Planning for cooler cities: A framework to prioritise gre high temperatures in urban landscapes

Landscape and Urban Planning 134, 127-138 DOI: 10.1016/j.landurbplan.2014.10.018

Citation Report

#	Article	IF	CITATIONS
1	LANDSCAPING WITH NATIVE PLANTS IN OMAN. Acta Horticulturae, 2015, , 181-192.	0.1	5
2	On the Science-Policy Bridge: Do Spatial Heat Vulnerability Assessment Studies Influence Policy?. International Journal of Environmental Research and Public Health, 2015, 12, 13321-13349.	1.2	45
3	Comparative microclimate and dewfall measurements at an urban green roof versus bitumen roof. Building and Environment, 2015, 92, 713-723.	3.0	37
5	Residents' understanding of the role of green infrastructure for climate change adaptation in Hangzhou, China. Landscape and Urban Planning, 2015, 138, 132-143.	3.4	95
6	Identifying keystone meteorological factors of green-roof stormwater retention to inform design and planning. Landscape and Urban Planning, 2015, 143, 173-182.	3.4	42
7	Street Orientation and Side of the Street Greatly Influence the Microclimatic Benefits Street Trees Can Provide in Summer. Journal of Environmental Quality, 2016, 45, 167-174.	1.0	77
8	Predicting Metapopulation Responses to Conservation in Human-Dominated Landscapes. Frontiers in Ecology and Evolution, 2016, 4, .	1.1	6
9	The Biodiversity of Urban and Peri-Urban Forests and the Diverse Ecosystem Services They Provide as Socio-Ecological Systems. Forests, 2016, 7, 291.	0.9	29
10	An Assessment of the Knowledge and Demand of Young Residents regarding the Ecological Services of Urban Green Spaces in Phnom Penh, Cambodia. Sustainability, 2016, 8, 523.	1.6	8
11	Linear Parks along Urban Rivers: Perceptions of Thermal Comfort and Climate Change Adaptation in Cyprus. Sustainability, 2016, 8, 1023.	1.6	31
12	Quantifying the City's Green Area Potential Gain Using Remote Sensing Data. Sustainability, 2016, 8, 1247.	1.6	39
13	Analysis of Thermal Environment over a Small-Scale Landscape in a Densely Built-Up Asian Megacity. Sustainability, 2016, 8, 358.	1.6	18
14	Could urban greening mitigate suburban thermal inequity?: the role of residents' dispositions and household practices. Environmental Research Letters, 2016, 11, 095014.	2.2	76
15	The Urban Forest and Ecosystem Services: Impacts on Urban Water, Heat, and Pollution Cycles at the Tree, Street, and City Scale. Journal of Environmental Quality, 2016, 45, 119-124.	1.0	491
16	CLIMATE-ORIENTED ASSESSMENT OF MAIN STREET DESIGN AND DEVELOPMENT IN BUDAPEST. Journal of Environmental Engineering and Landscape Management, 2016, 24, 258-268.	0.4	10
18	A Green Infrastructure Typology Matrix to Support Urban Microclimate Studies. Procedia Engineering, 2016, 169, 183-190.	1.2	81
19	Green Control of Microclimate in Buildings. Agriculture and Agricultural Science Procedia, 2016, 8, 576-582.	0.6	23
20	Urban Forest Governance: FUTURE—The 100,000 Trees Project in the Porto Metropolitan Area. World Sustainability Series, 2016, , 187-202.	0.3	3

ιτλτιώνι Ρερώ

#	Article	IF	CITATIONS
21	Urban greenspace delivery in Hong Kong: Spatial-institutional limitations and solutions. Urban Forestry and Urban Greening, 2016, 18, 65-85.	2.3	70
22	Effect of vegetation and waterbody on the garden city concept: An evaluation study using a newly developed city, Putrajaya, Malaysia. Computers, Environment and Urban Systems, 2016, 58, 39-51.	3.3	39
23	Adapting and applying evidence gathering techniques for planning and investment in street trees: A case study from Brisbane, Australia. Urban Forestry and Urban Greening, 2016, 19, 79-87.	2.3	10
24	The influence of increasing tree cover on mean radiant temperature across a mixed development suburb in Adelaide, Australia. Urban Forestry and Urban Greening, 2016, 20, 233-242.	2.3	65
25	Thermal infrared remote sensing of urban heat: Hotspots, vegetation, and an assessment of techniques for use in urban planning. Remote Sensing of Environment, 2016, 186, 637-651.	4.6	136
26	Using green infrastructure for urban climate-proofing: An evaluation of heat mitigation measures at the micro-scale. Urban Forestry and Urban Greening, 2016, 20, 305-316.	2.3	241
27	Temporal variations in microclimate cooling induced by urban trees in Mainz, Germany. Urban Forestry and Urban Greening, 2016, 20, 198-209.	2.3	44
28	Promoting nature-based solutions for climate adaptation in cities through impact assessment. , 2016, , \cdot		10
29	A complex landscape of inequity in access to urban parks: A literature review. Landscape and Urban Planning, 2016, 153, 160-169.	3.4	449
30	Quantifying the influences of various ecological factors on land surface temperature of urban forests. Environmental Pollution, 2016, 216, 519-529.	3.7	87
31	Urbanization and health in China, thinking at the national, local and individual levels. Environmental Health, 2016, 15, 32.	1.7	133
32	How effective is â€~greening' of urban areas in reducing human exposure to ground-level ozone concentrations, UV exposure and the â€~urban heat island effect'? A protocol to update a systematic review. Environmental Evidence, 2016, 5, .	1.1	19
33	The role of urban green infrastructure in mitigating land surface temperature in Bobo-Dioulasso, Burkina Faso. Environment, Development and Sustainability, 2016, 18, 373-392.	2.7	55
34	Towards city-wide, building-resolving analysis of mean radiant temperature. Urban Climate, 2016, 15, 83-98.	2.4	16
35	Climate adaptation and urban planning for heat islands: a case study of the Australian Capital Territory. Australian Planner, 2016, 53, 127-142.	0.6	3
36	Green infrastructure for urban climate adaptation: How do residents' views on climate impacts and green infrastructure shape adaptation preferences?. Landscape and Urban Planning, 2017, 157, 106-130.	3.4	205
37	The role of monitoring sustainable drainage systems for promoting transition towards regenerative urban built environments: a case study in the Valencian region, Spain. Journal of Cleaner Production, 2017, 163, S113-S124.	4.6	66
38	Governing green stormwater infrastructure: the Philadelphia experience. Local Environment, 2017, 22, 256-268.	1.1	41

#	Article	IF	Citations
39	Integration of remote sensing based surface information into a three-dimensional microclimate model. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 125, 106-124.	4.9	19
40	Quantifying street tree regulating ecosystem services using Google Street View. Ecological Indicators, 2017, 77, 31-40.	2.6	87
41	Cooling effect of direct green façades during hot summer days: An observational study in Nanjing, China using TIR and 3DPC data. Building and Environment, 2017, 116, 195-206.	3.0	55
42	The Urban Heat Island: Thermal Comfort and the Role of Urban Greening. Future City, 2017, , 7-19.	0.2	19
43	Inculcating herbal plots as effective cooling mechanism in urban planning. Acta Horticulturae, 2017, , 235-242.	0.1	5
44	The predictors of the behavioral intention to the use of urban green spaces: The perspectives of young residents in Phnom Penh, Cambodia. Habitat International, 2017, 64, 98-108.	2.3	46
45	Spatial planning for multifunctional green infrastructure: Growing resilience in Detroit. Landscape and Urban Planning, 2017, 159, 62-75.	3.4	547
46	Attenuating the surface Urban Heat Island within the Local Thermal Zones through land surface modification. Journal of Environmental Management, 2017, 187, 239-252.	3.8	46
47	Experimental study of green walls impacts on buildings in summer and winter under an oceanic climate. Energy and Buildings, 2017, 150, 403-411.	3.1	63
48	Impact of land use change and urbanization on urban heat island in Lucknow city, Central India. A remote sensing based estimate. Sustainable Cities and Society, 2017, 32, 100-114.	5.1	291
49	Urban Nature and Urban Ecosystem Services. Advances in 21st Century Human Settlements, 2017, , 181-199.	0.3	3
50	Addressing thermophysiological thresholds and psychological aspects during hot and dry mediterranean summers through public space design: The case of Rossio. Building and Environment, 2017, 118, 67-90.	3.0	46
51	The influence of small green space type and structure at the street level on urban heat island mitigation. Urban Forestry and Urban Greening, 2017, 21, 203-212.	2.3	159
52	Urban green space dynamics and socio-environmental inequity: multi-resolution and spatiotemporal data analysis of Kumasi, Ghana. International Journal of Remote Sensing, 2017, 38, 6993-7020.	1.3	51
53	Air quality considerations for stormwater green street design. Environmental Pollution, 2017, 231, 768-778.	3.7	20
54	Impacts of Climate Change on Urban Areas and Nature-Based Solutions for Adaptation. Theory and Practice of Urban Sustainability Transitions, 2017, , 15-27.	1.9	39
55	Assessing the Cooling Effects of Different Vegetation Settings in a Hong Kong Golf Course. Procedia Environmental Sciences, 2017, 37, 626-636.	1.3	18
56	Landsenses pattern design to mitigate gale conditions in the coastal city – a case study of Pingtan, China. International Journal of Sustainable Development and World Ecology, 2017, 24, 352-361.	3.2	12

#	Article	IF	CITATIONS
57	Shifting roles of urban green space in the context of urban development and global change. Current Opinion in Environmental Sustainability, 2017, 29, 32-39.	3.1	31
58	Adapting the botanical landscape of Melbourne Gardens (Royal Botanic Gardens Victoria) in response to climate change. Plant Diversity, 2017, 39, 338-347.	1.8	9
60	Estimating the cooling capacity of green infrastructures to support urban planning. Ecosystem Services, 2017, 26, 225-235.	2.3	126
61	Investigating the effect of urban configurations on the variation of air temperature. International Journal of Sustainable Built Environment, 2017, 6, 389-399.	3.2	18
62	Passive Cooling Energy Systems SWOT Analyses for Energy-use Reductions at Three Spatial Levels. Energy Procedia, 2017, 105, 3411-3418.	1.8	10
63	The cooling effect of green infrastructure on surrounding built environments in a sub-tropical climate: a case study in Taipei metropolis. Landscape Research, 2017, 42, 558-573.	0.7	12
64	Evaluation of wall surface temperatures in green facades. Proceedings of the Institution of Civil Engineers: Engineering Sustainability, 2017, 170, 334-344.	0.4	14
65	Enhancement of urban heat load through social inequalities on an example of a fictional city King's Landing. International Journal of Biometeorology, 2017, 61, 527-539.	1.3	12
66	Microclimate benefits that different street tree species provide to sidewalk pedestrians relate to differences in Plant Area Index. Landscape and Urban Planning, 2017, 157, 502-511.	3.4	117
67	Distribution of ornamental urban trees and their influence on airborne pollen in the SW of Iberian Peninsula. Landscape and Urban Planning, 2017, 157, 434-446.	3.4	41
68	Towards a comprehensive green infrastructure typology: a systematic review of approaches, methods and typologies. Urban Ecosystems, 2017, 20, 15-35.	1.1	143
69	Towards guidelines for designing parks of the future. Urban Forestry and Urban Greening, 2017, 21, 134-145.	2.3	26
70	Examining default urban-aspect-ratios and sky-view-factors to identify priorities for thermal-sensitive public space design in hot-summer Mediterranean climates: The Lisbon case. Building and Environment, 2017, 126, 442-456.	3.0	32
71	Vegetation as a passive system for enhancing building climate control. Acta Horticulturae, 2017, , 555-562.	0.1	10
72	Only cooling and saving water? Effects of rainwater management measures on biodiversity: a meta-analysis. Acta Horticulturae, 2017, , 481-486.	0.1	2
73	Combining the Conservation of Biodiversity with the Provision of Ecosystem Services in Urban Green Infrastructure Planning: Critical Features Arising from a Case Study in the Metropolitan Area of Rome. Sustainability, 2017, 9, 10.	1.6	29
74	Methodology for Thermal Behaviour Assessment of Homogeneous Façades in Heritage Buildings. Journal of Sensors, 2017, 2017, 1-13.	0.6	7
75	Adaptation to Climate Change through Spatial Planning in Compact Urban Areas: A Case Study in the City of Thessaloniki. Sustainability, 2017, 9, 271.	1.6	52

#		IE	CITATIONS
π 	Urban Green Infrastructure as a tool for urban heat mitigation: Survey of research methodologies		CHAHONS
76	and findings across different climatic regions. Urban Climate, 2018, 24, 94-110.	2.4	146
77	Quantifying Water and Energy Fluxes Over Different Urban Land Covers in Phoenix, Arizona. Journal of Geophysical Research D: Atmospheres, 2018, 123, 2111-2128.	1.2	21
78	Identifying outdoor thermal risk areas and evaluation of future thermal comfort concerning shading orientation in a traditional settlement. Science of the Total Environment, 2018, 626, 567-580.	3.9	32
79	Maximum extent of human heat stress reduction on building areas due to urban greening. Urban Forestry and Urban Greening, 2018, 32, 154-167.	2.3	46
80	Spatial-temporal change of land surface temperature across 285 cities in China: An urban-rural contrast perspective. Science of the Total Environment, 2018, 635, 487-497.	3.9	171
81	A GIS-based framework to identify priority areas for urban environmental inequity mitigation and its application in Santiago de Chile. Applied Geography, 2018, 94, 213-222.	1.7	29
82	Evaluating the cooling effects of green infrastructure: A systematic review of methods, indicators and data sources. Solar Energy, 2018, 166, 486-508.	2.9	179
83	Does subclassified industrial land have a characteristic impact on land surface temperatures? Evidence for and implications of coal and steel processing industries in a Chinese mining city. Ecological Indicators, 2018, 89, 22-34.	2.6	24
84	Ecosystem based Disaster Risk Reduction approaches (EbDRR) as a prerequisite for inclusive urban transformation of Nagpur City, India. International Journal of Disaster Risk Reduction, 2018, 32, 95-105.	1.8	59
85	Analyzing control of respiratory particulate matter on Land Surface Temperature in local climatic zones of English Bazar Municipality and Surroundings. Urban Climate, 2018, 24, 34-50.	2.4	37
86	Analysis of the interrelationship between houses, trees and damage in a cyclone affected city: Can landscape design and planning utilising trees minimise cyclone impact?. International Journal of Disaster Risk Reduction, 2018, 28, 701-710.	1.8	7
87	Outdoor comfort conditions in urban areas: On citizens' perspective about microclimate mitigation of urban transit areas. Sustainable Cities and Society, 2018, 39, 16-36.	5.1	73
88	Effect of native habitat on the cooling ability of six nursery-grown tree species and cultivars for future roadside plantings. Urban Forestry and Urban Greening, 2018, 30, 37-45.	2.3	27
89	Mediating the science-policy interface: Insights from the urban water sector in Melbourne, Australia. Environmental Science and Policy, 2018, 82, 143-150.	2.4	21
90	The potentials of Sentinel-2 and LandSat-8 data in green infrastructure extraction, using object based image analysis (OBIA) method. European Journal of Remote Sensing, 2018, 51, 231-240.	1.7	67
91	Comparing the cooling effects of a tree and a concrete shelter using PET and UTCI. Building and Environment, 2018, 130, 49-61.	3.0	119
92	Component characterization and predictive modeling for green roof substrates optimized to adsorb P and improve runoff quality: A review. Environmental Pollution, 2018, 237, 988-999.	3.7	24
93	Modeling transpiration and leaf temperature of urban trees – A case study evaluating the microclimate model ENVI-met against measurement data. Landscape and Urban Planning, 2018, 174, 33-40.	3.4	105

#	Article	IF	CITATIONS
94	What might â€j̃ust green enough' urban development mean in the context of climate change adaptation? The case of urban greenspace planning in Taipei Metropolis, Taiwan. World Development, 2018, 107, 224-238.	2.6	42
95	Spatial alternatives for Green Infrastructure planning across the EU: An ecosystem service perspective. Landscape and Urban Planning, 2018, 174, 41-54.	3.4	55
96	Thermal comfort of pedestrians in an urban street canyon is affected by increasing albedo of building walls. International Journal of Biometeorology, 2018, 62, 1199-1209.	1.3	44
97	A heat vulnerability index to improve urban public health management in San Juan, Puerto Rico. International Journal of Biometeorology, 2018, 62, 709-722.	1.3	56
98	Farmland – an Elephant in the Room of Urban Green Infrastructure? Lessons learned from connectivity analysis in three German cities. Ecological Indicators, 2018, 94, 151-163.	2.6	26
99	Facing the heat: A systematic literature review exploring the transferability of solutions to cope with urban heat waves. Urban Climate, 2018, 24, 714-727.	2.4	44
100	A study of the application of permeable pavements as a sustainable technique for the mitigation of soil sealing in cities: A case study in the south of Spain. Journal of Environmental Management, 2018, 205, 151-162.	3.8	47
101	Using water management infrastructure to address both flood risk and the urban heat island. International Journal of Water Resources Development, 2018, 34, 490-498.	1.2	34
102	Confronting potential future augmentations of the physiologically equivalent temperature through public space design: The case of Rossio, Lisbon. Sustainable Cities and Society, 2018, 37, 7-25.	5.1	30
103	Land-use planning as a tool for balancing the scientific and the social in biodiversity and ecosystem services mainstreaming? The case of Durban, South Africa. Journal of Environmental Planning and Management, 2018, 61, 2338-2357.	2.4	11
104	Towards a better understanding of Green Infrastructure: A critical review. Ecological Indicators, 2018, 85, 758-772.	2.6	137
105	A planning framework to evaluate demands and preferences by different social groups for accessibility to urban greenspaces. Sustainable Cities and Society, 2018, 36, 346-362.	5.1	90
106	Eco-Health linkages: assessing the role of ecosystem goods and services on human health using causal criteria analysis. International Journal of Public Health, 2018, 63, 81-92.	1.0	18
107	Evaluating the multiple benefits of a sustainable drainage scheme in Newcastle, UK. Water Management, 2018, 171, 191-202.	0.4	17
108	Implementation as more than installation: a case study of the challenges in implementing green infrastructure projects in two Australian primary schools. Urban Water Journal, 2018, 15, 911-917.	1.0	18
109	Data for an Importance-Performance Analysis (IPA) of a Public Green Infrastructure and Urban Nature Space in Perth, Western Australia. Data, 2018, 3, 69.	1.2	11
110	Visitor Satisfaction with a Public Green Infrastructure and Urban Nature Space in Perth, Western Australia. Land, 2018, 7, 159.	1.2	18
111	Assessing green waste route by using Network Analysis. IOP Conference Series: Earth and Environmental Science, 2018, 123, 012021.	0.2	0

#	Article	IF	CITATIONS
113	Heat fluxes in green walls. Acta Horticulturae, 2018, , 273-278.	0.1	1
114	Climate Change and Transport Infrastructures: State of the Art. Sustainability, 2018, 10, 4098.	1.6	42
115	Gardening the City: Addressing Sustainability and Adapting to Global Warming through Urban Agriculture. Environments - MDPI, 2018, 5, 38.	1.5	28
116	Public Green Infrastructure Contributes to City Livability: A Systematic Quantitative Review. Land, 2018, 7, 161.	1.2	41
117	Alternative scenarios for ecological urbanizations using ENVI-met model. Environmental Science and Pollution Research, 2018, 25, 26307-26321.	2.7	32
118	Conceptualizing Lenses, Dimensions, Constructs, and Indicators for Urban Park Quality. Environmental Justice, 2018, 11, 208-221.	0.8	4
120	Role of green roofs in reducing heat stress in vulnerable urban communities—a multidisciplinary approach. Environmental Research Letters, 2018, 13, 094011.	2.2	39
122	Structural response of black locust (Robinia pseudoacacia L.) and small-leaved lime (Tilia cordata) Tj ETQq1 1 0.78 ecological functions and services. Urban Forestry and Urban Greening, 2018, 35, 129-138.	34314 rgB 2.3	T /Overloc 16
123	Contrasting distributions of urban green infrastructure across social and ethno-racial groups. Landscape and Urban Planning, 2018, 175, 136-148.	3.4	90
124	Where the people are: Current trends and future potential targeted investments in urban trees for PM10 and temperature mitigation in 27 U.S. Cities. Landscape and Urban Planning, 2018, 177, 227-240.	3.4	41
125	Establishing street trees in stormwater control measures can double tree growth when extended waterlogging is avoided. Landscape and Urban Planning, 2018, 178, 122-129.	3.4	41
126	AIR Louisville: Addressing Asthma With Technology, Crowdsourcing, Cross-Sector Collaboration, And Policy. Health Affairs, 2018, 37, 525-534.	2.5	55
127	Cooling Effects and Regulating Ecosystem Services Provided by Urban Trees—Novel Analysis Approaches Using Urban Tree Cadastre Data. Sustainability, 2018, 10, 712.	1.6	43
128	Facing the urban overheating: Recent developments. Mitigation potential and sensitivity of the main technologies. Wiley Interdisciplinary Reviews: Energy and Environment, 2018, 7, e294.	1.9	21
129	The Impact of Tipuana tipu Species on Local Human Thermal Comfort Thresholds in Different Urban Canyon Cases in Mediterranean Climates: Lisbon, Portugal. Atmosphere, 2018, 9, 12.	1.0	22
130	Approaches to Outdoor Thermal Comfort Thresholds through Public Space Design: A Review. Atmosphere, 2018, 9, 108.	1.0	68
131	Responses of Urban Land Surface Temperature on Land Cover: A Comparative Study of Vienna and Madrid. Sustainability, 2018, 10, 260.	1.6	43
132	A New Framework to Evaluate Urban Design Using Urban Microclimatic Modeling in Future Climatic Conditions. Sustainability, 2018, 10, 1134.	1.6	41

#	Article	IF	CITATIONS
133	Sustainable Urban Water Management under a Changing Climate: The Role of Spatial Planning. Water (Switzerland), 2018, 10, 546.	1.2	46
134	Orientation effect on thermal and energy performance of vertical greenery systems. Energy and Buildings, 2018, 175, 102-112.	3.1	37
135	Urban Social-ecological Innovation: Implications for Adaptive Natural Resource Management. Ecological Economics, 2018, 150, 153-164.	2.9	15
136	Global pattern of human thermal adaptation and limit of thermal neutrality: Systematic analysis of outdoor neutral temperature. International Journal of Climatology, 2018, 38, 5037-5049.	1.5	23
137	Analysis and Comparison of Shading Strategies to Increase Human Thermal Comfort in Urban Areas. Atmosphere, 2018, 9, 91.	1.0	51
138	Would LEED-UHI greenery and high albedo strategies mitigate climate change at neighborhood scale in Cairo, Egypt?. Building Simulation, 2018, 11, 1273-1288.	3.0	31
139	Investigation of the effects of wetlands on micro-climate. Applied Geography, 2018, 97, 48-60.	1.7	15
140	A comprehensive review of thermal adaptive strategies in outdoor spaces. Sustainable Cities and Society, 2018, 41, 647-665.	5.1	70
141	Prospects of green roofs in urban Thailand – A multi-criteria decision analysis. Journal of Cleaner Production, 2018, 196, 400-410.	4.6	47
142	Linking hydrological and bioecological benefits of green infrastructures across spatial scales – A literature review. Science of the Total Environment, 2019, 646, 1219-1231.	3.9	73
143	Mapping the socio-political landscape of heat mitigation through urban greenspaces: the case of Taipei Metropolis. Environment and Urbanization, 2019, 31, 552-574.	1.5	9
144	Planning and selection of green roofs in large urban areas. Application to Madrid metropolitan area. Urban Forestry and Urban Greening, 2019, 40, 323-334.	2.3	16
145	Smarter ecosystems for smarter cities? A review of trends, technologies, and turning points for smart urban forestry. Sustainable Cities and Society, 2019, 51, 101770.	5.1	124
146	Exploring reconfiguration scenarios of high-density urban neighborhoods on urban temperature–The case of Tehran (Iran). Urban Forestry and Urban Greening, 2019, 44, 126398.	2.3	14
147	Highâ€resolution national land use scenarios under a shrinking population in Japan. Transactions in GIS, 2019, 23, 786-804.	1.0	15
148	Landscape Preferences and Distance Decay Analysis for Mapping the Recreational Potential of an Urban Area. Sustainability, 2019, 11, 3620.	1.6	14
149	The contribution of constructed green infrastructure to urban biodiversity: A synthesis and metaâ€analysis. Journal of Applied Ecology, 2019, 56, 2131-2143.	1.9	110
150	Green roofs to reduce building energy use? A review on key structural factors of green roofs and their effects on urban climate. Building and Environment, 2019, 162, 106273.	3.0	106

#	Article	IF	CITATIONS
151	Key Enablers of and Barriers to the Uptake and Implementation of Nature-Based Solutions in Urban Settings: A Review. Resources, 2019, 8, 121.	1.6	148
152	Predictive model of surface temperature difference between green façades and uncovered wall in Mediterranean climatic area. Applied Thermal Engineering, 2019, 163, 114406.	3.0	23
153	Intersecting urban forestry and botanical gardens to address big challenges for healthier trees, people, and cities. Plants People Planet, 2019, 1, 315-322.	1.6	32
154	Convective heat transfer in green façade system. Biosystems Engineering, 2019, 188, 67-81.	1.9	21
155	Urban heat island behaviors in dryland regions. Environmental Research Communications, 2019, 1, 081005.	0.9	17
156	Urban water metabolism information for planning water sensitive city-regions. Land Use Policy, 2019, 88, 104144.	2.5	21
157	Improving land-cover classification accuracy with a patch-based convolutional neural network: data augmentation and purposive sampling. , 2019, , .		0
158	Effects of Area and Shape of Greenspace on Urban Cooling in Nanjing, China. Journal of the Urban Planning and Development Division, ASCE, 2019, 145, .	0.8	20
159	Green and Blue Infrastructure in Darwin; Carbon Economies and the Social and Cultural Dimensions of Valuing Urban Mangroves in Australia. Urban Science, 2019, 3, 86.	1.1	5
160	Green infrastructure provision for environmental justice: Application of the equity index in Guangzhou, China. Urban Forestry and Urban Greening, 2019, 46, 126443.	2.3	47
161	The Interplay Between Ozone and Urban Vegetation—BVOC Emissions, Ozone Deposition, and Tree Ecophysiology. Frontiers in Forests and Global Change, 2019, 2, .	1.0	72
162	Planning the urban forest: Adding microclimate simulation to the planner's toolkit. Land Use Policy, 2019, 88, 104117.	2.5	24
163	Al-Based Physical and Virtual Platform with 5-Layered Architecture for Sustainable Smart Energy City Development. Sustainability, 2019, 11, 4479.	1.6	33
164	Nature-based solutions for hydro-meteorological hazards: Revised concepts, classification schemes and databases. Environmental Research, 2019, 179, 108799.	3.7	101
165	(Re)presenting urban heat islands in Australian cities: A study of media reporting and implications for urban heat and climate change debates. Urban Climate, 2019, 27, 420-429.	2.4	32
166	Combining biophysical and socioeconomic suitability models for urban forest planning. Urban Forestry and Urban Greening, 2019, 38, 371-382.	2.3	12
167	Spatial structure of surface urban heat island and its relationship with vegetation and built-up areas in Melbourne, Australia. Science of the Total Environment, 2019, 659, 1335-1351.	3.9	83
168	Heat stress vulnerability and risk at the (super) local scale in six Brazilian capitals. Climatic Change, 2019, 154, 477-492.	1.7	43

#	Article	IF	CITATIONS
169	Investigating urban heat island through spatial analysis of New York City streetscapes. Journal of Cleaner Production, 2019, 233, 972-992.	4.6	57
170	Effects of Urbanization on the Diversity, Abundance, and Composition of Ant Assemblages in an Arid City. Environmental Entomology, 2019, 48, 836-846.	0.7	10
171	Local Scale Prioritisation of Green Infrastructure for Enhancing Biodiversity in Peri-Urban Agroecosystems: A Multi-Step Process Applied in the Metropolitan City of Rome (Italy). Sustainability, 2019, 11, 3322.	1.6	22
172	A review of assessment methods for the urban environment and its energy sustainability to guarantee climate adaptation of future cities. Renewable and Sustainable Energy Reviews, 2019, 112, 733-746.	8.2	128
173	Canopy transpiration and its cooling effect of three urban tree species in a subtropical city- Guangzhou, China. Urban Forestry and Urban Greening, 2019, 43, 126368.	2.3	51
174	Mitigating Urban Heating in Dryland Cities: A Literature Review. Journal of Planning Literature, 2019, 34, 434-446.	2.2	18
175	Urban Green Infrastructure for Shrinking City: Case Study - City of Osijek. IOP Conference Series: Materials Science and Engineering, 0, 471, 102025.	0.3	1
176	Systematic review of smart cities and climate change adaptation. Sustainability Accounting, Management and Policy Journal, 2019, 10, 745-772.	2.4	21
177	Substantial declines in urban tree habitat predicted under climate change. Science of the Total Environment, 2019, 685, 451-462.	3.9	49
178	Calibration of Thermal Analysis Models and Thermal Sensors in a Homogeneous Building Enclosure. Applied Mechanics and Materials, 2019, 887, 597-604.	0.2	0
179	Green Infrastructure in the Urban Environment: A Systematic Quantitative Review. Sustainability, 2019, 11, 3182.	1.6	88
180	Co-benefits approach: Opportunities for implementing sponge city and urban heat island mitigation. Land Use Policy, 2019, 86, 147-157.	2.5	170
181	Public assessment of green infrastructure benefits and associated influencing factors in two Ethiopian cities: Bahir Dar and Hawassa. BMC Ecology, 2019, 19, 16.	3.0	15
182	Assessing the Heat Vulnerability of Different Local Climate Zones in the Old Areas of a Chinese Megacity. Sustainability, 2019, 11, 2032.	1.6	26
183	Urban Trees and Their Impact on Local Ozone Concentration—A Microclimate Modeling Study. Atmosphere, 2019, 10, 154.	1.0	23
184	Characterizing and measuring urban landscapes for sustainability. Environmental Research Letters, 2019, 14, 045002.	2.2	50
185	Energy poverty and indoor cooling: An overlooked issue in Europe. Energy and Buildings, 2019, 196, 21-29.	3.1	134
186	Mitigating Heat Islands Effect in Mega Cities through Districts' Prioritisation for Urban Green Coverage Applications: Cairo – Egypt as a Case Study. Renewable Energy and Environmental Sustainability. 2019. 4. 5.	0.7	4

#	Article	IF	CITATIONS
187	The effect of urbanization gradients and forest types on microclimatic regulation by trees, in association with climate, tree sizes and species compositions in Harbin city, northeastern China. Urban Ecosystems, 2019, 22, 367-384.	1.1	21
188	Non-motorised transport prioritisation model using spatial intelligence. Proceedings of the Institution of Civil Engineers: Transport, 2019, 172, 111-121.	0.3	1
189	Urban green space cooling effect in cities. Heliyon, 2019, 5, e01339.	1.4	292
190	Residential Greenery: State of the Art and Health-Related Ecosystem Services and Disservices in the City of Berlin. Sustainability, 2019, 11, 1815.	1.6	35
191	Hydrograph peak-shaving using a graph-theoretic algorithm for placement of hydraulic control structures. Advances in Water Resources, 2019, 127, 167-179.	1.7	11
192	Variations in pedestrian mean radiant temperature based on the spacing and size of street trees. Sustainable Cities and Society, 2019, 48, 101521.	5.1	42
193	Scale dependence of the benefits and efficiency of green and cool roofs. Landscape and Urban Planning, 2019, 185, 127-140.	3.4	52
194	Enhancing urban ventilation performance through the development of precinct ventilation zones: A case study based on the Greater Sydney, Australia. Sustainable Cities and Society, 2019, 47, 101472.	5.1	143
195	Valley of the sun-drenched parking space: The growth, extent, and implications of parking infrastructure in Phoenix. Cities, 2019, 89, 186-198.	2.7	23
196	Rational Design of Soft, Thermally Conductive Composite Liquidâ€Cooled Tubes for Enhanced Personal, Robotics, and Wearable Electronics Cooling. Advanced Materials Technologies, 2019, 4, 1800690.	3.0	29
197	Urban heat island, urban climate maps and urban development policies and action plans. Environmental Technology and Innovation, 2019, 14, 100341.	3.0	63
198	Elevated Risk of Ecological Land and Underlying Factors Associated with Rapid Urbanization and Overprotected Agriculture in Northeast China. Sustainability, 2019, 11, 6203.	1.6	8
199	Assessing the vulnerability of Australia's urban forests to climate extremes. Plants People Planet, 2019, 1, 387-397.	1.6	17
200	Greening Blocks: A Conceptual Typology of Practical Design Interventions to Integrate Health and Climate Resilience Co-Benefits. International Journal of Environmental Research and Public Health, 2019, 16, 4241.	1.2	21
201	Urban Green Space: Creating a Triple Win for Environmental Sustainability, Health, and Health Equity through Behavior Change. International Journal of Environmental Research and Public Health, 2019, 16, 4403.	1.2	91
202	A green infrastructure spatial planning model for evaluating ecosystem service tradeoffs and synergies across three coastal megacities. Environmental Research Letters, 2019, 14, 125011.	2.2	57
203	Designing Urban Green Blue Infrastructure for Mental Health and Elderly Wellbeing. Sustainability, 2019, 11, 6425.	1.6	58
204	Street trees' management perspectives: Reuse of Tilia sp.'s pruning waste for insulation purposes. Urban Forestry and Urban Greening, 2019, 38, 177-182.	2.3	12

#	Article	IF	CITATIONS
205	Designing public squares with green infrastructure to optimize human thermal comfort. Building and Environment, 2019, 149, 640-654.	3.0	105
206	Geographical Information Systems Theory, Applications and Management. Communications in Computer and Information Science, 2019, , .	0.4	1
207	Promoting Citizens' Quality of Life Through Green Urban Planning. Communications in Computer and Information Science, 2019, , 153-175.	0.4	3
208	Do grey infrastructures always elevate urban temperature? No, utilizing grey infrastructures to mitigate urban heat island effects. Sustainable Cities and Society, 2019, 46, 101392.	5.1	65
209	Multi Criteria Decision Making in Selecting Stormwater Management Green Infrastructure for Industrial Areas Part 1: Stakeholder Preference Elicitation. Water Resources Management, 2019, 33, 627-639.	1.9	21
210	The exposure of slums to high temperature: Morphology-based local scale thermal patterns. Science of the Total Environment, 2019, 650, 1805-1817.	3.9	32
211	Establishing Priorities for Urban Green Infrastructure Research in Australia. Urban Policy and Research, 2019, 37, 30-44.	0.8	17
212	How to cool hot-humid (Asian) cities with urban trees? An optimal landscape size perspective. Agricultural and Forest Meteorology, 2019, 265, 338-348.	1.9	123
213	Turning down the heat: An enhanced understanding of the relationship between urban vegetation and surface temperature at the city scale. Science of the Total Environment, 2019, 656, 118-128.	3.9	88
214	Regulating Ecosystem Services and Green Infrastructure: assessment of Urban Heat Island effect mitigation in the municipality of Rome, Italy. Ecological Modelling, 2019, 392, 92-102.	1.2	128
215	Urban heat islands in relation to green land use in European cities. Urban Forestry and Urban Greening, 2019, 37, 33-41.	2.3	104
216	Multidisciplinary collaboration and understanding of green infrastructure Results from the cities of Tampere, Vantaa and JyvÄskylĤ(Finland). Urban Forestry and Urban Greening, 2019, 40, 63-72.	2.3	20
217	Assessment of the sustainable potential of parking lots in BahÃa Blanca City, Argentina. Geo Journal, 2020, 85, 1257-1275.	1.7	4
218	Downscaling Landsat-8 land surface temperature maps in diverse urban landscapes using multivariate adaptive regression splines and very high resolution auxiliary data. International Journal of Digital Earth, 2020, 13, 899-914.	1.6	22
219	Right tree, right place, right time: A visual-functional design approach to select and place trees for optimal shade benefit to commuting pedestrians. Sustainable Cities and Society, 2020, 52, 101816.	5.1	35
220	Application of building geometry indexes to assess the correlation between buildings and air temperature. Building and Environment, 2020, 167, 106477.	3.0	22
221	A relationship between emotional connection to nature and attitudes about urban forest management. Urban Ecosystems, 2020, 23, 187-197.	1.1	15
222	Effects of changing spatial extent on the relationship between urban forest patterns and land surface temperature. Ecological Indicators, 2020, 109, 105778.	2.6	40

#	Article	IF	CITATIONS
223	Simulating urban climate at subâ€kilometre scale for representing the intraâ€urban variability of Zurich, Switzerland. International Journal of Climatology, 2020, 40, 458-476.	1.5	21
224	Sustainable urban planning strategies for mitigating climate change in Saudi Arabia. Environment, Development and Sustainability, 2020, 22, 5129-5152.	2.7	78
225	Identifying linkages between urban green infrastructure and ecosystem services using an expert opinion methodology. Ambio, 2020, 49, 569-583.	2.8	38
226	Advancing the Understanding of Adaptive Capacity of Socialâ€Ecological Systems to Absorb Climate Extremes. Earth's Future, 2020, 8, e2019EF001221.	2.4	28
227	Planning green infrastructure to mitigate urban surface water flooding risk – A methodology to identify priority areas applied in the city of Ghent. Landscape and Urban Planning, 2020, 194, 103703.	3.4	120
228	Urban heat island impact on state residential energy cost and CO2 emissions in the United States. Urban Climate, 2020, 31, 100546.	2.4	62
229	Decision-making of municipal urban forest managers through the lens of governance. Environmental Science and Policy, 2020, 104, 136-147.	2.4	44
230	City dwelling wild bees: how communal gardens promote species richness. Urban Ecosystems, 2020, 23, 271-288.	1.1	36
231	A Text-Mining Approach to Compare Impacts and Benefits of Nature-Based Solutions in Europe. Sustainability, 2020, 12, 7799.	1.6	4
232	Suitable trees for urban landscapes in the Republic of Korea under climate change. Landscape and Urban Planning, 2020, 204, 103937.	3.4	6
233	Standardized Green View Index and Quantification of Different Metrics of Urban Green Vegetation. Sustainability, 2020, 12, 7434.	1.6	33
234	Global sensitivity analysis of KINEROS2 hydrologic model parameters representing green infrastructure using the STAR-VARS framework. Environmental Modelling and Software, 2020, 132, 104814.	1.9	10
235	Statistical Review of Quality Parameters of Blue-Green Infrastructure Elements Important in Mitigating the Effect of the Urban Heat Island in the Temperate Climate (C) Zone. International Journal of Environmental Research and Public Health, 2020, 17, 7093.	1.2	29
236	Mapping spatiotemporal variability of the urban heat island across an urban gradient in Worcester, Massachusetts using in-situ Thermochrons and Landsat-8 Thermal Infrared Sensor (TIRS) data. GIScience and Remote Sensing, 2020, 57, 845-864.	2.4	15
237	Which urban design parameters provide climate-proof cities? An application of the Urban Cooling InVEST Model in the city of Milan comparing historical planning morphologies. Sustainable Cities and Society, 2020, 63, 102459.	5.1	29
238	Identifying the Planning Priorities for Green Infrastructure within Urban Environments Using Analytic Hierarchy Process. Sustainability, 2020, 12, 5468.	1.6	9
239	Planning for Older People in a Rapidly Warming and Ageing World: The Role of Urban Greening. Urban Policy and Research, 2020, 38, 199-212.	0.8	12
240	Guidelines for Climate Change Adaptation in Brazilian Cities Through Urban Green Infrastructure. IOP Conference Series: Earth and Environmental Science, 2020, 503, 012036.	0.2	1

#	ARTICLE	IF	CITATIONS
241	Property price effects of green interventions in cities: A meta-analysis and implications for gentrification. Environmental Science and Policy, 2020, 112, 293-304.	2.4	40
242	Biophilic streets: a design framework for creating multiple urban benefits. Sustainable Earth, 2020, 3, .	1.3	20
243	Quantifying the seasonal cooling capacity of â€~green infrastructure types' (GITs): An approach to assess and mitigate surface urban heat island in Sydney, Australia. Landscape and Urban Planning, 2020, 203, 103893.	3.4	40
244	Building Orientation in Green Facade Performance and Its Positive Effects on Urban Landscape Case Study: An Urban Block in Barcelona. Sustainability, 2020, 12, 9273.	1.6	13
245	Optimization Strategy of Landscape Ecological Planning in Urban Green Space System. IOP Conference Series: Earth and Environmental Science, 2020, 474, 072005.	0.2	0
246	Suitability Analysis and Planning of Green Infrastructure in Montevideo, Uruguay. Sustainability, 2020, 12, 9683.	1.6	7
247	An Approach for the Retrieval of Land Surface Temperature from the Industrial Area Using Landsat-8 Thermal Infrared Sensors. IOP Conference Series: Earth and Environmental Science, 2020, 540, 012059.	0.2	2
248	Greenery System for Cooling Down Outdoor Spaces: Results of an Experimental Study. Sustainability, 2020, 12, 5888.	1.6	12
249	Quantitative Evaluation of Public Open Space per Inhabitant in the Kingdom of Saudi Arabia: A Case Study of the City of Jeddah. SAGE Open, 2020, 10, 215824402092060.	0.8	17
250	Long-Term Validation and Governance Role in Contemporary Urban Tree Monitoring: A Review. Sustainability, 2020, 12, 5589.	1.6	12
251	Red maple (Acer rubrum L.) trees demonstrate acclimation to urban conditions in deciduous forests embedded in cities. PLoS ONE, 2020, 15, e0236313.	1.1	9
252	The impact of heat waves on daily mortality in districts in Madrid: The effect of sociodemographic factors. Environmental Research, 2020, 190, 109993.	3.7	29
253	Rethinking â€~future nature' through a transatlantic research collaboration: climate-adapted urban green infrastructure for human wellbeing and biodiversity. Landscape Research, 2023, 48, 460-476.	0.7	16
254	ASSESSING THE COOLING EFFECT OF URBAN TEXTILE SHADING DEVICES THROUGH TIME-LAPSE THERMOGRAPHY. Sustainable Cities and Society, 2020, 63, 102458.	5.1	25
255	Introduction of Fractal-Based Tree Digitalization and Accurate In-Canopy Radiation Transfer Modelling to the Microclimate Model ENVI-met. Forests, 2020, 11, 869.	0.9	19
256	Hotspots, Heat Vulnerability and Urban Heat Islands: An Interdisciplinary Review of Research Methodologies. Canadian Journal of Remote Sensing, 2020, 46, 532-551.	1.1	4
257	Land cover affects microclimate and temperature suitability for arbovirus transmission in an urban landscape. PLoS Neglected Tropical Diseases, 2020, 14, e0008614.	1.3	39
258	Urban design parameters for heat mitigation in tropics. Renewable and Sustainable Energy Reviews, 2020, 134, 110362.	8.2	40

#	Article	IF	CITATIONS
259	Economic Valuation of Green Infrastructure Investments in Urban Renewal: The Case of the Station District in Taichung, Taiwan. Environments - MDPI, 2020, 7, 56.	1.5	9
260	A Theoretical Framework for Bolstering Human-Nature Connections and Urban Resilience via Green Infrastructure. Land, 2020, 9, 252.	1.2	26
261	Construction of Cooling Corridors with Multiscenarios on Urban Scale: A Case Study of Shenzhen. Sustainability, 2020, 12, 5903.	1.6	8
262	Timeâ€lagged inverseâ€distance weighting for air temperature analysis in an equatorial urban area (Guayaquil, Ecuador). Meteorological Applications, 2020, 27, e1938.	0.9	4
263	Articulating the new urban water paradigm. Critical Reviews in Environmental Science and Technology, 2021, 51, 2777-2823.	6.6	14
264	Effects of Green Space Patterns on Urban Thermal Environment at Multiple Spatial–Temporal Scales. Sustainability, 2020, 12, 6850.	1.6	21
265	Dealing with Green Gentrification and Vertical Green-Related Urban Well-Being: A Contextual-Based Design Framework. Sustainability, 2020, 12, 10020.	1.6	10
266	A Case Study Balancing Predetermined Targets and Real-World Constraints to Guide Optimum Urban Tree Canopy Cover for Perth, Western Australia. Forests, 2020, 11, 1128.	0.9	3
267	Middle-Term Evolution of Efficiency in Permeable Pavements: A Real Case Study in a Mediterranean climate. International Journal of Environmental Research and Public Health, 2020, 17, 7774.	1.2	7
268	Spatio-Temporal Relationship between Land Cover and Land Surface Temperature in Urban Areas: A Case Study in Geneva and Paris. ISPRS International Journal of Geo-Information, 2020, 9, 593.	1.4	13
269	Heat stress risk and vulnerability under climate change in Durban metropolitan, South Africa—identifying urban planning priorities for adaptation. Climatic Change, 2020, 163, 807-829.	1.7	22
270	Relationships between health outcomes in older populations and urban green infrastructure size, quality and proximity. BMC Public Health, 2020, 20, 626.	1.2	40
271	Passive cooling energy systems: holistic SWOT analyses for achieving urban sustainability. International Journal of Sustainable Energy, 2020, 39, 822-842.	1.3	7
272	Solar reflective pavements—A policy panacea to heat mitigation?. Environmental Research Letters, 2020, 15, 064016.	2.2	60
273	Using Different Levels of Information in Planning Green Infrastructure in Luanda, Angola. Sustainability, 2020, 12, 3162.	1.6	5
274	Overcoming Status Quo Bias for Resilient Stormwater Infrastructure: Empirical Evidence in Neurocognition and Decision-Making. Journal of Management in Engineering - ASCE, 2020, 36, 04020017.	2.6	16
275	Parks and safety: a comparative study of green space access and inequity in five US cities. Landscape and Urban Planning, 2020, 201, 103841.	3.4	99
276	The Green Structure for Outdoor Places in Dry, Hot Regions and Seasons—Providing Human Thermal Comfort in Sustainable Cities. Energies, 2020, 13, 2755.	1.6	10

#	Article	IF	CITATIONS
277	Community participation in contemporary urban planning in Cambodia: The examples of Khmuonh and Kouk Roka neighbourhoods in Phnom Penh. Cities, 2020, 103, 102770.	2.7	10
278	How Cool Are Allotment Gardens? A Case Study of Nocturnal Air Temperature Differences in Berlin, Germany. Atmosphere, 2020, 11, 500.	1.0	31
279	Assessing the relationship between local climatic zones (LCZs) and land surface temperature (LST) – A case study of Sriniketan-Santiniketan Planning Area (SSPA), West Bengal, India. Urban Climate, 2020, 32, 100591.	2.4	48
280	Differential air temperature cooling performance of urban vegetation types in the tropics. Urban Forestry and Urban Greening, 2020, 50, 126651.	2.3	62
281	Effects of Roadside Trees and Road Orientation on Thermal Environment in a Tropical City. Sustainability, 2020, 12, 1053.	1.6	29
282	Lawns in Cities: From a Globalised Urban Green Space Phenomenon to Sustainable Nature-Based Solutions. Land, 2020, 9, 73.	1.2	95
283	Green spaces and heterogeneous social groups in the U.S Urban Forestry and Urban Greening, 2020, 49, 126637.	2.3	18
284	Preparation and Component Optimization of Resin-Based Permeable Brick. Materials, 2020, 13, 2701.	1.3	2
285	Mapping Heat Stress Vulnerability and Risk Assessment at the Neighborhood Scale to Drive Urban Adaptation Planning. Sustainability, 2020, 12, 1056.	1.6	32
286	Right tree, right place (urban canyon): Tree species selection approach for optimum urban heat mitigation - development and evaluation. Science of the Total Environment, 2020, 719, 137461.	3.9	122
287	Land-Use and Legislation-Based Methodology for the Implementation of Sustainable Drainage Systems in the Semi-Arid Region of Brazil. Sustainability, 2020, 12, 661.	1.6	11
288	Built-up land expansion and its impacts on optimizing green infrastructure networks in a resource-dependent city. Sustainable Cities and Society, 2020, 55, 102026.	5.1	32
289	Identification of the key landscape metrics indicating regional temperature at different spatial scales and vegetation transpiration. Ecological Indicators, 2020, 111, 106066.	2.6	19
290	Quantitative study on the cooling effect of green roofs in a high-density urban Area—A case study of Xiamen, China. Journal of Cleaner Production, 2020, 255, 120152.	4.6	60
291	Re-framing urban green spaces planning for flood protection through socio-ecological resilience in Bandung City, Indonesia. Cities, 2020, 101, 102710.	2.7	46
292	Numerical assessment of the urban green space scenarios on urban heat island and thermal comfort level in Tehran Metropolis. Journal of Cleaner Production, 2020, 261, 121183.	4.6	69
293	Using green to cool the grey: Modelling the cooling effect of green spaces with a high spatial resolution. Science of the Total Environment, 2020, 724, 138182.	3.9	70
294	Quantifying intangible benefits of water sensitive urban systems and practices: an overview of non-market valuation studies. Australian Journal of Water Resources, 2020, 24, 46-59.	1.6	19

,,		15	Circum
#	ARTICLE	IF	CITATIONS
295	on Issues, Challenges and Opportunities. Water (Switzerland), 2020, 12, 1024.	1.2	17
296	Analyzing Potential Tree-Planting Sites and Tree Coverage in Mexico City Using Satellite Imagery. Forests, 2020, 11, 423.	0.9	11
297	Tilia sp.â \in ™s pruning residues wood panels for thermal insulation. , 2020, , 129-148.		1
298	Where and how to cool? An idealized urban thermal security pattern model. Landscape Ecology, 2021, 36, 2165-2174.	1.9	23
299	The role of â€~nativeness' in urban greening to support animal biodiversity. Landscape and Urban Planning, 2021, 205, 103959.	3.4	77
300	Modelling land use/land cover changes prediction using multi-layer perceptron neural network (MLPNN): a case study in Makassar City, Indonesia. International Journal of Environmental Studies, 2021, 78, 301-318.	0.7	11
301	Multi-factor analysis of algal blooms in gate-controlled urban water bodies by data mining. Science of the Total Environment, 2021, 753, 141821.	3.9	17
302	A single tree model to consistently simulate cooling, shading, and pollution uptake of urban trees. International Journal of Biometeorology, 2021, 65, 277-289.	1.3	33
303	Estimating CO2 balance through the Life Cycle Assessment prism: A case – Study in an urban park. Urban Forestry and Urban Greening, 2021, 57, 126869.	2.3	16
304	Savanna hypothesis in the human–urban nature relationship. Open House International, 2021, 46, 18-29.	0.6	2
305	Urban Landscape Heterogeneity Influences the Relationship between Tree Canopy and Land Surface Temperature. Urban Forestry and Urban Greening, 2021, 57, 126930.	2.3	31
306	Trends and gaps in global research of greenery systems through a bibliometric analysis. Sustainable Cities and Society, 2021, 65, 102608.	5.1	22
307	A practical approach of urban green infrastructure planning to mitigate urban overheating: A case study of Guangzhou. Journal of Cleaner Production, 2021, 287, 124995.	4.6	28
308	A rapid fine-scale approach to modelling urban bioclimatic conditions. Science of the Total Environment, 2021, 756, 143732.	3.9	22
309	Investigating thermal behavior pattern (TBP) of local climatic zones (LCZs): A study on industrial cities of Asansol-Durgapur development area (ADDA), eastern India. Urban Climate, 2021, 35, 100727.	2.4	14
310	The impacts of existing and hypothetical green infrastructure scenarios on urban heat island formation. Environmental Pollution, 2021, 274, 115898.	3.7	35
311	Water Smart Cities Increase Irrigation to Provide Cool Refuge in a Climate Crisis. Earth's Future, 2021, 9, e2020EF001806.	2.4	12
312	Evidence of urban heat island impacts on the vegetation growing season length in a tropical city. Landscape and Urban Planning, 2021, 206, 103989.	3.4	79

ARTICLE IF CITATIONS # A human-centred assessment framework to prioritise heat mitigation efforts for active travel at city 313 3.9 23 scale. Science of the Total Environment, 2021, 763, 143033. Benefits of street sun sails to limit building cooling needs in a mediterranean city. Building and 314 Environment, 2021, 187, 107403. Street design scenarios using vegetation for sustainable thermal comfort in Erzurum, Turkey. 315 2.7 28 Environmental Science and Pollution Research, 2021, 28, 3672-3693. Sustainable Land Management in a European Context. Human-environment Interactions, 2021, , . 1.2 A Methodology to Investigate the Human Health and Environmental Benefits by the Improvement of 317 Urban Mobility and Ecosystem Services: A Case Study in Pisa. Lecture Notes in Civil Engineering, 2021, , 0.3 0 63-72. Remote Sensing and GIS for Modelling Green Roofs Potential at Different Urban Scales. Advances in 0.1 Geospatial Technologies Book Series, 2021, , 251-293. Addressing the Urban Heat Islands Effect: A Cross-Country Assessment of the Role of Green 319 1.6 42 Infrastructure. Sustainability, 2021, 13, 753. Adapting to Climate Change: Green Areas in Cities as Cooling Safeguards., 2021, , 1-15. 320 Greenery as a mitigation and adaptation strategy to urban heat. Nature Reviews Earth & Environment, 321 12.2 183 2021, 2, 166-181. How do heat and flood risk drive residential green infrastructure implementation in Phoenix, 1.1 14 Arizona?. Urban Ecosystems, 2021, 24, 989-1000. A Methodology for Assessing the Implementation Potential for Retrofitted and Multifunctional 323 29 1.6 Urban Green Infrastructure in Public Areas of the Global South. Sustainability, 2021, 13, 384. Mapping the evolution and current trends in climate change adaptation science. Climate Risk 324 1.6 Management, 2021, 32, 100290. Green Infrastructure as a Planning Response to Urban Warming: A Case Study of Taipei Metropolis. 325 0 2021, , 335-352. Regulating Ecosystem Services in Russian Cities: Can Urban Green Infrastructure Cope with Air 0.3 Pollution and Heat Islands?. Springer Geography, 2021, , 51-64. Harnessing the Four Horsemen of Climate Change: A Framework for Deep Resilience, Decarbonization, 328 1.6 14 and Planetary Health in Ontario, Canada. Sustainability, 2021, 13, 379. Mismatch of regulating ecosystem services for sustainable urban planning: PM10 removal and urban heat island effect mitigation in the municipality of Rome (Italy). Urban Forestry and Urban Greening, 2.3 2021, 57, 126938. 330 Foresight: A visionary step for becoming a smart city., 2021, 233-252. 0 Exploring the Impact of 2-D/3-D Building Morphology on the Land Surface Temperature: A Case Study of Three Megacities in China. IEEE Journal of Selected Topics in Applied Earth Observations and Remote 2.3 Sensing, 2021, 14, 4933-4945.

#	ARTICLE Urban life and climate change. 2021. 453-462.	IF	Citations
333	Increases in Anthropogenic Heat Release from Energy Consumption Lead to More Frequent Extreme Heat Events in Urban Cities. Advances in Atmospheric Sciences, 2021, 38, 430-445.	1.9	12
334	Green infrastructure performance in arid and semi-arid urban environments. Urban Water Journal, 2021, 18, 275-285.	1.0	18
335	The impacts of greenery on urban climate and the options for use of thermal data in urban areas. Progress in Planning, 2022, 159, 100545.	2.3	13
336	Understanding Green Street Design: Evidence from Three Cases in the U.S Sustainability, 2021, 13, 1916.	1.6	12
337	Climate change risk assessment in Baghdad: examining population vulnerability. IOP Conference Series: Materials Science and Engineering, 2021, 1067, 012058.	0.3	2
338	Urban Green Infrastructure Inventory as a Key Prerequisite to Sustainable Cities in Ukraine under Extreme Heat Events. Sustainability, 2021, 13, 2470.	1.6	12
339	Assessing Linear Urban Landscape from dynamic visual perception based on urban morphology. Frontiers of Architectural Research, 2021, 10, 202-219.	1.3	10
340	Priority Areas for Developing Green Infrastructure in Semi-arid Cities: A Case Study of Tehran. Environment and Urbanization ASIA, 2021, 12, 118-135.	0.9	2
341	Space use and activity of capybaras in an urban area. Journal of Mammalogy, 2021, 102, 814-825.	0.6	6
342	Can urban heat be mitigated in a single urban street? Monitoring, strategies, and performance results from a real scale redevelopment project. Solar Energy, 2021, 216, 564-588.	2.9	35
343	Measuring inequalities in urban systems: An approach for evaluating the distribution of amenities and burdens. Computers, Environment and Urban Systems, 2021, 86, 101590.	3.3	18
344	Building green infrastructure to enhance urban resilience to climate change and pandemics. Landscape Ecology, 2021, 36, 665-673.	1.9	66
346	Assessing City Greenness using Tree Canopy Cover: The Case of Yogyakarta, Indonesia. Geography, Environment, Sustainability, 2021, 14, 71-80.	0.6	1
347	Assessing City Greenness using Tree Canopy Cover: The Case of Yogyakarta, Indonesia. Geography, Environment, Sustainability, 2021, 14, 71-80.	0.6	0
348	Analyzing spatial relationship between land use/land cover (LULC) and land surface temperature (LST) of three urban agglomerations (UAs) of Eastern India. Remote Sensing Applications: Society and Environment, 2021, 22, 100507.	0.8	11
349	How a Lack of Green in the Residential Environment Lowers the Life Satisfaction of City Dwellers and Increases Their Willingness to Relocate. Sustainability, 2021, 13, 3984.	1.6	17
350	Assessing City Greenness using Tree Canopy Cover: The Case of Yogyakarta, Indonesia. Geography, Environment, Sustainability, 2021, 14, 71-80.	0.6	3

#	Article	IF	CITATIONS
351	Green infrastructures for urban sustainability: Issues, implications, and solutions for underdeveloped areas. Urban Forestry and Urban Greening, 2021, 59, 127028.	2.3	37
352	Flood-adaptive green infrastructure planning for urban resilience. Landscape and Ecological Engineering, 2021, 17, 427-437.	0.7	22
353	From the ground up: Using structured community engagement to identify objectives for urban green infrastructure planning. Urban Forestry and Urban Greening, 2021, 59, 127013.	2.3	30
354	Quantifying the local cooling effects of urban green spaces: Evidence from Bengaluru, India. Landscape and Urban Planning, 2021, 209, 104043.	3.4	51
355	50 Grades of Shade. Bulletin of the American Meteorological Society, 2021, 102, E1805-E1820.	1.7	44
357	Comparison of Ecohydrological and Climatological Zoning of the Cities: Case Study of the City of Pilsen. ISPRS International Journal of Geo-Information, 2021, 10, 350.	1.4	4
358	Estimating the Cooling Effect of Pocket Green Space in High Density Urban Areas in Shanghai, China. Frontiers in Environmental Science, 2021, 9, .	1.5	34
359	Urban Form Factors that Play Important Roles on UHI Spatial-Temporal Pattern: A Case Study of East Surabaya, Indonesia. IOP Conference Series: Earth and Environmental Science, 2021, 764, 012030.	0.2	1
360	The utilization of green roofs and walls "ecosystem services―as a strategy to mitigate climate change. IOP Conference Series: Materials Science and Engineering, 2021, 1148, 012003.	0.3	1
361	Complexifying the urban lawn improves heat mitigation and arthropod biodiversity. Urban Forestry and Urban Greening, 2021, 60, 127007.	2.3	21
362	Verona Adapt. Modelling as a Planning Instrument: Applying a Climate-Responsive Approach in Verona, Italy. Sustainability, 2021, 13, 6851.	1.6	2
363	A framework of biophilic urbanism for improving climate change adaptability in urban environments. Urban Forestry and Urban Greening, 2021, 61, 127104.	2.3	12
364	Evaluation of Thermal Comfort Performance of a Vertical Garden on a Glazed Façade and its Effect on Building and Urban Scale, Case Study: An Office Building in Barcelona. Sustainability, 2021, 13, 6706.	1.6	7
365	The construction of green infrastructure network in the perspectives of ecosystem services and ecological sensitivity: The case of Harbin, China. Global Ecology and Conservation, 2021, 27, e01534.	1.0	17
366	Assessing the ecological balance between supply and demand of blue-green infrastructure. Journal of Environmental Management, 2021, 288, 112454.	3.8	50
367	Green infrastructure and energy justice in health adaptation: leveraging climate policy innovation and vulnerability-readiness nexus. Journal of Environmental Policy and Planning, 2022, 24, 21-38.	1.5	6
368	How effective is â€~greening' of urban areas in reducing human exposure to ground-level ozone concentrations, UV exposure and the â€~urban heat island effect'? An updated systematic review. Environmental Evidence, 2021, 10, .	1.1	28
369	Evaluating the Impact of a Wall-Type Green Infrastructure on PM10 and NOx Concentrations in an Urban Street Environment. Atmosphere, 2021, 12, 839.	1.0	9

#	Article	IF	CITATIONS
370	Promoting landscape connectivity of highly urbanized area: An ecological network approach. Ecological Indicators, 2021, 125, 107487.	2.6	112
371	Hydrological Modeling of Green Infrastructure to Quantify Its Effect on Flood Mitigation and Water Availability in the High School Watershed in Tucson, AZ. ISPRS International Journal of Geo-Information, 2021, 10, 443.	1.4	3
372	Ecological Connectivity in Agricultural Green Infrastructure: Suggested Criteria for Fine Scale Assessment and Planning. Land, 2021, 10, 807.	1.2	13
373	Geometrical Assessment of Sunlit and Shaded Area of Urban Trees Based on Aligned Orthographic Views. Atmosphere, 2021, 12, 968.	1.0	2
374	Diagnosing delivery capabilities on a large international nature-based solutions project. Npj Urban Sustainability, 2021, 1, .	3.7	19
375	Study on the Value Model of Urban Green Infrastructure Development—A Case Study of the Central District of Taichung City. Sustainability, 2021, 13, 7402.	1.6	4
376	Residential urban trees – socio-ecological factors affecting tree and shrub abundance in the city of Malmö, Sweden. Urban Forestry and Urban Greening, 2021, 62, 127118.	2.3	9
377	Towards Regional Scale Stormwater Flood Management Strategies through Rapid Preliminary Intervention Screening. Water (Switzerland), 2021, 13, 2027.	1.2	6
378	Ten years of greening a wide brown land: A synthesis of Australian green roof research and roadmap forward. Urban Forestry and Urban Greening, 2021, 62, 127179.	2.3	24
379	Climate solutions to meet the suburban surge: leveraging COVID-19 recovery to enhance suburban climate governance. Climate Policy, 2021, 21, 1318-1327.	2.6	6
380	Effects of Scarification, Phytohormones, Soil Type, and Warming on the Germination and/or Seedling Performance of Three Tamaulipan Thornscrub Forest Species. Plants, 2021, 10, 1489.	1.6	7
381	Investigating Factors Influencing Consumer Adoption of Low-input Turfgrasses. Hortscience: A Publication of the American Society for Hortcultural Science, 2021, 56, 1213-1220.	0.5	3
382	The climate benefits, co-benefits, and trade-offs of green infrastructure: A systematic literature review. Journal of Environmental Management, 2021, 291, 112583.	3.8	67
383	Estimating the cooling potential of irrigating green spaces in 100 global cities with arid, temperate or continental climates. Sustainable Cities and Society, 2021, 71, 102974.	5.1	19
384	Differing spatial patterns of the urban heat exposure of elderly populations in two megacities identifies alternate adaptation strategies. Science of the Total Environment, 2021, 781, 146455.	3.9	12
385	Synthesizing multiple ecosystem service assessments for urban planning: A review of approaches, and recommendations. Landscape and Urban Planning, 2021, 213, 104129.	3.4	24
386	Investigating the spatial distribution of resident's outdoor heat exposure across neighborhoods of Philadelphia, Pennsylvania using urban microclimate modeling. Sustainable Cities and Society, 2021, 72, 103066.	5.1	14
387	Landscape plants in major Chinese cities: Diverse origins and climatic congruence vis-Ã-vis climate change resilience. Urban Forestry and Urban Greening, 2021, 64, 127292.	2.3	4

#	Article	IF	CITATIONS
388	Coupling detailed urban energy and water budgets with TEB-Hydro model: Towards an assessment tool for nature based solution performances. Urban Climate, 2021, 39, 100925.	2.4	2
389	A quasi-experimental approach for evaluating the heat mitigation effects of green roofs in Chicago, Illinois. Sustainable Cities and Society, 2022, 76, 103376.	5.1	12
390	Stakeholders' perceptions and preferences towards industrial water sensitive development in New Zealand. Water Environment Research, 2021, 93, 2696-2715.	1.3	3
391	Monitoring intra-urban temperature with dense sensor networks: Fixed or mobile? An empirical study in Baltimore, MD. Urban Climate, 2021, 39, 100979.	2.4	6
392	Is the Radial Growth of Irrigated Urban Trees More Strongly Correlated to Light and Temperature than Water?. Arboriculture and Urban Forestry, 2021, 47, 214-231.	0.2	1
393	The climate justice pillars vis-Ã-vis urban form adaptation to climate change: A review. Urban Climate, 2021, 39, 100951.	2.4	24
394	Knowledge Map of Urban Morphology and Thermal Comfort: A Bibliometric Analysis Based on CiteSpace. Buildings, 2021, 11, 427.	1.4	18
395	Climate-adapted, traditional or cottage-garden planting? Public perceptions, values and socio-cultural drivers in a designed garden setting. Urban Forestry and Urban Greening, 2021, 65, 127362.	2.3	7
396	Assessment of heat mitigation capacity of urban greenspaces with the use of InVEST urban cooling model, verified with day-time land surface temperature data. Landscape and Urban Planning, 2021, 214, 104163.	3.4	29
397	Quantifying and mapping cooling services of multiple ecosystems. Sustainable Cities and Society, 2021, 73, 103123.	5.1	9
398	Effects of landscape patterns on the summer microclimate and human comfort in urban squares in China. Sustainable Cities and Society, 2021, 73, 103099.	5.1	13
399	The financial impact of street-level greenery on New York commercial buildings. Landscape and Urban Planning, 2021, 214, 104162.	3.4	30
400	A â€~green' chameleon: Exploring the many disciplinary definitions, goals, and forms of "green infrastructure― Landscape and Urban Planning, 2021, 214, 104145.	3.4	83
401	Deferring waterlogging through stormwater control and channelling of runoff. Urban Forestry and Urban Greening, 2021, 65, 127351.	2.3	5
402	A review of the impact of the green landscape interventions on the urban microclimate of tropical areas. Building and Environment, 2021, 205, 108190.	3.0	39
403	Evaluating and comparing the green wall retrofit suitability across major Australian cities. Journal of Environmental Management, 2021, 298, 113417.	3.8	11
404	Component optimization of porous permeable brick in "sponge city―based on rainfall area division. E3S Web of Conferences, 2021, 237, 03004.	0.2	0
405	How Urban Agriculture Can Contribute to Green Infrastructure in Japanese Cities. Future City, 2021, , 227-242.	0.2	0

#	Article	IF	CITATIONS
406	Application of Conventional UAVs for the Identification and Classification of Dense Green Spaces. Advances in Geospatial Technologies Book Series, 2021, , 364-388.	0.1	0
407	Differences in the Influence of Microclimate on Pedestrian Volume According to Land-Use. Land, 2021, 10, 37.	1.2	5
409	Green Infrastructure and Biophilic Urbanism as Tools for Integrating Resource Efficient and Ecological Cities. Urban Planning, 2021, 6, 75-88.	0.7	22
410	Landscape ecological concepts in planning: review of recent developments. Landscape Ecology, 2021, 36, 2329-2345.	1.9	29
411	Biodiversity, Physical Health and Climate Change: A Synthesis of Recent Evidence. , 2019, , 17-46.		12
412	Climate Change Adaptation: Prioritising Districts for Urban Green Coverage to Mitigate High Temperatures and UHIE in Developing Countries. Innovative Renewable Energy, 2020, , 825-837.	0.2	3
413	Policies and Regulatory Frames in the EU and the Needed Link with Spatial Planning. Cities and Nature, 2020, , 141-188.	0.6	1
414	Contesting Longstanding Conceptualisations of Urban Green Space. Cities and Nature, 2020, , 87-116.	0.6	6
415	Making the Case for Sustainable Urban Drainage Systems as a Nature-Based Solution to Urban Flooding. Theory and Practice of Urban Sustainability Transitions, 2017, , 123-137.	1.9	32
416	Assessing the Potential of Regulating Ecosystem Services as Nature-Based Solutions in Urban Areas. Theory and Practice of Urban Sustainability Transitions, 2017, , 139-158.	1.9	7
417	Sustainable urban drainage systems in established city developments: Modelling the potential for CSO reduction and river impact mitigation. Journal of Environmental Management, 2020, 274, 111207.	3.8	21
418	Spatio-temporal non-uniformity of urban park greenness and thermal characteristics in a semi-arid region. Urban Forestry and Urban Greening, 2018, 34, 44-54.	2.3	13
419	Does irrigation cooling effect intensify during heatwaves? A case study in the Melbourne botanic gardens. Urban Forestry and Urban Greening, 2020, 55, 126815.	2.3	11
420	Urban heat stress mitigation potential of green walls: A review. Urban Forestry and Urban Greening, 2020, 55, 126843.	2.3	64
421	Re-naturing cities: reducing flood risk through nature-based solutions. Geography, 2018, 103, 105-109.	0.2	7
422	Open space networks can guide urban renewal in a megacity. Environmental Research Letters, 2020, 15, 094080.	2.2	12
423	A tree-planting decision support tool for urban heat mitigation. PLoS ONE, 2020, 15, e0224959.	1.1	25
424	Distribución de la infraestructura verde y su capacidad de regulación térmica en Bogotá, Colombia. Colombia Forestal, 2019, 22, 83-100.	0.5	5

		OKI	
#	Article	IF	CITATIONS
425	Energy behaviour of the green layer in green façades. Acta Horticulturae, 2020, , 723-730.	0.1	2
426	Use of Structural Soil as a Method for Increasing Flood Resilience in Praga PóÅ,noc in Warsaw. Annals of Warsaw University of Life Sciences - SGGW - Horticulture and Landscape Architecture, 2020, , 15-28.	0.2	2
427	How Green Are Trees? — Using Life Cycle Assessment Methods to Assess Net Environmental Benefits. Journal of Environmental Horticulture, 2016, 34, 101-110.	0.3	14
428	Effect of Vegetation Structure on Urban Climate Mitigation. Acta Horticulturae Et Regiotecturae, 2020, 23, 60-65.	0.5	8
429	PROGRESS IN URBAN GREENERY MITIGATION SCIENCE – ASSESSMENT METHODOLOGIES ADVANCED TECHNOLOGIES AND IMPACT ON CITIES. Journal of Civil Engineering and Management, 2018, 24, 638-671.	1.9	109
430	Effects of urban green areas on air temperature in a medium-sized Argentinian city. AIMS Environmental Science, 2015, 2, 803-826.	0.7	18
431	Planning Green Infrastructure as a Source of Urban and Regional Resilience – Towards Institutional Challenges. Urbani Izziv, 2015, 26, .	0.2	25
432	Implementation of Green Infrastructure Principles in Dubrovnik, Croatia to Minimize Climate Change Problems. Urbani Izziv, 2015, 26, .	0.2	7
433	Green infrastructure as a very important quality factor in urban areas - Warsaw case study. Europa XXI, 2017, 32, 51-70.	0.8	7
434	Decoupling forest characteristics and background conditions to explain urban-rural variations of multiple microclimate regulation from urban trees. PeerJ, 2018, 6, e5450.	0.9	17
436	Managing Multi-Hazards Risk of Urban Deprivation in the Context of Urban Planning and Design. , 2021, , .		0
439	An Application of the LCZ Approach in Surface Urban Heat Island Mapping in Sofia, Bulgaria. Atmosphere, 2021, 12, 1370.	1.0	10
440	The Role of Vegetation in Climate Adaptability: Case Studies of Lodz and Warsaw. Urban Planning, 2021, 6, 9-24.	0.7	3
441	Innovative use of spatial regression models to predict the effects of green infrastructure on land surface temperatures. Energy and Buildings, 2022, 254, 111564.	3.1	7
442	Forests under the Southern Cross: The forest environmental frontier in Australia and New Zealand. Ambio, 2021, 50, 2183-2198.	2.8	4
443	Habitat and environmental risks of Chagas disease in low-income colonias and peri-urban subdivisions in South Texas. Habitat International, 2021, 118, 102460.	2.3	4
444	THE COOLING EFFECT OF A MEDIUM SIZED PARK ON AN URBAN ENVIRONMENT. International Journal of GEOMATE, 2016, , .	0.1	3
445	PERCEPÇÃO E CONFORTO DOS USUÃRIOS DO PARQUE TRIANON EM SÃO PAULO/SP. Revista LABVERDE, 201 8, 59.	17 _{0.2}	0

	Cı	tation Report	
#	Article	IF	Citations
446	Designing Residential Microclimates: Malhar Eco-Village in Bangalore, India. , 2018, , 85-104.		0
448	Developing an Automated City of Whittlesea Urban Tree Canopy Inventory Using Airborne LiDAR and Aerial Imagery. Engineering, 2019, 11, 828-840.	0.4	0
449	Une trame «Âfraîche» comme outil d'atténuation potentielle des îlots de chaleur urbain végétation. , 2019, , 51-70.	nsÂ: rÃ1es de la	2
450	Welche Wege es zu einer Grünen Stadt gibt es?. , 2019, , 299-367.		0
451	Analysis of Environmental Equity of Green Space Services in Seoul - The Case of Jung-gu, Seongdong-g and Dongdaemun-gu Journal of the Korean Institute of Landscape Architecture, 2019, 47, 100-116.	ju 0.1	3
452	Developing Ecosystem Service Models for Urban Planning: A Focus on Micro-Climate Regulation. SpringerBriefs in Environmental Science, 2020, , 31-42.	0.3	1
453	The Green Roofs and Facades as a Tool of Climate Cooling in the Urban Environment. Springer Water, 2020, , 39-75.	0.2	1
454	Microclimate modification by <i>Tamarindus indica</i> native to Oman. Acta Horticulturae, 2019, , 183-188.	0.1	0
456	Environmental principles for planting of greenery in settlements of Baikal Siberia. E3S Web of Conferences, 2020, 210, 09002.	0.2	1
457	Techos verdes: una estrategia sustentable. TecnologÃa En Marcha, 0, , .	0.1	0
458	Upcoming Challenges in Land Use Science—An International Perspective. Human-environment Interactions, 2021, , 319-336.	1.2	0
459	Targeted implementation of cool roofs for equitable urban adaptation to extreme heat. Science of the Total Environment, 2022, 811, 151326.	3.9	17
460	The Emergence of Employees' Change Readiness for Energy-Conservation Behavior During Guided Group Discussions. Frontiers in Psychology, 2021, 12, 587529.	1.1	2
461	Heat Fluxes in a Green Façade System: Mathematical Relations and an Experimental Case. Lecture No in Civil Engineering, 2020, , 189-197.	otes 0.3	1
462	Adapting to Climate Change: Green Areas in Cities as Cooling Safeguards. , 2021, , 2873-2887.		0
463	The Financial Impact of Street-Level Greenery on New York Commercial Buildings. SSRN Electronic Journal, 0, , .	0.4	0
464	Modelling of the Thermal Effect of Green Façades on Building Surface Temperature in Mediterranean Climate. Lecture Notes in Civil Engineering, 2020, , 179-188.	0.3	0
465	Modelling of Nature-Based Solutions (NBS) for Urban Water Management—Investment and Outscal Implications at Basin and Regional Levels. Journal of Water Resource and Protection, 2020, 12, 853-88	ing 0.3 33	5

#	Article	IF	CITATIONS
466	Sustainability as a Function of an Area: Application of Multi-Criteria Evaluation in Assessing the Effectiveness of Nature-Based Solutions. Atmosphere, 2021, 12, 1464.	1.0	2
467	Identifying Key Sites of Green Infrastructure to Support Ecological Restoration in the Urban Agglomeration. Land, 2021, 10, 1196.	1.2	12
468	Effects of pavement texture and colour on Urban Heat Islands: An experimental study in tropical climate. Urban Climate, 2021, 40, 101024.	2.4	16
471	A Methodological Approach for Estimating Urban Green Space: The Case of Thessaloniki, Greece. Advances in Intelligent Systems and Computing, 2021, , 728-738.	0.5	1
472	Implicações técnicas e ecossistêmicas do manejo inadequado da arborização urbana: o caso das podas drásticas em oitis na cidade de Ilha Solteira - SP. Journal of Urban Technology and Sustainability, 2019, 2, 26-36.	0.2	0
473	Seasonal and interannual drought responses of vegetation in a California urbanized area measured using complementary remote sensing indices. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 183, 178-195.	4.9	13
474	Environmental control on transpiration and its cooling effect of Ficus concinna in a subtropical city Shenzhen, southern China. Agricultural and Forest Meteorology, 2022, 312, 108715.	1.9	14
475	Thermal performance of green façades: Review and analysis of published data. Renewable and Sustainable Energy Reviews, 2022, 155, 111744.	8.2	24
476	Understanding the NEEDS for ACTING: An integrated framework for applying nature-based solutions in Brazil. Water Science and Technology, 2022, 85, 987-1010.	1.2	7
477	Quantifying the Health Benefits of Urban Climate Mitigation Actions: Current State of the Epidemiological Evidence and Application in Health Impact Assessments. Frontiers in Sustainable Cities, 2021, 3, .	1.2	10
478	Remotely Sensed Tree Characterization in Urban Areas: A Review. Remote Sensing, 2021, 13, 4889.	1.8	7
479	What Ways Are There to a Green City?. , 2022, , 315-383.		1
480	Scaling up nature-based solutions for climate-change adaptation: Potential and benefits in three European cities. Urban Forestry and Urban Greening, 2022, 67, 127450.	2.3	36
481	The nature-based solutions planning support system: A playground for site and solution prioritization. Sustainable Cities and Society, 2022, 78, 103608.	5.1	15
482	Eficacia de estrategias de disminución del calentamiento urbano. Estudio para una ciudad de clima árido. Informes De La Construccion, 2020, 72, 352.	0.1	2
483	Creating Cooler, Healthier and More Liveable Australian Cities Using Irrigated Green Infrastructure. , 2021, , 219-237.		1
484	Potential Elements of Green Infrastructure (PeGI) Inside the Core of the Village (CoV): A Case Study of WrocÅ,aw Functional Area (WFA) in Poland. Sustainability, 2022, 14, 1611.	1.6	0
485	Towards effective stakeholder collaboration in building urban resilience in Phnom Penh: opportunities and obstacles. Environment, Development and Sustainability, 2023, 25, 297-320.	2.7	6

#	Article	IF	CITATIONS
486	Quantifying walking capability: a novel aggregated index based on spatial perspective and analyses. Papers in Regional Science, 2022, 101, 483-504.	1.0	4
487	A review of multi-scale modelling, assessment, and improvement methods of the urban thermal and wind environment. Building and Environment, 2022, 213, 108860.	3.0	33
488	Integrating Urban Planning and Water Management Through Green Infrastructure in the United States-Mexico Border. Frontiers in Water, 2022, 4, .	1.0	4
489	Nature-based solutions addressing the water-energy-food nexus: Review of theoretical concepts and urban case studies. Journal of Cleaner Production, 2022, 338, 130652.	4.6	38
490	The influence of local background climate on the dominant factors and threshold-size of the cooling effect of urban parks. Science of the Total Environment, 2022, 823, 153806.	3.9	46
491	Locating trees to mitigate outdoor radiant load of humans in urban areas using a metaheuristic hill-climbing algorithm – introducing TreePlanter v1.0. Geoscientific Model Development, 2022, 15, 1107-1128.	1.3	3
492	Examining the Role of Green Infrastructure as an Advocate for Regeneration. Frontiers in Sustainable Cities, 2022, 4, .	1.2	11
493	Examining the socio-psychological predictors of tree-planting behaviour using the theory of planned behaviour: A study of a cohort of Nigerian urban workers. Urban Forestry and Urban Greening, 2022, 69, 127509.	2.3	2
494	High-Temperature Disaster Risk Assessment for Urban Communities: A Case Study in Wuhan, China. International Journal of Environmental Research and Public Health, 2022, 19, 183.	1.2	9
497	Green Infrastructure and Urban Sustainability: An Editorial. , 2022, , 1-17.		1
498	Responding to Future Climatic Conditions of Heat and Flood. Advances in Electronic Government, Digital Divide, and Regional Development Book Series, 2022, , 136-164.	0.2	0
501	Ecosystem Services and Urban Planning: A Review of the Contribution of the Concept to Adaptation in Urban Areas. Sustainability, 2022, 14, 2391.	1.6	2
502	A scoping review on Water Sensitive Urban Design aims and achievements. Urban Water Journal, 2022, 19, 453-467.	1.0	9
503	Spatiotemporal Patterns and Driving Force of Urbanization and Its Impact on Urban Ecology. Remote Sensing, 2022, 14, 1160.	1.8	14
504	Spatiotemporal Influences of LULC Changes on Land Surface Temperature in Rapid Urbanization Area by Using Landsat-TM and TIRS Images. Atmosphere, 2022, 13, 460.	1.0	4
505	Hotspots of pestâ€induced US urban tree death, 2020–2050. Journal of Applied Ecology, 2022, 59, 1302-1312.	1.9	7
506	The Impact of Urban Green-infrastructure Development on the Price of Surrounding Real Estate: A Case Study of Taichung City's Central District. IOP Conference Series: Earth and Environmental Science, 2022, 1006, 012012.	0.2	0
507	The Future of Climate-Resilient and Climate-Neutral City in the Temperate Climate Zone. International Journal of Environmental Research and Public Health, 2022, 19, 4365.	1.2	3

		CITATION REPORT		
#	Article		IF	Citations
509	Vegetation cover change during a multi-year drought in Los Angeles. Urban Climate, 20)22, 43, 101157.	2.4	9
510	Impact of 3-D urban landscape patterns on the outdoor thermal environment: A model SOLWEIG. Computers, Environment and Urban Systems, 2022, 94, 101773.	ing study with	3.3	23
511	Exploring the evapotranspirative cooling effect of a green façade. Sustainable Cities a 81, 103822.	nd Society, 2022,	5.1	28
512	Cemeteries as important urban green spaces: ecosystem services provided by trees in á (Turin, Italy). Acta Horticulturae, 2021, , 159-164.	€œCimitero Parco―	0.1	1
513	Effect of Sampietrini Pavers on Urban Heat Islands. International Journal of Environmen and Public Health, 2021, 18, 13108.	tal Research	1.2	17
514	A scientometric review of sustainable infrastructure research: visualization and analysis International Journal of Construction Management, 2023, 23, 1847-1855.		2.2	6
515	Radiación solar en entornos urbanos: un recurso, un peligro y un derecho. Análisis de percepción en BahÃa Blanca (Argentina). Estudios Geograficos, 2021, 82, e076.	sde la	0.4	0
516	Traces of urban forest in temperature and CO _{2monsoon East Asia. Atmospheric Chemistry and Physics, 2021, 21, 17833-17853.}	;gt; signals in	1.9	5
517	Planning past parks: overcoming restrictive green-space narratives in contemporary co Town Planning Review, 2022, 93, 469-493.	npact cities.	0.9	5
518	A landscape connectivity approach to mitigating the urban heat island effect. Landscap 37, 1707-1719.	e Ecology, 2022,	1.9	17
519	Impacts of green walls on the characteristics of thermo-flow and photochemical reaction within street canyons. Urban Forestry and Urban Greening, 2022, 72, 127568.	on kinetics	2.3	3
520	Transpirational cooling and physiological responses of trees to heat. Agricultural and Fo Meteorology, 2022, 320, 108940.	prest	1.9	12
521	Analyzing the Impact of Urban Planning and Building Typologies in Urban Heat Island N Buildings, 2022, 12, 537.	litigation.	1.4	13
522	Planning, Designing, and Managing Green Roofs and Green Walls for Public Health $\hat{a} {\in} ``$ Services Approach. Frontiers in Ecology and Evolution, 2022, 10, .	An Ecosystem	1.1	8
523	Heatwaves in South Asia: Characterization, Consequences on Human Health, and Adap Strategies. Atmosphere, 2022, 13, 734.	tation	1.0	21
524	Research on the Characteristics of High-Temperature Heat Waves and Outdoor Therma Typical Space in Chongqing Yuzhong District as an Example. Buildings, 2022, 12, 625.	l Comfort: A	1.4	5
525	Exploration of urbanization characteristics and their effect on the urban thermal enviro Chengdu, China. Building and Environment, 2022, 219, 109150.	nment in	3.0	20
526	Not by trees alone: Centering community in urban forestry. Landscape and Urban Plan 104445.	ning, 2022, 224,	3.4	13

#	Article	IF	CITATIONS
527	Global variation in contributions to human well-being from urban vegetation ecosystem services. One Earth, 2022, 5, 522-533.	3.6	17
528	City-to-City Learning to Enhance Urban Water Management: The Contribution of the City Blueprint Approach. SSRN Electronic Journal, 0, , .	0.4	0
529	Mapping Pervious Surfaces and Canopy Cover Using High-Resolution Airborne Imagery and Digital Elevation Models to Support Urban Planning. Sustainability, 2022, 14, 6149.	1.6	5
530	A Study on the Cooling Capacities of Urban Parks and Their Interactions with the Surrounding Urban Patterns. Applied Spatial Analysis and Policy, 2022, 15, 1287-1317.	1.0	6
531	A social-ecological-technological systems framework for urban ecosystem services. One Earth, 2022, 5, 505-518.	3.6	77
532	Evapotranspiration rates and evapotranspirative cooling of green façades under different irrigation scenarios. Energy and Buildings, 2022, 270, 112223.	3.1	21
533	Analysis of Domestic and International Green Infrastructure Research Trends from the ESG Perspective in South Korea. International Journal of Environmental Research and Public Health, 2022, 19, 7099.	1.2	7
534	Investigation of Parking Lot Pavements to Counteract Urban Heat Islands. Sustainability, 2022, 14, 7273.	1.6	11
535	Assessing the potential of strategic green roof implementation for green infrastructure: Insights from Sumida ward, Tokyo. Urban Forestry and Urban Greening, 2022, 74, 127632.	2.3	6
536	GeoAl to implement an individual tree inventory: Framework and application of heat mitigation. Urban Forestry and Urban Greening, 2022, 74, 127634.	2.3	2
537	Too hot to handle? On the cooling capacity of urban green spaces in a Neotropical Mexican city. Urban Forestry and Urban Greening, 2022, 74, 127633.	2.3	15
538	From urban greenspace to health behaviors: An ecosystem services-mediated perspective. Environmental Research, 2022, 213, 113664.	3.7	12
539	Linking Landscape Spatial Heterogeneity to Urban Heart Island and Outdoor Human Thermal Comfort in Tokyo: Application of the Outdoor Thermal Comfort Index. SSRN Electronic Journal, 0, , .	0.4	0
540	Namares—A Surface Inventory and Intervention Assessment Model for Urban Resource Management. Sustainability, 2022, 14, 8485.	1.6	3
541	A Discussion on the Application of Terminology for Urban Soil Sealing Mitigation Practices. International Journal of Environmental Research and Public Health, 2022, 19, 8713.	1.2	5
542	Some like it hot? Unequal provision of tree shading in Australian subtropical suburbs. Australian Planner, 2022, 58, 1-10.	0.6	3
543	Assessment of Waste Treatment in Urbanized Areas in the Environmental Policy Context: National Experience. Public Policy and Accounting, 2021, , 3-8.	0.2	0
544	Mapping Urban Green and Its Ecosystem Services at Microscale—A Methodological Approach for Climate Adaptation and Biodiversity. Sustainability, 2022, 14, 9029.	1.6	6

#	Article	IF	CITATIONS
545	Influences of Land Policy on Urban Ecological Corridors Governance: A Case Study from Shanghai. International Journal of Environmental Research and Public Health, 2022, 19, 9747.	1.2	3
546	Green or Grey Pandemic Recovery? Revealing the Blue–Green Infrastructure Influences in Aotearoa-New Zealand's "Shovel Ready―Covid-19 Response. Urban Policy and Research, 2023, 41, 38-54	.0.8	4
547	Sewage Irrigation Fields—From Relict Landscape to Blue-Green Urban Infrastructure. Water (Switzerland), 2022, 14, 2505.	1.2	0
548	Will neighbourhood liveability be promoted by new housing related planning policy in Adelaide, South Australia?. Journal of Housing and the Built Environment, 0, , .	0.9	1
549	Multidisciplinary Understanding of the Urban Heating Problem and Mitigation: A Conceptual Framework for Urban Planning. International Journal of Environmental Research and Public Health, 2022, 19, 10249.	1.2	2
551	A microclimate model for plant transpiration effects. Urban Climate, 2022, 45, 101240.	2.4	5
552	Assessing land-use change and landscape connectivity under multiple green infrastructure conservation scenarios. Ecological Indicators, 2022, 142, 109236.	2.6	8
553	Spatial Integration of Urban Runoff Modeling, Heat, and Social Vulnerability for Blue-Green Infrastructure Planning and Management. Journal of Water Resources Planning and Management - ASCE, 2022, 148, .	1.3	3
554	Can we integrate ecological approaches to improve plant selection for green infrastructure?. Urban Forestry and Urban Greening, 2022, 76, 127732.	2.3	23
555	A Roadmap for European Union's Urban Adaptation to Extreme Heat Events: The U-Adapt! Framework. SSRN Electronic Journal, 0, , .	0.4	0
556	Human Adaptation to Higher Ambient Temperature. Advances in Sustainability Science and Technology, 2022, , 109-128.	0.4	0
557	Beyond the â€~Usual Suspects'? Co-Creating an Arboretum-Meadow with Diverse Communities: Stakeholder Priorities and Perceptions. SSRN Electronic Journal, 0, , .	0.4	0
558	Investigations of Greenery Façade Approaches for the Energy Performance Improvement of Buildings and Sustainable Cities. Environmental Earth Sciences, 2022, , 230-239.	0.1	0
559	Energy–Environmental Coupled Simulation Method Development for Urban Vegetation Configuration Evaluation. SSRN Electronic Journal, 0, , .	0.4	0
560	Analytical framework for the analysis of co-benefits, conflicts and trade-offs of urban heat mitigation strategies. IOP Conference Series: Earth and Environmental Science, 2022, 1078, 012133.	0.2	0
561	Integrating Copernicus land cover data into the i-Tree Cool Air model to evaluate and map urban heat mitigation by tree cover. European Journal of Remote Sensing, 2023, 56, .	1.7	3
562	Ecohydrology of Green Stormwater Infrastructure in Shrinking Cities: A Two-Year Case Study of a Retrofitted Bioswale in Detroit, Ml. Water (Switzerland), 2022, 14, 3064.	1.2	0
565	Assessing urban greenery using remote sensing. , 2022, , .		3

#	Article	IF	CITATIONS
566	Impacts of Urban Green Space on Land Surface Temperature from Urban Block Perspectives. Remote Sensing, 2022, 14, 4580.	1.8	12
567	Holistic approach to assess the association between the synergistic effect of physical activity, exposure to greenspace, and fruits and vegetable intake on health and wellbeing: Cross-sectional analysis of UK Biobank. Frontiers in Public Health, 0, 10, .	1.3	3
569	Forest structure and composition alleviate human thermal stress. Global Change Biology, 2022, 28, 7340-7352.	4.2	20
570	Functional zoning in national parks under multifactor trade-off guidance: A case study of Qinghai Lake National Park in China. Journal of Chinese Geography, 2022, 32, 1969-1997.	1.5	7
571	Nature-based solutions for urban heat mitigation in historical and cultural block: The case of Beijing Old City. Building and Environment, 2022, 225, 109600.	3.0	11
572	Heat-prone neighbourhood typologies of European cities with temperate climate. Sustainable Cities and Society, 2022, 87, 104174.	5.1	7
573	Street Trees: Their Contribution to Place-Making and Urban Ecosystem Services. İdealkent, 0, , .	0.1	1
574	Governance Strategies for Mitigating Urban Heat Island Effect. , 2022, , 71-80.		0
575	Introductory Chapter: Urban Green Spaces â \in " An Opening Framework. , 0, , .		0
576	Treated Wastewater Use for Maintenance of Urban Green Spaces for Enhancing Regulatory Ecosystem Services and Securing Groundwater. Hydrology, 2022, 9, 180.	1.3	2
577	Evaluation of the Quality of the Housing Environment Using Multi-Criteria Analysis That Includes Energy Efficiency: A Review. Energies, 2022, 15, 7750.	1.6	11
578	Review of open space rules and regulations and identification of specificities for plot-level open spaces to facilitate sustainable development: An Indian case. IOP Conference Series: Earth and Environmental Science, 2022, 1084, 012073.	0.2	0
579	Ecosystem services of †Trees Outside Forests (TOF)' and their contribution to the contemporary sustainability agenda: a systematic review. Environmental Research Communications, 2022, 4, 112002.	0.9	3
580	Linking landscape spatial heterogeneity to urban heat island and outdoor human thermal comfort in Tokyo: Application of the outdoor thermal comfort index. Sustainable Cities and Society, 2022, 87, 104262.	5.1	18
581	A village a field? Agronomic evaluation of fruit trees in inhabited space – Lessons for land use policy from a case study in Israel's Sharon Region. Land Use Policy, 2022, 123, 106411.	2.5	0
582	Quantifying the direct effects of long-term dynamic land use intensity on vegetation change and its interacted effects with economic development and climate change in jiangsu, China. Journal of Environmental Management, 2023, 325, 116562.	3.8	15
583	Maximizing the pedestrian radiative cooling benefit per street tree. Landscape and Urban Planning, 2023, 230, 104608.	3.4	25
584	An Assessment of the Environmental-Economic Development of Urbanized Areas in Ukraine. Statistics of Ukraine, 2022, 97, 12-21.	0.0	0

CITA	TION	DEDODT
<u>х.н</u>		KEPURI
U 11/		

#	Article	IF	CITATIONS
585	Historical Changes in Urban and Peri-Urban Forests: Evidence from the Galați Area, Romania. Land, 2022, 11, 2043.	1.2	1
586	Smart water campus – a testbed for smart water applications. Water Science and Technology, 2022, 86, 2834-2847.	1.2	3
587	Convergence in Perceptions of Ecosystem Services Supports Green Infrastructure Decision-making in a Semi-arid City. Environmental Management, 2023, 71, 885-898.	1.2	1
588	Fighting urban climate change—state of the art of mitigation technologies. , 2023, , 227-296.		4
589	Effects of different tree layouts on outdoor thermal comfort of green space in summer Shanghai. Urban Climate, 2023, 47, 101398.	2.4	13
590	How urban ecological land affects resident heat exposure: Evidence from the mega-urban agglomeration in China. Landscape and Urban Planning, 2023, 231, 104643.	3.4	7
591	Asset management for blue-green infrastructures: a scoping review. Blue-Green Systems, 2022, 4, 272-290.	0.6	9
592	Finding space for nature in cities: the considerable potential of redundant car parking. Npj Urban Sustainability, 2022, 2, .	3.7	10
593	Blue Green Systems for urban heat mitigation: mechanisms, effectiveness and research directions. Blue-Green Systems, 2022, 4, 348-376.	0.6	10
594	Green and Blue Infrastructure as Nature-Based Better Preparedness Solutions for Disaster Risk Reduction: Key Policy Aspects. Sustainability, 2022, 14, 16155.	1.6	2
595	Impacts of Urban Blue-Green Space on Residents' Health: A Bibliometric Review. International Journal of Environmental Research and Public Health, 2022, 19, 16192.	1.2	6
596	What Is the Future of the Bush Capital? A Socio-Ecological Approach to Enhancing Canberra's Green Infrastructure. Land, 2023, 12, 39.	1.2	3
597	Urbanization and plant diversity influence different aspects of floral phenology. Urban Ecosystems, 2023, 26, 517-524.	1.1	2
598	Green Infrastructure Designed through Nature-Based Solutions for Sustainable Urban Development. International Journal of Environmental Research and Public Health, 2023, 20, 1102.	1.2	8
599	Are Green Spaces More Available and Accessible to Green Building Users? A Comparative Study in Texas. Land, 2023, 12, 226.	1.2	1
600	Comparing three spatial modeling tools for assessing urban ecosystem services. Ecosystem Services, 2023, 59, 101500.	2.3	5
601	Does compact development mitigate urban thermal environments? Influences of smart growth principles on land surface temperatures in Los Angeles and Portland. Sustainable Cities and Society, 2023, 90, 104385.	5.1	2
602	Making Thessaloniki Resilient? The Enclosing Process of the Urban Green Commons. Urban Planning, 2022, 8, .	0.7	1

#	Article	IF	CITATIONS
603	Case Study 4: Urban Green Space Analysis and Potential Site Selection for Green Space Expansion in NCT Delhi. Advances in Geographical and Environmental Sciences, 2023, , 191-203.	0.4	0
604	Thermal comfort in urban areas on hot summer days and its improvement through participatory mapping: A case study of two Central European cities. Landscape and Urban Planning, 2023, 233, 104713.	3.4	5
605	GIS-Based Methodology and World Urban Database and Access Portal Tools (WUDAPT) for Mapping Local Climatic Zones: A Study of Kolkata. , 2023, , 263-282.		0
606	Effects of urban lakes and neighbouring green spaces on air temperature and humidity and seasonal variabilities. Sustainable Cities and Society, 2023, 91, 104438.	5.1	8
607	Urban green spaces and sustainability: Exploring the ecosystem services and disservices of grassy lawns versus floral meadows. Urban Forestry and Urban Greening, 2023, 84, 127932.	2.3	8
608	Governance of densification and climate change adaptation: How can conflicting demands for housing and greening in cities be reconciled?. Land Use Policy, 2023, 128, 106593.	2.5	2
609	The landscape and evolution of urban planning science. Cities, 2023, 136, 104261.	2.7	7
610	Tree crown traits and planting context contribute to reducing urban heat. Urban Forestry and Urban Greening, 2023, 83, 127913.	2.3	8
611	Knowledge map and hotspot analysis in climate resilience infrastructure (CRI) from 1997 to 2022 through scientometric analysis. Environmental Research, 2023, 228, 115874.	3.7	3
612	Priming the public to construct preferences for sustainable design: A discrete choice model for green infrastructure. Journal of Environmental Psychology, 2023, 88, 102005.	2.3	0
613	Spatial-temporal estimation of maximum temperature high returns periods for annual time series considering stationary/nonstationary approaches in Iran urban area. Urban Climate, 2023, 49, 101504.	2.4	4
614	The unrelenting global expansion of the urban heat island over the last century. Science of the Total Environment, 2023, 880, 163276.	3.9	5
615	Beyond the â€~usual suspects'? Engaging children in diverse communities in co-producing an arboretum-meadow: Professional partner perspectives. Urban Forestry and Urban Greening, 2023, 81, 127847.	2.3	0
616	Progress and prospects in planning: A bibliometric review of literature in Urban Studies and Regional and Urban Planning, 1956–2022. Progress in Planning, 2023, 173, 100740.	2.3	24
617	Comparison of the Thermal Environment by Local Climate Zones in Summer: A Case Study in Suwon, Republic of Korea. Sustainability, 2023, 15, 2620.	1.6	1
618	Low precipitation due to climate change consistently reduces multifunctionality of urban grasslands in mesocosms. PLoS ONE, 2023, 18, e0275044.	1.1	5
619	Cooling energy saving by vegetation planting in high-density districts: Evaluation using the coupled simulation. Building and Environment, 2023, 232, 110054.	3.0	8
620	City-to-city learning to enhance urban water management: The contribution of the City Blueprint Approach. Cities, 2023, 135, 104216.	2.7	2

#	Article	IF	CITATIONS
621	Factors favouring vegetation in quay masonry walls: A pilot field study. Building and Environment, 2023, 233, 110090.	3.0	1
622	Quantifying and Comparing the Cooling Effects of Three Different Morphologies of Urban Parks in Chengdu. Land, 2023, 12, 451.	1.2	3
623	An in-situ measurement and assessment of evaporative cooling effects of low impact development facilities in a subtropical city. Agricultural and Forest Meteorology, 2023, 332, 109363.	1.9	1
624	Urban Heat Island Mitigation and Urban Green Spaces: Testing a Model in the City of Padova (Italy). Land, 2023, 12, 476.	1.2	10
625	Visualisation of High-Density City Research Evolution, Trends, and Outlook in the 21st Century. Land, 2023, 12, 485.	1.2	10
626	Evaluating thermal comfort in the detached house area adjacent to the old industrial complex using ENVI-met v4.0. Journal of Digital Contents Society, 2023, 24, 153-166.	0.1	0
627	Environmental Design for Urban Cooling, Access, and Safety: A Novel Approach to Auditing Outdoor Areas in Residential Aged Care Facilities. Land, 2023, 12, 514.	1.2	0
628	The mediating role of emotion in the effects of landscape elements on thermal comfort: A laboratory study. Building and Environment, 2023, 233, 110130.	3.0	8
629	Health and Well-Being Benefits of Outdoor and Indoor Vertical Greening Systems: A Review. Sustainability, 2023, 15, 4107.	1.6	10
630	Climate-responsive architectural and urban design strategies for adapting to extreme hot events. , 2023, , 253-272.		0
631	Analysis of the spillover characteristics of cooling effect in an urban park: A case study in Zhengzhou city. Frontiers in Earth Science, 0, 11, .	0.8	2
632	Right tree, right place for whom? Environmental justice and practices of urban forest assessment. Local Environment, 0, , 1-15.	1.1	1
633	Determining Factors to Improve Urban Environment with the Biophilic Urbanism Approach: A Case Study of Torghabeh City. Environment and Urbanization ASIA, 2023, 14, 24-38.	0.9	0
634	Progress, knowledge gap and future directions of urban heat mitigation and adaptation research through a bibliometric review of history and evolution. Energy and Buildings, 2023, 287, 112976.	3.1	31
635	Policymaker and Practitioner Perceptions of Parks for Health and Wellbeing: Scoping a Holistic Approach. Sustainability, 2023, 15, 5251.	1.6	3
636	Filling the Gaps in Biophysical Knowledge of Urban Ecosystems: Flooding Mitigation and Stormwater Retention. Land, 2023, 12, 702.	1.2	0
637	The Potential of Green Schoolyards for Healthy Child Development: A Conceptual Framework. Forests, 2023, 14, 660.	0.9	3
638	Urban greening beyond the major cities: insights from the â€~Naturally Cooler Towns' initiative in Victoria's Goulburn Murray region. Australian Planner, 2022, 58, 84-94.	0.6	1

#	Article	IF	CITATIONS
639	Definition of streets priority to employ urban green infrastructure in Baghdad City. AIP Conference Proceedings, 2023, , .	0.3	0
640	Antalya Bazı Kent Parklarındaki Odunsu Bitki Taksonlarının Ekolojik Tölerans Kriterleri Açısından Değerlendirilmesi. Bartın Orman Fakültesi Dergisi, 0, , .	0.2	0
641	Identification of long-standing and emerging agendas in international forest policy discourse. Trees, Forests and People, 2023, 12, 100385.	0.8	2
642	Numerical Study on the Influence of Rivers on the Urban Microclimate: A Case Study in Chengdu, China. Water (Switzerland), 2023, 15, 1408.	1.2	1
643	Liveability transitioning: results of a pilot study of walking, accessibility, and social connection strengths weaknesses in established suburbs in Adelaide. Cities and Health, 2023, 7, 433-462.	1.6	0
644	The compound risk of heat and COVID-19 in New York City: riskscapes, physical and social factors, and interventions. Local Environment, 0, , 1-29.	1.1	0
650	Future Perspectives and Approaches Towards Operationalisation. Urban Book Series, 2023, , 179-184.	0.3	0
673	Enhancing Blue-Green Infrastructures for Flood and Water Stress Management: A Case Study of Chennai. Lecture Notes in Civil Engineering, 2024, , 97-117.	0.3	0
678	Understanding systemic cooling poverty. Nature Sustainability, 0, , .	11.5	0
697	City-Scale Analysis of Green Roof Effectiveness in Reducing Local Surface Temperatures. , 2023, , .		0
700	Climate change and urban forests. , 2024, , 243-264.		0
703	Bibliometric analysis and global research trends of climate change and cities studies for 30Âyears (1990–2021). Environment, Development and Sustainability, 0, , .	2.7	0
727	Integral Study of a Light Green Roof with Draining Organic Material in Gustavo A. Madero, Mexico City. , 2024, , 1-16.		0
730	Shrinking urban green spaces, increasing vulnerability: solving the conundrum of the demand-supply gap in an urbanizing city. , 2024, , 359-374.		0
734	Green Roofs as a Mainstreamed Nature-Based Solution Tackling the Challenge of Biodiversity Loss. , 2024, , 117-137.		0
748	Opportunities and Challenges to Implement Nature-Based Solutions for Urban Waters in Developed and Emerging Developed Countries. , 2024, , 221-238.		0