The dendritic effect illustrated with phosphorus dendri

Chemical Society Reviews 44, 3890-3899 DOI: 10.1039/c4cs00261j

Citation Report

#	Article	IF	CITATIONS
1	(+) inchonineâ€Decorated Dendrimers as Recoverable Organocatalysts. ChemCatChem, 2015, 7, 2698-2704.	1.8	9
2	Dendritic Chiral Salen Titanium(IV) Catalysts Enforce the Cooperative Catalysis of Asymmetric Sulfoxidation. ChemCatChem, 2015, 7, 4066-4075.	1.8	23
3	Efficient synthesis of water-soluble, phosphonate-terminated polyester dendrimers. Tetrahedron Letters, 2015, 56, 7161-7164.	0.7	3
4	Phosphorus dendrimers as supports of transition metal catalysts. Inorganica Chimica Acta, 2015, 431, 3-20.	1.2	16
5	Synthesis of Onionâ€Peel Nanodendritic Structures with Sequential Functional Phosphorus Diversity. Chemistry - A European Journal, 2015, 21, 6400-6408.	1.7	35
6	Organophosphonate bridged anatase mesocrystals: low temperature crystallization, thermal growth and hydrogen photo-evolution. Dalton Transactions, 2015, 44, 15544-15556.	1.6	20
7	Synthesis of dendrimer-supported ferrocenylmethyl aziridino alcohol ligands and their application in asymmetric catalysis. Green Chemistry, 2015, 17, 2924-2930.	4.6	13
8	Main chain dendronized hyperbranched polymers: convenient synthesis and good second-order nonlinear optical performance. Polymer Chemistry, 2015, 6, 4396-4403.	1.9	17
9	Emerging trends in enzyme inhibition by multivalent nanoconstructs. Organic and Biomolecular Chemistry, 2015, 13, 9894-9906.	1.5	81
10	Multifaceted glycodendrimers with programmable bioactivity through convergent, divergent, and accelerated approaches using polyfunctional cyclotriphosphazenes. Polymer Chemistry, 2015, 6, 7666-7683.	1.9	30
11	Synthesis of Dense and Chiral Dendritic Polyols Using Glyconanosynthon Scaffolds. Molecules, 2016, 21, 448.	1.7	9
12	Silica Functionalized by Bifunctional Dendrimers: Hybrid Nanomaterials for Trapping CO2. European Journal of Inorganic Chemistry, 2016, 2016, 3103-3110.	1.0	17
13	Brief Timelapse on Dendrimer Chemistry: Advances, Limitations, and Expectations. Macromolecular Chemistry and Physics, 2016, 217, 149-174.	1.1	43
14	Recoverable Dendritic Phaseâ€Transfer Catalysts that Contain (+)â€Cinchonineâ€Derived Ammonium Salts. ChemCatChem, 2016, 8, 2049-2056.	1.8	12
15	Positive Dendritic Effect on Maleimide Surface Modification of Core-Shell (γ -Fe ₂ O ₃ /Polymer) Nanoparticles for Bio-Immobilization. ChemistrySelect, 2016, 1, 4350-4356.	0.7	5
16	Metal Chelate Monomers as Precursors of Polymeric Materials. Journal of Inorganic and Organometallic Polymers and Materials, 2016, 26, 1112-1173.	1.9	26
17	Orthogonal Synthesis of Covalent Polydendrimer Frameworks by Fusing Classical and Onion-Peel Phosphorus-Based Dendritic Units. Macromolecules, 2016, 49, 5796-5805.	2.2	14
18	Synthesis of Dendrimers with a Bidentate Phosphine Core Ligand Having Carboxy Groups at the Peripheral Layer and Their Application to Aqueous Media Cross-Coupling Reactions. Chemical and Pharmaceutical Bulletin, 2016, 64, 1067-1072.	0.6	1

CITATION REPORT

#	Article	IF	CITATIONS
19	Designing P-Chirogenic 1,2-Diphosphinobenzenes at Both P-Centers Using P(III)-Phosphinites. Organic Letters, 2016, 18, 2930-2933.	2.4	25
20	Affinity-controlled protein encapsulation into sub-30Ânm telodendrimer nanocarriers by multivalent and synergistic interactions. Biomaterials, 2016, 101, 258-271.	5.7	32
21	Stimuli-responsive dendrimers in drug delivery. Biomaterials Science, 2016, 4, 375-390.	2.6	168
22	Suzuki–Miyaura reaction catalyzed by a dendritic phosphine–palladium complex. Tetrahedron, 2016, 72, 1485-1492.	1.0	6
23	Inorganic dendrimers: recent advances for catalysis, nanomaterials, and nanomedicine. Chemical Society Reviews, 2016, 45, 5174-5186.	18.7	70
24	Structure and binding thermodynamics of viologen-phosphorous dendrimers to human serum albumin: A combined computational/experimental investigation. Fluid Phase Equilibria, 2016, 422, 18-31.	1.4	7
25	Synthesis and characterization of dendritic structures incorporating phosphorus, sulfur, and silicon. Phosphorus, Sulfur and Silicon and the Related Elements, 2016, 191, 411-416.	0.8	1
26	Cu ^{II} bis(oxamato) end-grafted poly(amidoamine) dendrimers. Dalton Transactions, 2016, 45, 7960-7979.	1.6	10
27	The specific functionalization of cyclotriphosphazene for the synthesis of smart dendrimers. Dalton Transactions, 2016, 45, 1810-1822.	1.6	82
28	Coordination chemistry with phosphorus dendrimers. Applications as catalysts, for materials, and in biology. Coordination Chemistry Reviews, 2016, 308, 478-497.	9.5	85
29	Symmetrical and unsymmetrical incorporation of active biological monomers on the surface of phosphorus dendrimers. Tetrahedron, 2017, 73, 1331-1341.	1.0	7
30	Branched Macromolecular Architectures for Degradable, Multifunctional Phosphorusâ€Based Polymers. Macromolecular Rapid Communications, 2017, 38, 1600644.	2.0	36
31	Catalysis Within Dendrimers. Fundamental and Applied Catalysis, 2017, , 173-207.	0.9	2
32	Effective Access to Multivalent Inhibitors of Carbonic Anhydrases Promoted by Peptide Bioconjugation. Chemistry - A European Journal, 2017, 23, 6788-6794.	1.7	21
33	Construction of giant glycosidase inhibitors from iminosugar-substituted fullerene macromonomers. Journal of Materials Chemistry B, 2017, 5, 6546-6556.	2.9	26
34	Nanochemistry in Drug Design. , 2017, , 311-334.		1
35	The Pivotal Role of Catalysis in France: Selected Examples of Recent Advances and Future Prospects ChemCatChem, 2017, 9, 2029-2064.	1.8	2
36	Rapid Synthesis of Functionalized High-Generation Polyester Dendrimers via Strain-Promoted Alkyne–Azide Cycloaddition. Macromolecules, 2017, 50, 7993-8001.	2.2	21

#	Article	IF	Citations
37	Phosphorus dendrimers for nanomedicine. Chemical Communications, 2017, 53, 9830-9838.	2.2	63
38	Synthetic methodologies and spatial organization of metal chelate dendrimers and star and hyperbranched polymers. Dalton Transactions, 2017, 46, 10139-10176.	1.6	12
39	Second-Order Nonlinear Optical Dendrimers and Dendronized Hyperbranched Polymers. Chemical Record, 2017, 17, 71-89.	2.9	42
40	Chemistry of hybrid multifunctional and multibranched composites. , 2017, , 31-63.		2
41	Multifunctional Nanomaterials: Design, Synthesis and Application Properties. Molecules, 2017, 22, 243.	1.7	10
42	Design and Synthesis of Dendrimers with Facile Surface Group Functionalization, and an Evaluation of Their Bactericidal Efficacy. Molecules, 2017, 22, 868.	1.7	19
43	Dendrimer Sensors. , 2017, , 237-259.		1
44	Synthesis and study of the vibrational spectra of a first generation phosphorus-containing dendrimer with pyridyl functional groups. Journal of Molecular Structure, 2018, 1162, 1-9.	1.8	3
45	Combinatorial approaches in post-polymerization modification for rational development of therapeutic delivery systems. Acta Biomaterialia, 2018, 73, 21-37.	4.1	31
46	Dendrimer-based nanoparticles in cancer chemotherapy and gene therapy. Science China Materials, 2018, 61, 1404-1419.	3.5	21
47	Synthesis of dissymmetric phosphorus dendrimers using an unusual protecting group. New Journal of Chemistry, 2018, 42, 8985-8991.	1.4	4
48	Polymer Complexes Based on Metal Chelate Monomers. Springer Series in Materials Science, 2018, , 367-501.	0.4	0
49	Supramolecular Chemistry of Polymer Metal Chelates. Springer Series in Materials Science, 2018, , 761-897.	0.4	0
50	Polymer Chelating Ligands: Classification, Synthesis, Structure, and Chemical Transformations. Springer Series in Materials Science, 2018, , 13-197.	0.4	3
51	Metal Chelate Dendrimers. Springer Series in Materials Science, 2018, , 503-631.	0.4	1
52	Emerging Opportunities in the Biomedical Applications of Dendrimers. Journal of Inorganic and Organometallic Polymers and Materials, 2018, 28, 369-382.	1.9	24
53	Chiral catalysts immobilized on achiral polymers: effect of the polymer support on the performance of the catalyst. Chemical Society Reviews, 2018, 47, 2722-2771.	18.7	120
54	Dual properties of water-soluble Ru-PTA complexes of dendrimers: Catalysis and interaction with DNA. Inorganica Chimica Acta, 2018, 470, 106-112.	1.2	20

CITATION REPORT

#	Article	IF	CITATIONS
55	Synthetic Methodologies for Chelating Polymer Ligands: Recent Advances and Future Development. ChemistrySelect, 2018, 3, 13234-13270.	0.7	13
56	Dendrimers Show Promise for siRNA and microRNA Therapeutics. Pharmaceutics, 2018, 10, 126.	2.0	77
57	Negative dendritic effect on enzymatic hydrolysis of dendrimer conjugates. Chemical Communications, 2018, 54, 5956-5959.	2.2	14
58	Effect of Dendrimer Generation and Aglyconic Linkers on the Binding Properties of Mannosylated Dendrimers Prepared by a Combined Convergent and Onion Peel Approach. Molecules, 2018, 23, 1890.	1.7	18
59	Synthesis and characterization of novel dendritic macroporous monoliths. European Polymer Journal, 2018, 106, 102-111.	2.6	2
60	Phosphorus Dendrimer Derived Solid Sorbents for CO2 Capture from Post-Combustion Gas Streams. Energy & Fuels, 2018, 32, 8658-8667.	2.5	12
61	Phosphorous dendrimer bound polyethyleneimine as solid sorbents for post-combustion CO2 capture. Chemical Engineering Journal, 2018, 350, 1056-1065.	6.6	20
62	PAMAM-Based Dendrimers with Different Alkyl Chains Self-Assemble on Silica Surfaces: Controllable Layer Structure and Molecular Aggregation. Journal of Physical Chemistry B, 2018, 122, 6648-6655.	1.2	5
63	Interfacial complexation driven three-dimensional assembly of cationic phosphorus dendrimers and graphene oxide sheets. Nanoscale Advances, 2019, 1, 314-321.	2.2	12
64	Fluorescent Phosphorus Dendrimers: Towards Material and Biological Applications. ChemPlusChem, 2019, 84, 1070-1080.	1.3	23
65	Fluorescent phosphorus dendrimers excited by two photons: synthesis, two-photon absorption properties and biological uses. Beilstein Journal of Organic Chemistry, 2019, 15, 2287-2303.	1.3	9
66	Hydrogels composed of hyaluronic acid and dendritic ELPs: hierarchical structure and physical properties. Soft Matter, 2019, 15, 917-925.	1.2	23
68	An Effective and Reusable Hyperbranched Polymer Immobilized Rhodium Catalyst for the Hydroformylation of Olefins. ACS Applied Polymer Materials, 2019, 1, 1496-1504.	2.0	23
69	Poly(amidoamine) dendrimers: covalent and supramolecular synthesis. Materials Today Chemistry, 2019, 13, 34-48.	1.7	95
70	Syntheses and applications of dendronized polymers. Progress in Polymer Science, 2019, 96, 43-105.	11.8	55
71	Phosphorus dendrimers functionalised with nitrogen ligands, for catalysis and biology. Dalton Transactions, 2019, 48, 7483-7493.	1.6	9
73	Dendrimeric α,β-dipeptidic conjugates as organocatalysts in the asymmetric Michael addition reaction of isobutyraldehyde to N-phenylmaleimides. Monatshefte Für Chemie, 2019, 150, 777-788.	0.9	6
74	Efficient "Clickâ€â€Ðendrimerâ€Supported Synergistic Bimetallic Nanocatalysis for Hydrogen Evolution by Sodium Borohydride Hydrolysis. ChemCatChem, 2019, 11, 2341-2349.	1.8	26

#	Article	IF	CITATIONS
75	Homogeneous catalysis with phosphorus dendrimer complexes. Coordination Chemistry Reviews, 2019, 389, 59-72.	9.5	27
76	Phosphorhydrazones as Useful Building Blocks for Special Architectures: Macrocycles and Dendrimers. European Journal of Inorganic Chemistry, 2019, 2019, 1457-1475.	1.0	11
77	Synthesis and anticancer activity of cyclotriphosphazenes functionalized with 4-methyl-7-hydroxycoumarin. New Journal of Chemistry, 2019, 43, 18316-18321.	1.4	15
78	Dendritic Effects of Injectable Biodegradable Thermogels on Pharmacotherapy of Inflammatory Glaucomaâ€Associated Degradation of Extracellular Matrix. Advanced Healthcare Materials, 2019, 8, e1900702.	3.9	32
79	Stimuliâ€Responsive Phosphorusâ€Based Polymers. European Journal of Inorganic Chemistry, 2019, 2019, 1445-1456.	1.0	21
80	Morphologies and functionalities of polymeric nanocarriers as chemical tools for drug delivery: A review. Journal of King Saud University - Science, 2019, 31, 398-411.	1.6	85
81	PAMAM dendrimer-based macromolecules and their potential applications: recent advances in theoretical studies. Polymer Bulletin, 2020, 77, 6671-6691.	1.7	14
82	The role of terminal groups in dendrimer systems for the treatment of organic contaminants in aqueous environments. Journal of Cleaner Production, 2020, 250, 119494.	4.6	12
83	Telodendrimers: Promising Architectural Polymers for Drug Delivery. Molecules, 2020, 25, 3995.	1.7	8
84	Optimization of the geometry and calculation of the normal vibrations of the dendrimer with amine terminal groups. IOP Conference Series: Materials Science and Engineering, 2020, 890, 012084.	0.3	0
85	Integrated POSS-dendrimer nanohybrid materials: current status and future perspective. Nanoscale, 2020, 12, 11395-11415.	2.8	55
86	Spectroscopic, electrochemical and calorimetric studies on the interactions of poly(propyleneimine) G4 dendrimer with 5-fluorouracil in aqueous solutions. Journal of Molecular Liquids, 2020, 313, 113534.	2.3	2
87	Redefining the chemistry of super-macroporous materials: when dendritic molecules meet polymer cryogels. Polymer Chemistry, 2020, 11, 4507-4519.	1.9	2
88	Phosphorus Science-Oriented Design and Synthesis of Multifunctional Nanomaterials for Biomedical Applications. Matter, 2020, 2, 297-322.	5.0	165
89	Dendrimer assisted dye-removal: A critical review of adsorption and catalytic degradation for wastewater treatment. Journal of Molecular Liquids, 2020, 315, 113775.	2.3	86
90	Synthesis and Reactivity of Poly(propyleneimine) Dendrimers Functionalized with Cyclopentadienone N-Heterocyclic-Carbene Ruthenium(0) Complexes. Catalysts, 2020, 10, 264.	1.6	9
91	Redoxâ€Switchable Transfer Hydrogenations with <i>P</i> â€Chiral Dendritic Ferrocenyl Phosphine Complexes. European Journal of Inorganic Chemistry, 2020, 2020, 1654-1669.	1.0	12
92	Ferrocenyl Phosphorhydrazone Dendrimers Synthesis, and Electrochemical and Catalytic Properties. Molecules, 2020, 25, 447.	1.7	7

CITATION REPORT

	CIANO		
#	Article	IF	CITATIONS
93	Main-Chain Phosphorus-Containing Polymers for Therapeutic Applications. Molecules, 2020, 25, 1716.	1.7	51
94	Nanomedicines for the delivery of glucocorticoids and nucleic acids as potential alternatives in the treatment of rheumatoid arthritis. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2020, 12, e1630.	3.3	17
95	Dendritic effect for immobilized pyridylphenylene dendrons in hosting catalytic Pd species: Positive or negative?. Reactive and Functional Polymers, 2020, 151, 104582.	2.0	5
96	Optimized synthesis of selected 4-oxybenzaldehyde and 2,2-dioxybiphenyl cyclotriphosphazene derivatives. Phosphorus, Sulfur and Silicon and the Related Elements, 2021, 196, 79-85.	0.8	2
97	Polyphosphorhydrazone-Based Radical Dendrimers. Molecules, 2021, 26, 1230.	1.7	4
98	Copper complexes of phosphorus dendrimers and their properties. Inorganica Chimica Acta, 2021, 517, 120212.	1.2	7
99	Grafting Dendrons onto Pillar[5]Arene Scaffolds. Molecules, 2021, 26, 2358.	1.7	3
100	Palladium Goes First: A Neutral Asymmetric Heteroditopic N,P Ligand Forming Pd-3d Heterobimetallic Complexes. Inorganic Chemistry, 2021, 60, 8722-8733.	1.9	9
101	Nanomedicine-based delivery strategies for nucleic acid gene inhibitors in inflammatory diseases. Advanced Drug Delivery Reviews, 2021, 175, 113809.	6.6	30
102	Controlled Anchoring of (Phenylureido)sulfonamide-Based Receptor Moieties: An Impact of Binding Site Multiplication on Complexation Properties. Molecules, 2021, 26, 5670.	1.7	3
103	The Role of Noncovalent Interactions in the Efficiency of Dendrimers in Catalysis. RSC Catalysis Series, 2019, , 153-167.	0.1	1
104	Functionalised Dendrimers: Potential Tool for Antiretroviral Therapy. Current Nanoscience, 2020, 16, 708-722.	0.7	4
105	Heterogeneous Dendrimer-Based Catalysts. Polymers, 2022, 14, 981.	2.0	10
106	Ionic Self-Assembly of Dendrimers. , 2022, , 85-118.		3
107	Fluorescent materials based on phosphazene derivatives and their applications: Sensors and optoelectronic devices. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2022, 53, 100553.	5.6	14
108	Aza-Michael promoted glycoconjugation of PETIM dendrimers and selectivity in mycobacterial growth inhibitions. RSC Advances, 2023, 13, 4669-4677.	1.7	3
109	Expanding Chitosan Reticular Chemistry Using Multifunctional and Thermally Stable Phosphorus-Containing Dendrimers. Macromolecules, 2023, 56, 1223-1235.	2.2	3
110	Dendrimers and dendrimer-based nano-objects for oncology applications. , 2023, , 41-78.		0

#	Article	IF	CITATIONS
111	Dendrimer-Mediated Delivery of DNA and RNA Vaccines. Pharmaceutics, 2023, 15, 1106.	2.0	7

TION RE