Fe isotopes and the contrasting petrogenesis of A-, I- an

Lithos 212-215, 32-44 DOI: 10.1016/j.lithos.2014.10.015

Citation Report

#	Article	IF	CITATIONS
1	Non-traditional stable isotope behaviors in immiscible silica-melts in a mafic magma chamber. Scientific Reports, 2015, 5, 17561.	1.6	17
2	Are granites and granulites consanguineous?. Geology, 2015, 43, 991-994.	2.0	22
3	Late Early Paleozoic and Early Mesozoic intracontinental orogeny in the South China Craton: Geochronological and geochemical evidence. Lithos, 2015, 232, 360-374.	0.6	51
4	The Nadun Cu–Au mineralization, central Tibet: Root of a high sulfidation epithermal deposit. Ore Geology Reviews, 2016, 78, 371-387.	1.1	34
5	Iron isotope systematics in planetary reservoirs. Earth and Planetary Science Letters, 2016, 452, 295-308.	1.8	99
6	Zn isotopic heterogeneity in the mantle: A melting control?. Earth and Planetary Science Letters, 2016, 451, 232-240.	1.8	73
7	Iron isotope fractionation during skarn-type alteration: Implications for metal source in the Han-Xing iron skarn deposit. Ore Geology Reviews, 2016, 74, 139-150.	1.1	35
8	Geochemistry, U–Pb geochronology, Sm–Nd and O isotopes of ca. 50ÂMa long Ediacaran High-K Syn-Collisional Magmatism in the Pernambuco Alagoas Domain, Borborema Province, NE Brazil. Journal of South American Earth Sciences, 2016, 68, 134-154.	0.6	38
9	Iron isotopic compositions of adakitic and non-adakitic granitic magmas: Magma compositional control and subtle residual garnet effect. Geochimica Et Cosmochimica Acta, 2017, 203, 89-102.	1.6	44
10	The molybdenum isotopic compositions of I-, S- and A-type granitic suites. Geochimica Et Cosmochimica Acta, 2017, 205, 168-186.	1.6	55
11	Iron Isotope Systematics. Reviews in Mineralogy and Geochemistry, 2017, 82, 415-510.	2.2	205
12	Iron isotopic evolution during fractional crystallization of the uppermost <scp>B</scp> ushveld <scp>C</scp> omplex layered mafic intrusion. Geochemistry, Geophysics, Geosystems, 2017, 18, 956-972.	1.0	25
13	Highly fractionated granites: Recognition and research. Science China Earth Sciences, 2017, 60, 1201-1219.	2.3	429
14	Iron isotope fractionation during crustal anatexis: Constraints from migmatites from the Dabie orogen, Central China. Lithos, 2017, 284-285, 171-179.	0.6	14
15	Petrogenesis of ca. 240 Ma intermediate and felsic intrusions in the Nan'getan: Implications for crust–mantle interaction and geodynamic process of the East Kunlun Orogen. Ore Geology Reviews, 2017, 90, 1099-1117.	1.1	22
16	Formation of Hadean granites by melting of igneous crust. Nature Geoscience, 2017, 10, 457-461.	5.4	106
17	Average iron isotopic compositions of the upper continental crust: constrained by loess from the Chinese Loess Plateau. Acta Geochimica, 2017, 36, 125-131.	0.7	23
18	Chemical and isotopic kinship of iron in the Earth and Moon deduced from the lunar Mg-Suite. Earth and Planetary Science Letters, 2017, 471, 125-135.	1.8	41

#	Article	IF	CITATIONS
19	Iron isotope fractionation in subduction-related high-pressure metabasites (Ile de Groix, France). Contributions To Mineralogy and Petrology, 2017, 172, 1.	1.2	23
20	Iron and Zinc isotope fractionation during magmatism in the continental crust: Evidence from bimodal volcanic rocks from Hailar basin, NE China. Geochimica Et Cosmochimica Acta, 2017, 213, 35-46.	1.6	44
21	Iron-isotope systematics from the Batu Hijau Cu-Au deposit, Sumbawa, Indonesia. Chemical Geology, 2017, 466, 159-172.	1.4	19
22	Origin of heavy Fe isotope compositions in high-silica igneous rocks: A rhyolite perspective. Geochimica Et Cosmochimica Acta, 2017, 218, 58-72.	1.6	50
23	Influence of metaluminous granite mineralogy on the rare earth element geochemistry of rocks and soils along a climosequence in Brazil. Geoderma, 2017, 306, 28-39.	2.3	30
24	The effect of bonding environment on iron isotope fractionation between minerals at high temperature. Geochimica Et Cosmochimica Acta, 2017, 196, 121-143.	1.6	117
25	Early Paleozoic intracontinental orogeny in the Yunkai domain, South China Block: New insights from field observations, zircon U–Pb geochronological and geochemical investigations. Lithos, 2017, 268-271, 320-333.	0.6	26
26	Mineral composition control on inter-mineral iron isotopic fractionation in granitoids. Geochimica Et Cosmochimica Acta, 2017, 198, 208-217.	1.6	31
27	Effect of I- and S-type granite parent material mineralogy and geochemistry on soil fertility: A multivariate statistical and Gis-based approach. Catena, 2017, 149, 64-72.	2.2	15
28	Experimental calibration of vanadium partitioning and stable isotope fractionation between hydrous granitic melt and magnetite at 800°C and 0.5ÅGPa. Contributions To Mineralogy and Petrology, 2018, 173, 1.	1.2	29
29	Iron isotope behavior during fluid/rock interaction in K-feldspar alteration zone – A model for pyrite in gold deposits from the Jiaodong Peninsula, East China. Geochimica Et Cosmochimica Acta, 2018, 222, 94-116.	1.6	50
30	Diffusion-driven magnesium and iron isotope fractionation at a gabbro-granite boundary. Geochimica Et Cosmochimica Acta, 2018, 222, 671-684.	1.6	24
31	THE APPLICATION OF STABLE Fe ISOTOPES TO MAGMATIC SULFIDE SYSTEMS: CONSTRAINTS ON THE Fe ISOTOPE COMPOSITION OF MAGMATIC PYRRHOTITE. Economic Geology, 2018, 113, 1181-1192.	1.8	7
32	Assessment of O and Fe isotope heterogeneity in garnet from Kakanui (New Zealand) and Erongo (Namibia). European Journal of Mineralogy, 2018, 30, 695-710.	0.4	2
33	Controls on the iron isotopic composition of global arc magmas. Earth and Planetary Science Letters, 2018, 494, 190-201.	1.8	53
34	Barium isotopic composition of the upper continental crust. Geochimica Et Cosmochimica Acta, 2018, 233, 33-49.	1.6	73
35	Iron isotope fractionation during magmatic-hydrothermal evolution: A case study from the Duolong porphyry Cu-Au deposit, Tibet. Geochimica Et Cosmochimica Acta, 2018, 238, 1-15.	1.6	28
36	Redox state of the Baogutu reduced porphyry Cu deposit in the Central Asian Orogenic belt. Ore Geology Reviews, 2018, 101, 803-818.	1.1	4

#	Article	IF	CITATIONS
37	Iron isotope fractionation during sulfide liquid segregation and crystallization at the Lengshuiqing Ni-Cu magmatic sulfide deposit, SW China. Geochimica Et Cosmochimica Acta, 2019, 261, 327-341.	1.6	11
38	On Granites. Journal of the Geological Society of India, 2019, 94, 9-22.	0.5	30
39	Magma chamber evolution of the Ardestan pluton, Central Iran: evidence from mineral chemistry, zircon composition and crystal size distribution. Mineralogical Magazine, 2019, 83, 763-780.	0.6	14
40	Fe isotopic fractionation during the magmatic–hydrothermal stage of granitic magmatism. Lithos, 2019, 350-351, 105265.	0.6	4
41	Iron isotope fractionation during mid-ocean ridge basalt (MORB) evolution: Evidence from lavas on the East Pacific Rise at 10°30′N and its implications. Geochimica Et Cosmochimica Acta, 2019, 267, 227-239.	1.6	36
42	A reassessment of the iron isotope composition of the Moon and its implications for the accretion and differentiation of terrestrial planets. Geochimica Et Cosmochimica Acta, 2019, 267, 257-274.	1.6	17
43	Tracking Fe mobility and Fe speciation in subduction zone fluids at the slab-mantle interface in a subduction channel: A tale of whiteschist from the Western Alps. Geochimica Et Cosmochimica Acta, 2019, 267, 1-16.	1.6	27
44	Redox reactions control Cu and Fe isotope fractionation in a magmatic Ni–Cu mineralization system. Geochimica Et Cosmochimica Acta, 2019, 249, 42-58.	1.6	43
46	Crustal reworking at convergent margins traced by Fe isotopes in I-type intrusions from the Gangdese arc, Tibetan Plateau. Chemical Geology, 2019, 510, 47-55.	1.4	8
47	A nephelinitic component with unusual δ56Fe in Cenozoic basalts from eastern China and its implications for deep oxygen cycle. Earth and Planetary Science Letters, 2019, 512, 175-183.	1.8	47
48	Zinc isotopic compositions of migmatites and granitoids from the Dabie Orogen, central China: Implications for zinc isotopic fractionation during differentiation of the continental crust. Lithos, 2019, 324-325, 454-465.	0.6	20
49	Late Cretaceous Neo-Tethyan slab roll-back: Evidence from zircon U-Pb-O and whole-rock geochemical and Sr-Nd-Fe isotopic data of adakitic plutons in the Himalaya-Tibetan Plateau. Bulletin of the Geological Society of America, 2020, 132, 409-426.	1.6	16
50	Barium Isotopic Compositions in Thirtyâ€Four Geological Reference Materials Analysed by MC″CPâ€MS. Geostandards and Geoanalytical Research, 2020, 44, 183-199.	1.7	13
51	Pyrite Rb-Sr, Sm-Nd and Fe isotopic constraints on the age and genesis of the Qingchengzi Pb-Zn deposits, northeastern China. Ore Geology Reviews, 2020, 117, 103324.	1.1	22
52	High-Temperature Fe Isotope Geochemistry. Advances in Isotope Geochemistry, 2020, , 85-147.	1.4	6
53	High-Sensitivity Measurement of Cr Isotopes by Double Spike MC-ICP-MS at the 10 ng Level. Analytical Chemistry, 2020, 92, 1463-1469.	3.2	27
54	Iron Isotopes Constrain the Metal Sources of Skarn Deposits: A Case Study from the Han-Xing Fe Deposit, China. Minerals (Basel, Switzerland), 2020, 10, 951.	0.8	2
55	Post-Archean granitic rocks: contrasting petrogenetic processes and tectonic environments. Geological Society Special Publication, 2020, 491, 1-8.	0.8	13

CITATION REPORT

		HATION REPORT		
#	Article	IF	CITATIONS	
56	Archean lithospheric differentiation: Insights from Fe and Zn isotopes. Geology, 2020, 48, 1028-1032.	2.0	22	
57	Incremental Growth of Layered Mafic-Ultramafic Intrusions Through Melt Replenishment Into a Crystal Mush Zone Traced by Fe-Hf Isotope Systematics. Frontiers in Earth Science, 2020, 8, .	0.8	7	
58	Iron isotope fractionation in hydrous basaltic magmas in deep crustal hot zones. Geochimica Et Cosmochimica Acta, 2020, 279, 29-44.	1.6	9	
59	Origin and classification of the Late Triassic Huaishuping gold deposit in the eastern part of the Qinling-Dabie Orogen, China: implications for gold metallogeny. Mineralium Deposita, 2021, 56, 725-742.	1.7	21	
60	Fractional crystallization causes the iron isotope contrast between mid-ocean ridge basalts and abyssal peridotites. Communications Earth & Environment, 2021, 2, .	2.6	17	
61	The Late Cretaceous magmatic arc of the south Aegean: Geodynamic implications from petrological and geochemical studies of granitoids from Anafi island (Cyclades – Greece). International Geology Review, 2022, 64, 820-843.	1.1	6	
62	Large Mg Fe isotope fractionation in volcanic rocks from northeast China: The role of chemical weathering and magma compositional effect. Chemical Geology, 2021, 565, 120075.	1.4	1	
63	Iron isotope fractionation in reduced hydrothermal gold deposits: A case study of the Wulong gold deposit, Liaodong Peninsula, East China. American Mineralogist, 2021, 106, 430-442.	0.9	11	
64	Variation of oxygen fugacity during magmatic evolution: in-situ geochemistry of mafic dikes from Jiaodong, southeastern North China Craton. Mineralogy and Petrology, 2021, 115, 577-593.	0.4	0	
65	First-principles calculation of iron and silicon isotope fractionation between Fe-bearing minerals at magmatic temperatures: The importance of second atomic neighbors. Geochimica Et Cosmochimica Acta, 2021, 304, 101-118.	1.6	17	
66	Petrogenesis of Himalayan Leucogranites: Perspective From a Combined Elemental and Feâ€&râ€Nd Isotope Study. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB021839.	1.4	7	
67	Iron isotope fractionation during sulfide liquid evolution in Cu–PGE mineralization of the Eastern Gabbro, Coldwell Complex, Canada. Chemical Geology, 2021, 576, 120282.	1.4	7	
68	Variation of Cu, Fe, S and Pb isotopes in sulfides from hydrothermal mineralization from the Yenice region in Çanakkale, Biga Peninsula, NW Turkey. Ore Geology Reviews, 2021, 136, 104255.	1.1	10	
71	Crustal melting and suprasolidus phase equilibria: From first principles to the state-of-the-art. Earth-Science Reviews, 2021, 221, 103778.	4.0	21	
72	Fe and O isotopes in coesite-bearing jadeite quartzite from the Western Alps record multistage fluid-rock interactions in a continental subduction zone. Geochimica Et Cosmochimica Acta, 2021, 312, 1-24.	1.6	15	
73	Extreme iron isotope variation of pyrite in the Muping gold deposit, Jiaodong: Implication for tracing metal origin. Ore Geology Reviews, 2021, 139, 104431.	1.1	3	
74	Building the Proterozoic basement of the western Xing'an-Airgin Sum Block in the eastern Central Asian Orogenic Belt and its implications for the Nuna breakup and Rodinia assembly. Precambrian Research, 2021, 366, 106420.	1.2	5	
75	Stable Iron Isotopes. Encyclopedia of Earth Sciences Series, 2017, , 1-6.	0.1	0	

ARTICLE IF CITATIONS Iron Isotopes. Encyclopedia of Earth Sciences Series, 2018, , 756-762. 0.1 0 76 The application of Fe-Cu-Zn isotopes in ore deposit research and prospecting exploration. Acta 0.3 Petrologica Sinica, 2020, 36, 1684-1704. Discovery of spodumene-bearing pegmatites from Ra Chu in the Mount Qomolangma region and its implications for studying rare-metal mineralization in the Himalayan orogen. Acta Petrologica Sinica, 78 0.36 2021, 37, 3295-3304. Reduction of iron with no systematic isotope fractionation during continental subduction observed in metamorphic rocks from the Dabie-Sulu orogen, China. Journal of Asian Earth Sciences, 2022, 225, 105054. Integrated petrological and Fe-Zn isotopic modelling of plutonic differentiation. Geochimica Et 80 1.6 6 Cosmochimica Acta, 2022, 320, 366-391. Iron isotopic fractionation during eclogite anatexis and adakitic melt evolution: insights into garnet effect on Fe isotopic variations in high-silica igneous rocks. Contributions To Mineralogy and 1.2 Petrology, 2022, 177, 1. Iron isotope compositions of subduction-derived rocks: Insights from eclogites and metasediments of 82 1.4 0 the Münchberg Massif (Germany). Chemical Geology, 2022, 602, 120899. Nickel isotopic composition of the upper continental crust. Geochimica Et Cosmochimica Acta, 2022, 1.6 332, 263-284. The effect of crystal fractionation on the geochemical composition of syn-exhumation magmas: 84 Implication for the formation of high Î'56Fe granites in collisional orogens. Geochimica Et 7 1.6 Cosmochimica Acta, 2022, 332, 156-185. Fractionation mechanism of iron isotopes in highly fractionated granites from the Xinxian Pluton, Western Dabie Orogen, Central China. Acta Geochimica, 0, , . Integrated O, Fe, and Ti isotopic analysis elucidates multiple metal and fluid sources for magnetite from the Ernest Henry Iron oxide copper gold (IOCG) Deposit, Queensland, Australia. Ore Geology 2 86 1.1 Reviews, 2022, 150, 105170. The effect of Fe–Ti oxide separation on iron isotopic fractionation during basalt differentiation. 87 1.2 Contributions To Mineralogy and Petrology, 2022, 177, . Iron and silicon isotope fractionation in silicate melts using first-principles molecular dynamics. 88 1.6 1 Geochimica Et Cosmochimica Acta, 2023, 343, 212-233. Light Fe isotopes in arc magmas from cold subduction zones: Implications for serpentinite-derived 89 1.6 fluids oxidized the sub-arc mantle. Geochimica Et Cosmochimica Acta, 2023, 342, 1-14. Granite petrogenesis and the Î'44Ca of continental crust. Earth and Planetary Science Letters, 2023, 608, 90 9 1.8 118080. In-situ trace elements and Fe isotope compositions of magnetite in Gwanin Fe-Ti oxide deposit, South Korea. Geosciences Journal, 2023, 27, 127-137.

The diversity and origin of granites. , 2023, , .

CITATION REPORT