Influence of maceral composition on the structure, prop derived from South African coals

Fuel 142, 9-20 DOI: 10.1016/j.fuel.2014.10.033

Citation Report

#	Article	IF	CITATIONS
1	Quantitative study of the macromolecular structures of tectonically deformed coal using high-resolution transmission electron microscopy. Journal of Natural Gas Science and Engineering, 2015, 27, 1852-1862.	4.4	65
2	Chemical–structural properties of South African bituminous coals: Insights from wide angle XRD–carbon fraction analysis, ATR–FTIR, solid state 13 C NMR, and HRTEM techniques. Fuel, 2015, 158, 779-792.	6.4	262
3	Density functional theory molecular modelling and experimental particle kinetics for CO2–char gasification. Carbon, 2015, 93, 295-314.	10.3	58
4	The characterisation of slow-heated inertinite- and vitrinite-rich coals from the South African coalfields. Fuel, 2015, 158, 591-601.	6.4	36
5	Char particle emissivity of two coal chars in oxy-fuel atmospheres. Fuel, 2016, 183, 405-413.	6.4	29
6	Following the structure and reactivity of Tuncbilek lignite during pyrolysis and hydrogenation. Fuel Processing Technology, 2016, 152, 266-273.	7.2	17
7	Investigate the Adsorption Behavior of CO2on Char–Inorganic Compound Model for Coal Gasification. Energy & Fuels, 2016, , .	5.1	1
8	Effects of several types of biomass fuels on the yield, nanostructure and reactivity of soot from fast pyrolysis at high temperatures. Applied Energy, 2016, 171, 468-482.	10.1	82
9	Quantifying Curvature in High-Resolution Transmission Electron Microscopy Lattice Fringe Micrographs of Coals. Energy & Fuels, 2016, 30, 2694-2704.	5.1	46
10	Examination of structural models and bonding characteristics of coals. Fuel, 2016, 184, 799-807.	6.4	48
11	Atomistic simulation of coal char isothermal oxy-fuel combustion: Char reactivity and behavior. Fuel, 2016, 182, 935-943.	6.4	27
12	Petrographic characteristics of lignite gasification chars. International Journal of Coal Geology, 2016, 168, 146-161.	5.0	10
13	Structural and chemical modifications of typical South African biomasses during torrefaction. Bioresource Technology, 2016, 202, 192-197.	9.6	59
14	Emissivity of burning bituminous coal char particles – Burnout effects. Fuel, 2017, 196, 336-343.	6.4	24
15	The effect of acid demineralising bituminous coals and de-ashing the respective chars on nitrogen functional forms. Journal of Analytical and Applied Pyrolysis, 2017, 125, 127-135.	5.5	35
16	Catalytic depolymerization of coal char over iron-based catalyst: Potential method for producing high value-added chemicals. Fuel, 2017, 210, 329-333.	6.4	13
17	Interface Structure between Vitrinite and Inertinite from Shenmu Coal during Pyrolysis. ACS Earth and Space Chemistry, 2017, 1, 179-186.	2.7	8
18	Structural transformations and hydrocarbon generation of low-rank coal (vitrinite) during slow heating pyrolysis. Fuel Processing Technology, 2017, 167, 535-544.	7.2	41

CITATION REPORT

#	Article	IF	CITATIONS
19	Change of the petrographic composition of lignite during the ex-situ lignite gasification. Fuel, 2017, 206, 219-229.	6.4	9
20	FTIR and Raman spectroscopy characterization of functional groups in various rank coals. Fuel, 2017, 206, 555-563.	6.4	456
21	Particle size influence on the pore development of nanopores in coal gasification chars: From micron to millimeter particles. Carbon, 2017, 112, 37-46.	10.3	32
22	Structural investigations of Eocene coals from foreland basin of central Nepal Himalaya. Energy Exploration and Exploitation, 2017, 35, 713-733.	2.3	15
23	On the fundamental difference of adsorption-pores systems between vitrinite- and inertinite-rich anthracite derived from the southern Sichuan basin, China. Journal of Natural Gas Science and Engineering, 2018, 53, 32-44.	4.4	22
24	Investigation on the structure evolution of pre and post explosion of coal dust using X-ray diffraction. International Journal of Heat and Mass Transfer, 2018, 120, 1162-1172.	4.8	46
25	Transformation of nitrogen functional forms and the accompanying chemical-structural properties emanating from pyrolysis of bituminous coals. Applied Energy, 2018, 216, 414-427.	10.1	34
26	Understanding of formation mechanisms of fine particles formed during rapid pyrolysis of biomass. Fuel, 2018, 216, 538-547.	6.4	11
27	Structural features of Qingdao petroleum coke from HRTEM lattice fringes: Distributions of length, orientation, stacking, curvature, and a large-scale image-guided 3D atomistic representation. Carbon, 2018, 129, 790-802.	10.3	91
28	Influence of chemical properties on CH 4 adsorption capacity of anthracite derived from southern Sichuan Basin, China. Marine and Petroleum Geology, 2018, 89, 387-401.	3.3	18
29	ReaxFF simulations of petroleum coke sulfur removal mechanisms during pyrolysis and combustion. Combustion and Flame, 2018, 198, 146-157.	5.2	54
30	Charging mechanism analysis of macerals during triboelectrostatic enrichment process: Insights from relative dielectric constant, specific resistivity and X-ray diffraction. Fuel, 2018, 225, 533-541.	6.4	25
31	Emissivity Comparison between Chars and Demineralized Coal Chars under Oxycombustion Conditions. Chemical Engineering and Technology, 2018, 41, 1490-1496.	1.5	3
32	On the difference of graphitization behavior between vitrinite- and inertinite-rich anthracites during heat treatment. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2022, 44, 4991-5003.	2.3	6
33	Paleofloral dependence of coal methane sorption capacity. International Journal of Coal Geology, 2019, 211, 103232.	5.0	16
34	Comparative study of a vitrinite-rich and an inertinite-rich Witbank coal (South Africa) using pyrolysis-gas chromatography. International Journal of Coal Science and Technology, 2019, 6, 621-632.	6.0	4
35	Computer simulation of coal organic mass structure and its sorption properties. International Journal of Coal Science and Technology, 2019, 6, 438-444.	6.0	15
36	The carbon dioxide, methane and nitrogen high-pressure sorption properties of South African bituminous coals. International Journal of Coal Geology, 2019, 209, 40-53.	5.0	22

#	Article	IF	CITATIONS
37	Structural Differences of Spontaneous Combustion Prone Inertinite-Rich Chinese Lignite Coals: Insights from XRD, Solid-State ¹³ C NMR, LDIMS, and HRTEM. Energy & Fuels, 2019, 33, 4575-4584.	5.1	29
38	Crystallite Structure Characteristics and Its Influence on Methane Adsorption for Different Rank Coals. ACS Omega, 2019, 4, 20762-20772.	3.5	48
39	Estimation of heats of formation and combustion of coal. Fuel, 2019, 237, 536-544.	6.4	6
40	Physicochemical characterization of South African coals upon short-term flue gas exposure using conventional and advanced techniques. Materials Science for Energy Technologies, 2020, 3, 25-35.	1.8	3
41	A multi-level optical storage scheme via two-step picosecond laser irradiations: time/space modulations of microstructure and its optical property. Semiconductor Science and Technology, 2020, 35, 035025.	2.0	2
42	Nano-level resolution determination of aromatic nucleus in coal. Fuel, 2020, 262, 116532.	6.4	19
43	Macromolecular transformations for tectonically-deformed high volatile bituminous via HRTEM and XRD analyses. Fuel, 2020, 263, 116756.	6.4	42
44	Prediction and characterization of macromolecular structure of cutinite from luquan cutinitic liptobiolith with molecular simulation. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2020, , 1-16.	2.3	2
45	Study on the Liberation of Organic Macerals in Coal by Liquid Nitrogen Quenching Pretreatment. Minerals (Basel, Switzerland), 2020, 10, 911.	2.0	3
46	Molecular Model Construction and Evaluation of Jincheng Anthracite. ACS Omega, 2020, 5, 10663-10670.	3.5	15
47	Mineralogical and geochemical characteristics of pyrometamorphic rocks induced by coal fires in Junggar Basin, Xinjiang, China. Journal of Geochemical Exploration, 2020, 213, 106511.	3.2	9
48	Insight on adsorption mechanism of coal molecules at different ranks. Fuel, 2020, 267, 117234.	6.4	52
49	A review of the state-of-the-art research on carbon structure evolution during the coking process: From plastic layer chemistry to 3D carbon structure establishment. Fuel, 2020, 271, 117657.	6.4	36
50	A study of chemical structural evolution of thermally altered coal and its effect on graphitization. Fuel, 2021, 283, 119295.	6.4	14
51	A multi-tool structural change investigation of Indian vitrinite rich bituminous coal due to CS2/NMP interaction. Journal of Molecular Liquids, 2021, 323, 114599.	4.9	10
52	Characterization of Nanostructure Evolution in Coal Molecules of Different Ranks. Journal of Nanoscience and Nanotechnology, 2021, 21, 405-421.	0.9	4
53	Gasification of chars from tetralin liquefaction of < 1.5ÂgÂcmâ^'3 carbon-rich residues derived from waste coal fines in South Africa. Journal of Thermal Analysis and Calorimetry, 2022, 147, 2353-2367.	3.6	3
54	Macromolecular Structure Changes of Tectonically Deformed Coal: Evidence from Coal Pyrolysis, ¹³ C NMR, and XRD Experiments. Energy & Fuels, 2021, 35, 8711-8722.	5.1	5

CITATION REPORT

#	Article	IF	CITATIONS
55	Molecular Structure Evaluation and Image-Guided Atomistic Representation of Marine Kerogen from Longmaxi Shale. Energy & Fuels, 2021, 35, 7981-7992.	5.1	8
56	The Chemical and Alignment Structural Properties of Coal: Insights from Raman, Solid-State ¹³ C NMR, XRD, and HRTEM Techniques. ACS Omega, 2021, 6, 11266-11279.	3.5	17
57	Aromatic cluster and graphite-like structure distinguished by HRTEM in thermally altered coal and their genesis. Fuel, 2021, 292, 120373.	6.4	21
58	A method to extract the content, radius and specific surface area of maceral compositions in coal reservoirs based on image modeling. Journal of Petroleum Science and Engineering, 2021, 201, 108419.	4.2	1
59	Effects of rotary triboelectrification technology on macerals separation for low-rank coal. International Journal of Coal Preparation and Utilization, 2022, 42, 3249-3263.	2.1	4
60	Steam gasification of Greek lignite and its chars by co-feeding CO2 toward syngas production with an adjustable H2/CO ratio. International Journal of Hydrogen Energy, 2021, 46, 28486-28500.	7.1	17
61	Micro-Raman Spectroscopy of Selected Macerals of the Huminite Group: An Example from the SzczercÃ ³ w Lignite Deposit (Central Poland). Energies, 2021, 14, 281.	3.1	3
62	HRTEM observation of morphological and structural evolution of aromatic fringes during the transition from coal to graphite. Carbon, 2022, 187, 133-144.	10.3	20
63	Structural transformations for a subbituminous coal, impact of temperature on gold-tube pyrolysis chars evaluated using HRTEM. Fuel, 2022, 311, 122581.	6.4	11
64	The study of enhanced gravity concentrator for maceral enrichment of low-rank coal with heavy medium. International Journal of Coal Preparation and Utilization, 2022, 42, 3777-3793.	2.1	13
65	Interaction of vitrinites in similar middle-rank coals during coking process. Fuel, 2022, 316, 123334.	6.4	4
66	Impact of coal damage on permeability evolution based on an improved permeability model. Journal of Natural Gas Science and Engineering, 2022, 101, 104509.	4.4	3
67	HRTEM analysis of the aggregate structure and ultrafine microporous characteristics of Xinjiang Zhundong coal under heat treatment. Scientific Reports, 2022, 12, 4994.	3.3	4
68	Structural alterations of aromatic fringes by HRTEM for Xinjing Vitrinite-rich anthracite: Impact of low-temperature pyrolysis. Thermochimica Acta, 2022, 713, 179230.	2.7	4
69	Insights into the thermal stability and conversion of carbon-based materials by using ReaxFF reactive force field: Recent advances and future directions. Carbon, 2022, 196, 840-866.	10.3	32
70	Experimental investigation and DFT calculation of different amine/ammonium salts adsorption on oxidized coal. Chemical Physics, 2022, 561, 111598.	1.9	13
71	Evaluation of the effect of silicon on the carbonization process of Colombian semi-anthracites. Journal of Thermal Analysis and Calorimetry, 2022, 147, 11729-11738.	3.6	2
72	Desorption of CH4/CO2 from kerogen during explosive fracturing. Fuel, 2022, 324, 124741.	6.4	7

CITATION REPORT

#	Article	IF	CITATIONS
73	Structure and evolution features of cutinite with different coal rank from stacking and arrangement of aromatic fringes in HRTEM. Fuel, 2022, 326, 124998.	6.4	5
74	Raman Spectroscopy of Lignite Gasification Char Morphotypes. Energies, 2022, 15, 6057.	3.1	1
75	Influence of Flotation Reagents on Separation Mechanism of Macerals: A Multi-Scale Study. SSRN Electronic Journal, 0, , .	0.4	0
76	Molecular structure characterization analysis and molecular model construction of anthracite. PLoS ONE, 2022, 17, e0275108.	2.5	3
77	Understanding coal quality and the critical importance of comprehensive coal analyses. International Journal of Coal Geology, 2022, 263, 104120.	5.0	19
78	Influence of flotation reagents on separation mechanism of macerals: A multi-scale study. Fuel, 2023, 333, 126480.	6.4	6
79	Molecular simulation study on the effect of coal metamorphism on the competitive adsorption of CO2/CH4 in binary system. Fuel, 2023, 335, 127046.	6.4	10
80	Effect of pressure on the evolution of vitrinite graphitized mesophases: An experimental study on anthracite under high temperature and pressure. International Journal of Coal Geology, 2023, 267, 104187.	5.0	6
81	Construction and verification of vitrinite-rich and inertinite-rich Zhundong coal models at the aggregate level: new insights from the spatial arrangement and thermal behavior perspective. RSC Advances, 2023, 13, 7569-7584.	3.6	2
82	Simulation strategies for ReaxFF molecular dynamics in coal pyrolysis applications: A review. Journal of Analytical and Applied Pyrolysis, 2023, 170, 105882.	5.5	18
83	Change of the Petrographic Characteristics of Semi-Coke in the Iron Ore Sintering Process. ACS Omega, 2023, 8, 7922-7931.	3.5	0
84	Molecular dynamics simulations and experimental study on deconvolution of volatile–char interaction in coal pyrolysis: Insight into the role of O-containing compound species. Chemical Engineering Science, 2023, 277, 118874.	3.8	0
85	Structural Characterization and Molecular Model Construction of High-Ash Coal from Northern China. Molecules, 2023, 28, 5593.	3.8	3
86	HRTEM analysis of carbon structure evolution during the formation of metallurgical coke and impacts on coke quality. Journal of Analytical and Applied Pyrolysis, 2023, 174, 106124.	5.5	0
87	Construction and optimization of macromolecular structure model of Tiebei lignite. PLoS ONE, 2023, 18, e0289328.	2.5	1
88	Molecular simulations of hydrogen adsorption on coal with different ranks: Implications for hydrogen geo-storage. International Journal of Hydrogen Energy, 2024, 51, 10-20.	7.1	3
89	Research on CO ₂ /CH ₄ /N ₂ competitive adsorption characteristics of anthracite coal from Shanxi Sihe coal mine. RSC Advances, 2024, 14, 3498-3512.	3.6	0