Neural networks applied to discriminate botanical original

Food Chemistry 175, 128-136

DOI: 10.1016/j.foodchem.2014.11.121

Citation Report

#	ARTICLE	IF	Citations
1	Optimization of FTIR-ATR spectroscopy for botanical authentication of unifloral honey types and melissopalynological data prediction. European Food Research and Technology, 2015, 240, 1101-1115.	1.6	45
2	Preliminary Characterization of Monofloral <i>Coffea</i> spp. Honey: Correlation between Potential Biomarkers and Pollen Content. Journal of Agricultural and Food Chemistry, 2015, 63, 5858-5863.	2.4	20
3	The identification of relationships between selected honey parameters by extracting the contribution of independent variables in a neural network model. European Food Research and Technology, 2015, 241, 793-801.	1.6	9
4	Objective Definition of Monofloral and Polyfloral Honeys Based on NMR Metabolomic Profiling. Journal of Agricultural and Food Chemistry, 2016, 64, 3645-3652.	2.4	39
5	Using sensor and spectral analysis to classify botanical origin and determine adulteration of raw honey. Journal of Food Engineering, 2016, 178, 151-158.	2.7	109
6	Physicochemical characteristics and pollen spectrum of monofloral honeys from Tenerife, Spain. Food Chemistry, 2017, 228, 441-446.	4.2	24
7	Downsizing training data with weighted FCM for predicting the evolution of specific grinding energy with RNNs. Applied Soft Computing Journal, 2017, 61, 211-221.	4.1	7
8	Differences between honeydew and blossom honeys: A review. Trends in Food Science and Technology, 2017, 59, 79-87.	7.8	141
9	Antioxidant activity and physicoâ€chemical parameters for the differentiation of honey using a potentiometric electronic tongue. Journal of the Science of Food and Agriculture, 2017, 97, 2215-2222.	1.7	26
10	The application of deep learning in computer vision. , 2017, , .		39
11	A False Alarm Reduction Method for a Gas Sensor Based Electronic Nose. Sensors, 2017, 17, 2089.	2.1	7
12	Physicochemical and Sensorial Characterization of Honey Spirits. Foods, 2017, 6, 58.	1.9	11
13	Honeydew Honeys: A Review on the Characterization and Authentication of Botanical and Geographical Origins. Journal of Agricultural and Food Chemistry, 2018, 66, 2523-2537.	2.4	46
14	Terahertz time-domain attenuated total reflection spectroscopy applied to the rapid discrimination of the botanical origin of honeys. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 196, 123-130.	2.0	19
15	Computational intelligence applied to discriminate bee pollen quality and botanical origin. Food Chemistry, 2018, 267, 36-42.	4.2	17
16	Physicochemical characterization and antioxidant activity of honey with Eragrostis spp. pollen predominance. Journal of Food Biochemistry, 2018, 42, e12431.	1.2	9
17	Physicochemical characterization of Lavandula spp. honey with FT-Raman spectroscopy. Talanta, 2018, 178, 43-48.	2.9	32
18	Dielectric properties of honey: the potential usability for quality assessment. European Food Research and Technology, 2018, 244, 873-880.	1.6	10

#	Article	IF	Citations
19	Dropout-Based Active Learning for Regression. Lecture Notes in Computer Science, 2018, , 247-258.	1.0	21
20	Quali-quantitative characterization of the honey from Myracrodruon urundeuva allemo (Anacardiceae - Aroeira): macroscopic, microscopic, physico-chemical and microbiological parameters. African Journal of Biotechnology, 2018, 17, 1422-1435.	0.3	3
21	Analysis of Images, Social Networks and Texts. Lecture Notes in Computer Science, 2018, , .	1.0	O
22	Antioxidant activity and physicochemical characteristics of honeys from the eastern Amazon region, Brazil. Acta Amazonica, 2018, 48, 158-167.	0.3	6
23	Neural networks in food industry. Contemporary Engineering Sciences, 2018, 11, 1807-1826.	0.2	6
24	Are the furanic aldehydes ratio and phenolic aldehydes ratios reliable to assess the addition of vanillin and caramel to the aged wine spirit?. Food Control, 2019, 95, 77-84.	2.8	15
25	Predicting the botanical and geographical origin of honey with multivariate data analysis and machine learning techniques: A review. Computers and Electronics in Agriculture, 2019, 157, 436-446.	3.7	68
26	Zantaz honey "monoflorality― Chemometric applied to the routinely assessed parameters. LWT - Food Science and Technology, 2019, 106, 29-36.	2.5	9
27	Detection of rice syrup from acacia honey based on lubrication properties measured by tribology technique. Tribology International, 2019, 129, 239-245.	3.0	21
28	Spanish honeys with quality brand: a multivariate approach to physicochemical parameters, microbiological quality, and floral origin. Journal of Apicultural Research, 2019, 58, 92-103.	0.7	14
29	Insight into the sensing mechanism of an impedance based electronic tongue for honey botanic origin discrimination. Sensors and Actuators B: Chemical, 2019, 285, 24-33.	4.0	27
30	Reflectance colorimetry: a mirror for food quality—a mini review. European Food Research and Technology, 2020, 246, 259-272.	1.6	22
31	Classification of honeys collected from different regions of Anatolia by chemometric methods. Journal of Food Processing and Preservation, 2020, 44, e14960.	0.9	6
32	Heat Loss Coefficient Estimation Applied to Existing Buildings through Machine Learning Models. Applied Sciences (Switzerland), 2020, 10, 8968.	1.3	15
33	Prediction of Building's Thermal Performance Using LSTM and MLP Neural Networks. Applied Sciences (Switzerland), 2020, 10, 7439.	1.3	24
34	Application of ATR-FT-MIR for Tracing the Geographical Origin of Honey Produced in the Maltese Islands. Foods, 2020, 9, 710.	1.9	12
35	Rapid detection of carmine in black tea with spectrophotometry coupled predictive modelling. Food Chemistry, 2020, 329, 127177.	4.2	10
36	Development of a Spirit Drink Produced with Strawberry Tree (Arbutus unedo L.) Fruit and Honey. Beverages, 2020, 6, 38.	1.3	10

#	ARTICLE	IF	Citations
37	Geographic origin discrimination of pork from different Chinese regions using mineral elements analysis assisted by machine learning techniques. Food Chemistry, 2021, 337, 127779.	4.2	33
38	Geographical origin and botanical type honey authentication through elemental metabolomics via chemometrics. Food Chemistry, 2021, 338, 127936.	4.2	45
39	Development of a remote electronic tongue system combined with the VMD-HT feature extraction method for honey botanical origin authentication. Measurement: Journal of the International Measurement Confederation, 2021, 171, 108555.	2.5	14
40	Evaluation of FT-Raman and FTIR-ATR spectroscopy for the quality evaluation of <i>Lavandula</i> spp. Honey. Open Agriculture, 2021, 6, 47-56.	0.7	9
41	DropConnect is effective in modeling uncertainty of Bayesian deep networks. Scientific Reports, 2021, 11, 5458.	1.6	43
42	SPME-GC-MS and FTIR-ATR Spectroscopic Study as a Tool for Unifloral Common Greek Honeys' Botanical Origin Identification. Applied Sciences (Switzerland), 2021, 11, 3159.	1.3	12
43	Quality, composition and health-protective properties of citrus honey: A review. Food Research International, 2021, 143, 110268.	2.9	37
44	Monofloral Honeys as a Potential Source of Natural Antioxidants, Minerals and Medicine. Antioxidants, 2021, 10, 1023.	2.2	49
45	Application of E-nose combined with ANN modelling for qualitative and quantitative analysis of benzoic acid in cola-type beverages. Journal of Food Measurement and Characterization, 2021, 15, 5131-5138.	1.6	6
46	Modeling the Behavior of Amphiphilic Aqueous Solutions. , 0, , .		0
47	Comparative Study of Several Machine Learning Algorithms for Classification of Unifloral Honeys. Foods, 2021, 10, 1543.	1.9	12
48	Optimization of the Electrical Demand of an Existing Building with Storage Management through Machine Learning Techniques. Applied Sciences (Switzerland), 2021, 11, 7991.	1.3	5
49	Optimisation of Stingless Bee Honey Nanoemulsions Using Response Surface Methodology. Foods, 2021, 10, 2133.	1.9	0
50	Metal and metalloid profile as a fingerprint for traceability of wines under any Galician protected designation of origin. Journal of Food Composition and Analysis, 2021, 102, 104043.	1.9	9
51	Application of E-nose technology combined with artificial neural network to predict total bacterial count in milk. Journal of Dairy Science, 2021, 104, 10558-10565.	1.4	7
52	Effects of Ethnic Attributes on the Quality of Family Planning Services in Lima, Peru: A Randomized Crossover Trial. PLoS ONE, 2015, 10, e0115274.	1.1	17
53	Random Forest, Artificial Neural Network, and Support Vector Machine Models for Honey Classification. EFood, 2020, 1, 69-76.	1.7	19
54	Predicting the Botanical Origin of Honeys with Chemometric Analysis According to Their Antioxidant and Physicochemical Properties. Polish Journal of Food and Nutrition Sciences, 2019, 69, 191-201.	0.6	22

#	Article	IF	CITATIONS
55	Application of stable isotopic and elemental composition combined with random forest algorithm for the botanical classification of Chinese honey. Journal of Food Composition and Analysis, 2022, 110, 104565.	1.9	7
56	A Review on Automatic Classification of Honey Botanical Origins using Machine Learning. , 2021, , .		1
57	Geographic origin discrimination of red swamp crayfish Procambarus clarkii from different Chinese regions using mineral element analysis assisted by machine learning techniques. Food Control, 2022, 138, 109047.	2.8	5
58	A comparative UHPLC-Q/TOF-MS-based metabolomics approach coupled with machine learning algorithms to differentiate Keemun black teas from narrow-geographic origins. Food Research International, 2022, 158, 111512.	2.9	16
59	Machine Learning in Precision Agriculture: A Survey on Trends, Applications and Evaluations Over Two Decades. IEEE Access, 2022, 10, 73786-73803.	2.6	27
60	Detecting Misclassification Errors in Neural Networks with a Gaussian Process Model. Proceedings of the AAAI Conference on Artificial Intelligence, 2022, 36, 8017-8027.	3.6	3
61	Prediction of Pakistani Honey Authenticity Through Machine Learning. IEEE Access, 2022, 10, 87508-87521.	2.6	2
62	Machine Learning and Deep Learning Models Applied to Photovoltaic Production Forecasting. Applied Sciences (Switzerland), 2022, 12, 8769.	1.3	12
63	Enhancement of the Antioxidant Capacity of Thyme and Chestnut Honey by Addition of Bee Products. Foods, 2022, 11, 3118.	1.9	7
65	Use of genetic algorithms in the wavelength selection of FT-MIR spectra to classify unifloral honeys from Sardinia. Food Control, 2023, 146, 109559.	2.8	4
66	Authentication of chaste honey adulterated with high fructose corn syrup by HS-SPME-GC-MS coupled with chemometrics. LWT - Food Science and Technology, 2023, 176, 114509.	2.5	2