Thermally insulating and fire-retardant lightweight ani nanocellulose and graphene oxide

Nature Nanotechnology 10, 277-283 DOI: 10.1038/nnano.2014.248

Citation Report

#	Article	IF	CITATIONS
2	Cellulose Nanocrystal Aerogels as Universal 3D Lightweight Substrates for Supercapacitor Materials. Advanced Materials, 2015, 27, 6104-6109.	11.1	297
3	Polymer/Carbon-Based Hybrid Aerogels: Preparation, Properties and Applications. Materials, 2015, 8, 6806-6848.	1.3	163
4	Observation of viscoelasticity in boron nitride nanosheet aerogel. Physical Chemistry Chemical Physics, 2015, 17, 16709-16714.	1.3	11
5	Bio-inspired functional wood-based materials – hybrids and replicates. International Materials Reviews, 2015, 60, 431-450.	9.4	98
6	Anisotropic optical film embedded with cellulose nanowhisker. Carbohydrate Polymers, 2015, 130, 448-454.	5.1	21
7	Understanding nanocellulose chirality and structure–properties relationship at the single fibril level. Nature Communications, 2015, 6, 7564.	5.8	379
8	Cotton-derived bulk and fiber aerogels grafted with nitrogen-doped graphene. Nanoscale, 2015, 7, 7550-7558.	2.8	65
9	Thermal Insulation Monolith of Aluminum Tobermorite Nanosheets Prepared from Fly Ash. ACS Sustainable Chemistry and Engineering, 2015, 3, 2866-2873.	3.2	27
10	Macroscopic and Strong Ribbons of Functionality-Rich Metal Oxides from Highly Ordered Assembly of Unilamellar Sheets. Journal of the American Chemical Society, 2015, 137, 13200-13208.	6.6	32
11	Simultaneous crystallization and decomposition of PVA/MMT composites during non-isothermal process. Thermochimica Acta, 2015, 618, 26-35.	1.2	15
12	Assembly of silica aerogels within silica nanofibers: towards a super-insulating flexible hybrid aerogel membrane. RSC Advances, 2015, 5, 91813-91820.	1.7	38
13	Ambient pressure dried graphene aerogels with superelasticity and multifunctionality. Journal of Materials Chemistry A, 2015, 3, 19268-19272.	5.2	125
14	Cellulose-Templated Graphene Monoliths with Anisotropic Mechanical, Thermal, and Electrical Properties. ACS Applied Materials & Interfaces, 2015, 7, 19145-19152.	4.0	37
15	Facile Preparation of Superelastic and Ultralow Dielectric Boron Nitride Nanosheet Aerogels via Freeze-Casting Process. Chemistry of Materials, 2015, 27, 5849-5855.	3.2	133
16	Nano-based thermal insulation for energy-efficient buildings. , 2016, , 129-181.		19
17	3D Printing of Graphene Aerogels. Small, 2016, 12, 1702-1708.	5.2	427
18	Ultrarobust Transparent Cellulose Nanocrystalâ€Graphene Membranes with High Electrical Conductivity. Advanced Materials, 2016, 28, 1501-1509.	11.1	280
19	Hyperbolically Patterned 3D Graphene Metamaterial with Negative Poisson's Ratio and Superelasticity. Advanced Materials, 2016, 28, 2229-2237.	11.1	178

		IF	CITATIONS
#	ARTICLE	IF	CHATIONS
20	Macromolecular Materials and Engineering, 2016, 301, 665-673.	1.7	41
21	Thermal Analysis on Directional Freezing of Nano Aqueous Suspensions in Graphene Aerogel 3D Printing Process. , 2016, , .		2
22	Mechanical performance and architecture of biocomposite honeycombs and foams from core–shell holocellulose nanofibers. Composites Part A: Applied Science and Manufacturing, 2016, 88, 116-122.	3.8	32
23	Mechanically flexible and optically transparent three-dimensional nanofibrous amorphous aerocellulose. Carbohydrate Polymers, 2016, 149, 217-223.	5.1	10
24	Strong, Water-Durable, and Wet-Resilient Cellulose Nanofibril-Stabilized Foams from Oven Drying. ACS Applied Materials & Interfaces, 2016, 8, 11682-11689.	4.0	86
25	Directional Freezing of Nanocellulose Dispersions Aligns the Rod-Like Particles and Produces Low-Density and Robust Particle Networks. Biomacromolecules, 2016, 17, 1875-1881.	2.6	152
26	Composite Hydrogels with Tunable Anisotropic Morphologies and Mechanical Properties. Chemistry of Materials, 2016, 28, 3406-3415.	3.2	206
27	Recent advances in aerogels for environmental remediation applications: A review. Chemical Engineering Journal, 2016, 300, 98-118.	6.6	494
28	Synthesis of DV-GO and its effect on the fire safety and thermal stability of bismaleimide. Polymer Degradation and Stability, 2016, 128, 209-216.	2.7	15
29	Cellulose nanofibril foams: Links between ice-templating conditions, microstructures and mechanical properties. Materials and Design, 2016, 104, 376-391.	3.3	141
30	Promising applications of graphene and graphene-based nanostructures. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2016, 7, 023002.	0.7	108
31	Naturally Dried Graphene Aerogels with Superelasticity and Tunable Poisson's Ratio. Advanced Materials, 2016, 28, 9223-9230.	11.1	254
32	Electrical behaviour of native cellulose nanofibril/carbon nanotube hybrid aerogels under cyclic compression. RSC Advances, 2016, 6, 89051-89056.	1.7	20
33	Ultralight Biomassâ€Derived Carbonaceous Nanofibrous Aerogels with Superelasticity and High Pressure‧ensitivity. Advanced Materials, 2016, 28, 9512-9518.	11.1	405
34	Efficient Lightweight Supercapacitor with Compression Stability. Advanced Functional Materials, 2016, 26, 6437-6445.	7.8	123
35	Hydrothermal Gelation of Aqueous Cellulose Nanocrystal Suspensions. Biomacromolecules, 2016, 17, 2747-2754.	2.6	104
36	Organized Polymeric Submicron Particles via Self-Assembly and Cross-Linking of Double Hydrophilic Poly(ethylene oxide)- <i>b</i> -poly(<i>N</i> -vinylpyrrolidone) in Aqueous Solution. Macromolecules, 2016, 49, 5331-5341.	2.2	18
38	Enhancing Self-Assembly in Cellulose Nanocrystal Suspensions Using High-Permittivity Solvents. Langmuir, 2016, 32, 9854-9862.	1.6	48

#	Article	IF	CITATIONS
39	The Preparation of Compressible and Fireâ€Resistant Spongeâ€Supported Reduced Graphene Oxide Aerogel for Electromagnetic Interference Shielding. Chemistry - an Asian Journal, 2016, 11, 2586-2593.	1.7	39
40	Super flame-retardant lightweight rime-like carbon-phenolic nanofoam. Scientific Reports, 2016, 6, 33480.	1.6	24
41	Transparent and flame retardant cellulose/aluminum hydroxide nanocomposite aerogels. Science China Chemistry, 2016, 59, 1335-1341.	4.2	45
42	Mechanically strong fully biobased anisotropic cellulose aerogels. RSC Advances, 2016, 6, 96518-96526.	1.7	92
43	Bond behaviour between NSM CFRP strips and concrete at high temperature using innovative high-strength self-compacting cementitious adhesive (IHSSC-CA) made with graphene oxide. Construction and Building Materials, 2016, 127, 872-883.	3.2	26
44	Superhydrophobic and Slippery Lubricant-Infused Flexible Transparent Nanocellulose Films by Photoinduced Thiol–Ene Functionalization. ACS Applied Materials & Interfaces, 2016, 8, 34115-34122.	4.0	96
45	An ice-templated assembly strategy to construct graphene oxide/boron nitride hybrid porous scaffolds in phase change materials with enhanced thermal conductivity and shape stability for light–thermal–electric energy conversion. Journal of Materials Chemistry A, 2016, 4, 18841-18851.	5.2	216
46	Partitioned airs at microscale and nanoscale: thermal diffusivity in ultrahigh porosity solids of nanocellulose. Scientific Reports, 2016, 6, 20434.	1.6	94
47	Cellulose Nanofiber as a Distinct Structure-Directing Agent for Xylem-like Microhoneycomb Monoliths by Unidirectional Freeze-Drying. ACS Nano, 2016, 10, 10689-10697.	7.3	115
48	Macro- and mesoporous nanocellulose beads for use in energy storage devices. Applied Materials Today, 2016, 5, 246-254.	2.3	47
49	High-performance battery electrodes via magnetic templating. Nature Energy, 2016, 1, .	19.8	294
50	From anisotropic graphene aerogels to electron- and photo-driven phase change composites. Journal of Materials Chemistry A, 2016, 4, 17042-17049.	5.2	179
51	Multifunctional nano-engineered and bio-mimicking smart superhydrophobic reticulated ABS/fumed silica composite thin films with heat-sinking applications. RSC Advances, 2016, 6, 105180-105191.	1.7	43
52	Three-dimensional Sponges with Super Mechanical Stability: Harnessing True Elasticity of Individual Carbon Nanotubes in Macroscopic Architectures. Scientific Reports, 2016, 6, 18930.	1.6	56
53	Interfacial Engineering of Silicon Carbide Nanowire/Cellulose Microcrystal Paper toward High Thermal Conductivity. ACS Applied Materials & Interfaces, 2016, 8, 31248-31255.	4.0	139
54	Introduction to biopolymers and biotech admixtures for eco-efficient construction materials. , 2016, , 1-10.		32
55	Parameter Study on 3D-Printing Graphene Oxidize Based on Directional Freezing. , 2016, , .		2
56	Graphene Oxide-Assisted Liquid Phase Exfoliation of Graphite into Graphene for Highly Conductive Film and Electromechanical Sensors. ACS Applied Materials & Interfaces, 2016, 8, 16521-16532.	4.0	98

#	Article	IF	CITATIONS
57	Ultrasoft gelatin aerogels for oil contaminant removal. Journal of Materials Chemistry A, 2016, 4, 9381-9389.	5.2	73
58	Graphene oxide beads for fast clean-up of hazardous chemicals. Journal of Materials Chemistry A, 2016, 4, 9437-9446.	5.2	51
59	Flexible dielectric papers based on biodegradable cellulose nanofibers and carbon nanotubes for dielectric energy storage. Journal of Materials Chemistry C, 2016, 4, 6037-6044.	2.7	88
60	Interface-mediated extremely low thermal conductivity of graphene aerogel. Carbon, 2016, 98, 381-390.	5.4	120
61	On the dispersion systems of graphene-like two-dimensional materials: From fundamental laws to engineering guidelines. Carbon, 2016, 107, 774-782.	5.4	28
62	Graphene-based flame retardants: a review. Journal of Materials Science, 2016, 51, 8271-8295.	1.7	169
63	Effects of graphene concentration, relative density and cellular morphology on the thermal conductivity of polycarbonate–graphene nanocomposite foams. European Polymer Journal, 2016, 75, 190-199.	2.6	36
64	Ultralight, compressible and multifunctional carbon aerogels based on natural tubular cellulose. Journal of Materials Chemistry A, 2016, 4, 2069-2074.	5.2	141
65	Influence of flame on graphene based flexible nanocomposite. Materials Research Express, 2016, 3, 015601.	0.8	2
66	Anisotropic thermally conductive flexible films based on nanofibrillated cellulose and aligned graphene nanosheets. Journal of Materials Chemistry C, 2016, 4, 305-314.	2.7	177
67	Stabilizing nanocellulose-nonionic surfactant composite foams by delayed Ca-induced gelation. Journal of Colloid and Interface Science, 2016, 472, 44-51.	5.0	47
68	Tuning the Nanocellulose–Borate Interaction To Achieve Highly Flame Retardant Hybrid Materials. Chemistry of Materials, 2016, 28, 1985-1989.	3.2	103
69	Nanocellulose Aerogels as Thermal Insulation Materials. , 2016, , 411-427.		14
70	Scalable Preparation of Multifunctional Fire-Retardant Ultralight Graphene Foams. ACS Nano, 2016, 10, 1325-1332.	7.3	126
71	Hierarchically ordered micro/meso/macroporous polymer-derived ceramic monoliths fabricated by freeze-casting. Journal of the European Ceramic Society, 2016, 36, 51-58.	2.8	57
72	Ultralight, super-elastic and volume-preserving cellulose fiber/graphene aerogel for high-performance electromagnetic interference shielding. Carbon, 2017, 115, 629-639.	5.4	228
73	Multifunctional Cellulosic Scaffolds from Modified Cellulose Nanocrystals. ACS Applied Materials & amp; Interfaces, 2017, 9, 2010-2015.	4.0	69
74	Reactive molecular dynamics and experimental study of graphene-cement composites: Structure, dynamics and reinforcement mechanisms. Carbon, 2017, 115, 188-208.	5.4	301

#	Article	IF	CITATIONS
75	Functional Graphene Nanomaterials Based Architectures: Biointeractions, Fabrications, and Emerging Biological Applications. Chemical Reviews, 2017, 117, 1826-1914.	23.0	425
76	Cellulose Nanofibril Aerogels: Synergistic Improvement of Hydrophobicity, Strength, and Thermal Stability via Cross-Linking with Diisocyanate. ACS Applied Materials & Interfaces, 2017, 9, 2825-2834.	4.0	146
77	A CaCO ₃ /nanocellulose-based bioinspired nacre-like material. Journal of Materials Chemistry A, 2017, 5, 16128-16133.	5.2	30
78	Ice-Templating: Processing Routes, Architectures, and Microstructures. Engineering Materials and Processes, 2017, , 171-252.	0.2	1
79	Ice-Templated Materials: Polymers, Ceramics, Metals and Their Composites. Engineering Materials and Processes, 2017, , 253-350.	0.2	2
80	Properties and Applications of Ice-Templated Materials. Engineering Materials and Processes, 2017, , 439-548.	0.2	1
81	Thermal Analysis of Directional Freezing Based Graphene Aerogel Three-Dimensional Printing Process. Journal of Micro and Nano-Manufacturing, 2017, 5, .	0.8	8
82	Hierarchical macroporous–mesoporous γ-alumina monolithic green bodies with high strength. Journal of Materials Science, 2017, 52, 11168-11178.	1.7	12
83	Waterâ€based freeze casting: Adjusting hydrophobic polymethylsiloxane for obtaining hierarchically ordered porous SiOC. Journal of the American Ceramic Society, 2017, 100, 1907-1918.	1.9	20
85	Thermal conductance of Teflon and Polyethylene: Insight from an atomistic, single-molecule level. Scientific Reports, 2017, 7, 41898.	1.6	18
86	Graphene-Borate as an Efficient Fire Retardant for Cellulosic Materials with Multiple and Synergetic Modes of Action. ACS Applied Materials & Interfaces, 2017, 9, 10160-10168.	4.0	78
87	Carbon-family materials for flame retardant polymeric materials. Progress in Polymer Science, 2017, 69, 22-46.	11.8	406
88	Morphology and physical properties of graphene nanoplatelet embedded poly(vinyl alcohol) composite aerogel. Current Applied Physics, 2017, 17, 727-731.	1.1	6
89	Parameter Study of Three-Dimensional Printing Graphene Oxide Based on Directional Freezing. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2017, 139, .	1.3	13
90	Steady-shear and viscoelastic properties of cellulose nanofibril–nanoclay dispersions. Cellulose, 2017, 24, 1815-1824.	2.4	19
91	A Flexible Solid Composite Electrolyte with Vertically Aligned and Connected Ion-Conducting Nanoparticles for Lithium Batteries. Nano Letters, 2017, 17, 3182-3187.	4.5	403
92	Cellulose Sponge Supported Palladium Nanoparticles as Recyclable Cross-Coupling Catalysts. ACS Applied Materials & Interfaces, 2017, 9, 17155-17162.	4.0	124
93	Novel Polymer Aerogel toward High Dimensional Stability, Mechanical Property, and Fire Safety. ACS Applied Materials & amp; Interfaces, 2017, 9, 22985-22993.	4.0	72

#	Article	IF	CITATIONS
94	Compressible and conductive carbon aerogels from waste paper with exceptional performance for oil/water separation. Journal of Materials Chemistry A, 2017, 5, 14858-14864.	5.2	144
95	Self-assembly and morphological control of three-dimensional macroporous architectures built of two-dimensional materials. Nano Today, 2017, 14, 100-123.	6.2	69
96	Mesoporous Zinc Ferrite Microsphere-Decorated Graphene Oxide as a Flame Retardant Additive: Preparation, Characterization, and Flame Retardance Evaluation. Industrial & Engineering Chemistry Research, 2017, 56, 7720-7729.	1.8	25
97	Nanocellulose in Sensing and Biosensing. Chemistry of Materials, 2017, 29, 5426-5446.	3.2	308
98	Ultra-tough and super thermal-insulation nanocellular PMMA/TPU. Chemical Engineering Journal, 2017, 325, 632-646.	6.6	165
99	Synthesis of Phosphorylated Graphene Oxide Based Multilayer Coating: Self-Assembly Method and Application for Improving the Fire Safety of Cotton Fabrics. Industrial & Engineering Chemistry Research, 2017, 56, 6664-6670.	1.8	39
100	Self-Expansion Construction of Ultralight Carbon Nanotube Aerogels with a 3D and Hierarchical Cellular Structure. Small, 2017, 13, 1700966.	5.2	10
101	Flyweight, Superelastic, Electrically Conductive, and Flameâ€Retardant 3D Multiâ€Nanolayer Graphene/Ceramic Metamaterial. Advanced Materials, 2017, 29, 1605506.	11.1	89
102	Nanocellulose-based foams and aerogels: processing, properties, and applications. Journal of Materials Chemistry A, 2017, 5, 16105-16117.	5.2	466
103	Carbon Nanoparticle Hybrid Aerogels: 3D Double-Interconnected Network Porous Microstructure, Thermoelectric, and Solvent-Removal Functions. ACS Applied Materials & Interfaces, 2017, 9, 21820-21828.	4.0	56
104	Stiff, Thermally Stable and Highly Anisotropic Wood-Derived Carbon Composite Monoliths for Electromagnetic Interference Shielding. ACS Applied Materials & Interfaces, 2017, 9, 21371-21381.	4.0	148
105	Mechanically robust and shape-memory hybrid aerogels for super-insulating applications. Journal of Materials Chemistry A, 2017, 5, 15048-15055.	5.2	29
106	A versatile graphene foil. Journal of Materials Chemistry A, 2017, 5, 14508-14513.	5.2	22
107	Preparation of zinc hydroxystannate-titanate nanotube flame retardant and evaluation its smoke suppression efficiency for flexible polyvinyl chloride matrix. Materials Letters, 2017, 204, 133-137.	1.3	22
108	Flyweight 3D Graphene Scaffolds with Microinterface Barrier-Derived Tunable Thermal Insulation and Flame Retardancy. ACS Applied Materials & Interfaces, 2017, 9, 14232-14241.	4.0	67
109	Modelling of thermal transport through a nanocellular polymer foam: toward the generation of a new superinsulating material. Nanoscale, 2017, 9, 5996-6009.	2.8	124
110	Graphene/cellulose nanocrystals hybrid aerogel with tunable mechanical strength and hydrophilicity fabricated by ambient pressure drying technique. RSC Advances, 2017, 7, 16467-16473.	1.7	35
111	"Aerogels of enzymatically oxidized galactomannans from leguminous plants: Versatile delivery systems of antimicrobial peptides and enzymesâ€: Carbohydrate Polymers, 2017, 158, 102-111.	5.1	22

#	Article	IF	CITATIONS
112	Preparation, properties and applications of nanocellulosic materials. Carbohydrate Polymers, 2017, 163, 301-316.	5.1	286
113	Graphene/montmorillonite hybrid synergistically reinforced polyimide composite aerogels with enhanced flame-retardant performance. Composites Science and Technology, 2017, 139, 57-63.	3.8	127
114	Highly Anisotropic Thermal Conductivity of Layer-by-Layer Assembled Nanofibrillated Cellulose/Graphene Nanosheets Hybrid Films for Thermal Management. ACS Applied Materials & Interfaces, 2017, 9, 2924-2932.	4.0	270
115	Highly anisotropic crosslinked HDPE foams with a controlled anisotropy ratio: Production and characterization of the cellular structure and mechanical properties. Materials and Design, 2017, 114, 83-91.	3.3	37
116	Role of Atomic Layer Functionalization in Building Scalable Bottom-Up Assembly of Ultra-Low Density Multifunctional Three-Dimensional Nanostructures. ACS Nano, 2017, 11, 806-813.	7.3	14
117	Reversible transition between isotropic and anisotropic thermal transport in elastic polyurethane foams. Materials Horizons, 2017, 4, 236-241.	6.4	24
118	Toward a deeper understanding of the thermal degradation mechanism of nanocellulose. Polymer Degradation and Stability, 2017, 146, 53-60.	2.7	67
119	Ultrahigh humidity sensitivity of graphene oxide combined with Ag nanoparticles. RSC Advances, 2017, 7, 45988-45996.	1.7	49
120	Transparent Cellulose–Silica Composite Aerogels with Excellent Flame Retardancy via an in Situ Sol–Gel Process. ACS Sustainable Chemistry and Engineering, 2017, 5, 11117-11123.	3.2	81
121	Anomalous thermal anisotropy of two-dimensional nanoplates of vertically grown MoS2. Applied Physics Letters, 2017, 111, .	1.5	8
122	Size Controllable, Transparent, and Flexible 2D Silver Meshes Using Recrystallized Ice Crystals as Templates. ACS Nano, 2017, 11, 9898-9905.	7.3	38
123	Wet-spinning of highly conductive nanocellulose–silver fibers. Journal of Materials Chemistry C, 2017, 5, 9673-9679.	2.7	33
124	Focus on Gradientwise Control of the Surface Acetylation of Cellulose Nanocrystals to Optimize Mechanical Reinforcement for Hydrophobic Polyester-Based Nanocomposites. ACS Omega, 2017, 2, 4725-4736.	1.6	46
125	Low-density and structure-tunable microcellular PMMA foams with improved thermal-insulation and compressive mechanical properties. European Polymer Journal, 2017, 95, 382-393.	2.6	136
126	Nanostructured Wood Hybrids for Fire-Retardancy Prepared by Clay Impregnation into the Cell Wall. ACS Applied Materials & Interfaces, 2017, 9, 36154-36163.	4.0	175
127	Chiroptical, morphological and conducting properties of chiral nematic mesoporous cellulose/polypyrrole composite films. Journal of Materials Chemistry A, 2017, 5, 19184-19194.	5.2	72
128	Effects of graphene oxide in enhancing the performance of concrete exposed to high-temperature. Australian Journal of Civil Engineering, 2017, 15, 61-71.	0.6	55
129	Deep Eutectic Solvent Functionalized Graphene Composite as an Extremely High Potency Flame Retardant. ACS Applied Materials & Interfaces, 2017, 9, 35319-35324.	4.0	88

#	ARTICLE	IF	CITATIONS
130	Performance Evolution of Alkylation Graphene Oxide Reinforcing High-Density Polyethylene. Journal of Physical Chemistry C, 2017, 121, 21685-21694.	1.5	16
131	Branched Aramid Nanofibers. Angewandte Chemie - International Edition, 2017, 56, 11744-11748.	7.2	140
132	Robust and fire retardant borate-crosslinked poly (vinyl alcohol)/montmorillonite aerogel via melt-crosslink. Polymer, 2017, 131, 111-119.	1.8	55
133	Branched Aramid Nanofibers. Angewandte Chemie, 2017, 129, 11906-11910.	1.6	14
134	Lightweight and Ultrastrong Polymer Foams with Unusually Superior Flame Retardancy. ACS Applied Materials & Interfaces, 2017, 9, 26392-26399.	4.0	66
135	Wetâ€5pun Superelastic Graphene Aerogel Millispheres with Group Effect. Advanced Materials, 2017, 29, 1701482.	11.1	141
136	Oriented Arrangement: The Origin of Versatility for Porous Graphene Materials. Small, 2017, 13, 1701231.	5.2	26
137	Aromatic thermosetting copolyester nanocomposite foams: High thermal and mechanical performance lightweight structural materials. Polymer, 2017, 123, 311-320.	1.8	18
138	Time-domain thermoreflectance (TDTR) measurements of anisotropic thermal conductivity using a variable spot size approach. Review of Scientific Instruments, 2017, 88, 074901.	0.6	101
140	Superior Flame-Resistant Cellulose Nanofibril Aerogels Modified with Hybrid Layer-by-Layer Coatings. ACS Applied Materials & Interfaces, 2017, 9, 29082-29092.	4.0	99
141	Hierarchical Polyphosphazene@Molybdenum Disulfide Hybrid Structure for Enhancing the Flame Retardancy and Mechanical Property of Epoxy Resins. ACS Applied Materials & Interfaces, 2017, 9, 29147-29156.	4.0	157
142	Surface growth of MG(multilayer graphene)–SiC nanofillers/poly(vinylidene fluoride) composites for improving thermal conductivity and maintaining electrical insulation. Materials Research Express, 2017, 4, 085016.	0.8	6
143	Fire-Retardant, Self-Extinguishing Inorganic/Polymer Composite Memory Foams. ACS Applied Materials & Interfaces, 2017, 9, 44864-44872.	4.0	51
144	Superlight, Mechanically Flexible, Thermally Superinsulating, and Antifrosting Anisotropic Nanocomposite Foam Based on Hierarchical Graphene Oxide Assembly. ACS Applied Materials & Interfaces, 2017, 9, 44010-44017.	4.0	60
145	Green Approach to Improving the Strength and Flame Retardancy of Poly(vinyl alcohol)/Clay Aerogels: Incorporating Biobased Gelatin. ACS Applied Materials & Interfaces, 2017, 9, 42258-42265.	4.0	104
146	Thermal transport in twisted few-layer graphene. Chinese Physics B, 2017, 26, 116503.	0.7	13
147	BN Nanosheet/Polymer Films with Highly Anisotropic Thermal Conductivity for Thermal Management Applications. ACS Applied Materials & amp; Interfaces, 2017, 9, 43163-43170.	4.0	190
148	Assembly of small molecule surfactants at highly dynamic air–water interfaces. Soft Matter, 2017, 13, 8807-8815.	1.2	18

#	Article	IF	CITATIONS
149	Thermal conductivity analysis and applications of nanocellulose materials. Science and Technology of Advanced Materials, 2017, 18, 877-892.	2.8	87
150	Template-Guided Assembly of Silk Fibroin on Cellulose Nanofibers for Robust Nanostructures with Ultrafast Water Transport. ACS Nano, 2017, 11, 12008-12019.	7.3	107
151	Nanocellulose Aerogels Inspired by Frozen Tofu. ACS Sustainable Chemistry and Engineering, 2017, 5, 6387-6391.	3.2	47
152	Thermally Insulating and Flame-Retardant Polyaniline/Pectin Aerogels. ACS Sustainable Chemistry and Engineering, 2017, 5, 7012-7019.	3.2	119
153	Structure-induced variation of thermal conductivity in epoxy resin fibers. Nanoscale, 2017, 9, 10585-10589.	2.8	13
154	Facile synthesis of microfibrillated cellulose/organosilicon/polydopamine composite sponges with flame retardant properties. Cellulose, 2017, 24, 3815-3823.	2.4	55
155	Ultralight, highly thermally insulating and fire resistant aerogel by encapsulating cellulose nanofibers with two-dimensional MoS ₂ . Nanoscale, 2017, 9, 11452-11462.	2.8	97
156	Rejuvenated fly ash in poly(vinyl alcohol)-based composite aerogels with high fire safety and smoke suppression. Chemical Engineering Journal, 2017, 327, 992-999.	6.6	48
157	Gluing Carbon Black and Sulfur at Nanoscale: A Polydopamineâ€Based "Nanoâ€Binder―for Doubleâ€5helled Sulfur Cathodes. Advanced Energy Materials, 2017, 7, 1601591.	10.2	64
158	Novel aqueous spongy foams made of three-dimensionally dispersed wood-fiber: entrapment and stabilization with NFC/MFC within capillary foams. Cellulose, 2017, 24, 241-251.	2.4	21
159	Soft <scp>PEDOT:PSS</scp> aerogel architectures for thermoelectric applications. Journal of Applied Polymer Science, 2017, 134, .	1.3	33
160	Tailoring Graphene Oxideâ€Based Aerogels for Efficient Solar Steam Generation under One Sun. Advanced Materials, 2017, 29, 1604031.	11.1	711
161	Fabrication Study of Hydrophobic Polyurethane Sponge for Oil Absorption Application. Key Engineering Materials, 0, 751, 731-737.	0.4	0
162	Fabrication of Cellulose Nanofiber/AlOOH Aerogel for Flame Retardant and Thermal Insulation. Materials, 2017, 10, 311.	1.3	49
163	Nanocellulose. , 2017, , 277-304.		12
164	A Facile Approach to Tune the Electrical and Thermal Properties of Graphene Aerogels by Including Bulk MoS2. Nanomaterials, 2017, 7, 420.	1.9	28
165	Naturally-derived biopolymer nanocomposites: Interfacial design, properties and emerging applications. Materials Science and Engineering Reports, 2018, 125, 1-41.	14.8	182
166	DOPO-Modified Two-Dimensional Co-Based Metal–Organic Framework: Preparation and Application for Enhancing Fire Safety of Poly(lactic acid). ACS Applied Materials & Interfaces, 2018, 10, 8274-8286.	4.0	146

#	Article	IF	CITATIONS
167	Durable and fluorine-free superhydrophobic coatings from palygorskite-rich spent bleaching earth. Applied Clay Science, 2018, 157, 237-247.	2.6	14
168	Aerogels Derived from Polymer Nanofibers and Their Applications. Macromolecular Rapid Communications, 2018, 39, e1700724.	2.0	64
169	Nanocellulose reinforced as green agent in polymer matrix composites applications. Polymers for Advanced Technologies, 2018, 29, 1531-1546.	1.6	26
170	Strong and Flexible Nanocomposites of Carboxylated Cellulose Nanofibril Dispersed by Industrial Lignin. ACS Sustainable Chemistry and Engineering, 2018, 6, 5524-5532.	3.2	38
171	Anisotropic, lightweight, strong, and super thermally insulating nanowood with naturally aligned nanocellulose. Science Advances, 2018, 4, eaar3724.	4.7	336
172	Aerogels and metal–organic frameworks for environmental remediation and energy production. Environmental Chemistry Letters, 2018, 16, 797-820.	8.3	57
173	Immobilization of Nanoparticles on Fibrous Clay Surfaces: Towards Promising Nanoplatforms for Advanced Functional Applications. Chemical Record, 2018, 18, 1125-1137.	2.9	42
174	Reactive force-field molecular dynamics study on graphene oxide reinforced cement composite: functional group de-protonation, interfacial bonding and strengthening mechanism. Physical Chemistry Chemical Physics, 2018, 20, 8773-8789.	1.3	72
175	Advanced Materials through Assembly of Nanocelluloses. Advanced Materials, 2018, 30, e1703779.	11.1	493
176	Nano-fibrillated cellulose-hydroxyapatite based composite foams with excellent fire resistance. Carbohydrate Polymers, 2018, 195, 71-78.	5.1	99
177	Lightweight, super-elastic, and thermal-sound insulation bio-based PEBA foams fabricated by high-pressure foam injection molding with mold-opening. European Polymer Journal, 2018, 103, 68-79.	2.6	120
178	Benzotriazole-based conjugated microporous polymers as efficient flame retardants with better thermal insulation properties. Journal of Materials Chemistry A, 2018, 6, 8633-8642.	5.2	51
179	Fabrication of Fully Bio-Based Aerogels via Microcrystalline Cellulose and Hydroxyapatite Nanorods with Highly Effective Flame-Retardant Properties. ACS Applied Nano Materials, 2018, 1, 1921-1931.	2.4	32
180	Influence of Ionic Liquid-Based Metal–Organic Hybrid on Thermal Degradation, Flame Retardancy, and Smoke Suppression Properties of Epoxy Resin Composites. Journal of Materials Science, 2018, 53, 10135-10146.	1.7	33
181	Multi-functional hydroxyapatite/polyvinyl alcohol composite aerogels with self-cleaning, superior fire resistance and low thermal conductivity. Composites Science and Technology, 2018, 158, 128-136.	3.8	84
182	Continuous roll-to-roll fabrication of transparent cellulose nanocrystal (CNC) coatings with controlled anisotropy. Cellulose, 2018, 25, 1769-1781.	2.4	33
183	A pre-constructed graphene–ammonium polyphosphate aerogel (GAPPA) for efficiently enhancing the mechanical and fire-safety performances of polymers. Journal of Materials Chemistry A, 2018, 6, 4449-4457.	5.2	31
184	Synthesis of organic aerogels with tailorable morphology and strength by controlled solvent swelling following Hansen solubility. Scientific Reports, 2018, 8, 2106.	1.6	39

ARTICLE IF CITATIONS # Flexible and Salt Resistant Janus Absorbers by Electrospinning for Stable and Efficient Solar 185 10.2 635 Desalination. Advanced Energy Materials, 2018, 8, 1702884. Nanoscale Assembly of Cellulose Nanocrystals during Drying and Redispersion. ACS Macro Letters, 2.3 2018, 7, 172-177. Wood Nanotechnology for Strong, Mesoporous, and Hydrophobic Biocomposites for Selective 187 7.3 272 Separation of Oil/Water Mixtures. ACS Nano, 2018, 12, 2222-2230. Aerogel materials with periodic structures imprinted with cellulose nanocrystals. Nanoscale, 2018, 188 10, 3805-3812. All-natural and highly flame-resistant freeze-cast foams based on phosphorylated cellulose 189 2.8 87 nanofibrils. Nanoscale, 2018, 10, 4085-4095. A Thermally Insulating Textile Inspired by Polar Bear Hair. Advanced Materials, 2018, 30, e1706807. 11.1 Grapheneâ€Based Carbocatalysts for Thermoset Polymers and for Diastereoselective and 191 1.8 9 Enantioselective Organic Synthesis. ChemCatChem, 2018, 10, 2350-2359. Superamphiphobic Coatings with Low Sliding Angles from Attapulgite/Carbon Composites. Advanced 1.9 Materials Interfaces, 2018, 5, 1701520. Direct Ink Write 3D Printed Cellulose Nanofiber Aerogel Structures with Highly Deformable, Shape 193 Recoverable, and Functionalizable Properties. ACS Sustainable Chemistry and Engineering, 2018, 6, 3.2 95 2011-2022. Flexible cellulose-based thermoelectric sponge towards wearable pressure sensor and energy 194 6.6 harvesting. Chemical Engineering Journal, 2018, 338, 1-7. Integrative solar absorbers for highly efficient solar steam generation. Journal of Materials 195 5.2 135 Chemistry A, 2018, 6, 4642-4648. Highly Compressible, Anisotropic Aerogel with Aligned Cellulose Nanofibers. ACS Nano, 2018, 12, 364 140-147. Freeze casting – A review of processing, microstructure and properties via the open data repository, 197 16.0 269 FreezeCasting.net. Progress in Materials Science, 2018, 94, 243-305. Three-Dimensional Printing Hollow Polymer Template-Mediated Graphene Lattices with Tailorable Architectures and Multifunctional Properties. ACS Nano, 2018, 12, 1096-1106. 198 Mechanically strong polyimide / carbon nanotube composite aerogels with controllable porous 199 3.8 113 structure. Composites Science and Technology, 2018, 156, 186-191. Facile preparation of polysaccharide-based sponges and their potential application in wound dressing. Journal of Materials Chemistry B, 2018, 6, 634-640. Thermal conductivity of hygroscopic foams based on cellulose nanofibrils and a nonionic 201 2.4 35 polyoxamer. Cellulose, 2018, 25, 1117-1126. Biopolymerâ€Aerogele und â€Schäme: Chemie, Eigenschaften und Anwendungen. Angewandte Chemie, 2018, 130, 7704-7733.

#	Article	IF	CITATIONS
203	Biopolymer Aerogels and Foams: Chemistry, Properties, and Applications. Angewandte Chemie - International Edition, 2018, 57, 7580-7608.	7.2	470
204	Flexible h-BN foam sheets for multifunctional electronic packaging materials with ultrahigh thermostability. Soft Matter, 2018, 14, 4204-4212.	1.2	11
205	Accelerating the discovery of materials for clean energy in the era of smart automation. Nature Reviews Materials, 2018, 3, 5-20.	23.3	489
206	<i>In situ</i> generation of 3D graphene-like networks from cellulose nanofibres in sintered ceramics. Nanoscale, 2018, 10, 10488-10497.	2.8	13
207	Large-sized graphene oxide as bonding agent for the liquid extrusion of nanoparticle aerogels. Carbon, 2018, 136, 196-203.	5.4	16
208	Vertically Aligned High-Quality Graphene Foams for Anisotropically Conductive Polymer Composites with Ultrahigh Through-Plane Thermal Conductivities. ACS Applied Materials & Interfaces, 2018, 10, 17383-17392.	4.0	178
209	Ultralight and fire-resistant ceramic nanofibrous aerogels with temperature-invariant superelasticity. Science Advances, 2018, 4, eaas8925.	4.7	414
210	Robust Nanofibrillated Cellulose Hydro/Aerogels from Benign Solution/Solvent Exchange Treatment. ACS Sustainable Chemistry and Engineering, 2018, 6, 6624-6634.	3.2	41
211	Simultaneously improving the fire safety and mechanical properties of epoxy resin with Fe-CNTs <i>via</i> large-scale preparation. Journal of Materials Chemistry A, 2018, 6, 6376-6386.	5.2	183
212	Developing fire-retardant and water-repellent bio-structural panels using nanocellulose. MRS Communications, 2018, 8, 257-265.	0.8	3
213	Facile fabrication of thiol-modified cellulose sponges for adsorption of Hg2+ from aqueous solutions. Cellulose, 2018, 25, 3025-3035.	2.4	38
214	Cellular Thermoplastic Polyurethane Thin Film: Preparation, Elasticity, and Thermal Insulation Performance. Industrial & Engineering Chemistry Research, 2018, 57, 4688-4696.	1.8	48
215	Nanocellulose: a promising nanomaterial for advanced electrochemical energy storage. Chemical Society Reviews, 2018, 47, 2837-2872.	18.7	586
216	Conformal Ultrathin Coating by scCO ₂ -Mediated PMMA Deposition: A Facile Approach To Add Moisture Resistance to Lightweight Ordered Nanocellulose Aerogels. Chemistry of Materials, 2018, 30, 2322-2330.	3.2	25
217	Fire Alarm Wallpaper Based on Fire-Resistant Hydroxyapatite Nanowire Inorganic Paper and Graphene Oxide Thermosensitive Sensor. ACS Nano, 2018, 12, 3159-3171.	7.3	155
218	The synergistic flameâ€retardant behaviors of pentaerythritol phosphate and expandable graphite in rigid polyurethane foams. Polymer Composites, 2018, 39, 329-336.	2.3	47
219	Effects of nanoclays on the thermal stability and flame retardancy of microcellular thermoplastic polyurethane nanocomposites. Polymer Composites, 2018, 39, E1429.	2.3	23
220	Preparation and the controlled release effect study of graphene oxide-modified poly(ε-caprolactone). International Journal of Polymeric Materials and Polymeric Biomaterials, 2018, 67, 307-312.	1.8	9

#	Article	IF	CITATIONS
221	Dualâ€Fiber Approach toward Flexible Multifunctional Hybrid Materials. Advanced Functional Materials, 2018, 28, 1704274.	7.8	26
222	Tailoring thermal conductivity of bulk graphene oxide by tuning the oxidation degree. Chinese Chemical Letters, 2018, 29, 711-715.	4.8	17
223	Comparative study of ultra-lightweight pulp foams obtained from various fibers and reinforced by MFC. Carbohydrate Polymers, 2018, 182, 92-97.	5.1	18
224	Assessing cellulose nanofiber production from olive tree pruning residue. Carbohydrate Polymers, 2018, 179, 252-261.	5.1	80
225	Highly flexible cross-linked cellulose nanofibril sponge-like aerogels with improved mechanical property and enhanced flame retardancy. Carbohydrate Polymers, 2018, 179, 333-340.	5.1	121
226	Pure hydrophilic block copolymer vesicles with redox- and pH-cleavable crosslinks. Polymer Chemistry, 2018, 9, 1626-1637.	1.9	17
227	Fluoroalkyl-silane-modified 3D graphene foam with improved Joule-heating effects and high hydrophobicity-derived anti-icing properties. Journal of Materials Science, 2018, 53, 528-537.	1.7	15
228	Thermal conductivity model for nanoporous thin films. Physica E: Low-Dimensional Systems and Nanostructures, 2018, 97, 277-281.	1.3	17
229	Lightweight, Mesoporous, and Highly Absorptive All-Nanofiber Aerogel for Efficient Solar Steam Generation. ACS Applied Materials & Interfaces, 2018, 10, 1104-1112.	4.0	327
230	Polymer brush guided templating on well-defined rod-like cellulose nanocrystals. Polymer Chemistry, 2018, 9, 1650-1657.	1.9	39
231	Efficient Flame Detection and Early Warning Sensors on Combustible Materials Using Hierarchical Graphene Oxide/Silicone Coatings. ACS Nano, 2018, 12, 416-424.	7.3	227
232	Ultrafast Nanoscale Polymer Coating on Porous 3D Structures Using Microwave Irradiation. Advanced Functional Materials, 2018, 28, 1704877.	7.8	18
233	Ultralight and Low Thermal Conductivity Polyimide–Polyhedral Oligomeric Silsesquioxanes Aerogels. Macromolecular Materials and Engineering, 2018, 303, 1700403.	1.7	25
234	Mechanically Resistant and Sustainable Cellulose-Based Composite Aerogels with Excellent Flame Retardant, Sound-Absorption, and Superantiwetting Ability for Advanced Engineering Materials. ACS Sustainable Chemistry and Engineering, 2018, 6, 927-936.	3.2	120
235	Cellulose nanofibers/silk fibroin nanohybrid sponges with highly ordered and multi-scale hierarchical honeycomb structure. Cellulose, 2018, 25, 429-437.	2.4	18
236	Chemical crosslinking reinforced flexible cellulose nanofiber-supported cryogel. Cellulose, 2018, 25, 573-582.	2.4	53
237	Multifunctional Cellular Materials Based on 2D Nanomaterials: Prospects and Challenges. Advanced Materials, 2018, 30, 1704850.	11.1	47
238	The Meeting Point of Carbonaceous Materials and Clays: Toward a New Generation of Functional Composites. Advanced Functional Materials, 2018, 28, 1704323.	7.8	32

#	Article	IF	CITATIONS
239	Inhomogeneity in pore size appreciably lowering thermal conductivity for porous thermal insulators. Applied Thermal Engineering, 2018, 130, 1004-1011.	3.0	78
240	Processing issues, machining, and applications of aluminum metal matrix composites. Materials and Manufacturing Processes, 2018, 33, 499-527.	2.7	117
241	Functional Hybrid Nanopaper by Assembling Nanofibers of Cellulose and Sepiolite. Advanced Functional Materials, 2018, 28, 1703048.	7.8	49
242	Multifunctional hyperuniform cellular networks: optimality, anisotropy and disorder. Multifunctional Materials, 2018, 1, 015001.	2.4	26
243	Multiple Factor Analysis on Preparation of Cellulose Nanofiber by Ball Milling from Softwood Pulp. BioResources, 2018, 13, .	0.5	9
244	Thermal insulation with 2D materials: liquid phase exfoliated vermiculite functional nanosheets. Nanoscale, 2018, 10, 23182-23190.	2.8	40
245	Fire-resistant, ultralight, superelastic and thermally insulated polybenzazole aerogels. Journal of Materials Chemistry A, 2018, 6, 20769-20777.	5.2	49
248	Adsorption and Interfacial Layer Structure of Unmodified Nanocrystalline Cellulose at Air/Water Interfaces. Langmuir, 2018, 34, 15195-15202.	1.6	56
249	Nanocellulose, a Versatile Green Platform: From Biosources to Materials and Their Applications. Chemical Reviews, 2018, 118, 11575-11625.	23.0	1,008
250	Ice-Templated Porous Nanocellulose-Based Materials: Current Progress and Opportunities for Materials Engineering. Applied Sciences (Switzerland), 2018, 8, 2463.	1.3	39
251	Multifunctional, Superelastic, and Lightweight MXene/Polyimide Aerogels. Small, 2018, 14, e1802479.	5.2	418
252	Assembly of cellulose nanocrystals in a levitating drop probed by time-resolved small angle X-ray scattering. Nanoscale, 2018, 10, 18113-18118.	2.8	23
253	Self-Assembly of Cellulose in Super-Cooled Ionic Liquid under the Impact of Decelerated Antisolvent Infusion: An Approach toward Anisotropic Gels and Aerogels. Biomacromolecules, 2018, 19, 4411-4422.	2.6	20
254	Efficiently Controlling the 3D Thermal Conductivity of a Polymer Nanocomposite via a Hyperelastic Double ontinuous Network of Graphene and Sponge. Advanced Functional Materials, 2018, 28, 1805053.	7.8	147
255	Graphene Oxide Exoskeleton to Produce Selfâ€Extinguishing, Nonignitable, and Flame Resistant Flexible Foams: A Mechanically Tough Alternative to Inorganic Aerogels. Advanced Materials Interfaces, 2018, 5, 1801288.	1.9	59
256	Ultralight Cellulose Porous Composites with Manipulated Porous Structure and Carbon Nanotube Distribution for Promising Electromagnetic Interference Shielding. ACS Applied Materials & Interfaces, 2018, 10, 40156-40167.	4.0	108
257	Reconstruction of Inherent Graphene Oxide Liquid Crystals for Large-Scale Fabrication of Structure-Intact Graphene Aerogel Bulk toward Practical Applications. ACS Nano, 2018, 12, 11407-11416.	7.3	120
258	3D Printing of Strong Lightweight Cellular Structures Using Polysaccharide-Based Composite Foams. ACS Sustainable Chemistry and Engineering, 2018, 6, 17160-17167.	3.2	28

#	Article	IF	CITATIONS
260	Dimensionally stable cellulosic aerogels functionalized by titania. Pure and Applied Chemistry, 2018, 90, 1755-1771.	0.9	3
261	Scalable Fabrication of Thermally Insulating Mechanically Resilient Hierarchically Porous Polymer Foams. ACS Applied Materials & Interfaces, 2018, 10, 38410-38417.	4.0	74
262	Super-compressible, fatigue resistant and anisotropic carbon aerogels for piezoresistive sensors. Cellulose, 2018, 25, 7329-7340.	2.4	46
263	The Role of Graphene in Flame Retardancy of Polymeric Materials: Recent Advances. Current Graphene Science, 2018, 2, 27-34.	0.5	6
264	A Hierarchically Nanostructured Cellulose Fiberâ€Based Triboelectric Nanogenerator for Selfâ€Powered Healthcare Products. Advanced Functional Materials, 2018, 28, 1805540.	7.8	180
265	Emerging Applications of Cellulose Nanofibers. , 2018, , 1-26.		12
266	Wood-inspired engineering materials. Science China Materials, 2018, 61, 1625-1626.	3.5	7
267	Synthesis of Carbon–Nitrogen–Phosphorous Materials with an Unprecedented High Amount of Phosphorous toward an Efficient Fireâ€Retardant Material. Angewandte Chemie - International Edition, 2018, 57, 9764-9769.	7.2	28
268	Synthesis of Carbon–Nitrogen–Phosphorous Materials with an Unprecedented High Amount of Phosphorous toward an Efficient Fireâ€Retardant Material. Angewandte Chemie, 2018, 130, 9912-9917.	1.6	1
269	High-performance 3D directional porous LiFePO4/C materials synthesized by freeze casting. Applied Surface Science, 2018, 453, 493-501.	3.1	40
270	High Aspect Ratio Carboxylated Cellulose Nanofibers Cross-linked to Robust Aerogels for Superabsorption–Flocculants: Paving Way from Nanoscale to Macroscale. ACS Applied Materials & Interfaces, 2018, 10, 20755-20766.	4.0	131
271	Ice-templating beet-root pectin foams: Controlling texture, mechanics and capillary properties. Chemical Engineering Journal, 2018, 350, 20-28.	6.6	20
272	Freeze-Casting Produces a Graphene Oxide Aerogel with a Radial and Centrosymmetric Structure. ACS Nano, 2018, 12, 5816-5825.	7.3	273
273	Mechanical abnormality in graphene-based lamellar superstructures. Carbon, 2018, 137, 196-206.	5.4	14
274	Nanocellulose Fragmentation Mechanisms and Inversion of Chirality from the Single Particle to the Cholesteric Phase. ACS Nano, 2018, 12, 5141-5148.	7.3	68
275	Superhydrophobic fluorine-rich conjugated microporous polymers monolithic nanofoam with excellent heat insulation property. Chemical Engineering Journal, 2018, 351, 856-866.	6.6	67
276	Biopolymer nanofibrils: Structure, modeling, preparation, and applications. Progress in Polymer Science, 2018, 85, 1-56.	11.8	312
277	Nanocellulose reinforced P(AAm-co-AAc) hydrogels with improved mechanical properties and biocompatibility. Composites Part A: Applied Science and Manufacturing, 2018, 112, 395-404.	3.8	45

#	ARTICLE Agrogely as promising materials for environmental remediation $\hat{\epsilon}$ A broad insight into the	IF	CITATIONS
278	environmental pollutants removal through adsorption and (photo)catalytic processes. , 2018, , 389-436.		8
279	Novel, Cellulose-Based, Lightweight, Wet-Resilient Materials with Tunable Porosity, Density, and Strength. ACS Sustainable Chemistry and Engineering, 2018, 6, 9951-9957.	3.2	18
280	"Zylon―Aerogels. Macromolecular Materials and Engineering, 2018, 303, 1800229.	1.7	11
281	Eco-friendly Flame-Retardant Cellulose Nanofibril Aerogels by Incorporating Sodium Bicarbonate. ACS Applied Materials & Interfaces, 2018, 10, 27407-27415.	4.0	91
282	Nanocellulose for Industrial Use. , 2018, , 74-126.		105
283	Fabrication of Thermoresponsive Polymer-Functionalized Cellulose Sponges: Flexible Porous Materials for Stimuli-Responsive Catalytic Systems. ACS Applied Materials & Interfaces, 2018, 10, 27831-27839.	4.0	32
284	Iceâ€Templated Poly(vinyl alcohol): Enhanced Strength and Low Thermal Conductivity. Macromolecular Materials and Engineering, 2018, 303, 1800198.	1.7	6
285	Flexible Electronics Based on Micro/Nanostructured Paper. Advanced Materials, 2018, 30, e1801588.	11.1	249
286	Recyclable, Fire-Resistant, Superhydrophobic, and Magnetic Paper Based on Ultralong Hydroxyapatite Nanowires for Continuous Oil/Water Separation and Oil Collection. ACS Sustainable Chemistry and Engineering, 2018, 6, 10140-10150.	3.2	68
287	Solar Absorber Gel: Localized Macroâ€Nano Heat Channeling for Efficient Plasmonic Au Nanoflowers Photothermic Vaporization and Triboelectric Generation. Advanced Energy Materials, 2018, 8, 1800711.	10.2	256
288	Analysis of the Porous Architecture and Properties of Anisotropic Nanocellulose Foams: A Novel Approach to Assess the Quality of Cellulose Nanofibrils (CNFs). ACS Sustainable Chemistry and Engineering, 2018, 6, 11959-11967.	3.2	40
289	Electroless Ag-plated sponges by tunable deposition onto cellulose-derived templates for ultra-high electromagnetic interference shielding. Materials and Design, 2018, 159, 47-56.	3.3	37
290	Eco-friendly flame retardant nanocrystalline cellulose prepared via silylation. Nanotechnology, 2018, 29, 455702.	1.3	15
291	Molecular dynamics study on the weakening effect of moisture content on graphene oxide reinforced cement composite. Chemical Physics Letters, 2018, 708, 177-182.	1.2	41
292	Low density and high strength nanofibrillated cellulose aerogel for thermal insulation application. Materials and Design, 2018, 158, 224-236.	3.3	167
293	Green Synthesis of Ant Nest-Inspired Superelastic Silicone Aerogels. ACS Sustainable Chemistry and Engineering, 2018, 6, 11222-11227.	3.2	22
294	Bioinspired polymeric woods. Science Advances, 2018, 4, eaat7223.	4.7	219
295	Multifunctionality and Mechanical Actuation of 2D Materials for Skinâ€Mimicking Capabilities. Advanced Materials, 2018, 30, e1802418.	11.1	72

#	Article	IF	CITATIONS
296	High-strength and morphology-controlled aerogel based on carboxymethyl cellulose and graphene oxide. Carbohydrate Polymers, 2018, 197, 277-283.	5.1	86
297	Mechanically robust nacre-mimetic framework constructed polypyrrole-doped graphene/nanofiber nanocomposites with improved thermal electrical properties. Materials and Design, 2018, 155, 278-287.	3.3	15
298	Effects of chitin nanofibers on the microstructure and properties of cellulose nanofibers/chitin nanofibers composite aerogels. Cellulose, 2018, 25, 4591-4602.	2.4	22
300	Novel multifunctional polymethylsilsesquioxane–silk fibroin aerogel hybrids for environmental and thermal insulation applications. Journal of Materials Chemistry A, 2018, 6, 12598-12612.	5.2	130
301	Noble-gas-infused neoprene closed-cell foams achieving ultra-low thermal conductivity fabrics. RSC Advances, 2018, 8, 21389-21398.	1.7	12
302	Twoâ€Phase Emulgels for Direct Ink Writing of Skinâ€Bearing Architectures. Advanced Functional Materials, 2019, 29, 1902990.	7.8	60
303	Cellulose Nanostructure-Based Biodegradable Nanocomposite Foams: A Brief Overview on the Recent Advancements and Perspectives. Polymers, 2019, 11, 1270.	2.0	30
304	Multicomponent bionanocomposites based on clay nanoarchitectures for electrochemical devices. Beilstein Journal of Nanotechnology, 2019, 10, 1303-1315.	1.5	19
305	A Fiber-Aligned Thermal-Managed Wood-Based Superhydrophobic Aerogel for Efficient Oil Recovery. ACS Sustainable Chemistry and Engineering, 2019, 7, 16428-16439.	3.2	65
306	Ultra-Porous Nanocellulose Foams: A Facile and Scalable Fabrication Approach. Nanomaterials, 2019, 9, 1142.	1.9	50
307	Hydrophobic nanostructured wood membrane for thermally efficient distillation. Science Advances, 2019, 5, eaaw3203.	4.7	81
308	Advanced Compressible and Elastic 3D Monoliths beyond Hydrogels. Advanced Functional Materials, 2019, 29, 1904472.	7.8	69
309	A Review on Graphene Polymer Nanocomposites in Harsh Operating Conditions. Industrial & Engineering Chemistry Research, 2019, 58, 17106-17129.	1.8	31
310	Soft lamellar solid foams from ice-templating of self-assembled lipid hydrogels: organization drives the mechanical properties. Materials Horizons, 2019, 6, 2073-2086.	6.4	20
311	From Monomers to a Lasagna-like Aerogel Monolith: An Assembling Strategy for Aramid Nanofibers. ACS Nano, 2019, 13, 7811-7824.	7.3	101
312	Biopolymers and Nanocomposites in Civil Engineering Applications. Materials Horizons, 2019, , 343-378.	0.3	2
313	Processing nanocellulose to bulk materials: a review. Cellulose, 2019, 26, 7585-7617.	2.4	98
314	Dual-enhancement effect of electrostatic adsorption and chemical crosslinking for nanocellulose-based aerogels. Industrial Crops and Products, 2019, 139, 111580.	2.5	38

#	Article	IF	CITATIONS
315	Bioinspired Unidirectional Silk Fibroin–Silver Compound Nanowire Composite Scaffold via Interfaceâ€Mediated In Situ Synthesis. Angewandte Chemie - International Edition, 2019, 58, 14152-14156.	7.2	19
316	Bioinspired Unidirectional Silk Fibroin–Silver Compound Nanowire Composite Scaffold via Interfaceâ€Mediated In Situ Synthesis. Angewandte Chemie, 2019, 131, 14290-14294.	1.6	7
317	3D Vertically Aligned BNNS Network with Long-Range Continuous Channels for Achieving a Highly Thermally Conductive Composite. ACS Applied Materials & Interfaces, 2019, 11, 28943-28952.	4.0	72
318	Enhancing solar steam generation through manipulating the heterostructure of PVDF membranes with reduced reflection and conduction. Journal of Materials Chemistry A, 2019, 7, 17505-17515.	5.2	46
319	3D Printing of Ultralight Biomimetic Hierarchical Graphene Materials with Exceptional Stiffness and Resilience. Advanced Materials, 2019, 31, e1902930.	11.1	130
320	Green Biopolymers and their Nanocomposites. Materials Horizons, 2019, , .	0.3	11
321	Emerging Applications of Cellulose Nanofibers. , 2019, , 1131-1156.		13
322	Short carbon fibre-reinforced epoxy foams with isotropic cellular structure and anisotropic mechanical response produced from liquid foam templates. Composites Science and Technology, 2019, 184, 107871.	3.8	19
323	Vertically Aligned Janus MXene-Based Aerogels for Solar Desalination with High Efficiency and Salt Resistance. ACS Nano, 2019, 13, 13196-13207.	7.3	280
324	Architected Polymer Foams via Direct Bubble Writing. Advanced Materials, 2019, 31, e1904668.	11.1	82
325	Bio-based Micro-/Meso-/Macroporous Hybrid Foams with Ultrahigh Zeolite Loadings for Selective Capture of Carbon Dioxide. ACS Applied Materials & Interfaces, 2019, 11, 40424-40431.	4.0	41
326	Smart utilization of solar energy with Optic-Variable Wall (OVW) for thermal comfort. Energy and Buildings, 2019, 202, 109376.	3.1	5
327	Advanced functional materials for soft robotics: tuning physicochemical properties beyond rigidity control. Multifunctional Materials, 2019, 2, 042001.	2.4	13
328	Plant-Derived Nanocellulose as Structural and Mechanical Reinforcement of Freeze-Cast Chitosan Scaffolds for Biomedical Applications. Biomacromolecules, 2019, 20, 3733-3745.	2.6	42
329	Nacre-inspired hemicelluloses paper with fire retardant and gas barrier properties by self-assembly with bentonite nanosheets. Carbohydrate Polymers, 2019, 225, 115219.	5.1	33
330	Flexible and Tough Cellulose Nanocrystal/Polycaprolactone Hybrid Aerogel Based on the Strategy of Macromolecule Cross-Linking via Click Chemistry. ACS Sustainable Chemistry and Engineering, 2019, 7, 15617-15627.	3.2	40
331	Molecular dynamics study on perfect and defective graphene/calcium-silicate-hydrate composites under tensile loading. Molecular Simulation, 2019, 45, 1481-1487.	0.9	7
332	2D nitrogen-doped porous carbon nanosheets derived from cellulose nanofiber/silk fibroin nanohybrid cellular monoliths with promising capacitive performance. Cellulose, 2019, 26, 9241-9254.	2.4	5

#	Article	IF	CITATIONS
333	Flame-retardant polyvinyl alcohol/cellulose nanofibers hybrid carbon aerogel by freeze drying with ultra-low phosphorus. Applied Surface Science, 2019, 497, 143775.	3.1	73
334	Thermal insulation management of biopolymer hairs through water-stimulated shape memory effect of crispness. Materials Today: Proceedings, 2019, 16, 1380-1386.	0.9	2
334	Thermal insulation management of biopolymer hairs through water-stimulated shape memory effect of crispness. Materials Today: Proceedings, 2019, 16, 1380-1386.	0.9	2

Supercapacitors Fabricated via Laser-Induced Carbonization of Biomass-Derived Poly(furfuryl) Tj ETQq0 0 0 rgBT /Overlock 10.Tf 50 662

336	Approaches for a low-carbon production of building materials: AÂreview. Journal of Cleaner Production, 2019, 241, 118380.	4.6	94
337	Fundamental researches on graphene/rubber nanocomposites. Advanced Industrial and Engineering Polymer Research, 2019, 2, 32-41.	2.7	31
338	Ice-Templated W-Cu Composites with High Anisotropy. Scientific Reports, 2019, 9, 476.	1.6	18
339	Ammonium polyphosphate modified with β-cyclodextrin crosslinking rigid polyurethane foam: Enhancing thermal stability and suppressing flame spread. Polymer Degradation and Stability, 2019, 161, 166-174.	2.7	63
340	Lightweight, strong, and super-thermal insulating polyimide composite aerogels under high temperature. Composites Science and Technology, 2019, 173, 47-52.	3.8	135
341	Flame-retarding nanoparticles as the compatibilizers for immiscible polymer blends: simultaneously enhanced mechanical performance and flame retardancy. Journal of Materials Chemistry A, 2019, 7, 4903-4912.	5.2	61
342	Conductive Polymer Composites from Renewable Resources: An Overview of Preparation, Properties, and Applications. Polymers, 2019, 11, 187.	2.0	97
343	Strong, compressible, bendable and stretchable silicone sponges by solvent-controlled hydrolysis and polycondensation of silanes. Journal of Colloid and Interface Science, 2019, 540, 554-562.	5.0	37
344	Piezothermic Transduction of Functional Composite Materials. ACS Applied Materials & Interfaces, 2019, 11, 4588-4596.	4.0	13
345	Sheet-like and tubular aggregates of protein nanofibril–phosphate hybrids. Chemical Communications, 2019, 55, 393-396.	2.2	6
346	Preparation of nanocellulose and its potential in reinforced composites: A review. Journal of Biomaterials Science, Polymer Edition, 2019, 30, 919-946.	1.9	89
347	Highly thermal conductive polymer composites via constructing micro-phragmites communis structured carbon fibers. Chemical Engineering Journal, 2019, 375, 121921.	6.6	115
348	Structural packaging foams prepared by uni-directional freezing of paper sludge cellulose nanofibres and poly (vinyl alcohol). Materials Letters, 2019, 253, 242-245.	1.3	5
349	Thermomechanical behavior and thermal stability of polyurethane rigid nanocomposite foams containing binary nanoparticle mixtures. Polymer Testing, 2019, 77, 105930.	2.3	27
350	Anisotropic nanocellulose aerogels with ordered structures fabricated by directional freeze-drying for fast liquid transport. Cellulose, 2019, 26, 6653-6667.	2.4	123

#	Article	IF	CITATIONS
351	Post-modification of Cellulose Nanocrystal Aerogels with Thiol–Ene Click Chemistry. Biomacromolecules, 2019, 20, 2779-2785.	2.6	28
352	Efficient Water Transport and Solar Steam Generation <i>via</i> Radially, Hierarchically Structured Aerogels. ACS Nano, 2019, 13, 7930-7938.	7.3	230
353	Ultrahigh-Temperature Insulating and Fire-Resistant Aerogels from Cationic Amylopectin and Clay via a Facile Route. ACS Sustainable Chemistry and Engineering, 2019, 7, 11582-11592.	3.2	62
354	Highly efficient flame-retardant and low-smoke-toxicity poly(vinyl alcohol)/alginate/ montmorillonite composite aerogels by two-step crosslinking strategy. Carbohydrate Polymers, 2019, 221, 221-230.	5.1	64
355	Biomimetic Carbon Tube Aerogel Enables Super-Elasticity and Thermal Insulation. CheM, 2019, 5, 1871-1882.	5.8	136
356	Novel Approach toward the Synthesis of a Phosphorus-Functionalized Polymer-Based Graphene Composite as an Efficient Flame Retardant. ACS Sustainable Chemistry and Engineering, 2019, 7, 11745-11753.	3.2	78
357	Direct Cryo Writing of Aerogels Via 3D Printing of Aligned Cellulose Nanocrystals Inspired by the Plant Cell Wall. Colloids and Interfaces, 2019, 3, 46.	0.9	43
358	Rheological premonitory of nanoclay morphology on the mechanical characteristics of composite aerogels. Composites Part B: Engineering, 2019, 173, 106889.	5.9	11
359	Flame retardant and thermally insulating clay based aerogel facilitated by cellulose nanofibers. Journal of Supercritical Fluids, 2019, 152, 104537.	1.6	54
360	Lightweight, Elastomeric, and Flameâ€Retardant Foams from Expanded Chlorinated Polymers. Macromolecular Materials and Engineering, 2019, 304, 1900145.	1.7	9
361	Silver Phosphate/Graphene Oxide Aerogel Microspheres with Radially Oriented Microchannels for Highly Efficient and Continuous Removal of Pollutants from Wastewaters. ACS Sustainable Chemistry and Engineering, 2019, 7, 11228-11240.	3.2	23
362	Cyclotriphosphazene-bridged periodic mesoporous organosilica-integrated cellulose nanofiber anisotropic foam with highly flame-retardant and thermally insulating properties. Chemical Engineering Journal, 2019, 375, 121933.	6.6	93
363	On controlling aerogel microstructure by freeze casting. Composites Part B: Engineering, 2019, 173, 107036.	5.9	56
364	Fibrous Composites with Double-Continuous Conductive Network for Strong Low-Frequency Microwave Absorption. Industrial & Engineering Chemistry Research, 2019, 58, 11927-11938.	1.8	39
365	Near-Zero Thermal Expansion in Freeze-Cast Composite Materials. Ceramics, 2019, 2, 112-125.	1.0	7
366	Interfacial Rheology of Charged Anisotropic Cellulose Nanocrystals at the Air–Water Interface. Langmuir, 2019, 35, 7937-7943.	1.6	25
367	Facile preparation of attapulgiteâ€based aerogels with excellent flame retardancy and better thermal insulation properties. Journal of Applied Polymer Science, 2019, 136, 47849.	1.3	24
368	Self-floating aerogel composed of carbon nanotubes and ultralong hydroxyapatite nanowires for highly efficient solar energy-assisted water purification. Carbon, 2019, 150, 233-243.	5.4	85

#	ARTICLE	IF	CITATIONS
369	Exploitation of a promising flameâ€retardant engineering plastics by molten composited polyketone and diethyl zinc phosphinate. Polymers for Advanced Technologies, 2019, 30, 1978-1988.	1.6	4
370	Boron/nitrogen flame retardant additives crossâ€ŀinked cellulose nanofibril/montmorillonite aerogels toward superâ€ŀow flammability and improved mechanical properties. Polymers for Advanced Technologies, 2019, 30, 1807-1817.	1.6	27
371	Thermal conductivity and fire-retardant response in graphite foam made from coal tar pitch derived semi coke. Composites Part B: Engineering, 2019, 172, 121-130.	5.9	24
372	Preparation and characterization of ultralight glass fiber wool/phenolic resin aerogels with a spring-like structure. Composites Science and Technology, 2019, 179, 125-133.	3.8	25
373	Superelastic, Anticorrosive, and Flame-Resistant Nitrogen-Containing Resorcinol Formaldehyde/Graphene Oxide Composite Aerogels. ACS Sustainable Chemistry and Engineering, 2019, 7, 10873-10879.	3.2	20
374	Preparation and characterization of dithiol-modified graphene oxide nanosheets reinforced alginate nanocomposite as bone scaffold. SN Applied Sciences, 2019, 1, 1.	1.5	22
375	Large-area superelastic graphene aerogels based on a room-temperature reduction self-assembly strategy for sensing and particulate matter (PM _{2.5} and PM ₁₀) capture. Nanoscale, 2019, 11, 10372-10380.	2.8	22
376	Thermal insulation design bioinspired by microstructure study of penguin feather and polar bear hair. Acta Biomaterialia, 2019, 91, 270-283.	4.1	44
377	Strong ultralight foams based on nanocrystalline cellulose for high-performance insulation. Carbohydrate Polymers, 2019, 218, 103-111.	5.1	25
378	Boron nitride nanosheets endow the traditional dielectric polymer composites with advanced thermal management capability. Composites Science and Technology, 2019, 177, 88-95.	3.8	88
379	Anisotropic Cellulose Nanofibers/Polyvinyl Alcohol/Graphene Aerogels Fabricated by Directional Freeze-drying as Effective Oil Adsorbents. Polymers, 2019, 11, 712.	2.0	89
380	Novel high-capacity and reusable carbonaceous sponges for efficient absorption and recovery of oil from water. Applied Surface Science, 2019, 487, 398-408.	3.1	18
381	Lightweight, Flexible, Thermally-Stable, and Thermally-Insulating Aerogels Derived from Cotton Nanofibrillated Cellulose. ACS Sustainable Chemistry and Engineering, 2019, 7, 9202-9210.	3.2	52
382	Unidirectional Swelling of Dynamic Cellulose Nanofibril Networks: A Platform for Tunable Hydrogels and Aerogels with 3D Shapeability. Biomacromolecules, 2019, 20, 2406-2412.	2.6	36
383	Low-energy preparation of cellulose nanofibers from sugarcane bagasse by modulating the surface charge density. Carbohydrate Polymers, 2019, 218, 145-153.	5.1	47
384	Nanofibrous Kevlar Aerogel Threads for Thermal Insulation in Harsh Environments. ACS Nano, 2019, 13, 5703-5711.	7.3	271
385	Superplastic Airâ€Dryable Graphene Hydrogels for Wetâ€Press Assembly of Ultrastrong Superelastic Aerogels with Infinite Macroscale. Advanced Functional Materials, 2019, 29, 1901917.	7.8	42
386	Wood-like polymeric materials by ice templating. National Science Review, 2019, 6, 184-185.	4.6	9

#	Article	IF	CITATIONS
387	Traditional, state-of-the-art and renewable thermal building insulation materials: An overview. Construction and Building Materials, 2019, 214, 709-735.	3.2	318
388	Experimental measurements of the high-temperature oxidation of carbon fibers. International Journal of Heat and Mass Transfer, 2019, 136, 972-986.	2.5	21
389	Silane grafted graphene oxide papers for improved flame resistance and fast fire alarm response. Composites Part B: Engineering, 2019, 168, 413-420.	5.9	135
390	Rechargeable solid-state lithium metal batteries with vertically aligned ceramic nanoparticle/polymer composite electrolyte. Nano Energy, 2019, 60, 205-212.	8.2	259
391	Intrinsic fluorescence from cellulose nanofibers and nanoparticles at cell friendly wavelengths. APL Photonics, 2019, 4, 020803.	3.0	15
392	Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites. Nano Materials Science, 2019, 1, 31-47.	3.9	941
393	Green one-step synthesis of ZnO/cellulose nanocrystal hybrids with modulated morphologies and superfast absorption of cationic dyes. International Journal of Biological Macromolecules, 2019, 132, 51-62.	3.6	78
394	Reinforcing effect of poly(furfuryl alcohol) in cellulose-based porous materials. Cellulose, 2019, 26, 4431-4444.	2.4	12
395	Anisotropy in nanocellular polymers promoted by the addition of needleâ€like sepiolites. Polymer International, 2019, 68, 1204-1214.	1.6	10
396	Pressureâ€Responsive Hierarchical Chiral Photonic Aerogels. Advanced Materials, 2019, 31, e1808186.	11.1	58
397	Bio-inspired lightweight pulp foams with improved mechanical property and flame retardancy via borate cross-linking. Chemical Engineering Journal, 2019, 371, 34-42.	6.6	51
398	Cyclodextrins and Cyclodextrin Derivatives as Green Char Promoters in Flame Retardants Formulations for Polymeric Materials. A Review. Polymers, 2019, 11, 664.	2.0	28
399	Resilient Si ₃ N ₄ Nanobelt Aerogel as Fire-Resistant and Electromagnetic Wave-Transparent Thermal Insulator. ACS Applied Materials & Interfaces, 2019, 11, 15795-15803.	4.0	138
401	Polymerâ€Based Nano omposites for Thermal Insulation. Advanced Engineering Materials, 2019, 21, 1801162.	1.6	45
402	Ultrasensitive and Highly Compressible Piezoresistive Sensor Based on Polyurethane Sponge Coated with a Cracked Cellulose Nanofibril/Silver Nanowire Layer. ACS Applied Materials & Interfaces, 2019, 11, 10922-10932.	4.0	331
403	Biomimetic composite scaffold from an <i>in situ</i> hydroxyapatite coating on cellulose nanocrystals. RSC Advances, 2019, 9, 5786-5793.	1.7	36
404	Assembly, Gelation, and Helicoidal Consolidation of Nanocellulose Dispersions. Langmuir, 2019, 35, 3600-3606.	1.6	25
405	CO ₂ -Responsive Cellulose Nanofibers Aerogels for Switchable Oil–Water Separation. ACS Applied Materials & Interfaces, 2019, 11, 9367-9373.	4.0	123

#	Article	lF	CITATIONS
406	Pectin-assisted dispersion of exfoliated boron nitride nanosheets for assembled bio-composite aerogels. Composites Part A: Applied Science and Manufacturing, 2019, 119, 196-205.	3.8	29
407	Construction of functional cellulose aerogels via atmospheric drying chemically cross-linked and solvent exchanged cellulose nanofibrils. Chemical Engineering Journal, 2019, 366, 531-538.	6.6	82
408	Fire-retardant, self-extinguishing triboelectric nanogenerators. Nano Energy, 2019, 59, 336-345.	8.2	61
409	A Directional Strain Sensor Based on Anisotropic Microhoneycomb Cellulose Nanofiber arbon Nanotube Hybrid Aerogels Prepared by Unidirectional Freeze Drying. Small, 2019, 15, e1805363.	5.2	73
410	Controllable Crimpness of Animal Hairs via Water-Stimulated Shape Fixation for Regulation of Thermal Insulation. Polymers, 2019, 11, 172.	2.0	4
411	Current status, opportunities, and challenges in fuel cell catalytic application of aerogels. International Journal of Energy Research, 2019, 43, 2447-2467.	2.2	28
412	Investigation on mechanical properties of polyurethane hybrid nanocomposite foams reinforced with roselle fibers and silica nanoparticles. Nanocomposites, 2019, 5, 1-12.	2.2	31
413	Double-negative-index ceramic aerogels for thermal superinsulation. Science, 2019, 363, 723-727.	6.0	429
414	Insight into the nanostructure of anisotropic cellulose aerogels upon compression. Soft Matter, 2019, 15, 8372-8380.	1.2	12
415	<i>In situ</i> reactive self-assembly of a graphene oxide nano-coating in polymer foam materials with synergistic fire shielding properties. Journal of Materials Chemistry A, 2019, 7, 27032-27040.	5.2	78
416	Continuous, Strong, Porous Silk Firoin-Based Aerogel Fibers toward Textile Thermal Insulation. Polymers, 2019, 11, 1899.	2.0	46
417	Nanoreinforcements of Two-Dimensional Nanomaterials for Flame Retardant Polymeric Composites: An Overview. Advances in Polymer Technology, 2019, 2019, 1-25.	0.8	25
418	Lightweight, mechanically flexible and thermally superinsulating rGO/polyimide nanocomposite foam with an anisotropic microstructure. Nanoscale Advances, 2019, 1, 4895-4903.	2.2	27
419	The assembly nanohybrid of graphene with lamellar zirconium phenylphosphonate for improving flame retardancy and mechanical properties of polypropylene. Polymer Composites, 2019, 40, E1757-E1765.	2.3	7
420	Structure and Properties of Cork–Silica Xerogel Nanocomposites: Influence of the Cork Content. Langmuir, 2019, 35, 804-814.	1.6	4
421	Ultralight, hydrophobic, anisotropic bamboo-derived cellulose nanofibrils aerogels with excellent shape recovery via freeze-casting. Carbohydrate Polymers, 2019, 208, 232-240.	5.1	70
422	A general aerosol-assisted biosynthesis of functional bulk nanocomposites. National Science Review, 2019, 6, 64-73.	4.6	44
423	Cross-Linked and Shapeable Porous 3D Substrates from Freeze-Linked Cellulose Nanofibrils. Biomacromolecules, 2019, 20, 728-737.	2.6	24

# 424	ARTICLE Nanocomposite polymeric materials with 3D graphene-based architectures: from design strategies to tailored properties and potential applications. Progress in Polymer Science, 2019, 89, 213-249.	IF 11.8	CITATIONS 82
425	Production and printing of graphene oxide foam ink for electrocatalytic applications. Electrochemistry Communications, 2019, 98, 6-9.	2.3	9
426	Exceptional flame-retardant cellulosic foams modified with phosphorus-hybridized graphene nanosheets. Cellulose, 2019, 26, 1247-1260.	2.4	27
427	Modeling the heat transfer by conduction of nanocellular polymers with bimodal cellular structures. Polymer, 2019, 160, 126-137.	1.8	33
428	Lightweight and Efficient Microwave-Absorbing Materials Based on Loofah-Sponge-Derived Hierarchically Porous Carbons. ACS Sustainable Chemistry and Engineering, 2019, 7, 1228-1238.	3.2	111
429	High-Thermal-Transport-Channel Construction within Flexible Composites via the Welding of Boron Nitride Nanosheets. ACS Applied Nano Materials, 2019, 2, 360-368.	2.4	78
430	Sustainable Chitin Nanofibrils Provide Outstanding Flame-Retardant Nanopapers. Biomacromolecules, 2019, 20, 1098-1108.	2.6	35
431	Superior thermal interface materials for thermal management. Composites Communications, 2019, 12, 80-85.	3.3	61
432	Graphene-Modified Electrochemical Sensors. , 2019, , 1-41.		8
433	Emerging Cellulose-Based Nanomaterials and Nanocomposites. , 2019, , 307-351.		16
434	Ultrastrong, flexible and lightweight anisotropic polypropylene foams with superior flame retardancy. Composites Part A: Applied Science and Manufacturing, 2019, 116, 180-186.	3.8	47
435	A green approach to fabricating nacre-inspired nanocoating for super-efficiently fire-safe polymers via one-step self-assembly. Journal of Hazardous Materials, 2019, 365, 125-136.	6.5	45
436	Hollow‣tructured Materials for Thermal Insulation. Advanced Materials, 2019, 31, e1801001.	11.1	197
437	Highly Compressible and Hydrophobic Anisotropic Aerogels for Selective Oil/Organic Solvent Absorption. ACS Sustainable Chemistry and Engineering, 2019, 7, 332-340.	3.2	100
438	Increasing wet adhesion between cellulose surfaces with polyvinylamine. Cellulose, 2019, 26, 341-353.	2.4	13
439	Multi-objective optimization of heat transfer mechanisms of microcellular polymeric foams from thermal-insulation point of view. Thermal Science and Engineering Progress, 2019, 9, 21-29.	1.3	59
440	Enhancement in Interfacial Adhesion of Ti/Polyetheretherketone by Electrophoretic Deposition of Graphene Oxide. Polymer Composites, 2019, 40, E1243-E1251.	2.3	3
441	Covalently functionalized graphene towards molecular-level dispersed waterborne polyurethane nanocomposite with balanced comprehensive performance. Applied Surface Science, 2019, 471, 595-606.	3.1	57

	CITATION I	CEPORT	
#	Article	IF	CITATIONS
442	N-doped graphene /carbon hybrid aerogels for efficient solar steam generation. Carbon, 2019, 142, 13-19.	5.4	146
443	Synthesis of modified graphene oxide and its improvement on flame retardancy of epoxy resin. Journal of Applied Polymer Science, 2020, 137, 47710.	1.3	24
444	High temperature and fire behavior of hydrothermally modified wood impregnated with carbon nanomaterials. Journal of Hazardous Materials, 2020, 384, 121283.	6.5	31
445	Surface functionalization of few-layer black phosphorene and its flame retardancy in epoxy resin. Chemical Engineering Journal, 2020, 382, 122991.	6.6	100
447	Aerogels and their applications. , 2020, , 337-399.		22
448	Bioinspired hierarchical helical nanocomposite macrofibers based on bacterial cellulose nanofibers. National Science Review, 2020, 7, 73-83.	4.6	60
449	Natural nanofiber-based stacked porous nitrogen-doped carbon/NiFe2O4 nanohybrid nanosheets. Cellulose, 2020, 27, 1021-1031.	2.4	14
450	Layer-by-layer modified low density cellulose fiber networks: A sustainable and fireproof alternative to petroleum based foams. Carbohydrate Polymers, 2020, 230, 115616.	5.1	21
451	Waste paper: An underutilized but promising source for nanocellulose mining. Waste Management, 2020, 102, 281-303.	3.7	103
452	Tailoring Aerogels and Related 3D Macroporous Monoliths for Interfacial Solar Vapor Generation. Advanced Functional Materials, 2020, 30, 1907234.	7.8	109
453	Tunable Thermoelastic Anisotropy in Hybrid Bragg Stacks with Extreme Polymer Confinement. Angewandte Chemie - International Edition, 2020, 59, 1286-1294.	7.2	26
454	Advanced Materials for Highâ€Temperature Thermal Transport. Advanced Functional Materials, 2020, 30, 1904815.	7.8	63
455	Ultralow dielectric constant polyarylene ether nitrile foam with excellent mechanical properties. Chemical Engineering Journal, 2020, 384, 123231.	6.6	81
456	Functional biohybrid materials based on halloysite, sepiolite and cellulose nanofibers for health applications. Dalton Transactions, 2020, 49, 3830-3840.	1.6	45
457	Flexible and transparent polymer/cellulose nanocrystal nanocomposites with high thermal conductivity for thermal management application. Journal of Applied Polymer Science, 2020, 137, 48864.	1.3	13
458	Elastic Aerogels of Cellulose Nanofibers@Metal–Organic Frameworks for Thermal Insulation and Fire Retardancy. Nano-Micro Letters, 2020, 12, 9.	14.4	104
459	Stimuli induced cellulose nanomaterials alignment and its emerging applications: A review. Carbohydrate Polymers, 2020, 230, 115609.	5.1	46
460	Bacterial cellulose/graphene oxide aerogels with enhanced dimensional and thermal stability. Carbohydrate Polymers, 2020, 230, 115598.	5.1	50

#	Article	IF	CITATIONS
461	Recent advances in soft functional materials: preparation, functions and applications. Nanoscale, 2020, 12, 1281-1306.	2.8	56
462	Highly hydrophobic F-rGO@wood sponge for efficient clean-up of viscous crude oil. Chemical Engineering Journal, 2020, 386, 123994.	6.6	125
463	Processing and functional assessment of anisotropic cellulose nanofibril/Alolt/sodium silicate: based aerogels as flame retardant thermal insulators. Cellulose, 2020, 27, 1661-1683.	2.4	20
464	Novel Eco-Friendly Flame Retardants Based on Nitrogen–Silicone Schiff Base and Application in Cellulose. ACS Sustainable Chemistry and Engineering, 2020, 8, 290-301.	3.2	83
465	Cellulose Silica Hybrid Nanofiber Aerogels: From Sol–Gel Electrospun Nanofibers to Multifunctional Aerogels. Advanced Functional Materials, 2020, 30, 1907359.	7.8	101
466	Alkali-reinforced hydrothermal synthesis of lathy tobermorite fibers using mixture of coal fly ash and lime. Construction and Building Materials, 2020, 238, 117655.	3.2	41
467	Eco-Friendly Nanocellulose Embedded Polymer Composite Foam for Flame Retardancy Improvement. Macromolecular Research, 2020, 28, 165-171.	1.0	6
468	Tunable Thermoelastic Anisotropy in Hybrid Bragg Stacks with Extreme Polymer Confinement. Angewandte Chemie, 2020, 132, 1302-1310.	1.6	6
469	Thermal-triggered insulating fireproof layers: A novel fire-extinguishing MXene composites coating. Chemical Engineering Journal, 2020, 391, 123621.	6.6	118
470	Mechanically strong and thermally insulating polyimide aerogels by homogeneity reinforcement of electrospun nanofibers. Composites Part B: Engineering, 2020, 182, 107624.	5.9	70
471	Directionally-Grown Carboxymethyl Cellulose/Reduced Graphene Oxide Aerogel with Excellent Structure Stability and Adsorption Capacity. Polymers, 2020, 12, 2219.	2.0	19
472	Polyimide-Based Foams: Fabrication and Multifunctional Applications. ACS Applied Materials & Interfaces, 2020, 12, 48246-48258.	4.0	61
473	Porous Cellulose Nanofibril–Natural Rubber Latex Composite Foams for Oil and Organic Solvent Absorption. ACS Applied Nano Materials, 2020, 3, 10954-10965.	2.4	24
474	Stimuli-responsive micro/nanoporous hairy skin for adaptive thermal insulation and infrared camouflage. Materials Horizons, 2020, 7, 3258-3265.	6.4	53
475	Graphene Aerogels: Structure Control, Thermal Characterization and Thermal Transport. International Journal of Thermophysics, 2020, 41, 1.	1.0	14
476	Nanocellulose assisted preparation of ambient dried, large-scale and mechanically robust carbon nanotube foams for electromagnetic interference shielding. Journal of Materials Chemistry A, 2020, 8, 17969-17979.	5.2	64
477	Thermal insulation and flame retardancy of attapulgite reinforced gelatin-based composite aerogel with enhanced strength properties. Composites Part A: Applied Science and Manufacturing, 2020, 138, 106040.	3.8	47
478	Wood-Inspired Anisotropic Cellulose Nanofibril Composite Sponges for Multifunctional Applications. ACS Applied Materials & Interfaces, 2020, 12, 35513-35522.	4.0	148

#	Article	IF	CITATIONS
479	Ultralight and robust aerogels based on nanochitin towards water-resistant thermal insulators. Carbohydrate Polymers, 2020, 248, 116755.	5.1	28
480	2D graphene oxide liquid crystal for real-world applications: Energy, environment, and antimicrobial. APL Materials, 2020, 8, .	2.2	24
481	Biorefinery Approach for Aerogels. Polymers, 2020, 12, 2779.	2.0	31
482	Nanocellulose in Drug Delivery and Antimicrobially Active Materials. Polymers, 2020, 12, 2825.	2.0	60
483	Anisotropic Structure and Properties of Chitin and Chitosan Nanofibril-Supported Starch Foams. ACS Sustainable Chemistry and Engineering, 2020, 8, 17387-17396.	3.2	14
484	Thermally Insulating Nanocelluloseâ€Based Materials. Advanced Materials, 2021, 33, e2001839.	11.1	153
485	High Speed In-situ X-ray Imaging of 3D Freeze Printing of Aerogels. Additive Manufacturing, 2020, 36, 101513.	1.7	6
486	Fabrication of nano-structured graphene oxide-like few-layer sheets from biocarbon via a green process. Sustainable Materials and Technologies, 2020, 26, e00208.	1.7	3
487	Highly Compressible, Thermally Stable, Light-Weight, and Robust Aramid Nanofibers/Ti ₃ AlC ₂ MXene Composite Aerogel for Sensitive Pressure Sensor. ACS Nano, 2020, 14, 10633-10647.	7.3	261
488	Evaluation of measuring thermal conductivity of isotropic and anisotropic thermally insulating materials by transient plane source (Hot Disk) technique. Journal of Porous Materials, 2020, 27, 1791-1800.	1.3	22
489	Cellulose-based bionanocomposites. , 2020, , 207-231.		0
490	Mixed-dimensional assembled superhydrophilic graphene-based aerogel with enhanced mass/charge transportation for efficient photoredox catalysis. Separation and Purification Technology, 2020, 252, 117454.	3.9	7
491	Highly compressible and anisotropic lamellar ceramic sponges with superior thermal insulation and acoustic absorption performances. Nature Communications, 2020, 11, 3732.	5.8	172
492	An elegant coupling: Freeze-casting and versatile polymer composites. Progress in Polymer Science, 2020, 109, 101289.	11.8	69
493	An ultralow-temperature superelastic polymer aerogel with high strength as a great thermal insulator under extreme conditions. Journal of Materials Chemistry A, 2020, 8, 18698-18706.	5.2	49
494	Ultrastrong, Superelastic, and Lamellar Multiarch Structured ZrO ₂ –Al ₂ O ₃ Nanofibrous Aerogels with High-Temperature Resistance over 1300 °C. ACS Nano, 2020, 14, 15616-15625.	7.3	131
495	Modelling of water absorption kinetics and biocompatibility study of synthesized cellulose nanofiber-assisted starch-graft-poly(acrylic acid) hydrogel nanocomposites. Cellulose, 2020, 27, 9927-9945.	2.4	31
496	Nanocellulose enriches enantiomers in asymmetric aldol reactions. RSC Advances, 2020, 10, 37064-37071.	1.7	4

#	Article	IF	CITATIONS
497	Compostable, fully biobased foams using PLA and micro cellulose for zero energy buildings. Scientific Reports, 2020, 10, 17771.	1.6	24
498	Fabrication of nanocrystalline cellulose from banana peel obtained from unripe plantain bananas. Journal of Physics: Conference Series, 2020, 1644, 012002.	0.3	5
499	An Experimental Investigation on Acoustical Properties of Organic PU Foam Reinforced with Nanoparticles Fabricated by Hydrothermal Reduction Technique to Emerging Applications. Journal of the Institution of Engineers (India): Series D, 2020, 101, 271-284.	0.6	13
500	Hollow Silica Particles: Recent Progress and Future Perspectives. Nanomaterials, 2020, 10, 1599.	1.9	46
501	Biopolymers Derived from Trees as Sustainable Multifunctional Materials: A Review. Advanced Materials, 2021, 33, e2001654.	11.1	54
502	Flexible and Super Thermal Insulating Cellulose Nanofibril/Emulsion Composite Aerogel with Quasi-Closed Pores. ACS Applied Materials & amp; Interfaces, 2020, 12, 45363-45372.	4.0	71
503	2D Hexagonal Boron Nitride-Coated Cotton Fabric with Self-Extinguishing Property. ACS Applied Materials & Interfaces, 2020, 12, 45274-45280.	4.0	46
504	Elytra-Mimetic Aligned Composites with Air–Water-Responsive Self-Healing and Self-Growing Capability. ACS Nano, 2020, 14, 12546-12557.	7.3	15
505	MFC/NFC-Based Foam/Aerogel for Production of Porous Materials: Preparation, Properties and Applications. Materials, 2020, 13, 5568.	1.3	13
506	Liquid Transport in Fibrillar Channels of Ion-Associated Cellular Nanowood Foams. ACS Applied Materials & Interfaces, 2020, 12, 58212-58222.	4.0	9
507	Anisotropic cellular structures from s <scp>emi rystalline</scp> polymer templates. Journal of Polymer Science, 2020, 58, 3311-3321.	2.0	2
508	Integrated multifunctional macrostructures for electromagnetic wave absorption and shielding. Journal of Materials Chemistry A, 2020, 8, 24368-24387.	5.2	145
509	Effect of hairy surface on heat production and thermal insulation on the building. Environmental Progress and Sustainable Energy, 2020, 39, e13435.	1.3	4
510	Polyethylenimine-Impregnated Mesoporous Delignified Wood with High Mechanical Strength for CO ₂ /N ₂ Selective Adsorption. ACS Applied Nano Materials, 2020, 3, 5499-5508.	2.4	16
511	Nanofibrillar networks enable universal assembly of superstructured particle constructs. Science Advances, 2020, 6, eaaz7328.	4.7	44
512	Improved Process to Obtain Nanofibrillated Cellulose (CNF) Reinforced Starch Films with Upgraded Mechanical Properties and Barrier Character. Polymers, 2020, 12, 1071.	2.0	13
513	3D graphene and boron nitride structures for nanocomposites with tailored thermal conductivities: recent advances and perspectives. Functional Composites and Structures, 2020, 2, 022001.	1.6	21
514	Surface coordination of black phosphorene for excellent stability, flame retardancy and thermal conductivity in epoxy resin. Chemical Engineering Journal, 2020, 397, 125416.	6.6	66

#	Article	IF	CITATIONS
515	Multifaceted applications of cellulosic porous materials in environment, energy, and health. Progress in Polymer Science, 2020, 106, 101253.	11.8	63
516	Top-Down Approach Making Anisotropic Cellulose Aerogels as Universal Substrates for Multifunctionalization. ACS Nano, 2020, 14, 7111-7120.	7.3	147
517	Striking effect of nanosized carbon black modified by grafting sodium sulfonate on improving the flame retardancy of polycarbonate. Composites Communications, 2020, 20, 100359.	3.3	17
518	A salt-rejecting anisotropic structure for efficient solar desalination <i>via</i> heat–mass flux decoupling. Journal of Materials Chemistry A, 2020, 8, 12089-12096.	5.2	27
519	A solar and thermal multi-sensing microfiber supercapacitor with intelligent self-conditioned capacitance and body temperature monitoring. Journal of Materials Chemistry A, 2020, 8, 11695-11711.	5.2	23
520	Flame-Retardant and Sustainable Silk Ionotronic Skin for Fire Alarm Systems. , 2020, 2, 712-720.		61
521	Facile Fabrication of Robust and Stretchable Cellulose Nanofibers/Polyurethane Hybrid Aerogels. ACS Sustainable Chemistry and Engineering, 2020, 8, 8977-8985.	3.2	39
522	Plant Nanomaterials and Inspiration from Nature: Water Interactions and Hierarchically Structured Hydrogels. Advanced Materials, 2021, 33, e2001085.	11.1	117
523	Flame-retardant and Self-healing Biomass Aerogels Based on Electrostatic Assembly. Chinese Journal of Polymer Science (English Edition), 2020, 38, 1294-1304.	2.0	19
524	Photonic Thin Films Assembled from Amphiphilic Cellulose Nanofibrils Displaying Iridescent Full-Colors. ACS Applied Bio Materials, 2020, 3, 4522-4530.	2.3	2
525	Green aerogels from rice straw for thermal, acoustic insulation and oil spill cleaning applications. Materials Chemistry and Physics, 2020, 253, 123363.	2.0	75
526	Electromagnetic Interference Shielding Performance of Anisotropic Polyimide/Graphene Composite Aerogels. ACS Applied Materials & Interfaces, 2020, 12, 30990-31001.	4.0	208
527	A "Trojan Horse―Camouflage Strategy for Highâ€Performance Cellulose Paper and Separators. Advanced Functional Materials, 2020, 30, 2002169.	7.8	42
528	A carbon nanotube approach for efficient thermally insulating material with high mechanical stability and fire-retardancy. RSC Advances, 2020, 10, 21772-21780.	1.7	4
529	Plant cell wall inspired xyloglucan/cellulose nanocrystals aerogels produced by freeze-casting. Carbohydrate Polymers, 2020, 247, 116642.	5.1	38
530	Why Celluloseâ€Based Electrochemical Energy Storage Devices?. Advanced Materials, 2021, 33, e2000892.	11.1	125
531	Three-Dimensional Graphene Hybrid SiO2 Hierarchical Dual-Network Aerogel with Low Thermal Conductivity and High Elasticity. Coatings, 2020, 10, 455.	1.2	9
532	Hybrid Materials from Ultrahighâ€Inorganicâ€Content Mineral Plastic Hydrogels: Arbitrarily Shapeable, Strong, and Tough. Advanced Functional Materials, 2020, 30, 1910425.	7.8	38

#	Article	IF	CITATIONS
533	Freeze Casting: From Lowâ€Dimensional Building Blocks to Aligned Porous Structures—A Review of Novel Materials, Methods, and Applications. Advanced Materials, 2020, 32, e1907176.	11.1	404
534	Interfacial bonding between graphene oxide and calcium silicate hydrate gel of ultra-high performance concrete. Materials and Structures/Materiaux Et Constructions, 2020, 53, 1.	1.3	32
535	<scp>Highâ€&trength</scp> and Tough Crystalline <scp>Polysaccharideâ€&ased</scp> Materials ^{â€} . Chinese Journal of Chemistry, 2020, 38, 761-771.	2.6	12
536	Dual-porous cellulose nanofibril aerogels <i>via</i> modular drying and cross-linking. Nanoscale, 2020, 12, 7383-7394.	2.8	37
537	Multifunctional hybrid structures made of open-cell aluminum foam impregnated with cellulose/graphene nanocomposites. Carbohydrate Polymers, 2020, 238, 116197.	5.1	26
538	Effect of Porosity Gradient on Mechanical Properties of Cellular Nano-Composites. Polymers, 2020, 12, 681.	2.0	1
539	Plant and bacterial nanocellulose: production, properties and applications in medicine, food, cosmetics, electronics and engineering.ÂA review. Environmental Chemistry Letters, 2020, 18, 851-869.	8.3	195
540	Flame retardant and mechanical properties of expandable graphite/polyurethane foam composites containing iron phosphonate dopamineâ€coated cellulose. Polymer Composites, 2020, 41, 2816-2828.	2.3	23
541	Construction and characterization of versatile flexible composite nanofibrous aerogels based on thermoplastic polymeric nanofibers. Journal of Materials Science, 2020, 55, 8155-8169.	1.7	7
542	Nanoplating of a SnO ₂ thin-film on MXene-based sponge for stable and efficient solar energy conversion. Journal of Materials Chemistry A, 2020, 8, 8065-8074.	5.2	19
543	Robust Silk Fibroin/Graphene Oxide Aerogel Fiber for Radiative Heating Textiles. ACS Applied Materials & Interfaces, 2020, 12, 15726-15736.	4.0	94
544	Recent advances in hybrid organic-inorganic materials with spatial architecture for state-of-the-art applications. Progress in Materials Science, 2020, 112, 100663.	16.0	196
545	Bottom-up assembly of nanocellulose structures. Carbohydrate Polymers, 2020, 247, 116664.	5.1	46
546	Nanocelluloseâ€MXene Biomimetic Aerogels with Orientationâ€Tunable Electromagnetic Interference Shielding Performance. Advanced Science, 2020, 7, 2000979.	5.6	303
547	Accelerating the formation of the conjugated ladder structure of Poly(acrylonitrile-co-vinyl acetate) by cross-linked poplar lignin doped with boron phosphate. Materials Research Express, 2020, 7, 055309.	0.8	7
548	Bioinspired Multifunctional Cellular Plastics with a Negative Poisson's Ratio for High Energy Dissipation. Advanced Materials, 2020, 32, e2001222.	11.1	64
549	Synthesis of CO ₂ -Derived, Siloxane-Functionalized Poly(ether carbonate)s and Waterborne Polyurethanes. Industrial & Engineering Chemistry Research, 2020, 59, 3044-3051.	1.8	12
550	Anisotropic and hierarchical SiC@SiO ₂ nanowire aerogel with exceptional stiffness and stability for thermal superinsulation. Science Advances, 2020, 6, eaay6689.	4.7	164

#	Article	IF	CITATIONS
551	Fire retardancy and thermal behaviors of Cellulose nanofiber/zinc borate aerogel. Cellulose, 2020, 27, 7463-7474.	2.4	23
552	Aerogel from Sustainably Grown Bacterial Cellulose Pellicles as a Thermally Insulative Film for Building Envelopes. ACS Applied Materials & Interfaces, 2020, 12, 34115-34121.	4.0	29
553	Preparation of ultra-lightweight and surface-tailored cellulose nanofibril composite cryogels derived from Date palm waste as powerful and low-cost heavy metals adsorbent to treat aqueous medium. Industrial Crops and Products, 2020, 154, 112696.	2.5	19
554	Dual‶unable Structural Colors from Liquidâ€Infused Aerogels. Advanced Optical Materials, 2020, 8, 1901825.	3.6	4
555	A Facile Synthesis of Monodispersed Na ₃ V ₂ (PO ₄) ₃ Nanospheres Anchored on Cellular Graphene Oxide as a Self-supporting Cathode for High-Rate Sodium Storage. ACS Applied Energy Materials, 2020, 3, 2867-2872.	2.5	13
556	Unveiling the Interstitial Pressure between Growing Ice Crystals during Ice-Templating Using a Lipid Lamellar Probe. Journal of Physical Chemistry Letters, 2020, 11, 1989-1997.	2.1	8
557	Strong and super thermally insulating in-situ nanofibrillar PLA/PET composite foam fabricated by high-pressure microcellular injection molding. Chemical Engineering Journal, 2020, 390, 124520.	6.6	103
558	Preparation and characterizations of flexible photothermal Ti2O3-PVA nanocomposites. Journal of Alloys and Compounds, 2020, 825, 153998.	2.8	22
559	Multifunctional polyimide aerogel textile inspired by polar bear hair for thermoregulation in extreme environments. Chemical Engineering Journal, 2020, 390, 124623.	6.6	121
560	Ultralight, Flexible, and Biomimetic Nanocellulose/Silver Nanowire Aerogels for Electromagnetic Interference Shielding. ACS Nano, 2020, 14, 2927-2938.	7.3	254
561	Biomimetic structural cellulose nanofiber aerogels with exceptional mechanical, flame-retardant and thermal-insulating properties. Chemical Engineering Journal, 2020, 389, 124449.	6.6	163
562	Multifunctional Carbon Aerogels with Hierarchical Anisotropic Structure Derived from Lignin and Cellulose Nanofibers for CO ₂ Capture and Energy Storage. ACS Applied Materials & Interfaces, 2020, 12, 7432-7441.	4.0	79
563	Strong silica-nanocellulose anisotropic composite foams combine low thermal conductivity and low moisture uptake. Cellulose, 2020, 27, 10825-10836.	2.4	20
564	Merging versatile polymer chemistry with multifunctional nanoparticles: an overview of crosslinkable aromatic polyester matrix nanocomposites. Soft Matter, 2020, 16, 1389-1403.	1.2	6
565	Applications of Nanocellulose/Nanocarbon Composites: Focus on Biotechnology and Medicine. Nanomaterials, 2020, 10, 196.	1.9	117
566	Lightweight, Anisotropic, Compressible, and Thermally-Insulating Wood Aerogels with Aligned Cellulose Fibers. Polymers, 2020, 12, 165.	2.0	33
567	Robust galactomannan/graphene oxide film with ultra-flexible, gas barrier and self-clean properties. Composites Part A: Applied Science and Manufacturing, 2020, 131, 105780.	3.8	14
568	Fire hazards management for polymeric materials via synergy effects of pyrolysates-fixation and aromatized-charring. Journal of Hazardous Materials, 2020, 389, 122040.	6.5	29

#	Article	IF	CITATIONS
569	Directional Freeze asting: A Bioinspired Method to Assemble Multifunctional Aligned Porous Structures for Advanced Applications. Advanced Engineering Materials, 2020, 22, 2000033.	1.6	100
570	Retarding Ostwald Ripening to Directly Cast 3D Porous Graphene Oxide Bulks at Open Ambient Conditions. ACS Nano, 2020, 14, 6249-6257.	7.3	37
571	Functional Materials from Nanocellulose: Utilizing Structure–Property Relationships in Bottomâ€Up Fabrication. Advanced Materials, 2021, 33, e2000657.	11.1	139
572	Water-based hybrid coatings toward mechanically flexible, super-hydrophobic and flame-retardant polyurethane foam nanocomposites with high-efficiency and reliable fire alarm response. Composites Part B: Engineering, 2020, 193, 108017.	5.9	176
573	Preparation and characterization of hollow glass microsphere ceramics and silica aerogel/hollow glass microsphere ceramics having low density and low thermal conductivity. Journal of Alloys and Compounds, 2020, 831, 154737.	2.8	31
574	Porous nanocellulose gels and foams: Breakthrough status in the development of scaffolds for tissue engineering. Materials Today, 2020, 37, 126-141.	8.3	134
575	An All-Ceramic, Anisotropic, and Flexible Aerogel Insulation Material. Nano Letters, 2020, 20, 3828-3835.	4.5	79
576	A multifunctional wearable E-textile <i>via</i> integrated nanowire-coated fabrics. Journal of Materials Chemistry C, 2020, 8, 8399-8409.	2.7	64
577	Thermally Enhanced Electro-osmosis to Control Foam Stability. Physical Review X, 2020, 10, .	2.8	2
578	Non-isothermal crystallization of NaX nanocrystals/poly (vinyl alcohol) nanocomposite. Journal of Thermal Analysis and Calorimetry, 2021, 144, 107-118.	2.0	4
579	Rational design of two-dimensional nanofillers for polymer nanocomposites toward multifunctional applications. Progress in Materials Science, 2021, 115, 100708.	16.0	150
580	Fire retardant cellulose aerogel with improved strength and hydrophobic surface by oneâ€pot method. Journal of Applied Polymer Science, 2021, 138, 50224.	1.3	8
581	3D printing of graphene oxide composites with well controlled alignment. Carbon, 2021, 171, 777-784.	5.4	35
582	TEMPO oxidized cellulose nanofibers-based heterogenous membrane employed for concentration-gradient-driven energy harvesting. Nano Energy, 2021, 79, 105468.	8.2	64
583	Fully bio-based, low fire-hazard and superelastic aerogel without hazardous cross-linkers for excellent thermal insulation and oil clean-up absorption. Journal of Hazardous Materials, 2021, 403, 123977.	6.5	75
584	Flame-responsive aryl ether nitrile structure towards multiple fire hazards suppression of thermoplastic polyester. Journal of Hazardous Materials, 2021, 403, 123714.	6.5	38
585	Development of cost effective ultra-lightweight cellulose-based sound absorbing material over silica sol/natural fiber blended substrate. Carbohydrate Polymers, 2021, 255, 117369.	5.1	12
586	Stable electrically conductive, highly flame-retardant foam composites generated from reduced graphene oxide and silicone resin coatings. Soft Matter, 2021, 17, 68-82.	1.2	13

#	Article	IF	CITATIONS
587	Humidity-Dependent Thermal Boundary Conductance Controls Heat Transport of Super-Insulating Nanofibrillar Foams. Matter, 2021, 4, 276-289.	5.0	20
588	Grapheneâ€Based Ultralight Compartmentalized Isotropic Foams with an Extremely Low Thermal Conductivity of 5.75ÂmW m ^{â^1} K ^{â^1} . Advanced Functional Materials, 2021, 31, 2007392.	7.8	29
589	Metal-graphene-synergized melamine aerogel with robust elasticity and flame-retardancy for thermal-insulated-packaging industry. Composites Part A: Applied Science and Manufacturing, 2021, 140, 106195.	3.8	11
590	Elastic ceramic aerogels for thermal superinsulation under extreme conditions. Materials Today, 2021, 42, 162-177.	8.3	73
591	Triggering the aqueous interparticle association of γ‒Al2O3 hierarchical assemblies using divalent cations and cellulose nanofibers. Journal of the European Ceramic Society, 2021, 41, 590-598.	2.8	3
592	Ligninâ€Based Polyurethane: Recent Advances and Future Perspectives. Macromolecular Rapid Communications, 2021, 42, e2000492.	2.0	88
593	Nanocellulose-based lightweight porous materials: A review. Carbohydrate Polymers, 2021, 255, 117489.	5.1	118
594	Recent advances in ice templating: from biomimetic composites to cell culture scaffolds and tissue engineering. Journal of Materials Chemistry B, 2021, 9, 889-907.	2.9	39
595	A review on the emerging resilient and multifunctional ceramic aerogels. Journal of Materials Science and Technology, 2021, 75, 1-13.	5.6	34
596	Recent Progress in Graphene/Polymer Nanocomposites. Advanced Materials, 2021, 33, e2001105.	11.1	210
597	Hybrid Nanocomposites Based on Graphene with Cellulose Nanocrystals/Nanofibrils: From Preparation to Applications. Composites Science and Technology, 2021, , 113-151.	0.4	8
598	Interface chemistry of atomic-scale structures for building bioinspired 3D light-weight and porous architectures. , 2021, , 115-141.		0
599	Biobased foams for thermal insulation: material selection, processing, modelling, and performance. RSC Advances, 2021, 11, 4375-4394.	1.7	33
600	Nacre-Inspired Sustainable Coatings with Remarkable Fire-Retardant and Energy-Saving Cooling Performance. , 2021, 3, 243-248.		33
601	Fabrication of robust protein-based foams with multifunctionality by manipulating intermolecular interactions. Green Chemistry, 2021, 23, 8187-8199.	4.6	7
602	Elastic constants of biological filamentous colloids: estimation and implications on nematic and cholesteric tactoid morphologies. Soft Matter, 2021, 17, 2158-2169.	1.2	12
603	A direct foaming approach for carbon nanotube aerogels with ultra-low thermal conductivity and high mechanical stability. Nanoscale, 2021, 13, 11878-11886.	2.8	6
604	Recent progress in microâ€Inanoâ€fibrillar reinforced polymeric composite foams. Polymer Engineering and Science, 2021, 61, 926-941.	1.5	35

#	Article	IF	CITATIONS
605	An Investigation of EMI Shielding Effectiveness of Organic Polyurethane Composite Reinforced with MWCNT-CuO-Bamboo Charcoal Nanoparticles. Journal of Electronic Materials, 2021, 50, 1282-1291.	1.0	28
606	Local Crystallinity in Twisted Cellulose Nanofibers. ACS Nano, 2021, 15, 2730-2737.	7.3	53
607	Superelastic, Hygroscopic, and Ionic Conducting Cellulose Nanofibril Monoliths by 3D Printing. ACS Nano, 2021, 15, 1869-1879.	7.3	71
608	Synthesis and Application of Cellulose-Polyethyleneimine Composites and Nanocomposites: A Concise Review. Materials, 2021, 14, 473.	1.3	45
609	Advances in thermal conductivity for energy applications: a review. Progress in Energy, 2021, 3, 012002.	4.6	24
610	Hollow-porous fibers for intrinsically thermally insulating textiles and wearable electronics with ultrahigh working sensitivity. Materials Horizons, 2021, 8, 1037-1046.	6.4	59
611	Nanocellulose: the next super versatile material for the military. Materials Advances, 2021, 2, 1485-1506.	2.6	68
612	Biomass-derived tubular carbon materials: progress in synthesis and applications. Journal of Materials Chemistry A, 2021, 9, 13822-13850.	5.2	31
613	Application of graphene in protective coating industry: prospects and current progress. , 2021, , 453-492.		0
614	Leather Solid Waste/Poly(vinyl alcohol)/Polyaniline Aerogel with Mechanical Robustness, Flame Retardancy, and Enhanced Electromagnetic Interference Shielding. ACS Applied Materials & Interfaces, 2021, 13, 11332-11343.	4.0	46
615	Thermoset Polymer Matrix Composites of Epoxy, Unsaturated Polyester, and Novolac Resin Embedding Construction and Demolition Wastes powder: A Comparative Study. Polymers, 2021, 13, 737.	2.0	8
616	Phosphotungstic acid intercalated Zn,Al-layered double hydroxides/ nanocellulose based 3D lightweight foam thermal insulation materials. Materials Research Express, 2021, 8, 025009.	0.8	4
617	Thermally induced fire early warning aerogel with efficient thermal isolation and flameâ€retardant properties. Polymers for Advanced Technologies, 2021, 32, 2159-2168.	1.6	31
618	Recent Advances in Functional Materials through Cellulose Nanofiber Templating. Advanced Materials, 2021, 33, e2005538.	11.1	77
619	Ice-Templated Anisotropic Flame-Resistant Boron Nitride Aerogels Enhanced through Surface Modification and Cellulose Nanofibrils. ACS Applied Polymer Materials, 2021, 3, 1358-1367.	2.0	20
620	Directional, superâ€hydrophobic cellulose nanofiber/polyvinyl alcohol/montmorillonite aerogels as green absorbents for oil/water separation. IET Nanobiotechnology, 2021, 15, 135-146.	1.9	24
621	Solar-powered nanostructured biopolymer hygroscopic aerogels for atmospheric water harvesting. Nano Energy, 2021, 80, 105569.	8.2	99
622	Polyimide Aerogel Fibers with Superior Flame Resistance, Strength, Hydrophobicity, and Flexibility Made via a Universal Sol–Gel Confined Transition Strategy. ACS Nano, 2021, 15, 4759-4768.	7.3	108

#	Article	IF	CITATIONS
623	Facile preparation for gelatin/hydroxyethyl <scp>cellulose‣iO₂</scp> composite aerogel with good mechanical strength, heat insulation, and water resistance. Journal of Applied Polymer Science, 2021, 138, 50539.	1.3	30
624	Hierarchically Organized Biomimetic Architectured Silk Fibroin–Ceramic-Based Anisotropic Hybrid Aerogels for Thermal Energy Management. Biomacromolecules, 2021, 22, 1739-1751.	2.6	16
625	Delignified Wood from Understanding the Hierarchically Aligned Cellulosic Structures to Creating Novel Functional Materials: A Review. Advanced Sustainable Systems, 2021, 5, 2000251.	2.7	70
626	From 1D electrospun nanofibers to advanced multifunctional fibrous 3D aerogels. Applied Materials Today, 2021, 22, 100964.	2.3	33
627	Modelling of the mechanisms of heat transfer in recycled glass foams. Construction and Building Materials, 2021, 274, 122000.	3.2	10
628	Freeze-casting of highly porous cellulose-nanofiber-reinforced γ˗Al2O3 monoliths. Open Ceramics, 2021, 5, 100069.	1.0	4
629	Recent Developments in Nanocellulose-Based Aerogels in Thermal Applications: A Review. ACS Nano, 2021, 15, 3849-3874.	7.3	122
630	Doping of graphene with polyethylenimine and its effects on graphene-based supercapacitors. Journal of Applied Physics, 2021, 129, 094904.	1.1	1
631	Critical roles of pores and moisture in sustainable nanocellulose-based super-thermal insulators. Matter, 2021, 4, 769-772.	5.0	5
632	A review of three-dimensional graphene-based aerogels: Synthesis, structure and application for microwave absorption. Composites Part B: Engineering, 2021, 211, 108642.	5.9	204
633	Additiveâ€free, robust and superelastic dualâ€network graphene/melamine composite sponge for motion sensing. Journal of Applied Polymer Science, 2021, 138, 50788.	1.3	1
634	Optical modeling of cellulose nanofibril self-assembled thin film with iridescence. Colloid and Polymer Science, 2021, 299, 1139.	1.0	1
635	Terahertz Birefringent Biomimetic Aerogels Based on Cellulose Nanofibers and Conductive Nanomaterials. ACS Nano, 2021, 15, 7451-7462.	7.3	63
637	Reduction of PVA Aerogel Flammability by Incorporation of an Alkaline Catalyst. Gels, 2021, 7, 57.	2.1	4
638	Continuous fabrication of polyethylene microfibrilar bundles for wearable personal thermal management fabric. Applied Surface Science, 2021, 549, 149255.	3.1	28
639	Multi-reflection-enhanced electromagnetic interference shielding performance of conductive nanocomposite coatings on fabrics. Journal of Colloid and Interface Science, 2021, 590, 467-475.	5.0	36
640	Hierarchically Hollow Microfibers as a Scalable and Effective Thermal Insulating Cooler for Buildings. ACS Nano, 2021, 15, 10076-10083.	7.3	107
641	Hierarchical build-up of bio-based nanofibrous materials with tunable metal–organic framework biofunctionality. Materials Today, 2021, 48, 47-58.	8.3	38

#	Article	IF	CITATIONS
642	Review of current trends for metal-based sandwich panel: Failure mechanisms and their contribution factors. Engineering Failure Analysis, 2021, 123, 105302.	1.8	44
643	Lightweight graphene aerogels by decoration of 1D CoNi chains and CNTs to achieve ultra-wide microwave absorption. Carbon, 2021, 176, 411-420.	5.4	162
644	Si ₃ N ₄ Nanofibrous Aerogel with In Situ Growth of SiO _{<i>x</i>} Coating and Nanowires for Oil/Water Separation and Thermal Insulation. ACS Applied Materials & Interfaces, 2021, 13, 22765-22773.	4.0	37
645	Thin coatings for fire protection: An overview of the existing strategies, with an emphasis on layer-by-layer surface treatments and promising new solutions. Progress in Organic Coatings, 2021, 154, 106217.	1.9	29
646	Ultralight graphene oxide/polyvinyl alcohol aerogel for broadband and tuneable acoustic properties. Scientific Reports, 2021, 11, 10572.	1.6	25
647	Preparation and performance of melamine-formaldehyde rigid foams with high closed cell content. Frontiers in Forests and Global Change, 2021, 40, 183-197.	0.6	4
648	Highly compressible, heat-insulating and self-extinguishing cellulose nanofiber/aramid nanofiber nanocomposite foams. Carbohydrate Polymers, 2021, 261, 117837.	5.1	48
649	Chiral Nematic Cellulose Nanocrystal/Germania and Carbon/Germania Composite Aerogels as Supercapacitor Materials. Chemistry of Materials, 2021, 33, 5197-5209.	3.2	31
650	Spherical hybrid filler <scp>BN</scp> @ <scp>Al₂O₃</scp> via chemical adhesive for enhancing thermal conductivity and processability of silicon rubber. Journal of Applied Polymer Science, 2021, 138, 51211.	1.3	9
651	Hollow Silica Particles: A Novel Strategy for Cost Reduction. Nanomaterials, 2021, 11, 1627.	1.9	5
652	High-Performance Joule Heating and Electromagnetic Shielding Properties of Anisotropic Carbon Scaffolds. ACS Applied Materials & Interfaces, 2021, 13, 29101-29112.	4.0	51
653	Enhanced thermal insulation properties of PI nanofiber membranes achieved by doping with SiO2 nanoparticles. European Polymer Journal, 2021, 153, 110489.	2.6	11
654	Superelastic, lightweight, and flame-retardant 3D fibrous sponge fabricated by one-step electrospinning for heat retention. Composites Communications, 2021, 25, 100681.	3.3	18
655	Bioinspired, Highly Adhesive, Nanostructured Polymeric Coatings for Superhydrophobic Fire-Extinguishing Thermal Insulation Foam. ACS Nano, 2021, 15, 11667-11680.	7.3	195
656	Moisture uptake in nanocellulose: the effects of relative humidity, temperature and degree of crystallinity. Cellulose, 2021, 28, 9007-9021.	2.4	19
657	Versatile nanocellulose-based nanohybrids: A promising-new class for active packaging applications. International Journal of Biological Macromolecules, 2021, 182, 1915-1930.	3.6	23
658	Seaweed-Derived Alginate–Cellulose Nanofiber Aerogel for Insulation Applications. ACS Applied Materials & Interfaces, 2021, 13, 34899-34909.	4.0	37
659	Carbon aerogels with integrated engineered macroporous architectures for improved mass transport. Carbon, 2021, 179, 125-132.	5.4	10

#	Article	IF	CITATIONS
660	Eco-friendly and intrinsic nanogels for durable flame retardant and antibacterial properties. Chemical Engineering Journal, 2021, 415, 129008.	6.6	26
661	A molecular dynamics study of silicene reinforced cement composite at different humidity: Surface structure, bonding, and mechanical properties. Construction and Building Materials, 2021, 291, 123242.	3.2	3
662	Sustainabilityâ€guided life•ycle design and assessment for bioâ€based composite foams: Integrate flame retardancy/lightweight in usage and energy utilization after service. Journal of Applied Polymer Science, 2021, 138, 51330.	1.3	1
663	Ultrahigh thermal conductivity of epoxy composites based on curling bioinspired functionalized graphite films for thermal management application. Composites Part A: Applied Science and Manufacturing, 2021, 146, 106413.	3.8	10
664	Facile Fabrication of Anisotropic Chitosan Aerogel with Hydrophobicity and Thermal Superinsulation for Advanced Thermal Management. ACS Sustainable Chemistry and Engineering, 2021, 9, 9348-9357.	3.2	38
665	Nacre-Mimetic, Mechanically Flexible, and Electrically Conductive Silk Fibroin-MXene Composite Foams as Piezoresistive Pressure Sensors. ACS Applied Materials & Interfaces, 2021, 13, 34996-35007.	4.0	47
666	Nanocellulose Coupled 2D Graphene Nanostructures: Emerging Paradigm for Sustainable Functional Applications. Industrial & Engineering Chemistry Research, 2021, 60, 10882-10916.	1.8	25
667	Strategies for Preparing Continuous Ultraflexible and Ultrastrong Poly(Vinyl Alcohol) Aerogel Fibers with Excellent Thermal Insulation. Macromolecular Materials and Engineering, 2021, 306, 2100399.	1.7	20
668	A review on advancement and future perspective of 3D hierarchical porous aerogels based on electrospun polymer nanofibers for electrochemical energy storage application. Journal of Environmental Chemical Engineering, 2021, 9, 105437.	3.3	23
669	3D freeze-printed cellulose-based aerogels: Obtaining truly 3D shapes, and functionalization with cross-linking and conductive additives. Journal of Manufacturing Processes, 2021, 68, 445-453.	2.8	22
670	Addition of Al(OH)3 versus AlO(OH) nanoparticles on the optical, thermo-mechanical and heat/oxygen transmission properties of microfibrillated cellulose films. Cellulose, 2021, 28, 9441-9460.	2.4	1
671	Additive Manufacturing of 3D Aerogels and Porous Scaffolds: A Review. Advanced Functional Materials, 2021, 31, 2103410.	7.8	61
672	A Highly Compressible and Stretchable Carbon Spring for Smart Vibration and Magnetism Sensors. Advanced Materials, 2021, 33, e2102724.	11.1	51
673	Haptically Quantifying Young's Modulus of Soft Materials Using a Self‣ocked Stretchable Strain Sensor. Advanced Materials, 2022, 34, e2104078.	11.1	39
674	Polysaccharide-based aerogels for thermal insulation and superinsulation: An overview. Carbohydrate Polymers, 2021, 266, 118130.	5.1	67
675	Thermal insulation TiN aerogels prepared by a combined freeze-casting and carbothermal reduction-nitridation technique. Journal of the European Ceramic Society, 2021, 41, 5127-5137.	2.8	21
676	Layered double hydroxide/graphene oxide synergistically enhanced polyimide aerogels for thermal insulation and fire-retardancy. Composites Part B: Engineering, 2021, 219, 108963.	5.9	68
677	Deconstruction and Reassembly of Renewable Polymers and Biocolloids into Next Generation Structured Materials. Chemical Reviews, 2021, 121, 14088-14188.	23.0	113

#	Article	IF	Citations
678	Wet-resilient graphene aerogel for thermal conductivity enhancement in polymer nanocomposites. Journal of Materials Science and Technology, 2021, 83, 219-227.	5.6	38
679	Nanocellulose-Graphene Derivative Hybrids: Advanced Structure-Based Functionality from Top-down Synthesis to Bottom-up Assembly. ACS Applied Bio Materials, 2021, 4, 7366-7401.	2.3	15
680	Controlled Vertically Aligned Structures in Polymer Composites: Natural Inspiration, Structural Processing, and Functional Application. Advanced Materials, 2021, 33, e2103495.	11.1	62
681	Effect of density, phonon scattering and nanoporosity on the thermal conductivity of anisotropic cellulose nanocrystal foams. Scientific Reports, 2021, 11, 18685.	1.6	7
682	Introductory Chapter: Flame Retardant and Thermally Insulating Polymers. , 0, , .		3
683	Hydrophobic composite foams based on nanocellulose-sepiolite for oil sorption applications. Journal of Hazardous Materials, 2021, 417, 126068.	6.5	31
684	Thermal-insulating, flame-retardant and mechanically resistant aerogel based on bio-inspired tubular cellulose. Composites Part B: Engineering, 2021, 220, 108997.	5.9	47
685	Fabrication of Anisotropic Polyphosphazene/Bio-based Poly(urethane-acrylate) composite foams with High Thermal Insulation and Flame Retardancy. Polymer, 2021, 231, 124108.	1.8	12
686	Highly fibrillated and intrinsically flame-retardant nanofibrillated cellulose for transparent mineral filler-free fire-protective coatings. Chemical Engineering Journal, 2021, 419, 129440.	6.6	32
687	Preparation of functionalized halloysite reinforced polyimide composite aerogels with excellent thermal insulation properties. Applied Clay Science, 2021, 211, 106200.	2.6	31
688	Fibrous gel polymer electrolyte for an ultrastable and highly safe flexible lithiumâ€ion battery in a wide temperature range. , 2021, 3, 916-928.		22
689	High-value utilization of mask and heavy fraction of bio-oil: From hazardous waste to biochar, bio-oil, and graphene films. Journal of Hazardous Materials, 2021, 420, 126570.	6.5	23
690	Functional aerogels with sound absorption and thermal insulation derived from semi-liquefied waste bamboo and gelatin. Environmental Technology and Innovation, 2021, 24, 101874.	3.0	10
691	Adsorption characteristics of directional cellulose nanofiber/chitosan/montmorillonite aerogel as adsorbent for wastewater treatment. Separation and Purification Technology, 2021, 274, 119120.	3.9	74
692	Cellulose-based composite thermal-insulating foams toward eco-friendly, flexible and flame-retardant. Carbohydrate Polymers, 2021, 273, 118544.	5.1	35
693	Flame aerosol synthesis of hollow alumina nanoshells for application in thermal insulation. Chemical Engineering Journal, 2022, 428, 131273.	6.6	11
694	Robust and multifunctional superamphiphobic coating toward effective anti-adhesion. Chemical Engineering Journal, 2022, 428, 131162.	6.6	36
695	Highly flexible and compressible polyimide/silica aerogels with integrated double network for thermal insulation and fire-retardancy. Journal of Materials Science and Technology, 2022, 105, 194-202.	5.6	60

	CITATION	Report	
#	Article	IF	CITATIONS
696	Hierarchical Interface Engineering for Advanced Nanocellulosic Hybrid Aerogels with High Compressibility and Multifunctionality. Advanced Functional Materials, 2021, 31, 2009349.	7.8	80
697	Eco-friendly and sustainable processing of wood-based materials. Green Chemistry, 2021, 23, 2198-2232.	4.6	48
698	Flexible, multifunctional, and thermally conductive nylon/graphene nanoplatelet composite papers with excellent EMI shielding performance, improved hydrophobicity and flame resistance. Journal of Materials Chemistry A, 2021, 9, 5033-5044.	5.2	57
699	Wet Gels and Their Drying. , 2020, , 323-362.		3
700	Hybrid Nanocomposites Through Colloidal Interactions Between Crystalline Polysaccharide Nanoparticles and Oxide Precursors. , 2016, , 1-39.		1
701	Effect of organically intercalation modified layered double hydroxides-graphene oxide hybrids on flame retardancy of thermoplastic polyurethane nanocomposites. Journal of Thermal Analysis and Calorimetry, 2020, 142, 723-733.	2.0	17
702	Graphene-based 3D lightweight cellular structures: Synthesis and applications. Korean Journal of Chemical Engineering, 2020, 37, 189-208.	1.2	10
703	Advanced insulating materials. , 2016, , 127-177.		2
704	A superhydrophobic textile inspired by polar bear hair for both in air and underwater thermal insulation. Chemical Engineering Journal, 2020, 397, 125441.	6.6	58
705	Nanoparticles of polydopamine for improving mechanical and flame-retardant properties of an epoxy resin. Composites Part B: Engineering, 2020, 186, 107828.	5.9	70
706	Flame retardant polymeric nanocomposites through the combination of nanomaterials and conventional flame retardants. Progress in Materials Science, 2020, 114, 100687.	16.0	415
707	Stretchable and Superelastic Fibrous Sponges Tailored by "Stiff–Soft―Bicomponent Electrospun Fibers for Warmth Retention. ACS Applied Materials & Interfaces, 2020, 12, 27562-27571.	4.0	31
708	3D Printing of Liquid Crystal Elastomer Foams for Enhanced Energy Dissipation Under Mechanical Insult. ACS Applied Materials & Interfaces, 2021, 13, 12698-12708.	4.0	52
709	Sclerotization-Inspired Aminoquinone Cross-Linking of Thermally Insulating and Moisture-Resilient Biobased Foams. ACS Sustainable Chemistry and Engineering, 2020, 8, 17408-17416.	3.2	11
710	Highly efficient three-dimensional solar evaporator for high salinity desalination by localized crystallization. Nature Communications, 2020, 11, 521.	5.8	348
711	Functional Nanocomposites Based on Fibrous Clays. RSC Smart Materials, 2016, , 1-53.	0.1	6
712	Machine learning and predicting the time-dependent dynamics of local yielding in dry foams. Physical Review Research, 2020, 2, .	1.3	8
713	Surface Modification of Bacterial Cellulose Sheets With Various Fire Retardants. Journal of Thermal Science and Engineering Applications, 2021, 13, .	0.8	1

	CITATION	Report	
#	Article	IF	CITATIONS
714	Nanoteknoloji ve Geleceğin Çevreci Polimeri Nanoselüloz. Ormancılık Araştırma Dergisi, 0, , .	0.2	3
715	Applications of Cellulose Nanocrystals: A Review. Engineered Science, 2018, , .	1.2	36
716	Effect of mullite phase formed in situ on pore structure and properties of high-purity mullite fibrous ceramics. Ceramics International, 2022, 48, 3578-3584.	2.3	13
717	Anisotropic porous ceramic material with hierarchical architecture for thermal insulation. Bioinspiration and Biomimetics, 2022, 17, 015002.	1.5	10
718	Hybrid Nanocomposites Through Colloidal Interactions Between Crystalline Polysaccharide Nanoparticles and Oxide Precursors. , 2018, , 3213-3251.		0
720	Experimental investigation of thermal coefficient of the graphene used concrete. International Advanced Researches and Engineering Journal, 2019, 3, 105-110.	0.4	2
721	Molecular Dynamics Study on Cement–Graphene Nanocomposite. , 2020, , 159-185.		1
722	Highlights on the mechanical pre-refining step in the production of wood cellulose nanofibrils. Cellulose, 2021, 28, 11329-11344.	2.4	6
723	Facile and Quantitative Method for Estimating the Isolation Degree of Cellulose Nanocrystals (CNCs) Suspensions. Materials, 2021, 14, 6463.	1.3	3
724	Shape-Conformable, Eco-Friendly Cellulose Aerogels as High-Performance Battery Separators. ACS Applied Energy Materials, 2021, 4, 763-774.	2.5	10
725	Cellulose–metal organic frameworks (CelloMOFs) hybrid materials and their multifaceted Applications: A review. Coordination Chemistry Reviews, 2022, 451, 214263.	9.5	165
726	Thermal Conductivity Analysis of High Porosity Structures with Open and Closed Pores. International Journal of Heat and Mass Transfer, 2022, 183, 122089.	2.5	51
727	Plasma optimized Li7La3Zr2O12 with vertically aligned ion diffusion pathways in composite polymer electrolyte for stable solid-state lithium metal batteries. Chemical Engineering Journal, 2022, 430, 132874.	6.6	24
728	Nanocellulose-mediated fabrication of sustainable future materials. , 2020, , 217-236.		3
729	Carbon as a Solution for Nanocellular Foam Superinsulation. SSRN Electronic Journal, 0, , .	0.4	0
730	Nanocellulose as sustainable biomaterials for drug delivery. Sensors International, 2022, 3, 100135.	4.9	46
731	Superstable Wet Foams and Lightweight Solid Composites from Nanocellulose and Hydrophobic Particles. ACS Nano, 2021, 15, 19712-19721.	7.3	14
732	Modeling Microwave Heating and Drying of Lignocellulosic Foams through Coupled Electromagnetic and Heat Transfer Analysis. Processes, 2021, 9, 2001.	1.3	6

		CITATION REPORT		
#	Article		IF	CITATIONS
733	Carbon as a solution for nanocellular foam superinsulation. Carbon, 2022, 189, 319-33	8.	5.4	9
734	Functional Wood–Foam Composites for Controlled Uptake and Release. ACS Sustain and Engineering, 2021, 9, 15571-15581.	nable Chemistry	3.2	6
735	Superelastic and Fire-Retardant Nano-/Microfibrous Sponges for High-Efficiency Warm ACS Applied Materials & Interfaces, 2021, 13, 58027-58035.	h Retention.	4.0	15
736	Recent review on synthesis, evaluation, and SWOT analysis of nanostructured cellulose construction applications. Journal of Building Engineering, 2022, 46, 103747.	e in	1.6	18
737	A pulp foam with highly improved physical strength, fire-resistance and antibiosis by in chitosan and CPAM. Carbohydrate Polymers, 2022, 278, 118963.	corporation of	5.1	23
738	Laboratory simulation and mechanical performance of asphalt materials under the actic Construction and Building Materials, 2021, 313, 125387.	on of saline.	3.2	5
739	Green, tough and highly efficient flame-retardant rigid polyurethane foam enabled by c hydrogel coatings. Soft Matter, 2021, 17, 10555-10565.	ouble network	1.2	22
740	Pickering emulsion templated strategy in composite aerogels with hierarchical porous improves thermal insulation and diphenylamine adsorption. Journal of Applied Polymer 139, 52130.	structure Science, 2022,	1.3	7
741	Highly ionic conductive and mechanically strong MXene/CNF membranes for osmotic e conversion. Sustainable Energy and Fuels, 2022, 6, 299-308.	nergy	2.5	11
742	All-cellulose-based freestanding porous carbon nanocomposites and their versatile app Composites Part B: Engineering, 2022, 232, 109602.	lications.	5.9	17
743	Study on pore size distribution and thermal conductivity of aramid nanofiber aerogels fractal theory. Journal of Applied Physics, 2021, 130, .	based on	1.1	6
744	Novel P/Si based nanoparticles for durable flame retardant application on cotton. Cellu 2063-2076.	lose, 2022, 29,	2.4	9
745	Scalable synthesis, characterization and testing of 3D architected gyroid graphene latt additively manufactured templates. Journal of Micromechanics and Molecular Physics,	ices from 2021, 06, 13-24.	0.7	2
746	Technological and economic barriers of industrial-scale production of nanocellulose. , 2	.022, , 21-39.		2
747	Lightweight and Resilient ZrO ₂ –TiO ₂ Fiber Sponges with I for Thermal Insulation. Advanced Engineering Materials, 2022, 24, .	ayered Structure	1.6	18
748	Weldable and closed-loop recyclable monolithic dynamic covalent polymer aerogels. N Review, 2022, 9, .	ational Science	4.6	27
749	A lava-inspired micro/nano-structured ceramifiable organic-inorganic hybrid fire-extingucoating. Matter, 2022, 5, 911-932.	ishing	5.0	96
751	In situ imaging of three dimensional freeze printing process using rapid x-ray synchrotr radiography. Review of Scientific Instruments, 2022, 93, 013703.	on	0.6	2

#	Article	IF	CITATIONS
752	Rheo-SAXS study of shear-induced orientation and relaxation of cellulose nanocrystal and montmorillonite nanoplatelet dispersions. Soft Matter, 2022, 18, 390-396.	1.2	3
753	Nanopolysaccharides: fundamentals, isolation, and applications. , 2022, , 21-59.		0
754	Hydrophobic and Flame-Retardant Foam Based on Cellulose. Journal of Polymers and the Environment, 2022, 30, 2366-2377.	2.4	8
755	A Low Thermal Conductivity of Lightweight Laterite-cement Composites with Cotton Wastes Fibres. Silicon, 2022, 14, 8205-8222.	1.8	6
756	Fabrication of nanowoods and nanopapers. , 2022, , 125-142.		1
757	Core–Shell Fe ₃ O ₄ @Au Nanorod-Loaded Gels for Tunable and Anisotropic Magneto- and Photothermia. ACS Applied Materials & Interfaces, 2022, 14, 7130-7140.	4.0	19
758	Bubble-Templated Design of Superelastic Cellulose Foam as a Durable Ionotropic Sensor. ACS Sustainable Chemistry and Engineering, 2022, 10, 1714-1721.	3.2	7
759	Superinsulating BNNS/PVA Composite Aerogels with High Solar Reflectance for Energy-Efficient Buildings. Nano-Micro Letters, 2022, 14, 54.	14.4	36
760	Vertically Aligned Grapheneâ€Analogous Lowâ€Dimensional Materials: A Review on Emerging Trends, Recent Developments, and Future Perspectives. Advanced Materials Interfaces, 2022, 9, .	1.9	8
761	Eco-friendly thermally insulating cellulose aerogels with exceptional flame retardancy, mechanical property and thermal stability. Journal of the Taiwan Institute of Chemical Engineers, 2022, 131, 104159.	2.7	18
762	All-weather Ag–ZnO/cellulose photocatalysts tailored by surface groups and aspect ratios of cellulose nanofibers. Cellulose, 2022, 29, 2289-2304.	2.4	3
763	Controllable synthesis of a robust sucrose-derived bio-carbon foam with 3D hierarchical porous structure for thermal insulation, flame retardancy and oil absorption. Chemical Engineering Journal, 2022, 434, 134514.	6.6	37
764	Silicone/graphene oxide co-cross-linked aerogels with wide-temperature mechanical flexibility, super-hydrophobicity and flame resistance for exceptional thermal insulation and oil/water separation. Journal of Materials Science and Technology, 2022, 114, 131-142.	5.6	89
765	Highly Stretchable, Sensitive, and Durable Ag/Tannic Acid@Graphene Oxide-Composite Hydrogel for Wearable Strain Sensors. ACS Applied Polymer Materials, 2022, 4, 2036-2046.	2.0	16
766	Multifunctional Nanocellulose/Carbon Nanotube Composite Aerogels for High-Efficiency Electromagnetic Interference Shielding. ACS Sustainable Chemistry and Engineering, 2022, 10, 2397-2408.	3.2	49
767	Real-Time Alignment and Reorientation of Polymer Chains in Liquid Crystal Elastomers. ACS Applied Materials & amp; Interfaces, 2022, 14, 1961-1972.	4.0	8
768	Ultra-Tough and Strong Pla Nanocomposites Reinforced by Uv-Crosslinked In-Situ Epdm Nanofibrils with Outstanding Foaming and Thermally-Insulating Performance. SSRN Electronic Journal, 0, , .	0.4	0
769	Halogen-Free, Phosphorus Decorated, Bio-Waste Derived Nanocomposite for Highly Efficient Flame Retardant for Cotton Fabric. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	Citations
770	Perspectives in biopolymer/graphene-based composite application: Advances, challenges, and recommendations. Nanotechnology Reviews, 2022, 11, 1525-1554.	2.6	8
771	A Lightweight, Biodegradable, and Recyclable Cellulose-Based Bio-Foam with Good Mechanical Strength and Water Stability. SSRN Electronic Journal, 0, , .	0.4	0
772	Achieving 151% Yield of Flame-Retardant Lignocellulosic Nanofibrils Through Reactive Deep Eutectic Solvent Treatment for Thermal Insulation. SSRN Electronic Journal, 0, , .	0.4	0
773	Nanocellulose: Sustainable biomaterial for developing novel adhesives and composites. , 2022, , 49-137.		11
774	Aligned Macroporous Monoliths by Ice-Templating. Bulletin of the Chemical Society of Japan, 2022, 95, 611-620.	2.0	16
775	Fire-retardant properties of functionalised graphene nanoplatelets/modified polybutadiene hybrid composite material: a technical note. Journal of Rubber Research (Kuala Lumpur, Malaysia), 2022, 25, 19-26.	0.4	0
776	Hierarchical Structure of Cellulose Nanofibril-Based Foams Explored by Multimodal X-ray Scattering. Biomacromolecules, 2022, 23, 676-686.	2.6	4
777	Fibrous Aerogels for Solar Vapor Generation. Frontiers in Chemistry, 2022, 10, 843070.	1.8	5
778	All-Ceramic and Elastic Aerogels with Nanofibrous-Granular Binary Synergistic Structure for Thermal Superinsulation. ACS Nano, 2022, 16, 5487-5495.	7.3	59
779	All-day effective radiative cooling by optically selective and thermally insulating mesoporous materials. Solar Energy, 2022, 235, 170-179.	2.9	25
780	Proton Donor-Regulated Mechanically Robust Aramid Nanofiber Aerogel Membranes for High-Temperature Thermal Insulation. ACS Nano, 2022, 16, 5984-5993.	7.3	67
781	High temperature ceramic thermal insulation material. Nano Research, 2022, 15, 6662-6669.	5.8	12
782	Twinâ€Structured Graphene Metamaterials with Anomalous Mechanical Properties. Advanced Materials, 2022, 34, e2200444.	11.1	17
783	Structured Ultraâ€Flyweight Aerogels by Interfacial Complexation: Selfâ€Assembly Enabling Multiscale Designs. Small, 2022, 18, e2200220.	5.2	14
784	Self-Reinforced Thermoplastic Polyurethane Wrinkled Foams with High Energy Absorption Realized by Gas Cooling Assisted Supercritical CO ₂ Foaming. Industrial & Engineering Chemistry Research, 2022, 61, 4832-4841.	1.8	3
785	Recent Developments on Nanocellulose-Based Energy Systems. Brazilian Journal of Physics, 2022, 52, 1.	0.7	2
786	Cogel Strategy for the Preparation of a "Thorn―Like Porous Halloysite/Gelatin Composite Aerogel with Excellent Mechanical Properties and Thermal Insulation. ACS Applied Materials & Interfaces, 2022, 14, 17763-17773.	4.0	15
787	Fire-retarded nanocomposite aerogels for multifunctional applications: A review. Composites Part B: Engineering, 2022, 237, 109866.	5.9	28

	CITATION	CITATION REPORT	
#	ARTICLE	IF	CITATIONS
788	Thermal barrier coatings for cellulosic substrates: A statistically designed molecular dynamics study of the coating formulation effects on thermal conductivity. Applied Surface Science, 2022, 587, 152879.	3.1	14
789	Optically transparent pectin/poly(methyl methacrylate) composite with thermal insulation and UV blocking properties based on anisotropic pectin cryogel. Chemical Engineering Journal, 2022, 439, 135738.	6.6	16
790	High thermally insulating and lightweight Cr2O3Ââ^'ÂAl2O3 aerogel with rapid–cooling property. Applied Surface Science, 2022, 590, 153044.	3.1	8
791	Scalable method for bio-based solid foams that mimic wood. Scientific Reports, 2021, 11, 24306.	1.6	15
792	Superhydrophobic and Multifunctional Aerogel Enabled by Bioinspired Salvinia Leaf‣ike Structure. Advanced Functional Materials, 2022, 32, .	7.8	39
793	Study the Effects of Carbon Nanotubes and Graphene Oxide Combinations on the Mechanical Properties and Flame Retardance of Epoxy Nanocomposites. Journal of Nanomaterials, 2021, 2021, 1-9.	1.5	13
794	Directionally In Situ Selfâ€Assembled, Highâ€Density, Macroporeâ€Oriented, CoPâ€Impregnated, 3D Hierarchical Porous Carbon Sheet Nanostructure for Superior Electrocatalysis in the Hydrogen Evolution Reaction. Small, 2022, 18, e2103866.	5.2	24
795	Liquid Transport and Real-Time Dye Purification <i>via</i> Lotus Petiole-Inspired Long-Range-Ordered Anisotropic Cellulose Nanofibril Aerogels. ACS Nano, 2021, 15, 20666-20677.	7.3	75
796	Fabrication of cellulose-based aerogel for thermal and acoustic insulation applications. IOP Conference Series: Earth and Environmental Science, 2021, 947, 012030.	0.2	2
797	Structure, Property, Processing and Applications of Fire Retardant Materials: A Brief Review. Advanced Materials Research, 0, 1170, 87-116.	0.3	1
798	Templated synthesis and assembly with sustainable cellulose nanomaterial for functional nanostructure. Cellulose, 2022, 29, 4287-4321.	2.4	6
799	Implementing an Air Suction Effect Induction Strategy to Create Super Thermally Insulating and Superelastic SiC Aerogels. Small, 2022, 18, e2201039.	5.2	18
800	Nanoscale cellulose and nanocellulose-based aerogels. , 2022, , 229-260.		1
801	A flame retardant containing biomass-based polydopamine for high-performance rigid polyurethane foam. New Journal of Chemistry, 2022, 46, 11985-11993.	1.4	7
802	Preparation of C/Siox Composite and Research for Lithium Storage Mechanism. SSRN Electronic Journal, 0, , .	0.4	0
803	Microstructure-property relationships in composites of 8YSZ ceramics and in situ graphitized nanocellulose. Journal of the European Ceramic Society, 2022, 42, 4594-4606.	2.8	1
804	<i>In Situ</i> Loading of Polypyrrole onto Aramid Nanofiber and Carbon Nanotube Aerogel Fibers as Physiology and Motion Sensors. ACS Nano, 2022, 16, 8161-8171.	7.3	63
805	Efficient Solar Thermal Energy Conversion and Utilization by a Film of Conductive Metal–Organic Framework Layered on Nanocellulose. , 2022, 4, 1058-1064.		19

ARTICLE IF CITATIONS # Recent developments in functional triboelectric nanogenerators for flame-retardant, human health, 806 1.0 3 and energy-harvesting fields: a crucial review. Nano Futures, 2022, 6, 022003. Recent developments in biomass derived cellulose aerogel materials for thermal insulation 2.4 39 application: a review. Cellulose, 2022, 29, 4805-4833. Tuning the Thermal Transport of Hexagonal Boron Nitride/Reduced Graphene Oxide Heterostructures. 808 4.0 4 ACS Applied Materials & amp; Interfaces, 2022, 14, 22626-22633. Liquid Crystalline Thermosetting Compositesâ€Based Triboelectric Nanogenerators with Intrinsic Flame 809 3.0 Retardancy. Advanced Materials Technologies, 2022, 7, . Nanostructurally Controllable Strong Wood Aerogel toward Efficient Thermal Insulation. ACS 810 4.0 34 Applied Materials & amp; Interfaces, 2022, 14, 24697-24707. Fabrication of Cellulose–Graphite Foam via Ion Cross-linking and Ambient-Drying. Nano Letters, 2022, 4.5 22, 3931-3938. Direct synthesis of highly stretchable ceramic nanofibrous aerogels via 3D reaction electrospinning. 812 5.8 61 Nature Communications, 2022, 13, 2637. Hybrid nanoparticles based on novel Schiff Base for durable flame retardant and antibacterial 5.9 20 properties. Composites Part B: Engineering, 2022, 238, 109905. A lightweight, biodegradable, and recyclable cellulose-based bio-foam with good mechanical strength 814 3.3 16 and water stability. Journal of Environmental Chemical Engineering, 2022, 10, 107788. Superelastic and responsive anisotropic silica nanofiber/polyvinylpyrrolidone/MXene hybrid aerogels for efficient thermal insulation and overheating alarm applications. Composites Science and 3.8 Technology, 2022, 225, 109484. Developing flame-retardant lignocellulosic nanofibrils through reactive deep eutectic solvent 816 6.6 34 treatment for thermal insulation. Chemical Engineering Journal, 2022, 445, 136748. Carboxymethyl Cellulose/Zn-Organic Framework Down-Regulates Proliferation and Up-Regulates Apoptósis and DNA Damage in Colon and Lung Cancer Cell Lines. Polymers, 2022, 14, 2015. Tailoring the properties of nanocellulose-sepiolite hybrid nanopapers by varying the nanocellulose 818 2.4 8 type and clay content. Cellulose, 2022, 29, 5265-5287. Mechanically flexible polyimide foams with different chain structures for high temperature thermal insulation purposes. Materials Today Physics, 2022, 26, 100720. Ultralight and hydrophobic MXene/chitosan-derived hybrid carbon aerogel with hierarchical pore structure for durable electromagnetic interference shielding and thermal insulation. Chemical 820 6.6 45 Engineering Journal, 2022, 446, 137093. Poly (vinyl alcohol) assisted regulation of aramid nanofibers aerogel structure for thermal 2.2 insulation and adsorption. Microporous and Mesoporous Materials, 2022, 339, 111997. Ice-Templating of Lignin and Cellulose Nanofiber-Based Carbon Aerogels: Implications for Energy 823 2.4 11 Storage Applications. ACS Applied Nano Materials, 2022, 5, 7954-7966. A Stiff, Tough, and Thermally Insulating Air- and Ice-Templated Plant-Based Foam. Biomacromolecules, 824 2022, 23, 2595-2602.

#	Article	IF	CITATIONS
825	Hierarchically and wood-like cyclodextrin aerogels with enhanced thermal insulation and wide spectrum acoustic absorption. Chemical Engineering Journal, 2022, 446, 137280.	6.6	7
826	Water-Induced Self-Assembly and <i>In Situ</i> Mineralization within Plant Phenolic Glycol-Gel toward Ultrastrong and Multifunctional Thermal Insulating Aerogels. ACS Nano, 2022, 16, 9062-9076.	7.3	38
827	Fiber Templated Epitaxially Grown Composite Membranes: From Thermal Insulation to Infrared Stealth. ACS Applied Materials & Interfaces, 2022, 14, 27214-27221.	4.0	10
828	Metal Oxide-Based Compounds as Flame Retardants for Polyurethanes. ACS Symposium Series, 0, , 121-136.	0.5	4
829	Fabrication and thermal insulation properties of ceramic felts constructed by electrospun Î ³ -Y2Si2O7 fibers. Ceramics International, 2022, 48, 29913-29918.	2.3	10
830	A Skinâ€Inspired Design Integrating Mechano–Chemical–Thermal Robustness into Superhydrophobic Coatings. Advanced Materials, 2022, 34, .	11.1	40
831	Biomimetic hydrophobic plastic foams with aligned channels for rapid oil absorption. Journal of Hazardous Materials, 2022, 437, 129346.	6.5	23
832	Valuable aramid/cellulose nanofibers derived from recycled resources for reinforcing carbon fiber/phenolic composites. Carbohydrate Polymers, 2022, 292, 119712.	5.1	13
833	Engineering a semi-interpenetrating constructed xylan-based hydrogel with superior compressive strength, resilience, and creep recovery abilities. Carbohydrate Polymers, 2022, 294, 119772.	5.1	5
834	Polylactic acid/UV-crosslinked in-situ ethylene-propylene-diene terpolymer nanofibril composites with outstanding mechanical and foaming performance. Chemical Engineering Journal, 2022, 447, 137509.	6.6	18
835	Superhydrophobic tough hierarchical porous thermal insulation composites prepared by in situ formation of silica aerogel in collagen fiber matrix. Journal of Applied Polymer Science, 2022, 139, .	1.3	6
836	High-strength and superamphiphobic chitosan-based aerogels for thermal insulation and flame retardant applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 651, 129663.	2.3	12
837	Highly compressible and hydrophobic anisotropic cellulose-based aerogel fabricated by bidirectional freeze-drying for selective oil absorption. Journal of Materials Science, 2022, 57, 13097-13108.	1.7	9
838	A Review of Properties of Nanocellulose, Its Synthesis, and Potential in Biomedical Applications. Applied Sciences (Switzerland), 2022, 12, 7090.	1.3	30
839	Freeze-derived heterogeneous structural color films. Nature Communications, 2022, 13, .	5.8	25
840	Smart fire-warning materials and sensors: Design principle, performances, and applications. Materials Science and Engineering Reports, 2022, 150, 100690.	14.8	91
841	Ice-templated additive-free porous starches with tuned morphology and properties. European Polymer Journal, 2022, 176, 111403.	2.6	9
842	A "Plasticizing-Foaming-Reinforcing―approach for creating thermally insulating PVC/polyurea blend foams with shape memory function. Chemical Engineering Journal, 2022, 450, 138071.	6.6	14

	CITATION	Report	
#	Article	IF	Citations
843	应用于深井脉冲æºè£…å¤çš"有åºå†ç§⁻ç›,å•胶囊çƒé˜²æŠæ•°å€¼ç"ç©¶. Chinese Science Bulletir	ı, 20 22 4, .	1
844	Organic aerogel as electroâ€catalytic support in lowâ€temperature fuel cell. International Journal of Energy Research, 2022, 46, 16264-16280.	2.2	5
845	Nanosheet-coated synthetic wood with enhanced flame-retardancy by vacuum-assisted sonocoating technique. Nano Research, 2022, 15, 9440-9446.	5.8	3
846	Shaping 90 wt% NanoMOFs into Robust Multifunctional Aerogels Using Tailored Bioâ€Based Nanofibrils. Advanced Materials, 2022, 34, .	11.1	27
847	Processable Conjugated Microporous Polymer Gels and Monoliths: Fundamentals and Versatile Applications. ACS Applied Materials & Interfaces, 2022, 14, 39701-39726.	4.0	11
848	Intrinsic Flame Retardant Triboelectric Nanogenerators Based on Liquid-Crystalline Copolyesters. ACS Applied Polymer Materials, 2022, 4, 5813-5820.	2.0	4
849	Cellulose-inorganic hybrids of strongly reduced thermal conductivity. Cellulose, 0, , .	2.4	0
850	Bio-waste derived, phosphorus decorated composite for highly efficient flame retardant for cotton fabric. Cellulose, 2022, 29, 8879-8888.	2.4	11
851	Assembling nanocelluloses into fibrous materials and their emerging applications. Carbohydrate Polymers, 2023, 299, 120008.	5.1	10
852	Encapsulating Amidoximated Nanofibrous Aerogels within Wood Cell Tracheids for Efficient Cascading Adsorption of Uranium Ions. ACS Nano, 2022, 16, 13144-13151.	7.3	26
853	Vacuum insulation arrays as damage-resilient thermal superinsulation materials for energy saving. Joule, 2022, 6, 2358-2371.	11.7	10
854	Bioinspired highly anisotropic, robust and environmental resistant wood aerogel composite with semi-interpenetrating polymer networks for Cu(II) ion removal. Cellulose, 2022, 29, 8353-8370.	2.4	3
855	Application of graphene-based materials in developing sustainable infrastructure: An overview. Composites Part B: Engineering, 2022, 245, 110188.	5.9	26
856	Flexible curdlan-based aerogels enhanced by wood fibers with ultralow thermal conductivity. Thermochimica Acta, 2022, 716, 179320.	1.2	5
857	Biomimetic, hierarchical-ordered cellulose nanoclaw hybrid aerogel with high strength and thermal insulation. Carbohydrate Polymers, 2022, 297, 119990.	5.1	17
858	Comparative investigation on ultimate strength of hull girder with laser-welded web-core sandwich deck. Ocean Engineering, 2022, 264, 112483.	1.9	1
859	Improvement of mechanical property of biomass-derived porous carbon material through in situ growth of SiCnws and glucose-converted pyrolysed carbon. Vacuum, 2022, 205, 111478.	1.6	5
860	Nanocellulose-based aerogel electrodes for supercapacitors: A review. Carbohydrate Polymers, 2022, 297, 120039.	5.1	17

ARTICLE IF CITATIONS Biomass-derived cellulose nanofibers and iron oxide-based nanohybrids for thermal insulation 861 2.2 12 application. Nanoscale Advances, 2022, 4, 3381-3390. Mesoporous multi-shelled hollow resin nanospheres with ultralow thermal conductivity. Chemical 3.7 Science, 2022, 13, 12180-12186. Citric Acidâ€Crosslinked Highly Porous Cellulose Nanofiber Foam Prepared by an Environmentâ€Friendly 863 7 1.8 and Simple Process. Global Challenges, 2022, 6, . Naturally Derived Janus Cellulose Nanomaterials: Anisotropic Cellulose Nanomaterial Building 864 Blocks and Their Assembly into Asymmetric Structures. ACS Nano, 2022, 16, 13468-13491. Rigid and Fire-Resistant All-Biomass Aerogels. ACS Sustainable Chemistry and Engineering, 2022, 10, 865 3.2 11 12117-12126. Polar Bear Hair Inspired Supra-Photothermal Promoted Water Splitting., 2022, 4, 1912-1920. Scalable anisotropic cooling aerogels by additive freeze-casting. Nature Communications, 2022, 13, . 867 5.8 31 Anisotropic and Lightweight Carbon/Graphene Composite Aerogels for Efficient Thermal Insulation and Electromagnetic Interference Shielding. ACS Applied Materials & amp; Interfaces, 2022, 14, 4.0 45844-45852. Large-scale synthesis of macroscopic layered inorganic-organic hybrid nanobelt aerogel monoliths 870 2.8 0 with multifunctionality. Cell Reports Physical Science, 2022, , 101079. Ice-Templated Fabrication of Porous Materials with Bioinspired Architecture and Functionality. 871 Accounts of Materials Research, 2022, 3, 1173-1185. A Robust, Flexible, Hydrophobic, and Multifunctional Pressure Sensor Based on an MXene/Aramid 872 31 4.0Nanofiber (ANF) Aerogel Film. ACS Applied Materials & amp; Interfaces, 2022, 14, 47075-47088. Effect of lateral size and loading ratio of expanded graphite on mechanical and thermal properties of nanocellulose composites. Materials Today Communications, 2022, 33, 104549. Aramid Pulp Reinforced Clay Aerogel Composites: Mechanical, Thermal and Combustion Behavior. Gels, 874 2.1 4 2022, 8, 654. Ultrathin Cellulose Nanofiber Assisted Ambientâ€Pressureâ€Dried, Ultralight, Mechanically Robust, 11.1 Multifunctional MXene Aerogels. Advanced Materials, 2023, 35, . Surfactant Assisted In Situ Synthesis of Nanofibrillated Cellulose/Polymethylsilsesquioxane Aerogel 876 2.0 4 for Tuning Its Thermal Performance. Macromolecular Rapid Communications, 2023, 44, . Fabrication of Flame Retarded Cellulose Aerogel with Hydrophobicity via MF/MTMS Double Cross-Linking. Journal of Natural Fibers, 2023, 20, . A comparative study of smart polyurethane foam using RSM and COMSOL multiphysics for acoustical 879 1.35 applications: from materials to component. Journal of Porous Materials, 0, , . Scalable Production of Biodegradable, Recyclable, Sustainable Cellulose–Mineral Foams via 880 24 Coordination Interaction Assisted Ambient Drying. ACS Nano, 2022, 16, 16414-16425.

#	Article	IF	CITATIONS
881	Superaerophobic Resinâ€Grafted rGO Aerogel with Boosted Product Removal Delivering Highâ€Performance Hydrogen Release at Ultrahigh Storage Density. Small, 2022, 18, .	5.2	3
882	Nanocellulose Aerogels. Nanoscience and Technology, 2023, , 107-139.	1.5	Ο
883	Highly thermally conductive phase change composites with anisotropic graphene/cellulose nanofiber hybrid aerogels for efficient temperature regulation and solar-thermal-electric energy conversion applications. Composites Part B: Engineering, 2023, 248, 110367.	5.9	41
884	A solid composite electrolyte of 3D framework Li6.25La3Sn1.25Bi0.75O12 for rechargeable solid-state batteries. Journal of Alloys and Compounds, 2023, 933, 167639.	2.8	3
885	Low-cost and temperature-resistant mullite fiber sponges with superior thermal insulation and high-temperature PM filtration. Separation and Purification Technology, 2023, 305, 122445.	3.9	7
886	Reinforced and Flame Retarded Cellulose Nanofibril/Sodium Alginate Compound Aerogel Fabricated via Boric Acid/Ca2+ Double Cross-Linking. Journal of Polymers and the Environment, 2023, 31, 1038-1050.	2.4	7
889	Ultra-Light and Ultra-Low Thermal Conductivity of Elastic Silica Nanofibrous Aerogel with TiO2 Opacifier Particles as Filler. Nanomaterials, 2022, 12, 3928.	1.9	3
890	Phosphorylated Metal–Organic Framework for Reducing Fire Hazards of Poly(Methyl Methacrylate). Polymers, 2022, 14, 4871.	2.0	5
891	Medium-entropy ceramic aerogels for robust thermal sealing. Journal of Materials Chemistry A, 2023, 11, 742-752.	5.2	2
892	Plant bio-inspired laminar cellulose-based foam with flame retardant, thermal insulation and excellent mechanical properties. Journal of Materials Chemistry A, 2023, 11, 1138-1147.	5.2	8
893	A biomass-based bilayer aerogel for efficient solar-driven steam production and electricity generation. Chemical Engineering Journal, 2023, 455, 140934.	6.6	18
894	3D fibrous aerogels from 1D polymer nanofibers for energy and environmental applications. Journal of Materials Chemistry A, 2023, 11, 512-547.	5.2	52
895	Cellulose-based, flexible polyurethane polyHIPEs with quasi-closed-cell structures and high stability for thermal insulation. Carbohydrate Polymers, 2023, 302, 120385.	5.1	7
896	Post-modified homo-coupled conjugated microporous polymer hollow nanostructured spheres via click chemistry for thermal insulation materials with excellent flame retardancy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 659, 130777.	2.3	4
897	Templating strategies for 3D-structured thermally conductive composites: Recent advances and thermal energy applications. Progress in Materials Science, 2023, 133, 101054.	16.0	42
898	Recent Advances in Ultrafine Fibrous Materials for Effective Warmth Retention. Advanced Fiber Materials, 2023, 5, 847-867.	7.9	8
899	Multiscale cellulose-based fireproof and thermal insulation gel materials with water-regulated forms. Nano Research, 0, , .	5.8	0
900	Research progress of 3D printing combined with thermoplastic foaming. Frontiers in Materials, 0, 9, .	1.2	5

	CITATION RI	CITATION REPORT	
# 901	ARTICLE Bioinspired SiC aerogels for super thermal insulation and adsorption with super-elasticity over	IF 6.6	Citations
	Construction of hierarchical and porous cellulosic wood with high mechanical strength towards		
902	directional Evaporation-driven electrical generation. Chemical Engineering Journal, 2023, 455, 140568.	6.6	3
903	Thermally insulating and electroactive cellular nanocellulose composite cryogels from hybrid nanofiber networks. Chemical Engineering Journal, 2023, 455, 140638.	6.6	10
904	Highly mesoporous and compressible sugarcane aerogel via top-down nanotechnology as effective and reusable oil absorbents. Cellulose, 2023, 30, 1057-1072.	2.4	5
905	Graphene-based flame-retardant polyurethane: a critical review. Polymer Bulletin, 2023, 80, 11633-11669.	1.7	4
906	3D Printing of Ultralow-Concentration 2D Nanomaterial Inks for Multifunctional Architectures. Nano Letters, 2023, 23, 155-162.	4.5	27
907	Nanocellulose in Paper and Board Coating. , 2023, , 197-298.		1
908	An Allâ€Natural Woodâ€Inspired Aerogel. Angewandte Chemie, 2023, 135, .	1.6	3
909	An Allâ€Natural Woodâ€Inspired Aerogel. Angewandte Chemie - International Edition, 2023, 62, .	7.2	21
910	Nanocellulose: Recent Advances Toward Biomedical Applications. Small Science, 2023, 3, .	5.8	11
911	Preparation of highly efficient thermal insulating halloysite nanotubes/polyvinyl alcohol composite aerogel based on a simple freezeâ€drying strategy. Polymer Composites, 2023, 44, 1648-1657.	2.3	7
912	Macroscopic mapping of the linear in-plane anisotropy of nanocellulosic thin films by Mueller matrix polarimetry. Composites Science and Technology, 2023, 233, 109889.	3.8	3
913	Ultralight, superelastic pure graphene aerogel for piezoresistive sensing application. Journal of Materials Science, 2023, 58, 850-863.	1.7	5
914	Bioinspired hollow porous fibers with low emissivity and conductivity aluminum platelet skin for thermal insulation. Journal of Materials Chemistry A, 2023, 11, 1704-1711.	5.2	2
915	Electron Microscopy Studies of Soft Nanomaterials. Chemical Reviews, 2023, 123, 4051-4145.	23.0	16
916	Template-directed growth of sustainable carboxymethyl cellulose-based aerogels decorated with ZIF-67 for activation peroxymonosulfate degradation of organic dyes. International Journal of Biological Macromolecules, 2023, 230, 123276.	3.6	3
917	Thermal insulation properties of lightweight, self-healing, and mesoporous carrageenan/PMMA cryogels. RSC Advances, 2023, 13, 1094-1105.	1.7	3
918	Emerging MXene/cellulose composites: Design strategies and diverse applications. Chemical Engineering Journal, 2023, 458, 141402.	6.6	36

#	Article	IF	CITATIONS
919	Thermally insulating composite aerogel with both active absorption and passive insulation functions based on azobenzene-modified chitosan/oligomeric β-cyclodextrin. Chemical Engineering Journal, 2023, 457, 141202.	6.6	4
920	Biodegradable and reprocessable cellulose-based polyurethane films for bonding and heat dissipation in transparent electronic devices. Industrial Crops and Products, 2023, 193, 116247.	2.5	6
921	Hierarchical boric acid/melamine aerogel based on reversible hydrogen bonds with robust fire resistance, thermal insulation and recycling properties. Composites Part B: Engineering, 2023, 252, 110507.	5.9	5
922	Preparation of high elastic bacterial cellulose aerogel through thermochemical vapor deposition catalyzed by solid acid for oil-water separation. Carbohydrate Polymers, 2023, 305, 120538.	5.1	24
923	Assessment of Forest Fire and Its Impact on Plant Biodiversity of Buffer Zone, Langtang National Park, Nepal. Indonesian Journal of Social and Environmental Issues, 2022, 3, 241-251.	0.1	0
924	Experimental Study on Active Thermal Protection for Electronic Devices Used in Deepâ^'Downholeâ^'Environment Exploration. Energies, 2023, 16, 1231.	1.6	5
925	Flow and assembly of cellulose nanocrystals (CNC): A bottom-up perspective - A review. International Journal of Biological Macromolecules, 2023, 232, 123391.	3.6	10
926	Graphene 3D Printing. , 2023, , 129-153.		0
927	Emerging low-density polyethylene/paraffin wax/aluminum composite as a form-stable phase change thermal interface material. International Journal of Minerals, Metallurgy and Materials, 2023, 30, 772-781.	2.4	3
928	Regulating and Controlling the Microstructure of Nanocellulose Aerogels by Varying the Intensity of Hydrogen Bonds. ACS Sustainable Chemistry and Engineering, 2023, 11, 1581-1590.	3.2	8
929	Strong, Shape-Memory Lignocellulosic Aerogel <i>via</i> Wood Cell Wall Nanoscale Reassembly. ACS Nano, 2023, 17, 4775-4789.	7.3	22
930	Influence of formic acid esterified cellulose nanofibrils on compressive strength, resilience and thermal stability of polyvinyl alcohol-xylan hydrogel. Carbohydrate Polymers, 2023, 308, 120663.	5.1	7
931	Effects of cell anisotropy on conductive and radiative thermal transport in polymeric foam insulation. Energy, 2023, 275, 127473.	4.5	6
932	Hierarchical PBO Nanofiber/PPS Melt-Blown Mats with a Controllable Porous Microstructure for Thermal Protection under Harsh Conditions. ACS Applied Polymer Materials, 0, , .	2.0	0
933	Nanopaper Electronics. Advanced Functional Materials, 2023, 33, .	7.8	6
934	Water-assisted synthesis of phenolic aerogel with superior compression and thermal insulation performance enabled by thick-united nano-structure. Chemical Engineering Journal, 2023, 464, 142805.	6.6	6
935	Preparing flame-retardant poly(phenylene oxide)/polyurea nanocomposite foam with excellent heat-resistance and shape memory performance. Composites Communications, 2023, 40, 101589.	3.3	1
936	A review of the state-of-the-art on thermal insulation performance of polymeric foams. Thermal Science and Engineering Progress, 2023, 41, 101808.	1.3	11

#	Article	IF	CITATIONS
937	Anisotropic thermally superinsulating boron nitride composite aerogel for building thermal management. Composites Part A: Applied Science and Manufacturing, 2023, 169, 107522.	3.8	5
938	Poly(vinyl alcohol) freeze casts with nano-additives as potential thermal insulators. Scientific Reports, 2023, 13, .	1.6	1
939	Alpha Al ₂ O ₃ Nanosheet-Based Biphasic Aerogels with High-Temperature Resistance up to 1600 °C. ACS Applied Materials & Interfaces, 2023, 15, 6848-6858.	4.0	7
940	Melt-blowing of silicane-modified phenolic fibrous mat for personal thermal protection. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 663, 131076.	2.3	1
941	Versatile Assembly of Metal–Phenolic Network Foams Enabled by Tannin–Cellulose Nanofibers. Advanced Materials, 2023, 35, .	11.1	10
942	Investigating the thermal conductivity and flame-retardant properties of BN/MoS2/PCNF composite film containing low BN and MoS2 nanosheets loading. Carbohydrate Polymers, 2023, 311, 120621.	5.1	6
943	Review on Hybrid Reinforced Polymer Matrix Composites with Nanocellulose, Nanomaterials, and Other Fibers. Polymers, 2023, 15, 984.	2.0	12
944	Advanced Flexible Materials from Nanocellulose. Advanced Functional Materials, 2023, 33, .	7.8	24
945	Organized mineralized cellulose nanostructures for biomedical applications. Journal of Materials Chemistry B, 2023, 11, 5321-5349.	2.9	2
946	Critical impact of nanocellulose on the synthesis of porous cellulose monolith with oriented microchannels: Structure control, mechanics, and mass transport. Nano Research, 2023, 16, 8018-8024.	5.8	1
947	A review on graphene oxide: 2D colloidal molecule, fluid physics, and macroscopic materials. Applied Physics Reviews, 2023, 10, .	5.5	11
948	Maximizing sound absorption, thermal insulation, and mechanical strength of anisotropic pectin cryogels. Chemical Engineering Journal, 2023, 462, 142236.	6.6	5
949	Engineering anisotropic structures of thermally insulating aerogels with high solar reflectance for energy-efficient cooling applications. Journal of Materials Chemistry A, 2023, 11, 7105-7114.	5.2	3
950	Fibrous Aerogels with Tunable Superwettability for High-Performance Solar-Driven Interfacial Evaporation. Nano-Micro Letters, 2023, 15, .	14.4	28
951	Recent advances in ground-breaking conjugated microporous polymers-based materials, their synthesis, modification and potential applications. Materials Today, 2023, 64, 180-208.	8.3	37
952	Rapidly synthesized, self-blowing, non-isocyanate polyurethane network foams with reprocessing to bulk networks via hydroxyurethane dynamic chemistry. Polymer, 2023, 272, 125858.	1.8	14
953	Structural Engineering of Hierarchical Aerogels Hybrid Networks for Efficient Thermal Comfort Management and Versatile Protection. Small, 2023, 19, .	5.2	9
954	Superelastic Carbon Aerogels: An Emerging Material for Advanced Thermal Protection in Extreme Environments. Advanced Functional Materials, 2023, 33, .	7.8	10

#	Article	IF	CITATIONS
955	Thermally insulating and fireâ€retardant bioâ€mimic structural composites with a negative Poisson's ratio for battery protection. , 2023, 5, .		4
956	Advanced Cellulose–Nanocarbon Composite Films for High-Performance Triboelectric and Piezoelectric Nanogenerators. Nanomaterials, 2023, 13, 1206.	1.9	3
957	Extremely low thermal conductivity and high electrical conductivity of sustainable carbonÂceramic electrospun nonwoven materials. Science Advances, 2023, 9, .	4.7	14
958	Boosting flame retardancy of thermoplastic polyurethane: Synergistic effect of nickel phosphide nanoparticles and molybdenum disulfide nanosheets. Journal of Vinyl and Additive Technology, 2023, 29, 522-533.	1.8	4
959	Cellulose Nanocrystals (CNCs) and Cellulose Nanofibers (CNFs) as Adsorbents of Heavy Metal Ions. Journal of Chemistry, 2023, 2023, 1-36.	0.9	2
960	Plant-Fiber and Wood-Based Functional Materials. Springer Handbooks, 2023, , 1645-1693.	0.3	2
961	Advanced Engineered Wood-Material Concepts. Springer Handbooks, 2023, , 1835-1888.	0.3	2
962	Engineering Structural Janus MXeneâ€nanofibrils Aerogels for Seasonâ€Adaptive Radiative Thermal Regulation. Small, 2023, 19, .	5.2	13
963	Preparation of a PVA/CNF/ETOS Elastic Aerogel by Directional Freezing and Its Application in Oil–Water Separation. ACS Applied Polymer Materials, 2023, 5, 3554-3563.	2.0	9
964	Lightweight, Radiation-Resistant, and Flexible Polyimide Foams with an Anisotropic Porous Structure for Efficient Thermal Insulation Applications. Industrial & Engineering Chemistry Research, 2023, 62, 6790-6805.	1.8	2
965	Nacreâ€Mimetic Nanocomposite Aerogels with Exceptional Mechanical Performance for Thermal Superinsulation at Extreme Conditions. Advanced Materials, 2023, 35, .	11.1	11
967	2D nanomaterial aerogels integrated with phase change materials: a comprehensive review. Materials Advances, 2023, 4, 2698-2729.	2.6	4
999	Recent Progress of Bionic Hierarchical Structure in the Field of Thermal Insulation Protection. Journal of Bionic Engineering, 2024, 21, 1-18.	2.7	0
1013	Potential of Anisotropic Cellulose Aerogels. Springer Handbooks, 2023, , 727-745.	0.3	0
1017	Fire-Resistant Polymeric Foams and Their Applications. ACS Symposium Series, 0, , 97-121.	0.5	1
1018	Nanocellulose Aerogels. Springer Handbooks, 2023, , 707-725.	0.3	0
1044	Research progress in green preparation of advanced wood-based composites. Advanced Composites and Hybrid Materials, 2023, 6, .	9.9	2
1067	A Deep Investigation Into Nano SiOâ,, Reinforced RTV for High Voltage Insulators Application [*] ., 2023, , .		0

#	Article	IF	CITATIONS
1081	Flame retardant properties of polymer/graphene nanocomposites. , 2024, , 159-200.		0
1082	Biobased nanoparticles as flame retardant for polymers. , 2024, , 321-354.		0
1083	Highly Aligned Graphene Aerogels for Multifunctional Composites. Nano-Micro Letters, 2024, 16, .	14.4	0