Simulating the impact of extreme heat and frost events review

Field Crops Research 171, 109-119 DOI: 10.1016/j.fcr.2014.11.010

Citation Report

#	Article	IF	CITATIONS
1	Modelling population densities of root-lesion nematode (Pratylenchus thornei) from soil profile temperatures to choose an optimum sowing date for wheat in a subtropical region. Field Crops Research, 2015, 183, 50-55.	2.3	6
2	Finding Ways to Improve Australia's Food Security Situation. Agriculture (Switzerland), 2015, 5, 286-312.	1.4	7
3	Unscrambling confounded effects of sowing date trials to screen for crop adaptation to high temperature. Field Crops Research, 2015, 177, 1-8.	2.3	38
4	Design and development of a low-cost solar powered drip irrigation system using Systems Modeling Language. Journal of Cleaner Production, 2015, 102, 529-544.	4.6	27
5	Adaptation of wheat, barley, canola, field pea and chickpea to the thermal environments of Australia. Crop and Pasture Science, 2015, 66, 1137.	0.7	63
6	Temperature extremes: Effect on plant growth and development. Weather and Climate Extremes, 2015, 10, 4-10.	1.6	1,448
7	Assessing the place and role of crop simulation modelling in Australia. Crop and Pasture Science, 2015, 66, 877.	0.7	19
8	Effects of climate trends and variability on wheat yield variability in eastern Australia. Climate Research, 2015, 64, 173-186.	0.4	29
9	A Comparative Analysis of Machine Learning with WorldView-2 Pan-Sharpened Imagery for Tea Crop Mapping. Sensors, 2016, 16, 594.	2.1	32
10	Heat Priming Induces Trans-generational Tolerance to High Temperature Stress in Wheat. Frontiers in Plant Science, 2016, 7, 501.	1.7	65
11	A network-based approach for semi-quantitative knowledge mining and its application to yield variability. Environmental Research Letters, 2016, 11, 123001.	2.2	13
12	Do maize models capture the impacts of heat and drought stresses on yield? Using algorithm ensembles to identify successful approaches. Global Change Biology, 2016, 22, 3112-3126.	4.2	63
13	Testing the responses of four wheat crop models to heat stress at anthesis and grain filling. Global Change Biology, 2016, 22, 1890-1903.	4.2	107
14	Recent changes in southern Australian frost occurrence: implications for wheat production risk. Crop and Pasture Science, 2016, 67, 801.	0.7	80
15	Interactions between water and nitrogen in Australian cropping systems: physiological, agronomic, economic, breeding and modelling perspectives. Crop and Pasture Science, 2016, 67, 1019.	0.7	102
16	Design and development of M3SS: A Soil Sensor Node for precision agriculture. , 2016, , .		4
17	Prospects for yield improvement in the Australian wheat industry: a perspective. Food and Energy Security, 2016, 5, 107-122.	2.0	27
18	Salvaging effect of triacontanol on plant growth, thermotolerance, macro-nutrient content, amino acid concentration and modulation of defense hormonal levels under heat stress. Plant Physiology and Biochemistry, 2016, 99, 118-125.	2.8	25

#	Article	IF	CITATIONS
19	Analysis of options for increasing wheat (Triticum aestivum L.) yield in south-eastern Australia: The role of irrigation, cultivar choice and time of sowing. Agricultural Water Management, 2016, 166, 139-148.	2.4	29
20	Canopy temperature for simulation of heat stress in irrigated wheat in a semi-arid environment: A multi-model comparison. Field Crops Research, 2017, 202, 21-35.	2.3	91
21	Models of grain quality in wheat—A review. Field Crops Research, 2017, 202, 136-145.	2.3	186
22	Effects of diurnal temperature range and drought on wheat yield in Spain. Theoretical and Applied Climatology, 2017, 129, 503-519.	1.3	36
23	Evaluation of the APSIM model in cropping systems of Asia. Field Crops Research, 2017, 204, 52-75.	2.3	170
24	Consistent negative response of US crops to high temperatures in observations and crop models. Nature Communications, 2017, 8, 13931.	5.8	321
25	Crop and farm level adaptation under future climate challenges: An exploratory study considering multiple objectives for Flevoland, the Netherlands. Agricultural Systems, 2017, 152, 154-164.	3.2	19
26	The interaction between soil pH and phosphorus for wheat yield and the impact of lime-induced changes to soil aluminium and potassium. Soil Research, 2017, 55, 341.	0.6	21
27	Clobal evaluation of a semiempirical model for yield anomalies and application to withinâ€season yield forecasting. Global Change Biology, 2017, 23, 4750-4764.	4.2	43
28	Heat stress is overestimated in climate impact studies for irrigated agriculture. Environmental Research Letters, 2017, 12, 054023.	2.2	88
29	Effects of jointing and booting low temperature stresses on grain yield and yield components in wheat. Agricultural and Forest Meteorology, 2017, 243, 33-42.	1.9	84
30	Water and temperature stress define the optimal flowering period for wheat in south-eastern Australia. Field Crops Research, 2017, 209, 108-119.	2.3	127
31	Growth promoting potential of fresh and stored Moringa oleifera leaf extracts in improving seedling vigor, growth and productivity of wheat crop. Environmental Science and Pollution Research, 2017, 24, 27601-27612.	2.7	44
32	Modelling wheat yield change under CO2 increase, heat and water stress in relation to plant available water capacity in eastern Australia. European Journal of Agronomy, 2017, 90, 152-161.	1.9	39
33	Modelling the effects of post-heading heat stress on biomass growth of winter wheat. Agricultural and Forest Meteorology, 2017, 247, 476-490.	1.9	42
34	A stable CH4 sink responding to extreme precipitation events in a fenced semiarid steppe. Journal of Soils and Sediments, 2017, 17, 2731-2741.	1.5	7
35	Trichoderma for climate resilient agriculture. World Journal of Microbiology and Biotechnology, 2017, 33, 155.	1.7	86
36	Climate change impacts and farm-level adaptation: Economic analysis of a mixed cropping–livestock system. Agricultural Systems, 2017, 150, 99-108.	3.2	56

#	Article	IF	CITATIONS
37	Estimation of Crown Temperature of Winter Wheat and the Effect on Simulation of Frost Tolerance. Journal of Agronomy and Crop Science, 2017, 203, 161-176.	1.7	9
38	Yield gap analysis of rainfed wheat demonstrates local to global relevance. Journal of Agricultural Science, 2017, 155, 282-299.	0.6	30
39	Quantification of Climate Variability, Adaptation and Mitigation for Agricultural Sustainability. , 2017, , .		35
40	Soil water extraction patterns of lucerne grown on stony soils. Plant and Soil, 2017, 414, 95-112.	1.8	15
41	Effects of Abiotic Stress in Crop Production. , 2017, , 165-180.		31
42	Weather impacts on crop yields - searching for simple answers to a complex problem. Environmental Research Letters, 2017, 12, 081001.	2.2	43
43	Effect of Climate Change on Agricultural Crops. , 2017, , 23-46.		52
44	Representing winter wheat in the Community Land Model (version 4.5). Geoscientific Model Development, 2017, 10, 1873-1888.	1.3	24
45	Linking modelling and experimentation to better capture crop impacts of agroclimatic extremes—A review. Field Crops Research, 2018, 221, 142-156.	2.3	80
46	Stage-dependent temperature sensitivity function predicts seed-setting rates under short-term extreme heat stress in rice. Agricultural and Forest Meteorology, 2018, 256-257, 196-206.	1.9	32
47	Response of Biomass Development, Essential Oil, and Composition of <i>Plectranthus amboinicus</i> (<scp>Lour</scp> .) <scp>Spreng</scp> . to Irrigation Frequency and Harvest Time. Chemistry and Biodiversity, 2018, 15, e1800005.	1.0	10
49	Australian wheat production expected to decrease by the late 21st century. Global Change Biology, 2018, 24, 2403-2415.	4.2	59
50	Influence of Increased Temperature Along with Nutrient Management Treatments on CO2 Emission and Crop Productivity of Cowpea in Polyhouse Conditions Vs Natural Open Conditions Under Changing Climate Scenario. International Journal of Plant Production, 2018, 12, 107-114.	1.0	1
51	Direct and Indirect Costs of Frost in the Australian Wheatbelt. Ecological Economics, 2018, 150, 122-136.	2.9	13
52	Yield and grain weight responses to post-anthesis increases in maximum temperature under field grown wheat as modified by nitrogen supply. Field Crops Research, 2018, 221, 228-237.	2.3	46
53	Assessing future meteorological stresses for grain maize in France. Agricultural Systems, 2018, 159, 237-247.	3.2	17
54	Impacts of heat stress on leaf area index and growth duration of winter wheat in the North China Plain. Field Crops Research, 2018, 222, 230-237.	2.3	48
55	Weather related risks in Belgian arable agriculture. Agricultural Systems, 2018, 159, 225-236.	3.2	48

#	Article	IF	CITATIONS
56	Sensitivity of WOFOST-based modelling solutions to crop parameters under climate change. Ecological Modelling, 2018, 368, 1-14.	1.2	27
57	Late spring frost impacts on future grapevine distribution in Europe. Field Crops Research, 2018, 222, 197-208.	2.3	65
58	Diverse sensitivity of winter crops over the growing season to climate and land surface temperature across the rainfed cropland-belt of eastern Australia. Agriculture, Ecosystems and Environment, 2018, 254, 99-110.	2.5	16
59	Study of the reproductive phenology of Araucaria angustifolia in two environments of Argentina: Its application to the management of a species at risk. Global Ecology and Conservation, 2018, 16, e00483.	1.0	6
60	Heat Tolerance of Durum Wheat (Tritcum durum Desf.) Elite Germplasm Tested along the Senegal River. Journal of Agricultural Science, 2018, 10, 217.	0.1	14
61	Spatial variations in crop growing seasons pivotal to reproduce global fluctuations in maize and wheat yields. Science Advances, 2018, 4, eaat4517.	4.7	45
62	In-season performance of European Union wheat forecasts during extreme impacts. Scientific Reports, 2018, 8, 15420.	1.6	19
64	Advancing a farmer decision support tool for agronomic decisions on rainfed and irrigated wheat cropping in Tasmania. Agricultural Systems, 2018, 167, 113-124.	3.2	28
65	Projected changes in heat wave characteristics in the Carpathian Basin comparing different definitions. International Journal of Global Warming, 2018, 16, 119.	0.2	2
66	Adapting and evaluating APSIM-SoilP-Wheat model for response to phosphorus under rainfed conditions of Pakistan. Journal of Plant Nutrition, 2018, 41, 2069-2084.	0.9	22
67	Variable resolution modeling of near future mean temperature changes in the dry sub-humid region of Ghana. Modeling Earth Systems and Environment, 2018, 4, 919-933.	1.9	19
68	Opportunities to reduce heat damage in rain-fed wheat crops based on plant breeding and agronomic management. Field Crops Research, 2018, 224, 126-138.	2.3	54
69	Effect of freezing temperature and duration on winter survival and grain yield of winter wheat. Agricultural and Forest Meteorology, 2018, 260-261, 1-8.	1.9	33
70	Engineering plants for tomorrow: how high-throughput phenotyping is contributing to the development of better crops. Phytochemistry Reviews, 2018, 17, 1329-1343.	3.1	32
71	Can N management affect the magnitude of yield loss due to heat waves in wheat and maize?. Current Opinion in Plant Biology, 2018, 45, 276-283.	3.5	30
72	Acute High Temperature Response in Wheat. Agronomy Journal, 2018, 110, 1296-1308.	0.9	38
73	Challenges and Responses to Ongoing and Projected Climate Change for Dryland Cereal Production Systems throughout the World. Agronomy, 2018, 8, 34.	1.3	28
74	The expansion of wheat thermal suitability of Russia in response to climate change. Land Use Policy, 2018, 78, 70-77.	2.5	19

#	Article	IF	CITATIONS
75	Projected climate and agronomic implications for corn production in the Northeastern United States. PLoS ONE, 2018, 13, e0198623.	1.1	33
76	Water productivity of rainfed maize and wheat: A local to global perspective. Agricultural and Forest Meteorology, 2018, 259, 364-373.	1.9	70
77	Performance of four crop model for simulations of wheat phenology, leaf growth, biomass and yield across planting dates. PLoS ONE, 2018, 13, e0197546.	1.1	48
78	From extreme weather to impacts: The role of the areas of concern maps in the JRC MARS bulletin. Agricultural Systems, 2019, 168, 213-223.	3.2	5
79	Expression of protein synthesis elongation factors in winter wheat and oat in response to heat stress. Journal of Plant Physiology, 2019, 240, 153015.	1.6	11
80	Response of the Durum Wheat Cultivar Um Qais (Triticum turgidum subsp. durum) to Salinity. Agriculture (Switzerland), 2019, 9, 135.	1.4	7
82	Vulnerability of Indian wheat against rising temperature and aerosols. Environmental Pollution, 2019, 254, 112946.	3.7	41
83	Assessing the Potential of Cereal Production Systems to Adapt to Contrasting Weather Conditions in the Mediterranean Region. Agronomy, 2019, 9, 393.	1.3	16
84	Effect of High-Temperature Stress on Crop Productivity. , 2019, , 1-114.		7
85	A note on analysis of extreme minimum temperatures with the GAMLSS framework. Acta Geophysica, 2019, 67, 1599-1604.	1.0	5
86	Variability and predictability of winter cold nights in Argentina. Weather and Climate Extremes, 2019, 26, 100236.	1.6	10
87	Impacts of 1.5 °C and 2 °C global warming on regional rainfall and temperature change across India. Environmental Research Communications, 2019, 1, 125002.	0.9	19
88	Climate Smart Interventions of Small-Holder Farming Systems. , 2019, , .		2
89	The Effect of Climate Change on Abiotic Plant Stress: A Review. , 0, , .		20
90	Phenotyping reproductive stage chilling and frost tolerance in wheat using targeted metabolome and lipidome profiling. Metabolomics, 2019, 15, 144.	1.4	31
91	Evapotranspiration estimation using a modified Priestley-Taylor model in a rice-wheat rotation system. Agricultural Water Management, 2019, 224, 105755.	2.4	70
92	Impact of Climate Change on Crops Adaptation and Strategies to Tackle Its Outcome: A Review. Plants, 2019, 8, 34.	1.6	901
93	Incorporating machine learning with biophysical model can improve the evaluation of climate extremes impacts on wheat yield in south-eastern Australia. Agricultural and Forest Meteorology, 2019, 275, 100-113.	1.9	125

#	Article	IF	CITATIONS
94	Hydroxyproline-Rich Glycoproteins as Markers of Temperature Stress in the Leaves of Brachypodium distachyon. International Journal of Molecular Sciences, 2019, 20, 2571.	1.8	16
95	Temperature Variability Differs in Urban Agroecosystems across Two Metropolitan Regions. Climate, 2019, 7, 50.	1.2	8
96	Abiotic Stress-Induced Oxidative Stress in Wheat. , 2019, , 225-239.		4
97	Silicon-mediated role of 24-epibrassinolide in wheat under high-temperature stress. Environmental Science and Pollution Research, 2019, 26, 17163-17172.	2.7	36
98	The effects of climate extremes on global agricultural yields. Environmental Research Letters, 2019, 14, 054010.	2.2	382
99	Modelling long-term risk profiles of wheat grain yield with limited climate data. Agricultural Systems, 2019, 173, 393-402.	3.2	13
100	Adjustment of Irrigation Schedules as a Strategy to Mitigate Climate Change Impacts on Agriculture in Cyprus. Agriculture (Switzerland), 2019, 9, 4.	1.4	4
101	Regulatory Role of Proline in Heat Stress Tolerance. , 2019, , 437-448.		20
102	Synoptic and Large-Scale Determinants of Extreme Austral Frost Events. Journal of Applied Meteorology and Climatology, 2019, 58, 1103-1124.	0.6	15
103	Rethinking false spring risk. Global Change Biology, 2019, 25, 2209-2220.	4.2	57
104	Winter Weather Whiplash: Impacts of Meteorological Events Misaligned With Natural and Human Systems in Seasonally Snowâ€Covered Regions. Earth's Future, 2019, 7, 1434-1450.	2.4	43
105	Assessing Forms of Application of Azospirillum brasilense Associated with Silicon Use on Wheat. Agronomy, 2019, 9, 678.	1.3	16
106	Climate Change Impacts and Adaptation Strategies for Agronomic Crops. , 0, , .		21
107	Development of Wild and Cultivated Plants under Global Warming Conditions. Current Biology, 2019, 29, R1326-R1338.	1.8	124
108	Modulation of photosynthate supply by <scp>CO</scp> ₂ elevation affects the postâ€headâ€emergence frostâ€induced grain yield loss in wheat. Journal of Agronomy and Crop Science, 2019, 205, 54-64.	1.7	4
109	Interactive Effects of Elevated CO2 and Climate Change on Wheat Production in the Mediterranean Region. The Anthropocene: Politik - Economics - Society - Science, 2019, , 245-268.	0.2	1
110	Optimized sowing time windows mitigate climate risks for oats production under cool semi-arid growing conditions. Agricultural and Forest Meteorology, 2019, 266-267, 184-197.	1.9	24
111	Frost damage on grain number in wheat at different spike developmental stages and its modelling. European Journal of Agronomy, 2019, 103, 13-23.	1.9	25

#	Article	IF	CITATIONS
113	Evaluating the impact of rainfall and temperature on wheat dough strength in Western Australia. Cereal Chemistry, 2019, 96, 370.	1.1	1
114	Spatiotemporal variations of extreme climate events in Northeast China during 1960–2014. Ecological Indicators, 2019, 96, 669-683.	2.6	51
115	Response of biomass accumulation in wheat to low-temperature stress at jointing and booting stages. Environmental and Experimental Botany, 2019, 157, 46-57.	2.0	56
116	Assessment of El Niño and La Niña impacts on China: Enhancing the Early Warning System on Food and Agriculture. Weather and Climate Extremes, 2020, 27, 100208.	1.6	27
117	Occurrence and synoptic background of strong and very strong frost in spring and autumn in Central Europe. International Journal of Biometeorology, 2020, 64, 59-70.	1.3	10
118	Shrub facilitation promotes selective tree establishment beyond the climatic treeline. Science of the Total Environment, 2020, 708, 134618.	3.9	18
119	Heat shocks increasingly impede grain filling but have little effect on grain setting across the Australian wheatbelt. Agricultural and Forest Meteorology, 2020, 284, 107889.	1.9	40
120	Spatial patterns of estimated optimal flowering period of wheat across the southwest of Western Australia. Field Crops Research, 2020, 247, 107710.	2.3	14
121	Integration of Google Play Content and Frost Prediction Using CNN: Scalable IoT Framework for Big Data. IEEE Access, 2020, 8, 6890-6900.	2.6	12
122	Identifying optimal sowing and flowering periods for barley in Australia: a modelling approach. Agricultural and Forest Meteorology, 2020, 282-283, 107871.	1.9	34
123	Long fallows can maintain whole-farm profit and reduce risk in semi-arid south-eastern Australia. Agricultural Systems, 2020, 178, 102721.	3.2	26
124	Modeling of the saffron yield in Central Khorasan region based on meteorological extreme events. Theoretical and Applied Climatology, 2020, 139, 1207-1217.	1.3	3
125	Are farmers willing to pay for climate related traits of wheat? Evidence from rural parts of Ethiopia. Agricultural Systems, 2020, 185, 102947.	3.2	9
126	Response of winter wheat to spring frost from a remote sensing perspective: Damage estimation and influential factors. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 168, 221-235.	4.9	27
127	Weather effects and their longâ€ŧerm impact on agricultural yields in Odisha, East India: Agricultural policy implications using NARDL approach. Journal of Public Affairs, 2020, , e2498.	1.7	0
128	Simulation of climate change impact on maize growth and yield using DSSAT modeling. IOP Conference Series: Earth and Environmental Science, 2020, 456, 012024.	0.2	Ο
129	A Review of Grain Kernel Damage: Mechanisms, Modeling, and Testing Procedures. Transactions of the ASABE, 2020, 63, 455-475.	1.1	32
130	Statistical Analysis versus the M5P Machine Learning Algorithm to Analyze the Yield of Winter Wheat in a Long-Term Fertilizer Experiment. Agronomy, 2020, 10, 1779.	1.3	4

#	Article	IF	CITATIONS
131	Feeling the heat: developmental and molecular responses of wheat and barley to high ambient temperatures. Journal of Experimental Botany, 2020, 71, 5740-5751.	2.4	42
132	Impact of postâ€flowering heat stress in winter wheat tracked through optical signals. Agronomy Journal, 2020, 112, 3993-4006.	0.9	10
133	Zero-tillage wheat provides stable yield and economic benefits under diverse growing season climates in the Eastern Indo-Gangetic Plains. International Journal of Agricultural Sustainability, 2020, 18, 567-593.	1.3	23
134	Water Resources in Coastal Aquifers of Algeria Face Climate Variability: Case of Alluvial Aquifer of Mitidja in Algeria. Handbook of Environmental Chemistry, 2020, , 203-224.	0.2	1
135	Impact of extreme weather conditions on European crop production in 2018. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190510.	1.8	138
136	Analysis on the Characteristics of Dry and Wet Periods in The Yangtze River Basin. Water (Switzerland), 2020, 12, 2960.	1.2	5
137	Water Resources in Algeria - Part I. Handbook of Environmental Chemistry, 2020, , .	0.2	36
138	Recent advances in plant heat stress transcription factors. , 2020, , 153-200.		4
139	Influence of Climate Conditions on the Temporal Development of Wheat Yields in a Long-Term Experiment in an Area with Pleistocene Loess. Climate, 2020, 8, 100.	1.2	12
140	Yield reduction under climate warming varies among wheat cultivars in South Africa. Nature Communications, 2020, 11, 4408.	5.8	61
141	Application of distributed temperature sensing using optical fibre to understand temperature dynamics in wheat (triticum aestivum) during frost. European Journal of Agronomy, 2020, 115, 126038.	1.9	8
142	Future projection of the effects of climate change on saffron yield and spatial-temporal distribution of cultivation by incorporating the effect of extreme climate indices. Theoretical and Applied Climatology, 2020, 141, 1109-1118.	1.3	4
143	Effects of high temperature stress during anthesis and grain filling periods on photosynthesis, lipids and grain yield in wheat. BMC Plant Biology, 2020, 20, 268.	1.6	112
144	The shifting influence of future water and temperature stress on the optimal flowering period for wheat in Western Australia. Science of the Total Environment, 2020, 737, 139707.	3.9	23
145	Comparison of wheat simulation models for impacts of extreme temperature stress on grain quality. Agricultural and Forest Meteorology, 2020, 288-289, 107995.	1.9	18
146	No perfect storm for crop yield failure in Germany. Environmental Research Letters, 2020, 15, 104012.	2.2	53
147	Effects of drought on hay and feed grain prices. Environmental Research Letters, 2020, 15, 034014.	2.2	14
148	Effect of temperature on survival and yield components of fieldâ€acclimated soft red winter wheat. Crop Science, 2020, 60, 475-484.	0.8	5

#	Article	IF	CITATIONS
149	A deep learning model to predict lower temperatures in agriculture. Journal of Ambient Intelligence and Smart Environments, 2020, 12, 21-34.	0.8	17
150	Rediscovery of Genetic and Genomic Resources for Future Food Security. , 2020, , .		11
151	Dynamic wheat yield forecasts are improved by a hybrid approach using a biophysical model and machine learning technique. Agricultural and Forest Meteorology, 2020, 285-286, 107922.	1.9	70
152	Detecting Frost Stress in Wheat: A Controlled Environment Hyperspectral Study on Wheat Plant Components and Implications for Multispectral Field Sensing. Remote Sensing, 2020, 12, 477.	1.8	21
153	Towards a multiscale crop modelling framework for climate change adaptation assessment. Nature Plants, 2020, 6, 338-348.	4.7	181
154	Prolamin Content and Grain Weight in RNAi Silenced Wheat Lines Under Different Conditions of Temperature and Nitrogen Availability. Frontiers in Plant Science, 2020, 11, 314.	1.7	8
155	Comparative physiological and proteomic analysis deciphering tolerance and homeostatic signaling pathways in chrysanthemum under drought stress. Physiologia Plantarum, 2021, 172, 289-303.	2.6	6
156	Marker-based crop model-assisted ideotype design to improve avoidance of abiotic stress in bread wheat. Journal of Experimental Botany, 2021, 72, 1085-1103.	2.4	7
157	Modeling of land-use and land-cover change impact on summertime near-surface temperature variability over the Delhi–Mumbai Industrial Corridor. Modeling Earth Systems and Environment, 2021, 7, 1309-1319.	1.9	14
158	Modelling phenology to probe for trade-offs between frost and heat risk in lentil and faba bean. European Journal of Agronomy, 2021, 122, 126154.	1.9	18
159	Modeling the effects of extreme high-temperature stress at anthesis and grain filling on grain protein in winter wheat. Crop Journal, 2021, 9, 889-900.	2.3	13
160	Improving the representation of cropland sites in the Community Land Model (CLM) version 5.0. Geoscientific Model Development, 2021, 14, 573-601.	1.3	18
161	Physiological and Molecular Responses to High, Chilling, and Freezing Temperature in Plant Growth and Production: Consequences and Mitigation Possibilities. , 2021, , 235-290.		9
162	Impact of Microclimate on Agriculture in India: Transformation and Adaptation. , 2021, , 41-59.		5
163	Adopting "Difference-in-Differences―Method to Monitor Crop Response to Agrometeorological Hazards with Satellite Data: A Case Study of Dry-Hot Wind. Remote Sensing, 2021, 13, 482.	1.8	8
164	The effect of heat stress on some main spike traits in 12 wheat cultivars at anthesis and mid-grain filling stage. Plant, Soil and Environment, 2021, 67, 71-76.	1.0	10
165	Wheat omics: Classical breeding to new breeding technologies. Saudi Journal of Biological Sciences, 2021, 28, 1433-1444.	1.8	12
166	Effects of extreme temperature on China's tea production. Environmental Research Letters, 2021, 16, 044040.	2.2	23

#	Article	IF	CITATIONS
167	Improving the Performance of Index Insurance Using Crop Models and Phenological Monitoring. Remote Sensing, 2021, 13, 924.	1.8	13
168	Spring Frost Damage to Tea Plants Can Be Identified with Daily Minimum Air Temperatures Estimated by MODIS Land Surface Temperature Products. Remote Sensing, 2021, 13, 1177.	1.8	11
169	Microbial Diversity of Psychrotolerant Bacteria Isolated from Wild Flora of Andes Mountains and Patagonia of Chile towards the Selection of Plant Growth-Promoting Bacterial Consortia to Alleviate Cold Stress in Plants. Microorganisms, 2021, 9, 538.	1.6	30
170	Multi-Environment Screening of Durum Wheat Genotypes for Drought Tolerance in Changing Climatic Events. Agronomy, 2021, 11, 875.	1.3	19
171	Frost Predictions in Dieng using the Outputs of Subseasonal to Seasonal (S2S) Model. Agromet, 2021, 35, 30-38.	0.4	1
172	Agrometeorological Conditions and Agroclimatic Trends for the Maize and Wheat Crops in the Balkan Region. Atmosphere, 2021, 12, 671.	1.0	11
173	Crop-specific exposure to extreme temperature and moisture for the globe for the last half century. Environmental Research Letters, 2021, 16, 064006.	2.2	18
174	Crop Yield Prediction Based on Agrometeorological Indexes and Remote Sensing Data. Remote Sensing, 2021, 13, 2016.	1.8	13
175	How does post-flowering heat impact grain growth and its determining processes in wheat?. Journal of Experimental Botany, 2021, 72, 6596-6610.	2.4	14
176	Future changes to high impact weather in the UK. Climatic Change, 2021, 166, 1.	1.7	33
177	Decreased wheat production in the USA from climate change driven by yield losses rather than crop abandonment. PLoS ONE, 2021, 16, e0252067.	1.1	21
178	Climate change adaptation to extreme heat: A global systematic review of implemented action. Oxford Open Climate Change, 0, , .	0.6	33
179	Responses of Grain Yield and Yield Related Parameters to Post-Heading Low-Temperature Stress in Japonica Rice. Plants, 2021, 10, 1425.	1.6	12
180	Input database related uncertainty of Biome-BGCMuSo agro-environmental model outputs. International Journal of Digital Earth, 2021, 14, 1582-1601.	1.6	6
181	Minimum temperature mapping augments Australian grain farmers' knowledge of frost. Agricultural and Forest Meteorology, 2021, 304-305, 108422.	1.9	5
182	Using a gene-based phenology model to identify optimal flowering periods of spring wheat in irrigated mega-environments. Journal of Experimental Botany, 2021, 72, 7203-7218.	2.4	7
182 183	Using a gene-based phenology model to identify optimal flowering periods of spring wheat in irrigated mega-environments. Journal of Experimental Botany, 2021, 72, 7203-7218. Sensitivity of Winter Barley Yield to Climate Variability in a Pleistocene Loess Area. Climate, 2021, 9, 112.	2.4	7

#	Article	IF	CITATIONS
185	Response of Rainfed Chickpea Yield to Spatio-Temporal Variability in Climate in the Northwest of Iran. International Journal of Plant Production, 2021, 15, 499-510.	1.0	7
186	Fifteen-year Variations of Water Use Efficiency over a Wheat-Maize Rotation Cropland in the North China Plain. Agricultural and Forest Meteorology, 2021, 306, 108430.	1.9	18
187	Benefits of irrigation against heat stress in agriculture: Evidence from wheat crop in India. Agricultural Water Management, 2021, 255, 106950.	2.4	16
188	Risk assessment of freezing injury during overwintering of wheat in the northern boundary of the Winter Wheat Region in China. PeerJ, 2021, 9, e12154.	0.9	3
189	How to Feed a Growing Population—An IoT Approach to Crop Health and Growth. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2021, 11, 435-448.	2.7	10
190	Regional and altitudinal aspects in summer heatwave intensification in the Western Carpathians. Theoretical and Applied Climatology, 2021, 146, 1111-1125.	1.3	8
191	Crop yield forecasting and associated optimum lead time analysis based on multi-source environmental data across China. Agricultural and Forest Meteorology, 2021, 308-309, 108558.	1.9	26
192	Can Swiss wheat varieties escape future heat stress?. European Journal of Agronomy, 2021, 131, 126394.	1.9	9
193	Seed-borne fungal endophytes constrain reproductive success of host plants under ozone pollution. Environmental Research, 2021, 202, 111773.	3.7	10
194	Performance of a wheat yield prediction model and factors influencing the performance: A review and meta-analysis. Agricultural Systems, 2021, 194, 103278.	3.2	23
195	Assessing the impact of climate change on crop production in southern Africa: a review. South African Journal of Plant and Soil, 2021, 38, 1-12.	0.4	3
196	Multiâ€model ensemble of <scp>CMIP6</scp> projections for future extreme climate stress on wheat in the North China plain. International Journal of Climatology, 2021, 41, E171.	1.5	43
197	Impact of Concurrent Weed or Herbicide Stress with Other Biotic and Abiotic Stressors on Crop Production. , 2017, , 33-45.		3
198	Growth and Morphological Changes of Agronomic Crops Under Abiotic Stress. , 2020, , 1-11.		2
199	Canopy hyperspectral characteristics and yield estimation of winter wheat (Triticum aestivum) under low temperature injury. Scientific Reports, 2020, 10, 244.	1.6	20
200	An integrated framework for predicting the risk of experiencing temperature conditions that may trigger late-maturity alpha-amylase in wheat across Australia. Crop and Pasture Science, 2020, 71, 1.	0.7	5
201	Genetic variation for tolerance to extreme temperatures in wild and cultivated sunflower (Helianthus annuus) during early vegetative phases. Crop and Pasture Science, 2020, 71, 578.	0.7	6
202	Density-dependent Accumulation of Heavy Metals in Spring Wheat (Triticum Aestivum) and the Risk Assessment from Weak Alkaline Soils, Northwest of China. International Journal of Agricultural Science and Technology, 2016, 4, 1-7.	1.1	1

#	Article	IF	Citations
203	Crop Models as Tools for Agroclimatology. Agronomy, 0, , 519-546.	0.2	4
204	Mining a yield-trial database to identify high-yielding cultivars by simulation modeling: a case study for rice. J Agricultural Meteorology, 2017, 73, 51-58.	0.8	5
205	Blues for a Blue Planet: Narratives of Climate Change and the Anthropocene in Nonfiction Books. Evolutionary Studies in Imaginative Culture, 2017, 1, 39-57.	0.1	1
206	Adaptive reactions of wheat seedlings differentiating varieties under hyperthermia. Sibirskii Vestnik Sel'skokhoziaistvennoi Nauki, 2019, 49, 31-40.	0.1	6
207	Satellite-Based Observations Reveal Effects of Weather Variation on Rice Phenology. Remote Sensing, 2020, 12, 1522.	1.8	14
208	Influence of stress temperatures on lipoxygenase activity in Triticum spelta. Vìsnik Harkìvsʹkogo Nacìonalʹnogo Agrarnogo Unìversitetu Serìâ BA¬ologiâ, 2018, 2018, 40-45.	0.1	5
209	Downscaling probability of long heatwaves based on seasonal mean daily maximum temperatures. Advances in Statistical Climatology, Meteorology and Oceanography, 2018, 4, 37-52.	0.6	6
210	Saussurea involucrata (Snow Lotus) ICE1 and ICE2 Orthologues Involved in Regulating Cold Stress Tolerance in Transgenic Arabidopsis. International Journal of Molecular Sciences, 2021, 22, 10850.	1.8	9
211	Two Carbohydrate-Based Natural Extracts Stimulate in vitro Pollen Germination and Pollen Tube Growth of Tomato Under Cold Temperatures. Frontiers in Plant Science, 2021, 12, 552515.	1.7	3
212	Biochemical and Physiological Responses of Thermostable Wheat Genotypes for Agronomic Yield under Heat Stress during Reproductive Stages. Agronomy, 2021, 11, 2080.	1.3	9
213	The Physiological Basis of Improved Heat Tolerance in Selected Emmer-Derived Hexaploid Wheat Genotypes. Frontiers in Plant Science, 2021, 12, 739246.	1.7	3
214	Learning main drivers of crop progress and failure in Europe with interpretable machine learning. International Journal of Applied Earth Observation and Geoinformation, 2021, 104, 102574.	1.4	4
215	Religijne inspiracje w twórczości muzyków jazzowych. Annales Universitatis Mariae Curie-Sklodowska Sectio L Artes, 2017, 14, 119.	0.0	0
216	Winter Wheat (Triticum aestivum L.) Overwintering Under Different Sowing Densities. , 2017, 17, 307.	0.1	0
218	Identifying Potential Estate Commodity for Agropolitan Development in Ponorogo. International Journal of Agriculture System, 2017, 5, 60.	0.2	1
219	Comparative analysis of changes in leaf area index in different wheat genotypes exposed to high temperature stress by late sown condition. Journal of Applied and Natural Science, 2017, 9, 2410-2413.	0.2	1
220	Effects of Waterlogging and Shading at Jointing Stage on Dry Matter Distribution and Yield of Winter Wheat. IFIP Advances in Information and Communication Technology, 2019, , 80-92.	0.5	0
221	Evaluation of Growth and Physiological Responses of Three Rice (Oryza sativa L.) Varieties to Elevated Temperatures. Journal of Tropical Crop Science, 2019, 6, 17-23.	0.1	0

#	Article	IF	CITATIONS
222	Efficient Decision Support System on Agrometeorological Data. Advances in Intelligent Systems and Computing, 2020, , 875-890.	0.5	1
223	Optimizing genotype-environment-management interactions to ensure silage maize production in the Chinese Maize Belt. Climate Research, 2020, 80, 133-146.	0.4	0
224	Climate change impact analysis using bias-corrected multiple global climate models on rice and wheat yield. Journal of Water and Climate Change, 2021, 12, 1282-1296.	1.2	5
225	A Review on Climate Change and its Impact on Agriculture in India. Current Journal of Applied Science and Technology, 0, , 58-74.	0.3	3
226	Climate risk to agriculture: A synthesis to define different types of critical moments. Climate Risk Management, 2021, 34, 100378.	1.6	11
227	Potential of Wild Species in the Scenario of Climate Change. , 2020, , 263-301.		2
228	High-Temperature Response and Tolerance in Agronomic Crops. , 2020, , 173-190.		2
229	Silicon as an acidity corrective associated with Azospirillum brasilense to improve nitrogen management and wheat profitability. Semina:Ciencias Agrarias, 2020, 41, 447-464.	0.1	0
230	Smart Nursery with Health Monitoring System Through Integration of IoT and Machine Learning. , 2020, , 93-114.		2
231	Modeling wheat and triticale winter hardiness under current and predicted winter scenarios for Central Europe: A focus on deacclimation. Agricultural and Forest Meteorology, 2022, 313, 108739.	1.9	12
232	Separating the impacts of heat stress events from rising mean temperatures on winter wheat yield of China. Environmental Research Letters, 2021, 16, 124035.	2.2	8
234	Pre-Anthesis Night Warming Improves Post-Anthesis Physiological Activities and Plant Productivity to Post-Anthesis Heat Stress in Winter Wheat (Triticum Aestivum L.). SSRN Electronic Journal, 0, , .	0.4	0
236	Predicting yield loss in winter wheat due to frost damage during stem elongation in the central area of Huang-huai plain in China. Field Crops Research, 2022, 276, 108399.	2.3	6
237	The Interactions between Temperature and Relative Humidity: Results for Benin City, Nigeria using Statistical Analysis. , 0, , .		0
238	Time point- and plant part-specific changes in phloem exudate metabolites of leaves and ears of wheat in response to drought and effects on aphids. PLoS ONE, 2022, 17, e0262671.	1.1	5
239	Artificial Intelligence Aided Agricultural Sensors for Plant Frostbite Protection. Applied Artificial Intelligence, 2022, 36, .	2.0	3
240	Effects of Low-Temperature Stress during the Anther Differentiation Period on Winter Wheat Photosynthetic Performance and Spike-Setting Characteristics. Plants, 2022, 11, 389.	1.6	7
241	Variability of precipitation extremes and drought intensity over the Sikkim State, India, during 1950–2018. Theoretical and Applied Climatology, 2022, 148, 1-14.	1.3	8

#	Article	IF	CITATIONS
242	Evaluation of Random Forests (RF) for Regional and Local-Scale Wheat Yield Prediction in Southeast Australia. Sensors, 2022, 22, 717.	2.1	21
243	Simulation of Wheat Response to Future Climate Change Based on Coupled Model Inter-Comparison Project Phase 6 Multi-Model Ensemble Projections in the North China Plain. Frontiers in Plant Science, 2022, 13, 829580.	1.7	10
244	Mining the Vavilov wheat diversity panel for new sources of adult plant resistance to stripe rust. Theoretical and Applied Genetics, 2022, 135, 1355-1373.	1.8	6
245	Wheat genotypes tolerant to heat at seedling stage tend to be also tolerant at adult stage: The possibility of early selection for heat tolerance breeding. Crop Journal, 2022, 10, 1006-1013.	2.3	11
246	Effects of Low Temperature Stress on Source–Sink Organs in Wheat and Phosphorus Mitigation Strategies. Frontiers in Plant Science, 2022, 13, 807844.	1.7	6
247	Managing impact of extreme weather events in sugarcane in different agro-climatic zones of Uttar Pradesh. Mausam, 2016, 67, 233-250.	0.1	22
248	A Thermal-Based Wheat Crop Coefficient Method Using Additive Crop Growth Models. SSRN Electronic Journal, 0, , .	0.4	0
250	Explainable Machine Learning to Map the Impact of Weather and Soil on Wheat Yield and Revenue Across the Eastern Australian Grain Belt. SSRN Electronic Journal, 0, , .	0.4	0
251	A survey of image-based computational learning techniques for frost detection in plants. Information Processing in Agriculture, 2023, 10, 164-191.	2.9	5
252	Genome wide association study of frost tolerance in wheat. Scientific Reports, 2022, 12, 5275.	1.6	13
253	Climate change in relation to agriculture: A review. Spanish Journal of Agricultural Research, 2022, 20, e03R01.	0.3	4
254	Impact of Climate Change on Rural Poverty Vulnerability from an Income Source Perspective: A Study Based on CHIPS2013 and County-Level Temperature Data in China. International Journal of Environmental Research and Public Health, 2022, 19, 3328.	1.2	11
255	Estimating Effects of Radiation Frost on Wheat Using a Field-Based Frost Control Treatment to Stop Freezing Damage. Genes, 2022, 13, 578.	1.0	4
256	Frost risk by dwindling snow cover. Nature Climate Change, 2022, 12, 421-423.	8.1	7
257	Modern plant biotechnology as a strategy in addressing climate change and attainingÂfood security. Agriculture and Food Security, 2022, 11, .	1.6	48
258	The critical benefits of snowpack insulation and snowmelt for winter wheat productivity. Nature Climate Change, 2022, 12, 485-490.	8.1	19
259	Minute-wise frost prediction: An approach of recurrent neural networks. Array, 2022, 14, 100158.	2.5	1
260	Proteomic analysis reveals the molecular mechanism underlying the cold acclimation and freezing tolerance of wheat (Triticum aestivum L.). Plant Science, 2022, 318, 111242.	1.7	11

	CITATION RE	PORT	
#	Article	IF	Citations
261	Designing wheat cultivar adaptation to future climate change across China by coupling biophysical modelling and machine learning. European Journal of Agronomy, 2022, 136, 126500.	1.9	7
262	Pre-anthesis night warming improves post-anthesis physiological activity and plant productivity to post-anthesis heat stress in winter wheat (Triticum aestivum L.). Environmental and Experimental Botany, 2022, 197, 104819.	2.0	8
263	Social media communication during natural disasters and the impact on the agricultural market. Technological Forecasting and Social Change, 2022, 179, 121594.	6.2	13
264	Storylines of weather-induced crop failure events under climate change. Earth System Dynamics, 2021, 12, 1503-1527.	2.7	27
265	Transcriptomic and Physiological Response of Durum Wheat Grain to Short-Term Heat Stress during Early Grain Filling. Plants, 2022, 11, 59.	1.6	9
266	Machine learning reveals complex effects of climatic means and weather extremes on wheat yields during different plant developmental stages. Climatic Change, 2021, 169, 1.	1.7	13
267	The genetic and molecular basis for improving heat stress tolerance in wheat. ABIOTECH, 2022, 3, 25-39.	1.8	3
269	Breeding Efforts for Crop Productivity in Abiotic Stress Environment. , 2022, , 63-103.		6
270	Effect of Climate Change on Wheat Productivity. , 0, , .		6
271	Trends, intensification, attribution and uncertainty of projected heatwaves in India. International Journal of Climatology, 2022, 42, 7563-7582.	1.5	1
272	High impact compound events in Australia. Weather and Climate Extremes, 2022, 36, 100457.	1.6	8
273	How process-based modeling can help plant breeding deal with G x E x M interactions. Field Crops Research, 2022, 283, 108554.	2.3	4
274	Machine learning-based detection of freezing events using infrared thermography. Computers and Electronics in Agriculture, 2022, 198, 107013.	3.7	8
275	An atmospheric and soil thermal-based wheat crop coefficient method using additive crop growth models. Agricultural Water Management, 2022, 269, 107691.	2.4	0
276	Recent Weather Extremes and Their Impact on Crop Yields of the Netherlands. SSRN Electronic Journal, 0, , .	0.4	0
277	Comparison of crop production in Hungary and Tanzania: climate and land use effects on production trends of selected crops in a 50-year period (1968-2019). Agrártudományi Közlemények, 2022, , 141-149.	0.1	0
278	Chickpea Biofortification for Cytokinin Dehydrogenase via Genome Editing to Enhance Abiotic-Biotic Stress Tolerance and Food Security. Frontiers in Genetics, 0, 13, .	1.1	16
279	Sustainable Management of Diseases in Horticulture: Conventional and New Options. Horticulturae, 2022, 8, 517.	1.2	8

		REFORT	
#	Article	IF	CITATIONS
280	Actual directions of modern biotechnologies of wheat. Fiziologia Rastenij I Genetika, 2022, 54, 187-213.	0.1	1
281	Integrating climate and satellite remote sensing data for predicting county-level wheat yield in China using machine learning methods. International Journal of Applied Earth Observation and Geoinformation, 2022, 111, 102861.	0.9	5
282	Impacts of climate change on winter wheat and summer maize dual-cropping system in the North China Plain. Environmental Research Communications, 2022, 4, 075014.	0.9	12
283	Uncovering the Research Gaps to Alleviate the Negative Impacts of Climate Change on Food Security: A Review. Frontiers in Plant Science, 0, 13, .	1.7	65
284	Comparative environmental footprints of lettuce supplied by hydroponic controlled-environment agriculture and field-based supply chains. Journal of Cleaner Production, 2022, 369, 133214.	4.6	15
286	A review of crop frost damage models and their potential application to cover crops. Italian Journal of Agronomy, 2022, 17, .	0.4	1
287	Effects of climatic and cultivar changes on winter wheat phenology in central Lithuania. International Journal of Biometeorology, 0, , .	1.3	0
288	Heterologous Expression of Genes in Plants for Abiotic Stresses. , 0, , .		0
289	The CO2 fertilization effect on leaf photosynthesis of maize (Zea mays L.) depends on growth temperatures with changes in leaf anatomy and soluble sugars. Frontiers in Plant Science, 0, 13, .	1.7	6
290	Climate Change Impact on Yield and Water Use of Rice–Wheat Rotation System in the Huang-Huai-Hai Plain, China. Biology, 2022, 11, 1265.	1.3	2
291	Development of Better Wheat Plants for Climate Change Conditions. , 0, , .		1
292	Extreme weather events cause significant crop yield losses at the farm level in German agriculture. Food Policy, 2022, 112, 102359.	2.8	38
293	Framework to guide modeling single and multiple abiotic stresses in arable crops. Agriculture, Ecosystems and Environment, 2022, 340, 108179.	2.5	15
294	Temporal and Design Approaches to Catch Further Yield-Weather Relationships: Evidence on Durum Wheat in Italy. SSRN Electronic Journal, 0, , .	0.4	0
295	Quantifying the impact of frost damage during flowering on apple yield in Shaanxi province, China. European Journal of Agronomy, 2023, 142, 126642.	1.9	7
296	Resilience of UK crop yields to compound climate change. Earth System Dynamics, 2022, 13, 1377-1396.	2.7	2
297	Urban land surface temperature prediction using parallel STL-Bi-LSTM neural network. Journal of Applied Remote Sensing, 2022, 16, .	0.6	1
298	The backward nonlinear local Lyapunov exponent and its application to quantifying the local predictability of extreme high-temperature events. Climate Dynamics, 2023, 60, 2767-2781.	1.7	6

#	Article	IF	CITATIONS
299	Biological Trace Elements Confer Abiotic Stress Tolerance in Plants. , 2022, , 306-322.		0
300	Simulating the effects of low-temperature stress on wheat biomass growth and yield. Agricultural and Forest Meteorology, 2022, 326, 109191.	1.9	11
301	The BaSIC method: a new approach to quantitatively assessing the local predictability of extreme weather events. Climate Dynamics, 2023, 60, 3561-3576.	1.7	2
302	Biostimulants Application: An Innovative Approach to Food Security under Drought Stress. , 0, , .		0
303	Coordinated evaporative demand and precipitation maximize rainfed maize and soybean crop yields in the USA. Ecohydrology, 0, , .	1.1	1
304	Recent weather extremes and their impact on crop yields of the Netherlands. European Journal of Agronomy, 2023, 142, 126662.	1.9	2
305	An experimental study on the dynamic frosting characteristics on the edge zone of a horizontal copper plate under forced convection. International Journal of Heat and Mass Transfer, 2023, 200, 123541.	2.5	25
306	Potential abiotic stress targets for modern genetic manipulation. Plant Cell, 2023, 35, 139-161.	3.1	14
307	EVALUATION OF LIMA BEAN ACCESSIONS AT HIGH TEMPERATURES. Revista Caatinga, 2022, 35, 791-798.	0.3	0
308	(Extreme) Weather index-based insurances: data, models, and other aspects we need to think about. , 2022, , .		0
309	Carbon isotope discrimination as a key physiological trait to phenotype drought/heat resistance of future climate-resilient German winter wheat compared with relative leaf water content and canopy temperature. Frontiers in Plant Science, 0, 13, .	1.7	7
311	Seed Priming Improves Biochemical and Physiological Performance of Wheat Seedlings under Low-Temperature Conditions. Agriculture (Switzerland), 2023, 13, 2.	1.4	1
312	Assessing the Agronomic Subfield Variability by Sentinel-2 NDVI Time-Series and Landscape Position. Agronomy, 2023, 13, 44.	1.3	1
313	Challenges and opportunities in remote sensing-based crop monitoring: a review. National Science Review, 2023, 10, .	4.6	23
314	Foxtail millet SiCDPK7 gene enhances tolerance to extreme temperature stress in transgenic plants. Environmental and Experimental Botany, 2023, 207, 105197.	2.0	2
315	High-temperature indicators for capturing the impacts of heat stress on yield: lessons learned from irrigated wheat in the hot and dry environment of Sudan. Climate Research, 0, , .	0.4	0
316	Planting Rice at Monsoon Onset Could Mitigate the Impact of Temperature Stress on Rice–Wheat Systems of Bihar, India. Atmosphere, 2023, 14, 40.	1.0	0
317	Characterization of Solar Radiation-Induced Degradation Products of the Plant Sunscreen Sinapoyl Malate. ACS Agricultural Science and Technology, 2023, 3, 171-180.	1.0	3

	Cı	tation Report	
#	Article	IF	Citations
318	Evaluating the impact of a 2.5–3°C increase in temperature on drought-stressed German wheat cultivars under natural stress conditions. Agricultural and Forest Meteorology, 2023, 332, 109378.	1.9	1
319	Exploring the effects of extreme weather events on methane emissions from croplands: A study combining site and global modeling. Agricultural and Forest Meteorology, 2023, 335, 109454.	1.9	1
320	Disaster event-based spring frost damage identification indicator for tea plants and its applications over the region north of the Yangtze River, China. Ecological Indicators, 2023, 146, 109912.	2.6	2
322	Trichoderma-mediated abiotic stress mitigation in plants: Current status and prospects. , 2023, , 151-	172.	0
324	Photothermal Quotient Describes the Combined Effects of Heat and Shade Stresses on Canola Seed Productivity. Seeds, 2023, 2, 149-164.	0.7	2
325	Responses of wheat kernel weight to diverse allelic combinations under projected climate change conditions. Frontiers in Plant Science, 0, 14, .	1.7	0
326	Effect of Planting Density on Canopy Structure, Microenvironment, and Yields of Uniformly Sown Winter Wheat. Agronomy, 2023, 13, 870.	1.3	3
327	Estimating the local predictability of heatwaves in south China using the backward nonlinear local Lyapunov exponent method. Climate Dynamics, 2023, 61, 3605-3618.	1.7	3
328	Increasing interannual climate variability during crop flowering in Europe. Environmental Research Letters, 2023, 18, 044037.	2.2	1
329	Estimating daily minimum grass temperature to quantify frost damage to winter wheat during stem elongation in the central area of Huang-Huai plain in China. Environmental Science and Pollution Research, 0, , .	2.7	1
330	Biochar Application for Improving the Yield and Quality of Crops Under Climate Change. Sustainable Agriculture Reviews, 2023, , 3-55.	0.6	0
331	Influence of High Temperature Stress on Grain Crops. , 2023, , 371-389.		1
333	Nutrient Management Under Changing Climate. , 2023, , 281-297.		0
334	Agronomic bio-fortification of wheat (Triticum aestivum L.) to alleviate zinc deficiency in human being. Reviews in Environmental Science and Biotechnology, 2023, 22, 505-526.	3.9	2
343	Pulse ideotypes for abiotic constraint alleviation in Australia. Plant and Soil, 2023, 492, 1-30.	1.8	1
356	Global Prospects of Climate-Resilient Agriculture. , 2023, , 1-25.		0
371	Status of impact of abiotic stresses on global agriculture. , 2024, , 1-21.		0