Variability of aerosol optical depth over Swat in Northe

Arabian Journal of Geosciences 8, 547-555

DOI: 10.1007/s12517-013-1237-2

Citation Report

#	Article	IF	CITATIONS
1	Applications of Air Mass Trajectories. Advances in Meteorology, 2015, 2015, 1-20.	0.6	14
2	Intercomparison of MODIS, MISR, OMI, and CALIPSO aerosol optical depth retrievals for four locations on the Indo-Gangetic plains and validation against AERONET data. Atmospheric Environment, 2015, 111, 113-126.	1.9	116
3	Chemical characterization and mass closure of PM10 and PM2.5Âat an urban site in Karachi – Pakistan. Atmospheric Environment, 2016, 128, 114-123.	1.9	68
4	Observation of optical properties and sources of aerosols at Buddha's birthplace, Lumbini, Nepal: environmental implications. Environmental Science and Pollution Research, 2018, 25, 14868-14881.	2.7	31
5	Corrigendum to "Analyzing Critical Failures in a Production Process: Is Industrial IoT the Solution?― Wireless Communications and Mobile Computing, 2019, 2019, 1-1.	0.8	0
6	Chemical and source characterization of PM2.5 in summertime in severely polluted Lahore, Pakistan. Atmospheric Research, 2020, 234, 104715.	1.8	24
7	Cleaner and Sustainable Energy Production in Pakistan: Lessons Learnt from the Pak-TIMES Model. Energies, 2020, 13, 108.	1.6	25
8	Spatiotemporal Trends of Aerosols over Urban Regions in Pakistan and Their Possible Links to Meteorological Parameters. Atmosphere, 2020, 11, 306.	1.0	31
9	Estimation of aerosol optical depth in relation to meteorological parameters over eastern and western routes of China Pakistan economic corridor. Journal of Environmental Sciences, 2021, 99, 28-39.	3. 2	9
10	Investigation of possible solid waste power potential for distributed generation development to overcome the power crises of Karachi city. Renewable and Sustainable Energy Reviews, 2021, 143, 110882.	8.2	18
11	A Cross-Sectoral Investigation of the Energy–Environment–Economy Causal Nexus in Pakistan: Policy Suggestions for Improved Energy Management. Energies, 2021, 14, 5495.	1.6	3
12	Spatio-Temporal Distribution of Aerosol and Cloud Properties over Sindh Using MODIS Satellite Data and a HYSPLIT Model. Aerosol and Air Quality Research, 2015, 15, 657-672.	0.9	25
13	Particulate Matter and Its Source Apportionment in Peshawar, Northern Pakistan. Aerosol and Air Quality Research, 2015, 15, 634-647.	0.9	42
14	Modeling the impact of wind shear on aerosol for flood prevention and drought monitoring over Ethiopia. Arabian Journal of Geosciences, 2022, 15, .	0.6	O