Porphyrins as excellent dyes for dye-sensitized solar ce insights

Dalton Transactions 44, 448-463 DOI: 10.1039/c4dt02756f

Citation Report

#	Article	IF	CITATIONS
1	Push–Pull Bacteriochlorin: Panchromatic Sensitizer for Dye-sensitized Solar Cell. Chemistry Letters, 2015, 44, 1395-1397.	0.7	6
2	Organic Dyes with Wellâ€Defined Structures for Highly Efficient Dyeâ€Sensitised Solar Cells Based on a Cobalt Electrolyte. Chemistry - A European Journal, 2015, 21, 14804-14811.	1.7	36
4	Molecular Engineering of Pyrido[3,4â€ <i>b</i>]pyrazineâ€Based Donor–Acceptor–πâ€Acceptor Organic Sensitizers: Effect of Auxiliary Acceptor in Cobalt―and Iodineâ€Based Electrolytes. Chemistry - A European Journal, 2015, 21, 18654-18661.	1.7	13
5	Efficiency Records in Mesoscopic Dye ensitized Solar Cells. Chemical Record, 2015, 15, 803-828.	2.9	41
6	Zn(II)â€Protoporphyrin IXâ€Based Photosensitizerâ€Imprinted Auâ€Nanoparticleâ€Modified Electrodes for Photoelectrochemical Applications. Advanced Functional Materials, 2015, 25, 6470-6477.	7.8	5
7	Trifunctional TiO ₂ Nanoparticles with Exposed {001} Facets as Additives in Cobaltâ€Based Porphyrinâ€&ensitized Solar Cells. Advanced Functional Materials, 2015, 25, 6093-6100.	7.8	15
8	Tropolone as a Highâ€Performance Robust Anchoring Group for Dye‣ensitized Solar Cells. Angewandte Chemie - International Edition, 2015, 54, 9052-9056.	7.2	99
9	Ultrafast Photoinduced Charge Separation Leading to Highâ€Energy Radical Ionâ€Pairs in Directly Linked Corrole–C ₆₀ and Triphenylamine–Corroleâ€C ₆₀ Donor–Acceptor Conjugates. Chemistry - an Asian Journal, 2015, 10, 2708-2719.	1.7	27
10	Molecular Engineering of Organic Dyes with a Holeâ€Extending Donor Tail for Efficient Allâ€Solidâ€State Dyeâ€Sensitized Solar Cells. ChemSusChem, 2015, 8, 2529-2536.	3.6	18
11	Selective Synthesis of Tripyrranes, Tetrapyrranes, and Corroles. European Journal of Organic Chemistry, 2015, 2015, 7583-7593.	1.2	6
12	A hybrid electron donor comprising cyclopentadithiophene and dithiafulvenyl for dye-sensitized solar cells. Beilstein Journal of Organic Chemistry, 2015, 11, 1052-1059.	1.3	12
13	The Role of Porphyrin-Free-Base in the Electronic Structures and Related Properties of N-Fused Carbazole-Zinc Porphyrin Dye Sensitizers. International Journal of Molecular Sciences, 2015, 16, 27707-27720.	1.8	20
14	Picolinic acid as an efficient tridentate anchoring group adsorbing at Lewis acid sites and BrÃ,nsted acid sites of the TiO ₂ surface in dye-sensitized solar cells. Journal of Materials Chemistry A, 2015, 3, 14809-14816.	5.2	30
15	A Metalâ€Free Nâ€Annulated Thienocyclopentaperylene Dye: Power Conversion Efficiency of 12 % for Dyeâ€Sensitized Solar Cells. Angewandte Chemie - International Edition, 2015, 54, 5994-5998.	7.2	196
16	A meso–meso directly linked porphyrin dimer-based double D‑'Ĩ€â€"A sensitizer for efficient dye-sensitized solar cells. Chemical Communications, 2015, 51, 3782-3785.	2.2	34
17	<i>N</i> -Annulated Perylene-Based Push–Pull-Type Sensitizers. Organic Letters, 2015, 17, 724-727.	2.4	43
18	Effects of Number and Position of Meta and Para Carboxyphenyl Groups of Zinc Porphyrins in Dye-Sensitized Solar Cells: Structure–Performance Relationship. ACS Applied Materials & Interfaces, 2015, 7, 1879-1891.	4.0	38
19	Across the Board: Hiroshi Imahori. ChemSusChem, 2015, 8, 426-427.	3.6	1

#	Article	IF	CITATIONS
20	A structurally simple perylene dye with ethynylbenzothiadiazole-benzoic acid as the electron acceptor achieves an over 10% power conversion efficiency. Energy and Environmental Science, 2015, 8, 1438-1442.	15.6	85
21	Saddle-shaped porphyrins for dye-sensitized solar cells: new insight into the relationship between nonplanarity and photovoltaic properties. Physical Chemistry Chemical Physics, 2015, 17, 6347-6358.	1.3	28
22	The effect of different alkyl chains on the photovoltaic performance of D–π–A porphyrin-sensitized solar cells. New Journal of Chemistry, 2015, 39, 3736-3746.	1.4	21
23	Alkyl-thiophene Functionalized D-ï€-A Porphyrins for Mesoscopic Solar Cells. Electrochimica Acta, 2015, 179, 187-196.	2.6	13
24	βâ€Functionalized Push–Pull Porphyrin Sensitizers in Dyeâ€Sensitized Solar Cells: Effect of Ï€â€Conjugated Spacers. ChemSusChem, 2015, 8, 2967-2977.	3.6	34
25	Photovoltaics literature survey (No. 118). Progress in Photovoltaics: Research and Applications, 2015, 23, 533-536.	4.4	0
26	Click made porphyrin–corrole dyad: a system for photo-induced charge separation. Dalton Transactions, 2015, 44, 13473-13479.	1.6	21
27	Efficient co-sensitization of dye-sensitized solar cells by novel porphyrin/triazine dye and tertiary aryl-amine organic dye. Organic Electronics, 2015, 25, 295-307.	1.4	47
28	A triazine di(carboxy)porphyrin dyad versus a triazine di(carboxy)porphyrin triad for sensitizers in DSSCs. Dalton Transactions, 2015, 44, 13550-13564.	1.6	16
29	The cis-isomer performs better than the trans-isomer in porphyrin-sensitized solar cells: interfacial electron transport and charge recombination investigations. Physical Chemistry Chemical Physics, 2015, 17, 20134-20143.	1.3	15
30	A–Ĩ€â€"D–Ĩ€â€"A based porphyrin for solution processed small molecule bulk heterojunction solar cells. Journal of Materials Chemistry A, 2015, 3, 16287-16301.	5.2	47
31	Insight into D–Aâ~ï€â€"A Structured Sensitizers: A Promising Route to Highly Efficient and Stable Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 9307-9318.	4.0	278
32	Effect of electronic-insulating oxides overlayer on the performance of zinc oxide based dye sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2015, 305, 37-44.	2.0	7
33	Photoinduced Chargeâ€Carrier Generation in Epitaxial MOF Thin Films: High Efficiency as a Result of an Indirect Electronic Band Gap?. Angewandte Chemie - International Edition, 2015, 54, 7441-7445.	7.2	206
34	Unusual near-white electroluminescence of light emitting diodes based on saddle-shaped porphyrins. Dalton Transactions, 2015, 44, 8364-8368.	1.6	15
35	Donor/Acceptor Indenoperylene Dye for Highly Efficient Organic Dye-Sensitized Solar Cells. Journal of the American Chemical Society, 2015, 137, 3799-3802.	6.6	528
36	Cosensitization of D-A-Ï€-A Quinoxaline Organic Dye: Efficiently Filling the Absorption Valley with High Photovoltaic Efficiency. ACS Applied Materials & Interfaces, 2015, 7, 5296-5304.	4.0	102
38	Are the orientation and bond strength of the RCO ₂ ^{â^'} â< ⁻ M link key factors for ultrafast electron transfers?. Chemical Communications, 2015, 51, 17305-17308.	2.2	7

#	Article	IF	CITATIONS
39	Effects of cyano, ethynyl and ethylenedioxy groups on the photophysical properties of carbazole-based porphyrins. Organic and Biomolecular Chemistry, 2015, 13, 11286-11291.	1,5	17
40	A diminutive modification in arylamine electron donors: synthesis, photophysics and solvatochromic analysis – towards the understanding of dye sensitized solar cell performances. Physical Chemistry Chemical Physics, 2015, 17, 28647-28657.	1.3	20
41	Electron deficient nonplanar β-octachlorovanadylporphyrin as a highly efficient and selective epoxidation catalyst for olefins. Dalton Transactions, 2015, 44, 17720-17729.	1.6	36
42	Synthesis, spectroscopic, electrochemical redox, solvatochromism and anion binding properties of β-tetra- and -octaphenylethynyl substituted <i>meso</i> -tetraphenylporphyrins. RSC Advances, 2015, 5, 82237-82246.	1.7	18
43	Impact of alkoxy chain length on carbazole-based, visible light-driven, dye sensitized photocatalytic hydrogen production. Journal of Materials Chemistry A, 2015, 3, 21713-21721.	5.2	33
44	Synthesis and photophysical properties of donor–acceptor system based bipyridylporphyrins for dye-sensitized solar cells. Journal of Energy Chemistry, 2015, 24, 779-785.	7.1	5
45	BiOI solar cells. RSC Advances, 2015, 5, 95813-95816.	1.7	43
46	Porphyrin Cosensitization for a Photovoltaic Efficiency of 11.5%: A Record for Non-Ruthenium Solar Cells Based on Iodine Electrolyte. Journal of the American Chemical Society, 2015, 137, 14055-14058.	6.6	302
47	Substituent effect of Ru(ii)-based sensitizers bearing a terpyridine anchor and a pyridyl azolate ancillary for dye sensitized solar cells. Journal of Materials Chemistry A, 2015, 3, 18422-18431.	5.2	8
48	Effects of Immersion Solvent on Photovoltaic and Photophysical Properties of Porphyrin-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 18689-18696.	4.0	18
50	A supramolecular assembling of zinc porphyrin with a π-conjugated oligo(phenylenevinylene) (oPPV) molecular wire for dye sensitized solar cell. RSC Advances, 2015, 5, 88508-88519.	1.7	18
51	Probing Donor–Acceptor Interactions in <i>meso</i> -Substituted Zn(II) Porphyrins Using Resonance Raman Spectroscopy and Computational Chemistry. Journal of Physical Chemistry C, 2015, 119, 22379-22391.	1.5	16
52	Dâ€‴i€â€"A system based on zinc porphyrin dyes for dye-sensitized solar cells: Combined experimental an DFT–TDDFT study. Polyhedron, 2015, 100, 313-320.	id 1.0	29
53	Effect of the functionalized π-bridge on porphyrin sensitizers for dye-sensitized solar cells: an in-depth analysis of electronic structure, spectrum, excitation, and intramolecular electron transfer. Journal of Materials Chemistry C, 2015, 3, 10129-10139.	2.7	25
54	β-Functionalized Push–Pull <i>opp</i> -Dibenzoporphyrins. Journal of Organic Chemistry, 2015, 80, 12076-12087.	1.7	32
55	Porphyrin chemodosimeters: synthesis, electrochemical redox properties and selective â€~naked-eye' detection of cyanide ions. RSC Advances, 2015, 5, 99028-99036.	1.7	46
56	Terpyridine and Quaterpyridine Complexes as Sensitizers for Photovoltaic Applications. Materials, 2016, 9, 137.	1.3	50
57	Porphyrin Dye-Sensitized Zinc Oxide Aggregated Anodes for Use in Solar Cells. Molecules, 2016, 21, 1025.	1.7	11

	CITATION RE	PORT	
#	Article	IF	CITATIONS
58	Eight-Membered and Larger Rings. Progress in Heterocyclic Chemistry, 2016, 28, 623-644.	0.5	1
59	Investigation of Ultrafast Electronic Transfer Process on Organic/Inorganic Heterojunction by Femtosecond Transient Absorption. Chinese Journal of Chemical Physics, 2016, 29, 389-394.	0.6	1
60	The Effect of Donor Group Rigidification on the Electronic and Optical Properties of Arylamine-Based Metal-Free Dyes for Dye-Sensitized Solar Cells: A Computational Study. Journal of Physical Chemistry A, 2016, 120, 5917-5927.	1.1	69
61	Regioregular Polythiophene–Porphyrin Supramolecular Copolymers for Optoelectronic Applications. Macromolecular Chemistry and Physics, 2016, 217, 445-458.	1.1	14
62	(D–π–) ₂ D–π–Aâ€Type Organic Dyes for Efficient Dyeâ€&ensitized Solar Cells. European Jo of Organic Chemistry, 2016, 2016, 2528-2538.	vurnal 1.2	12
63	Efficient Blueâ€Colored Solidâ€State Dyeâ€Sensitized Solar Cells: Enhanced Charge Collection by Using an in Situ Photoelectrochemically Generated Conducting Polymer Hole Conductor. ChemPhysChem, 2016, 17, 1441-1445.	1.0	21
64	Metalâ€Free Sensitizers Containing Hydantoin Acceptor as High Performance Anchoring Group for Dyeâ€Sensitized Solar Cells. Advanced Functional Materials, 2016, 26, 5733-5740.	7.8	54
65	Solvent effects on adsorption kinetics, dye monolayer, and cell performance of porphyrin-sensitized solar cells. RSC Advances, 2016, 6, 114037-114045.	1.7	2
66	Impact of the molecular structure and adsorption mode of D–i€â€"A dye sensitizers with a pyridyl group in dye-sensitized solar cells on the adsorption equilibrium constant for dye-adsorption on TiO ₂ surface. Physical Chemistry Chemical Physics, 2016, 18, 32992-32998.	1.3	10
67	Color Change Effect in an Organic–Inorganic Hybrid Material Based on a Porphyrin Diacid. Journal of Physical Chemistry C, 2016, 120, 28363-28373.	1.5	34
68	High-Potential Porphyrins Supported on SnO ₂ and TiO ₂ Surfaces for Photoelectrochemical Applications. Journal of Physical Chemistry C, 2016, 120, 28971-28982.	1.5	28
69	Benzoporphyrins bearing pyridine or pyridine-N-oxide anchoring groups as sensitizers for dye-sensitized solar cell. Journal of Porphyrins and Phthalocyanines, 2016, 20, 542-555.	0.4	7
70	Indolo[3,2-b]carbazole-based multi-donor–π–acceptor type organic dyes for highly efficient dye-sensitized solar cells. Journal of Power Sources, 2016, 319, 39-47.	4.0	76
71	Electrochemistry of N4 Macrocyclic Metal Complexes. , 2016, , .		32
72	N-Annulated perylene substituted zinc–porphyrins with different linking modes and electron acceptors for dye sensitized solar cells. Journal of Materials Chemistry A, 2016, 4, 8428-8434.	5.2	46
73	Improving performance of copper(I)-based dye sensitized solar cells through I3â^'/lâ^' electrolyte manipulation. Dyes and Pigments, 2016, 132, 72-78.	2.0	22
74	Metalloporphyrins in Solar Energy Conversion. , 2016, , 171-262.		9
75	Synthesis, photophysical, electrochemical and electrochemiluminescence properties of A ₂ B ₂ zinc porphyrins: the effect of i€-extended conjugation. Physical Chemistry Chemical Physics, 2016, 18, 15025-15038.	1.3	8

#	Article	IF	CITATIONS
76	Bilayer structured supramolecular light harvesting arrays based on zinc porphyrin coordination polymers for enhanced photocurrent generation in dye sensitized solar cells. Dalton Transactions, 2016, 45, 16283-16289.	1.6	13
77	Cyanoacrylic- and (1-cyanovinyl)phosphonic acid anchoring ligands for application in copper-based dye-sensitized solar cells. RSC Advances, 2016, 6, 86220-86231.	1.7	11
78	Fusing Porphyrins and Phospholes: Synthesis and Analysis of a Phosphorus ontaining Porphyrin. Angewandte Chemie - International Edition, 2016, 55, 12311-12315.	7.2	26
79	Calculations of the light absorption spectra of porphyrinoid chromophores for dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2016, 18, 27877-27884.	1.3	8
80	4D–π–1A type β-substituted Zn ^{II} -porphyrins: ideal green sensitizers for building-integrated photovoltaics. Chemical Communications, 2016, 52, 12642-12645.	2.2	27
81	Studies on D-A-Ï€-A structured porphyrin sensitizers with different additional electron-withdrawing unit. Journal of Power Sources, 2016, 333, 1-9.	4.0	25
82	Recent advances in mixed β-pyrrole substituted meso-tetraphenylporphyrins. Tetrahedron Letters, 2016, 57, 5150-5167.	0.7	26
83	Triindole-modified push–pull type porphyrin dyes for dye-sensitized solar cells. Dyes and Pigments, 2016, 134, 434-441.	2.0	14
84	Firstâ€Generation Subporphyrinatoboron(III) Sensitizers Surpass the 10 % Power Conversion Efficiency Threshold. Angewandte Chemie, 2016, 128, 10443-10447.	1.6	12
85	Firstâ€Generation Subporphyrinatoboron(III) Sensitizers Surpass the 10 % Power Conversion Efficiency Threshold. Angewandte Chemie - International Edition, 2016, 55, 10287-10291.	7.2	27
86	Understanding why replacing I ₃ ^{â^'} /I ^{â^'} by cobalt(<scp>ii</scp>)/(<scp>iii</scp>) electrolytes in bis(diimine)copper(<scp>i</scp>)-based dye-sensitized solar cells improves performance. Journal of Materials Chemistry A, 2016, 4, 12995-13004.	5.2	24
87	Aminophenyl/carboxyphenylporphyrins as sensitizers for dye-sensitized solar cells. Journal of Porphyrins and Phthalocyanines, 2016, 20, 1217-1223.	0.4	3
88	From White to Red: Electricâ€Field Dependent Chromaticity of Lightâ€Emitting Electrochemical Cells based on Archetypal Porphyrins. Advanced Functional Materials, 2016, 26, 6737-6750.	7.8	49
89	Elucidating the Ultrafast Dynamics of Photoinduced Charge Separation in Metalloporphyrin-Fullerene Dyads Across the Electromagnetic Spectrum. Journal of Physical Chemistry C, 2016, 120, 19537-19546.	1.5	5
90	Monobenzoporphyrins as Sensitizers for Dye‣ensitized Solar Cells: Observation of Significant Spacerâ€Group Effect. ChemSusChem, 2016, 9, 2239-2249.	3.6	16
91	Molecular engineering of D–D–Ĩ€â€"A type organic dyes incorporating indoloquinoxaline and phenothiazine for highly efficient dye-sensitized solar cells. Journal of Power Sources, 2016, 326, 129-136.	4.0	61
92	Donor/Acceptorâ€Modified Electrodes for Photoelectrochemical and Photobioelectrochemical Applications. Advanced Functional Materials, 2016, 26, 7148-7155.	7.8	34
93	Push–pull type alkoxy-wrapped N-annulated perylenes for dye-sensitized solar cells. RSC Advances, 2016, 6, 81184-81190.	1.7	7

#	Article	IF	CITATIONS
94	Fusing Porphyrins and Phospholes: Synthesis and Analysis of a Phosphorus ontaining Porphyrin. Angewandte Chemie, 2016, 128, 12499-12503.	1.6	6
95	Nickel silicotungstate-decorated Pt photocathode as an efficient catalyst for triiodide reduction in dye-sensitized solar cells. Dalton Transactions, 2016, 45, 16859-16868.	1.6	13
96	A Push–Pull Porphyrin Dimer with Multiple Electron-donating Groups for Dye-sensitized Solar Cells: Excellent Light-harvesting in Near-infrared Region. Chemistry Letters, 2016, 45, 1126-1128.	0.7	10
97	Applications of Ionic Liquids. , 2016, , 1-58.		13
98	Significant Influences of Elaborately Modulating Electron Donors on Light Absorption and Multichannel Charge-Transfer Dynamics for 4-(Benzo[<i>c</i>][1,2,5]thiadiazol-4-ylethynyl)benzoic Acid Dyes. ACS Applied Materials & Interfaces, 2016, 8, 18292-18300.	4.0	20
99	New banana shaped A–D–π–D–A type organic dyes containing two anchoring groups for high performance dye-sensitized solar cells. Dyes and Pigments, 2016, 134, 375-381.	2.0	25
100	Zinc Porphyrin–Ethynylaniline Conjugates as Novel Hole-Transporting Materials for Perovskite Solar Cells with Power Conversion Efficiency of 16.6%. ACS Energy Letters, 2016, 1, 956-962.	8.8	87
101	Novel metal-free organic dyes possessing fused heterocyclic structural motifs for efficient molecular photovoltaics. Physical Chemistry Chemical Physics, 2016, 18, 30105-30116.	1.3	8
102	A comparative study of porphyrin dye sensitizers YD2-o-C8, SM315 and SM371 for solar cells: the electronic structures and excitation-related properties. European Physical Journal D, 2016, 70, 1.	0.6	10
103	Computational modelling of panchromatic porphyrins with strong NIR absorptions for solar energy capture. Chemical Physics Letters, 2016, 665, 40-46.	1.2	4
104	Adsorption, Ordering, and Metalation of Porphyrins on MgO Nanocube Surfaces: The Directional Role of Carboxylic Anchoring Groups. Journal of Physical Chemistry C, 2016, 120, 26879-26888.	1.5	20
105	Engineering the optoelectronic properties of MoS ₂ photodetectors through reversible noncovalent functionalization. Chemical Communications, 2016, 52, 14365-14368.	2.2	37
106	Modifications of an unsymmetrical phthalocyanine: Towards stable blue dyes for dye-sensitized solar cells. Journal of Porphyrins and Phthalocyanines, 2016, 20, 1207-1216.	0.4	3
107	Development of type-I/type-II hybrid dye sensitizer with both pyridyl group and catechol unit as anchoring group for type-I/type-II dye-sensitized solar cell. Physical Chemistry Chemical Physics, 2016, 18, 30662-30676.	1.3	24
108	Synthesis of push–pull porphyrin dyes with dimethylaminonaphthalene electron-donating groups and their application to dye-sensitized solar cells. RSC Advances, 2016, 6, 102979-102983.	1.7	10
109	Preparation, X-ray Structures, Spectroscopic, and Redox Properties of Di- and Trinuclear Iron–Zirconium and Iron–Hafnium Porphyrinoclathrochelates. Inorganic Chemistry, 2016, 55, 11867-11882.	1.9	24
110	Porphyrin Metalation at MgO Surfaces: A Spectroscopic and Quantum Mechanical Study on Complementary Model Systems. Chemistry - A European Journal, 2016, 22, 1744-1749.	1.7	36
111	Effects of Bulky Substituents of Push–Pull Porphyrins on Photovoltaic Properties of Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 15379-15390.	4.0	61

#	Article	IF	CITATIONS
112	Conductivity studies of poly(ethylene oxide)(PEO)/poly(vinyl alcohol) (PVA) blend gel polymer electrolytes for dye-sensitized solar cells. Ionics, 2016, 22, 2133-2142.	1.2	32
113	A feasible scalable porphyrin dye for dye-sensitized solar cells under one sun and dim light environments. Journal of Materials Chemistry A, 2016, 4, 11878-11887.	5.2	83
114	Porphyrins with intense absorptivity: highly efficient sensitizers with a photovoltaic efficiency of up to 10.7% without a cosensitizer and a coabsorbate. Journal of Materials Chemistry A, 2016, 4, 11829-11834.	5.2	56
115	An investigation of the role increasing ĩ€-conjugation has on the efficiency of dye-sensitized solar cells fabricated from ferrocene-based dyes. RSC Advances, 2016, 6, 9132-9138.	1.7	30
116	Synthesis and characterization of simple cost-effective trans-A ₂ BC porphyrins with various donor groups for dye-sensitized solar cells. New Journal of Chemistry, 2016, 40, 5704-5713.	1.4	14
117	Enhanced performance of dye-sensitized solar cells with Y-shaped organic dyes containing di-anchoring groups. New Journal of Chemistry, 2016, 40, 2799-2805.	1.4	24
118	Phenothiazine-functionalized push–pull Zn porphyrin photosensitizers for efficient dye-sensitized solar cells. RSC Advances, 2016, 6, 9057-9065.	1.7	20
119	A pure organic heterostructure of μ-oxo dimeric iron(<scp>iii</scp>) porphyrin and graphitic-C ₃ N ₄ for solar H ₂ roduction from water. Journal of Materials Chemistry A, 2016, 4, 290-296.	5.2	117
120	Charge recombination losses in thiophene-substituted porphyrin dye-sensitized solar cells. Dyes and Pigments, 2016, 126, 147-153.	2.0	18
121	From Molecular Design to Co-sensitization; High performance indole based photosensitizers for dye-sensitized solar cells. Electrochimica Acta, 2016, 198, 10-21.	2.6	36
122	Synthesis of asymmetric zinc phthalocyanine with bulky diphenylthiophenol substituents and its photovoltaic performance for dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 321, 248-256.	2.0	14
123	Effect of electron-donor ancillary ligands on the heteroleptic ruthenium complexes: synthesis, characterization, and application in high-performance dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2016, 18, 11213-11219.	1.3	11
124	Self-assemblies formed by isonicotinic acid analogues axially coordinating with zinc porphyrin via pyridyl unit: synthesis and application in dye sensitized solar cells. Tetrahedron Letters, 2016, 57, 1867-1872.	0.7	16
125	Thiophene-based fluorescent mercury-sensors. Journal of Coordination Chemistry, 2016, 69, 2081-2089.	0.8	14
126	Pyridyl vs. bipyridyl anchoring groups of porphyrin sensitizers for dye sensitized solar cells. RSC Advances, 2016, 6, 22187-22203.	1.7	18
127	Improved light absorbance does not lead to better DSC performance: studies on a ruthenium porphyrin–terpyridine conjugate. RSC Advances, 2016, 6, 15370-15381.	1.7	4
128	Novel porphyrin-preparation, characterization, and applications in solar energy conversion. Physical Chemistry Chemical Physics, 2016, 18, 6885-6892.	1.3	44
129	Dye-sensitized solar cell based on an inclusion complex of a cyclic porphyrin dimer bearing four 4-pyridyl groups and fullerene C ₆₀ . RSC Advances, 2016, 6, 16150-16158.	1.7	18

#	Article	IF	CITATIONS
130	Synthesis and Characterization of Porphyrin-Based GUMBOS and NanoGUMBOS as Improved Photosensitizers. Journal of Physical Chemistry C, 2016, 120, 5155-5163.	1.5	26
131	Synthesis of D–D–A-type small organic molecules with an enlarged linker system towards organic solar cells and the effect of co-adsorbents on cell performance. New Journal of Chemistry, 2016, 40, 634-640.	1.4	5
132	Benzimidazole-Branched Isomeric Dyes: Effect of Molecular Constitution on Photophysical, Electrochemical, and Photovoltaic Properties. Journal of Organic Chemistry, 2016, 81, 640-653.	1.7	58
133	Porphyrins bearing a consolidated anthryl donor with dual functions for efficient dye-sensitized solar cells. Energy and Environmental Science, 2016, 9, 200-206.	15.6	54
134	Visible light-driven water oxidation using a covalently-linked molecular catalyst–sensitizer dyad assembled on a TiO ₂ electrode. Chemical Science, 2016, 7, 1430-1439.	3.7	103
135	Benefits of using BODIPY–porphyrin dyads for developing deep-red lighting sources. Chemical Communications, 2016, 52, 1602-1605.	2.2	60
136	Effect of the co-sensitization sequence on the performance of dye-sensitized solar cells with porphyrin and organic dyes. Physical Chemistry Chemical Physics, 2016, 18, 932-938.	1.3	56
137	Novel D–π–A porphyrin dyes with different alkoxy chains for use in dye-sensitized solar cells. Dyes and Pigments, 2016, 125, 116-123.	2.0	17
138	Influence of Mn+2 incorporation in CdSe quantum dots for high performance of CdS–CdSe quantum dot sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 315, 34-41.	2.0	25
139	A new method for the synthesis of \hat{l}^2 -cyano substituted porphyrins and their use as sensitizers in photoelectrochemical devices. Journal of Materials Chemistry A, 2016, 4, 2976-2985.	5.2	26
140	Donor–acceptor type A ₂ B ₂ porphyrins: synthesis, energy transfer, computational and electrochemical studies. Inorganic Chemistry Frontiers, 2017, 4, 618-638.	3.0	33
141	Molecular engineering of organic sensitizers with o,p-dialkoxyphenyl-based bulky donors for highly efficient dye-sensitized solar cells. Molecular Systems Design and Engineering, 2017, 2, 98-122.	1.7	43
142	Facile synthesis, photophysical and electrochemical redox properties of octa- and tetracarboxamidophenylporphyrins and the first example of amido-imidol tautomerism in porphyrins. Dyes and Pigments, 2017, 139, 651-657.	2.0	2
143	Synthesis and Spectroscopic Investigation of a Series of Push–Pull Boron Dipyrromethenes (BODIPYs). Journal of Organic Chemistry, 2017, 82, 2545-2557.	1.7	48
144	Organic photovoltaic annealing process analysis using impedance spectroscopy. Solar Energy, 2017, 144, 367-375.	2.9	6
145	Enhancement in the photostability of natural dyes for dye-sensitized solar cell (DSSC) applications: a review. International Journal of Energy Research, 2017, 41, 1372-1396.	2.2	83
146	D–π–A Dyes with an Intramolecular B–N Coordination Bond as a Key Scaffold for Electronic Structural Tuning and Their Application in Dye-Sensitized Solar Cells. Bulletin of the Chemical Society of Japan, 2017, 90, 441-450.	2.0	25
147	Investigating the intersystem crossing rate and triplet quantum yield of Protoporphyrin IX by means of pulse train fluorescence technique. Chemical Physics Letters, 2017, 674, 48-57.	1.2	28

#	Article	IF	CITATIONS
148	Advances in hole transport materials engineering for stable and efficient perovskite solar cells. Nano Energy, 2017, 34, 271-305.	8.2	362
149	Structural Effects on the Incident Photon-to-Current Conversion Efficiency of Zn Porphyrin Dyes on the Low-Index Planes of TiO ₂ . ACS Omega, 2017, 2, 128-135.	1.6	7
150	Evolution of Molecular Design of Porphyrin Chromophores for Photovoltaic Materials of Superior Lightâ€ŧoâ€Electricity Conversion Efficiency. Solar Rrl, 2017, 1, 1600002.	3.1	48
151	Synthesis, optical and electrochemical properties, and photovoltaic performance of a panchromatic and near-infrared (D) ₂ –l€â€"A type BODIPY dye with pyridyl group or cyanoacrylic acid. RSC Advances, 2017, 7, 13072-13081.	1.7	23
152	Unsymmetrically Substituted Donor–π–Acceptorâ€Type 5,15â€Diazaporphyrin Sensitizers: Synthesis, Optical and Photovoltaic Properties. ChemPlusChem, 2017, 82, 695-704.	1.3	8
153	Comparative Synthetic Strategies for the Generation of 5,10―and 5,15â€6ubstituted <i>Pushâ€Pull</i> Porphyrins. European Journal of Organic Chemistry, 2017, 2017, 3565-3583.	1.2	13
154	Donor-ï€â€"Acceptor Based Stable Porphyrin Sensitizers for Dye-Sensitized Solar Cells: Effect of ï€-Conjugated Spacers. Journal of Physical Chemistry C, 2017, 121, 6464-6477.	1.5	101
155	D–π–A Dyes with Diketopyrrolopyrrole and Boryl-substituted Thienylthiazole Units for Dye-sensitized Solar Cells with High <i>J</i> _{SC} Values. Chemistry Letters, 2017, 46, 715-718.	0.7	16
156	T-shaped (D)2–A–ï€â€"A type sensitizers incorporating indoloquinoxaline and triphenylamine for organic dye-sensitized solar cells. Electrochimica Acta, 2017, 232, 377-386.	2.6	41
157	Exploring simple ancillary ligands in copper-based dye-sensitized solar cells: effects of a heteroatom switch and of co-sensitization. Journal of Materials Chemistry A, 2017, 5, 4671-4685.	5.2	27
158	Molecular design of porphyrin dyes for dye sensitized solar cells: A quantitative structure property relationship study. International Journal of Quantum Chemistry, 2017, 117, e25385.	1.0	9
159	Investigation of the push–pull effects on β-functionalized benzoporphyrins bearing an ethynylphenyl bridge. Physical Chemistry Chemical Physics, 2017, 19, 13182-13188.	1.3	13
160	Low cost and high catalytic efficiency composite counter electrode NiS-H 3 Mo 12 O 40 P for dye-sensitized solar cells. Materials Letters, 2017, 198, 65-68.	1.3	4
161	New Acetyleneâ€Bridged 9,10 onjugated Anthracene Sensitizers: Application in Outdoor and Indoor Dye‧ensitized Solar Cells. Advanced Energy Materials, 2017, 7, 1700032.	10.2	137
162	Artificial light-harvesting n-type porphyrin for panchromatic organic photovoltaic devices. Chemical Science, 2017, 8, 5095-5100.	3.7	50
163	Amorphous porphyrin glasses exhibit near-infrared excimer luminescence. RSC Advances, 2017, 7, 22679-22683.	1.7	19
164	The way to panchromatic copper(<scp>i</scp>)-based dye-sensitized solar cells: co-sensitization with the organic dye SQ2. Journal of Materials Chemistry A, 2017, 5, 13717-13729.	5.2	28
165	Interfacial Electron Transfer Followed by Photooxidation in <i>N</i> , <i>N</i> -Bis(<i>p</i> -anisole)aminopyridine–Aluminum(III) Porphyrin–Titanium(IV) Oxide Self-Assembled Photoanodes. Journal of Physical Chemistry C, 2017, 121, 14484-14497.	1.5	12

#	Article	IF	CITATIONS
166	Substituted and Anchoring Groups Improve the Efficiency of Dye-Sensitized Solar Cells. ChemistrySelect, 2017, 2, 4084-4091.	0.7	7
167	Highâ€Performance Ruthenium Sensitizers Containing Imidazolium Counterions for Efficient Dye Sensitization in Water. ChemSusChem, 2017, 10, 2914-2921.	3.6	4
168	3D Porphyrin-Based Covalent Organic Frameworks. Journal of the American Chemical Society, 2017, 139, 8705-8709.	6.6	369
169	Linker Effects in Porphyrin Polymeric Donor Materials for Photovoltaic Devices. Journal of Physical Chemistry C, 2017, 121, 12018-12024.	1.5	6
170	Phenothiazineâ€Sensitized Solar Cells: Effect of Number of Cyanocinnamic Acid Anchoring Groups on Dyeâ€Sensitized Solar Cell Performance. ChemPlusChem, 2017, 82, 896-903.	1.3	8
171	The influence of noncovalent interactions in metalâ€free organic dye molecules to augment the efficiency of dye sensitized solar cells: A computational study. International Journal of Quantum Chemistry, 2017, 117, e25415.	1.0	7
172	Electrochemical generation of a molecular heterojunction. A new Zn-Porphyrin-Fullerene C60 Polymeric Film. Electrochimica Acta, 2017, 238, 81-90.	2.6	17
173	Photo and electroluminescence of a platinum porphyrin doping of complexes with two metal cores. Journal of Materials Science: Materials in Electronics, 2017, 28, 10012-10018.	1.1	1
174	Molecular Docking toward Panchromatic Dye Sensitizers for Solar Cells Based upon Tetraazulenylporphyrin and Tetraanthracenylporphyrin. Journal of Physical Chemistry A, 2017, 121, 2655-2664.	1.1	17
175	Pyridyl―and Picolinic Acid Substituted Zinc(II) Phthalocyanines for Dye‧ensitized Solar Cells. ChemPlusChem, 2017, 82, 1057-1061.	1.3	14
176	meso-Diphenylbacteriochlorins: Macrocyclic Dyes with Rare Colors for Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2017, 121, 7081-7087.	1.5	32
177	Highâ€Performance Porphyrinâ€Based Dye‣ensitized Solar Cells with Iodine and Cobalt Redox Shuttles. ChemSusChem, 2017, 10, 938-945.	3.6	15
178	Pyrrolo[3,2,1-kl]phenothiazine-based D- π -A type organic dyes for efficient dye-sensitized solar cells. Dyes and Pigments, 2017, 139, 292-299.	2.0	15
179	ABAB Phthalocyanines: Scaffolds for Building Unprecedented Donor-Ï€-Acceptor Chromophores. ChemistryOpen, 2017, 6, 121-127.	0.9	13
180	Manipulation of Push–Pull System by Functionalization of Porphyrin at βâ€Position for Highâ€Performance Solutionâ€Processable Ternary Resistive Memory Devices. ChemNanoMat, 2017, 3, 164-167.	1.5	15
181	Effects of different electron donating groups on dye regeneration and aggregation in phenothiazine-based dye-sensitized solar cells. Organic Electronics, 2017, 42, 234-243.	1.4	25
182	Porphyrin Sensitizers with Donor Structural Engineering for Superior Performance Dye ensitized Solar Cells and Tandem Solar Cells for Water Splitting Applications. Advanced Energy Materials, 2017, 7, 1602117.	10.2	193
183	Influence of the additional electron-withdrawing unit in β-functionalized porphyrin sensitizers on the photovoltaic performance of dye-sensitized solar cells. Dyes and Pigments, 2017, 139, 255-263.	2.0	26

#	Article	IF	CITATIONS
184	Bulky Nature Phenanthroimidazole-Based Porphyrin Sensitizers for Dye-Sensitized Solar Cell Applications. Journal of Physical Chemistry C, 2017, 121, 25691-25704.	1.5	26
185	BODIPYs for Dye-Sensitized Solar Cells. ACS Applied Materials & amp; Interfaces, 2017, 9, 39873-39889.	4.0	149
186	The role of electronic donor moieties in porphyrin dye sensitizers for solar cells: Electronic structures and excitation related properties. Journal of Renewable and Sustainable Energy, 2017, 9, 053505.	0.8	9
187	Effect of fluorine substitution and position on phenylene spacer in carbazole based organic sensitizers for dye sensitized solar cells. Physical Chemistry Chemical Physics, 2017, 19, 28579-28587.	1.3	16
188	Coupling of Zinc Porphyrin Dyes and Copper Electrolytes: A Springboard for Novel Sustainable Dye-Sensitized Solar Cells. Inorganic Chemistry, 2017, 56, 14189-14197.	1.9	30
189	Porphyrins and BODIPY as Building Blocks for Efficient Donor Materials in Bulk Heterojunction Solar Cells. Solar Rrl, 2017, 1, 1700127.	3.1	62
190	Structurally Simple and Easily Accessible Perylenes for Dye-Sensitized Solar Cells Applicable to Both 1 Sun and Dim-Light Environments. ACS Applied Materials & Interfaces, 2017, 9, 37786-37796.	4.0	33
191	A detailed experimental and theoretical investigation of the role of cyano groups in the π-bridged acceptor of sensitizers for use in dye-sensitized solar cells (DSCs). Physical Chemistry Chemical Physics, 2017, 19, 28867-28875.	1.3	5
192	Photovoltaic Properties and Long-Term Durability of Porphyrin-Sensitized Solar Cells with Silicon-Based Anchoring Groups. ACS Omega, 2017, 2, 6958-6967.	1.6	22
193	Novel D–Aâ~'π–A-Type Organic Dyes Containing a Ladderlike Dithienocyclopentacarbazole Donor for Effective Dye-Sensitized Solar Cells. ACS Omega, 2017, 2, 7048-7056.	1.6	23
194	Recent advances and insights in dye-sensitized NiO photocathodes for photovoltaic devices. Journal of Materials Chemistry A, 2017, 5, 21077-21113.	5.2	90
195	Orthogonally Functionalized Donor/Acceptor Homo- and Heterodimeric Dyes for Dye-Sensitized Solar Cells: An Approach to Introduce Panchromaticity and Control the Charge Recombination. ACS Applied Materials & Interfaces, 2017, 9, 34875-34890.	4.0	34
196	Bis-tridentate Ru(ii) sensitizers with a spatially encumbered 2,6-dipyrazolylpyridine ancillary ligand for dye-sensitized solar cells. RSC Advances, 2017, 7, 42013-42023.	1.7	13
197	Diphenylâ€2â€pyridylamineâ€Substituted Porphyrins as Holeâ€Transporting Materials for Perovskite Solar Cells. ChemSusChem, 2017, 10, 3780-3787.	3.6	40
198	The spectroscopic impact of interactions with the four Gouterman orbitals from peripheral decoration of porphyrins with simple electron withdrawing and donating groups. Organic and Biomolecular Chemistry, 2017, 15, 9081-9094.	1.5	37
199	A Hydroxamic Acid Anchoring Group for Durable Dyeâ€ S ensitized Solar Cells Incorporating a Cobalt Redox Shuttle. ChemSusChem, 2017, 10, 3347-3351.	3.6	35
200	Near-infrared absorption bacteriochlorophyll derivatives as biomaterial electron donor for organic solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 347, 49-54.	2.0	18
201	Facile synthesis of β-functionalized "push-pull―Zn(II) porphyrins for DSSC applications. Dyes and Pigments, 2017, 147, 56-66.	2.0	16

#	ARTICLE	IF	CITATIONS
202	Structure–Property Relationship Study of Donor and Acceptor 2,6â€Disubstituted BODIPY Derivatives for High Performance Dyeâ€Sensitized Solar Cells. Chemistry - A European Journal, 2017, 23, 14747-14759.	1.7	19
203	βâ€Functionalized Push–Pull <i>opp</i> â€Dibenzoporphyrins as Sensitizers for Dyeâ€Sensitized Solar Cells. Chemistry - an Asian Journal, 2017, 12, 2749-2762.	1.7	24
204	Microwave-solvothermal synthesis of various TiO ₂ nano-morphologies with enhanced efficiency by incorporating Ni nanoparticles in an electrolyte for dye-sensitized solar cells. Inorganic Chemistry Frontiers, 2017, 4, 1665-1678.	3.0	24
205	Photovoltaic performances of type-II dye-sensitized solar cells based on catechol dye sensitizers: retardation of back-electron transfer by PET (photo-induced electron transfer). Materials Chemistry Frontiers, 2017, 1, 2243-2255.	3.2	20
206	Novel BODIPY dyes with electron donor variety for dye-sensitized solar cells. RSC Advances, 2017, 7, 33975-33985.	1.7	24
207	Regioselective and Switchable <i>meso-</i> Aminations and Couplings of 5,15-Diarylchlorins. Organic Letters, 2017, 19, 3871-3874.	2.4	4
208	An Unsymmetrical, Push–Pull Porphyrazine for Dyeâ€Sensitized Solar Cells. ChemPhotoChem, 2017, 1, 164-166.	1.5	17
209	Molecular recognition of nitrogen – containing bases by Zn[5,15-bis-(2,6-dodecyloxyphenyl)]porphyrin. Supramolecular Chemistry, 2017, 29, 360-369.	1.5	23
210	Theoretical study of zinc porphyrin-based dyes for dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 333, 200-207.	2.0	12
211	Heteroatom-Containing Porphyrin Analogues. Chemical Reviews, 2017, 117, 3254-3328.	23.0	163
212	Synthesis and photovoltaic performance of the porphyrin based sensitizers with 2H-[1,2,3]triazolo[4,5-c]pyridine and benzotriazole as auxiliary acceptors. Dyes and Pigments, 2017, 137, 143-151.	2.0	23
213	Anchoring number-performance relationship of zinc-porphyrin sensitizers for dye-sensitized solar cells: A combined experimental and theoretical study. Dyes and Pigments, 2017, 136, 697-706.	2.0	19
214	Free-Base and Metal Complexes of 5,10,15,20-Tetrakis(NMethyl Pyridinium L)Porphyrin: Catalytic and Therapeutic Properties. , 0, , .		4
215	Increased Efficiency of Dyeâ€Sensitized Solar Cells by Incorporation of a ï€ Spacer in Donor–Acceptor Zinc Porphyrins Bearing Cyanoacrylic Acid as an Anchoring Group. European Journal of Inorganic Chemistry, 2018, 2018, 2369-2379.	1.0	8
216	Monolithic dye sensitized solar cell with metal foil counter electrode. Organic Electronics, 2018, 57, 194-200.	1.4	11
217	Organic dyes festooned with fluorene and fused thiazine for efficient dye-sensitized solar cells. Electrochimica Acta, 2018, 268, 347-357.	2.6	11
218	<i>β</i> â€Functionalized Imidazoleâ€Fused Porphyrinâ€Donorâ€Based Dyes: Effect of Ï€â€Linker and Acceptor o Optoelectronic and Photovoltaic Properties. ChemistrySelect, 2018, 3, 2558-2564.	n 0.7	11
219	New Metalâ^'Free Porphyrins as Holeâ^'Transporting Materials in Mesoporous Perovskite Solar Cells ChemistrySelect, 2018, 3, 2536-2541.	0.7	10

#	Article	IF	CITATIONS
220	Self-Assembly of Cis-Configured Squaraine Dyes at the TiO ₂ –Dye Interface: Far-Red Active Dyes for Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 16541-16551.	4.0	9
221	Cuprophilia: Dye-sensitized solar cells with copper(I) dyes and copper(I)/(II) redox shuttles. Dyes and Pigments, 2018, 156, 410-416.	2.0	40
222	Reactive Porphyrin Adsorption on TiO ₂ Anatase Particles: Solvent Assistance and the Effect of Water Addition. ACS Applied Materials & Interfaces, 2018, 10, 16836-16842.	4.0	15
223	Incorporation of Mn ²⁺ into CdSe quantum dots by chemical bath co-deposition method for photovoltaic enhancement of quantum dot-sensitized solar cells. Royal Society Open Science, 2018, 5, 171712.	1.1	25
224	Enhanced Donor–π–Acceptor Character of a Porphyrin Dye Incorporating Naphthobisthiadiazole for Efficient Nearâ€Infrared Light Absorption. European Journal of Organic Chemistry, 2018, 2018, 2537-2547.	1.2	16
225	Förster electronic excitation energy transfer upon adsorption of meso-tetra(3-pyridyl)porphyrin on InP@ZnS colloidal quantum dots. Journal of Luminescence, 2018, 200, 151-157.	1.5	11
226	The dye-sensitized solar cell database. Journal of Cheminformatics, 2018, 10, 18.	2.8	47
227	Structural and optical characterization of thermally evaporated nanocrystalline 5,10,15,20-tetraphenyl-21H,23H-porphine manganese (III) chloride thin films. Optik, 2018, 167, 204-217.	1.4	40
228	Zn-Porphyrin propped with hydantoin anchor: synthesis, photophysics and electron injection/recombination dynamics. Physical Chemistry Chemical Physics, 2018, 20, 5117-5127.	1.3	16
229	Porphyrin-sensitized solar cells: systematic molecular optimization, coadsorption and cosensitization. Chemical Communications, 2018, 54, 1811-1824.	2.2	138
230	Synthesis and characterization of porphyrin–DNA constructs for the self-assembly of modular energy transfer arrays. Journal of Materials Chemistry C, 2018, 6, 2452-2459.	2.7	19
231	Investigation of the push–pull effects on β-functionalized zinc porphyrin coordinated to C60 donor–acceptor conjugates. Canadian Journal of Chemistry, 2018, 96, 881-889.	0.6	8
232	The influence of anchoring group position in ruthenium dye molecule on performance of dye-sensitized solar cells. Dyes and Pigments, 2018, 150, 335-346.	2.0	12
233	Cosensitization of Structurally Simple Porphyrin and Anthracene-Based Dye for Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 2391-2399.	4.0	56
234	Effect of π-linkers on phenothiazine sensitizers for dye-sensitized solar cells. Dyes and Pigments, 2018, 151, 263-271.	2.0	34
235	β-Substituted ZnII porphyrins as dyes for DSSC: A possible approach to photovoltaic windows. Coordination Chemistry Reviews, 2018, 358, 153-177.	9.5	85
236	Cost effective natural photo-sensitizer from upcycled jackfruit rags for dye sensitized solar cells. Journal of Science: Advanced Materials and Devices, 2018, 3, 213-220.	1.5	10
237	Thiochalcone substituted phthalocyanines for dye-sensitized solar cells: Relation of optical and electrochemical properties for cell performance. Journal of Coordination Chemistry, 2018, 71, 1606-1622.	0.8	13

#	Article	IF	Citations
238	Tuning the Photovoltaic Performance of DSSCs by Appending Various Donor Groups on <i>trans</i> -Dimesityl Porphyrin Backbone. ACS Applied Energy Materials, 2018, 1, 2793-2801.	2.5	25
239	Fabrication and transport mechanisms of 5,10,15,20-tetraphenyl-21H,23H-porphrine manganese(III) chloride/n-type silicon heterojunction solar cell. Journal of Materials Science: Materials in Electronics, 2018, 29, 10911-10920.	1.1	6
240	Porphyrin sensitizers containing an auxiliary benzotriazole acceptor for dye-sensitized solar cells: Effects of steric hindrance and cosensitization. Dyes and Pigments, 2018, 155, 323-331.	2.0	35
241	Wide-Range Near-Infrared Sensitizing 1 <i>H</i> -Benzo[<i>c</i> , <i>d</i>]indol-2-ylidene-Based Squaraine Dyes for Dye-Sensitized Solar Cells. Journal of Organic Chemistry, 2018, 83, 4389-4401.	1.7	20
242	Propping the optical and electronic properties of potential photo-sensitizers with different π-spacers: TD-DFT insights. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 188, 237-243.	2.0	27
243	Enhancement of the photovoltaic performance in D 3 A porphyrin-based DSCs by incorporating an electron withdrawing triazole spacer. Polyhedron, 2018, 140, 9-18.	1.0	16
244	Rapid fabrication of mesoporous TiO2 thin films by pulsed fibre laser for dye sensitized solar cells. Applied Surface Science, 2018, 428, 1089-1097.	3.1	12
245	Palladium-directed self-assembly of multi-titanium(IV)-porphyrin arrays on the substrate surface as sensitive ultrathin films for hydrogen peroxide sensing, photocurrent generation, and photochromism of viologen. Applied Surface Science, 2018, 427, 1003-1010.	3.1	13
246	Three novel bis carbazole organic dyes for dye-sensitized solar cells. Journal of Materials Science: Materials in Electronics, 2018, 29, 3270-3280.	1.1	10
247	Aggregation and metal-complexation behaviour of THPP porphyrin in ethanol/water solutions as function of pH. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 193, 235-248.	2.0	29
248	Photovoltaic Properties of a Porphyrinâ€Containing Polymer as Donor in Bulk Heterojunction Solar Cells With Low Energy Loss. Solar Rrl, 2018, 2, 1700168.	3.1	13
249	A detailed evaluation of charge recombination dynamics in dye solar cells based on starburst triphenylamine dyes. Sustainable Energy and Fuels, 2018, 2, 303-314.	2.5	21
250	Electrolyte tuning in dye-sensitized solar cells with <i>N</i> -heterocyclic carbene (NHC) iron(II) sensitizers. Beilstein Journal of Nanotechnology, 2018, 9, 3069-3078.	1.5	13
251	Reaction of porphyrin-based surface-anchored metal–organic frameworks caused by prolonged illumination. Physical Chemistry Chemical Physics, 2018, 20, 29142-29151.	1.3	8
252	Significant Influence of a Single Atom Change in Auxiliary Acceptor on Photovoltaic Properties of Porphyrin-Based Dye-Sensitized Solar Cells. Nanomaterials, 2018, 8, 1030.	1.9	9
253	Push-Pull Zinc Porphyrins as Light-Harvesters for Efficient Dye-Sensitized Solar Cells. Frontiers in Chemistry, 2018, 6, 541.	1.8	59
254	Design and Implementation of Digital Phase Locked Loop for Single-Phase Grid-Tied PV Inverters. Electric Power Components and Systems, 2018, 46, 1662-1671.	1.0	0
255	Computational Prediction of Electronic and Photovoltaic Properties of Anthracene-Based Organic Dyes for Dye-Sensitized Solar Cells. International Journal of Photoenergy, 2018, 2018, 1-17.	1.4	2

#	Article	IF	CITATIONS
256	Synthesis, Thermal Stability and Electrocatalytic Activities of meso-tetrakis (5-bromothiophen-2-yl) Porphyrin and Its Cobalt and Copper Complexes. International Journal of Electrochemical Science, 2018, 13, 10233-10246.	0.5	7
257	Exceptional Sensitizer Dye Loading via a New Porous Titanium–Niobium Metal Oxide with Tris(2,2′-bipyridyl)ruthenium(II) in the Structure. ACS Applied Nano Materials, 2018, 1, 5620-5630.	2.4	2
258	The researcher's guide to solid-state dye-sensitized solar cells. Journal of Materials Chemistry C, 2018, 6, 11903-11942.	2.7	87
259	Organic Dyes based on Tetraarylâ€1,4â€dihydropyrroloâ€[3,2â€ <i>b</i>]pyrroles for Photovoltaic and Photocatalysis Applications with the Suppressed Electron Recombination. Chemistry - A European Journal, 2018, 24, 18032-18042.	1.7	28
260	High-Performance Near-Infrared Absorbing n-Type Porphyrin Acceptor for Organic Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 41344-41349.	4.0	37
261	Synthesis and Studies of New Fluoresceinâ€Porphyrin Dyads: A Theoretical and Experimental Approach. ChemistrySelect, 2018, 3, 10959-10970.	0.7	1
262	Synthesis and Electrochemical Characterization of Acetylacetone (acac) and Ethyl Acetate (EA) Appended β-Trisubstituted Push–Pull Porphyrins: Formation of Electronically Communicating Porphyrin Dimers. Inorganic Chemistry, 2018, 57, 13213-13224.	1.9	8
263	Research Progress on Photosensitizers for DSSC. Frontiers in Chemistry, 2018, 6, 481.	1.8	202
264	Dendrimer-based Nanoparticle for Dye Sensitized Solar Cells with Improved Efficiency. Journal of Nanomedicine & Nanotechnology, 2018, 09, .	1.1	9
265	Synthesis and Characterization of Novel β-Bis(<i>N</i> , <i>N</i> -diarylamino)-Substituted Porphyrin for Dye-Sensitized Solar Cells under 1 sun and Dim Light Conditions. ACS Applied Materials & Interfaces, 2018, 10, 39970-39982.	4.0	36
266	Dye-Sensitized Solar Cells with Electrospun Nanofiber Mat-Based Counter Electrodes. Materials, 2018, 11, 1604.	1.3	28
267	Performance Improvement in Low-Temperature-Processed Perovskite Solar Cells by Molecular Engineering of Porphyrin-Based Hole Transport Materials. ACS Applied Materials & Interfaces, 2018, 10, 35404-35410.	4.0	32
268	Homo―and Heterodimeric Dyes for Dye‧ensitized Solar Cells: Panchromatic Light Absorption and Modulated Open Circuit Potential. ChemPlusChem, 2018, 83, 998-1007.	1.3	8
269	Fabrication of carbon nanotube-multiporphyrin array composites as light-sensitizer for photocurrent generation, photochromism of viologen and catalytic degradation of methyl orange. New Journal of Chemistry, 2018, 42, 17216-17226.	1.4	10
270	Effect of the triazole ring in zinc porphyrin-fullerene dyads on the charge transfer processes in NiO-based devices. Physical Chemistry Chemical Physics, 2018, 20, 24477-24489.	1.3	13
271	Tandem organic dye-sensitized solar cells: Looking for higher performance and durability. Photonics and Nanostructures - Fundamentals and Applications, 2018, 31, 34-43.	1.0	16
272	Organic Sensitizers for Photoanode Water Splitting in Dyeâ€ S ensitized Photoelectrochemical Cells. ChemElectroChem, 2018, 5, 2395-2402.	1.7	10
273	Increased Light-Harvesting in Dye-Sensitized Solar Cells through Förster Resonance Energy Transfer within Supramolecular Dyad Systems. Langmuir, 2018, 34, 7294-7300.	1.6	14

#	Article	IF	Citations
274	Enhancement of performance in chlorophyll-based bulk-heterojunction organic-inorganic solar cells upon aggregate management via solvent engineering. Organic Electronics, 2018, 59, 419-426.	1.4	11
275	Theoretical design of Zn-dithiaporphyrins as sensitizer for dye-sensitized solar cells. Current Applied Physics, 2018, 18, 1122-1133.	1.1	16
276	The efficiency of ZnO/platinum octaethylporphyrin (PtOEP) nanocomposite photoanode at dye-sensitized solar cells. Journal of Materials Science: Materials in Electronics, 2018, 29, 14232-14238.	1.1	12
277	Recent progress in porphyrin-based materials for organic solar cells. Journal of Materials Chemistry A, 2018, 6, 16769-16797.	5.2	215
278	A review on applications of Cu2ZnSnS4 as alternative counter electrodes in dye-sensitized solar cells. AIP Advances, 2018, 8, .	0.6	16
279	Effects of Introducing Methoxy Groups into the Ancillary Ligands in Bis(diimine) Copper(I) Dyes for Dye-Sensitized Solar Cells. Inorganics, 2018, 6, 40.	1.2	14
280	The Versatile SALSAC Approach to Heteroleptic Copper(I) Dye Assembly in Dye-Sensitized Solar Cells. Inorganics, 2018, 6, 57.	1.2	20
281	Donorâ^Acceptorâ€Functionalized Subphthalocyanines for Dye‣ensitized Solar Cells. ChemPhotoChem, 2018, 2, 976-985.	1.5	31
282	Effect of Co-Adsorbate and Hole Transporting Layer on the Photoinduced Charge Separation at the TiO ₂ –Phthalocyanine Interface. ACS Omega, 2018, 3, 4947-4958.	1.6	5
283	Novel indoline dye tetrabutylammonium carboxylates attached with a methyl group on the cyclopentane ring for dye-sensitized solar cells. Tetrahedron, 2018, 74, 5867-5878.	1.0	2
284	Indenoquinaldineâ€Based Unsymmetrical Squaraine Dyes for Nearâ€Infrared Absorption: Investigating the Steric and Electronic Effects in Dyeâ€Sensitized Solar Cells. Chemistry - A European Journal, 2018, 24, 16368-16378.	1.7	7
285	Synthesis, Photophysical, Electrochemical Properties, DFT Studies and DSSC Performance of BODIPY Cored Triazole Bridged 3,6â€Ditertiary Butyl Carbazole Decorated Dendrimers. ChemistrySelect, 2018, 3, 9222-9231.	0.7	9
286	Synthesis and Photophysical Characterization of Unsymmetrical Squaraine Dyes for Dye-Sensitized Solar Cells Utilizing Cobalt Electrolytes. ACS Applied Energy Materials, 2018, 1, 4545-4553.	2.5	15
287	Comparison of the performance of dye sensitized solar cells fabricated with ruthenium based dye sensitizers: Di-tetrabutylammonium cis-bis(isothiocyanato)bis(2,2′-bipyridyl-4,4′-dicarboxylato)ruthenium(II) (N719) and tris(bipyridine)ruthenium(II) chloride (Ru-BPY). Inorganica Chimica Acta, 2018, 482, 943-950.	1.2	16
288	Development of iridium porphyrin arrays by axial coordination through N-bidentate ligand: Synthesis and evaluation of the optical, electrochemical and thermal properties. Polyhedron, 2018, 154, 302-308.	1.0	5
289	Trans-A2B2 Zn(II) porphyrin dyes with various donor groups and their Co-sensitization for highly efficient dye-sensitized solar cells. Dyes and Pigments, 2019, 160, 386-394.	2.0	23
291	Interfacial Selfâ€Assembly of Closely Packed Nanoparticle Arrays of Silica@Multiporphyrin Hybrids as Light‣ensitizers for Dye Degradation and Viologen Photochromism. Chemistry - an Asian Journal, 2019, 14, 3035-3045.	1.7	8
292	Dye-Sensitized Solar Cells for Efficient Solar and Artificial Light Conversion. ACS Sustainable Chemistry and Engineering, 2019, 7, 13464-13470.	3.2	33

#	Article	IF	CITATIONS
293	Synthesis, Spectral, Electrochemical and Photovoltaic Studies of A ₃ B Porphyrinic Dyes having Peripheral Donors. ChemPhysChem, 2019, 20, 2627-2634.	1.0	16
294	Synthesis and properties of novel pyranylidene-based organic sensitizers for dye-sensitized solar cells. Dyes and Pigments, 2019, 171, 107747.	2.0	17
295	Control of the distance between porphyrin sensitizers and the TiO2 surface in solar cells by designed anchoring groups. Journal of Molecular Structure, 2019, 1196, 444-454.	1.8	9
296	Application of Porphyrins in Antibacterial Photodynamic Therapy. Molecules, 2019, 24, 2456.	1.7	172
297	Exploring Overall Photoelectric Applications by Organic Materials Containing Symmetric Donor Isomers. Chemistry of Materials, 2019, 31, 8810-8819.	3.2	12
298	Ï€-Extended cis <i>-</i> Configured Unsymmetrical Squaraine Dyes for Dye-Sensitized Solar Cells: Panchromatic Response. ACS Applied Energy Materials, 2019, 2, 8464-8472.	2.5	24
299	Porphyrin-Based Hydrogen-Bonded Organic Frameworks for the Photocatalytic Degradation of 9,10-Diphenylanthracene. ACS Applied Nano Materials, 2019, 2, 7719-7727.	2.4	42
300	Recent advances in dye-sensitized photoelectrochemical cells for water splitting. EnergyChem, 2019, 1, 100015.	10.1	73
301	Parameters dependent synthesis of zinc stannate nanowires using CVD and its porphyrin dye loaded optical studies. Vacuum, 2019, 161, 201-208.	1.6	5
302	Back electrodes of dye-sensitized solar cells on textile fabrics. Optik, 2019, 198, 163243.	1.4	8
303	Effect of the meso/beta halogenation in the photoelectronic properties and aromaticity of expanded porphyrins. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 385, 112052.	2.0	6
304	Effect of new asymmetrical Zn(<scp>ii</scp>) phthalocyanines on the photovoltaic performance of a dye-sensitized solar cell. New Journal of Chemistry, 2019, 43, 14390-14401.	1.4	28
305	A Novel Preparation of Nano-Copper Chalcogenide (Cu2S)-based Flexible Counter Electrode. Scientific Reports, 2019, 9, 12337.	1.6	12
306	UV-vis absorption spectra of Sn(IV)tetrakis(4-pyridyl) porphyrins on the basis of axial ligation and pyridine protonation. Journal of Molecular Modeling, 2019, 25, 294.	0.8	4
307	A Novel One-Dimensional Porphyrin-Based Covalent Organic Framework. Molecules, 2019, 24, 3361.	1.7	6
308	Efficient solar cells sensitized by a promising new type of porphyrin: dye-aggregation suppressed by double strapping. Chemical Science, 2019, 10, 2186-2192.	3.7	116
309	Molecular design and synthesis of D–π–A structured porphyrin dyes with various acceptor units for dye-sensitized solar cells. Journal of Materials Chemistry C, 2019, 7, 2843-2852.	2.7	73
310	The influence of antenna and anchoring moieties on the improvement of photoelectronic properties in Zn(<scp>ii</scp>)–porphyrin–TiO ₂ as potential dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2019, 21, 4339-4348.	1.3	17

#	Article	IF	CITATIONS
311	Strongly Coupled Phenazine–Porphyrin Dyads: Light-Harvesting Molecular Assemblies with Broad Absorption Coverage. ACS Applied Materials & Interfaces, 2019, 11, 8000-8008.	4.0	36
312	Development of a waste-derived lignin-porphyrin bio-polymer with enhanced photoluminescence at high water fraction with wide pH range and heavy metal sensitivity investigations. Green Chemistry, 2019, 21, 1319-1329.	4.6	27
313	Synthesis of near-infrared absorbing and fluorescing thiophene-fused BODIPY dyes with strong electron-donating groups and their application in dye-sensitised solar cells. New Journal of Chemistry, 2019, 43, 1156-1165.	1.4	28
314	Dâ~'π–A-Structured Porphyrins with Extended Auxiliary Ï€-Spacers for Highly Efficient Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 24067-24077.	4.0	46
315	Effect of solvent on the electronic absorption spectral properties of Ni(II) and Cu(II)-complexes of some mixed β-octasubstituted-meso-tetraphenylporphyrins. Chemical Physics Letters, 2019, 730, 643-648.	1.2	2
316	Formation Reaction, Spectroscopy, and Photoelectrochemistry of the Donor–Acceptor Complex (5,10,15,20-Tetraphenyl-21,23H-porphinato)cobalt(II) with Pyridyl-Substituted Fullero[60]pyrrolidine. Russian Journal of Inorganic Chemistry, 2019, 64, 605-614.	0.3	18
317	Energy‣oss Reduction as a Strategy to Improve the Efficiency of Dye‣ensitized Solar Cells. Solar Rrl, 2019, 3, 1900253.	3.1	14
318	Thiazolocatechol: Electronâ€Withdrawing Catechol Anchoring Group for Dyeâ€&ensitized Solar Cells. ChemPhysChem, 2019, 20, 2689-2695.	1.0	5
319	Renaissance of Fused Porphyrins: Substituted Methylene-Bridged Thiophene-Fused Strategy for High-Performance Dye-Sensitized Solar Cells. Journal of the American Chemical Society, 2019, 141, 9910-9919.	6.6	176
320	A comprehensive experimental study of five fundamental phenothiazine geometries increasing the diversity of the phenothiazine dye class for dye-sensitized solar cells. Dyes and Pigments, 2019, 169, 66-72.	2.0	9
321	Porphyrin ontaining Polyimide with Enhanced Light Absorption and Photocatalysis Activity. Chemistry - an Asian Journal, 2019, 14, 2138-2148.	1.7	23
322	Improved solubility of asymmetric tetraethynylporphyrin derivatives for solution-processed organic solar cells. Organic Electronics, 2019, 71, 50-57.	1.4	6
324	Designed Synthesis of a 2D Porphyrinâ€Based sp ² Carbon onjugated Covalent Organic Framework for Heterogeneous Photocatalysis. Angewandte Chemie - International Edition, 2019, 58, 6430-6434.	7.2	470
325	Cooperative Self-Assembly of Helical Exciton-Coupled Biosurfactant-Functionalized Porphyrin Chromophores. ACS Applied Bio Materials, 2019, 2, 1703-1713.	2.3	10
326	Theoretical Design of Dâ~π–A–A Sensitizers with Narrow Band Gap and Broad Spectral Response Based on Boron Dipyrromethene for Dye-Sensitized Solar Cells. Journal of Chemical Information and Modeling, 2019, 59, 2248-2256.	2.5	23
327	β-Functionalized push–pull opp-dibenzoporphyrins as sensitizers for dye-sensitized solar cells: the role of the phenylethynyl bridge. Journal of Materials Chemistry A, 2019, 7, 10712-10722.	5.2	33
328	Beyond the Limitations of Dye-Sensitized Solar Cells. , 2019, , 285-323.		6
329	Adsorption of Phosphonic-Acid-Functionalized Porphyrin Molecules on TiO ₂ (110). Journal of Physical Chemistry C, 2019, 123, 10974-10980.	1.5	16

#	Article	IF	CITATIONS
330	Efficient Sunlight Harvesting by A4 β-Pyrrolic Substituted ZnII Porphyrins: A Mini-Review. Frontiers in Chemistry, 2019, 7, 177.	1.8	26
331	Dyes based on the D/A-acetylene linker-phenothiazine system for developing efficient dye-sensitized solar cells. Journal of Materials Chemistry C, 2019, 7, 5830-5840.	2.7	46
332	Synthesis of (<i>trans</i> â€A ₂)BCâ€Type Porphyrins with Acceptor Diethoxyphosphoryl and Various Donor Groups and their Assembling in the Solid State and at Interfaces. European Journal of Organic Chemistry, 2019, 2019, 3146-3162.	1.2	7
333	Designed Synthesis of a 2D Porphyrinâ€Based sp ² Carbonâ€Conjugated Covalent Organic Framework for Heterogeneous Photocatalysis. Angewandte Chemie, 2019, 131, 6496-6500.	1.6	67
334	Thienochrysenocarbazole based organic dyes for transparent solar cells with over 10% efficiency. Journal of Materials Chemistry A, 2019, 7, 11338-11346.	5.2	28
335	Third-Generation Solar Cells: Concept, Materials and Performance - An Overview. Environmental Chemistry for A Sustainable World, 2019, , 305-339.	0.3	22
336	Evolution of electronic and vibronic transitions in metal(II) meso-tetra(4-pyridyl)porphyrins. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 215, 327-333.	2.0	22
337	Cyclohexadienone core 3,6-di-tert-butylcarbazole decorated triazole bridged dendrimers: synthesis, photophysical and electrochemical properties and application as an additive in dye-sensitized solar cells. New Journal of Chemistry, 2019, 43, 4036-4048.	1.4	3
338	Direct comparison of dithienosilole and dithienogermole as ï€-conjugated linkers in photosensitizers for dye-sensitized solar cells. Dalton Transactions, 2019, 48, 16671-16678.	1.6	10
339	Combined SERS/DFT studies of push–pull chromophore self-assembled monolayers: insights into their surface orientation. Physical Chemistry Chemical Physics, 2019, 21, 25865-25871.	1.3	10
340	ABC–ABCâ€Type Directly <i>meso</i> – <i>meso</i> Linked Porphyrin Dimers. Chemistry - A European Journal, 2019, 25, 538-547.	1.7	11
341	How to screen a promising anchoring group from heterocyclic components in dye sensitized solar cell:A theoretical investigation. Electrochimica Acta, 2019, 296, 545-554.	2.6	10
342	Inorganic Photochemistry and Solar Energy Harvesting: Current Developments and Challenges to Solar Fuel Production. International Journal of Photoenergy, 2019, 2019, 1-23.	1.4	35
343	Novel insights on the vibronic transitions in free base meso-tetrapyridyl porphyrin. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 209, 274-279.	2.0	21
344	The first isolated Manganese(II) porphyrin N-Heterocyclic carbenes: Synthesis and spectroscopic characterizations. Dyes and Pigments, 2019, 162, 75-79.	2.0	12
345	Phthalocyanines for dye-sensitized solar cells. Coordination Chemistry Reviews, 2019, 381, 1-64.	9.5	269
346	P-type P3HT interfacial layer induced performance improvement in chlorophyll-based solid-state solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 371, 349-354.	2.0	6
347	Effect and position of spiro-bipropylenedioxythiophene π-spacer in donor-π-spacer-acceptor dyes for dye-sensitized solar cell. Dyes and Pigments, 2019, 161, 313-323.	2.0	7

0.			D
(\Box)	TAT	ON.	Report
\sim	17311		

#	Article	IF	CITATIONS
348	A new type of multibenzyloxy-wrapped porphyrin sensitizers for developing efficient dye-sensitized solar cells. Journal of Porphyrins and Phthalocyanines, 2020, 24, 401-409.	0.4	6
349	Effects of <i>meso</i> -diarylamino group of porphyrins on optical and electrochemical properties. Journal of Porphyrins and Phthalocyanines, 2020, 24, 67-74.	0.4	7
350	On the excitation dependence of fluorescence spectra of meso-tetrapyridyl zinc (II) porphyrin and its relation with hydrogen bonding and outlying decoration. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 224, 117371.	2.0	9
351	Pyridyl/hydroxyphenyl versus carboxyphenyl anchoring moieties in Zn – Thienyl porphyrins for dye sensitized solar cells. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 224, 117408.	2.0	13
352	Synthesis, characterization, optical properties, computational characterizations, QTAIM analysis and cyclic voltammetry of new organic dyes for dye-sensitized solar cells. Journal of Molecular Structure, 2020, 1202, 127228.	1.8	10
353	Porphyrin sensitizers involving a fluorine-substituted benzothiadiazole as auxiliary acceptor and thiophene as π bridge for use in dye-sensitized solar cells (DSSCs). Dyes and Pigments, 2020, 174, 107984.	2.0	22
354	Regioselective C–H amination of free base porphyrins <i>via</i> electrogenerated pyridinium-porphyrins and stabilization of easily oxidized amino-porphyrins by protonation. Chemical Communications, 2020, 56, 884-887.	2.2	4
355	Applications of porphyrins in emerging energy conversion technologies. Coordination Chemistry Reviews, 2020, 407, 213157.	9.5	127
356	Pentacoordinated Cobalt(II) and Manganese(II) porphyrin N-Heterocyclic carbenes: Isolation, characterization and spectroscopy. Dyes and Pigments, 2020, 173, 107961.	2.0	12
357	Effect of Ligand Structures of Copper Redox Shuttles on Photovoltaic Performance of Dye-Sensitized Solar Cells. Inorganic Chemistry, 2020, 59, 452-459.	1.9	43
358	Alkyl-Group-Wrapped Unsymmetrical Squaraine Dyes for Dye-Sensitized Solar Cells: Branched Alkyl Chains Modulate the Aggregation of Dyes and Charge Recombination Processes. ACS Applied Materials & Interfaces, 2020, 12, 2555-2565.	4.0	31
359	A conjugated porphyrin as a red-light sensitizer for near-infrared emission of ytterbium(<scp>iii</scp>) ion. New Journal of Chemistry, 2020, 44, 18756-18762.	1.4	3
360	In Pursuit of Panchromatic Absorption in Metal Coordination Complexes: Experimental Delineation of the HOMO Inversion Model Using Pseudo-Octahedral Complexes of Diarylamido Ligands. Inorganic Chemistry, 2020, 59, 17746-17757.	1.9	24
361	Heavy Metal Effects on the Photovoltaic Properties of Metallocorroles in Dye-Sensitized Solar Cells. ACS Applied Energy Materials, 2020, 3, 12460-12467.	2.5	16
362	Reducing Energy Loss in Organic Solar Cells by Changing the Central Metal in Metalloporphyrins. ChemSusChem, 2021, 14, 3494-3501.	3.6	5
363	Towards spin quantum materials: Structure and potential energy profiles of weakly interacting arrays of iron porphyrin complexes at graphene armchair nanoribbon. Chemical Physics Letters, 2020, 755, 137807.	1.2	0
364	Nickel(II) Bisporphyrinâ€Fused Pentacenes Exhibiting Abnormal High Stability. Angewandte Chemie - International Edition, 2020, 59, 20075-20082.	7.2	13
365	Exploration on the Combination of Push-Pull Porphyrin Dyes and Copper(I/II) Redox Shuttles toward High-performance Dye-sensitized Solar Cells. Chemistry Letters, 2020, 49, 936-939.	0.7	10

#	Article	IF	CITATIONS
366	Nickel(II) Bisporphyrinâ€Fused Pentacenes Exhibiting Abnormal High Stability. Angewandte Chemie, 2020, 132, 20250-20257.	1.6	4
367	Hexabenzocoronene functionalized with porphyrin and P-core-modified porphyrin: A comparative computational study. Computational and Theoretical Chemistry, 2020, 1188, 112973.	1.1	3
368	A strategy of designing near-infrared porphyrin-based non-fullerene acceptors for panchromatic organic solar cells. Organic Electronics, 2020, 86, 105899.	1.4	10
369	Unsymmetrical Squaraine Dyes for Dye-Sensitized Solar Cells: Position of the Anchoring Group Controls the Orientation and Self-Assembly of Sensitizers on the TiO ₂ Surface and Modulates Its Flat Band Potential. Journal of Physical Chemistry C, 2020, 124, 18436-18451.	1.5	14
370	Imine–carbene-based ruthenium complexes for dye-sensitized solar cells: the effect of isomeric mixture on the photovoltaic performance. New Journal of Chemistry, 2020, 44, 20568-20573.	1.4	4
371	Porphyrin-sensitized quasi-solid solar cells with MOF composited titania aerogel photoanodes. Materials Today Energy, 2020, 18, 100511.	2.5	11
372	Synthesis and Redox Properties of Superbenzene Porphyrin Conjugates. Inorganic Chemistry, 2020, 59, 16168-16177.	1.9	5
373	Dynamic, multimodal hydrogel actuators using porphyrin-based visible light photoredox catalysis in a thermoresponsive polymer network. Chemical Science, 2020, 11, 10910-10920.	3.7	18
374	Switching Competition between Electron and Energy Transfers in Porphyrin–Fullerene Dyads. Journal of Physical Chemistry B, 2020, 124, 10899-10912.	1.2	11
375	Electron Transport in Dye-Sensitized TiO ₂ Nanowire Arrays in Contact with Aqueous Electrolytes. Journal of Physical Chemistry C, 2020, 124, 22003-22010.	1.5	8
376	Local and macrocyclic (anti)aromaticity of porphyrinoids revealed by the topology of the induced magnetic field. Physical Chemistry Chemical Physics, 2020, 22, 21267-21274.	1.3	8
377	Indenofluoreneâ€Extended Tetrathiafulvalene Scaffolds for Dyeâ€Sensitized Solar Cells. European Journal of Organic Chemistry, 2020, 2020, 6127-6134.	1.2	13
378	The Self-Aggregation of Porphyrins with Multiple Chiral Centers in Organic/Aqueous Media: The Case of Sugar- and Steroid-Porphyrin Conjugates. Molecules, 2020, 25, 4544.	1.7	11
379	Comparative studies of new pyranylidene-based sensitizers bearing single or double anchoring groups for dye-sensitized solar cells. Solar Energy, 2020, 205, 310-319.	2.9	21
380	New Oxindole-Bridged Acceptors for Organic Sensitizers: Substitution and Performance Studies in Dye-Sensitized Solar Cells. Molecules, 2020, 25, 2159.	1.7	6
381	Enhancement in the solar efficiency of a dye-sensitized solar cell by molecular engineering of an organic dye incorporating N-alkyl-attached 1,8-naphthalamide derivative. Journal of Materials Chemistry C, 2020, 8, 11407-11416.	2.7	12
382	Fabrication of bacteriochlorin shell/gold core nanoparticles for the sensitive determination of trichlosan using differential pulse voltammetry. Analytica Chimica Acta, 2020, 1123, 44-55.	2.6	4
383	Excited state electron transfer in A ₂ and A ₂ B ₂ functionalized zinc porphyrins carrying rigid and flexible β-pyrrole π-extended substituents. Journal of Porphyrins and Phthalocyanines, 2020, 24, 904-919.	0.4	1

#	Article	IF	CITATIONS
384	Ultrafast nonlinear optical properties and excited-state dynamics of Soret-band excited D-ï€-D porphyrins. Optical Materials, 2020, 107, 110041.	1.7	27
385	Heteroatom Role in the Formation of Spectral-Luminescent Properties of 21-Thia- and 21,23-Dithia-5,10,15,20-Tetraphenylporphyrin in Solutions. Journal of Applied Spectroscopy, 2020, 87, 201-207.	0.3	5
386	Porphyrins as Colorimetric and Photometric Biosensors in Modern Bioanalytical Systems. ChemBioChem, 2020, 21, 1793-1807.	1.3	45
387	Schiff Base Ancillary Ligands in Bis(diimine) Copper(I) Dye-Sensitized Solar Cells. International Journal of Molecular Sciences, 2020, 21, 1735.	1.8	10
388	Molecular engineering strategies for fabricating efficient porphyrin-based dye-sensitized solar cells. Energy and Environmental Science, 2020, 13, 1617-1657.	15.6	178
389	Are Alkynyl Spacers in Ancillary Ligands in Heteroleptic Bis(diimine)copper(I) Dyes Beneficial for Dye Performance in Dye-Sensitized Solar Cells?. Molecules, 2020, 25, 1528.	1.7	15
390	Helically Twisted Benzene-1,3,5-triamine-fused Porphyrin Dimers. Chemistry Letters, 2020, 49, 517-520.	0.7	2
391	Trans A ₂ B ₂ Porphyrins: Synthesis, Crystal Structure Determinations and Hirshfeld Surface Analysis. ChemistrySelect, 2020, 5, 7298-7309.	0.7	3
392	Control of the optical properties upon a reversible [2+2] cycloaddition of	1.0	1
393	Addressing the Origin of Photocurrents and Fuel Production Activities in Catalyst-Modified Semiconductor Electrodes. ACS Applied Energy Materials, 2020, 3, 7512-7519.	2.5	6
394	14.2% Efficiency Dyeâ€Sensitized Solar Cells by Coâ€sensitizing Novel Thieno[3,2â€ <i>b</i>]indoleâ€Based Organic Dyes with a Promising Porphyrin Sensitizer. Advanced Energy Materials, 2020, 10, 2000124.	10.2	216
395	Density functional theory study on two D-Ï€-A-type organic dyes containing different anchoring groups for dye-sensitized solar cells. Structural Chemistry, 2020, 31, 1125-1135.	1.0	9
396	Synthesis, properties and photovoltaic performance in dye-sensitized solar cells of three meso-diphenylbacteriochlorins bearing a dual-function electron-donor. RSC Advances, 2020, 10, 6172-6178.	1.7	5
397	Efficient Solar Cells Based on Concerted Companion Dyes Containing Two Complementary Components: An Alternative Approach for Cosensitization. Journal of the American Chemical Society, 2020, 142, 5154-5161.	6.6	172
398	Efficient Anthryl Dye Enhanced by an Additional Ethynyl Bridge for Dye-Sensitized Module with Large Active Area to Drive Indoor Appliances. ACS Applied Energy Materials, 2020, 3, 2744-2754.	2.5	9
399	Tungsten(VI) Complex of Nâ€Fused Porphyrin Absorbing Nearâ€Infrared Light beyond 1000 nm. Chemistry - an Asian Journal, 2020, 15, 748-752.	1.7	8
400	Molecular modeling and photovoltaic applications of porphyrin-based dyes: A review. Journal of Saudi Chemical Society, 2020, 24, 303-320.	2.4	41
401	An insight into the vicarious nucleophilic substitution reaction of 2-nitro-5,10,15,20-tetraphenylporphyrin with p-chlorophenoxyacetonitrile: Synthesis and gas-phase fragmentation studies. Arabian Journal of Chemistry, 2020, 13, 5849-5863.	2.3	5

#	Article	IF	CITATIONS
402	Computational design of new organic (D–π–A) dyes based on benzothiadiazole for photovoltaic applications, especially dye-sensitized solar cells. Research on Chemical Intermediates, 2020, 46, 3247-3262.	1.3	23
403	Unique Role of Heteroleâ€Fused Structures in Aromaticity and Physicochemical Properties of 7,8â€Dehydropurpurins. Chemistry - A European Journal, 2020, 26, 12043-12049.	1.7	4
404	Photophysics and visible light photodissociation of supramolecular meso-tetra(4-pyridyl) porphyrin/RuCl2(CO)(PPh3)2 structures. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 237, 118351.	2.0	5
405	Theoretical and Conceptual Framework to Design Efficient Dye-Sensitized Solar Cells (DSSCs): Molecular Engineering by DFT Method. Journal of Cluster Science, 2021, 32, 243-253.	1.7	80
406	Bioinspired NADH Regeneration Based on Conjugated Photocatalytic Systems. Solar Rrl, 2021, 5, 2000339.	3.1	56
407	Controlling the optical properties of boron subphthalocyanines and their analogues. Molecular Systems Design and Engineering, 2021, 6, 6-24.	1.7	13
408	Aluminum(III) porphyrin: A unique building block for artificial photosynthetic systems. Coordination Chemistry Reviews, 2021, 429, 213561.	9.5	30
409	Efficient charge collection of photoanodes and light absorption of photosensitizers: A review. International Journal of Energy Research, 2021, 45, 1425-1448.	2.2	23
410	Anionic Fluorinated Zn-porphyrin Combined with Cationic Endohedral Li-fullerene for Long-Lived Photoinduced Charge Separation with Low Energy Loss. Journal of Physical Chemistry B, 2021, 125, 918-925.	1.2	2
411	Synthesis of Novel 1,4-dihydro-1,2,4,5-tetraarylpyrrolo[3,2-b]pyrroles Derivatives Catalyzed by NbCl5 and Application in Dye Sensitized Solar Cells. Materials Research, 2021, 24, .	0.6	1
412	Preparation and Properties of Films of Organic-Inorganic Perovskites MAPbX3 (MA = CH3NH3; X = Cl,) Tj ETQq0 (0 0 rgBT /0	Ovgrlock 10 T
413	Effect of auxiliary acceptor on D-Ï€-A based porphyrin sensitizers for dye sensitized solar cells. Journal of Porphyrins and Phthalocyanines, 2021, 25, 407-417.	0.4	9
414	Zinc porphyrin/mesoporous titania thin film electrodes: a hybrid material nanoarchitecture for photocatalytic reduction. RSC Advances, 2021, 11, 31124-31130.	1.7	2
415	Thiopheneâ€Fused Naphthodiphospholes: Modulation of the Structural and Electronic Properties of Polycyclic Aromatics by Precise Fusion of Heteroles. ChemPlusChem, 2021, 86, 130-136.	1.3	2
416	Molecular Devices. , 2021, , 206-240.		2
417	Photoenergy Conversion (Dye-Sensitized Solar Cells). , 2021, , 469-540.		1
418	Structural Investigations, Cellular Imaging, and Radiolabeling of Neutral, Polycationic, and Polyanionic Functional Metalloporphyrin Conjugates. Bioconjugate Chemistry, 2021, 32, 1374-1392.	1.8	10
419	Recent Progress in Perovskite Solar Cells Modified by Sulfur Compounds. Solar Rrl, 2021, 5, 2000713.	3.1	17

#	Article	IF	CITATIONS
420	Impact of Zn2+ introduced into the central cavity of meso-tetra(4-pyridyl)porphine on its spectroscopic features. Optical Materials, 2021, 113, 110893.	1.7	4
421	Molecular Structure, Quantum Coherence, and Solvent Effects on the Ultrafast Electron Transport in BODIPY– C₆₀ Derivatives. Journal of Physical Chemistry A, 2021, 125, 2518-2531.	1.1	1
422	Indoor photovoltaics, <i>The Next Big Trend</i> in solutionâ€processed solar cells. InformaÄnÃ- Materiġly, 2021, 3, 445-459.	8.5	75
423	Non-metallic organic dyes as photosensitizers for dye-sensitized solar cells: a review. Environmental Science and Pollution Research, 2021, 28, 28911-28925.	2.7	23
424	meso-Carbazole substituted palladium porphyrins: Efficient catalysts for visible light induced oxidation of aldehydes. Journal of Porphyrins and Phthalocyanines, 2021, 25, 571-581.	0.4	7
425	Alkali Iodide Deep Eutectic Solvents as Alternative Electrolytes for Dye Sensitized Solar Cells. Sustainable Chemistry, 2021, 2, 222-236.	2.2	10
426	Passivation of the TiO ₂ Surface and Promotion of N719 Dye Anchoring with Poly(4-vinylpyridine) for Efficient and Stable Dye-Sensitized Solar Cells. ACS Sustainable Chemistry and Engineering, 2021, 9, 5981-5990.	3.2	14
427	Quantum computational, linear and non-linear optical properties of spin-coated nickel (II)-tetraphenylporphyrin/FTO thin films. Optik, 2021, 234, 166618.	1.4	18
428	Efficient Liquid-Junction Monolithic Cobalt-Mediated Dye-Sensitized Solar Cells for Solar and Artificial Light Conversion. ACS Applied Energy Materials, 2021, 4, 5050-5058.	2.5	10
429	Significant Improvements of Near-IR Absorption, Electron Injection, and Oxidized Regeneration on Organic Sensitizers for Solar Cells. Journal of Physical Chemistry C, 2021, 125, 13109-13122.	1.5	13
430	All-experimental analysis of doubly resonant sum-frequency generation spectra: Application to aggregated rhodamine films. Journal of Chemical Physics, 2021, 154, 224704.	1.2	8
431	Complementary Photoâ€5ynapses Based on Lightâ€5timulated Porphyrinâ€Coated Silicon Nanowires Fieldâ€Effect Transistors (LPSNFET). Small, 2021, 17, e2101434.	5.2	15
432	Recent advances in porphyrin-based MOFs for cancer therapy and diagnosis therapy. Coordination Chemistry Reviews, 2021, 439, 213945.	9.5	82
433	Macrocyclic Receptors for Identification and Selective Binding of Substrates of Different Nature. Molecules, 2021, 26, 5292.	1.7	7
434	The performance of solar cells using chlorophyll dye from <i>Syzygium paniculatum</i> . Clean Energy, 2021, 5, 433-440.	1.5	4
435	Effect of different aromatic groups on photovoltaic performance of 1,1′â€ <i>bis</i> (diphenylphosphino)ferrocene functionalized Ni (II) dithiolates as sensitizers in dye sensitized solar cells. Applied Organometallic Chemistry, 2021, 35, e6402.	1.7	9
437	Hydroquinone redox mediator enhances the photovoltaic performances of chlorophyll-based bio-inspired solar cells. Communications Chemistry, 2021, 4, .	2.0	10
438	Structural, photophysical, electrochemical and spintronic study of first-row metal Tetrakis(meso-triphenylamine)-porphyrin complexes: A combined experimental and theoretical study. Dyes and Pigments, 2021, 193, 109469.	2.0	15

#	Article	IF	CITATIONS
439	Tuning Alkyl Chain Lengths of Oxasmaragdyrins-B(OR)2 for Optimizing Hole-Transport and Efficiency in Perovskite Solar Cells. ACS Applied Energy Materials, 2021, 4, 9090-9098.	2.5	2
440	First principles design novel D5 derivative dyes with excellent acceptors for highly efficient dye-sensitized solar cells. Computational and Theoretical Chemistry, 2021, 1203, 113374.	1.1	1
441	A New Generation of Energy Harvesting Devices. , 0, , .		1
442	Hybrid titanium dioxide/sericite light scattering layer to enhance light harvesting of dye-sensitized solar cells. Electrochimica Acta, 2021, 390, 138820.	2.6	6
443	Immersion solvent dependent photophysical and photovoltaic properties of Porphyrin/TiO2 interface. Chemical Physics Letters, 2021, 781, 138963.	1.2	1
444	Sulfur contributes to stable and efficient carbon-based perovskite solar cells. Journal of Colloid and Interface Science, 2022, 605, 54-59.	5.0	2
445	Dye-sensitized solar cells strike back. Chemical Society Reviews, 2021, 50, 12450-12550.	18.7	240
446	Fabrication of dye-sensitized solar cells based on push-pull asymmetrical substituted zinc and copper phthalocyanines and reduced graphene oxide nanosheets. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 399, 112612.	2.0	13
447	Detection of adsorbed transition-metal porphyrins by spin-dependent conductance of graphene nanoribbon. RSC Advances, 2017, 7, 29112-29121.	1.7	8
448	Perylenediimides as more than just non-fullerene acceptors: versatile components in organic, hybrid and perovskite solar cells. Chemical Communications, 2020, 56, 3824-3838.	2.2	23
449	Comparison of P- and As-core-modified porphyrins with the parental porphyrin: a computational study. Pure and Applied Chemistry, 2021, 93, 561-570.	0.9	2
450	An Overview of the Operational Principles, Light Harvesting and Trapping Technologies, and Recent Advances of the Dye Sensitized Solar Cells (Review). Applied Solar Energy (English Translation of) Tj ETQq1 1 0.7	′84 ∂. ⊵4 rgl	3T 10 verlock
451	Photophysical, Electrochemical and Photovoltaic Properties of Porphyrin-Based Dye Sensitized Solar Cell. Advances in Materials Physics and Chemistry, 2017, 07, 148-172.	0.3	12
452	Synthesis and Characterization of Free and Copper (II) Complex of N,N′- <i>Bis</i> (Salicylidene)Ethylenediamine for Application in Dye Sensitized Solar Cells. Journal of Materials Science and Chemical Engineering, 2017, 05, 46-66.	0.2	6
453	Rationalization of excited state energy transfer in D–π–A porphyrin sensitizers enhancing efficiency in dye-sensitized solar cells. Materials Advances, 0, , .	2.6	2
454	Zinc phthalocyanine absorbance in the near-infrared with application for transparent and colorless dye-sensitized solar cells. Comptes Rendus Chimie, 2021, 24, 157-170.	0.2	2
455	Porphyrins: Super-molecules of the Future: Porphyrin Polymers for Artificial Blood. International Journal of Chemical Engineering and Applications (IJCEA), 2018, 9, 163-166.	0.3	2
456	Amphiphilic Indoline-Based Unsymmetrical Squaraine Dyes for Dye-Sensitized Solar Cells: Modulating the Dye-TiO2/Electrolyte Interface for Nonaqueous and Aqueous Electrolytes. ACS Applied Energy Materials, 0, , .	2.5	10

#	Article	IF	CITATIONS
457	Photovoltaic performance and power conversion efficiency prediction of double fence porphyrins. Physical Chemistry Chemical Physics, 2021, 23, 27042-27058.	1.3	8
458	β-Functionalized push–pull <i>opp</i> -dibenzoporphyrins as sensitizers for dye-sensitized solar cells: the push group effect. Journal of Materials Chemistry A, 2021, 9, 27692-27700.	5.2	15
459	Solar energy conversion using first row d-block metal coordination compound sensitizers and redox mediators. Chemical Science, 2022, 13, 1225-1262.	3.7	35
460	β-Pyrrole functionalized porphyrins: Synthesis, electronic properties, and applications in sensing and DSSC. Coordination Chemistry Reviews, 2022, 453, 214312.	9.5	24
461	Fullerene binding effects in Al(III)/Zn(II) Porphyrin/Phthalocyanine photophysical properties and charge transport. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 269, 120740.	2.0	9
462	Anchoring of porphyrins on atomically defined cobalt oxide: In-situ infrared spectroscopy at the electrified solid/liquid interface. Surface Science, 2022, 718, 122013.	0.8	1
463	Hexabenzocoronene functionalized with antiaromatic S- and Se-core-modified porphyrins (isophlorins): comparison with the dyad with regular porphyrin. Pure and Applied Chemistry, 2022, 94, 747-765.	0.9	0
464	Photophysics and Electrochemistry of Biomimetic Pyranoflavyliums: What Can Bioinspiration from Red Wines Offer. Photochem, 2022, 2, 9-31.	1.3	3
465	Indoline-Based Donor-ï€-Acceptor Visible-Light Responsive Organic Dyes for Dye-Sensitized Solar Cells: Co-sensitization with Squaraine Dye for Panchromatic IPCE Response. ACS Applied Energy Materials, 2022, 5, 1858-1868.	2.5	18
466	Synthesis of Near-Infrared Light-responsive Dyes Based on N-Confused Porphyrinoids. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2022, 80, 139-148.	0.0	0
467	Photocatalytic activity of ultrathin 2DPNs for enzymatically generating formic acid from CO ₂ and C–S/C–N bond formation. Sustainable Energy and Fuels, 0, , .	2.5	1
468	Lowâ€Valent Zirconoceneâ€Mediated Synthesis of Porphyrin(2.1.2.1)s and Its Extension to Synthesis of a Porphyrin(2.1.2.1) Nanobarrel. Angewandte Chemie, 2022, 134, .	1.6	2
469	Lowâ€Valent Zirconoceneâ€Mediated Synthesis of Porphyrin(2.1.2.1)s and Its Extension to Synthesis of a Porphyrin(2.1.2.1) Nanobarrel. Angewandte Chemie - International Edition, 2022, 61, .	7.2	11
470	Spatial separation strategies to control charge recombination and dye regeneration in p-type dye sensitized solar cells. Solar Energy, 2022, 236, 107-152.	2.9	14
471	Morphology and Functionalization of Metal Foils and Other Surfaces for Electrochemical Applications. Advances in Chemical and Materials Engineering Book Series, 2022, , 359-389.	0.2	0
474	Donor-ï€-Acceptor Type Porphyrin-Fullerene Dyad with Acetylene Bridge for p-Type Dye-sensitized Solar Cell. Chemistry Letters, 2022, 51, 260-263.	0.7	1
475	Emergence of Copper(I/II) Complexes as Third-Generation Redox Shuttles for Dye-Sensitized Solar Cells. ACS Energy Letters, 2022, 7, 1926-1938.	8.8	25
476	Synthesis, Optical Properties and DNAâ€Binding Behavior of a Quinoxaline Ringâ€Fused ï€â€Elongated Chlorin – Efforts Towards Preparation of Long Wavelength Absorbing Porphyrinoids. ChemistrySelect, 2022, 7, .	0.7	0

#	Article	IF	CITATIONS
477	Can Domain-Based Local Pair Natural Orbitals Approaches Accurately Predict Phosphorescence Energies?. Physical Chemistry Chemical Physics, 0, , .	1.3	3
478	Star-type melamine based conjugated carboxy functionalized porphyrin trimer for DSSCs: An efficient approach to clean, aggregation free and true energy generation. Materials Chemistry and Physics, 2022, 287, 126312.	2.0	4
479	Hetero-porphyrin based channel for separation of proton isotope: A density functional theory study. Microporous and Mesoporous Materials, 2022, 339, 111995.	2.2	1
480	Artificial photosynthesis systems for solar energy conversion and storage: platforms and their realities. Chemical Society Reviews, 2022, 51, 6704-6737.	18.7	52
481	Probing the Photophysics of Covalently and Nonâ€covalently Bonded Graphene Quantum Dotsâ€Tetraaminophenylporphyrin Nanohybrids. ChemistrySelect, 2022, 7, .	0.7	3
482	Ultra-low dielectric constant and high thermal stability of low-crosslinked polyimide with zinc tetraamino phthalocyanine. Journal of Materials Science, 2022, 57, 16064-16079.	1.7	5
483	Metalated Porphyrin-Napthalimide Based Donor-Acceptor Systems with Long-Lived Triplet States and Effective Three Photon Absorption. SSRN Electronic Journal, 0, , .	0.4	0
484	Solution-processed next generation thin film solar cells for indoor light applications. Energy Advances, 2022, 1, 761-792.	1.4	15
485	Effects of solvents and substituents on the adsorptive and photovoltaic properties of porphyrins for dye-sensitized solar cell application: a theoretical consideration. Structural Chemistry, 2023, 34, 891-904.	1.0	3
486	Rational Synthesis of Benzoheterole-fused Porphyrins and π-System Switching by Central Metal Ion. Chemistry Letters, 2022, 51, 932-935.	0.7	0
487	Metalated porphyrin-napthalimide based donor-acceptor systems with long-lived triplet states and effective three-photon absorption. Journal of Photochemistry and Photobiology A: Chemistry, 2023, 435, 114324.	2.0	13
488	Top sensitizers for highly efficient dye-sensitized solar cells. Radiation Effects and Defects in Solids, 0, , 1-11.	0.4	0
489	Effects of additional π-spacers on the photovoltaic properties of organic dyes for efficient dye-sensitized solar cells: a theoretical study. Research on Chemical Intermediates, 2022, 48, 5243-5264.	1.3	1
490	Investigation of organic solar cells with highly porous 3D-titania aerogel sensitization, optical and electrochemical properties of metal-free porphyrin dyes with 3-methyl-4-hydroxy phenyl functionality. Optical Materials, 2022, 134, 113218.	1.7	0
491	Advances in electrochemiluminescence luminophores based on small organic molecules for biosensing. Biosensors and Bioelectronics, 2023, 223, 115031.	5.3	19
492	Solvent-Dependent Functional Aggregates of Unsymmetrical Squaraine Dyes on TiO ₂ Surface for Dye-Sensitized Solar Cells. Langmuir, 2022, 38, 14808-14818.	1.6	9
493	Electrochromic properties of conductive polyporphyrin films based on 5,10,15,20-tetrakis(4-aminophenyl)porphyrin and 5,10,15,20-tetrakis(4-pyridyl)porphyrin. Journal of Porphyrins and Phthalocyanines, 2022, 26, 853-861.	0.4	0
494	Energy level tuning of push-pull porphyrin sensitizer by trifluoromethyl group for dye-sensitized solar cells. Journal of Porphyrins and Phthalocyanines, 2023, 27, 145-156.	0.4	1

#	Article	IF	CITATIONS
495	Visibleâ€Lightâ€Active Unsymmetrical Squaraine Dyes with 1â€V of Openâ€Circuit Voltage for Dyeâ€Sensitized Solar Cells. ChemPhotoChem, 2023, 7, .	1.5	4
496	Insight on the choice of sensitizers/dyes for dye sensitized solar cells: A review. Dyes and Pigments, 2023, 213, 111087.	2.0	34
497	New carbazole-based dyes for efficient dye-sensitized solar cells: a DFT insight. Structural Chemistry, 2023, 34, 1827-1842.	1.0	2
498	Fluorinated phenyl meso-substituents regulating excited state absorption-driven protonation of free-base porphyrins. Journal of Photochemistry and Photobiology A: Chemistry, 2023, 438, 114568.	2.0	1
499	An Investigation on Gel-State Electrolytes for Solar Cells Sensitized with β-Substituted Porphyrinic Dyes. Processes, 2023, 11, 463.	1.3	0
500	Designed Synthesis of Three-Dimensional Covalent Organic Frameworks: A Mini Review. Polymers, 2023, 15, 887.	2.0	5
501	Supramolecular porphyrin as an improved photocatalyst for chloroform decomposition. RSC Advances, 2023, 13, 5473-5482.	1.7	0
502	Computational analysis of the structural, optoelectronic and photovoltaic properties of triphenylamine-based dyes and their interaction with TiO2 / Iodine. Research on Chemical Intermediates, 2023, 49, 1855-1878.	1.3	1
503	Unraveling Structure–Performance Relationships in Porphyrin-Sensitized TiO2 Photocatalysts. Nanomaterials, 2023, 13, 1097.	1.9	9
504	Modification of Dye-Sensitized Solar Cells by SWCNT Composition as the Active Layer and Introducing TiO ₂ @SiO ₂ Core–Shell Nanostructure for Light Scattering Layer: Toward Efficiency Enhancement. IEEE Transactions on Electron Devices, 2023, 70, 2437-2444.	1.6	1
505	Application of Covalent Organic Frameworks (COFs) as Dyes and Additives for Dye-Sensitized Solar Cells (DSSCs). Nanomaterials, 2023, 13, 1204.	1.9	4
506	Molecular designs, synthetic strategies, and properties for porphyrins as sensitizers in dye-sensitized solar cells. Journal of Materials Chemistry A, 2023, 11, 12659-12680.	5.2	14
507	Molecular Photoinduced Charge Separation: Fundamentals and Application. Bulletin of the Chemical Society of Japan, 2023, 96, 339-352.	2.0	14
508	Newly designed triazatruxene-based dye-sensitized solar cells containing different benzothiazine Ï€-linkers: Geometric, optoelectronic, charge transfer properties, and cyanoacrylic acid versus benzoic acid. Computational and Theoretical Chemistry, 2023, 1224, 114127.	1.1	2
510	Main-group porphyrins in artificial photosynthesis. , 2023, , 165-195.		0