At the centre: influenza A virus ribonucleoproteins

Nature Reviews Microbiology 13, 28-41 DOI: 10.1038/nrmicro3367

Citation Report

#	Article	IF	CITATIONS
1	Structure of importin-α bound to a non-classical nuclear localization signal of the influenza A virus nucleoprotein. Scientific Reports, 2015, 5, 15055.	1.6	41
2	Two Cytoplasmic Acylation Sites and an Adjacent Hydrophobic Residue, but No Other Conserved Amino Acids in the Cytoplasmic Tail of HA from Influenza A Virus Are Crucial for Virus Replication. Viruses, 2015, 7, 6458-6475.	1.5	20
3	Misdelivery at the Nuclear Pore Complex—Stopping a Virus Dead in Its Tracks. Cells, 2015, 4, 277-296.	1.8	38
4	Nuclear entry of DNA viruses. Frontiers in Microbiology, 2015, 6, 467.	1.5	87
5	Polyproteins in structural biology. Current Opinion in Structural Biology, 2015, 32, 139-146.	2.6	21
6	Sequencing the cap-snatching repertoire of H1N1 influenza provides insight into the mechanism of viral transcription initiation. Nucleic Acids Research, 2015, 43, 5052-5064.	6.5	73
7	Site-Specific Amino Acid Preferences Are Mostly Conserved in Two Closely Related Protein Homologs. Molecular Biology and Evolution, 2015, 32, 2944-2960.	3.5	86
8	The microRNA miR-485 targets host and influenza virus transcripts to regulate antiviral immunity and restrict viral replication. Science Signaling, 2015, 8, ra126.	1.6	138
9	Single-cell analysis and stochastic modelling unveil large cell-to-cell variability in influenza A virus infection. Nature Communications, 2015, 6, 8938.	5.8	129
10	Nucleocytoplasmic Shuttling of Influenza A Virus Proteins. Viruses, 2015, 7, 2668-2682.	1.5	36
11	The Cellular Factor NXP2/MORC3 Is a Positive Regulator of Influenza Virus Multiplication. Journal of Virology, 2015, 89, 10023-10030.	1.5	38
12	Old foes, new understandings: nuclear entry of small non-enveloped DNA viruses. Current Opinion in Virology, 2015, 12, 59-65.	2.6	16
13	Timing Is Everything: Coordinated Control of Host Shutoff by Influenza A Virus NS1 and PA-X Proteins. Journal of Virology, 2015, 89, 6528-6531.	1.5	51
14	The RNA synthesis machinery of negative-stranded RNA viruses. Virology, 2015, 479-480, 532-544.	1.1	75
15	RIG-I Signaling Is Essential for Influenza B Virus-Induced Rapid Interferon Gene Expression. Journal of Virology, 2015, 89, 12014-12025.	1.5	36
16	An A14U Substitution in the 3′ Noncoding Region of the M Segment of Viral RNA Supports Replication of Influenza Virus with an NS1 Deletion by Modulating Alternative Splicing of M Segment mRNAs. Journal of Virology, 2015, 89, 10273-10285.	1.5	19
17	Cloning the Horse RNA Polymerase I Promoter and Its Application to Studying Influenza Virus Polymerase Activity. Viruses, 2016, 8, 119.	1.5	7
18	Experimental Approaches to Study Genome Packaging of Influenza A Viruses. Viruses, 2016, 8, 218.	1.5	14

#	Article	IF	CITATIONS
19	Influenza NA and PB1 Gene Segments Interact during the Formation of Viral Progeny: Localization of the Binding Region within the PB1 Gene. Viruses, 2016, 8, 238.	1.5	43
20	Ubiquitin in Influenza Virus Entry and Innate Immunity. Viruses, 2016, 8, 293.	1.5	75
21	New Insights into the Generation of CD4 Memory May Shape Future Vaccine Strategies for Influenza. Frontiers in Immunology, 2016, 7, 136.	2.2	42
22	Single-Molecule FISH Reveals Non-selective Packaging of Rift Valley Fever Virus Genome Segments. PLoS Pathogens, 2016, 12, e1005800.	2.1	69
23	Prevailing PA Mutation K356R in Avian Influenza H9N2 Virus Increases Mammalian Replication and Pathogenicity. Journal of Virology, 2016, 90, 8105-8114.	1.5	68
24	Filamentous Influenza Viruses. Current Clinical Microbiology Reports, 2016, 3, 155-161.	1.8	36
25	Influenza B virus non-structural protein 1 counteracts ISG15 antiviral activity by sequestering ISGylated viral proteins. Nature Communications, 2016, 7, 12754.	5.8	79
26	Using mutagenesis to explore conserved residues in the RNA-binding groove of influenza A virus nucleoprotein for antiviral drug development. Scientific Reports, 2016, 6, 21662.	1.6	23
27	Polymerase Acidic Protein–Basic Protein 1 (PA–PB1) Protein–Protein Interaction as a Target for Next-Generation Anti-influenza Therapeutics. Journal of Medicinal Chemistry, 2016, 59, 7699-7718.	2.9	43
28	Chemical Genomics Identifies the PERK-Mediated Unfolded Protein Stress Response as a Cellular Target for Influenza Virus Inhibition. MBio, 2016, 7, e00085-16.	1.8	17
29	Increased Protein Degradation Improves Influenza Virus Nucleoprotein-Specific CD8 ⁺ T Cell Activation <i>In Vitro</i> but Not in C57BL/6 Mice. Journal of Virology, 2016, 90, 10209-10219.	1.5	7
30	The Influenza Virus Polymerase Complex: An Update on Its Structure, Functions, and Significance for Antiviral Drug Design. Medicinal Research Reviews, 2016, 36, 1127-1173.	5.0	129
31	A conserved influenza A virus nucleoprotein code controls specific viral genome packaging. Nature Communications, 2016, 7, 12861.	5.8	40
32	A novel small-molecule inhibitor of influenza A virus acts by suppressing PA endonuclease activity of the viral polymerase. Scientific Reports, 2016, 6, 22880.	1.6	37
33	Viral cell biology: Influenza raids the splicing store. Nature Microbiology, 2016, 1, 16100.	5.9	2
34	The host protein CLUH participates in the subnuclear transport of influenza virus ribonucleoprotein complexes. Nature Microbiology, 2016, 1, 16062.	5.9	14
35	Transcription Factor Runx3 Is Induced by Influenza A Virus and Double-Strand RNA and Mediates Airway Epithelial Cell Apoptosis. Scientific Reports, 2016, 5, 17916.	1.6	21
36	Activity of Ergoferon against lethal influenza A (H3N2) virus infection in mice. Antiviral Therapy, 2016, 22, 345-351.	0.6	7

#	Article	IF	CITATIONS
37	Intrinsically disordered region of influenza A NP regulates viral genome packaging via interactions with viral RNA and host PI(4,5)P 2. Virology, 2016, 496, 116-126.	1.1	18
38	Imaging viral RNA using multiply labeled tetravalent RNA imaging probes in live cells. Methods, 2016, 98, 91-98.	1.9	10
39	Host Protein Moloney Leukemia Virus 10 (MOV10) Acts as a Restriction Factor of Influenza A Virus by Inhibiting the Nuclear Import of the Viral Nucleoprotein. Journal of Virology, 2016, 90, 3966-3980.	1.5	73
40	Influenza A virus ribonucleoproteins modulate host recycling by competing with Rab11 effectors. Journal of Cell Science, 2016, 129, 1697-710.	1.2	42
41	Species difference in ANP32A underlies influenza A virus polymerase host restriction. Nature, 2016, 529, 101-104.	13.7	228
42	Identification of a small-molecule inhibitor of influenza virus via disrupting the subunits interaction of the viral polymerase. Antiviral Research, 2016, 125, 34-42.	1.9	41
43	Selective incorporation of vRNP into influenza A virions determined by its specific interaction with M1 protein. Virology, 2017, 505, 23-32.	1.1	16
44	NEDDylation of PB2 Reduces Its Stability and Blocks the Replication of Influenza A Virus. Scientific Reports, 2017, 7, 43691.	1.6	30
45	Inhibition of CRM1-mediated nuclear export of influenza A nucleoprotein and nuclear export protein as a novel target for antiviral drug development. Virology, 2017, 507, 32-39.	1.1	17
46	Viral mechanisms for docking and delivering at nuclear pore complexes. Seminars in Cell and Developmental Biology, 2017, 68, 59-71.	2.3	33
47	Energetic cost of building a virus. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E4324-E4333.	3.3	89
48	ZBP1/DAI ubiquitination and sensing of influenza vRNPs activate programmed cell death. Journal of Experimental Medicine, 2017, 214, 2217-2229.	4.2	126
49	CNOT4-Mediated Ubiquitination of Influenza A Virus Nucleoprotein Promotes Viral RNA Replication. MBio, 2017, 8, .	1.8	35
50	Structural studies of influenza virus RNPs by electron microscopy indicate molecular contortions within NP supra-structures. Journal of Structural Biology, 2017, 197, 294-307.	1.3	30
51	Structural basis of an essential interaction between influenza polymerase and Pol II CTD. Nature, 2017, 541, 117-121.	13.7	98
52	KIF13A mediates influenza a virus ribonucleoproteins trafficking. Journal of Cell Science, 2017, 130, 4038-4050.	1.2	23
53	Population Diversity and Collective Interactions during Influenza Virus Infection. Journal of Virology, 2017, 91, .	1.5	82
54	Synergy of two low-affinity NLSs determines the high avidity of influenza A virus nucleoprotein NP for human importin α isoforms. Scientific Reports, 2017, 7, 11381.	1.6	20

#	Article	IF	CITATIONS
55	Structure-based drug discovery for combating influenza virus by targeting the PA–PB1 interaction. Scientific Reports, 2017, 7, 9500.	1.6	27
56	Intracellular Colocalization of Influenza Viral RNA and Rab11A Is Dependent upon Microtubule Filaments. Journal of Virology, 2017, 91, .	1.5	41
57	Sensing of viral and endogenous <scp>RNA</scp> by <scp>ZBP</scp> 1/ <scp>DAI</scp> induces necroptosis. EMBO Journal, 2017, 36, 2529-2543.	3.5	171
58	Discovery of dapivirine, a nonnucleoside HIV-1 reverse transcriptase inhibitor, as a broad-spectrum antiviral against both influenza A and B viruses. Antiviral Research, 2017, 145, 103-113.	1.9	26
59	Zinc Finger-Containing Cellular Transcription Corepressor ZBTB25 Promotes Influenza Virus RNA Transcription and Is a Target for Zinc Ejector Drugs. Journal of Virology, 2017, 91, .	1.5	17
60	Role of influenza A virus NP acetylation on viral growth and replication. Nature Communications, 2017, 8, 1259.	5.8	46
61	Influenza A virus cap-snatches host RNAs based on their abundance early after infection. Virology, 2017, 509, 167-177.	1.1	34
62	Genome-wide analysis of influenza viral RNA and nucleoprotein association. Nucleic Acids Research, 2017, 45, 8968-8977.	6.5	75
63	Analysis of IAV Replication and Co-infection Dynamics by a Versatile RNA Viral Genome Labeling Method. Cell Reports, 2017, 20, 251-263.	2.9	57
64	A compensatory mutagenesis study of a conserved hairpin in the M gene segment of influenza A virus shows its role in virus replication. RNA Biology, 2017, 14, 1606-1616.	1.5	14
65	Identification of a novel small-molecule compound targeting the influenza A virus polymerase PB1-PB2 interface. Antiviral Research, 2017, 137, 58-66.	1.9	18
66	Influenza A virus nucleoprotein targets subnuclear structures. Cellular Microbiology, 2017, 19, e12679.	1.1	10
67	Differential nucleocytoplasmic shuttling of the nucleoprotein of influenza a viruses and association with host tropism. Cellular Microbiology, 2017, 19, e12692.	1.1	15
68	Influenza Viruses. , 2017, , 195-211.		5
69	Influenza A Virus Nucleoprotein: A Highly Conserved Multi-Functional Viral Protein as a Hot Antiviral Drug Target. Current Topics in Medicinal Chemistry, 2017, 17, 2271-2285.	1.0	49
70	Influenza A Virus M2 Protein: Roles from Ingress to Egress. International Journal of Molecular Sciences, 2017, 18, 2649.	1.8	59
71	Bunyavirales ribonucleoproteins: the viral replication and transcription machinery. Critical Reviews in Microbiology, 2018, 44, 522-540.	2.7	57
72	SMARCA2-regulated host cell factors are required for MxA restriction of influenza A viruses. Scientific Reports, 2018, 8, 2092.	1.6	12

#	Article	IF	CITATIONS
73	Uncovering the Rab5â€Independent Autophagic Trafficking of Influenza A Virus by Quantumâ€Dotâ€Based Singleâ€Virus Tracking. Small, 2018, 14, e1702841.	5.2	22
74	Inhibitors of Influenza A Virus Polymerase. ACS Infectious Diseases, 2018, 4, 218-223.	1.8	19
75	A Naturally Occurring Deletion in the Effector Domain of H5N1 Swine Influenza Virus Nonstructural Protein 1 Regulates Viral Fitness and Host Innate Immunity. Journal of Virology, 2018, 92, .	1.5	20
76	Identification of a novel compound targeting the nuclear export of influenza A virus nucleoprotein. Journal of Cellular and Molecular Medicine, 2018, 22, 1826-1839.	1.6	10
77	Antiviral Activity of the Sesquiterpene Lactones from Centipeda minima against Influenza a Virus in vitro. Natural Product Communications, 2018, 13, 1934578X1801300.	0.2	11
78	A Mechanism Underlying Attenuation of Recombinant Influenza A Viruses Carrying Reporter Genes. Viruses, 2018, 10, 679.	1.5	14
79	A 113-amino-acid truncation at the NS1 C-terminus is a determinant for viral replication of H5N6 avian influenza virus in vitro and in vivo. Veterinary Microbiology, 2018, 225, 6-16.	0.8	4
80	Equipping Inner Central Components of Influenza A Virus with Quantum Dots. Analytical Chemistry, 2018, 90, 14020-14028.	3.2	13
81	Firefly genomes illuminate parallel origins of bioluminescence in beetles. ELife, 2018, 7, .	2.8	108
82	Temperature Sensitive Mutations in Influenza A Viral Ribonucleoprotein Complex Responsible for the Attenuation of the Live Attenuated Influenza Vaccine. Viruses, 2018, 10, 560.	1.5	36
83	Influenza Virus. Methods in Molecular Biology, 2018, , .	0.4	10
84	The Nucleolar Protein LYAR Facilitates Ribonucleoprotein Assembly of Influenza A Virus. Journal of Virology, 2018, 92, .	1.5	21
85	Understanding Influenza. Methods in Molecular Biology, 2018, 1836, 1-21.	0.4	12
86	Live Imaging of Influenza Viral Ribonucleoproteins Using Light-Sheet Microscopy. Methods in Molecular Biology, 2018, 1836, 303-327.	0.4	8
87	Correlative Light and Electron Microscopy of Influenza Virus Entry and Budding. Methods in Molecular Biology, 2018, 1836, 237-260.	0.4	7
88	Multiple polymerase gene mutations for human adaptation occurring in Asian H5N1 influenza virus clinical isolates. Scientific Reports, 2018, 8, 13066.	1.6	17
89	Influenza Virus Mounts a Two-Pronged Attack on Host RNA Polymerase II Transcription. Cell Reports, 2018, 23, 2119-2129.e3.	2.9	81
90	RNA Modulates the Interaction between Influenza A Virus NS1 and Human PABP1. Biochemistry, 2018, 57, 3590-3598.	1.2	8

#	Article	IF	CITATIONS
91	Extreme heterogeneity of influenza virus infection in single cells. ELife, 2018, 7, .	2.8	222
92	<scp>CD</scp> 4 T cells in protection from influenza virus: Viral antigen specificity and functional potential. Immunological Reviews, 2018, 284, 91-105.	2.8	60
93	Antiviral activity of doubleâ€stranded RNAâ€binding protein PACT against influenza A virus mediated <i>via</i> suppression of viral RNA polymerase. FASEB Journal, 2018, 32, 4380-4393.	0.2	14
95	The parts are greater than the whole: the role of semi-infectious particles in influenza A virus biology. Current Opinion in Virology, 2018, 33, 42-46.	2.6	29
96	Verdinexor Targeting of CRM1 is a Promising Therapeutic Approach against RSV and Influenza Viruses. Viruses, 2018, 10, 48.	1.5	23
97	Advancements in Host-Based Interventions for Influenza Treatment. Frontiers in Immunology, 2018, 9, 1547.	2.2	26
98	Structural and Functional Motifs in Influenza Virus RNAs. Frontiers in Microbiology, 2018, 9, 559.	1.5	65
99	Influenza A Virus Induces Autophagosomal Targeting of Ribosomal Proteins. Molecular and Cellular Proteomics, 2018, 17, 1909-1921.	2.5	22
100	Host Long Noncoding RNA IncRNA-PAAN Regulates the Replication of Influenza A Virus. Viruses, 2018, 10, 330.	1.5	46
101	Avian Influenza Virus PB1 Gene in H3N2 Viruses Evolved in Humans To Reduce Interferon Inhibition by Skewing Codon Usage toward Interferon-Altered tRNA Pools. MBio, 2018, 9, .	1.8	33
104	Assays to Measure the Activity of Influenza Virus Polymerase. Methods in Molecular Biology, 2018, 1836, 343-374.	0.4	26
105	Influenza A Virus Cell Entry, Replication, Virion Assembly and Movement. Frontiers in Immunology, 2018, 9, 1581.	2.2	357
106	Structure and Function of Influenza Virus Ribonucleoprotein. Sub-Cellular Biochemistry, 2018, 88, 95-128.	1.0	26
107	Lnc-ISC20 Inhibits Influenza A Virus Replication by Enhancing ISG20 Expression. Journal of Virology, 2018, 92, .	1.5	68
108	Influenza Virus. Trends in Microbiology, 2018, 26, 809-810.	3.5	137
109	The Surface-Exposed PA ⁵¹⁻⁷² -Loop of the Influenza A Virus Polymerase Is Required for Viral Genome Replication. Journal of Virology, 2018, 92, .	1.5	15
110	Protein Vaccination Directs the CD4 ⁺ T Cell Response toward Shared Protective Epitopes That Can Be Recalled after Influenza Virus Infection. Journal of Virology, 2019, 93, .	1.5	8
111	Influenza viruses that require 10 genomic segments as antiviral therapeutics. PLoS Pathogens, 2019, 15, e1008098.	2.1	5

#	Article	IF	CITATIONS
112	Phosphorylation Status of Tyrosine 78 Residue Regulates the Nuclear Export and Ubiquitination of Influenza A Virus Nucleoprotein. Frontiers in Microbiology, 2019, 10, 1816.	1.5	9
113	Brevilin A, a Sesquiterpene Lactone, Inhibits the Replication of Influenza A Virus In Vitro and In Vivo. Viruses, 2019, 11, 835.	1.5	26
114	Atomic Force Microscopy Investigation of Influenza A Virus Nuclear Export Protein Aggregation. Microscopy and Microanalysis, 2019, 25, 1342-1343.	0.2	0
115	Influenza virus uses transportin 1 for vRNP debundling during cell entry. Nature Microbiology, 2019, 4, 578-586.	5.9	41
116	Quantum dots crack the influenza uncoating puzzle. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 2404-2406.	3.3	9
117	The interaction of cellular protein ANP32A with influenza A virus polymerase component PB2 promotes vRNA synthesis. Archives of Virology, 2019, 164, 787-798.	0.9	9
118	Antiviral effect of an essential oil combination derived from three aromatic plants (Coridothymus) Tj ETQq0 0 0 r infections of the upper respiratory tract. Journal of Herbal Medicine, 2019, 17-18, 100288.	gBT /Over 1.0	lock 10 Tf 50 21
119	Structural snapshots of actively transcribing influenza polymerase. Nature Structural and Molecular Biology, 2019, 26, 460-470.	3.6	78
120	Poly-ADP Ribosyl Polymerase 1 (PARP1) Regulates Influenza A Virus Polymerase. Advances in Virology, 2019, 2019, 1-11.	0.5	13
121	Fundamental Contribution and Host Range Determination of ANP32A and ANP32B in Influenza A Virus Polymerase Activity. Journal of Virology, 2019, 93, .	1.5	63
122	Interferon as a Mucosal Adjuvant for an Influenza Vaccine in Pigs. Virologica Sinica, 2019, 34, 324-333.	1.2	17
123	RNA Sequence Features Are at the Core of Influenza A Virus Genome Packaging. Journal of Molecular Biology, 2019, 431, 4217-4228.	2.0	16
124	Influenza A virus ribonucleoproteins form liquid organelles at endoplasmic reticulum exit sites. Nature Communications, 2019, 10, 1629.	5.8	122
125	Influenza Virus Infections and Cellular Kinases. Viruses, 2019, 11, 171.	1.5	93
126	A Short Chemically Modified dsRNA-Binding PNA (dbPNA) Inhibits Influenza Viral Replication by Targeting Viral RNA Panhandle Structure. Bioconjugate Chemistry, 2019, 30, 931-943.	1.8	44
127	Antiviral Activity of a New Class of Chemically Modified Antisense Oligonucleotides against Influenza Е Virus. Russian Journal of Bioorganic Chemistry, 2019, 45, 774-782.	0.3	8
128	Identification of a Type-Specific Promoter Element That Differentiates between Influenza A and B Viruses. Journal of Virology, 2019, 93, .	1.5	3
129	1,2-Î [°] nnulated Adamantane Heterocyclic Derivatives as Anti-Influenza Î [°] Virus Agents. Croatica Chemica Acta, 2019, 92, 211-228.	0.1	12

#	Article	IF	CITATIONS
130	Inhibition of Ongoing Influenza A Virus Replication Reveals Different Mechanisms of RIG-I Activation. Journal of Virology, 2019, 93, .	1.5	20
131	Host and viral determinants of influenza A virus species specificity. Nature Reviews Microbiology, 2019, 17, 67-81.	13.6	390
132	A Novel Type of Influenza A Virus-Derived Defective Interfering Particle with Nucleotide Substitutions in Its Genome. Journal of Virology, 2019, 93, .	1.5	38
133	Real-time dissection of dynamic uncoating of individual influenza viruses. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 2577-2582.	3.3	67
134	Influenza A Virus Subpopulations and Their Implication in Pathogenesis and Vaccine Development. Annual Review of Animal Biosciences, 2020, 8, 247-267.	3.6	7
135	In vitro production of synthetic viral RNAs and their delivery into mammalian cells and the application of viral RNAs in the study of innate interferon responses. Methods, 2020, 183, 21-29.	1.9	4
136	Amino Acid Mutations A286V and T437M in the Nucleoprotein Attenuate H7N9 Viruses in Mice. Journal of Virology, 2020, 94, .	1.5	33
137	Nucleic Acid Sensors and Programmed Cell Death. Journal of Molecular Biology, 2020, 432, 552-568.	2.0	57
138	Structure and Function of the Influenza Virus Transcription and Replication Machinery. Cold Spring Harbor Perspectives in Medicine, 2020, 10, a038398.	2.9	85
139	Interaction between influenza A virus nucleoprotein and PB2 cap-binding domain is mediated by RNA. PLoS ONE, 2020, 15, e0239899.	1.1	3
140	Eukaryotic Translation Elongation Factor 1 Delta Inhibits the Nuclear Import of the Nucleoprotein and PA-PB1 Heterodimer of Influenza A Virus. Journal of Virology, 2020, 95, .	1.5	19
141	PA Mutations Inherited during Viral Evolution Act Cooperatively To Increase Replication of Contemporary H5N1 Influenza Virus with an Expanded Host Range. Journal of Virology, 2020, 95, .	1.5	11
142	The Nucleoprotein of H7N9 Influenza Virus Positively Regulates TRAF3-Mediated Innate Signaling and Attenuates Viral Virulence in Mice. Journal of Virology, 2020, 94, .	1.5	7
143	Innate Immune Sensing of Influenza A Virus. Viruses, 2020, 12, 755.	1.5	47
144	Organization of the Influenza A Virus Genomic RNA in the Viral Replication Cycle—Structure, Interactions, and Implications for the Emergence of New Strains. Pathogens, 2020, 9, 951.	1.2	8
145	DEVELOPMENT AND VALIDATION OF STABILITY INDICATING RP-UPLC METHOD FOR THE QUANTIFICATION OF BALOXAVIR MARBOXIL IN TABLET FORMULATION. International Journal of Pharmacy and Pharmaceutical Sciences, 2020, , 94-99.	0.3	4
146	RNA Secondary Structure as a First Step for Rational Design of the Oligonucleotides towards Inhibition of Influenza A Virus Replication. Pathogens, 2020, 9, 925.	1.2	17
147	Viral Subpopulation Screening Guides in Designing a High Interferon-Inducing Live Attenuated Influenza Vaccine by Targeting Rare Mutations in NS1 and PB2 Proteins. Journal of Virology, 2020, 95, .	1.5	10

#	Article	IF	CITATIONS
148	Pre-initiation and elongation structures of full-length La Crosse virus polymerase reveal functionally important conformational changes. Nature Communications, 2020, 11, 3590.	5.8	36
149	Cell-Based Influenza A/H1N1pdm09 Vaccine Viruses Containing Chimeric Hemagglutinin with Improved Membrane Fusion Ability. Vaccines, 2020, 8, 458.	2.1	2
150	Strength in Diversity: Nuclear Export of Viral RNAs. Viruses, 2020, 12, 1014.	1.5	17
151	Quick assessment of influenza a virus infectivity with a long-range reverse-transcription quantitative polymerase chain reaction assay. BMC Infectious Diseases, 2020, 20, 585.	1.3	10
152	Type-IInterferon-Inducible SERTAD3 Inhibits Influenza A Virus Replication by Blocking the Assembly of Viral RNA Polymerase Complex. Cell Reports, 2020, 33, 108342.	2.9	12
153	Mechanism of Virus Attenuation by Codon Pair Deoptimization. Cell Reports, 2020, 31, 107586.	2.9	53
154	Methyl brevifolincarboxylate, a novel influenza virus PB2 inhibitor from Canarium Album (Lour.) Raeusch. Chemical Biology and Drug Design, 2020, 96, 1280-1291.	1.5	11
155	Structural insights into influenza A virus ribonucleoproteins reveal a processive helical track as transcription mechanism. Nature Microbiology, 2020, 5, 727-734.	5.9	33
156	Duck PIAS2 Promotes H5N1 Avian Influenza Virus Replication Through Its SUMO E3 Ligase Activity. Frontiers in Microbiology, 2020, 11, 1246.	1.5	3
157	Mapping of Influenza Virus RNA-RNA Interactions Reveals a Flexible Network. Cell Reports, 2020, 31, 107823.	2.9	50
158	Characterization of Influenza A Virus Infection in Mouse Pulmonary Stem/Progenitor Cells. Frontiers in Microbiology, 2019, 10, 2942.	1.5	7
159	The Central Role of Non-Structural Protein 1 (NS1) in Influenza Biology and Infection. International Journal of Molecular Sciences, 2020, 21, 1511.	1.8	39
160	A unique feature of swine ANP32A provides susceptibility to avian influenza virus infection in pigs. PLoS Pathogens, 2020, 16, e1008330.	2.1	32
161	Cellular mRNA export factor UAP56 recognizes nucleic acid binding site of influenza virus NP protein. Biochemical and Biophysical Research Communications, 2020, 525, 259-264.	1.0	8
162	Influenza A virus uncoating. Advances in Virus Research, 2020, 106, 1-38.	0.9	26
163	Microtubules in Influenza Virus Entry and Egress. Viruses, 2020, 12, 117.	1.5	33
164	Influenza A virus interactions with macrophages: Lessons from epithelial cells. Cellular Microbiology, 2020, 22, e13170.	1.1	41
165	Single-Cell Analysis Uncovers a Vast Diversity in Intracellular Viral Defective Interfering RNA Content Affecting the Large Cell-to-Cell Heterogeneity in Influenza A Virus Replication. Viruses, 2020, 12, 71.	1.5	22

#	Article	IF	CITATIONS
166	Kinase inhibitor roscovitine as a PB2 cap-binding inhibitor against influenza a virus replication. Biochemical and Biophysical Research Communications, 2020, 526, 1143-1149.	1.0	11
167	A Structure-Based Model for the Complete Transcription Cycle of Influenza Polymerase. Cell, 2020, 181, 877-893.e21.	13.5	90
168	Host–Virus Interaction: How Host Cells Defend against Influenza A Virus Infection. Viruses, 2020, 12, 376.	1.5	18
169	Interaction of influenza A virus NS2/NEP protein with the amino-terminal part of Nup214. Turkish Journal of Biology, 2020, 44, 82-92.	2.1	12
170	The Two Sides of the Same Coin—Influenza Virus and Intracellular Signal Transduction. Cold Spring Harbor Perspectives in Medicine, 2021, 11, a038513.	2.9	12
171	Insights on 3D Structures of Potential Drugâ€ŧargeting Proteins of SARSâ€CoVâ€2: Application of Cavity Search and Molecular Docking. Molecular Informatics, 2021, 40, e2000096.	1.4	13
172	Prediction and characterization of influenza virus polymerase inhibitors through blind docking and ligand based virtual screening. Journal of Molecular Liquids, 2021, 321, 114784.	2.3	3
173	Cargo transport through the nuclear pore complex at a glance. Journal of Cell Science, 2021, 134, .	1.2	53
174	Swine-origin influenza A (H1N1) virus: current status, threats, and challenges. , 2021, , 57-86.		0
175	Therapeutic p28 peptide targets essential H1N1 influenza virus proteins: insights from docking and molecular dynamics simulations. Molecular Diversity, 2021, 25, 1929-1943.	2.1	4
176	Development and application of reverse genetic technology for the influenza virus. Virus Genes, 2021, 57, 151-163.	0.7	8
177	Packaging signal of influenza A virus. Virology Journal, 2021, 18, 36.	1.4	27
180	The PB1 protein of influenza A virus inhibits the innate immune response by targeting MAVS for NBR1-mediated selective autophagic degradation. PLoS Pathogens, 2021, 17, e1009300.	2.1	62
182	Neurovirulence of Avian Influenza Virus Is Dependent on the Interaction of Viral NP Protein with FMRP in the Murine Brain. Journal of Virology, 2021, 95, .	1.5	2
183	Evidence for the extracellular delivery of influenza NS1 protein. Microbiology Independent Research Journal, 2021, 8, 27-37.	0.2	0
185	Mammalian and Avian Host Cell Influenza A Restriction Factors. Viruses, 2021, 13, 522.	1.5	16
187	Chicken Egg Yolk-IgY: Passive Immunization Promising Targeted Therapy of COVID-19 Pandemic. Journal of Applied Veterinary Sciences, 2021, 6, 67-91.	0.0	1
188	Discovery of a Novel Specific Inhibitor Targeting Influenza A Virus Nucleoprotein with Pleiotropic Inhibitory Effects on Various Steps of the Viral Life Cycle. Journal of Virology, 2021, 95, .	1.5	14

	Сітаті	ION REPORT	
#	Article	IF	CITATIONS
189	Influenza Virus RNA Synthesis and the Innate Immune Response. Viruses, 2021, 13, 780.	1.5	18
190	Host factor Rab11a is critical for efficient assembly of influenza A virus genomic segments. PLoS Pathogens, 2021, 17, e1009517.	2.1	16
191	IFI16 directly senses viral RNA and enhances RIG-I transcription and activation to restrict influenza virus infection. Nature Microbiology, 2021, 6, 932-945.	5.9	61
192	Influenza Virus RNA-Dependent RNA Polymerase and the Host Transcriptional Apparatus. Annual Review of Biochemistry, 2021, 90, 321-348.	5.0	19
193	Comprehensive Profiling of Mutations to Influenza Virus PB2 That Confer Resistance to the Cap-Binding Inhibitor Pimodivir. Viruses, 2021, 13, 1196.	1.5	8
194	Embodied Computational Evolution: Feedback Between Development and Evolution in Simulated Biorobots. Frontiers in Robotics and AI, 2021, 8, 674823.	2.0	1
195	Ultrastructure of influenza virus ribonucleoprotein complexes during viral RNA synthesis. Communications Biology, 2021, 4, 858.	2.0	13
196	Synthesis and In Vitro Evaluation of C-7 and C-8 Luteolin Derivatives as Influenza Endonuclease Inhibitors. International Journal of Molecular Sciences, 2021, 22, 7735.	1.8	7
197	Pretreatment of outer membrane vesicle and subsequent infection with influenza virus induces a long-lasting adaptive immune response against broad subtypes of influenza virus. Microbes and Infection, 2022, 24, 104878.	1.0	2
198	Identification of the 5′-Terminal Packaging Signal of the H1N1 Influenza A Virus Neuraminidase Segmer at Single-Nucleotide Resolution. Frontiers in Microbiology, 2021, 12, 709010.	nt 1.5	6
199	Nuclear exportin 1 facilitates turnip mosaic virus infection by exporting the sumoylated viral replicase and by repressing plant immunity. New Phytologist, 2021, 232, 1382-1398.	3.5	14
200	Synergistic Effect between 3′-Terminal Noncoding and Adjacent Coding Regions of the Influenza A Virus Hemagglutinin Segment on Template Preference. Journal of Virology, 2021, 95, e0087821.	1.5	6
201	Virus Infection Variability by Single-Cell Profiling. Viruses, 2021, 13, 1568.	1.5	26
202	The role of influenza A virus-induced hypercytokinemia. Critical Reviews in Microbiology, 2021, , 1-17.	2.7	6
203	RNA Modifications in Genomic RNA of Influenza A Virus and the Relationship between RNA Modifications and Viral Infection. International Journal of Molecular Sciences, 2021, 22, 9127.	1.8	18
204	Constitutive TRIM22 Expression in the Respiratory Tract Confers a Pre-Existing Defence Against Influenza A Virus Infection. Frontiers in Cellular and Infection Microbiology, 2021, 11, 689707.	1.8	6
205	Influenza Vaccines: Successes and Continuing Challenges. Journal of Infectious Diseases, 2021, 224, S405-S419.	1.9	24
206	Analysis of the Genetic Diversity Associated With the Drug Resistance and Pathogenicity of Influenza A Virus Isolated in Bangladesh From 2002 to 2019. Frontiers in Microbiology, 2021, 12, 735305.	1.5	8

ARTICLE IF CITATIONS # Interleukin 16 Enhances the Host Susceptibility to Influenza A Virus Infection. Frontiers in 207 1.5 6 Microbiology, 2021, 12, 736449. Pathogenicity of novel reassortant Eurasian avian-like H1N1 influenza virus in pigs. Virology, 2021, 561, 208 1.1 28-35. Optimization and SAR research at the piperazine and phenyl rings of JNJ4796 as new anti-influenza A 209 2.6 7 virus agents, part 1. European Journal of Medicinal Chemistry, 2021, 222, 113591. G-quadruplexes in H1N1 influenza genomes. BMC Genomics, 2021, 22, 77. 1.2 MicroRNA-33a disturbs influenza A virus replication by targeting ARCN1 and inhibiting viral 211 1.3 33 ribonucleoprotein activity. Journal of General Virology, 2016, 97, 27-38. Late stages of the influenza A virus replication cycleâ \in "a tight interplay between virus and host. Journal of General Virology, 2016, 97, 2058-2072. 1.3 Identification of polymerase gene mutations that affect viral replication in H5N1 influenza viruses 213 1.3 22 isolated from pigeons. Journal of General Virology, 2017, 98, 6-17. Y-Box-Binding Protein 3 (YBX3) Restricts Influenza A Virus by Interacting with Viral Ribonucleoprotein 214 1.3 Complex and Imparing its Function. Journal of General Virology, 2020, 101, 385-398. Host Cell Factors That Interact with Influenza Virus Ribonucleoproteins. Cold Spring Harbor 219 2.9 14 Perspectives in Medicine, 2021, 11, a038307. Macrophage migration inhibitory factor enhances influenza-associated mortality in mice. JCI Insight, 2.3 2019, 4, . Novel Polymerase Gene Mutations for Human Adaptation in Clinical Isolates of Avian H5N1 Influenza 221 2.1 59 Viruses. PLoS Pathogens, 2016, 12, e1005583. How influenza a causes $\hat{a} \in \hat{a} \in \hat{c}$ pidemics and pandemics $\hat{a} \in \mathbb{M} \hat{a} \in \mathbb{M}$ among the population: novel targets for 0.2 anti-influenza molecules. Biometrics & Biostatistics International Journal, 2018, 7, . Efficient soluble expression and purification of influenza A and B nucleoproteins in E. coli. 223 0.2 1 Microbiology Independent Research Journal, 2019, 6, 43-48. Asymmetric structure of the influenza A virus and novel function of the matrix protein M1. Voprosy 224 0.1 Virusologii, 2016, 61, 149-154. Focusing on the Influenza Virus Polymerase Complex: Recent Progress in Drug Discovery and Assay 225 1.2 25 Development. Current Medicinal Chemistry, 2019, 26, 2243-2263. A Comprehensive Review on the Interaction Between the Host GTPase Rab11 and Influenza A Virus. 1.8 24 Frontiers in Cell and Developmental Biology, 2018, 6, 176. IgYÂâ€ʿÂturning the page toward passive immunization in COVID-19 infection (Review). Experimental and 227 0.8 31 Therapeutic Medicine, 2020, 20, 151-158. Comprehensive mapping of adaptation of the avian influenza polymerase protein PB2 to humans. ELife, 228 2.8 2019, 8, .

#	Article	IF	CITATIONS
235	Epidemiological and Genetic Characteristics of the H3 Subtype Avian Influenza Viruses in China. China CDC Weekly, 2021, 3, 929-936.	1.0	12
237	Influenza NP core and HA or M2e shell double-layered protein nanoparticles induce broad protection against divergent influenza A viruses. Nanomedicine: Nanotechnology, Biology, and Medicine, 2022, 40, 102479.	1.7	8
238	Tick-transmitted thogotovirus gains high virulence by a single MxA escape mutation in the viral nucleoprotein. PLoS Pathogens, 2020, 16, e1009038.	2.1	6
239	How Influenza A Virus NS1 Deals with the Ubiquitin System to Evade Innate Immunity. Viruses, 2021, 13, 2309.	1.5	10
241	Antivirals Against Influenza. , 2021, , .		0
243	Mapping inhibitory sites on the RNA polymerase of the 1918 pandemic influenza virus using nanobodies. Nature Communications, 2022, 13, 251.	5.8	14
244	Time-Dependent Proinflammatory Responses Shape Virus Interference during Coinfections of Influenza A Virus and Influenza D Virus. Viruses, 2022, 14, 224.	1.5	4
245	KPNA6 is a Cofactor of ANP32A/B in Supporting Influenza Virus Polymerase Activity. Microbiology Spectrum, 2022, 10, e0207321.	1.2	5
246	Migration of Influenza Virus Nucleoprotein into the Nucleolus Is Essential for Ribonucleoprotein Complex Formation. MBio, 2022, 13, .	1.8	4
247	The C-Terminal Domains of the PB2 Subunit of the Influenza A Virus RNA Polymerase Directly Interact with Cellular GTPase Rab11a. Journal of Virology, 2022, 96, jvi0197921.	1.5	7
248	139D in NS1 Contributes to the Virulence of H5N6 Influenza Virus in Mice. Frontiers in Veterinary Science, 2021, 8, 808234.	0.9	1
250	Investigating host-virus interaction mechanism and phylogenetic analysis of viral proteins involved in the pathogenesis. PLoS ONE, 2021, 16, e0261497.	1.1	2
251	SUMOylation of Matrix Protein M1 and Filamentous Morphology Collectively Contribute to the Replication and Virulence of Highly Pathogenic H5N1 Avian Influenza Viruses in Mammals. Journal of Virology, 2022, 96, JVI0163021.	1.5	11
252	Genetic Analysis of Influenza A/H1N1pdm Strains Isolated in Bangladesh in Early 2020. Tropical Medicine and Infectious Disease, 2022, 7, 38.	0.9	3
253	Implementation of a coplanar-waveguide chip for the measurement of EM wave absorption spectrum of SARS-Cov-2 virus. , 2022, , .		0
254	The battle for autophagy between host and influenza A virus. Virulence, 2022, 13, 46-59.	1.8	18
255	Inhibitory Potentiality of Secondary Metabolites Extracted from Marine Fungus Target on Avian Influenza Virus-A Subtype H5N8 (Neuraminidase) and H5N1 (Nucleoprotein): A Rational Virtual Screening Veterinary and Animal Science, 2022, 15, 100231.	0.6	4
256	A Review and Meta-Analysis of Influenza Interactome Studies. Frontiers in Microbiology, 2022, 13, 869406	1.5	13

#	Article	IF	CITATIONS
267	An overview of influenza A virus genes, protein functions, and replication cycle highlighting important updates. Virus Genes, 2022, 58, 255-269.	0.7	22
268	Interactions between Influenza A Virus Nucleoprotein and Gene Segment Untranslated Regions Facilitate Selective Modulation of Viral Gene Expression. Journal of Virology, 2022, 96, e0020522.	1.5	3
269	Type B and type A influenza polymerases have evolved distinct binding interfaces to recruit the RNA polymerase II CTD. PLoS Pathogens, 2022, 18, e1010328.	2.1	11
270	In-Silico Design of a Multi‑epitope Construct Against Influenza A Based on Nucleoprotein Gene. International Journal of Peptide Research and Therapeutics, 2022, 28, .	0.9	0
271	Genetic Determinants for Virulence and Transmission of the Panzootic Avian Influenza Virus H5N8 Clade 2.3.4.4 in Pekin Ducks. Journal of Virology, 2022, 96, .	1.5	7
272	Repurposing Molnupiravir for COVID-19: The Mechanisms of Antiviral Activity. Viruses, 2022, 14, 1345.	1.5	19
273	Progress towards the Development of a Universal Influenza Vaccine. Viruses, 2022, 14, 1684.	1.5	23
274	The role of cell-mediated immunity against influenza and its implications for vaccine evaluation. Frontiers in Immunology, 0, 13, .	2.2	18
276	Nucleoporin 85 interacts with influenza A virus PB1 and PB2 to promote its replication by facilitating nuclear import of ribonucleoprotein. Frontiers in Microbiology, 0, 13, .	1.5	4
277	Modulating cholesterol-rich lipid rafts to disrupt influenza A virus infection. Frontiers in Immunology, 0, 13, .	2.2	7
278	Antiviral Peptides as Anti-Influenza Agents. International Journal of Molecular Sciences, 2022, 23, 11433.	1.8	7
279	Revisiting influenza A virus life cycle from a perspective of genome balance. Virologica Sinica, 2023, 38, 1-8.	1.2	8
280	H1N1 Influenza A Virus Protein NS2 Inhibits Innate Immune Response by Targeting IRF7. Viruses, 2022, 14, 2411.	1.5	8
281	A structural understanding of influenza virus genome replication. Trends in Microbiology, 2023, 31, 308-319.	3.5	20
282	Optimization and SAR research at the benzoxazole and tetrazole rings of JNJ4796 as new anti-influenza A virus agents, part 2. European Journal of Medicinal Chemistry, 2023, 245, 114906.	2.6	1
283	Anti-influenza agents. , 2023, , 211-239.		0
284	Modeling an Immune Response to Influenza A Virus Infection in Alveolar Epithelial Cells. Biotechnology and Bioengineering, 0, , .	1.7	0
286	Nonmuscle myosin IIA promotes the internalization of influenza A virus and regulates viral polymerase activity through interacting with nucleoprotein in human pulmonary cells. Virologica Sinica, 2023, 38, 128-141.	1.2	2

#	Article	IF	CITATIONS
289	The nucleoprotein of influenza A virus inhibits the innate immune response by inducing mitophagy. Autophagy, 2023, 19, 1916-1933.	4.3	11
290	Tandem mass tag-based quantitative proteomics analysis reveals the new regulatory mechanism of progranulin in influenza virus infection. Frontiers in Microbiology, 0, 13, .	1.5	0
291	Structural and Functional RNA Motifs of SARS-CoV-2 and Influenza A Virus as a Target of Viral Inhibitors. International Journal of Molecular Sciences, 2023, 24, 1232.	1.8	8
292	Condensation Goes Viral: A Polymer Physics Perspective. Journal of Molecular Biology, 2023, 435, 167988.	2.0	4
293	Preclinical Study of ZSP1273, a Potent Antiviral Inhibitor of Cap Binding to the PB2 Subunit of Influenza A Polymerase. Pharmaceuticals, 2023, 16, 365.	1.7	3
295	Therapeutic potential of salicylamide derivatives for combating viral infections. Medicinal Research Reviews, 2023, 43, 897-931.	5.0	2
296	Structure of the Newcastle Disease Virus L protein in complex with tetrameric phosphoprotein. Nature Communications, 2023, 14, .	5.8	5
297	Defining basic rules for hardening influenza A virus liquid condensates. ELife, 0, 12, .	2.8	10
305	Advanced fluorescence microscopy in respiratory virus cell biology. Advances in Virus Research, 2023,	0.9	0