Triboelectric nanogenerators as self-powered active ser

Nano Energy

11, 436-462

DOI: 10.1016/j.nanoen.2014.10.034

Citation Report

#	Article	IF	CITATIONS
1	Recent Progress in Electronic Skin. Advanced Science, 2015, 2, 1500169.	5.6	789
2	A Streaming Potential/Currentâ€Based Microfluidic Direct Current Generator for Selfâ€Powered Nanosystems. Advanced Materials, 2015, 27, 6482-6487.	11.1	104
3	Oneâ€Step Fabrication of Transparent and Flexible Nanotopographicalâ€Triboelectric Nanogenerators via Thermal Nanoimprinting of Thermoplastic Fluoropolymers. Advanced Materials, 2015, 27, 7386-7394.	11.1	66
4	Selfâ€Recovering Triboelectric Nanogenerator as Active Multifunctional Sensors. Advanced Functional Materials, 2015, 25, 6489-6494.	7.8	63
5	Recent Progress on Flexible Triboelectric Nanogenerators for SelfPowered Electronics. ChemSusChem, 2015, 8, 2327-2344.	3.6	164
6	Sequential Infiltration Synthesis of Doped Polymer Films with Tunable Electrical Properties for Efficient Triboelectric Nanogenerator Development. Advanced Materials, 2015, 27, 4938-4944.	11.1	159
7	Integration of micro-supercapacitors with triboelectric nanogenerators for a flexible self-charging power unit. Nano Research, 2015, 8, 3934-3943.	5.8	164
8	Structural Optimization of Triboelectric Nanogenerator for Harvesting Water Wave Energy. ACS Nano, 2015, 9, 12562-12572.	7.3	192
9	Ultrasensitive self-powered pressure sensing system. Extreme Mechanics Letters, 2015, 2, 28-36.	2.0	78
10	Flexible self-healing nanocomposites for recoverable motion sensor. Nano Energy, 2015, 17, 1-9.	8.2	82
11	Multifunctional triboelectric nanogenerator based on porous micro-nickel foam to harvest mechanical energy. Nano Energy, 2015, 16, 516-523.	8.2	96
12	Largely Improving the Robustness and Lifetime of Triboelectric Nanogenerators through Automatic Transition between Contact and Noncontact Working States. ACS Nano, 2015, 9, 7479-7487.	7. 3	100
13	Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy and Environmental Science, 2015, 8, 2250-2282.	15.6	1,723
14	Theoretical Study of Rotary Freestanding Triboelectric Nanogenerators. Advanced Functional Materials, 2015, 25, 2928-2938.	7.8	142
15	Single-electrode triboelectric nanogenerator for scavenging friction energy from rolling tires. Nano Energy, 2015, 15, 227-234.	8.2	151
16	Bioinspired Interlocked and Hierarchical Design of ZnO Nanowire Arrays for Static and Dynamic Pressureâ€Sensitive Electronic Skins. Advanced Functional Materials, 2015, 25, 2841-2849.	7.8	315
17	Triboelectric Charging Sequence Induced by Surface Functionalization as a Method To Fabricate High Performance Triboelectric Generators. ACS Nano, 2015, 9, 4621-4627.	7.3	216
18	Self-Powered Triboelectric Nanosensor for Microfluidics and Cavity-Confined Solution Chemistry. ACS Nano, 2015, 9, 11056-11063.	7. 3	99

#	Article	IF	CITATIONS
19	Automatic Mode Transition Enabled Robust Triboelectric Nanogenerators. ACS Nano, 2015, 9, 12334-12343.	7.3	111
20	Flexible fiber/wire-shaped solar cells in progress: properties, materials, and designs. Journal of Materials Chemistry A, 2015, 3, 20435-20458.	5.2	81
21	Shape memory polymer-based self-healing triboelectric nanogenerator. Energy and Environmental Science, 2015, 8, 3605-3613.	15.6	210
22	A Self-Powered Triboelectric Nanosensor for PH Detection. Journal of Nanomaterials, 2016, 2016, 1-6.	1.5	7
23	Progress in Piezoâ€Phototronicâ€Effectâ€Enhanced Lightâ€Emitting Diodes and Pressure Imaging. Advanced Materials, 2016, 28, 1535-1552.	11.1	110
24	Flexible Nanogenerators for Energy Harvesting and Selfâ€Powered Electronics. Advanced Materials, 2016, 28, 4283-4305.	11.1	1,438
25	Extraordinarily Sensitive and Lowâ€Voltage Operational Clothâ€Based Electronic Skin for Wearable Sensing and Multifunctional Integration Uses: A Tactileâ€Induced Insulatingâ€toâ€Conducting Transition. Advanced Functional Materials, 2016, 26, 1286-1295.	7.8	134
26	A Novel Triboelectric Generator Based on the Combination of a Waterwheelâ€Like Electrode with a Spring Steel Plate For Efficient Harvesting of Lowâ€Velocity Rotational Motion Energy. Advanced Electronic Materials, 2016, 2, 1500448.	2.6	16
27	A self-powered active hydrogen sensor using triboelectric effect., 2016,,.		0
28	Honeycomb-like nanofiber based triboelectric nanogenerator using self-assembled electrospun poly(vinylidene fluoride-co-trifluoroethylene) nanofibers. Applied Physics Letters, 2016, 108, .	1.5	42
29	Theoretical and numerical analysis of triboelectric nanogenerators for self-powered sensors. , 2016, , .		3
30	Biodegradable triboelectric nanogenerator as a life-time designed implantable power source. Science Advances, 2016, 2, e1501478.	4.7	461
31	Theoretical study on rotary-sliding disk triboelectric nanogenerators in contact and non-contact modes. Nano Research, 2016, 9, 1057-1070.	5.8	73
32	Rolling Friction Enhanced Freeâ€Standing Triboelectric Nanogenerators and their Applications in Selfâ€Powered Electrochemical Recovery Systems. Advanced Functional Materials, 2016, 26, 1054-1062.	7.8	101
33	Triboelectrification. Green Energy and Technology, 2016, , 1-19.	0.4	12
34	Flexible and biocompatible polypropylene ferroelectret nanogenerator (FENG): On the path toward wearable devices powered by human motion. Nano Energy, 2016, 30, 649-657.	8.2	78
35	A pipe leakage detection method for water floor warm system using multiple linear regression models. , $2016, $, .		1
36	Performance-enhanced triboelectric nanogenerator using the glass transition of polystyrene. Nano Energy, 2016, 27, 306-312.	8.2	33

#	Article	IF	Citations
37	3D spacer fabric based multifunctional triboelectric nanogenerator with great feasibility for mechanized large-scale production. Nano Energy, 2016, 27, 439-446.	8.2	107
38	Noninvasive Sensor for the Detection of Process Parameters for Multiphase Slug Flows in Microchannels. ACS Sensors, 2016, $1,1117-1123$.	4.0	5
39	A dual-electrolyte based air-breathing regenerative microfluidic fuel cell with $1.76\mathrm{V}$ open-circuit-voltage and $0.74\mathrm{V}$ water-splitting voltage. Nano Energy, $2016,27,619$ -626.	8.2	52
40	Self-Powered Triboelectric Micro Liquid/Gas Flow Sensor for Microfluidics. ACS Nano, 2016, 10, 8104-8112.	7.3	131
41	Figuresâ€ofâ€Merit for Rollingâ€Frictionâ€Based Triboelectric Nanogenerators. Advanced Materials Technologies, 2016, 1, 1600017.	3.0	34
42	Triboelectric Nanogenerators Driven Selfâ€Powered Electrochemical Processes for Energy and Environmental Science. Advanced Energy Materials, 2016, 6, 1600665.	10.2	394
43	Harvesting Large-Scale Blue Energy. Green Energy and Technology, 2016, , 283-306.	0.4	3
44	Charging System Optimization of Triboelectric Nanogenerator for Water Wave Energy Harvesting and Storage. ACS Applied Materials & Storage.	4.0	67
45	Flexible Piezoelectric Nanocomposite Generators Based on Formamidinium Lead Halide Perovskite Nanoparticles. Advanced Functional Materials, 2016, 26, 7708-7716.	7.8	163
46	Self-Powered Safety Helmet Based on Hybridized Nanogenerator for Emergency. ACS Nano, 2016, 10, 7874-7881.	7.3	179
47	Triboelectric driven turbine to generate electricity from the motion of water. Nano Energy, 2016, 30, 379-386.	8.2	58
48	Self-powered liquid triboelectric microfluidic sensor for pressure sensing and finger motion monitoring applications. Nano Energy, 2016, 30, 450-459.	8.2	157
49	A highly shape-adaptive, stretchable design based on conductive liquid for energy harvesting and self-powered biomechanical monitoring. Science Advances, 2016, 2, e1501624.	4.7	274
50	High-efficiency piezoelectric micro harvester for collecting low-frequency mechanical energy. Nanotechnology, 2016, 27, 485402.	1.3	6
51	A durable and stable piezoelectric nanogenerator with nanocomposite nanofibers embedded in an elastomer under high loading for a self-powered sensor system. Nano Energy, 2016, 30, 434-442.	8.2	134
52	Sustainably powering wearable electronics solely by biomechanical energy. Nature Communications, 2016, 7, 12744.	5.8	483
53	A flexible triboelectric-piezoelectric hybrid nanogenerator based on P(VDF-TrFE) nanofibers and PDMS/MWCNT for wearable devices. Scientific Reports, 2016, 6, 36409.	1.6	179
54	3D-printed novel triboelectric generator based on saw-toothed button structure. , 2016, , .		1

#	Article	IF	CITATIONS
55	Allâ€Plasticâ€Materials Based Selfâ€Charging Power System Composed of Triboelectric Nanogenerators and Supercapacitors. Advanced Functional Materials, 2016, 26, 1070-1076.	7.8	190
56	Outputting Olfactory Bionic Electric Impulse by PANI/PTFE/PANI Sandwich Nanostructures and their Application as Flexible, Smelling Electronic Skin. Advanced Functional Materials, 2016, 26, 3128-3138.	7.8	102
57	Selfâ€Powered Highâ€Resolution and Pressureâ€Sensitive Triboelectric Sensor Matrix for Realâ€Time Tactile Mapping. Advanced Materials, 2016, 28, 2896-2903.	11.1	344
58	Highly Sensitive, Flexible, and Wearable Pressure Sensor Based on a Giant Piezocapacitive Effect of Three-Dimensional Microporous Elastomeric Dielectric Layer. ACS Applied Materials & Diefects, 2016, 8, 16922-16931.	4.0	404
59	A self-powered active hydrogen sensor based on a high-performance triboelectric nanogenerator using a wrinkle-micropatterned PDMS film. RSC Advances, 2016, 6, 63030-63036.	1.7	32
60	A silk-fibroin-based transparent triboelectric generator suitable for autonomous sensor network. Nano Energy, 2016, 20, 37-47.	8.2	136
61	The adhesion behavior of carbon coating studied by re-indentation during in situ TEM nanoindentation. Applied Surface Science, 2016, 362, 49-55.	3.1	17
62	A triboelectric textile templated by a three-dimensionally penetrated fabric. Journal of Materials Chemistry A, 2016, 4, 6077-6083.	5. 2	71
63	A ball-bearing structured triboelectric nanogenerator for nondestructive damage and rotating speed measurement. Nanotechnology, 2016, 27, 085401.	1.3	44
64	Chemical modification of polymer surfaces for advanced triboelectric nanogenerator development. Extreme Mechanics Letters, 2016, 9, 514-530.	2.0	160
65	Ultrasensitive self-powered cytosensor. Nano Energy, 2016, 19, 541-549.	8.2	52
66	A self-powered sensor with super-hydrophobic nanostructure surfaces for synchronous detection and electricity generation. Nano Energy, 2017, 33, 288-292.	8.2	26
67	A washable, stretchable, and self-powered human-machine interfacing Triboelectric nanogenerator for wireless communications and soft robotics pressure sensor arrays. Extreme Mechanics Letters, 2017, 13, 25-35.	2.0	78
68	On Maxwell's displacement current for energy and sensors: the origin of nanogenerators. Materials Today, 2017, 20, 74-82.	8.3	1,473
69	Full Dynamicâ€Range Pressure Sensor Matrix Based on Optical and Electrical Dualâ€Mode Sensing. Advanced Materials, 2017, 29, 1605817.	11.1	176
70	Tandem triboelectric nanogenerators for optimally scavenging mechanical energy with broadband vibration frequencies. Nano Energy, 2017, 33, 515-521.	8.2	82
71	Self-powered, stretchable, fiber-based electronic-skin for actively detecting human motion and environmental atmosphere based on a triboelectrification/gas-sensing coupling effect. Journal of Materials Chemistry C, 2017, 5, 1231-1239.	2.7	51
72	Triboelectric nanogenerator based on 317L stainless steel and ethyl cellulose for biomedical applications. RSC Advances, 2017, 7, 6772-6779.	1.7	58

#	Article	IF	CITATIONS
73	Sustainable Energy Source for Wearable Electronics Based on Multilayer Elastomeric Triboelectric Nanogenerators. Advanced Energy Materials, 2017, 7, 1602832.	10.2	129
74	Evolutionary trend analysis of nanogenerator research based on a novel perspective of phased bibliographic coupling. Nano Energy, 2017, 34, 93-102.	8.2	80
75	Broadband Energy Harvester Using Non-linear Polymer Spring and Electromagnetic/Triboelectric Hybrid Mechanism. Scientific Reports, 2017, 7, 41396.	1.6	95
76	Enhanced performance of ZnO microballoon arrays for a triboelectric nanogenerator. Nanotechnology, 2017, 28, 135401.	1.3	31
77	Highâ€Performance Piezoelectric, Pyroelectric, and Triboelectric Nanogenerators Based on P(VDFâ€TrFE) with Controlled Crystallinity and Dipole Alignment. Advanced Functional Materials, 2017, 27, 1700702.	7.8	149
78	Progress in triboelectric nanogenerators as self-powered smart sensors. Journal of Materials Research, 2017, 32, 1628-1646.	1.2	150
79	From triboelectric nanogenerator to self-powered smart floor: A minimalist design. Nano Energy, 2017, 39, 192-199.	8.2	46
80	Self-powered pressure sensor for ultra-wide range pressure detection. Nano Research, 2017, 10, 3557-3570.	5.8	117
81	A Selfâ€Powered Dynamic Displacement Monitoring System Based on Triboelectric Accelerometer. Advanced Energy Materials, 2017, 7, 1700565.	10.2	117
82	Cam-based sustainable triboelectric nanogenerators with a resolution-free 3D-printed system. Nano Energy, 2017, 38, 326-334.	8.2	50
83	Recent Progress on Piezoelectric and Triboelectric Energy Harvesters in Biomedical Systems. Advanced Science, 2017, 4, 1700029.	5.6	405
84	Forecasting potential sensor applications of triboelectric nanogenerators through tech mining. Nano Energy, 2017, 35, 358-369.	8.2	24
85	Self-Powered Dynamic Systems in the Framework of Optimal Uncertainty Quantification. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 2017, 139, .	0.9	2
86	Harvesting ambient wind energy with an inverted piezoelectric flag. Applied Energy, 2017, 194, 212-222.	5.1	317
87	Omnidirectional Bending and Pressure Sensor Based on Stretchable CNT-PU Sponge. Advanced Functional Materials, 2017, 27, 1604434.	7.8	148
88	A self-powered acceleration sensor with flexible materials based on triboelectric effect. Nano Energy, 2017, 31, 469-477.	8.2	64
89	Selfâ€Powered Wireless Sensor Node Enabled by a Duckâ€Shaped Triboelectric Nanogenerator for Harvesting Water Wave Energy. Advanced Energy Materials, 2017, 7, 1601705.	10.2	198
90	Flexible Triboelectric Nanogenerator Based on Carbon Nanotubes for Selfâ€Powered Weighing. Advanced Engineering Materials, 2017, 19, 1600710.	1.6	42

#	Article	IF	CITATIONS
91	Spring-assisted triboelectric nanogenerator for efficiently harvesting water wave energy. Nano Energy, 2017, 31, 560-567.	8.2	181
92	Inductively-coupled-plasma-induced electret enhancement for triboelectric nanogenerators. Nanotechnology, 2017, 28, 035405.	1.3	21
93	Ultrasensitive cellular fluorocarbon piezoelectret pressure sensor for self-powered human physiological monitoring. Nano Energy, 2017, 32, 42-49.	8.2	123
94	Nanopillar-array architectured PDMS-based triboelectric nanogenerator integrated with a windmill model for effective wind energy harvesting. Nano Energy, 2017, 42, 269-281.	8.2	136
95	Fully Stretchable Textile Triboelectric Nanogenerator with Knitted Fabric Structures. ACS Nano, 2017, 11, 10733-10741.	7.3	191
96	Self-Powered Dual-Mode Amenity Sensor Based on the Water–Air Triboelectric Nanogenerator. ACS Nano, 2017, 11, 10337-10346.	7.3	108
97	Reviving Vibration Energy Harvesting and Self-Powered Sensing by a Triboelectric Nanogenerator. Joule, 2017, 1, 480-521.	11.7	748
98	Integration of Energy Harvesting and Electrochemical Storage Devices. Advanced Materials Technologies, 2017, 2, 1700182.	3.0	78
99	A Highly Stretchable and Washable All-Yarn-Based Self-Charging Knitting Power Textile Composed of Fiber Triboelectric Nanogenerators and Supercapacitors. ACS Nano, 2017, 11, 9490-9499.	7.3	419
100	Size effect on the output of a miniaturized triboelectric nanogenerator based on superimposed electrode layers. Nano Energy, 2017, 41, 128-138.	8.2	34
101	Self-powered Real-time Movement Monitoring Sensor Using Triboelectric Nanogenerator Technology. Scientific Reports, 2017, 7, 10521.	1.6	77
102	A flexible, planar energy harvesting device for scavenging road side waste mechanical energy via the synergistic piezoelectric response of K _{0.5} Na _{0.5} Na _{NbO₃-BaTiO₃/PVDF composite films. Nanoscale. 2017. 9. 15122-15130.}	2.8	62
103	Seesaw-structured triboelectric nanogenerator for scavenging electrical energy from rotational motion of mechanical systems. Sensors and Actuators A: Physical, 2017, 263, 600-609.	2.0	20
104	Highly Transparent, Stretchable, and Selfâ€Healing Ionicâ€6kin Triboelectric Nanogenerators for Energy Harvesting and Touch Applications. Advanced Materials, 2017, 29, 1702181.	11.1	322
105	Bioinspired stretchable triboelectric nanogenerator as energy-harvesting skin for self-powered electronics. Nano Energy, 2017, 39, 429-436.	8.2	147
106	Achieving ultrahigh triboelectric charge density for efficient energy harvesting. Nature Communications, 2017, 8, 88.	5.8	495
107	Fully casted stretchable triboelectric device for energy harvesting and sensing made of elastomeric materials. , 2017, , .		0
108	Fingertip-inspired electronic skin based on triboelectric sliding sensing and porous piezoresistive pressure detection. Nano Energy, 2017, 40, 65-72.	8.2	120

#	Article	IF	CITATIONS
109	Solid-liquid triboelectrification in smart U-tube for multifunctional sensors. Nano Energy, 2017, 40, 95-106.	8.2	88
110	Self-powered triboelectric nanogenerator buoy ball for applications ranging from environment monitoring to water wave energy farm. Nano Energy, 2017, 40, 203-213.	8.2	153
111	A wearable, fibroid, self-powered active kinematic sensor based on stretchable sheath-core structural triboelectric fibers. Nano Energy, 2017, 39, 673-683.	8.2	71
113	Fully stretchable and highly durable triboelectric nanogenerators based on gold-nanosheet electrodes for self-powered human-motion detection. Nano Energy, 2017, 42, 300-306.	8.2	126
114	Toward the blue energy dream by triboelectric nanogenerator networks. Nano Energy, 2017, 39, 9-23.	8.2	913
115	An Ultrathin Flexible Singleâ€Electrode Triboelectricâ€Nanogenerator for Mechanical Energy Harvesting and Instantaneous Force Sensing. Advanced Energy Materials, 2017, 7, 1601255.	10.2	168
116	Explore the Dynamics of an Emerging Technology through Research Networks: The Case Study of Triboelectric Nanogenerator. , 2017, , .		1
117	Internet of Things: A Scientometric Review. Symmetry, 2017, 9, 301.	1.1	35
118	Energy Harvesting Based on Polymer. , 2017, , 151-196.		9
119	Water Energy Harvesting and Selfâ€Powered Visible Light Communication Based on Triboelectric Nanogenerator. Energy Technology, 2018, 6, 1929-1934.	1.8	16
120	Harvesting wind energy with pyroelectric nanogenerator PNG using the vortex generator mechanism. Sensors and Actuators A: Physical, 2018, 273, 42-48.	2.0	27
121	Self-powered versatile shoes based on hybrid nanogenerators. Nano Research, 2018, 11, 3972-3978.	5.8	45
122	Suppressing self-discharge of supercapacitors via electrorheological effect of liquid crystals. Nano Energy, 2018, 47, 43-50.	8.2	183
123	Triboelectric-Nanogenerator-Based Soft Energy-Harvesting Skin Enabled by Toughly Bonded Elastomer/Hydrogel Hybrids. ACS Nano, 2018, 12, 2818-2826.	7.3	245
124	All-in-one self-powered flexible microsystems based on triboelectric nanogenerators. Nano Energy, 2018, 47, 410-426.	8.2	249
125	On-vehicle triboelectric nanogenerator enabled self-powered sensor for tire pressure monitoring. Nano Energy, 2018, 49, 126-136.	8.2	94
126	Hybridized Nanogenerators for Harvesting Vibrational Energy by Triboelectric–Piezoelectric–Electromagnetic Effects. Advanced Materials Technologies, 2018, 3, 1800019.	3.0	35
127	Soft and Flexible Bilayer Thermoplastic Polyurethane Foam for Development of Bioinspired Artificial Skin. ACS Applied Materials & Skin. ACS ACS Applied Materials & Skin. ACS	4.0	46

#	Article	IF	CITATIONS
128	Self-powered sensor for tannic acid exploiting visible LED light as excitation source. Electrochimica Acta, 2018, 274, 67-73.	2.6	16
129	Magnetorheological elastomers enabled high-sensitive self-powered tribo-sensor for magnetic field detection. Nanoscale, 2018, 10, 4745-4752.	2.8	7 3
130	MEMS based energy harvesting for the Internet of Things: a survey. Microsystem Technologies, 2018, 24, 2853-2869.	1.2	54
131	Wireless Electric Energy Transmission through Various Isolated Solid Media Based on Triboelectric Nanogenerator. Advanced Energy Materials, 2018, 8, 1703086.	10.2	58
132	A Selfâ€Powered Portable Power Bank Based on a Hybridized Nanogenerator. Advanced Materials Technologies, 2018, 3, 1700209.	3.0	15
133	Soft triboelectric generators by use of cost-effective elastomers and simple casting process. Sensors and Actuators A: Physical, 2018, 271, 88-95.	2.0	21
134	Coreâ€"shell coaxially structured triboelectric nanogenerator for energy harvesting and motion sensing. RSC Advances, 2018, 8, 2950-2957.	1.7	67
135	Oxygen-deficient Ta2O5 nanoporous films as self-supported electrodes for lithium microbatteries. Nano Energy, 2018, 45, 407-412.	8.2	63
136	Triboelectric nanogenerators as self-powered acceleration sensor under high-g impact. Nano Energy, 2018, 45, 84-93.	8.2	52
137	Triboelectric Nanogenerator Tree for Harvesting Wind Energy and Illuminating in Subway Tunnel. Advanced Materials Technologies, 2018, 3, 1700317.	3.0	98
138	Flexible Single-Electrode Triboelectric Nanogenerator and Body Moving Sensor Based on Porous Na ₂ CO ₃ /Polydimethylsiloxane Film. ACS Applied Materials & Samp; Interfaces, 2018, 10, 3652-3659.	4.0	103
139	A Stretchable, Flexible Triboelectric Nanogenerator for Selfâ€Powered Realâ€Time Motion Monitoring. Advanced Materials Technologies, 2018, 3, 1800021.	3.0	68
140	A Compound Yarn Based Wearable Triboelectric Nanogenerator for Selfâ€Powered Wearable Electronics. Advanced Materials Technologies, 2018, 3, 1800065.	3.0	41
141	Self-Powered Wind Sensor System for Detecting Wind Speed and Direction Based on a Triboelectric Nanogenerator. ACS Nano, 2018, 12, 3954-3963.	7.3	224
142	Self-powered active acetylene sensing properties by piezo-plasmonic Ag@ZnO nanoarray. Microelectronic Engineering, 2018, 187-188, 110-115.	1.1	3
143	Recent Advances in Nanogeneratorâ€Driven Selfâ€Powered Implantable Biomedical Devices. Advanced Energy Materials, 2018, 8, 1701210.	10.2	156
144	Water wave energy harvesting and self-powered liquid-surface fluctuation sensing based on bionic-jellyfish triboelectric nanogenerator. Materials Today, 2018, 21, 88-97.	8.3	192
145	Enhanced sensing performance of bimetallic Al/Ag-CNF network and porous PDMS-based triboelectric acetylene gas sensors in a high humidity atmosphere. Sensors and Actuators B: Chemical, 2018, 258, 857-869.	4.0	34

#	Article	IF	CITATIONS
146	Ultra-robust triboelectric nanogenerator for harvesting rotary mechanical energy. Nano Research, 2018, 11, 2862-2871.	5.8	44
147	Transparent triboelectric nanogenerator-induced high voltage pulsed electric field for a self-powered handheld printer. Nano Energy, 2018, 44, 468-475.	8.2	70
148	Nitrogen-doped hollow carbon nanospheres for high-energy-density biofuel cells and self-powered sensing of microRNA-21 and microRNA-141. Nano Energy, 2018, 44, 95-102.	8.2	72
149	Dopamine polymerization tunes triboelectric interface. Nano Energy, 2018, 44, 199-207.	8.2	22
150	Ultrasoft and cuttable paper-based triboelectric nanogenerators for mechanical energy harvesting. Nano Energy, 2018, 44, 279-287.	8.2	78
151	Robust Affordable 3D Haptic Sensation via Learning Deformation Patterns. , 2018, , .		3
152	Energy Autonomous Sensors for Water Quality Monitoring. , 2018, , .		3
153	Sewing machine stitching of polyvinylidene fluoride fibers: programmable textile patterns for wearable triboelectric sensors. Journal of Materials Chemistry A, 2018, 6, 22879-22888.	5.2	80
154	Triboelectric Balls as Three-Dimensional Vibrational Energy Harvesters and Self-Powered Sensors. , 2018, , .		2
155	Breathable Materials for Triboelectric Effect-Based Wearable Electronics. Applied Sciences (Switzerland), 2018, 8, 2485.	1.3	22
156	Enhanced Triboelectric Nanogenerator Performance via an Optimised Low Permittivity, Low Thickness Substrate., 2018,,.		2
157	A self-powered triboelectric velocity sensor for impact detection in composite structures. MATEC Web of Conferences, 2018, 211, 21004.	0.1	3
158	Directly Visualizing Tactile Perception and Ultrasensitive Tactile Sensors by Utilizing Bodyâ€Enhanced Induction of Ambient Electromagnetic Waves. Advanced Functional Materials, 2018, 28, 1805277.	7.8	30
159	Fabric-based self-powered noncontact smart gloves for gesture recognition. Journal of Materials Chemistry A, 2018, 6, 20277-20288.	5.2	36
160	Rapid Fabrication of Microporous BaTiO3/PDMS Nanocomposites for Triboelectric Nanogenerators through One-step Microwave Irradiation. Scientific Reports, 2018, 8, 14287.	1.6	45
161	Towards self-powered sensing using nanogenerators for automotive systems. Nano Energy, 2018, 53, 1003-1019.	8.2	68
162	A Stretchable Yarn Embedded Triboelectric Nanogenerator as Electronic Skin for Biomechanical Energy Harvesting and Multifunctional Pressure Sensing. Advanced Materials, 2018, 30, e1804944.	11.1	396
163	Elasticâ€Beam Triboelectric Nanogenerator for Highâ€Performance Multifunctional Applications: Sensitive Scale, Acceleration/Force/Vibration Sensor, and Intelligent Keyboard. Advanced Energy Materials, 2018, 8, 1802159.	10.2	102

#	Article	IF	Citations
164	Stretchable and Wearable Triboelectric Nanogenerator Based on Kinesio Tape for Self-Powered Human Motion Sensing. Nanomaterials, 2018, 8, 657.	1.9	42
165	Flexible one-structure arched triboelectric nanogenerator based on common electrode for high efficiency energy harvesting and self-powered motion sensing. AIP Advances, 2018, 8, .	0.6	7
166	Self-powered pressure sensor based on the triboelectric effect and its analysis using dynamic mechanical analysis. Nano Energy, 2018, 50, 401-409.	8.2	126
167	Fingerprint-inspired triboelectrific sliding sensor. , 2018, , .		2
168	Hybrid porous micro structured finger skin inspired self-powered electronic skin system for pressure sensing and sliding detection. Nano Energy, 2018, 51, 496-503.	8.2	131
169	Spherical Triboelectric Nanogenerators Based on Springâ€Assisted Multilayered Structure for Efficient Water Wave Energy Harvesting. Advanced Functional Materials, 2018, 28, 1802634.	7.8	168
170	Flexible Timboâ€Like Triboelectric Nanogenerator as Selfâ€Powered Force and Bend Sensor for Wireless and Distributed Landslide Monitoring. Advanced Materials Technologies, 2018, 3, 1800144.	3.0	50
171	Toward a Rapid-Fabricated Triboelectric Device with a 1,3-Phosphorylated Poly(vinyl alcohol) Polymer for Water Turbulence Energy Harvesting. ACS Omega, 2018, 3, 8421-8428.	1.6	8
172	Pulse sensor based on single-electrode triboelectric nanogenerator. Sensors and Actuators A: Physical, 2018, 280, 326-331.	2.0	32
173	A highly sensitive, self-powered triboelectric auditory sensor for social robotics and hearing aids. Science Robotics, 2018, 3, .	9.9	573
174	A flexible comb electrode triboelectric–electret nanogenerator with separated microfibers for a self-powered position, motion direction and acceleration tracking sensor. Journal of Materials Chemistry A, 2018, 6, 16548-16555.	5.2	39
175	Toward Perceptive Soft Robots: Progress and Challenges. Advanced Science, 2018, 5, 1800541.	5.6	468
177	Self-Powered Plasmonic UV Detector, Based on Reduced Graphene Oxide/Ag Nanoparticles. IEEE Electron Device Letters, 2018, 39, 1433-1436.	2.2	10
178	Self-powered triboelectric touch sensor made of 3D printed materials. Nano Energy, 2018, 52, 54-62.	8.2	52
179	Design Guidelines of Stretchable Pressure Sensorsâ€Based Triboelectrification. Advanced Engineering Materials, 2018, 20, 1700997.	1.6	21
180	A Comprehensive Method to Taxonomize Mechanical Energy Harvesting Technologies. , 2018, , .		7
181	Recent progress in flexible pressure sensor arrays: from design to applications. Journal of Materials Chemistry C, 2018, 6, 11878-11892.	2.7	194
182	Self-Powered All-in-One Fluid Sensor Textile with Enhanced Triboelectric Effect on All-Immersed Dendritic Liquid–Solid Interface. ACS Applied Materials & Interfaces, 2018, 10, 30819-30826.	4.0	20

#	Article	IF	CITATIONS
183	A Selfâ€Powered Smart Rollerâ€Bearing Based on a Triboelectric Nanogenerator for Measurement of Rotation Movement. Advanced Materials Technologies, 2018, 3, 1800219.	3.0	24
184	Molecular structure engineering of dielectric fluorinated polymers for enhanced performances of triboelectric nanogenerators. Nano Energy, 2018, 53, 37-45.	8.2	47
185	Harvest of ocean energy by triboelectric generator technology. Applied Physics Reviews, 2018, 5, 031303.	5.5	14
186	Synthesis of C/Co ₃ O ₄ composite mesoporous hollow sphere sandwich graphene films for high-performance supercapacitors. Inorganic Chemistry Frontiers, 2018, 5, 2554-2562.	3.0	26
187	Energy Harvesting Research: The Road from Single Source to Multisource. Advanced Materials, 2018, 30, e1707271.	11.1	203
188	Versatile Core–Sheath Yarn for Sustainable Biomechanical Energy Harvesting and Realâ€Time Humanâ€Interactive Sensing. Advanced Energy Materials, 2018, 8, 1801114.	10.2	212
189	Fully Elastic and Metalâ€Free Tactile Sensors for Detecting both Normal and Tangential Forces Based on Triboelectric Nanogenerators. Advanced Functional Materials, 2018, 28, 1802989.	7.8	124
190	Harvesting liquid stream energy from unsteady peristaltic flow induced pulsatile Flow-TENG (PF-TENG) using slipping polymeric surface inside elastomeric tubing. Nano Energy, 2019, 65, 104017.	8.2	56
191	Energy Scavenging and Powering E-Skin Functional Devices. Proceedings of the IEEE, 2019, 107, 2118-2136.	16.4	34
192	Entirely, Intrinsically, and Autonomously Selfâ€Healable, Highly Transparent, and Superstretchable Triboelectric Nanogenerator for Personal Power Sources and Selfâ€Powered Electronic Skins. Advanced Functional Materials, 2019, 29, 1904626.	7.8	130
193	Sensors and Control Interface Methods Based on Triboelectric Nanogenerator in IoT Applications. IEEE Access, 2019, 7, 92745-92757.	2.6	54
194	Mechanically Active Transducing Element Based on Solid–Liquid Triboelectric Nanogenerator for Self-Powered Sensing. International Journal of Precision Engineering and Manufacturing - Green Technology, 2019, 6, 741-749.	2.7	31
195	A self-powered stretchable sensor fabricated by serpentine PVDF film for multiple dynamic monitoring. Materials and Design, 2019, 182, 108025.	3.3	39
196	Wireless Power Transmission Enabled by a Triboelectric Nanogenerator via a Magnetic Interaction. Energy Technology, 2019, 7, 1900503.	1.8	15
197	Multifunctional Sensor Based on Translationalâ€Rotary Triboelectric Nanogenerator. Advanced Energy Materials, 2019, 9, 1901124.	10.2	101
198	Rational Design for Optimizing Hybrid Thermo-triboelectric Generators Targeting Human Activities. ACS Energy Letters, 2019, 4, 2069-2074.	8.8	37
199	A water-evaporation-induced self-charging hybrid power unit for application in the Internet of Things. Science Bulletin, 2019, 64, 1409-1417.	4.3	51
200	Dual-Stimulus Smart Actuator and Robot Hand Based on a Vapor-Responsive PDMS Film and Triboelectric Nanogenerator. ACS Applied Materials & Samp; Interfaces, 2019, 11, 42504-42511.	4.0	31

#	Article	IF	CITATIONS
201	A Shared-Electrode and Nested-Tube Structure Triboelectric Nanogenerator for Motion Energy Harvesting. Micromachines, 2019, 10, 656.	1.4	11
202	Study of thin film blue energy harvester based on triboelectric nanogenerator and seashore IoT applications. Nano Energy, 2019, 66, 104167.	8.2	117
203	Printed silk-fibroin-based triboelectric nanogenerators for multi-functional wearable sensing. Nano Energy, 2019, 66, 104123.	8.2	119
204	Chemically functionalized cellulose nanofibrils-based gear-like triboelectric nanogenerator for energy harvesting and sensing. Nano Energy, 2019, 66, 104126.	8.2	129
206	Development of a triboelectric nanogenerator with enhanced electrical output performance by embedding electrically charged microparticles. Functional Composites and Structures, 2019, 1, 045005.	1.6	17
207	Low Detection Limit and High Sensitivity Wind Speed Sensor Based on Triboelectrificationâ€Induced Electroluminescence. Advanced Science, 2019, 6, 1901980.	5.6	34
208	Water-solid triboelectric nanogenerators: An alternative means for harvesting hydropower. Renewable and Sustainable Energy Reviews, 2019, 115, 109366.	8.2	73
209	Self-Powered Inhomogeneous Strain Sensor Enabled Joint Motion and Three-Dimensional Muscle Sensing. ACS Applied Materials & Sensing. ACS	4.0	40
210	Nanogenerator as new energy technology for self-powered intelligent transportation system. Nano Energy, 2019, 66, 104086.	8.2	130
211	A universal standardized method for output capability assessment of nanogenerators. Nature Communications, 2019, 10, 4428.	5.8	81
212	Matryoshka-inspired hierarchically structured triboelectric nanogenerators for wave energy harvesting. Nano Energy, 2019, 66, 104131.	8.2	78
213	Single-electrode triboelectric nanogenerator based on economical graphite coated paper for harvesting waste environmental energy. Nano Energy, 2019, 66, 104141.	8.2	71
214	A Deformable Foam-Layered Triboelectric Tactile Sensor with Adjustable Dynamic Range. International Journal of Precision Engineering and Manufacturing - Green Technology, 2019, 6, 43-51.	2.7	25
215	Pressure Sensitivity Enhancement of Porous Carbon Electrode and Its Application in Self-Powered Mechanical Sensors. Micromachines, 2019, 10, 58.	1.4	5
216	Biomass-derived solar-to-thermal materials: promising energy absorbers to convert light to mechanical motion. Journal of Materials Chemistry A, 2019, 7, 4002-4008.	5.2	32
217	Environmental Energy Harvesting Adapting to Different Weather Conditions and Self-Powered Vapor Sensor Based on Humidity-Responsive Triboelectric Nanogenerators. ACS Applied Materials & Samp; Interfaces, 2019, 11, 6143-6153.	4.0	65
218	Triboelectric micromotors actuated by ultralow frequency mechanical stimuli. Nature Communications, 2019, 10, 2309.	5.8	112
219	Recent Progress in Self-Powered Skin Sensors. Sensors, 2019, 19, 2763.	2.1	34

#	Article	IF	CITATIONS
220	Wearable, Ultrawide-Range, and Bending-Insensitive Pressure Sensor Based on Carbon Nanotube Network-Coated Porous Elastomer Sponges for Human Interface and Healthcare Devices. ACS Applied Materials & Devices. ACS Applied Materials	4.0	155
221	Flexible PDMS-based triboelectric nanogenerator for instantaneous force sensing and human joint movement monitoring. Science China Materials, 2019, 62, 1423-1432.	3.5	59
222	Towards optimized triboelectric nanogenerators. Nano Energy, 2019, 62, 530-549.	8.2	124
223	High-Performance Electronic Cloth for Facilitating the Rehabilitation of Human Joints. ACS Applied Materials & Diterfaces, 2019, 11, 22722-22729.	4.0	7
224	Platform for wireless pressure sensing with built-in battery and instant visualization. Nano Energy, 2019, 62, 230-238.	8.2	43
225	Extremely stretchable and self-healing conductor based on thermoplastic elastomer for all-three-dimensional printed triboelectric nanogenerator. Nature Communications, 2019, 10, 2158.	5.8	308
226	A self-powered smart safety belt enabled by triboelectric nanogenerators for driving status monitoring. Nano Energy, 2019, 62, 197-204.	8.2	65
227	Chitosan biopolymerâ€derived selfâ€powered triboelectric sensor with optimized performance through molecular surface engineering and dataâ€driven learning. InformaÄnÃ-Materiály, 2019, 1, 116-125.	8.5	47
228	Gd5Si4-PVDF nanocomposite films and their potential for triboelectric energy harvesting applications. AlP Advances, 2019, 9, .	0.6	7
229	Influence of the pore size on the sensitivity of flexible and wearable pressure sensors based on porous Ecoflex dielectric layers. Materials Research Express, 2019, 6, 066304.	0.8	27
230	Recent Progress in Power Generation from Water/Liquid Droplet Interaction with Solid Surfaces. Advanced Functional Materials, 2019, 29, 1901069.	7.8	147
231	Octopus tentacles inspired triboelectric nanogenerators for harvesting mechanical energy from highly wetted surface. Nano Energy, 2019, 60, 493-502.	8.2	42
232	Eco-Friendly, Self-Healing Hydrogels for Adhesive and Elastic Strain Sensors, Circuit Repairing, and Flexible Electronic Devices. Macromolecules, 2019, 52, 2531-2541.	2.2	149
233	Triboelectric Energy Harvester performance enhanced by modifying the tribo-layer with cost-effective fabrication. Materials Research Express, 2019, 6, 065514.	0.8	6
234	A self-powered wearable sweat-evaporation-biosensing analyzer for building sports big data. Nano Energy, 2019, 59, 754-761.	8.2	116
235	A constant current triboelectric nanogenerator arising from electrostatic breakdown. Science Advances, 2019, 5, eaav6437.	4.7	237
236	Investigation of diamond-like carbon films as a promising dielectric material for triboelectric nanogenerator. Nano Energy, 2019, 60, 875-885.	8.2	41
237	A flexible piezoelectric composite nanogenerator based on doping enhanced lead-free nanoparticles. Materials Letters, 2019, 249, 73-76.	1.3	58

#	Article	IF	CITATIONS
238	Integrated charge excitation triboelectric nanogenerator. Nature Communications, 2019, 10, 1426.	5.8	375
239	Flexible Triboelectric Nanogenerator Based on Paper, PET and Aluminum. , 2019, , .		3
240	All-electrospun flexible triboelectric nanogenerator based on metallic MXene nanosheets. Nano Energy, 2019, 59, 268-276.	8.2	314
241	Wearable high-dielectric-constant polymers with core–shell liquid metal inclusions for biomechanical energy harvesting and a self-powered user interface. Journal of Materials Chemistry A, 2019, 7, 7109-7117.	5.2	48
242	Nanogenerators from Electrical Discharge. , 0, , .		1
243	High-voltage applications of the triboelectric nanogeneratorâ€"Opportunities brought by the unique energy technology. MRS Energy & Sustainability, 2019, 6, 1.	1.3	22
244	A Flexible Triboelectric Nanogenerator Fabricated Using Laser-Assisted Patterning Process., 2019,,.		23
245	The Current Development and Future Outlook of Triboelectric Nanogenerators: A Survey of Literature. Advanced Materials Technologies, 2019, 4, 1800588.	3.0	108
246	Stretchable triboelectric multimodal tactile interface simultaneously recognizing various dynamic body motions. Nano Energy, 2019, 56, 347-356.	8.2	32
247	Textileâ€Based Triboelectric Nanogenerators for Selfâ€Powered Wearable Electronics. Advanced Functional Materials, 2019, 29, 1804533.	7.8	148
248	Human–Machine Interfacing Enabled by Triboelectric Nanogenerators and Tribotronics. Advanced Materials Technologies, 2019, 4, 1800487.	3.0	169
249	Triboelectric and Electromagnetic Hybrid Nanogenerator Based on a Crankshaft Piston System as a Multifunctional Energy Harvesting Device. Advanced Materials Technologies, 2019, 4, 1800278.	3.0	23
250	Two-dimensional perovskite materials: From synthesis to energy-related applications. Materials Today Energy, 2019, 11, 61-82.	2.5	133
251	Nanowire Electronics. Nanostructure Science and Technology, 2019, , .	0.1	4
252	Self-powered electronic skin based on the triboelectric generator. Nano Energy, 2019, 56, 252-268.	8.2	205
253	Triboelectric Nanogenerator: A Foundation of the Energy for the New Era. Advanced Energy Materials, 2019, 9, 1802906.	10.2	1,086
254	Self-supported multicomponent CPO-27 MOF nanoarrays as high-performance anode for lithium storage. Nano Energy, 2019, 57, 711-717.	8.2	78
255	Self-powered digital-analog hybrid electronic skin for noncontact displacement sensing. Nano Energy, 2019, 58, 121-129.	8.2	48

#	Article	IF	CITATIONS
256	Micropatterned elastic ionic polyacrylamide hydrogel for low-voltage capacitive and organic thin-film transistor pressure sensors. Nano Energy, 2019, 58, 96-104.	8.2	123
257	Streaming Current Based Microtubular Enzymatic Sensor for Selfâ€Powered Detection of Urea. Advanced Materials Technologies, 2019, 4, 1800430.	3.0	11
258	Recent progress on textile-based triboelectric nanogenerators. Nano Energy, 2019, 55, 401-423.	8.2	184
259	Self-sustainable wind speed sensor system with omni-directional wind based triboelectric generator. Nano Energy, 2019, 55, 115-122.	8.2	35
260	Selfâ€Powered Tactile Sensor Array Systems Based on the Triboelectric Effect. Advanced Functional Materials, 2019, 29, 1806379.	7.8	122
261	Self-powered gait pattern-based identity recognition by a soft and stretchable triboelectric band. Nano Energy, 2019, 56, 516-523.	8.2	92
262	Nanowires for Triboelectric Nanogenerators. Nanostructure Science and Technology, 2019, , 353-365.	0.1	1
263	A Flexible, Lightweight, and Wearable Triboelectric Nanogenerator for Energy Harvesting and Selfâ€Powered Sensing. Advanced Materials Technologies, 2019, 4, 1800216.	3.0	33
264	Ionic Tactile Sensors for Emerging Humanâ€Interactive Technologies: A Review of Recent Progress. Advanced Functional Materials, 2020, 30, 1904532.	7.8	122
265	Triboelectric nanogenerator as self-powered impact force sensor for falling object. Current Applied Physics, 2020, 20, 137-144.	1.1	20
266	Advanced Soft Materials, Sensor Integrations, and Applications of Wearable Flexible Hybrid Electronics in Healthcare, Energy, and Environment. Advanced Materials, 2020, 32, e1901924.	11.1	575
267	Mechanical Energy Harvesting Taxonomy for Industrial Environments: Application to the Railway Industry. IEEE Transactions on Intelligent Transportation Systems, 2020, 21, 2696-2706.	4.7	15
268	Triboelectric Nanogenerator With Enhanced Performance via an Optimized Low Permittivity Substrate. IEEE Sensors Journal, 2020, 20, 6856-6862.	2.4	34
269	Selfâ€Powered Sensor Based on Bionic Antennae Arrays and Triboelectric Nanogenerator for Identifying Noncontact Motions. Advanced Materials Technologies, 2020, 5, 1900789.	3.0	33
270	Highly dispersed porous polydimethylsiloxane for boosting power-generating performance of triboelectric nanogenerators. Nano Energy, 2020, 67, 104214.	8.2	53
271	Self-powered control interface based on Gray code with hybrid triboelectric and photovoltaics energy harvesting for IoT smart home and access control applications. Nano Energy, 2020, 70, 104456.	8.2	110
272	High contact surface area enhanced Al/PDMS triboelectric nanogenerator using novel overlapped microneedle arrays and its application to lighting and self-powered devices. Applied Surface Science, 2020, 508, 145310.	3.1	48
273	A fully packed spheroidal hybrid generator for water wave energy harvesting and self-powered position tracking. Nano Energy, 2020, 69, 104439.	8.2	86

#	Article	IF	CITATIONS
274	Bioinspired Triboelectric Nanogenerators as Selfâ€Powered Electronic Skin for Robotic Tactile Sensing. Advanced Functional Materials, 2020, 30, 1907312.	7.8	198
275	A Flexible, Recyclable, and Highâ€Performance Pullulanâ€Based Triboelectric Nanogenerator (TENG). Advanced Materials Technologies, 2020, 5, 1900905.	3.0	24
276	Physical sensors for skinâ€inspired electronics. InformaÄnÃ-Materiály, 2020, 2, 184-211.	8.5	159
277	Rapidly fabricated triboelectric nanogenerator employing insoluble and infusible biomass materials by fused deposition modeling. Nano Energy, 2020, 68, 104382.	8.2	49
278	Ultrahighâ€Performance Selfâ€Powered Flexible Photodetector Driven from Photogating, Piezoâ€Phototronic, and Ferroelectric Effects. Advanced Optical Materials, 2020, 8, 1901334.	3.6	21
279	Progress in < scp > TENG < /scp > technologyâ€" A journey from energy harvesting to nanoenergy and nanosystem. EcoMat, 2020, 2, e12058.	6.8	194
280	A Review and Perspective for the Development of Triboelectric Nanogenerator (TENG)-Based Self-Powered Neuroprosthetics. Micromachines, 2020, 11, 865.	1.4	28
281	Recent progress of triboelectric nanogenerators: From fundamental theory to practical applications. EcoMat, 2020, 2, e12059.	6.8	212
282	Triboelectric and Piezoelectric Nanogenerators for Future Soft Robots and Machines. IScience, 2020, 23, 101682.	1.9	70
283	Toward Self-Powered Inertial Sensors Enabled by Triboelectric Effect. ACS Applied Electronic Materials, 2020, 2, 3072-3087.	2.0	23
284	Emerging triboelectric nanogenerators for ocean wave energy harvesting: state of the art and future perspectives. Energy and Environmental Science, 2020, 13, 2657-2683.	15.6	195
285	Self-Powered Memory Systems. , 2020, 2, 1669-1690.		15
286	Leverage Surface Chemistry for High-Performance Triboelectric Nanogenerators. Frontiers in Chemistry, 2020, 8, 577327.	1.8	45
287	Recent trends of biocompatible triboelectric nanogenerators toward selfâ€powered eâ€skin. EcoMat, 2020, 2, e12065.	6.8	49
288	Hybridized Nanogenerators for Multifunctional Self-Powered Sensing: Principles, Prototypes, and Perspectives. IScience, 2020, 23, 101813.	1.9	37
289	Triboelectric Energy Harvesting Response of Different Polymer-Based Materials. Materials, 2020, 13, 4980.	1.3	16
290	Flexible composites with Ce-doped BaTiO3/P(VDF-TrFE) nanofibers for piezoelectric device. Composites Science and Technology, 2020, 200, 108386.	3.8	26
291	Superhydrophobic Liquid–Solid Contact Triboelectric Nanogenerator as a Droplet Sensor for Biomedical Applications. ACS Applied Materials & Samp; Interfaces, 2020, 12, 40021-40030.	4.0	79

#	Article	IF	CITATIONS
292	Advances in Healthcare Electronics Enabled by Triboelectric Nanogenerators. Advanced Functional Materials, 2020, 30, 2004673.	7.8	88
293	DC Voltage Modulation for Integrated Self-Charging Power Systems of Triboelectric Nanogenerators and Ion Gel/WO3 Supercapacitors. ACS Applied Electronic Materials, 2020, 2, 2550-2557.	2.0	11
294	Electromagnetic Pulse Powered by a Triboelectric Nanogenerator with Applications in Accurate Selfâ€Powered Sensing and Security. Advanced Materials Technologies, 2020, 5, 2000368.	3.0	15
295	Towards Truly Wearable Systems: Optimizing and Scaling Up Wearable Triboelectric Nanogenerators. IScience, 2020, 23, 101360.	1.9	65
296	The use of renewable energies driving electrochemical technologies for environmental applications. Current Opinion in Electrochemistry, 2020, 22, 211-220.	2.5	101
297	Electromechanical coupling effects for data storage and synaptic devices. Nano Energy, 2020, 77, 105156.	8.2	16
298	Multifunctional Selfâ€Powered Eâ€Skin with Tactile Sensing and Visual Warning for Detecting Robot Safety. Advanced Materials Interfaces, 2020, 7, 2000536.	1.9	29
299	Radio Waveguide–Double Ratchet Rotors Work in Unison on a Surface to Convert Heat into Power. Nano Letters, 2020, 20, 6891-6898.	4.5	4
300	Direct Current Triboelectric Nanogenerators. Advanced Energy Materials, 2020, 10, 2002756.	10.2	64
301	Triboelectric Self-Powered Three-Dimensional Tactile Sensor. IEEE Access, 2020, 8, 172076-172085.	2.6	6
302	Recent Progress of Biomimetic Antifouling Surfaces in Marine. Advanced Materials Interfaces, 2020, 7, 2000966.	1.9	50
303	Fish Bladder Film-Based Triboelectric Nanogenerator for Noncontact Position Monitoring. ACS Energy Letters, 2020, 5, 3005-3011.	8.8	66
304	Liquid Metal Based Stretchable Magnetoelectric Films and Their Capacity for Mechanoelectrical Conversion. Advanced Functional Materials, 2020, 30, 2003680.	7.8	40
305	Triboelectric nanogenerators based on elastic electrodes. Nanoscale, 2020, 12, 20118-20130.	2.8	32
306	Enhancement of Triboelectric Charge Density by Chemical Functionalization. Advanced Functional Materials, 2020, 30, 2004714.	7.8	171
307	Nanoparticles Synthesised in the Gas-Phase and Their Applications in Sensors: A Review. Applied Nano, 2020, 1, 70-86.	0.9	6
308	Graphene Oxide Papers in Nanogenerators for Self-Powered Humidity Sensing by Finger Tapping. Scientific Reports, 2020, 10, 7312.	1.6	63
309	Rationally Designed Dualâ€Mode Triboelectric Nanogenerator for Harvesting Mechanical Energy by Both Electrostatic Induction and Dielectric Breakdown Effects. Advanced Energy Materials, 2020, 10, 2000965.	10.2	70

#	Article	IF	CITATIONS
310	Boosting performances of triboelectric nanogenerators by optimizing dielectric properties and thickness of electrification layer. RSC Advances, 2020, 10, 17752-17759.	1.7	102
311	Triboelectric nanogenerators with porous and hierarchically structured silk fibroin films via water electrospray-etching technology. Nano Energy, 2020, 75, 104974.	8.2	33
312	A flexible triboelectric nanogenerator based on a super-stretchable and self-healable hydrogel as the electrode. Nanoscale, 2020, 12, 12753-12759.	2.8	45
313	Mechanically Asymmetrical Triboelectric Nanogenerator for Selfâ€Powered Monitoring of In Vivo Microscale Weak Movement. Advanced Energy Materials, 2020, 10, 2000827.	10.2	42
314	Heterostructures formed through abraded van der Waals materials. Nature Communications, 2020, 11 , 3047.	5.8	36
315	Bioâ€Derived Natural Materials Based Triboelectric Devices for Selfâ€Powered Ubiquitous Wearable and Implantable Intelligent Devices. Advanced Sustainable Systems, 2020, 4, 2000108.	2.7	42
316	Highâ€Performance Piezocomposite Energy Harvesters by Constructing Bionic Ion Channels. Advanced Materials Technologies, 2020, 5, 2000050.	3.0	6
317	Piezo/Tribotronics Toward Smart Flexible Sensors. Advanced Intelligent Systems, 2020, 2, 1900175.	3.3	33
318	Smart Textiles for Electricity Generation. Chemical Reviews, 2020, 120, 3668-3720.	23.0	644
319	Self-Powered Active Spherical Triboelectric Sensor for Fluid Velocity Detection. IEEE Nanotechnology Magazine, 2020, 19, 230-235.	1.1	22
320	Self-powered eye motion sensor based on triboelectric interaction and near-field electrostatic induction for wearable assistive technologies. Nano Energy, 2020, 72, 104675.	8.2	87
321	Renewable energies driven electrochemical wastewater/soil decontamination technologies: A critical review of fundamental concepts and applications. Applied Catalysis B: Environmental, 2020, 270, 118857.	10.8	196
322	Highâ€Performance Al/PDMS TENG with Novel Complex Morphology of Twoâ€Height Microneedles Array for Highâ€Sensitivity Forceâ€Sensor and Selfâ€Powered Application. Small, 2020, 16, e2001209.	5.2	72
323	A Fully Self-Powered Vibration Monitoring System Driven by Dual-Mode Triboelectric Nanogenerators. ACS Nano, 2020, 14, 2475-2482.	7.3	154
324	Enhanced output performance and stability of triboelectric nanogenerators by employing silane-based self-assembled monolayers. Journal of Materials Chemistry C, 2020, 8, 4542-4548.	2.7	26
325	Electricity nanogenerator from egg shell membrane: A natural waste bioproduct. International Journal of Green Energy, 2020, 17, 309-318.	2.1	28
326	Animal Hair-Based Triboelectric Nanogenerator (TENG): A Substitute for the Positive Polymer Layer in TENG. Journal of Electronic Materials, 2020, 49, 3409-3416.	1.0	30
327	Large-Area Triboelectric Nanogenerator Mass Spectrometry: Expanded Coverage, Double-Bond Pinpointing, and Supercharging. Journal of the American Society for Mass Spectrometry, 2020, 31, 727-734.	1.2	10

#	Article	IF	CITATIONS
329	Material aspects of triboelectric energy generation and sensors. NPG Asia Materials, 2020, 12, .	3.8	200
330	Small-Scale Energy Harvesting from Environment by Triboelectric Nanogenerators. , 0, , .		7
331	Stretchable Energyâ€Harvesting Tactile Interactive Interface with Liquidâ€Metalâ€Nanoparticleâ€Based Electrodes. Advanced Functional Materials, 2020, 30, 1909652.	7.8	97
332	Smart Soft Actuators and Grippers Enabled by Selfâ€Powered Triboâ€Skins. Advanced Materials Technologies, 2020, 5, 1901075.	3.0	52
333	Sandwich-like sound-driven triboelectric nanogenerator for energy harvesting and electrochromic based on Cu foam. Nano Energy, 2020, 70, 104543.	8.2	55
334	Continuous direct current by charge transportation for next-generation IoT and real-time virtual reality applications. Nano Energy, 2020, 73, 104760.	8.2	61
335	Development of Highly Durable Sliding Triboelectric Nanogenerator Using Diamond-Like Carbon Films. Tribology Online, 2020, 15, 89-97.	0.2	12
336	Toward wear-resistive, highly durable and high performance triboelectric nanogenerator through interface liquid lubrication. Nano Energy, 2020, 72, 104659.	8.2	70
337	Realizing the Capability of Negatively Charged Graphene Oxide in the Presence of Conducting Polyaniline for Performance Enhancement of Tribopositive Material of Triboelectric Nanogenerator. Advanced Electronic Materials, 2020, 6, 2000034.	2.6	21
338	Multifunctional Mechanical Metamaterials with Embedded Triboelectric Nanogenerators. Advanced Functional Materials, 2020, 30, 2001720.	7.8	29
339	A soft robotic finger with self-powered triboelectric curvature sensor based on multi-material 3D printing. Nano Energy, 2020, 73, 104772.	8.2	54
340	Synthesis and fabrication of self-sustainable triboelectric energy case for powering smart electronic devices. Nano Energy, 2020, 73, 104774.	8.2	18
341	Self-powered infrared detection using a graphene oxide film. Journal of Materials Chemistry A, 2020, 8, 9248-9255.	5.2	12
342	Anodic bonding driven by the pulse current signal of triboelectric nanogenerator. Nano Energy, 2020, 73, 104759.	8.2	6
343	Large Wavelength Response to Pressure Enabled in InGaN/GaN Microcrystal LEDs with 3D Architectures. ACS Photonics, 2020, 7, 1122-1128.	3.2	6
344	Enhanced performance of a cellulose nanofibrils-based triboelectric nanogenerator by tuning the surface polarizability and hydrophobicity. Chemical Engineering Journal, 2021, 404, 126512.	6.6	179
345	Research methodsÂof contact electrification: Theoretical simulation and experiment. Nano Energy, 2021, 79, 105501.	8.2	23
346	Polymer chemistry underpinning materials for triboelectric nanogenerators (TENGs): Recent trends. European Polymer Journal, 2021, 142, 110163.	2.6	37

#	Article	IF	CITATIONS
347	Hybrid PDMS-TiO2-stainless steel textiles for triboelectric nanogenerators. Chemical Engineering Journal, 2021, 417, 127974.	6.6	16
348	Theoretical investigation and experimental verification of the self-powered acceleration sensor based on triboelectric nanogenerators (TENGs). Extreme Mechanics Letters, 2021, 42, 101021.	2.0	28
349	Design, manufacturing and applications of wearable triboelectric nanogenerators. Nano Energy, 2021, 81, 105627.	8.2	86
350	First Decade of Interfacial Iontronic Sensing: From Droplet Sensors to Artificial Skins. Advanced Materials, 2021, 33, e2003464.	11.1	155
351	Fluid-Based Triboelectric Nanogenerators: A Review of Current Status and Applications. International Journal of Precision Engineering and Manufacturing - Green Technology, 2021, 8, 1043-1060.	2.7	25
352	Self-powered flexible tactile sensors. , 2021, , 245-261.		1
353	Touch Detection Technologies. , 2021, , 19-89.		1
354	Energy Harvesters for Wearable Electronics and Biomedical Devices. Advanced Materials Technologies, 2021, 6, 2000771.	3.0	49
355	Advances in self-powered chemical sensing <i>via </i> a triboelectric nanogenerator. Nanoscale, 2021, 13, 2065-2081.	2.8	81
356	Air-gap embedded triboelectric nanogenerator <i>via</i> surface modification of non-contact layer using sandpapers. Nanoscale, 2021, 13, 8837-8847.	2.8	23
357	Piezoelectric-silicone structure for vibration energy harvesting: experimental testing and modelling. Smart Materials and Structures, 2021, 30, 035002.	1.8	8
358	Nanogenerators in wearable sensors. , 2021, , 587-616.		0
359	Hybrid Energy-Harvesting Systems Based on Triboelectric Nanogenerators. Matter, 2021, 4, 116-143.	5.0	94
360	Advances in self-powered triboelectric pressure sensors. Journal of Materials Chemistry A, 2021, 9, 20100-20130.	5.2	85
361	Practical applications of triboelectric nanogenerators as self-powered active sensors for pressures, vibrations, and impacts., 2021,, 307-321.		1
362	Real-time monitoring for road-base quality with the aid of buried piezoelectric sensors. Journal of Intelligent Material Systems and Structures, 2021, 32, 2231-2243.	1.4	5
363	Selfâ€Healing Soft Sensors: From Material Design to Implementation. Advanced Materials, 2021, 33, e2004190.	11.1	106
364	Textile-Based Triboelectric Nanogenerators for Wearable Self-Powered Microsystems. Micromachines, 2021, 12, 158.	1.4	31

#	Article	IF	CITATIONS
365	Paper-based triboelectric nanogenerators and their applications: a review. Beilstein Journal of Nanotechnology, 2021, 12, 151-171.	1.5	27
366	Recent developments in self-powered smart chemical sensors for wearable electronics. Nano Research, 2021, 14, 3669-3689.	5.8	78
367	Electronic charge transfer during metal/SiO2 contact: Insight from density functional theory. Journal of Applied Physics, 2021, 129, .	1.1	12
368	A Self-Powered Vector Angle/Displacement Sensor Based on Triboelectric Nanogenerator. Micromachines, 2021, 12, 231.	1.4	16
369	Electronic View of Triboelectric Nanogenerator for Energy Harvesting: Mechanisms and Applications. Advanced Energy and Sustainability Research, 2021, 2, 2000087.	2.8	4
370	Recent Advances in Self-Powered Electrochemical Systems. Research, 2021, 2021, 4673028.	2.8	27
371	A review on the polymers with shape memory assisted self-healing properties for triboelectric nanogenerators. Journal of Materials Research, 2021, 36, 1225-1240.	1.2	11
372	Compressible and Stretchable Magnetoelectric Sensors Based on Liquid Metals for Highly Sensitive, Self-Powered Respiratory Monitoring. ACS Applied Materials & Self-Powered Respiratory Monitoring. ACS Applied Materials & Self-Powered Respiratory Monitoring. ACS Applied Materials & Self-Powered Respiratory Monitoring.	4.0	44
373	The Triboelectric Nanogenerator as an Innovative Technology toward Intelligent Sports. Advanced Materials, 2021, 33, e2004178.	11.1	279
374	The development of power take-off technology in wave energy converter systems: A Review. IOP Conference Series: Earth and Environmental Science, 2021, 739, 012081.	0.2	4
375	MXene based mechanically and electrically enhanced film for triboelectric nanogenerator. Nano Research, 2021, 14, 4833-4840.	5.8	51
376	Stackable triboelectric nanogenerators for self-powered marine monitoring buoy**. , 2021, , .		0
377	Tribo-Induced Smart Reflector for Ultrasensitive Self-Powered Wireless Sensing of Air Flow. ACS Applied Materials & Sensing of Air Flow.	4.0	14
378	Concealed Wireless Warning Sensor Based on Triboelectrification and Human-Plant Interactive Induction. Research, 2021, 2021, 9870936.	2.8	15
379	Textile Triboelectric Nanogenerators Simultaneously Harvesting Multiple "High-Entropy―Kinetic Energies. ACS Applied Materials & Interfaces, 2021, 13, 20145-20152.	4.0	38
380	A high-performance triboelectric-electromagnetic hybrid wind energy harvester based on rotational tapered rollers aiming at outdoor IoT applications. IScience, 2021, 24, 102300.	1.9	53
381	The Recent Progress in Cellulose Paperâ€Based Triboelectric Nanogenerators. Advanced Sustainable Systems, 2021, 5, 2100034.	2.7	17
382	Design of Self-powered Environment Monitoring Sensor Based on TEG and TENG., 2021,,.		2

#	Article	IF	CITATIONS
383	Electrical charge storage effect in carbon based polymer composite for long-term performance enhancement of the triboelectric nanogenerator. Composites Science and Technology, 2021, 207, 108680.	3.8	46
384	Hybridized nanogenerators for effectively scavenging mechanical and solar energies. IScience, 2021, 24, 102415.	1.9	13
385	Assistive devices for the people with disabilities enabled by triboelectric nanogenerators. JPhys Materials, 2021, 4, 034015.	1.8	14
386	Stearic Acid Reinforced Triboelectric Nanogenerator with High Output Performance and Anti-wear Characteristics for Self-powered Anticorrosion System. Chemistry Letters, 2021, 50, 844-848.	0.7	4
387	3D printed triboelectric nanogenerator self-powered electro-Fenton degradation of orange IV and crystal violet system using N-doped biomass carbon catalyst with tunable catalytic activity. Nano Energy, 2021, 83, 105824.	8.2	15
388	Triboâ€Induced Color Tuner toward Smart Lighting and Selfâ€Powered Wireless Sensing. Advanced Science, 2021, 8, 2004970.	5.6	16
389	Triboelectric nanogenerator based self-powered sensor for artificial intelligence. Nano Energy, 2021, 84, 105887.	8.2	168
390	A wide range self-powered flexible pressure sensor based on triboelectric nanogenerator., 2021,,.		3
391	Soft triboelectric nanogenerators for mechanical energy scavenging and self-powered sensors. Nano Energy, 2021, 84, 105919.	8.2	80
392	Flexible Textile Direct-Current Generator Based on the Tribovoltaic Effect at Dynamic Metal-Semiconducting Polymer Interfaces. ACS Energy Letters, 2021, 6, 2442-2450.	8.8	7 3
393	Bioinspired designs and biomimetic applications of triboelectric nanogenerators. Nano Energy, 2021, 84, 105865.	8.2	53
394	Recent Advances in Graphene Electronic Skin and its Future Prospects. ChemNanoMat, 2021, 7, 982-997.	1.5	13
395	Sandwich-like triboelectric nanogenerators integrated self-powered buoy for navigation safety. Nano Energy, 2021, 84, 105920.	8.2	60
396	Volatile organic compounds sensing based on Bennet doubler-inspired triboelectric nanogenerator and machine learning-assisted ion mobility analysis. Science Bulletin, 2021, 66, 1176-1185.	4.3	50
397	Metastable quantum dot for photoelectric devices via flash-induced one-step sequential self-formation. Nano Energy, 2021, 84, 105889.	8.2	6
398	Microâ€Nano Processing of Active Layers in Flexible Tactile Sensors via Template Methods: A Review. Small, 2021, 17, e2100804.	5.2	82
399	P–N junction-based ZnO wearable textile nanogenerator for biomechanical energy harvesting. Nano Energy, 2021, 85, 105938.	8.2	38
400	Enhancement of self-powered humidity sensing of graphene oxide–based triboelectric nanogenerators by addition of graphene oxide nanoribbons. Mikrochimica Acta, 2021, 188, 251.	2.5	18

#	Article	IF	CITATIONS
401	Theoretical study on the output of contact-separation triboelectric nanogenerators with arbitrary charging and grounding conditions. Nano Energy, 2021, 89, 106383.	8.2	12
402	Modeling and optimization of an inertial triboelectric motion sensor. Nano Energy, 2021, 85, 105952.	8.2	13
403	Triboelectric Nanogenerator with Microstructure Fabricated by 3D Lithography at Contact Interface. IEEJ Transactions on Sensors and Micromachines, 2021, 141, 254-259.	0.0	0
404	Technology evolution from micro-scale energy harvesters to nanogenerators. Journal of Micromechanics and Microengineering, 2021, 31, 093002.	1.5	53
405	Highâ€Performance Flexible Schottky DC Generator via Metal/Conducting Polymer Sliding Contacts. Advanced Functional Materials, 2021, 31, 2103132.	7.8	43
406	Analysis of a Symmetrical Ferrofluid Sloshing Vibration Energy Harvester. Fluids, 2021, 6, 295.	0.8	2
407	A one-structure-layer PDMS/Mxenes based stretchable triboelectric nanogenerator for simultaneously harvesting mechanical and light energy. Nano Energy, 2021, 86, 106118.	8.2	56
408	Surface Engineered PLGA Nanoparticle for Threshold Responsive Glucose Monitoring and "Self-Programmed―Insulin Delivery. ACS Biomaterials Science and Engineering, 2021, 7, 4645-4658.	2.6	3
409	The fabrication of calcium silicate-natural rubber composite for mechanical energy harvesting. Surfaces and Interfaces, 2021, 25, 101180.	1.5	3
410	Scalable Fabrication of Black Cuâ€Embedded Polydimethylsiloxane for Enhancing Triboelectric Nanogenerator Performance in Energy Harvesting and Selfâ€Powered Sensing. Advanced Energy and Sustainability Research, 2021, 2, 2100116.	2.8	8
411	Flexible and wearable capacitive pressure sensor for blood pressure monitoring. Sensing and Bio-Sensing Research, 2021, 33, 100434.	2.2	48
412	Skin-like hydrogel devices for wearable sensing, soft robotics and beyond. IScience, 2021, 24, 103174.	1.9	103
413	Recent advances in cellulose-based flexible triboelectric nanogenerators. Nano Energy, 2021, 87, 106175.	8.2	113
414	Highly flexible and recyclable F–SiO2/MPU composites for self-powered active motion sensors. Composites Science and Technology, 2021, 216, 109068.	3.8	6
415	Light-Weight, Self-Powered Sensor Based on Triboelectric Nanogenerator for Big Data Analytics in Sports. Electronics (Switzerland), 2021, 10, 2322.	1.8	10
416	Hybridized triboelectric-electromagnetic nanogenerators and solar cell for energy harvesting and wireless power transmission. Nano Research, 2022, 15, 2069-2076.	5.8	10
418	E-Skin: The Dawn of a New Era of On-Body Monitoring Systems. Micromachines, 2021, 12, 1091.	1.4	23
419	Piezoelectric Based Touch Sensing for Interactive Displaysâ€"A Short Review. Materials, 2021, 14, 5698.	1.3	2

#	Article	IF	CITATIONS
420	Eco-friendly in-situ gap generation of no-spacer triboelectric nanogenerator for monitoring cardiovascular activities. Nano Energy, 2021, 90, 106580.	8.2	35
421	Advancements in fiber-reinforced polymer composite materials damage detection methods: Towards achieving energy-efficient SHM systems. Composites Part B: Engineering, 2021, 223, 109136.	5.9	64
422	Recent progress in blue energy harvesting for powering distributed sensors in ocean. Nano Energy, 2021, 88, 106199.	8.2	130
423	Emerging artificial intelligence in piezoelectric and triboelectric nanogenerators. Nano Energy, 2021, 88, 106227.	8.2	76
424	Wearable self-powered human motion sensors based on highly stretchable quasi-solid state hydrogel. Nano Energy, 2021, 88, 106272.	8.2	58
425	Nanogenerator-based devices for biomedical applications. Nano Energy, 2021, 89, 106461.	8.2	45
426	Boosting wind energy harvesting of polyvinylidene fluoride via graphene oxide induced charges accumulation. Energy Reports, 2021, 7, 3156-3161.	2.5	8
427	Curvature effects on liquid–solid contact electrification. Nano Energy, 2021, 89, 106456.	8.2	18
428	A multifunctional robotic system toward moveable sensing and energy harvesting. Nano Energy, 2021, 89, 106368.	8.2	14
429	A wind vector detecting system based on triboelectric and photoelectric sensors for simultaneously monitoring wind speed and direction. Nano Energy, 2021, 89, 106382.	8.2	44
430	Triboelectric nanogenerator-based anodic bonding of silicon to glass with an intermediate aluminum layer. Sensors and Actuators A: Physical, 2021, 331, 112950.	2.0	3
431	Enhancing the output performance of fluidâ€based triboelectric nanogenerator by using poly(vinylidene fluorideâ€coâ€hexafluoropropylene)/ionic liquid nanoporous membrane. International Journal of Energy Research, 2021, 45, 8960-8970.	2.2	18
432	Displacement Current-Based Energy Harvesters in Power Grids: Topologies and Performance Evaluation. IEEE Industrial Electronics Magazine, 2022, 16, 52-66.	2.3	8
433	Advances in materials and devices for mimicking sensory adaptation. Materials Horizons, 2022, 9, 147-163.	6.4	14
434	Bioinspired Prosthetic Interfaces. Advanced Materials Technologies, 2020, 5, 1900856.	3.0	42
435	Tribovoltaic Effect on Metal–Semiconductor Interface for Direct urrent Lowâ€Impedance Triboelectric Nanogenerators. Advanced Energy Materials, 2020, 10, 1903713.	10.2	115
436	Self-powered high-sensitivity sensory memory actuated by triboelectric sensory receptor for real-time neuromorphic computing. Nano Energy, 2020, 75, 104930.	8.2	64
437	A triboelectric-piezoresistive hybrid sensor for precisely distinguishing transient processes in mechanical stimuli. Nano Energy, 2020, 78, 105216.	8.2	17

#	Article	IF	Citations
438	Development of self-powered bubble velocity sensor for gas–liquid two-phase flow based on triboelectric nanogenerator. Nanotechnology, 2021, 32, 085503.	1.3	8
439	Modeling contact electrification in triboelectric impact oscillators as energy harvesters. , 2019, , .		1
440	Aspect ratio effects in wind energy harvesting using piezoelectric inverted flags. , 2019, , .		3
441	Intrinsically Stretchable Organic-Tribotronic-Transistor for Tactile Sensing. Research, 2020, 2020, 1398903.	2.8	30
442	Nanogenerator-Based Self-Powered Sensors for Wearable and Implantable Electronics. Research, 2020, 2020, 8710686.	2.8	147
443	Effective Mechanical Energy Harvesting from PVDF Multilayers by Head-to-Head Parallel Assembly. ACS Applied Energy Materials, 2021, 4, 11133-11143.	2.5	4
444	Self-sensing automotive magnetorheological dampers for low frequency vibration. Smart Materials and Structures, 2021, 30, 115015.	1.8	13
445	A Stretchable Multimode Triboelectric Nanogenerator for Energy Harvesting and Selfâ€Powered Sensing. Advanced Materials Technologies, 2022, 7, 2100870.	3.0	15
446	Ferroelectric-assisted high-performance triboelectric nanogenerators based on electrospun P(VDF-TrFE) composite nanofibers with barium titanate nanofillers. Nano Energy, 2021, 90, 106600.	8.2	52
447	p16lNK4/Ki-67 Dual-Staining Expression as a Prognostic Indicator in Laryngeal Cancer. Journal of Cancer Prevention & Current Research, 2014, 1 , .	0.1	2
448	Performance-enhanced triboelectric nanogenerator using polyimide aerogel for energy harvesting and sensing. , 2018, , .		2
449	High current output direct-current triboelectric nanogenerator based on organic semiconductor heterojunction. Nano Energy, 2022, 91, 106667.	8.2	36
450	Powering Healthcare IoT Sensors-Based Triboelectric Nanogenerator. Advances in Computer and Electrical Engineering Book Series, 2020, , 29-51.	0.2	2
451	Review on the Recent Advances in Composite Based Highoutput Piezo-Triboelectric Energy Harvesters. Ceramist, 2020, 23, 54-88.	0.0	0
452	Stretchable and skin-conformal piezo-triboelectric pressure sensor for human joint bending motion monitoring. Journal of Materiomics, 2022, 8, 247-256.	2.8	21
453	A fully selfâ€powered, naturalâ€lightâ€enabled fiberâ€optic vibration sensing solution. SusMat, 2021, 1, 593-602.	7.8	11
454	Highly-Stretchable Rope-Like Triboelectric Nanogenerator for Self-Powered Monitoring in Marine Structures. SSRN Electronic Journal, 0, , .	0.4	0
455	Tough and Degradable Self-Healing Elastomer from Synergistic Soft–Hard Segments Design for Biomechano-Robust Artificial Skin. ACS Nano, 2021, 15, 20656-20665.	7.3	35

#	Article	IF	CITATIONS
456	p-n Junction Based Direct-Current Triboelectric Nanogenerator by Conjunction of Tribovoltaic Effect and Photovoltaic Effect. Nano Letters, 2021, 21, 10099-10106.	4.5	45
457	Multidimensional Force Sensors Based on Triboelectric Nanogenerators for Electronic Skin. ACS Applied Materials & Description (2019), 13, 56320-56328.	4.0	30
458	Mechanism of In-Plane and Out-of-Plane Tribovoltaic Direct-Current Transport with a Metal/Oxide/Metal Dynamic Heterojunction. ACS Applied Materials & Samp; Interfaces, 2022, 14, 2968-2978.	4.0	21
459	Self-Powered Sensing for Non-Full Pipe Fluidic Flow Based on Triboelectric Nanogenerators. ACS Applied Materials & Description (2008) A	4.0	21
460	A review on extrusion-based 3D-printed nanogenerators for energy harvesting. Journal of Materials Science, 2022, 57, 140-169.	1.7	9
461	A novel manufacturing method and structural design of functionally graded piezoelectric composites for energy-harvesting. Materials and Design, 2022, 214, 110371.	3.3	35
462	Design and evaluate the wave driven-triboelectric nanogenerator under external wave parameters: Experiment and simulation. Nano Energy, 2022, 93, 106844.	8.2	9
463	A novel triboelectric nanogenerator based on only food packaging aluminium foils. Materials Letters, 2022, 310, 131474.	1.3	17
464	A self-powered closed-loop brain-machine-interface system for real-time detecting and rapidly adjusting blood glucose concentration. Nano Energy, 2022, 93, 106817.	8.2	18
465	Semisolid-lubricant-based ball-bearing triboelectric nanogenerator for current amplification, enhanced mechanical lifespan, and thermal stabilization. Nano Energy, 2022, 93, 106816.	8.2	17
466	Highly-stretchable rope-like triboelectric nanogenerator for self-powered monitoring in marine structures. Nano Energy, 2022, 94, 106926.	8.2	23
467	Enhanced TENG Performance by Engineering the Compression Modulus of Triboelectric Layers. , 2021, , .		4
468	Highâ€Power Triboelectric Nanogenerator Based on Enriched Polyvinylpyrrolidone Nanofibers for Energy Harvesting. Physica Status Solidi (A) Applications and Materials Science, 2022, 219, .	0.8	3
469	Mechanical Conversion and Transmission Systems for Controlling Triboelectric Nanogenerators. Nanoenergy Advances, 2022, 2, 29-51.	3.6	6
470	Ionic Flexible Sensors: Mechanisms, Materials, Structures, and Applications. Advanced Functional Materials, 2022, 32, .	7.8	79
471	Hybrid Energyâ€Harvesting System by a Coupling of Triboelectric and Thermoelectric Generator. Energy Technology, 2022, 10, .	1.8	8
472	The Significance of Electrical Polarity in Electrospinning: A Nanoscale Approach for the Enhancement of the Polymer Fibers' Properties. Macromolecular Materials and Engineering, 2022, 307, .	1.7	19
473	Toward a New Generation of Fireâ€Safe Energy Storage Devices: Recent Progress on Fireâ€Retardant Materials and Strategies for Energy Storage Devices. Small Methods, 2022, 6, e2101428.	4.6	12

#	Article	IF	CITATIONS
474	Solid-state intrinsically-superstretchable multifunctional nanogenerator fiber for biomechanical and ambient electromagnetic energy harvesting and self-powered sensing. Nano Energy, 2022, 95, 107035.	8.2	12
475	Performance of Flexible Strain Sensors With Different Transition Mechanisms: A Review. IEEE Sensors Journal, 2022, 22, 7475-7498.	2.4	18
476	Mechanically robust triboelectric nanogenerator with a shear thickening fluid for impact monitoring. Journal of Materials Chemistry A, 2022, 10, 10383-10390.	5.2	12
477	Elastomeric microwell-based triboelectric nanogenerators by in situ simultaneous transfer-printing. Materials Horizons, 2022, 9, 1468-1478.	6.4	20
478	Constructing High Output Performance Triboelectric Nanogenerator Via V-Shape Stack and Self-Charge Excitation. SSRN Electronic Journal, 0, , .	0.4	0
479	Waterbomb-origami inspired triboelectric nanogenerator for smart pavement-integrated traffic monitoring. Nano Research, 2022, 15, 5450-5460.	5.8	25
480	An Ionic Hydrogel-Based Antifreezing Triboelectric Nanogenerator. ACS Applied Electronic Materials, 2022, 4, 1930-1938.	2.0	21
481	Electroassisted Core-Spun Triboelectric Nanogenerator Fabrics for IntelliSense and Artificial Intelligence Perception. ACS Nano, 2022, 16, 4415-4425.	7.3	54
482	Investigating the Influence of Friction and Material Wear on Triboelectric Charge Transfer in Metalâ \in Polymer Contacts. Tribology Letters, 2022, 70, 1.	1.2	9
483	A self-powered absolute shaft encoder based on triboelectric nanogenerator. Nano Energy, 2022, 98, 107230.	8.2	8
484	Harvesting circuits for triboelectric nanogenerators for wearable applications. IScience, 2022, 25, 103977.	1.9	15
485	Self-suspended shell-based triboelectric nanogenerator for omnidirectional wind-energy harvesting. Nano Energy, 2022, 96, 107062.	8.2	23
486	Constructing high output performance triboelectric nanogenerator via V-shape stack and self-charge excitation. Nano Energy, 2022, 96, 107068.	8.2	22
487	Pendulum energy harvester with torsion spring mechanical energy storage regulator. Sensors and Actuators A: Physical, 2022, 339, 113505.	2.0	4
488	A triboelectric-inductive hybrid tactile sensor for highly accurate object recognition. Nano Energy, 2022, 96, 107063.	8.2	39
489	An Innovative Concept: Free Energy Harvesting Through Self-Powered Triboelectric Nanogenerator. Journal of Nanoelectronics and Optoelectronics, 2021, 16, 1844-1849.	0.1	0
490	Hydrogelâ€based triboelectric nanogenerators: Properties, performance, and applications. International Journal of Energy Research, 2022, 46, 5603-5624.	2.2	28
491	Objective evaluation of wearable thermoelectric generator: From platform building to performance verification. Review of Scientific Instruments, 2022, 93, 045105.	0.6	3

#	Article	IF	CITATIONS
492	Metal-free triboelectric nanogenerators for application in wearable electronics. Materials Advances, 2022, 3, 4460-4470.	2.6	4
493	Variable Direct Electromechanical Properties of As-Electrospun Polystyrene Microfiber Mats with Different Electrospinning Conditions. Polymers, 2022, 14, 1840.	2.0	2
494	Electroactive Polymer-Based Soft Actuator with Integrated Functions of Multi-Degree-of-Freedom Motion and Perception. Soft Robotics, 2023, 10, 119-128.	4.6	13
495	Recent advancements for improving the performance of triboelectric nanogenerator devices. Nano Energy, 2022, 99, 107318.	8.2	76
496	High-performance triboelectric nanogenerator based on chitin for mechanical-energy harvesting and self-powered sensing. Carbohydrate Polymers, 2022, 291, 119586.	5.1	23
497	Electrowetting-on-dielectric powered by triboelectric nanogenerator. Nano Energy, 2022, 98, 107310.	8.2	8
498	Nanogenerator-Based Sensors for Energy Harvesting From Cardiac Contraction. Frontiers in Energy Research, 2022, 10, .	1.2	13
499	A Review on Tribo and Piezoresistive Sensors. , 2022, , .		0
500	Flexible triboelectric nanogenerator toward ultrahigh-frequency vibration sensing. Nano Research, 2022, 15, 7484-7491.	5.8	10
501	Green Flexible Triboelectric Nanogenerators Based on Sustainable Edible Proteins for Electrophoretic Deposition; ÂFabrication, Characterization, and Simulation. SSRN Electronic Journal, 0,	0.4	1
502	A carbon nanotube@silicon-based three-dimensional porous photo-supercapacitor for self-powered UV detection. Materials Today Energy, 2022, 28, 101054.	2.5	1
503	Patientâ€Specific Selfâ€Powered Metamaterial Implants for Detecting Bone Healing Progress. Advanced Functional Materials, 2022, 32, .	7.8	21
504	Development and Prospects of Triboelectric Nanogenerators in Sports and Physical State Monitoring. Frontiers in Materials, 2022, 9, .	1.2	1
505	Wear- and High-Temperature-Resistant IGNs/ Fe3O4/PI Composites for Triboelectric Nanogenerator. Journal of Electronic Materials, 2022, 51, 4986-4994.	1.0	4
506	Textile Triboelectric Nanogenerators as Self Powered Wearable Temperature Sensors. , 2022, , .		1
507	Textile-based flexible and printable sensors for next generation uses and their contemporary challenges: A critical review. Sensors and Actuators A: Physical, 2022, 344, 113696.	2.0	27
508	Self-Powered Resistance-Switching Properties of Pr0.7Ca0.3MnO3 Film Driven by Triboelectric Nanogenerator. Nanomaterials, 2022, 12, 2199.	1.9	4
509	Morphological Engineering of Sensing Materials for Flexible Pressure Sensors and Artificial Intelligence Applications. Nano-Micro Letters, 2022, 14, .	14.4	7 5

#	Article	IF	CITATIONS
510	Recent progress in the fabrication and applications of flexible capacitive and resistive pressure sensors. Sensors and Actuators A: Physical, 2022, 344, 113770.	2.0	24
511	Review of wave power system development and research on triboelectric nano power systems. Frontiers in Energy Research, 0, 10 , .	1.2	3
512	High performance triboelectric nanogenerator based on bamboo fibers with trench structure for self-powered sensing. Sustainable Energy Technologies and Assessments, 2022, 53, 102489.	1.7	1
513	A real-time sensing system based on triboelectric nanogenerator for dynamic response of bridges. Science China Technological Sciences, 2022, 65, 2723-2733.	2.0	7
514	Superhigh charge density and direct-current output in triboelectric nanogenerators via peak shifting modified charge pumping. Nano Energy, 2022, 102, 107637.	8.2	11
515	Environmentally Tolerant Ionic Hydrogel with High Power Density for Low-Grade Heat Harvesting. ACS Applied Materials & Density for Low-Grade Heat Harvesting.	4.0	13
516	Triboelectric Nanogenerators for Harvesting Diverse Water Kinetic Energy. Micromachines, 2022, 13, 1219.	1.4	6
517	All-In-One Energy Harvesting/Storage Integrated Systems Based on Eggshell Membranes. ACS Applied Electronic Materials, 2022, 4, 4708-4718.	2.0	5
518	Ferroelectric La _{<i>x</i>} Fe _{0.1–<i>x</i>} Codoped ZnO Nanorod Triboelectric Nanogenerators for Electrochemical Rhodamine B Degradation. ACS Applied Nano Materials, 2022, 5, 12756-12764.	2.4	4
519	Recent Progresses in Wearable Triboelectric Nanogenerators. Advanced Functional Materials, 2022, 32, .	7.8	54
520	Electrospun nanofiber based TENGs for wearable electronics and self-powered sensing. Chemical Engineering Journal, 2023, 452, 139060.	6.6	78
521	Printed Electronics Applications: Sensors, Actuators and Biosensors. , 2022, , 516-598.		0
522	Research Progress on Self-Driven Sensing System of Triboelectric Nanogenerators. Advances in Analytical Chemistry, 2022, 12, 254-265.	0.1	0
523	Direct-Current Triboelectric Nanogenerators Based on Semiconductor Structure. ACS Applied Electronic Materials, 2022, 4, 4212-4230.	2.0	7
524	Design of a soft-contact triboelectric nanogenerator for vibrational energy collection and its output performance. Frontiers in Energy Research, $0,10,10$	1.2	0
525	Molecular engineeringâ€device efficiency relation: Performance boosting of triboelectric nanogenerator through doping of small molecules. International Journal of Energy Research, 2022, 46, 23517-23529.	2.2	5
526	All directional nanogenerators (NGs) with a highly flexible and near field electrospun concentrically aligned nano/micro P(VDF-TrFE) fibers. Microsystem Technologies, 2022, 28, 2549-2560.	1.2	3
527	Additively Manufactured Biomedical Energy Harvesters. , 2022, , 440-453.		0

#	Article	IF	CITATIONS
528	Sustainable Triboelectric Materials for Smart Active Sensing Systems. Advanced Functional Materials, 2022, 32, .	7.8	40
529	Measurement of Slips at Contact Interfaces Using a Self-Powered Sensor Based on Triboelectric Nanogenerators. Nanomaterials, 2022, 12, 3510.	1.9	1
530	Roadmap on nanogenerators and piezotronics. APL Materials, 2022, 10, .	2.2	22
531	Engineering of Nanocellulose Thin Films for Triboelectric Nanogenerator Development. Nanoscience and Technology, 2023, , 335-366.	1.5	0
532	Kármán Vortex Street Driven Membrane Triboelectric Nanogenerator for Enhanced Ultra-Low Speed Wind Energy Harvesting and Active Gas Flow Sensing. ACS Applied Materials & Samp; Interfaces, 2022, 14, 51018-51028.	4.0	9
533	All-solution-processed wearable moist-electric generators based on engineered nanocomposites of carbon nanotube and gelatin incorporated with PEDOT: PSS interfacial blocking layer. Nano Energy, 2022, 104, 107890.	8.2	9
534	A self-powered vector motion sensor for smart robotics and personalized medical rehabilitation. Nano Energy, 2022, 104, 107936.	8.2	19
535	Energy-from-waste: A triboelectric nanogenerator fabricated from waste polystyrene for energy harvesting and self-powered sensor. Nano Energy, 2022, 104, 107902.	8.2	23
536	An active bacterial anti-adhesion strategy based on directional transportation of bacterial droplets driven by triboelectric nanogenerators. Nano Research, 2023, 16, 1052-1063.	5.8	18
537	Flexible carbon cloth-based single-electrode triboelectric nanogenerators with incorporated TiO <mml:math altimg="si2.svg" display="inline" id="d1e417" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow< mml:mrow=""><mml:mrow><mml:mrow><mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow<></mml:msub></mml:math> nanoparticles. Energy	2.5	3
538	Progress and challenges in energy harvesting for electrical skin: a review. Journal of Materials Science, 2022, 57, 20095-20111.	1.7	2
539	Recent Progresses in <scp>Liquidâ€Free</scp> Soft Ionic Conductive Elastomers ^{â€} . Chinese Journal of Chemistry, 2023, 41, 835-860.	2.6	11
540	Triboelectric Nanogenerator Enabled Wearable Sensors and Electronics for Sustainable Internet of Things Integrated Green Earth. Advanced Energy Materials, 2023, 13 , .	10.2	79
541	Large Harvested Energy by Selfâ€Excited Liquid Suspension Triboelectric Nanogenerator with Optimized Charge Transportation Behavior. Advanced Materials, 2023, 35, .	11.1	33
542	Green Flexible Triboelectric Nanogenerators Based on Edible Proteins for Electrophoretic Deposition. Advanced Electronic Materials, 2023, 9, .	2.6	5
543	Integrated Piezo-Triboelectric Nanogenerators-Based Self-Powered Flexible Temperature and Pressure Sensor., 2023, 2, 84-91.		7
544	Reflections on boosting wearable triboelectric nanogenerator performance via interface optimisation. Results in Engineering, 2023, 17, 100808.	2.2	3
545	A Selfâ€Powered Flow Velocity Sensing System Based on Hybrid Piezoâ€Triboelectric Nanogenerator. Advanced Materials Technologies, 2023, 8, .	3.0	3

#	Article	IF	Citations
546	Self-powered speech recognition system for deaf users. Cell Reports Physical Science, 2022, 3, 101168.	2.8	2
547	A Comprehensive Review on the Novel Principles, Development and Applications of Triboelectric Nanogenerators. Applied Mechanics Reviews, 2024, 76, .	4.5	10
548	An eccentric-structured hybrid triboelectric-electromagnetic nanogenerator for low-frequency mechanical energy harvesting. Nano Energy, 2023, 107, 108094.	8.2	5
549	Recent progress in the fabrication and processing of triboelectric yarns., 2023, 2, 63-89.		1
550	An Environmentalâ€Inert and Highly Selfâ€Healable Elastomer Obtained via Doubleâ€Terminal Aromatic Disulfide Design and Zwitterionic Crosslinked Network for Use as a Triboelectric Nanogenerator. Advanced Science, 2023, 10, .	5.6	8
551	Fiber/Yarn-Based Triboelectric Nanogenerators (TENGs): Fabrication Strategy, Structure, and Application. Sensors, 2022, 22, 9716.	2.1	9
552	An Overview of Flexible Sensors: Development, Application, and Challenges. Sensors, 2023, 23, 817.	2.1	13
553	CNT-PDMS foams as self-powered humidity sensors based on triboelectric nanogenerators driven by finger tapping. Scientific Reports, 2023, 13, .	1.6	6
554	Fractal structured charge-excitation triboelectric nanogenerators for powering portable electronic devices. Nanoscale, 2023, 15, 2820-2827.	2.8	1
555	Triboelectric Nanogenerators for Transportation. , 2023, , 1-31.		0
556	Moisture electricity generation: Mechanisms, structures, and applications. Nano Research, 2023, 16, 7496-7510.	5.8	13
557	Triboelectric Nanogenerators for Self-Powered Electrochemistry. , 2023, , 1-18.		0
558	Triboelectric Nanogenerators for Electronic and Robotic Skins. , 2023, , 1-52.		0
559	Appraisal of conducting polymers for potential bioelectronics. , 2023, , 265-298.		0
560	Rationally designed micropixelation-free tactile sensors via contour profile of triboelectric field propagation. Nano Energy, 2023, 109, 108255.	8.2	5
561	Selfâ€Healing Stress Sensors: Coupling Stressâ€Sensing Performance with Dynamic Chemistry. , 2023, 2, .		2
562	Self-healing fluorinated poly(urethane urea) for mechanically and environmentally stable, high performance, and versatile fully self-healing triboelectric nanogenerators. Nano Energy, 2023, 108, 108243.	8.2	16
563	Modeling the performance of contact-separation triboelectric nanogenerators. Current Applied Physics, 2023, 50, 100-106.	1.1	2

#	Article	IF	Citations
564	Mechanical energy harvesting and self-powered electronic applications of textile-based piezoelectric nanogenerators: A systematic review. Nano Energy, 2023, 111, 108414.	8.2	27
565	Development and applications of electrospun nanofiber-based triboelectric nanogenerators. Nano Energy, 2023, 112, 108444.	8.2	12
566	ZnO based triboelectric nanogenerator on textile platform for wearable sweat sensing application. Nano Energy, 2023, 108, 108212.	8.2	16
567	Laserâ€Patterned Graphiteâ€Based Strain and Temperature Sensor on Disposable Paper Cup. Advanced Engineering Materials, 2023, 25, .	1.6	0
568	An Advanced Strategy to Enhance TENG Output: Reducing Triboelectric Charge Decay. Advanced Materials, 2023, 35, .	11.1	38
569	Nano-ceria based TENGs: Effect of dopant structure on energy harvesting performance. Surfaces and Interfaces, 2023, 37, 102683.	1.5	4
570	Introductory Chapter: An Overview to the Internet of Things. , 0, , .		2
571	A Multi-model, Large-range Flexible Strain Sensor Based on Carbonized Silk Habotai for Human Health Monitoring. Chinese Journal of Polymer Science (English Edition), 2023, 41, 1238-1249.	2.0	4
572	Conceptual Design and Preliminary Verification of Distributed Wireless System of Weigh-in-Motion. Applied Sciences (Switzerland), 2023, 13, 2467.	1.3	0
573	Fabrication of a Silicon Elastomer-Based Self-Powered Flexible Triboelectric Sensor for Wearable Energy Harvesting and Biomedical Applications. ACS Applied Electronic Materials, 2023, 5, 1750-1760.	2.0	11
574	Flexible and Wearable Strain/Pressure Sensors. , 2023, , 180-198.		0
575	Available Kinetic Energy Sources on the Human Body during Sports Activities: A Numerical Approach Based on Accelerometers for Cantilevered Piezoelectric Harvesters. Energies, 2023, 16, 2695.	1.6	4
576	A Sensitive and Flexible Capacitive Pressure Sensor Based on a Porous Hollow Hemisphere Dielectric Layer. Micromachines, 2023, 14, 662.	1.4	4
577	Advances in solid–solid contacting triboelectric nanogenerator for ocean energy harvesting. Materials Today, 2023, 65, 166-188.	8.3	11
578	Multi-Functional Systems Based on Shear Thickening Fluid. , 2023, , 53-75.		2
579	Recent Advances in Triboelectric Nanogenerators for Marine Exploitation. Advanced Energy Materials, 2023, 13, .	10.2	21
580	Triboelectric Nanogenerators for Field Sensing. , 2023, , 1-10.		0
581	Triboelectric nanogenerators and piezoelectric nanogenerators for preventing and treating heart diseases. , 2023, $1, \dots$		17

#	Article	IF	CITATIONS
582	Enhancement of Output Power and Durability of DLC-Based Sliding TENGs Modified with Self-Assembled Monolayers. ACS Applied Electronic Materials, 2023, 5, 2853-2861.	2.0	3
606	Triboelectric Nanogenerators for Self-Powered Electrochemistry. , 2023, , 801-818.		0
607	Triboelectric Nanogenerators for Electronic and Robotic Skins. , 2023, , 1877-1928.		0
608	Triboelectric Nanogenerators for Transportation. , 2023, , 705-735.		0
628	Triboelectric Nanogenerators for Field Sensing. , 2023, , 1480-1489.		0
635	A Wireless Pressure Sensor Based on a Tunable Electromagnetic Absorbing Surface. , 2023, , .		0
646	Strategy for Improving Cycle of Maximized Energy Output of Triboelectric Nanogenerators. , 2023, , .		0