A graphene foam electrode with high sulfur loading for batteries

Nano Energy 11, 356-365

DOI: 10.1016/j.nanoen.2014.11.025

Citation Report

#	Article	IF	CITATIONS
3	Towards Stable Lithium–Sulfur Batteries with a Low Selfâ€Discharge Rate: Ion Diffusion Modulation and Anode Protection. ChemSusChem, 2015, 8, 2892-2901.	3.6	66
4	Three Dimensional Graphene Foam/Polymer Hybrid as a High Strength Biocompatible Scaffold. Advanced Functional Materials, 2015, 25, 3916-3924.	7.8	107
5	3D Mesoporous Graphene: CVD Self-Assembly on Porous Oxide Templates and Applications in High-Stable Li-S Batteries. Small, 2015, 11, 5243-5252.	5.2	120
6	Enhanced rate capability and cycle stability of lithium–sulfur batteries with a bifunctional MCNT@PEG-modified separator. Journal of Materials Chemistry A, 2015, 3, 7139-7144.	5.2	134
7	Advanced engineering of nanostructured carbons for lithium–sulfur batteries. Nano Energy, 2015, 15, 413-444.	8.2	226
8	Titanium-dioxide-grafted carbon paper with immobilized sulfur as a flexible free-standing cathode for superior lithium–sulfur batteries. Journal of Power Sources, 2015, 290, 159-167.	4.0	77
9	Nano-porous sulfur–polyaniline electrodes for lithium–sulfurbatteries. Nano Energy, 2015, 18, 245-252.	8.2	75
10	Graphene decorated vanadium oxide nanowire aerogel for long-cycle-life magnesium battery cathodes. Nano Energy, 2015, 18, 265-272.	8.2	170
11	Dual onfined Flexible Sulfur Cathodes Encapsulated in Nitrogenâ€Đoped Doubleâ€Shelled Hollow Carbon Spheres and Wrapped with Graphene for Li–S Batteries. Advanced Energy Materials, 2015, 5, 1402263.	10.2	459
12	A hierarchical carbon fiber/sulfur composite as cathode material for Li–S batteries. Carbon, 2015, 86, 146-155.	5.4	73
13	Lithium–Sulfur Batteries: Progress and Prospects. Advanced Materials, 2015, 27, 1980-2006.	11.1	1,288
14	lonic Liquid-Derived Nitrogen-Enriched Carbon/Sulfur Composite Cathodes with Hierarchical Microstructure—A Step Toward Durable High-Energy and High-Performance Lithium–Sulfur Batteries. Chemistry of Materials, 2015, 27, 1674-1683.	3.2	76
15	Free-standing TiO2 nanowire-embedded graphene hybrid membrane for advanced Li/dissolved polysulfide batteries. Nano Energy, 2015, 12, 240-249.	8.2	252
16	Flexible and Highly Sensitive Strain Sensors Fabricated by Pencil Drawn for Wearable Monitor. Advanced Functional Materials, 2015, 25, 2395-2401.	7.8	439
17	Multi-chambered micro/mesoporous carbon nanocubes as new polysulfides reserviors for lithium–sulfur batteries with long cycle life. Nano Energy, 2015, 16, 268-280.	8.2	132
18	Long-life Li/polysulphide batteries with high sulphur loading enabled by lightweight three-dimensional nitrogen/sulphur-codoped graphene sponge. Nature Communications, 2015, 6, 7760.	5.8	923
19	Facile preparation of flower-like NiCo2O4/three dimensional graphene foam hybrid for high performance supercapacitor electrodes. Carbon, 2015, 89, 328-339.	5.4	132
20	Packing sulfur into carbon framework for high volumetric performance lithium-sulfur batteries. Science China Materials, 2015, 58, 349-354.	3.5	40

#	Article	IF	CITATIONS
21	Sustainable process for all-carbon electrodes: Horticultural doping of natural-resource-derived nano-carbons for high-performance supercapacitors. Carbon, 2015, 91, 386-394.	5.4	26
22	Template growth of porous graphene microspheres on layered double oxide catalysts and their applications in lithium–sulfur batteries. Carbon, 2015, 92, 96-105.	5.4	77
23	A Lightweight TiO ₂ /Graphene Interlayer, Applied as a Highly Effective Polysulfide Absorbent for Fast, Longâ€Life Lithium–Sulfur Batteries. Advanced Materials, 2015, 27, 2891-2898.	11.1	667
24	Status and prospects in sulfur–carbon composites as cathode materials for rechargeable lithium–sulfur batteries. Carbon, 2015, 92, 41-63.	5.4	371
25	A Foldable Lithium–Sulfur Battery. ACS Nano, 2015, 9, 11342-11350.	7.3	125
26	Free-standing and binder-free highly N-doped carbon/sulfur cathodes with tailorable loading for high-areal-capacity lithium–sulfur batteries. Journal of Materials Chemistry A, 2015, 3, 20482-20486.	5.2	46
27	PEDOT-PSS coated sulfur/carbon composite on porous carbon papers for high sulfur loading lithium–sulfur batteries. RSC Advances, 2015, 5, 96862-96869.	1.7	16
28	Review—The Importance of Chemical Interactions between Sulfur Host Materials and Lithium Polysulfides for Advanced Lithium-Sulfur Batteries. Journal of the Electrochemical Society, 2015, 162, A2567-A2576.	1.3	294
29	Multi-functional separator/interlayer system for high-stable lithium-sulfur batteries: Progress and prospects. Energy Storage Materials, 2015, 1, 127-145.	9.5	581
30	A carbon sandwich electrode with graphene filling coated by N-doped porous carbon layers for lithium–sulfur batteries. Journal of Materials Chemistry A, 2015, 3, 20218-20224.	5.2	83
31	Embedding SiO2into graphene oxide in situ to generate 3D hierarchical porous graphene laminates for high performance lithium–sulfur batteries. RSC Advances, 2015, 5, 80353-80356.	1.7	6
32	Graphene materials for lithium–sulfur batteries. Energy Storage Materials, 2015, 1, 51-73.	9.5	225
33	Pie-like electrode design for high-energy density lithium–sulfur batteries. Nature Communications, 2015, 6, 8850.	5.8	453
34	Interconnected carbon nanotube/graphene nanosphere scaffolds as free-standing paper electrode for high-rate and ultra-stable lithium–sulfur batteries. Nano Energy, 2015, 11, 746-755.	8.2	168
35	Grapheneâ€Based Nanocomposites for Energy Storage. Advanced Energy Materials, 2016, 6, 1502159.	10.2	306
36	Carbon Nanotubes and Graphene for Flexible Electrochemical Energy Storage: from Materials to Devices. Advanced Materials, 2016, 28, 4306-4337.	11.1	595
37	A High Energy Lithiumâ€ s ulfur Battery with Ultrahigh‣oading Lithium Polysulfide Cathode and its Failure Mechanism. Advanced Energy Materials, 2016, 6, 1502459.	10.2	282
38	Rational Design of Si/SiO ₂ @Hierarchical Porous Carbon Spheres as Efficient Polysulfide Reservoirs for Highâ€Performance Li–S Battery. Advanced Materials, 2016, 28, 3167-3172.	11.1	275

#	Article	IF	CITATIONS
39	3D Hierarchically Interconnected Porous Graphene Containing Sulfur for Stable High Rate Li–S Batteries. Energy Technology, 2016, 4, 625-632.	1.8	14
40	Cathode Loading Effect on Sulfur Utilization in Lithium–Sulfur Battery. Journal of Electrochemical Energy Conversion and Storage, 2016, 13, .	1.1	19
41	A hierarchical micro/mesoporous carbon fiber/sulfur composite for high-performance lithium–sulfur batteries. RSC Advances, 2016, 6, 37443-37451.	1.7	46
42	Bifunctional separator as a polysulfide mediator for highly stable Li–S batteries. Journal of Materials Chemistry A, 2016, 4, 9661-9669.	5.2	86
43	Strongly coupled MoS2–3D graphene materials for ultrafast charge slow discharge LIBs and water splitting applications. Energy Storage Materials, 2016, 4, 84-91.	9.5	55
44	Structural and chemical synergistic encapsulation of polysulfides enables ultralong-life lithium–sulfur batteries. Energy and Environmental Science, 2016, 9, 2533-2538.	15.6	330
45	High-Energy-Density Lithium–Sulfur Batteries Based on Blade-Cast Pure Sulfur Electrodes. ACS Energy Letters, 2016, 1, 46-51.	8.8	109
46	Carbon fibre/graphene foam/polymer composites with enhanced mechanical and thermal properties. Composites Part B: Engineering, 2016, 94, 102-108.	5.9	115
47	A simple approach to synthesize novel sulfur/graphene oxide/multiwalled carbon nanotube composite cathode for high performance lithium/sulfur batteries. Ionics, 2016, 22, 1819-1827.	1.2	8
48	Redox-Active Supramolecular Polymer Binders for Lithium–Sulfur Batteries That Adapt Their Transport Properties in Operando. Chemistry of Materials, 2016, 28, 7414-7421.	3.2	55
49	Excellent Performance of Lithium-Sulfur batteries with Carbonized Porous Aromatic Framework Nanobeads as Support. Electrochimica Acta, 2016, 219, 143-151.	2.6	18
50	A nitrogen–sulfur co-doped porous graphene matrix as a sulfur immobilizer for high performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2016, 4, 17381-17393.	5.2	133
51	Phase Inversion: A Universal Method to Create Highâ€Performance Porous Electrodes for Nanoparticleâ€Based Energy Storage Devices. Advanced Functional Materials, 2016, 26, 8427-8434.	7.8	132
52	Improving the over-all performance of Li-S batteries via electrolyte optimization with consideration of loading condition. Electrochimica Acta, 2016, 218, 1-7.	2.6	14
53	Biomimetic Ant-Nest Electrode Structures for High Sulfur Ratio Lithium–Sulfur Batteries. Nano Letters, 2016, 16, 5365-5372.	4.5	73
54	Conductive Carbon Network inside a Sulfur-Impregnated Carbon Sponge: A Bioinspired High-Performance Cathode for Li–S Battery. ACS Applied Materials & Interfaces, 2016, 8, 22261-22269.	4.0	54
55	Janus Separator of Polypropyleneâ€5upported Cellular Graphene Framework for Sulfur Cathodes with High Utilization in Lithium–Sulfur Batteries. Advanced Science, 2016, 3, 1500268.	5.6	294
56	Grapheneâ€Based Sulfur Composites for Energy Storage and Conversion in Liâ€5 Batteries. Chinese Journal of Chemistry, 2016, 34, 13-31.	2.6	32

#	Article	IF	CITATIONS
57	Graphene/Sulfur Composites with a Foam‣ike Porous Architecture and Controllable Pore Size for High Performance Lithium–Sulfur Batteries. ChemNanoMat, 2016, 2, 952-958.	1.5	19
58	One-pot in situ chemical reduction of graphene oxide and recombination of sulphur as a cathode material for a Li–S battery. Journal of Materials Chemistry A, 2016, 4, 15140-15147.	5.2	17
59	Nano-hydroxyapatite as an Efficient Polysulfide Absorbent for High-performance Li-S Batteries. Electrochimica Acta, 2016, 215, 162-170.	2.6	12
60	A review of recent developments in rechargeable lithium–sulfur batteries. Nanoscale, 2016, 8, 16541-16588.	2.8	326
61	A highly-safe lithium-ion sulfur polymer battery with SnO2 anode and acrylate-based gel polymer electrolyte. Nano Energy, 2016, 28, 97-105.	8.2	60
62	An Elastic, Conductive, Electroactive Nanocomposite Binder for Flexible Sulfur Cathodes in Lithium–Sulfur Batteries. Advanced Materials, 2016, 28, 9744-9751.	11.1	107
63	A hollow carbon foam with ultra-high sulfur loading for an integrated cathode of lithium–sulfur batteries. Journal of Materials Chemistry A, 2016, 4, 15605-15611.	5.2	48
64	Three-dimensional macro-structures of two-dimensional nanomaterials. Chemical Society Reviews, 2016, 45, 5541-5588.	18.7	280
65	High Sulfur Loading in Hierarchical Porous Carbon Rods Constructed by Vertically Oriented Porous Grapheneâ€Like Nanosheets for Liâ€5 Batteries. Advanced Functional Materials, 2016, 26, 8952-8959.	7.8	159
66	3D Carbonaceous Current Collectors: The Origin of Enhanced Cycling Stability for High‧ulfur‣oading Lithium–Sulfur Batteries. Advanced Functional Materials, 2016, 26, 6351-6358.	7.8	216
67	Immobilizing Polysulfides with MXene-Functionalized Separators for Stable Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2016, 8, 29427-29433.	4.0	234
68	Advances in lithium–sulfur batteries based on multifunctional cathodes and electrolytes. Nature Energy, 2016, 1, .	19.8	1,710
69	3D Metal Carbide@Mesoporous Carbon Hybrid Architecture as a New Polysulfide Reservoir for Lithiumâ€ 5 ulfur Batteries. Advanced Functional Materials, 2016, 26, 8746-8756.	7.8	210
70	3D Grapheneâ€Foam–Reducedâ€Grapheneâ€Oxide Hybrid Nested Hierarchical Networks for Highâ€Performand Li–S Batteries. Advanced Materials, 2016, 28, 1603-1609.	се _{11.1}	497
71	3D Vertically Aligned and Interconnected Porous Carbon Nanosheets as Sulfur Immobilizers for High Performance Lithium‧ulfur Batteries. Advanced Energy Materials, 2016, 6, 1502518.	10.2	138
72	3D Interconnected Electrode Materials with Ultrahigh Areal Sulfur Loading for Li–S Batteries. Advanced Materials, 2016, 28, 3374-3382.	11.1	488
73	High Capacity Retention Anode Material for Lithium Ion Battery. Electrochimica Acta, 2016, 211, 156-163.	2.6	44
74	Rational Integration of Polypropylene/Graphene Oxide/Nafion as Ternary‣ayered Separator to Retard the Shuttle of Polysulfides for Lithium–Sulfur Batteries. Small, 2016, 12, 381-389.	5.2	315

#	Article	IF	CITATIONS
75	Recent progress in flexible energy storage materials for lithium-ion batteries and electrochemical capacitors: A review. Journal of Materials Research, 2016, 31, 1648-1664.	1.2	32
76	Electrochemical Properties of Lithium–Sulfur Cells in a Very Wide Range of Sulfur Concentration. Bulletin of the Korean Chemical Society, 2016, 37, 148-153.	1.0	5
77	Perpendicular edge oriented graphene foam supporting orthogonal TiO2(B) nanosheets as freestanding electrode for lithium ion battery. Nano Energy, 2016, 21, 162-171.	8.2	58
78	Flexible hybrid carbon nanotube sponges embedded with SnS ₂ from tubular nanosheaths to nanosheets as free-standing anodes for lithium-ion batteries. RSC Advances, 2016, 6, 30098-30105.	1.7	26
79	Recent advances in graphene-based hybrid nanostructures for electrochemical energy storage. Nanoscale Horizons, 2016, 1, 340-374.	4.1	92
80	Mildly reduced less defective graphene oxide/sulfur/carbon nanotube composite films for high-performance lithium–sulfur batteries. Physical Chemistry Chemical Physics, 2016, 18, 11104-11110.	1.3	30
81	Graphene-based materials with tailored nanostructures for energy conversion and storage. Materials Science and Engineering Reports, 2016, 102, 1-72.	14.8	221
82	Rate performance enhanced Li/S batteries with a Li ion conductive gel-binder. Solid State Ionics, 2016, 289, 23-27.	1.3	9
83	A novel separator coated by carbon for achieving exceptional high performance lithium-sulfur batteries. Nano Energy, 2016, 20, 176-184.	8.2	189
84	Powering Lithium–Sulfur Battery Performance by Propelling Polysulfide Redox at Sulfiphilic Hosts. Nano Letters, 2016, 16, 519-527.	4.5	1,294
85	Crumpled graphene paper for high power sodium battery anode. Carbon, 2016, 99, 658-664.	5.4	81
86	Beyond graphene foam, a new form of three-dimensional graphene for supercapacitor electrodes. Journal of Materials Chemistry A, 2016, 4, 1876-1886.	5.2	55
87	Elastic porous carbon material supported sulfur cathodes for Li–S battery design. New Journal of Chemistry, 2016, 40, 93-96.	1.4	9
88	Carbon materials for Li–S batteries: Functional evolution and performance improvement. Energy Storage Materials, 2016, 2, 76-106.	9.5	504
89	High surface area porous polymer frameworks: Potential host material for lithium–sulfur batteries. Journal of Alloys and Compounds, 2016, 657, 626-630.	2.8	27
90	Graphene-based materials for electrochemical energy storage devices: Opportunities and challenges. Energy Storage Materials, 2016, 2, 107-138.	9.5	371
91	Facile fabrication of nanoporous graphene powder for high-rate lithium–sulfur batteries. RSC Advances, 2017, 7, 5177-5182.	1.7	14
92	Sulfurâ€Immobilized, Activated Porous Carbon Nanotube Composite Based Cathodes for Lithium–Sulfur Batteries. Small, 2017, 13, 1602984.	5.2	85

#	Article	IF	CITATIONS
93	A Fluorinated Ether Electrolyte Enabled High Performance Prelithiated Graphite/Sulfur Batteries. ACS Applied Materials & Interfaces, 2017, 9, 6959-6966.	4.0	65
94	Three-Dimensional Nanoporous Iron Nitride Film as an Efficient Electrocatalyst for Water Oxidation. ACS Catalysis, 2017, 7, 2052-2057.	5.5	207
95	Hydroxylated N-doped carbon nanotube-sulfur composites as cathodes for high-performance lithium-sulfur batteries. Journal of Power Sources, 2017, 343, 54-59.	4.0	78
96	Hierarchical Structures Based on Twoâ€Dimensional Nanomaterials for Rechargeable Lithium Batteries. Advanced Energy Materials, 2017, 7, 1601906.	10.2	216
97	Carbon nano-composites for lithium–sulfur batteries. Current Opinion in Green and Sustainable Chemistry, 2017, 4, 64-71.	3.2	22
98	Foldable interpenetrated metal-organic frameworks/carbon nanotubes thin film for lithium–sulfur batteries. Nature Communications, 2017, 8, 14628.	5.8	436
99	Lock of sulfur with carbon black and a three-dimensional graphene@carbon nanotubes coated separator for lithium-sulfur batteries. Journal of Alloys and Compounds, 2017, 708, 743-750.	2.8	54
100	Recent innovative configurations in high-energy lithium–sulfur batteries. Journal of Materials Chemistry A, 2017, 5, 5222-5234.	5.2	115
101	Construction of tubular polypyrrole-wrapped biomass-derived carbon nanospheres as cathode materials for lithium–sulfur batteries. Journal Physics D: Applied Physics, 2017, 50, 115002.	1.3	16
102	Sulfonic Groups Originated Dual-Functional Interlayer for High Performance Lithium–Sulfur Battery. ACS Applied Materials & Interfaces, 2017, 9, 14878-14888.	4.0	126
103	Flexible three-dimensional electrodes of hollow carbon bead strings as graded sulfur reservoirs and the synergistic mechanism for lithium–sulfur batteries. Applied Surface Science, 2017, 413, 209-218.	3.1	38
104	Graphene: a promising 2D material for electrochemical energy storage. Science Bulletin, 2017, 62, 724-740.	4.3	198
105	Highâ€Quality Graphene Microflower Design for Highâ€Performance Li–S and Alâ€Ion Batteries. Advanced Energy Materials, 2017, 7, 1700051.	10.2	140
106	Review on Highâ€Loading and Highâ€Energy Lithium–Sulfur Batteries. Advanced Energy Materials, 2017, 7, 1700260.	10.2	1,307
107	Practical Challenges in Employing Graphene for Lithium-Ion Batteries and Beyond. Small Methods, 2017, 1, 1700099.	4.6	31
108	High-performance nitrogen-doped titania nanowire decorated carbon cloth electrode for lithium-polysulfide batteries. Electrochimica Acta, 2017, 242, 137-145.	2.6	22
109	High areal capacity of Li-S batteries enabled by freestanding CNF/rGO electrode with high loading of lithium polysulfide. Electrochimica Acta, 2017, 241, 406-413.	2.6	44
110	Synergistic mediation of sulfur conversion in lithium–sulfur batteries by a Gerber tree-like interlayer with multiple components. Journal of Materials Chemistry A, 2017, 5, 11255-11262.	5.2	49

#	Article	IF	CITATIONS
111	Enabling High-Areal-Capacity Lithium–Sulfur Batteries: Designing Anisotropic and Low-Tortuosity Porous Architectures. ACS Nano, 2017, 11, 4801-4807.	7.3	151
112	Freestanding carbon fiber cloth/sulfur composites for flexible room-temperature sodium-sulfur batteries. Energy Storage Materials, 2017, 8, 77-84.	9.5	175
113	Improving Lithium–Sulfur Battery Performance under Lean Electrolyte through Nanoscale Confinement in Soft Swellable Gels. Nano Letters, 2017, 17, 3061-3067.	4.5	122
114	Exploiting a robust biopolymer network binder for an ultrahigh-areal-capacity Li–S battery. Energy and Environmental Science, 2017, 10, 750-755.	15.6	286
115	Structure–Property Relationships of Organic Electrolytes and Their Effects on Li/S Battery Performance. Advanced Materials, 2017, 29, 1700449.	11.1	96
116	Ferrous sulfide-assisted hollow carbon spheres as sulfur host for advanced lithium-sulfur batteries. Chemical Engineering Journal, 2017, 326, 1040-1047.	6.6	28
117	High areal capacity cathode and electrolyte reservoir render practical Li-S batteries. Nano Energy, 2017, 38, 137-146.	8.2	42
118	Strategies of constructing stable and high sulfur loading cathodes based on the blade-casting technique. Journal of Materials Chemistry A, 2017, 5, 12879-12888.	5.2	38
119	Rough‣urfaceâ€Enabled Capacitive Pressure Sensors with 3D Touch Capability. Small, 2017, 13, 1700368.	5.2	142
120	Techniques for realizing practical application of sulfur cathodes in future Li-ion batteries. Journal of Solid State Electrochemistry, 2017, 21, 1925-1937.	1.2	14
121	3D N-doped graphene nanomesh foam for long cycle life lithium-sulfur battery. Chemical Engineering Journal, 2017, 326, 265-272.	6.6	43
122	Binder Free Hierarchical Mesoporous Carbon Foam for High Performance Lithium Ion Battery. Scientific Reports, 2017, 7, 1440.	1.6	56
123	Co ₄ N Nanosheet Assembled Mesoporous Sphere as a Matrix for Ultrahigh Sulfur Content Lithium–Sulfur Batteries. ACS Nano, 2017, 11, 6031-6039.	7.3	390
124	Reduced graphene oxide coated porous carbon–sulfur nanofiber as a flexible paper electrode for lithium–sulfur batteries. Nanoscale, 2017, 9, 9129-9138.	2.8	53
125	A Toolbox for Lithium–Sulfur Battery Research: Methods and Protocols. Small Methods, 2017, 1, 1700134.	4.6	230
126	More Reliable Lithium‣ulfur Batteries: Status, Solutions and Prospects. Advanced Materials, 2017, 29, 1606823.	11.1	1,414
127	Gaseous-phase, silica-coated sulfur particles as a cathode material for high-performance lithium/sulfur batteries. Journal of Materials Science: Materials in Electronics, 2017, 28, 8901-8907.	1.1	9
128	Synthesis and characterization of sulfur/carbon/porous nanostructured V 2 O 5 composite cathodes for lithium sulfur batteries. Advanced Powder Technology, 2017, 28, 1411-1417.	2.0	19

#	Article	IF	CITATIONS
129	Effect of Carbon and Binder on High Sulfur Loading Electrode for Li-S Battery Technology. Electrochimica Acta, 2017, 235, 399-408.	2.6	32
130	Crosslinked Polypyrrole Grafted Reduced Graphene Oxide-Sulfur Nanocomposite Cathode for High Performance Li-S Battery. Electrochimica Acta, 2017, 235, 32-41.	2.6	50
131	Capacity retention of lithium sulfur batteries enhanced with nano-sized TiO ₂ -embedded polyethylene oxide. Journal of Materials Chemistry A, 2017, 5, 6708-6715.	5.2	66
132	High performance rechargeable Li-S batteries using binder-free large sulfur-loaded three-dimensional carbon nanotubes. Carbon, 2017, 118, 120-126.	5.4	70
133	MoS ₂ /Celgard Separator as Efficient Polysulfide Barrier for Long‣ife Lithium–Sulfur Batteries. Advanced Materials, 2017, 29, 1606817.	11.1	746
134	A high strength, free-standing cathode constructed by regulating graphitization and the pore structure in nitrogen-doped carbon nanofibers for flexible lithium–sulfur batteries. Journal of Materials Chemistry A, 2017, 5, 6832-6839.	5.2	94
135	Highly Efficient Retention of Polysulfides in "Sea Urchin―Like Carbon Nanotube/Nanopolyhedra Superstructures as Cathode Material for Ultralong-Life Lithium–Sulfur Batteries. Nano Letters, 2017, 17, 437-444.	4.5	223
136	Three-Dimensional Carbon Nanotubes Forest/Carbon Cloth as an Efficient Electrode for Lithium–Polysulfide Batteries. ACS Applied Materials & Interfaces, 2017, 9, 1553-1561.	4.0	54
137	Amorphous Lithium Lanthanum Titanate for Solid-State Microbatteries. Journal of the Electrochemical Society, 2017, 164, A6268-A6273.	1.3	35
138	A Lithium/Polysulfide Battery with Dual-Working Mode Enabled by Liquid Fuel and Acrylate-Based Gel Polymer Electrolyte. ACS Applied Materials & Interfaces, 2017, 9, 2526-2534.	4.0	24
139	Graphitized porous carbon materials with high sulfur loading for lithium-sulfur batteries. Nano Energy, 2017, 32, 503-510.	8.2	118
140	Lithium–Sulfur Battery Cable Made from Ultralight, Flexible Graphene/Carbon Nanotube/Sulfur Composite Fibers. Advanced Functional Materials, 2017, 27, 1604815.	7.8	176
141	Nanostructured cathode materials for lithium–sulfur batteries: progress, challenges and perspectives. Journal of Materials Chemistry A, 2017, 5, 3014-3038.	5.2	165
142	Cel based sulfur cathodes with a high sulfur content and large mass loading for high-performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2017, 5, 1650-1657.	5.2	56
143	The Potential for the Creation of a High Areal Capacity Lithium-Sulfur Battery Using a Metal Foam Current Collector. Journal of the Electrochemical Society, 2017, 164, A5026-A5030.	1.3	34
144	Three-dimensional graphene hollow spheres with high sulfur loading for high-performance lithium-sulfur batteries. Electrochimica Acta, 2017, 224, 527-533.	2.6	62
145	Rational design of exfoliated 1T MoS ₂ @CNT-based bifunctional separators for lithium sulfur batteries. Journal of Materials Chemistry A, 2017, 5, 23909-23918.	5.2	111
146	Dual-Confined and Hierarchical-Porous Graphene/C/SiO2 Hollow Microspheres through Spray Drying Approach for Lithium-Sulfur Batteries. Electrochimica Acta, 2017, 255, 179-186.	2.6	34

ARTICLE IF CITATIONS A Compact Nanoconfined Sulfur Cathode for High-Performance Lithium-Sulfur Batteries. Joule, 2017, 1, 11.7 255 147 576-587. Heteroatoms-Doped Porous Carbon Derived from Tuna Bone for High Performance Li-S Batteries. 148 2.6 Electrochimica Acta, 2017, 258, 80-89. Coaxial Carbon/MnO₂ Hollow Nanofibers as Sulfur Hosts for Highâ€Performance 149 46 1.7 Lithiumâ€Sulfur Batteries. Chemistry - an Asian Journal, 2017, 12, 3128-3134. Nitrogen-doped hierarchical porous carbon derived from metal–organic aerogel for high performance lithium–sulfur batteries. Journal of Energy Chemistry, 2017, 26, 1282-1290. Freeze-Dried Sulfur–Graphene Oxide–Carbon Nanotube Nanocomposite for High Sulfur-Loading 151 4.5 95 Lithium/Sulfur Cells. Nano Letters, 2017, 17, 7086-7094. Gravimetric and volumetric energy densities of lithium-sulfur batteries. Current Opinion in Electrochemistry, 2017, 6, 92-99. 2.5 A high areal capacity lithium–sulfur battery cathode prepared by site-selective vapor infiltration of 153 2.8 35 hierarchical carbon nanotube arrays. Nanoscale, 2017, 9, 15018-15026. Free-standing compact cathodes for high volumetric and gravimetric capacity Li–S batteries. Journal 154 5.2 21 of Materials Chemistry A, 2017, 5, 19924-19933. Interwoven NiCo₂O₄ Nanosheet/Carbon Nanotube Composites as Highly 155 1.7 18 Efficient Lithiumâ[^]Sulfur Cathode Hosts. ChemElectroChem, 2017, 4, 2959-2965. Advances in lithiumâ€"sulfur batteries. Materials Science and Engineering Reports, 2017, 121, 1-29. 14.8 Metal/nanocarbon layer current collectors enhanced energy efficiency in lithium-sulfur batteries. 157 49 4.3Science Bulletin, 2017, 62, 1267-1274. Sulfur Cathode., 2017, , 31-103. 158 The Use of Lithium (Poly)sulfide Species in Liâ€"S Batteries. , 2017, , 105-148. 159 0 Self-supporting sulfur cathodes enabled by two-dimensional carbon yolk-shell nanosheets for 5.8 high-energy-density lithium-sulfur batteries. Nature Communications, 2017, 8, 482. NiS₂/FeS Holey Film as Freestanding Electrode for Highâ€Performance Lithium Battery. 161 10.2 99 Advanced Energy Materials, 2017, 7, 1701309. Stabilizing the Performance of Highâ€Capacity Sulfur Composite Electrodes by a New Gel Polymer Electrolyte Configuration. ChemSusChem, 2017, 10, 3490-3496. Nitrogenâ€Superdoped 3D Graphene Networks for Highâ€Performance Supercapacitors. Advanced 163 11.1 230 Materials, 2017, 29, 1701677. Poly(3,4-ethylenedioxythiophene)-coated sulfur for flexible and binder-free cathodes of 164 5.2 lithium–sulfur batteries. Journal of Materials Chemistry A, 2017, 5, 17647-17652.

#	ARTICLE	IF	Citations
165	A highly conductive carbon–sulfur film with interconnected mesopores as an advanced cathode for lithium–sulfur batteries. Chemical Communications, 2017, 53, 9097-9100.	2.2	81
166	Mechanical Analyses and Structural Design Requirements for Flexible Energy Storage Devices. Advanced Energy Materials, 2017, 7, 1700535.	10.2	170
167	Nanostructured graphene-based materials for flexible energy storage. Energy Storage Materials, 2017, 9, 150-169.	9.5	205
168	Fabrication Methods of Porous Carbon Materials and Separator Membranes for Lithium–Sulfur Batteries: Development and Future Perspectives. Small Methods, 2017, 1, 1700089.	4.6	69
169	Shapeable electrodes with extensive materials options and ultra-high loadings for energy storage devices. Nano Energy, 2017, 39, 418-428.	8.2	49
170	Graphene as a flexible electrode: review of fabrication approaches. Journal of Materials Chemistry A, 2017, 5, 17777-17803.	5.2	113
171	Introduction to Rechargeable Lithium–Sulfur Batteries. , 2017, , 1-30.		2
172	A review of flexible lithium–sulfur and analogous alkali metal–chalcogen rechargeable batteries. Chemical Society Reviews, 2017, 46, 5237-5288.	18.7	572
173	Facile and scalable fabrication of highly loaded sulfur cathodes and lithium–sulfur pouch cells via air-controlled electrospray. Materials Today Energy, 2017, 6, 255-263.	2.5	17
174	Nanostructured materials: A progressive assessment and future direction for energy device applications. Coordination Chemistry Reviews, 2017, 353, 113-141.	9.5	37
175	Review of nanostructured current collectors in lithium–sulfur batteries. Nano Research, 2017, 10, 4027-4054.	5.8	91
176	Fabricating three-dimensional hierarchical porous N-doped graphene by a tunable assembly method for interlayer assisted lithium-sulfur batteries. Chemical Engineering Journal, 2017, 327, 855-867.	6.6	53
177	Graphene Nanoribbons on Highly Porous 3D Graphene for High apacity and Ultrastable Alâ€ion Batteries. Advanced Materials, 2017, 29, 1604118.	11.1	293
178	Flexible catholyte@carbon nanotube film electrode for high-performance lithium sulfur battery. Carbon, 2017, 113, 371-378.	5.4	40
179	A Comprehensive Approach toward Stable Lithium–Sulfur Batteries with High Volumetric Energy Density. Advanced Energy Materials, 2017, 7, 1601630.	10.2	277
180	Calendering of free-standing electrode for lithium-sulfur batteries with high volumetric energy density. Carbon, 2017, 111, 493-501.	5.4	55
181	Flexible and Stretchable Energy Storage: Recent Advances and Future Perspectives. Advanced Materials, 2017, 29, 1603436.	11.1	872
182	Sulfurâ€Embedded Activated Multichannel Carbon Nanofiber Composites for Long‣ife, Highâ€Rate Lithium–Sulfur Batteries. Advanced Energy Materials, 2017, 7, 1601943.	10.2	191

#	Article	IF	CITATIONS
183	Natural nitrogen-doped multiporous carbon from biological cells as sulfur stabilizers for lithium–sulfur batteries. Chinese Chemical Letters, 2017, 28, 738-742.	4.8	19
184	Selenium-impregnated hollow carbon microspheres as efficient cathode materials for lithium-selenium batteries. Carbon, 2017, 111, 198-206.	5.4	58
185	Novel Synergistic Strategy for Developing High-Performance Lithium Sulfur Batteries of Large Areal Sulfur Loading by SEI Modified Separator. ACS Applied Energy Materials, 2018, 1, 932-940.	2.5	15
186	Carbon nanomaterials for advanced lithium sulfur batteries. Nano Today, 2018, 19, 84-107.	6.2	365
187	Rational Design of Nanostructured Functional Interlayer/Separator for Advanced Li–S Batteries. Advanced Functional Materials, 2018, 28, 1707411.	7.8	272
188	Designing Realizable and Scalable Techniques for Practical Lithium Sulfur Batteries: A Perspective. Journal of Physical Chemistry Letters, 2018, 9, 1398-1414.	2.1	50
189	A Lithiumâ€ion Battery using a 3 Dâ€Array Nanostructured Graphene–Sulfur Cathode and a Silicon Oxideâ€Based Anode. ChemSusChem, 2018, 11, 1512-1520.	3.6	46
190	Core-shell polyhedrons of carbon nanotubes-grafted graphitic carbon@nitrogen doped carbon as efficient sulfur immobilizers for lithium-sulfur batteries. Applied Surface Science, 2018, 450, 364-371.	3.1	31
191	Woodâ€Inspired Highâ€Performance Ultrathick Bulk Battery Electrodes. Advanced Materials, 2018, 30, e1706745.	11.1	205
192	Polysulfide Binding to Several Nanoscale Magnéli Phases Synthesized in Carbon for Longâ€Life Lithium–Sulfur Battery Cathodes. ChemSusChem, 2018, 11, 1838-1848.	3.6	19
193	Metal-Embedded Porous Graphitic Carbon Fibers Fabricated from Bamboo Sticks as a Novel Cathode for Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2018, 10, 13598-13605.	4.0	57
194	Chemisorption of polysulfides through redox reactions with organic molecules for lithium–sulfur batteries. Nature Communications, 2018, 9, 705.	5.8	207
195	Hierarchically porous nitrogen-doped carbon as cathode for lithium–sulfur batteries. Journal of Energy Chemistry, 2018, 27, 1661-1667.	7.1	76
196	Flexible Lithiumâ€lon Batteries with High Areal Capacity Enabled by Smart Conductive Textiles. Small, 2018, 14, e1703418.	5.2	48
197	Nitrogen-doped carbon fiber foam enabled sulfur vapor deposited cathode for high performance lithium sulfur batteries. Chemical Engineering Journal, 2018, 341, 441-449.	6.6	59
198	Free-standing sulfur-polypyrrole cathode in conjunction with polypyrrole-coated separator for flexible Li-S batteries. Energy Storage Materials, 2018, 13, 312-322.	9.5	105
199	Designing Safe Electrolyte Systems for a Highâ€Stability Lithium–Sulfur Battery. Advanced Energy Materials, 2018, 8, 1702348.	10.2	266
200	Wearable energy sources based on 2D materials. Chemical Society Reviews, 2018, 47, 3152-3188.	18.7	226

#	Article	IF	CITATIONS
201	Effect of Electrolyte on High Sulfur Loading Li-S Batteries. Journal of the Electrochemical Society, 2018, 165, A416-A423.	1.3	28
202	An extremely safe and wearable solid-state zinc ion battery based on a hierarchical structured polymer electrolyte. Energy and Environmental Science, 2018, 11, 941-951.	15.6	731
203	Advanced Architectures and Relatives of Air Electrodes in Zn–Air Batteries. Advanced Science, 2018, 5, 1700691.	5.6	645
204	Issues and Challenges Facing Flexible Lithiumâ€lon Batteries for Practical Application. Small, 2018, 14, e1702989.	5.2	152
205	Porous three-dimensional reduced graphene oxide for high-performance lithium-sulfur batteries. Journal of Alloys and Compounds, 2018, 739, 290-297.	2.8	43
206	Flexible and Hierarchically Structured Sulfur Composite Cathode Based on the Carbonized Textile for High-Performance Li–S Batteries. ACS Applied Materials & Interfaces, 2018, 10, 3938-3947.	4.0	33
207	Two-dimensional material-based bionano platforms to control mesenchymal stem cell differentiation. Biomaterials Research, 2018, 22, 10.	3.2	25
208	Achieving high gravimetric energy density for flexible lithium-ion batteries facilitated by core–double-shell electrodes. Energy and Environmental Science, 2018, 11, 1859-1869.	15.6	216
209	Porous hybrid aerogels with ultrahigh sulfur loading for lithium–sulfur batteries. Journal of Materials Chemistry A, 2018, 6, 9032-9040.	5.2	33
210	Prussian blue nanocubes supported on graphene foam as superior binder-free anode of lithium-ion batteries. Journal of Alloys and Compounds, 2018, 749, 811-817.	2.8	60
211	A robust network binder with dual functions of Cu ²⁺ ions as ionic crosslinking and chemical binding agents for highly stable Li–S batteries. Journal of Materials Chemistry A, 2018, 6, 7382-7388.	5.2	81
212	Free-Standing Mn ₃ O ₄ @CNF/S Paper Cathodes with High Sulfur Loading for Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2018, 10, 13406-13412.	4.0	68
213	Self-supporting porous CoS2/rGO sulfur host prepared by bottom-up assembly for lithium-sulfur batteries. Journal of Alloys and Compounds, 2018, 749, 586-593.	2.8	64
214	Three-dimensional carbon/ZnO nanomembrane foam as an anode for lithium-ion battery with long-life and high areal capacity. Journal of Materials Chemistry A, 2018, 6, 7227-7235.	5.2	63
215	Lightweight, free-standing 3D interconnected carbon nanotube foam as a flexible sulfur host for high performance lithium-sulfur battery cathodes. Energy Storage Materials, 2018, 10, 206-215.	9.5	91
216	N-doped yolk-shell hollow carbon sphere wrapped with graphene as sulfur host for high-performance lithium-sulfur batteries. Applied Surface Science, 2018, 427, 823-829.	3.1	56
217	Graphene-based materials for flexible energy storage devices. Journal of Energy Chemistry, 2018, 27, 12-24.	7.1	129
218	High-performance lithium-sulfur batteries based on self-supporting graphene/carbon nanotube foam@sulfur composite cathode and quasi-solid-state polymer electrolyte. Chemical Engineering Journal, 2018, 332, 8-15.	6.6	39

#	Article	IF	CITATIONS
219	Designing a Highâ€Performance Lithium–Sulfur Batteries Based on Layered Double Hydroxides–Carbon Nanotubes Composite Cathode and a Dualâ€Functional Graphene–Polypropylene–Al ₂ O ₃ Separator. Advanced Functional Materials, 2018, 28, 1704294.	7.8	135
220	Nanostructured Host Materials for Trapping Sulfur in Rechargeable Li–S Batteries: Structure Design and Interfacial Chemistry. Small Methods, 2018, 2, 1700279.	4.6	201
221	Suppressing Polysulfide Dissolution via Cohesive Forces by Interwoven Carbon Nanofibers for High-Areal-Capacity Lithium–Sulfur Batteries. Nano Letters, 2018, 18, 475-481.	4.5	137
222	Root-like porous carbon nanofibers with high sulfur loading enabling superior areal capacity of lithium sulfur batteries. Carbon, 2018, 128, 138-146.	5.4	82
223	Adsorption and diffusion of lithium polysulfides over blue phosphorene for Li–S batteries. Nanoscale, 2018, 10, 21335-21352.	2.8	69
224	Highly conductive porous graphene/sulfur composite ribbon electrodes for flexible lithium–sulfur batteries. Nanoscale, 2018, 10, 21132-21141.	2.8	27
225	A carbon foam-supported high sulfur loading composite as a self-supported cathode for flexible lithium–sulfur batteries. Nanoscale, 2018, 10, 21790-21797.	2.8	21
226	High-performance all-solid-state lithium–sulfur batteries with sulfur/carbon nano-hybrids in a composite cathode. Journal of Materials Chemistry A, 2018, 6, 23345-23356.	5.2	48
227	Scientific worth of polymer and graphene foam-based nanomaterials. Journal of the Chinese Advanced Materials Society, 2018, 6, 779-800.	0.7	5
228	Ultrathin Honeycomb-like Carbon as Sulfur Host Cathode for High Performance Lithium–Sulfur Batteries. ACS Applied Energy Materials, 2018, 1, 7076-7084.	2.5	17
229	A Flexible All-in-One Lithium-Sulfur Battery. ACS Nano, 2018, 12, 12503-12511.	7.3	95
230	An Integrated Strategy towards Enhanced Performance of the Lithium–Sulfur Battery and its Fading Mechanism. Chemistry - A European Journal, 2018, 24, 18544-18550.	1.7	14
231	Three-dimensional hierarchical porous TiO2/graphene aerogels as promising anchoring materials for lithium‒sulfur batteries. Electrochimica Acta, 2018, 292, 568-574.	2.6	40
232	3D copper foam/bamboo charcoal composites as high sulfur loading host for lithium-sulfur batteries. Ionics, 2018, 24, 4093-4099.	1.2	7
233	Stretchable Electrode Breakthrough: Archimedean Spiral Coil Lithium Anode. Joule, 2018, 2, 1654-1656.	11.7	7
234	Three-dimensional hierarchical Ni ₃ Se ₂ nanorod array as binder/carbon-free electrode for high-areal-capacity Na storage. Nanoscale, 2018, 10, 18942-18948.	2.8	30
235	Correlation of Materials Property and Performance with Internal Structures Evolvement Revealed by Laboratory X-ray Tomography. Materials, 2018, 11, 1795.	1.3	38
236	Carbon-metal oxide nanocomposites as lithium-sulfur battery cathodes. Functional Materials Letters, 2018, 11, 1830007.	0.7	24

#	Article	IF	CITATIONS
237	Carbon Nanotube-Connected Yolk–Shell Carbon Nanopolyhedras with Cobalt and Nitrogen Doping as Sulfur Immobilizers for High-Performance Lithium–Sulfur Batteries. ACS Applied Energy Materials, 2018, 1, 6487-6496.	2.5	29
238	Lithium cobaltate: a novel host material enables high-rate and stable lithium–sulfur batteries. Rare Metals, 2018, 37, 929-935.	3.6	19
239	Construction of a low-defect and highly conductive 3D graphene network to enable a high sulphur content cathode for high performance Li–S/graphene batteries. Journal of Materials Chemistry A, 2018, 6, 22555-22565.	5.2	45
240	Ultrathin MXene Nanosheets Decorated with TiO ₂ Quantum Dots as an Efficient Sulfur Host toward Fast and Stable Li–S Batteries. Small, 2018, 14, e1802443.	5.2	125
241	Progress on the Critical Parameters for Lithium–Sulfur Batteries to be Practically Viable. Advanced Functional Materials, 2018, 28, 1801188.	7.8	368
242	Hierarchical and Highly Stable Conductive Network Cathode for Ultraflexible Li–S Batteries. ACS Applied Energy Materials, 2018, 1, 2689-2697.	2.5	10
243	Powder metallurgy template growth of 3D N-doped graphene foam as binder-free cathode for high-performance lithium/sulfur battery. Carbon, 2018, 137, 368-378.	5.4	50
244	MOF-derived Cobalt Sulfide Grown on 3D Graphene Foam as an Efficient Sulfur Host for Long-Life Lithium-Sulfur Batteries. IScience, 2018, 4, 36-43.	1.9	155
245	Engineering multi-chambered carbon nanospheres@carbon as efficient sulfur hosts for lithium–sulfur batteries. Journal of Materials Chemistry A, 2018, 6, 10891-10897.	5.2	24
246	Low-temperature solid-state growth of three-dimensional bicontinuous nanoporous graphene with tunable porosity for lithium–sulfur batteries. Journal of Materials Chemistry A, 2018, 6, 11405-11415.	5.2	8
247	In Situ Formed Protective Barrier Enabled by Sulfur@Titanium Carbide (MXene) Ink for Achieving High apacity, Long Lifetime Li‧ Batteries. Advanced Science, 2018, 5, 1800502.	5.6	210
248	Structural Design of Lithium–Sulfur Batteries: From Fundamental Research to Practical Application. Electrochemical Energy Reviews, 2018, 1, 239-293.	13.1	298
249	Graphene and its derivatives in lithium–sulfur batteries. Materials Today Energy, 2018, 9, 319-335.	2.5	138
250	A heterogenized Ni-doped zeolitic imidazolate framework to guide efficient trapping and catalytic conversion of polysulfides for greatly improved lithium–sulfur batteries. Journal of Materials Chemistry A, 2018, 6, 13593-13598.	5.2	65
251	Microporous Polypyrroleâ€Coated Graphene Foam for Highâ€Performance Multifunctional Sensors and Flexible Supercapacitors. Advanced Functional Materials, 2018, 28, 1707013.	7.8	195
252	A Rechargeable Al–Te Battery. ACS Applied Energy Materials, 2018, 1, 4924-4930.	2.5	51
253	Realizing Highâ€Performance Li–Polysulfide Full Cells by using a Lithium Bis(trifluoromethanesulfonyl)imide Salt Electrolyte for Stable Cyclability. ChemSusChem, 2018, 11, 3402-3409.	3.6	8
254	Metal-organic framework/carbon nanotube-coated polyethylene separator for improving the cycling performance of lithium-sulfur cells. Electrochimica Acta, 2018, 283, 1291-1299.	2.6	60

#	Article	IF	CITATIONS
255	Flexible VO <i>_x</i> Nanosphere@SWCNT Hybrid Films with Dualâ€Confinement Function of Polysulfides for Highâ€Performance Lithium–Sulfur Batteries. Advanced Materials Interfaces, 2018, 5, 1800766.	1.9	14
256	Lithium sulfur battery exploiting material design and electrolyte chemistry: 3D graphene framework and diglyme solution. Journal of Power Sources, 2018, 397, 102-112.	4.0	37
258	A novel 3D silver nanowires@polypyrrole sponge loaded with water giving excellent microwave absorption properties. Chemical Engineering Journal, 2018, 352, 490-500.	6.6	104
259	Al 2 O 3 -doped ZnO coating of carbon nanotubes as cathode material for lithium-sulfur batteries. Journal of Power Sources, 2018, 398, 75-82.	4.0	34
260	Neuron-Inspired Fe ₃ O ₄ /Conductive Carbon Filament Network for High-Speed and Stable Lithium Storage. ACS Applied Materials & Interfaces, 2018, 10, 17923-17932.	4.0	36
261	Advanced 3D Current Collectors for Lithiumâ€Based Batteries. Advanced Materials, 2018, 30, e1802014.	11.1	218
262	Tuning the electrolyte network structure to invoke quasi-solid state sulfur conversion and suppress lithium dendrite formation in Li–S batteries. Nature Energy, 2018, 3, 783-791.	19.8	421
263	Multifunctionality of Carbon-based Frameworks in Lithium Sulfur Batteries. Electrochemical Energy Reviews, 2018, 1, 403-432.	13.1	42
264	Reduced graphene oxide nanosheet modified NiMn-LDH nanoflake arrays for high-performance supercapacitors. Chemical Communications, 2018, 54, 10172-10175.	2.2	46
265	Application of Robust Design Methodology to Battery Packs for Electric Vehicles: Identification of Critical Technical Requirements for Modular Architecture. Batteries, 2018, 4, 30.	2.1	30
266	Hierarchically porous TiO2 matrix encapsulated sulfur and polysulfides for high performance lithium/sulfur batteries. Journal of Alloys and Compounds, 2018, 769, 678-685.	2.8	25
267	Nitrogen-doped carbon nanotube sponge with embedded Fe/Fe ₃ C nanoparticles as binder-free cathodes for high capacity lithium–sulfur batteries. Journal of Materials Chemistry A, 2018, 6, 17473-17480.	5.2	60
268	Easy fabrication of flexible and multilayer nanocarbon-based cathodes with a high unreal sulfur loading by electrostatic spraying for lithium-sulfur batteries. Carbon, 2018, 138, 18-25.	5.4	25
269	Recent research trends in Li–S batteries. Journal of Materials Chemistry A, 2018, 6, 11582-11605.	5.2	199
270	Recent progress of advanced binders for Li-S batteries. Journal of Power Sources, 2018, 396, 19-32.	4.0	88
271	Creating Effective Nanoreactors on Carbon Nanotubes with Mechanochemical Treatments for Highâ€Areal apacity Sulfur Cathodes and Lithium Anodes. Advanced Functional Materials, 2018, 28, 1800595.	7.8	52
272	Zinc acetate activation-enhanced performance of hollow nano silica/carbon composite nanofibers for lithium-sulfur batteries. Journal of Electroanalytical Chemistry, 2018, 823, 287-295.	1.9	10
273	Emerging Nonaqueous Aluminumâ€lon Batteries: Challenges, Status, and Perspectives. Advanced Materials, 2018, 30, e1706310.	11.1	301

#	Article	IF	CITATIONS
274	Recent advances on flexible electrodes for Na-ion batteries and Li–S batteries. Journal of Energy Chemistry, 2019, 32, 15-44.	7.1	61
275	Freestanding Mo2C-decorating N-doped carbon nanofibers as 3D current collector for ultra-stable Li-S batteries. Energy Storage Materials, 2019, 18, 375-381.	9.5	96
276	Ultra-thin Fe3C nanosheets promote the adsorption and conversion of polysulfides in lithium-sulfur batteries. Energy Storage Materials, 2019, 18, 338-348.	9.5	137
277	The Regulating Role of Carbon Nanotubes and Graphene in Lithiumâ€ l on and Lithium–Sulfur Batteries. Advanced Materials, 2019, 31, e1800863.	11.1	339
278	Highly conductive copolymer/sulfur composites with covalently grafted polyaniline for stable and durable lithium-sulfur batteries. Electrochimica Acta, 2019, 321, 134678.	2.6	36
279	Boosting Highâ€Rate Li–S Batteries by an MOFâ€Derived Catalytic Electrode with a Layerâ€byâ€Layer Structure Advanced Science, 2019, 6, 1802362.	^{2.} 5.6	91
280	Hierarchical porous Fe/N doped carbon nanofibers as host materials for high sulfur loading Li–S batteries. Nanoscale, 2019, 11, 15156-15165.	2.8	29
281	Recent advances in cathode materials for rechargeable lithium–sulfur batteries. Nanoscale, 2019, 11, 15418-15439.	2.8	125
282	Patterned macroporous Fe ₃ C/C membrane-induced high ionic conductivity for integrated Li–sulfur battery cathodes. Journal of Materials Chemistry A, 2019, 7, 20614-20623.	5.2	37
283	Oriented outperforms disorder: Thickness-independent mass transport for lithium-sulfur batteries. Carbon, 2019, 154, 90-97.	5.4	12
284	Polydopamine-coated hierarchical tower-shaped carbon for high-performance lithium-sulfur batteries. Electrochimica Acta, 2019, 319, 359-365.	2.6	31
285	Carbon nanotube-based materials for lithium–sulfur batteries. Journal of Materials Chemistry A, 2019, 7, 17204-17241.	5.2	214
286	A Review: Electrospun Nanofiber Materials for Lithium ulfur Batteries. Advanced Functional Materials, 2019, 29, 1905467.	7.8	145
287	ZrO(NO3)2 as a functional additive to suppress the diffusion of polysulfides in lithium - Sulfur batteries. Journal of Power Sources, 2019, 442, 227232.	4.0	29
290	Metal Coated Polypropylene Separator with Enhanced Surface Wettability for High Capacity Lithium Metal Batteries. Scientific Reports, 2019, 9, 16795.	1.6	30
291	A new high-capacity and safe energy storage system: lithium-ion sulfur batteries. Nanoscale, 2019, 11, 19140-19157.	2.8	28
292	Nanowires for Electrochemical Energy Storage. Chemical Reviews, 2019, 119, 11042-11109.	23.0	309
293	TiO ₂ and Co Nanoparticleâ€Decorated Carbon Polyhedra as Efficient Sulfur Host for Highâ€Performance Lithium–Sulfur Batteries. Small, 2019, 15, e1804533.	5.2	67

#	Article	IF	CITATIONS
294	Recent progress in flexible non-lithium based rechargeable batteries. Journal of Materials Chemistry A, 2019, 7, 4353-4382.	5.2	91
295	Polyethylenimine Expanded Graphite Oxide Enables High Sulfur Loading and Longâ€Term Stability of Lithium–Sulfur Batteries. Small, 2019, 15, e1804578.	5.2	30
296	Sulfide heave: Key factor governing cathode deterioration in pouch Li S cells. Electrochimica Acta, 2019, 300, 150-155.	2.6	6
297	Volumetric Discharge Capacity 1 A h cm ^{–3} Realized by Sulfur in Carbon Nanotube Sponge Cathodes. Journal of Physical Chemistry C, 2019, 123, 3951-3958.	1.5	13
298	Uniform zeolitic imidazolate framework coating via in situ recoordination for efficient polysulfide trapping. Energy Storage Materials, 2019, 23, 55-61.	9.5	33
299	CF@rGO/PPy-S Hybrid Foam with Paper Window-like Microstructure as Freestanding and Flexible Cathode for the Lithium–Sulfur Battery. ACS Applied Energy Materials, 2019, 2, 4151-4158.	2.5	20
300	A Robust, Freestanding MXeneâ€Sulfur Conductive Paper for Longâ€Lifetime Li–S Batteries. Advanced Functional Materials, 2019, 29, 1901907.	7.8	195
301	Facile, Solventâ€Free Preparation of High Density, High Mass Loading Sulfur Cathodes Enabled by Dryâ€Pressable Holey Graphene Scaffolds. Batteries and Supercaps, 2019, 2, 774-783.	2.4	25
302	2D Meso/Microporous Platelet Carbon Derived from Metalâ€Organic frameworks and Its Application in Highâ€Performance Liâ€ S Batteries. ChemElectroChem, 2019, 6, 3091-3100.	1.7	6
303	Ultrahigh sulfur content up to 93Âwt% encapsulated in multilayer nanoshell of V/V2O5 composite to suppress shuttle effect of lithium–sulfur battery with high-performance. Materials Today Energy, 2019, 13, 267-276.	2.5	29
304	Metal–Organic Frameworks/Conducting Polymer Hydrogel Integrated Three-Dimensional Free-Standing Monoliths as Ultrahigh Loading Li–S Battery Electrodes. Nano Letters, 2019, 19, 4391-4399.	4.5	115
305	High-density graphene/single-walled carbon nanohorn composite supercapacitor electrode with high volumetric capacitance. Applied Surface Science, 2019, 489, 708-716.	3.1	34
306	Carbon nanotubes/SiC prepared by catalytic chemical vapor deposition as scaffold for improved lithium-sulfur batteries. Journal of Nanoparticle Research, 2019, 21, 1.	0.8	11
307	Graphene/carbon aerogel for high areal capacity sulfur cathode of Li-S batteries. Ionics, 2019, 25, 4615-4624.	1.2	10
308	Titanium(III) Sulfide Nanoparticles Coated with Multicomponent Oxide (Ti–S–O) as a Conductive Polysulfide Scavenger for Lithium–Sulfur Batteries. Electronic Materials Letters, 2019, 15, 613-622.	1.0	4
309	Impact of the Mechanical Properties of a Functionalized Cross-Linked Binder on the Longevity of Li–S Batteries. ACS Applied Materials & Interfaces, 2019, 11, 22481-22491.	4.0	22
310	Recent Advances in Electrode Fabrication for Flexible Energy torage Devices. Advanced Materials Technologies, 2019, 4, 1900083.	3.0	54
311	Three-dimensional twisted fiber composite as high-loading cathode support for lithium sulfur batteries. Composites Part B: Engineering, 2019, 174, 107025.	5.9	16

#	Article	IF	CITATIONS
312	Nanostructures and Nanomaterials for Lithium Metal Batteries. , 2019, , 159-214.		0
313	Three-dimensional Fe3O4/N-graphene sponge as an efficient organosulfide host for high-performance lithium-organosulfur batteries. Energy Storage Materials, 2019, 23, 88-94.	9.5	30
314	Current Status and Future Prospects of Metal–Sulfur Batteries. Advanced Materials, 2019, 31, e1901125.	11.1	422
315	High-Adhesion Stretchable Electrode via Cross-Linking Intensified Electroless Deposition on a Biomimetic Elastomeric Micropore Film. ACS Applied Materials & Interfaces, 2019, 11, 20535-20544.	4.0	33
316	Nanostructures and Nanomaterials for Batteries. , 2019, , .		12
317	Interlayers for lithium-based batteries. Energy Storage Materials, 2019, 23, 112-136.	9.5	37
318	MnO ₂ -Coated Sulfur-Filled Hollow Carbon Nanosphere-Based Cathode Materials for Enhancing Electrochemical Performance of Li-S Cells. Journal of the Electrochemical Society, 2019, 166, A1355-A1362.	1.3	18
319	Active Anchoring Polysulfides of ZnSâ€Decorated Porous Carbon Aerogel for a Highâ€Performance Lithiumâ€Sulfur Battery. ChemElectroChem, 2019, 6, 2570-2577.	1.7	20
320	Advanced Lithium Ion Sulfur Battery Based on Spontaneous Electrochemical Exfoliation/Lithiation of Graphite in Nonaqueous Electrolytes. ACS Applied Energy Materials, 2019, 2, 3798-3804.	2.5	7
321	Three-dimensional "skin-framework―hybrid network as electroactive material platform for high-performance solid-state asymmetric supercapacitor. RSC Advances, 2019, 9, 12877-12885.	1.7	0
322	Triple-Layered Carbon-SiO ₂ Composite Membrane for High Energy Density and Long Cycling Li–S Batteries. ACS Nano, 2019, 13, 5900-5909.	7.3	93
323	Hierarchical Highâ€Porosity Graphene Oxideâ€Porous Carbon/Sulfur Composite with Sodium Chloride as Temporary Space Holders for Highâ€Performance Lithiumâ€5ulfur Batteries. ChemElectroChem, 2019, 6, 2667-2674.	1.7	3
324	Few‣ayer Boron Nitride with Engineered Nitrogen Vacancies for Promoting Conversion of Polysulfide as a Cathode Matrix for Lithium–Sulfur Batteries. Chemistry - A European Journal, 2019, 25, 8112-8117.	1.7	39
325	Alloyed Cu/Si core-shell nanoflowers on the three-dimensional graphene foam as an anode for lithium-ion batteries. Electrochimica Acta, 2019, 306, 45-53.	2.6	24
326	Facile and scalable fabrication of high-energy-density sulfur cathodes for pragmatic lithium-sulfur batteries. Journal of Power Sources, 2019, 422, 104-112.	4.0	24
327	Synergistic Regulation of Polysulfides Conversion and Deposition by MOFâ€Derived Hierarchically Ordered Carbonaceous Composite for Highâ€Energy Lithium–Sulfur Batteries. Advanced Functional Materials, 2019, 29, 1900875.	7.8	104
328	Synthesis of novel hard mesoporous carbons and their applications as anodes for Li and Na ion batteries. Carbon, 2019, 147, 214-226.	5.4	41
329	3D Hierarchical Porous Graphene-Based Energy Materials: Synthesis, Functionalization, and Application in Energy Storage and Conversion. Electrochemical Energy Reviews, 2019, 2, 332-371.	13.1	82

#	Article	IF	CITATIONS
330	Intercalation-conversion hybrid cathodes enabling Li–S full-cell architectures with jointly superior gravimetric and volumetric energy densities. Nature Energy, 2019, 4, 374-382.	19.8	449
331	Dense monolithic MOF and carbon nanotube hybrid with enhanced volumetric and areal capacities for lithium–sulfur battery. Journal of Materials Chemistry A, 2019, 7, 9195-9201.	5.2	70
333	Mesoporous silica nanoplates facilitating fast Li ⁺ diffusion as effective polysulfide-trapping materials for lithium–sulfur batteries. Journal of Materials Chemistry A, 2019, 7, 9110-9119.	5.2	27
334	Large-scale fabrication of reduced graphene oxide-sulfur composite films for flexible lithium-sulfur batteries. Journal of Energy Chemistry, 2019, 38, 199-206.	7.1	45
335	Conductive CoOOH as Carbonâ€Free Sulfur Immobilizer to Fabricate Sulfurâ€Based Composite for Lithium–Sulfur Battery. Advanced Functional Materials, 2019, 29, 1901051.	7.8	157
336	Enhanced electrochemical performance of lithium–sulphur battery by negating polysulphide shuttling and interfacial resistance through aluminium nanolayer deposition on a polypropylene separator. lonics, 2019, 25, 1645-1657.	1.2	11
337	Physical activation of graphene: An effective, simple and clean procedure for obtaining microporous graphene for high-performance Li/S batteries. Nano Research, 2019, 12, 759-766.	5.8	38
338	Confinement of sulfur species into heteroatom-doped, porous carbon container for high areal capacity cathode. Chemical Engineering Journal, 2019, 368, 340-349.	6.6	26
339	Electrospun zeolitic imidazolate framework-derived nitrogen-doped carbon nanofibers with high performance for lithium-sulfur batteries. International Journal of Energy Research, 2019, 43, 1892-1902.	2.2	92
340	Long-cycle stability for Li-S batteries by carbon nanofibers/reduced graphene oxide as host cathode material. Ionics, 2019, 25, 1659-1668.	1.2	4
341	Bioinspired Binders Actively Controlling Ion Migration and Accommodating Volume Change in High Sulfur Loading Lithium–Sulfur Batteries. Advanced Energy Materials, 2019, 9, 1902938.	10.2	70
342	High Stable Sulfur Cathode with Selfâ€Healable and Physical Confining Polydimethylsiloxane Interlayer. ChemElectroChem, 2019, 6, 5705-5711.	1.7	2
343	Rational design of 3D N-doped carbon nanosheet framework encapsulated ultrafine ZnO nanocrystals as superior performance anode materials in lithium ion batteries. Journal of Materials Chemistry A, 2019, 7, 25155-25164.	5.2	42
344	In-situ growth of 1T/2H-MoS2 on carbon fiber cloth and the modification of SnS2 nanoparticles: A three-dimensional heterostructure for high-performance flexible lithium-ion batteries. Chemical Engineering Journal, 2019, 356, 483-491.	6.6	103
345	Ultrathin MOF nanosheet assembled highly oriented microporous membrane as an interlayer for lithium-sulfur batteries. Energy Storage Materials, 2019, 21, 14-21.	9.5	182
346	High sulfur loading, rGO-linked and polymer binder-free cathodes based on rGO wrapped N,P-codoped mesoporous carbon as sulfur host for Li-S batteries. Chemical Engineering Journal, 2019, 361, 1043-1052.	6.6	57
347	Review on areal capacities and long-term cycling performances of lithium sulfur battery at high sulfur loading. Energy Storage Materials, 2019, 18, 289-310.	9.5	231
348	An ant-nest-like cathode substrate for lithium-sulfur batteries with practical cell fabrication parameters. Energy Storage Materials, 2019, 18, 491-499.	9.5	16

#	Article	IF	CITATIONS
349	Self-Assembled 3D MnO ₂ Nanosheets@Delaminated-Ti ₃ C ₂ Aerogel as Sulfur Host for Lithium–Sulfur Battery Cathodes. ACS Applied Energy Materials, 2019, 2, 705-714.	2.5	65
350	A compact 3D interconnected sulfur cathode for high-energy, high-power and long-life lithium-sulfur batteries. Energy Storage Materials, 2019, 20, 14-23.	9.5	35
351	WS2-decorated graphene foam@CNTs hybrid anode for enhanced lithium-ion storage. Journal of Alloys and Compounds, 2019, 784, 697-703.	2.8	18
352	Metal–Sulfur Batteries: Overview and Research Methods. ACS Energy Letters, 2019, 4, 436-446.	8.8	108
354	Carbon-based derivatives from metal-organic frameworks as cathode hosts for Li–S batteries. Journal of Energy Chemistry, 2019, 38, 94-113.	7.1	104
355	Lightweight Metallic MgB2 Mediates Polysulfide Redox and Promises High-Energy-Density Lithium-Sulfur Batteries. Joule, 2019, 3, 136-148.	11.7	256
356	A New Concept of a Porous Carbon Interlayer Impregnated with Sulfur for Longâ€Life and Highâ€Energy LïS Batteries. Bulletin of the Korean Chemical Society, 2019, 40, 24-28.	1.0	1
357	A free-standing nitrogen-doped porous carbon foam electrode derived from melaleuca bark for lithium-sulfur batteries. Electrochimica Acta, 2019, 293, 19-24.	2.6	45
358	Advanced nanostructured carbon-based materials for rechargeable lithium-sulfur batteries. Carbon, 2019, 141, 400-416.	5.4	268
359	Insight on lithium metal anode interphasial chemistry: Reduction mechanism of cyclic ether solvent and SEI film formation. Energy Storage Materials, 2019, 17, 366-373.	9.5	97
360	From agaric hydrogel to nitrogen-doped 3D porous carbon for high-performance Li–S batteries. Journal of Materials Science, 2020, 55, 1136-1147.	1.7	17
361	Promoting opposite diffusion and efficient conversion of polysulfides in "Trap―Fe C-Doped asymmetric porous membranes as integrated electrodes. Chemical Engineering Journal, 2020, 382, 122858.	6.6	8
362	Efficient polysulfide blocker from conductive niobium nitride@graphene for Li-S batteries. Journal of Energy Chemistry, 2020, 45, 135-141.	7.1	69
363	Tailoring three-dimensional interconnected nanoporous graphene micro/nano-foams for lithium-sulfur batteries. Carbon, 2020, 157, 437-447.	5.4	30
364	Rational design of two-dimensional nanomaterials for lithium–sulfur batteries. Energy and Environmental Science, 2020, 13, 1049-1075.	15.6	285
365	Rational design of polar/nonpolar mediators toward efficient sulfur fixation and enhanced conductivity. Journal of Materials Chemistry A, 2020, 8, 1010-1051.	5.2	32
366	Stable lithium–sulfur batteries with high sulfur content fabricated by ultralight ochroma lagopus-derived carbon with dopamine shell as sulfur host. Journal of Alloys and Compounds, 2020, 819, 152995.	2.8	20
367	A sustainable sulfur–carbonaceous composite electrode toward high specific energy rechargeable cells. Materials Horizons, 2020, 7, 524-529.	6.4	9

		CITATION REPORT	
#	Article	IF	CITATIONS
368	A metal-free battery working at â^'80Â °C. Energy Storage Materials, 2020, 26, 585-592.	9.5	35
369	Twoâ€Dimensional Transition Metal Carbides and Nitrides (MXenes): Synthesis, Properties, and Electrochemical Energy Storage Applications. Energy and Environmental Materials, 2020, 3, 29-55.	7.3	319
370	A novel poly(vinyl carbonate-co-butyl acrylate) quasi-solid-state electrolyte as a strong catcher for lithium polysulfide in Li–S batteries. Electrochimica Acta, 2020, 332, 135463.	2.6	13
371	Improved Performance and Immobilizing Mechanism of Nâ€doping Carbon Aerogel with Net Channel via Longâ€Chain Directing for Lithium–Sulfur Battery. Energy Technology, 2020, 8, 1901057.	1.8	6
372	Free‣tanding Nanostructured Architecture as a Promising Platform for Highâ€Performance Lithium–Sulfur Batteries. Small Structures, 2020, 1, 2000047.	6.9	48
373	Enhanced Adsorption of Polysulfides on Carbon Nanotubes/Boron Nitride Fibers for Highâ€Performance Lithiumâ€Sulfur Batteries. Chemistry - A European Journal, 2020, 26, 17567-17573.	1.7	12
374	Ti ₃ C ₂ MXene as an "energy band bridge―to regulate the heterointerface mass transfer and electron reversible exchange process for Li–S batteries. Journal of Materials Chemistry A, 2020, 8, 25255-25267.	5.2	70
375	Introducing a cell moisturizer: organogel nano-beads with rapid response to electrolytes for Prussian white analogue based non-aqueous potassium ion battery. Chemical Communications, 2020, 56, 9719-9722.	2.2	4
376	Status and prospects of porous graphene networks for lithium–sulfur batteries. Materials Horizons, 2020, 7, 2487-2518.	6.4	63
377	Effect of TiO2/carbon black in sulfur-based composite cathode for lithium–sulfur batteries. Ionics, 2020, 26, 5463-5470.	1.2	3
378	Ti ₃ C ₂ T _x nanosheet wrapped core–shell MnO ₂ nanorods @ hollow porous carbon as a multifunctional polysulfide mediator for improved Li–S batteries. Nanoscale, 2020, 12, 24196-24205.	2.8	17
379	Conductive Porous Laminated Vanadium Nitride as Carbon-Free Hosts for High-Loading Sulfur Cathodes in Lithium–Sulfur Batteries. ACS Nano, 2020, 14, 17308-17320.	7.3	86
380	Free-Standing Sulfur-Carbon Nanotube Electrode with a Deposited Sulfur Layer for High-Energy Lithium-Sulfur Batteries. Journal of Nanoscience and Nanotechnology, 2020, 20, 5019-5023.	0.9	3
381	Facile carbon fiber-sewed high areal density electrode for lithium sulfur batteries. Chemical Communications, 2020, 56, 10758-10761.	2.2	9
382	Polypyrrole-S-coated MWCNT composites as cathode materials for lithium-sulfur batteries. Ionics, 2020, 26, 5455-5462.	1.2	8
383	ZnO quantum dot-modified rGO with enhanced electrochemical performance for lithium–sulfur batteries. RSC Advances, 2020, 10, 32966-32975.	1.7	13
384	Nanostructured Sulfur and Sulfides for Advanced Lithium/Sulfur Cells. ChemElectroChem, 2020, 7, 3927-3942.	1.7	8
385	A review of cathode materials in lithium-sulfur batteries. Ionics, 2020, 26, 5299-5318.	1.2	65

#	Article	IF	CITATIONS
386	Bioproduced Polymers Self-Assemble with Graphene Oxide into Nanocomposite Films with Enhanced Mechanical Performance. ACS Nano, 2020, 14, 14731-14739.	7.3	49
387	Recent Advances in Anodes for Microbial Fuel Cells: An Overview. Materials, 2020, 13, 2078.	1.3	130
388	Hollow Micro-/Nanostructure Reviving Lithium-sulfur Batteries. Chemical Research in Chinese Universities, 2020, 36, 313-319.	1.3	70
389	In-situ growth poly(N-methylaniline) coating on sulfur cathode for lithium-sulfur battery. Journal of Electroanalytical Chemistry, 2020, 871, 114312.	1.9	17
390	A Sulfur-Infused Separator for Boosting Areal Capacity of Li–S Batteries. Journal of Nanoscience and Nanotechnology, 2020, 20, 4937-4942.	0.9	0
392	Scalable In Situ Reactive Assembly of Polypyrroleâ€Coated MnO ₂ Nanowire and Carbon Nanotube Composite as Freestanding Cathodes for High Performance Aqueous Znâ€ion Batteries. ChemElectroChem, 2020, 7, 2762-2770.	1.7	45
393	rGO-CNT aerogel embedding iron phosphide nanocubes for high-performance Li-polysulfide batteries. Carbon, 2020, 167, 446-454.	5.4	21
394	12 years roadmap of the sulfur cathode for lithium sulfur batteries (2009–2020). Energy Storage Materials, 2020, 30, 346-366.	9.5	189
395	Rational structure designs of 2D materials and their applications toward advanced lithium-sulfur battery and lithium-selenium battery. Chemical Engineering Journal, 2020, 401, 125976.	6.6	42
396	Soft Materials for Wearable/Flexible Electrochemical Energy Conversion, Storage, and Biosensor Devices. Materials, 2020, 13, 2733.	1.3	29
397	MnO ₂ nanoflowers grown on a polypropylene separator for use as both a barrier and an accelerator of polysulfides for high-performance Li–S batteries. Dalton Transactions, 2020, 49, 9719-9727.	1.6	9
398	Graphene Quantum Dotsâ€Based Advanced Electrode Materials: Design, Synthesis and Their Applications in Electrochemical Energy Storage and Electrocatalysis. Advanced Energy Materials, 2020, 10, 2001275.	10.2	109
399	Strategies toward High‣oading Lithium–Sulfur Battery. Advanced Energy Materials, 2020, 10, 2000082.	10.2	272
400	Electrode Design for Lithium–Sulfur Batteries: Problems and Solutions. Advanced Functional Materials, 2020, 30, 1910375.	7.8	206
401	Densely Packed 3D Corrugated Papery Electrodes as Polysulfide Reservoirs for Lithium–Sulfur Battery with Ultrahigh Volumetric Capacity. ACS Sustainable Chemistry and Engineering, 2020, 8, 5648-5661.	3.2	15
402	Nitrogen-Doped Flower-Like Hybrid Structure Based on Three-Dimensional Graphene. Journal of Carbon Research, 2020, 6, 40.	1.4	10
403	Conductive Sulfur-Rich Copolymer Composites as Lithium–Sulfur Battery Electrodes with Fast Kinetics and a High Cycle Stability. ACS Sustainable Chemistry and Engineering, 2020, 8, 10389-10401.	3.2	27
404	Nanoengineering to achieve high efficiency practical lithium–sulfur batteries. Nanoscale Horizons, 2020, 5, 808-831.	4.1	53

#	Article	IF	CITATIONS
405	Tuning of interactions between cathode and lithium polysulfide in Li-S battery by rational halogenation. Journal of Energy Chemistry, 2020, 49, 147-152.	7.1	19
406	Nâ€Doped graphene embellished with Co ₉ S ₈ enable advanced sulfur cathode for highâ€performance lithiumâ€sulfur batteries. International Journal of Energy Research, 2020, 44, 4961-4968.	2.2	18
407	Principle of progressively and strongly immobilizing polysulfides on polyoxovanadate clusters for excellent Li–S batteries application. Nano Energy, 2020, 71, 104596.	8.2	15
408	High loading cotton cellulose-based aerogel self-standing electrode for Li-S batteries. Science Bulletin, 2020, 65, 803-811.	4.3	35
409	Highly symmetric gigaporous carbon microsphere as conductive host for sulfur to achieve high areal capacity for lithium–sulfur batteries. Journal of Power Sources, 2020, 451, 227818.	4.0	14
410	2D/1D V2O5 Nanoplates Anchored Carbon Nanofibers as Efficient Separator Interlayer for Highly Stable Lithium–Sulfur Battery. Nanomaterials, 2020, 10, 705.	1.9	20
411	Probing the interaction mechanism of heterostructured VOxNy nanoparticles supported in nitrogen-doped reduced graphene oxide aerogel as an efficient polysulfide electrocatalyst for stable sulfur cathodes. Journal of Power Sources, 2020, 461, 228144.	4.0	16
412	Effective accommodation and conversion of polysulfides using organic–inorganic hybrid frameworks for long-life lithium–sulfur batteries. Nanoscale, 2020, 12, 13377-13387.	2.8	3
413	3D structure of lightweight, conductive cellulose nanofiber foam. Carbohydrate Polymers, 2021, 253, 117238.	5.1	18
414	Superstretchable, thermostable and ultrahigh-loading lithium–sulfur batteries based on nanostructural gel cathodes and gel electrolytes. Nano Energy, 2021, 80, 105510.	8.2	51
415	Au modified single vacancy graphene as anchoring material for lithium–sulfur batteries. Chemical Physics Letters, 2021, 762, 138101.	1.2	2
416	Constructing covalent triazine-based frameworks to explore the effect of heteroatoms and pore structure on electrochemical performance in Li–S batteries. Chemical Engineering Journal, 2021, 407, 127141.	6.6	23
417	Advances in Electrolytes for High Capacity Rechargeable Lithium-Sulphur Batteries. Current Smart Materials, 2021, 5, 3-37.	0.5	7
418	Balanced capture and catalytic ability toward polysulfides by designing MoO ₂ –Co ₂ Mo ₃ O ₈ heterostructures for lithium–sulfur batteries. Nanoscale, 2021, 13, 15689-15698.	2.8	35
419	Graphene Foam Current Collector for High-Areal-Capacity Lithium–Sulfur Batteries. ACS Applied Nano Materials, 2021, 4, 53-60.	2.4	16
420	Scale-up Efforts. , 2021, , 415-422.		0
421	Flexible 3D Graphene-based Electrodes for Ultrahigh Performance Lithium Ion Batteries. Chemistry in the Environment, 2021, , 57-85.	0.2	0
422	A strategy to achieve high loading and high energy density Li-S batteries. Journal of Energy Chemistry, 2021, 53, 340-346.	7.1	35

#	Article	IF	CITATIONS
423	Laser-induced porous graphene on Polyimide/PDMS composites and its kirigami-inspired strain sensor. Theoretical and Applied Mechanics Letters, 2021, 11, 100240.	1.3	20
424	Stretchable Energy Storage Devices Based on Carbon Materials. Small, 2021, 17, e2005015.	5.2	34
425	High performance lithium-sulfur batteries based on CoP nanoparticle-embedded nitrogen-doped carbon nanotube hollow polyhedra. Journal of Electroanalytical Chemistry, 2021, 885, 114996.	1.9	17
426	In situ protection of a sulfur cathode and a lithium anode via adopting a fluorinated electrolyte for stable lithium-sulfur batteries. Science China Materials, 2021, 64, 2127-2138.	3.5	12
427	Grapheneâ€Based Nanomaterials for Flexible and Stretchable Batteries. Small, 2021, 17, e2006262.	5.2	28
428	Layered Double Hydroxide Quantum Dots for Use in a Bifunctional Separator of Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2021, 13, 17978-17987.	4.0	28
429	The use of graphene and its composites to suppress the shuttle effect in lithium-sulfur batteries. New Carbon Materials, 2021, 36, 336-349.	2.9	12
430	Thick freeâ€standing electrode based on carbon–carbon nitride microspheres with large mesopores for highâ€energyâ€density lithium–sulfur batteries. , 2021, 3, 410-423.		16
431	Carbonaceous and Polymer Materials for Li–S Batteries with an Emphasis on Flexible Devices. Advanced Energy and Sustainability Research, 2021, 2, 2000096.	2.8	6
432	A Hierarchically Tailored Wrinkled Three-Dimensional Foam for Enhanced Elastic Supercapacitor Electrodes. Nano Letters, 2021, 21, 7079-7085.	4.5	9
433	PVC based flexible nanocomposites with the incorporation of Polyaniline and Barium Hexa-Ferrite nanoparticles for the shielding against EMI, NIR, and thermal imaging cameras. Synthetic Metals, 2021, 277, 116773.	2.1	21
434	The discovery of interfacial electronic interaction within cobalt boride@MXene for high performance lithium-sulfur batteries. Chinese Chemical Letters, 2021, 32, 2249-2253.	4.8	43
435	Atomic-scale regulation of anionic and cationic migration in alkali metal batteries. Nature Communications, 2021, 12, 4184.	5.8	57
436	Lightweight Free-Standing 3D Nitrogen-Doped Graphene/TiN Aerogels with Ultrahigh Sulfur Loading for High Energy Density Li–S Batteries. ACS Applied Energy Materials, 2021, 4, 7599-7610.	2.5	15
437	Recent Advances and Applications Toward Emerging Lithium–Sulfur Batteries: Working Principles and Opportunities. Energy and Environmental Materials, 2022, 5, 777-799.	7.3	106
438	One-Step Synthesis of N, S Co-doped Porous Carbon Use Ionic Liquid As Dopant for Lithium–Sulfur Batteries. Journal of Electronic Materials, 2021, 50, 6237-6244.	1.0	Ο
439	Review of ZnO Binary and Ternary Composite Anodes for Lithium-Ion Batteries. Nanomaterials, 2021, 11, 2001.	1.9	14
440	Three-dimensional foam-type current collectors for rechargeable batteries: A short review. Journal of Power Sources Advances, 2021, 10, 100065.	2.6	14

#	Article	IF	CITATIONS
441	Wet-resilient graphene aerogel for thermal conductivity enhancement in polymer nanocomposites. Journal of Materials Science and Technology, 2021, 83, 219-227.	5.6	38
442	Electrode Architecture Design to Promote Chargeâ€Transport Kinetics in High‣oading and Highâ€Energy Lithiumâ€Based Batteries. Small Methods, 2021, 5, e2100518.	4.6	27
443	Graphene-Based Materials for Flexible Lithium–Sulfur Batteries. ACS Nano, 2021, 15, 13901-13923.	7.3	94
444	Sulfur-Rich Polymers Based Cathode with Epoxy/Ally Dual-Sulfur-Fixing Mechanism for High Stability Lithium–Sulfur Battery. ACS Nano, 2021, 15, 15027-15038.	7.3	38
445	Recent progress in sulfur cathodes for application to lithium–sulfur batteries. Particuology, 2021, 58, 1-15.	2.0	31
446	Laser-induced micro-explosion to construct hierarchical structure as efficient polysulfide mediators for high-performance lithium-sulfur batteries. Chemical Engineering Journal, 2021, 421, 129707.	6.6	11
447	Crosslinked polyacrylonitrile precursor for S@pPAN composite cathode materials for rechargeable lithium batteries. Journal of Energy Chemistry, 2022, 65, 186-193.	7.1	15
448	Hollow urchin-like Mn3O4 microspheres as an advanced sulfur host for enabling Li-S batteries with high gravimetric energy density. Journal of Colloid and Interface Science, 2022, 606, 1111-1119.	5.0	21
449	Interfacial design of thick sulfur cathodes to achieve high energy density and stability. Journal of Materials Chemistry A, 2021, 9, 17129-17142.	5.2	9
450	Unveiling the physiochemical aspects of the matrix in improving sulfur-loading for room-temperature sodium–sulfur batteries. Materials Advances, 2021, 2, 4165-4189.	2.6	22
451	Boosting the rate performance of Li–S batteries under high mass-loading of sulfur based on a hierarchical NCNT@Co-CoP nanowire integrated electrode. Journal of Materials Chemistry A, 2021, 9, 11151-11159.	5.2	26
452	All in one plasma process: From the preparation of S-C composite cathode to alleviation of polysulfide shuttle in Li-S batteries. Journal of Colloid and Interface Science, 2020, 577, 450-458.	5.0	7
453	Supercooled liquid sulfur maintained in three-dimensional current collector for high-performance Li-S batteries. Science Advances, 2020, 6, eaay5098.	4.7	95
454	Li2S-Incorporated Separator for Achieving High-Energy-Density Li-S Batteries. Journal of Electrochemical Science and Technology, 2020, 11, 33-40.	0.9	2
455	Challenges and key parameters in exploring the cyclability limitation of practical lithium–sulfur batteries. Journal of Materials Chemistry A, 2021, 9, 24215-24240.	5.2	53
456	Categorizing wearable batteries: Unidirectional and omnidirectional deformable batteries. Matter, 2021, 4, 3146-3160.	5.0	44
457	Research Progress in the Applications of New Two-Dimensional Materials in Solid State Lasers. Applied Physics, 2019, 09, 417-423.	0.0	0
458	Hierarchical multi-channels conductive framework constructed with rGO modified natural biochar for high sulfur areal loading self-supporting cathode of lithium-sulfur batteries. Chemical Engineering Journal Advances, 2022, 9, 100209.	2.4	9

#	Article	IF	CITATIONS
459	Electromagnetic Properties of 3D Carbon-Based Porous Structures in High Frequency Range. Russian Physics Journal, 2021, 64, 1047-1054.	0.2	0
460	Copper sulfides and their composites for high-performance rechargeable batteries. Materials Today Chemistry, 2022, 23, 100675.	1.7	4
461	Elastic three-dimensional Fe-doped polypyrrole aerogel current collector for high-loading and high-energy-density lithium-sulfur batteries. Journal of Alloys and Compounds, 2022, 899, 163298.	2.8	7
462	Cathode Materials for Rechargeable Lithiumâ€Sulfur Batteries: Current Progress and Future Prospects. ChemElectroChem, 2022, 9, .	1.7	12
463	Review—Contemporary Progresses in Carbon-Based Electrode Material in Li-S Batteries. Journal of the Electrochemical Society, 2022, 169, 020530.	1.3	28
465	Oxygen and nitrogen tailoring carbon fiber aerogel with platinum electrocatalysis interfaced lithium/sulfur (Li/S) batteries. Chinese Chemical Letters, 2023, 34, 107123.	4.8	8
466	Application and research of current collector for lithium-sulfur battery. Ionics, 2022, 28, 1713-1738.	1.2	6
467	A "Threeâ€Region―Configuration for Enhanced Electrochemical Kinetics and Highâ€Areal Capacity Lithium–Sulfur Batteries. Advanced Functional Materials, 2022, 32, .	7.8	52
468	Tessellated N-doped carbon/CoSe ₂ as trap-catalyst sulfur hosts for room-temperature sodium–sulfur batteries. Inorganic Chemistry Frontiers, 2022, 9, 1743-1751.	3.0	6
469	Templating synthesis of porous carbons for energy-related applications: A review. New Carbon Materials, 2022, 37, 25-45.	2.9	25
470	3D Continuously Porous Graphene for Energy Applications. Advanced Materials, 2022, 34, e2108750.	11.1	53
471	Recent Advances and Strategies toward Polysulfides Shuttle Inhibition for Highâ€Performance Li–S Batteries. Advanced Science, 2022, 9, e2106004.	5.6	161
472	Electrospinning derivative fabrication of sandwich-structured CNF/Co3S4/MoS2 as self-supported electrodes to accelerate electron transport in HER. International Journal of Hydrogen Energy, 2022, 47, 14930-14941.	3.8	14
473	Notes in accordions—organized MXene equipped with CeO2 for synergistically adsorbing and catalyzing polysulfides for high-performance lithium-sulfur batteries. Journal of Energy Chemistry, 2022, 70, 502-510.	7.1	46
474	Engineering a TiNb ₂ O ₇ -Based Electrocatalyst on a Flexible Self-Supporting Sulfur Cathode for Promoting Li-S Battery Performance. ACS Applied Materials & Interfaces, 2022, 14, 1157-1168.	4.0	12
475	A multifunctional nano filler for solid polymer electrolyte toward stable cycling for lithium-metal anodes in lithium–sulfur batteries. Chemical Engineering Journal, 2022, 444, 136328.	6.6	25
476	Sustainability of lithium–sulfur batteries. , 2022, , 603-626.		0
477	High-performance lithium–sulfur batteries 2022 57-73		1 -

#	Article	IF	Citations
478	Graphene–sulfur composite cathodes. , 2022, , 271-288.		0
479	Next Steps in Epidermal Computing: Opportunities and Challenges for Soft On-Skin Devices. , 2022, , .		9
480	Waste Office Paper Derived Celluloseâ€Based Carbon Host in Freestanding Cathodes for Lithiumâ€&ulfur Batteries. ChemElectroChem, 2022, 9, .	1.7	2
481	Recent progress of sulfur cathodes and other components for flexible lithium–sulfur batteries. Materials Today Sustainability, 2022, 19, 100181.	1.9	8
482	High Performance Solid‣tate Lithiumâ€5ulfur Battery Enabled by Multiâ€Functional Cathode and Flexible Hybrid Solid Electrolyte. Small, 2022, 18, .	5.2	10
483	Highâ€Performance Flexible Sulfur Cathodes with Robust Electrode Skeletons Built by a Hierarchical Selfâ€Assembling Slurry. Advanced Science, 2022, 9, .	5.6	5
484	Progress and Opportunities of Vanadium-Based Compounds as Cathode Hosts, Decoration Layers of Separators, and Interlayers in Lithium Sulfur Batteries. Crystal Growth and Design, 2022, 22, 5694-5725.	1.4	5
485	A bifunctional lithium polysilicate as highly efficient adhesion agent and anchoring host for long-lifespan Li-S battery. Journal of Colloid and Interface Science, 2023, 629, 1045-1054.	5.0	4
486	Recent advances in novel graphene: new horizons in renewable energy storage technologies. Journal of Materials Chemistry C, 2022, 10, 11472-11531.	2.7	18
487	Conventional Electrode Materials for Microbial Fuel Cells. , 2022, , 83-117.		0
488	Constructing a Strong-Affinity Elastic Network Binder Enabled by Tannic Acid as the Bifunctional Anchoring Agent for High-Performance Li–S Battery. ACS Applied Energy Materials, 2022, 5, 13580-13589.	2.5	2
489	A nano rod-like α-MnO2 supported on carbon nanotubes modified separator inhibiting polysulfide shuttle in Li-S batteries. Journal of Alloys and Compounds, 2023, 933, 167767.	2.8	7
490	Cobalt-induced highly-electroactive Li2S heterostructured cathode for Li-S batteries. Electrochimica Acta, 2023, 439, 141652.	2.6	11
491	Three dimensional graphene composites: preparation, morphology and their multi-functional applications. Composites Part A: Applied Science and Manufacturing, 2023, 165, 107335.	3.8	20
492	Amino functionalized metal-organic framework/rGO composite electrode for flexible Li-ion batteries. Journal of Alloys and Compounds, 2023, 936, 168183.	2.8	21
493	Crackingâ€Controlled Slurry Coating of Mosaic Electrode for Flexible and Highâ€Performance Lithium–Sulfur Battery. Advanced Energy Materials, 2023, 13, .	10.2	13
494	Energy evolution mechanism of nanonetwork from hydrogenated graphene scrolls. Materials Today Communications, 2022, 33, 104957.	0.9	0
495	Nickel Foam Coated by Ni Nanoparticle-Decorated 3D Nanocarbons as a Freestanding Host for High-Performance Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2023, 15, 3037-3046.	4.0	7

#	Article	IF	CITATIONS
496	Design and preparation of sulfonated polymer membranes for Zn/MnO2 flow batteries with assistance of machine learning. Journal of Membrane Science, 2023, 672, 121453.	4.1	4
497	Restraining volume expansion via ultra-elastic polydimethylsiloxane/carbon nanotubes coatings toward high performance FeS2 cathode. Solid State Ionics, 2023, 394, 116207.	1.3	1
498	Hollow carbon dual-decorated with MnO2 shielding layer and carbon nanotube as a sulfur host for Li-S batteries. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 667, 131408.	2.3	2
499	Flexible solid-state lithium-sulfur batteries based on structural designs. Energy Storage Materials, 2023, 57, 429-459.	9.5	11
500	Nitrogen doped hollow porous carbon fibers derived from polyacrylonitrile for Li-S batteries. New Carbon Materials, 2023, 38, 143-151.	2.9	0
502	Graphene and boron nitride foams for smart functional applications. SmartMat, 2023, 4, .	6.4	2
503	Advances in graphene-based flexible and wearable strain sensors. Chemical Engineering Journal, 2023, 464, 142576.	6.6	52
511	3D Graphene for Flexible Batteries. Carbon Nanostructures, 2023, , 249-265.	0.1	0
514	From non-carbon host toward carbon-free lithium-sulfur batteries. Nano Research, 2024, 17, 1337-1365.	5.8	0