, Facilitating Gas Permeability, and Molecular Simulations of Porous Hypercrosslinked Polymers Embedding 6FDA-Based Polyimide Mixed-Matrix Membranes. Molecules, 2023, 28, 2028.	3.8	2
1614	A LDH Template Triggers the Formation of a Highly Compact MILâ€53 Metalâ€Organic Framework Membrane for Acid Upgrading. Angewandte Chemie - International Edition, 2023, 62, .	13.8	4
1615	Morphology control through the synthesis of metal-organic frameworks. Advances in Colloid and Interface Science, 2023, 314, 102864.	14.7	14
1616	Metal-Organic Frameworks Based Chemical Sensors. , 2023, , 36-53.		0
1617	MOF/Al2O3 composites obtained by immobilization of MIL-53(Cr) or MIL-101(Cr) on \hat{I}^3 -alumina: Preparation and characterization. Microporous and Mesoporous Materials, 2023, 353, 112518.	4.4	5
1618	Bottom-up synthesis of 2D heterostructures enables effective polysulfides inhibition and conversion. Nano Research, 2023, 16, 8488-8496.	10.4	2
1619	Environmentally sustainable implementations of two-dimensional nanomaterials. Frontiers in Chemistry, 0, 11 , .	3.6	4
1620	Mixed-Matrix Membranes Containing Porous Materials for Gas Separation: From Metal–Organic Frameworks to Discrete Molecular Cages. Engineering, 2023, 23, 40-55.	6.7	8
1621	Bodipy-Based Metal–Organic Frameworks Transformed in Solid States from 1D Chains to 2D Layer Structures as Efficient Visible Light Heterogeneous Photocatalysts for Forging C–B and C–C Bonds. Journal of the American Chemical Society, 2023, 145, 6123-6134.	13.7	14
1622	Impact of active sites on encapsulation of curcumin in Metal Organic Frameworks. Materials Research Express, 2023, 10, 035102.	1.6	3
1623	Aligned Metal–Organic Framework Nanoplates in Mixedâ€Matrix Membranes for Highly Selective CO ₂ /CH ₄ Separation. Advanced Materials Interfaces, 2023, 10, .	3.7	3
1624	AgBTC MOF-Mediated Approach to Synthesize Silver Nanoparticles Decorated on Reduced Graphene Oxide (rGO@Ag) for Energy Storage Applications. ACS Applied Energy Materials, 2023, 6, 9159-9169.	5.1	6
1625	Synthesis of 2D Metal–Organic Nanosheets (MONs) by Liquid Phase Exfoliation: Applications in Effective Delivery of Antiulcer Drugs and Selective Adsorption and Removal of Cationic Dyes. ACS Omega, 2023, 8, 12232-12245.	3.5	3
1626	Robust Superhydrophobic PDMS@SiO ₂ @UiO66-OSiR Sponge for Efficient Water-in-Oil Emulsion Separation. Inorganic Chemistry, 2023, 62, 5447-5457.	4.0	7
1627	Multiâ€assembled nanofiltration membranes with excellent separation and catalytic performance. Journal of Chemical Technology and Biotechnology, 0, , .	3.2	O
1628	An electrochemical and colorimetric dual-mode aptasensor for Staphylococcus aureus based on a multifunctional MOF and magnetic separation technique. Microchemical Journal, 2023, 190, 108681.	4.5	9
1629	Facile Synthesis of Oriented Zr–MOF Membrane under Complete Room-Temperature Condition with Superb Selectivity for Carbon Capture. Industrial & Engineering Chemistry Research, 2023, 62, 5973-5983.	3.7	4

#	Article	IF	CITATIONS
1630	Fast and High-Performance Self-Powered Photodetector Based on the ZnO/Metal–Organic Framework Heterojunction. ACS Applied Materials & Samp; Interfaces, 2023, 15, 18236-18243.	8.0	8
1631	Recent progress of two-dimensional metal-organic-frameworks: From synthesis to electrocatalytic oxygen evolution. Nano Research, 2023, 16, 8614-8637.	10.4	6
1632	Creating Dual Active Sites in Conductive Metalâ€Organic Frameworks for Efficient Water Splitting. Advanced Energy Materials, 2023, 13, .	19.5	23
1633	Membrane with horizontally rigid zeolite nanosheet arrays against zinc dendrites in zinc-based flow battery. Chemical Engineering Journal, 2023, 465, 142912.	12.7	7
1634	Effect of modulator ligands on the growth of Co ₂ (dobdc) nanorods. Chemical Science, 0,	7.4	1
1635	Electrochemical semi-sacrificial growth of a self-supporting MOF-based electrode for urea electrooxidation-coupled water electrolysis. CrystEngComm, 2023, 25, 3229-3236.	2.6	2
1636	C-axis oriented ZIF-95 sheets intermixed with polyimide matrix with enhanced gas separation performance. Journal of Membrane Science, 2023, 679, 121696.	8.2	3
1637	MOF-Based Active Packaging Materials for Extending Post-Harvest Shelf-Life of Fruits and Vegetables. Materials, 2023, 16, 3406.	2.9	2
1638	Orienting of metal-organic framework nanosheets into continuous membranes for fast hydrogen permeation. Journal of Membrane Science, 2023, 672, 121447.	8.2	3
1639	Poly(hydrazide–imide) Membranes with Enhanced Interchain Interaction for Highly Selective H ₂ /CO ₂ Separation. Macromolecules, 2023, 56, 3430-3439.	4.8	1
1640	Interplanar Spacing Engineering on Copperâ€Benzenedicarboxylate Toward Stabilized Lithium Storage. Energy Technology, 0, , .	3.8	0
1641	Advanced hemocompatible polyethersulfone composite artificial lung membrane with efficient CO2/O2 exchange channel constructed by modified carbon nanotubes network. Journal of Materials Science and Technology, 2023, 160, 181-193.	10.7	2
1642	Eliminating lattice defects in metal–organic framework molecular-sieving membranes. Nature Materials, 2023, 22, 769-776.	27.5	31
1643	A Significant Twoâ€Dimensional Structural Transformation in a Coordination Polymer that Changes Its Electronic and Protonic Behavior. Angewandte Chemie - International Edition, 2023, 62, .	13.8	2
1644	Fabrication of ZIF-8 membranes by direct assembly of nanosheets from bottom-up synthesis growth solution., 2023, 3, 100045.		1
1645	Polycrystalline Metal–Organic Framework Membranes for Separation of Light Hydrocarbons. Chemistry - A European Journal, 2023, 29, .	3.3	1
1646	Metal–organic frameworks (an overview). , 2023, , 1-38.		0
1647	Nanosheets of two-dimensional photoluminescent lanthanide phosphonocarboxylate frameworks decorated with free carboxylic groups for latent fingerprint imaging. Dalton Transactions, 0, , .	3.3	O

#	Article	IF	CITATIONS
1648	Electrochemical Behavior and Electrical Stability of a Needle-Shaped Zinc Metal-Organic Framework Modified Graphite Electrode. International Journal of Electrochemical Science, 2023, 18, 100211.	1.3	0
1649	Single-step ethylene purification from ternary C2 hydrocarbon mixtures in a scalable metal–organic framework. Chemical Engineering Journal, 2023, 470, 143858.	12.7	3
1650	Selective sensing of catechol based on a fluorescent nanozyme with catechol oxidase activity. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2023, 302, 123003.	3.9	6
1651	Recent Advances in Metal–Organic Frameworks (MOFs) and Their Composites for Non-Enzymatic Electrochemical Glucose Sensors. Bioengineering, 2023, 10, 733.	3 . 5	1
1652	Recent Advances in Metal–Organic Frameworks Based on Electrospinning for Energy Storage. Advanced Fiber Materials, 2023, 5, 1592-1617.	16.1	11
1653	A robust COF@MXene membrane for ultra-high flux of water-in-oil emulsion separation. Chemical Communications, 2023, 59, 8858-8861.	4.1	3
1654	Guest Entrapment in Metalâ€Organic Nanosheets for Quantifiably Tuneable Luminescence. Advanced Functional Materials, 2023, 33, .	14.9	2
1655	Bibliometric and visualized analysis of metal-organic frameworks in biomedical application. Frontiers in Bioengineering and Biotechnology, 0, 11 , .	4.1	3
1656	Optimization of Pervaporative Desalination with Zirconia Based Metal Organic Framework Filled Nanocomposite Membrane. Journal of Polymers and the Environment, 0, , .	5.0	0
1657	A Significant Twoâ€Dimensional Structural Transformation in a Coordination Polymer that Changes Its Electronic and Protonic Behavior. Angewandte Chemie, 2023, 135, .	2.0	0
1658	2D MOF-enhanced SPR sensing platform: Facile and ultrasensitive detection of Sulfamethazine via supramolecular probe. Journal of Hazardous Materials, 2023, 456, 131642.	12.4	5
1659	Surface ligand-assisted synthesis and biomedical applications of metal–organic framework nanocomposites. Nanoscale, 2023, 15, 10529-10557.	5.6	6
1660	Liquid phase exfoliation of metal–organic frameworks in aqueous quaternary ammonium hydroxide solution enables highly efficient photocatalytic CO2 reduction. Journal of Molecular Liquids, 2023, 383, 122153.	4.9	1
1661	Comprehensive and multi-functional MXene based sensors: An updated review. FlatChem, 2023, 40, 100524.	5.6	6
1662	A Study of the Fabrication of Different-Dimensional Metal–Organic Frameworks and Their Hybrid Composites for Novel Applications. Journal of Inorganic and Organometallic Polymers and Materials, 0, , .	3.7	0
1663	Two-dimensional materials (2DMs): classification, preparations, functionalization and fabrication of 2DMs-oriented electrochemical sensors., 2023,, 45-132.		0
1664	Generation and Stabilization of a Dinickel Catalyst in a Metalâ€Organic Framework for Selective Hydrogenation Reactions. Angewandte Chemie - International Edition, 2023, 62, .	13.8	4
1665	Generation and Stabilization of a Dinickel Catalyst in a Metalâ€Organic Framework for Selective Hydrogenation Reactions. Angewandte Chemie, 2023, 135, .	2.0	0

#	Article	IF	Citations
1666	A mononuclear N,N,N,O donor schiff base Cu(II) complex inhibits bacterial biofilm formation and promotes apoptosis and cell cycle arrest in prostate cancer cells. Journal of Inorganic Biochemistry, 2023, 247, 112314.	3.5	1
1667	Controllable NO Release for Catheter Antibacteria from Nitrite Electroreduction over the Cu-MOF. Transactions of Tianjin University, 2023, 29, 275-283.	6.4	4
1668	Synthesis and gas-sensitive properties of Ga doped in MOF-derived Co3O4. Applied Physics A: Materials Science and Processing, 2023, 129, .	2.3	0
1669	Rapid Light Response of a Novel Biâ€Based Metal–Organic Framework for Bacterial Wound Infections Treatment. Advanced Therapeutics, 2023, 6, .	3.2	0
1670	A novel Cu-MOFs nanosheet/BiVO4 nanorod-based ECL sensor for colorectal cancer diagnosis. Talanta, 2024, 266, 124952.	5.5	4
1671	Advanced Metal–Organic Frameworks for Gas Separation. , 0, 58, 344-350.		0
1672	Nanocomposite polymer blend membrane molecularly re-engineered with 2D metal-organic framework nanosheets for efficient membrane CO2 capture. Journal of Membrane Science, 2023, 685, 121950.	8.2	7
1673	ZIF-8 nanoplate/6FDA-DAM membrane for hydrogen extraction from propane dehydrogenation process. Journal of Membrane Science, 2023, 685, 121952.	8.2	1
1674	Two morphology distinct fillers with chemical similarity incorporated into Tröger' base polymers towards enhanced gas separation. Journal of Membrane Science, 2023, 685, 121964.	8.2	4
1675	Fluoropolymer nanocomposite membranes for gas separation applications. , 2023, , 485-528.		0
1676	From OD to 3D nanomaterial-based composite membranes for CO2 capture: Recent advances and perspectives. Journal of Environmental Chemical Engineering, 2023, 11, 110657.	6.7	3
1678	Modulating Photoinduced Electron Transfer between Photosensitive MOF and Co(II) Proton Reduction Sites forÂBoosting Photocatalytic Hydrogen Production. Small, 2023, 19, .	10.0	2
1679	A roadmap to enhance gas permselectivity in metal–organic framework-based mixed-matrix membranes. Dalton Transactions, 0, , .	3.3	0
1680	Reconstruction of mixed matrix membranes by in situ vapor aminolysis for CO2/N2 and CH4/N2 separations. Journal of Membrane Science, 2023, 685, 121984.	8.2	4
1681	Metal-Organic Frameworks on Versatile Substrates. Journal of Materials Chemistry A, 0, , .	10.3	1
1682	Two-Dimensional Metal–Organic Frameworks and Their Derivative Electrocatalysts for Water Splitting. Applied Sciences (Switzerland), 2023, 13, 9343.	2.5	2
1683	Unlocking the potential of metal-organic frameworks-based mixed matrix membranes for hydrogen separation and purification. Journal of Industrial and Engineering Chemistry, 2023, 128, 143-160.	5.8	1
1684	Preparation of Ir–Cu/C nanosheets for the oxygen evolution reaction by room temperature plasma carbonization. Chemical Communications, 2023, 59, 11260-11263.	4.1	1

#	ARTICLE	IF	CITATIONS
1685	Tuning the Pt-N coordination in Pt/MOFs nanosheets under N2 plasma for enhanced oxygen reduction reaction. Journal of Alloys and Compounds, 2023, 968, 171915.	5 . 5	0
1686	Recent Advances in the Support Layer, Interlayer and Active Layer of TFC and TFN Organic Solvent Nanofiltration (OSN) Membranes: A Review. Chemical Record, 2023, 23, .	5.8	1
1687	Exceptional peroxidase-like activity of an iron and copper based organic framework nanosheet for consecutive colorimetric biosensing of glucose and kanamycin in real food samples. Analyst, The, 2023, 148, 5157-5171.	3.5	5
1688	Novel synthetic approach of 2D-metal–organic frameworks (MOF) for wastewater treatment. Nanotechnology, 2023, 34, 442001.	2.6	2
1689	Advances in the chemistry of composites of metal-organic frameworks. Russian Chemical Reviews, 2022, 91, .	6.5	2
1690	Exfoliation of 2D Metalâ€Organic Frameworks: toward Advanced Scalable Materials for Optical Sensing. Small Methods, 2023, 7, .	8.6	5
1691	Recent progress of gas sensors based on metal oxide composites derived from bimetallic metal-organic frameworks. TrAC - Trends in Analytical Chemistry, 2023, 166, 117199.	11.4	9
1692	Cancer Theranostic Applications of MXenes. ACS Symposium Series, 0, , 19-46.	0.5	0
1693	Bottomâ€up Synthesis of Nanosheets at Various Interfaces. ChemPlusChem, 2023, 88, .	2.8	1
1694	Metal-organic framework template-guided electrochemical lithography on substrates for SERS sensing applications. Nature Communications, 2023, 14, .	12.8	11
1695	Polyiodo Azole-Based Metal–Organic Framework Energetic Biocidal Material for Synergetic Sterilization Applications. ACS Applied Materials & Sterilization Applications.	8.0	2
1696	Metal-organic framework-based materials as key components in electrocatalytic oxidation and reduction reactions. Journal of Energy Chemistry, 2023, 87, 540-567.	12.9	9
1697	Amorphization Engineering of Bimetallic Metalâ€Organic Frameworks to Identify Volcanoâ€Type Trend toward Oxygen Evolution Reaction. Advanced Functional Materials, 2024, 34, .	14.9	1
1698	Computational Discovery for Crafting Multi-Dimensional and Multi-Functional Metal–Organic Framework Composites. Journal of Physical Chemistry C, 2023, 127, 18089-18098.	3.1	0
1699	Metalâ€Organic Framework Membrane Hybridized with Graphitic Materials for Gas Separation. ChemPlusChem, 2023, 88, .	2.8	1
1700	Synthesis of novel MOF for adsorption of germanium: Kinetics, isotherm and thermodynamics. Microporous and Mesoporous Materials, 2024, 363, 112826.	4.4	1
1701	Role of Surface-Grafted Polymers on Mechanical Reinforcement of Metal–Organic Framework–Polymer Composites. ACS Applied Polymer Materials, 2023, 5, 7947-7957.	4.4	0
1702	Metal-Organic Frame Works (MOFs) for Smart Applications. , 2023, , 144-181.		O

#	Article	IF	CITATIONS
1703	Application of Metal–Organic Framework Nanocomposites. , 2023, , 415-453.		0
1704	Surfactant-assisted lamellar structuration of tunable Co-based hybrid nanosheets. New Journal of Chemistry, 0, , .	2.8	0
1705	Tuning the Stacking Modes of Ultrathin Twoâ€Dimensional Metal–Organic Framework Nanosheet Membranes for Highly Efficient Hydrogen Separation. Angewandte Chemie - International Edition, 2023, 62, .	13.8	5
1706	Synergistic Effect of 2D ZIF Loading and Ionic Liquid Modification on Improving Gas Separation Performance of PES-Based Mixed Matrix Hollow Fiber Membrane. Arabian Journal for Science and Engineering, 0, , .	3.0	0
1707	Composites of metal-organic frameworks (MOFs) and LDHs for energy storage and environmental applications: Fundamentals, progress, and perspectives. Sustainable Materials and Technologies, 2023, 37, e00691.	3.3	4
1708	PEI@MOFs thin film nanocomposite (TFN) membrane for efficient CO2 separation. Applied Surface Science, 2023, 640, 158414.	6.1	3
1709	Tuning the Stacking Modes of Ultrathin Twoâ€Dimensional Metal–Organic Framework Nanosheet Membranes for Highly Efficient Hydrogen Separation. Angewandte Chemie, 2023, 135, .	2.0	0
1710	Design and application of metal–organic framework membranes for gas and liquid separations. Separation and Purification Technology, 2024, 329, 125178.	7.9	3
1711	Investigation of Thin Film Nanocomposite (TFN) Membrane with NH2-CuBTC for CO2/N2 Separation. Chemistry Africa, 2024, 7, 865-876.	2.4	0
1712	MOF-derived CuO/CNT for high sensitivity and fast response glucose sensing. Sensors and Actuators B: Chemical, 2024, 398, 134713.	7.8	0
1713	Atomistic Insight into the Interfacial Structuring of ZIF-67 MOF/Polymer Composites and Their Propylene–Propane Adsorption Properties. Journal of Physical Chemistry C, 2023, 127, 20491-20502.	3.1	0
1715	Interfacing metal organic frameworks with polymers or carbon-based materials: from simple to hierarchical porous and nanostructured composites. Chemical Science, 2023, 14, 12898-12925.	7.4	1
1716	Chiral supramolecular 2D halogen-bonded organic frameworks constructed by post-synthetic modified cross-linking strategy. Science China Chemistry, 0, , .	8.2	0
1717	Overview of the Current Nano-Materials, Synthesis, Properties and Characterization., 2024, , 1-30.		0
1718	Scalable and sustainable manufacturing of ultrathin metal–organic framework nanosheets (MONs) for solar cell applications. Chemical Engineering Journal, 2023, 477, 146871.	12.7	0
1719	Intrinsic room-temperature ferromagnetism in a two-dimensional semiconducting metal-organic framework. Nature Communications, 2023, 14 , .	12.8	0
1720	A comprehensive review of recent developments in metal-organic framework/polymer composites and their applications. Surfaces and Interfaces, 2023, 43, 103574.	3.0	0
1721	Metal- and covalent-organic framework mixed matrix membranes for CO2 separation: A perspective on stability and scalability. Journal of Membrane Science, 2024, 691, 122258.	8.2	4

#	Article	IF	CITATIONS
1722	Polymerâ€Grafting from MOF Nanosheets for the Fabrication of Versatile 2D Materials. Advanced Functional Materials, 2024, 34, .	14.9	0
1723	Textile geometry associated with advanced nanomaterials for high rate supercapacitors. Journal of Energy Storage, 2024, 75, 109648.	8.1	1
1724	Electrodeposition of gold-platinum nanoparticles on 2D M-TCPP (MÂ=ÂCo, Cu, Zn) for electrochemical monitoring of H2O2 from living cells. Microchemical Journal, 2024, 196, 109622.	4.5	0
1725	Dormancy and doubleâ€activation strategy for construction of highâ€performance mixedâ€matrix membranes. Angewandte Chemie - International Edition, 0, , .	13.8	0
1726	Ligand-Oxidation-Based Anodic Synthesis of Oriented Films of Conductive M-Catecholate Metal–Organic Frameworks with Controllable Thickness. Journal of the American Chemical Society, 2023, 145, 25570-25578.	13.7	O
1727	One-step synthesis of a ZIF-8/90-based type I porous liquid. Dalton Transactions, 2023, 52, 17213-17218.	3.3	0
1728	Fabrication of Oriented Polycrystalline MOF Superstructures. Advanced Materials, 2024, 36, .	21.0	3
1729	A zirconium-based metal–organic framework with dibenzothiophene linkers: synthesis, structural analysis, and gas-adsorption properties. Journal of Coordination Chemistry, 2023, 76, 1817-1824.	2.2	1
1730	Fabrication of Oriented MOFâ€Based Mixed Matrix Membrane via Ionâ€Induced Synchronous Synthesis. Small, 0, , .	10.0	0
1731	Supercritical Processing of a Highly C ₃ H ₆ -Permselective ZIF-8 Membrane on a Tubular Porous α-Al ₂ O ₃ Substrate. Industrial & Discrete amp; Engineering Chemistry Research, 0, , .	3.7	0
1732	Recent Progress on Two-Dimensional Ferroelectrics: Material Systems and Device Applications. Chinese Physics B, 0, , .	1.4	0
1733	Manipulating molecular orientation on porous membrane surface for fast transport. Journal of Membrane Science, 2024, 692, 122267.	8.2	1
1734	Dormancy and doubleâ€activation strategy for construction of highâ€performance mixedâ€matrix membranes. Angewandte Chemie, 0, , .	2.0	0
1735	Universal Strategy for Inorganic Nanoparticle Incorporation into Mesoporous Liquid Crystal Polymer Particles. Advanced Materials, 2024, 36, .	21.0	0
1736	Spin-crossover tuning of the luminescence in 2D Hofmann-type compounds in bulk and exfoliated flakes. Journal of Materials Chemistry C, 0, , .	5.5	0
1737	Non-enzymatic glucose electrochemical sensor based on nitrogen-doped graphene modified with polyaniline and Fe3O4@MIL-101-NH2 nano framework. Inorganic Chemistry Communication, 2024, 159, 111812.	3.9	0
1738	In-situ synthesis of copper-gallic acid metal–organic framework into the gentamicin-loaded chitosan hydrogel bead: A synergistic enhancement of antibacterial properties. Journal of Industrial and Engineering Chemistry, 2023, , .	5.8	0
1739	2D MOFs and Zeolites for Composite Membrane and Gas Separation Applications: A Brief Review. ACS Materials Au, 0, , .	6.0	0

#	Article	IF	CITATIONS
1740	Linear viscoelastic response of polymer melts filled with immiscible nanoparticles. Polymer-Plastics Technology and Materials, 2024, 63, 518-539.	1.3	0
1741	Ultrathin two-dimensional photocatalysts for carbon dioxide reduction into fuels and chemicals. Materials Today Energy, 2024, 40, 101482.	4.7	1
1742	2-Methylimidazole-modulated 2D Cu Metal-Organic Framework for 5-Hydroxymethylfurfural Hydrodeoxygenation. Dalton Transactions, 0, , .	3.3	0
1743	Facet engineering of a two-dimensional metal-organic framework with uniquely oriented layered-structure for electrocatalytic oxygen reduction reaction. Journal of Colloid and Interface Science, 2024, 658, 518-527.	9.4	0
1744	Urea oxidation reaction electrocatalysts: Correlation of structure, activity, and selectivity. Chem Catalysis, 2024, 4, 100840.	6.1	1
1745	Phase-Pure Zirconium Metal–Organic Polyhedra Enabled by a Ligand Substitution Strategy. Chemistry of Materials, 0, , .	6.7	O
1746	Catalysis with Twoâ€Dimensional Metalâ€Organic Frameworks: Synthesis, Characterization, and Modulation. Small, 0, , .	10.0	0
1747	New metal–organic frameworks and other porous filler–based hybrid membranes for gas separation and wastewater treatment. , 2024, , 139-186.		0
1748	Integrating Photoactive Ligands into Crystalline Ultrathin 2D Metal–Organic Framework Nanosheets for Efficient Photoinduced Energy Transfer. Journal of the American Chemical Society, 2024, 146, 1491-1500.	13.7	1
1749	Recent progress in developing 2D MOFs/COFs/Zeolites nanosheets membranes for water purification. Separation and Purification Technology, 2024, 337, 126404.	7.9	1
1750	Non-CO ₂ greenhouse gas separation using advanced porous materials. Chemical Society Reviews, 2024, 53, 2056-2098.	38.1	1
1751	Boosting Electrochemical CO ₂ Reduction on Copperâ€Based Metalâ€Organic Frameworks via Valence and Coordination Environment Modulation. Small, 0, , .	10.0	1
1752	Random organic framework membranes with hierarchical channels for H2 separation. Journal of Membrane Science, 2024, 694, 122420.	8.2	0
1753	Mixed matrix membranes based on two-dimensional materials for efficient CO2 separation: A comprehensive review. Chemical Engineering Research and Design, 2024, 183, 952-975.	5 . 6	3
1754	Engineering of Ultraâ€Thin Layer of MILâ€125(Ti) NanosheetZnâ€Tetracarboxyâ€Phthalocyanine Sâ€Scheme Heterojunction as Photocatalytic CO ₂ Reduction Catalyst. Small, 0, , .	10.0	0
1755	Highly Flexible and Selfâ€Standing Covalent Organic Framework–Metal–Organic Framework (COF–MOF) Composite Crystalline Porous Material (CPM) Membrane for Molecular Separation. Advanced Functional Materials, 2024, 34, .	14.9	1
1756	SWCNTs-channeled MOF nanosheet membrane for high-efficient organic solvent nanofiltration. Separation and Purification Technology, 2024, 338, 126328.	7.9	1
1757	Metal-organic frameworks (MOFs), covalent organic frameworks (COFs), and hydrogen-bonded organic frameworks (HOFs) in mixed matrix membranes. Materials Today Sustainability, 2024, 25, 100672.	4.1	O

#	Article	IF	CITATIONS
1758	Review on polymeric membrane materials for gas separations which are stated above the Robeson's trade-off upper bound. , 2024, , 3-28.		0
1759	Effect of 2D Cu-MOFs modified carbon spheres nanoparticles as an environmentally friendly lubricating additive on tribological properties. Tribology International, 2024, 192, 109321.	5.9	1
1760	Solution processing of crystalline porous material based membranes for CO ₂ separation. Chemical Communications, 2024, 60, 1856-1871.	4.1	0
1761	Alkoxy-Functionalized Hydroxamate/Zinc Metal–Organic Frameworks and the Effects of Substituents and Acid Addition on Their Structures. Inorganic Chemistry, 2024, 63, 2454-2459.	4.0	0
1762	Mixed matrix membranes containing oriented two-dimensional ZIF-L nanosheets for efficient H2/CO2 separation. Separation and Purification Technology, 2024, 338, 126589.	7.9	0
1763	Electrochemical sensor of Cu nanoparticles on Cu based metal organic frame works hybridized indium tin oxides glasses for Pb2+ detection. Journal of Environmental Chemical Engineering, 2024, 12, 112069.	6.7	0
1764	Porous coordination polymers in energy storage and conversion. , 2024, , 207-235.		0
1765	Novel MOF-303 integrated polymer membrane for efficient separation of azeotropic methanol-MTBE mixtures. Separation and Purification Technology, 2024, 339, 126623.	7.9	O
1766	A water-stable two-dimensional Zn(BDC) lamellar membranes for efficient molecular separation with enhanced water permeability. Chemical Engineering Journal, 2024, 484, 149504.	12.7	0
1767	Anisotropy of metal–organic framework and their composites: properties, synthesis, and applications. Journal of Materials Chemistry A, 2024, 12, 6243-6260.	10.3	O
1768	Hierarchically Structured Metal–Organic Framework Polymer Composites for Chemical Warfare Agent Degradation. ACS Applied Materials & Samp; Interfaces, 2024, 16, 10795-10804.	8.0	0
1769	High-performance thin-film composite (TFC) membranes with 2D nanomaterial interlayers: An overview. Results in Engineering, 2024, 21, 101932.	5.1	O
1770	Effect of ZIF-78 metal-organic framework crystal morphology and defect in resulting polysulfone mixed matrix membranes. Journal of the Taiwan Institute of Chemical Engineers, 2024, 157, 105418.	5. 3	0
1771	Recent advances in metal–organic frameworks for C3H6- and C3H8-selective separation of C3H6/C3H8 binary natural gas mixtures: A review. Fuel, 2024, 366, 131314.	6.4	0
1772	Highlights in Interface of Wastewater Treatment by Utilizing Metal Organic Frameworks: Purification and Adsorption Kinetics. Langmuir, 2024, 40, 5040-5059.	3.5	0
1773	Synthesis, structural analysis, and gas-adsorption properties of a dibenzothiophene-based hydroxamate/zinc metal-organic framework. Bulletin of the Chemical Society of Japan, 2024, 97, .	3.2	O
1774	Metal-organic frameworks with fine-tuned interlayer spacing for microwave absorption. Science Advances, 2024, 10 , .	10.3	0
1775	Merging polymers of intrinsic microporosity and porous carbon-based zinc oxide composites in novel mixed matrix membranes for efficient gas separation. Green Energy and Environment, 2024, , .	8.7	0

#	Article	IF	CITATIONS
1776	Assessing Composite Structure in Metal–Organic Framework-Polymer Mixed-Matrix Membranes. Chemistry of Materials, 2024, 36, 3022-3033.	6.7	0
1777	\hat{l} ±-Fe@MIL-100(Fe) composites obtained by one-pot sonochemical synthesis. Journal of Nanoparticle Research, 2024, 26, .	1.9	0
1778	Emerging two-dimensional materials: Synthesis, physical properties, and application for catalysis in energy conversion and storage., 2024, 2, 100060.		0
1779	Recent advances and potential applications for metal-organic framework (MOFs) and MOFs-derived materials: Characterizations and antimicrobial activities. Biotechnology Reports (Amsterdam,) Tj ETQq1 1 0.7843	14.#gBT /	Ov e rlock 10 T
1780	CO ₂ -Philic Nanocomposite Polymer Matrix Incorporated with MXene Nanosheets for Ultraefficient CO ₂ Capture. ACS Applied Materials & Interfaces, 2024, 16, 14152-14161.	8.0	0