Genome-scale transcriptional activation by an engineer

Nature 517, 583-588 DOI: 10.1038/nature14136

Citation Report

#	Article	IF	CITATIONS
2	Engineering of temperature- and light-switchable Cas9 variants. Nucleic Acids Research, 2013, 44, 10003-10014.	6.5	95
3	CRISPR/Cas9â€mediated genome engineering of CHO cell factories: Application and perspectives. Biotechnology Journal, 2015, 10, 979-994.	1.8	104
4	CRISPR/gRNA-directed synergistic activation mediator (SAM) induces specific, persistent and robust reactivation of the HIV-1 latent reservoirs. Scientific Reports, 2015, 5, 16277.	1.6	130
5	Neurogenethics: An emerging discipline at the intersection of ethics, neuroscience, and genomics. Applied & Translational Genomics, 2015, 5, 18-22.	2.1	10
7	The utility of transposon mutagenesis for cancer studies in the era of genome editing. Genome Biology, 2015, 16, 229.	3.8	28
8	Making sense of GWAS: using epigenomics and genome engineering to understand the functional relevance of SNPs in non-coding regions of the human genome. Epigenetics and Chromatin, 2015, 8, 57.	1.8	277
9	Developmental genetics of the COPD lung. COPD Research and Practice, 2015, 1, .	0.7	7
10	CRISPR as: From the Bacterial Adaptive Immune System to a Versatile Tool for Genome Engineering. Angewandte Chemie - International Edition, 2015, 54, 13508-13514.	7.2	24
11	Crystal Structure of Cas9. Nihon Kessho Gakkaishi, 2015, 57, 96-103.	0.0	0
12	<scp>CRISPR</scp> screen: a highâ€throughput approach for cancer genetic research. Clinical Genetics, 2015, 88, 32-33.	1.0	1
13	5p deletions: Current knowledge and future directions. American Journal of Medical Genetics, Part C: Seminars in Medical Genetics, 2015, 169, 224-238.	0.7	67
15	Pathophysiological Functions of <scp>Rnd</scp> 3/ <scp>RhoE</scp> ., 2015, 6, 169-186.		61
16	Applications of Engineered DNA-Binding Molecules Such as TAL Proteins and the CRISPR/Cas System in Biology Research. International Journal of Molecular Sciences, 2015, 16, 23143-23164.	1.8	11
17	A new age in functional genomics using CRISPR/Cas9 in arrayed library screening. Frontiers in Genetics, 2015, 6, 300.	1.1	96
18	CRISPR-Cas9: A Revolutionary Tool for Cancer Modelling. International Journal of Molecular Sciences, 2015, 16, 22151-22168.	1.8	26
19	The CRISPR revolution and its impact on cancer research. Swiss Medical Weekly, 2015, 145, w14230.	0.8	13
20	Genome-wide specificity of DNA binding, gene regulation, and chromatin remodeling by TALE- and CRISPR/Cas9-based transcriptional activators. Genome Research, 2015, 25, 1158-1169.	2.4	114
21	Applications of the CRISPR–Cas9 system in cancer biology. Nature Reviews Cancer, 2015, 15, 387-393.	12.8	340

		EPUKI	
# 22	ARTICLE Expanding the Biologist's Toolkit with CRISPR-Cas9. Molecular Cell, 2015, 58, 568-574.	IF 4.5	Citations 351
23	Toward Whole-Transcriptome Editing with CRISPR-Cas9. Molecular Cell, 2015, 58, 560-562.	4.5	11
24	Long Noncoding RNA in Hematopoiesis and Immunity. Immunity, 2015, 42, 792-804.	6.6	161
25	Choosing the Right Tool for the Job: RNAi, TALEN, or CRISPR. Molecular Cell, 2015, 58, 575-585.	4.5	374
26	In Vitro Reconstitution and Crystallization of Cas9 Endonuclease Bound to a Guide RNA and a DNA Target. Methods in Enzymology, 2015, 558, 515-537.	0.4	23
27	Targeting microRNAs for immunomodulation. Current Opinion in Pharmacology, 2015, 23, 25-31.	1.7	13
28	A Toolkit of CRISPR-Based Genome Editing Systems in Drosophila. Journal of Genetics and Genomics, 2015, 42, 141-149.	1.7	44
29	Multiplexable, locus-specific targeting of long RNAs with CRISPR-Display. Nature Methods, 2015, 12, 664-670.	9.0	268
30	High-Throughput Silencing Using the CRISPR-Cas9 System: A Review of the Benefits and Challenges. Journal of Biomolecular Screening, 2015, 20, 1027-1039.	2.6	31
31	CRISPR–Cas9-mediated genome editing and guide RNA design. Mammalian Genome, 2015, 26, 501-510.	1.0	53
32	Sequence determinants of improved CRISPR sgRNA design. Genome Research, 2015, 25, 1147-1157.	2.4	514
33	Specific induction of endogenous viral restriction factors using CRISPR/Cas-derived transcriptional activators. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E7249-56.	3.3	45
34	The Cas6e ribonuclease is not required for interference and adaptation by the <i>E. coli</i> type I-E CRISPR-Cas system. Nucleic Acids Research, 2015, 43, 6049-6061.	6.5	21
35	CRISPR/Cas9 system as an innovative genetic engineering tool: Enhancements in sequence specificity and delivery methods. Biochimica Et Biophysica Acta: Reviews on Cancer, 2015, 1856, 234-243.	3.3	19
36	Quality control, modeling, and visualization of CRISPR screens with MAGeCK-VISPR. Genome Biology, 2015, 16, 281.	3.8	330
37	Resources for the design of CRISPR gene editing experiments. Genome Biology, 2015, 16, 260.	3.8	91
38	Optimizing sgRNA structure to improve CRISPR-Cas9 knockout efficiency. Genome Biology, 2015, 16, 280.	3.8	290
40	CRISPR gain-of-function screens. Nature Methods, 2015, 12, 102-103.	9.0	3

#	Article	IF	CITATIONS
41	CRISPR engineering turns on genes. Nature, 2015, 517, 560-562.	13.7	1
42	A split-Cas9 architecture for inducible genome editing and transcription modulation. Nature Biotechnology, 2015, 33, 139-142.	9.4	603
43	The impact of CRISPR–Cas9 on target identification and validation. Drug Discovery Today, 2015, 20, 450-457.	3.2	56
44	CRISPR-Cas9: a new and promising player in gene therapy. Journal of Medical Genetics, 2015, 52, 289-296.	1.5	150
45	Highâ€throughput screens in mammalian cells using the CRISPR as9 system. FEBS Journal, 2015, 282, 2089-2096.	2.2	51
46	Genetic screens and functional genomics using <scp>CRISPR</scp> /Cas9 technology. FEBS Journal, 2015, 282, 1383-1393.	2.2	82
47	Functional annotation of native enhancers with a Cas9–histone demethylase fusion. Nature Methods, 2015, 12, 401-403.	9.0	548
48	Genome-wide CRISPR Screen in a Mouse Model of Tumor Growth and Metastasis. Cell, 2015, 160, 1246-1260.	13.5	746
49	Application of CRISPR/Cas9 for biomedical discoveries. Cell and Bioscience, 2015, 5, 33.	2.1	52
50	Precision cancer mouse models through genome editing with CRISPR-Cas9. Genome Medicine, 2015, 7, 53.	3.6	88
51	A CRISPR-Based Screen Identifies Genes Essential for West-Nile-Virus-Induced Cell Death. Cell Reports, 2015, 12, 673-683.	2.9	207
52	CRISPR-Cas: New Tools for Genetic Manipulations from Bacterial Immunity Systems. Annual Review of Microbiology, 2015, 69, 209-228.	2.9	160
53	A Genome-wide CRISPR Screen in Primary Immune Cells to Dissect Regulatory Networks. Cell, 2015, 162, 675-686.	13.5	383
54	Putting Non-coding RNA on Display with CRISPR. Molecular Cell, 2015, 59, 146-148.	4.5	9
55	Generation of cell-type-specific gene mutations by expressing the sgRNA of the CRISPR system from the RNA polymerase II promoters. Protein and Cell, 2015, 6, 689-692.	4.8	8
56	Synthetic biology in cell-based cancer immunotherapy. Trends in Biotechnology, 2015, 33, 449-461.	4.9	61
57	Co-opting CRISPR to deliver functional RNAs. Nature Methods, 2015, 12, 613-614.	9.0	4
58	CRISPR-Cas9 Based Genome Engineering: Opportunities in Agri-Food-Nutrition and Healthcare. OMICS A Journal of Integrative Biology, 2015, 19, 261-275.	1.0	11

#	Article	IF	CITATIONS
59	Unraveling the 3D genome: genomics tools for multiscale exploration. Trends in Genetics, 2015, 31, 357-372.	2.9	62
60	Applications of CRISPR-Cas9 mediated genome engineering. Military Medical Research, 2015, 2, 11.	1.9	28
61	Efficient Gene Disruption in Cultured Primary Human Endothelial Cells by CRISPR/Cas9. Circulation Research, 2015, 117, 121-128.	2.0	64
62	Advances in CRISPR-Cas9 genome engineering: lessons learned from RNA interference. Nucleic Acids Research, 2015, 43, 3407-3419.	6.5	124
63	LncRNAs in vertebrates: Advances and challenges. Biochimie, 2015, 117, 3-14.	1.3	38
64	Highly efficient Cas9-mediated transcriptional programming. Nature Methods, 2015, 12, 326-328.	9.0	1,245
65	High-throughput functional genomics using CRISPR–Cas9. Nature Reviews Genetics, 2015, 16, 299-311.	7.7	998
66	Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nature Biotechnology, 2015, 33, 510-517.	9.4	1,487
67	The CRISPR-Cas immune system: Biology, mechanisms and applications. Biochimie, 2015, 117, 119-128.	1.3	367
68	The therapeutic application of CRISPR/Cas9 technologies for HIV. Expert Opinion on Biological Therapy, 2015, 15, 819-830.	1.4	66
69	Oneâ€step generation of triple knockout CHO cell lines using CRISPR/Cas9 and fluorescent enrichment. Biotechnology Journal, 2015, 10, 1446-1456.	1.8	108
70	Enabling functional genomics with genome engineering. Genome Research, 2015, 25, 1442-1455.	2.4	89
71	Functional genomics bridges the gap between quantitative genetics and molecular biology. Genome Research, 2015, 25, 1427-1431.	2.4	63
72	Human Induced Pluripotent Stem Cell <i>NEUROG2</i> Dual Knockin Reporter Lines Generated by the CRISPR/Cas9 System. Stem Cells and Development, 2015, 24, 2925-2942.	1.1	24
73	Modeling Disease In Vivo With CRISPR/Cas9. Trends in Molecular Medicine, 2015, 21, 609-621.	3.5	91
74	Orthogonal gene knockout and activation with a catalytically active Cas9 nuclease. Nature Biotechnology, 2015, 33, 1159-1161.	9.4	231
75	Mapping the Pathways of Resistance to Targeted Therapies. Cancer Research, 2015, 75, 4247-4251.	0.4	35
76	Strategies for precision modulation of gene expression by epigenome editing: an overview. Epigenetics and Chromatin, 2015, 8, 34.	1.8	50

#	Article	IF	CITATIONS
77	The emerging role of lncRNAs in cancer. Nature Medicine, 2015, 21, 1253-1261.	15.2	2,203
78	Combining CRISPR/Cas9 and rAAV Templates for Efficient Gene Editing. Nucleic Acid Therapeutics, 2015, 25, 287-296.	2.0	26
79	Highly specific epigenome editing by CRISPR-Cas9 repressors for silencing of distal regulatory elements. Nature Methods, 2015, 12, 1143-1149.	9.0	808
80	Network analysis of gene essentiality in functional genomics experiments. Genome Biology, 2015, 16, 239.	3.8	50
81	<i>In Vivo</i> Transcriptional Activation Using CRISPR/Cas9 in <i>Drosophila</i> . Genetics, 2015, 201, 433-442.	1.2	117
82	Genomes by design. Nature Reviews Genetics, 2015, 16, 501-516.	7.7	41
83	Hitting the Target in <i>BRAF</i> -Mutant Colorectal Cancer. Journal of Clinical Oncology, 2015, 33, 3990-3992.	0.8	12
84	A CRISPR/Cas9 Toolbox for Multiplexed Plant Genome Editing and Transcriptional Regulation. Plant Physiology, 2015, 169, 971-985.	2.3	532
85	Crystal Structure of Staphylococcus aureus Cas9. Cell, 2015, 162, 1113-1126.	13.5	357
86	Conditionally Stabilized dCas9 Activator for Controlling Gene Expression in Human Cell Reprogramming and Differentiation. Stem Cell Reports, 2015, 5, 448-459.	2.3	158
87	The New State of the Art: Cas9 for Gene Activation and Repression. Molecular and Cellular Biology, 2015, 35, 3800-3809.	1.1	197
88	Proven and novel strategies for efficient editing of the human genome. Current Opinion in Pharmacology, 2015, 24, 105-112.	1.7	18
89	Electroporation Knows No Boundaries: The Use of Electrostimulation for siRNA Delivery in Cells and Tissues. Journal of Biomolecular Screening, 2015, 20, 932-942.	2.6	38
90	Advancing metabolic engineering through systems biology of industrial microorganisms. Current Opinion in Biotechnology, 2015, 36, 8-15.	3.3	92
91	Bacterial CRISPR: accomplishments and prospects. Current Opinion in Microbiology, 2015, 27, 121-126.	2.3	74
92	Off-target Effects in CRISPR/Cas9-mediated Genome Engineering. Molecular Therapy - Nucleic Acids, 2015, 4, e264.	2.3	872
93	Functional genomics to uncover drug mechanism of action. Nature Chemical Biology, 2015, 11, 942-948.	3.9	70
94	Biological Networks Coverning the Acquisition, Maintenance, and Dissolution of Pluripotency: Insights from Functional Genomics Approaches. Cold Spring Harbor Symposia on Quantitative Biology, 2015, 80, 189-198.	2.0	2

#	Article	IF	CITATIONS
95	Screening for tumor suppressors: Loss of ephrin receptor A2 cooperates with oncogenic <i>KRas</i> in promoting lung adenocarcinoma. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E6476-85.	3.3	33
96	CRISPR-dCas9 mediated TET1 targeting for selective DNA demethylation at <i>BRCA1</i> promoter. Oncotarget, 2016, 7, 46545-46556.	0.8	263
97	CRISPR-Cas9: from Genome Editing to Cancer Research. International Journal of Biological Sciences, 2016, 12, 1427-1436.	2.6	31
98	GMO Acceptance in the World and Issues for the Overcoming of Restrictions. , 2016, , 309-341.		0
99	Waking up dormant tumor suppressor genes with zinc fingers, TALEs and the CRISPR/dCas9 system. Oncotarget, 2016, 7, 60535-60554.	0.8	61
100	Transcriptional Regulation During Zygotic Genome Activation in Zebrafish and Other Anamniote Embryos. Advances in Genetics, 2016, 95, 161-194.	0.8	18
101	Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes Afford New Opportunities in Inherited Cardiovascular Disease Modeling. Cardiology Research and Practice, 2016, 2016, 1-17.	0.5	11
102	Compact and highly active next-generation libraries for CRISPR-mediated gene repression and activation. ELife, 2016, 5, .	2.8	609
103	Advanced In vivo Use of CRISPR/Cas9 and Anti-sense DNA Inhibition for Gene Manipulation in the Brain. Frontiers in Genetics, 2015, 6, 362.	1.1	25
104	Genome Engineering with TALE and CRISPR Systems in Neuroscience. Frontiers in Genetics, 2016, 7, 47.	1.1	25
105	RNA Interference in the Age of CRISPR: Will CRISPR Interfere with RNAi?. International Journal of Molecular Sciences, 2016, 17, 291.	1.8	68
106	Manipulating the Prion Protein Gene Sequence and Expression Levels with CRISPR/Cas9. PLoS ONE, 2016, 11, e0154604.	1.1	20
107	Targeted HIV-1 Latency Reversal Using CRISPR/Cas9-Derived Transcriptional Activator Systems. PLoS ONE, 2016, 11, e0158294.	1.1	65
108	Recent Advances in Genome Editing Using CRISPR/Cas9. Frontiers in Plant Science, 2016, 7, 703.	1.7	94
109	CRISPR-Cas9: Tool for Qualitative and Quantitative Plant Genome Editing. Frontiers in Plant Science, 2016, 7, 1740.	1.7	65
110	The Emerging Potential for Epigenetic Therapeutics in Noncancer Disorders. , 2016, , 437-456.		2
111	Design, execution, and analysis of pooled <i>inÂvitro </i> <scp>CRISPR</scp> /Cas9 screens. FEBS Journal, 2016, 283, 3170-3180.	2.2	66
112	<scp>CRISPR</scp> guide <scp>RNA</scp> design for research applications. FEBS Journal, 2016, 283, 3232-3238.	2.2	74

#	Article	IF	CITATIONS
113	Epigenetic determinants of cardiovascular gene expression: vascular endothelium. Epigenomics, 2016, 8, 959-979.	1.0	13
114	Combination of the clustered regularly interspaced short palindromic repeats (CRISPR)â€associated 9 technique with the piggybac transposon system for mouse in utero electroporation to study cortical development. Journal of Neuroscience Research, 2016, 94, 814-824.	1.3	10
115	Next stop for the CRISPR revolution: RNAâ€guided epigenetic regulators. FEBS Journal, 2016, 283, 3181-3193.	2.2	63
116	On the Origin of CRISPR-Cas Technology: From Prokaryotes to Mammals. Trends in Microbiology, 2016, 24, 811-820.	3.5	143
117	Current and future prospects for CRISPRâ€based tools in bacteria. Biotechnology and Bioengineering, 2016, 113, 930-943.	1.7	100
118	Methods to Study Long Noncoding RNA Biology in Cancer. Advances in Experimental Medicine and Biology, 2016, 927, 69-107.	0.8	13
119	A comprehensive overview of computational resources to aid in precision genome editing with engineered nucleases. Briefings in Bioinformatics, 2017, 18, bbw052.	3.2	15
120	Using <scp>CRISPR</scp> /Cas in three dimensions: towards synthetic plant genomes, transcriptomes and epigenomes. Plant Journal, 2016, 87, 5-15.	2.8	78
121	CRISPR as9 systems: versatile cancer modelling platforms and promising therapeutic strategies. International Journal of Cancer, 2016, 138, 1328-1336.	2.3	26
122	A Powerful CRISPR/Cas9â€Based Method for Targeted Transcriptional Activation. Angewandte Chemie, 2016, 128, 6562-6566.	1.6	2
123	Efficient CRISPR/Cas9â€Based Genome Engineering in Human Pluripotent Stem Cells. Current Protocols in Human Genetics, 2016, 88, 21.4.1-21.4.23.	3.5	20
124	A Powerful CRISPR/Cas9â€Based Method for Targeted Transcriptional Activation. Angewandte Chemie - International Edition, 2016, 55, 6452-6456.	7.2	13
125	The Long and Short Non-coding RNAs in Cancer Biology. Advances in Experimental Medicine and Biology, 2016, , .	0.8	4
126	Applying CRISPR–Cas9 tools to identify and characterize transcriptional enhancers. Nature Reviews Molecular Cell Biology, 2016, 17, 597-604.	16.1	54
127	Using CRISPR/Cas to study gene function and model disease <i>in vivo</i> . FEBS Journal, 2016, 283, 3194-3203.	2.2	37
128	Sequence features associated with the cleavage efficiency of CRISPR/Cas9 system. Scientific Reports, 2016, 6, 19675.	1.6	141
129	Advances in the Development of Gene-Targeting Vectors to Increase the Efficiency of Genetic Modification. Biological and Pharmaceutical Bulletin, 2016, 39, 25-32.	0.6	7
130	Efficient CRISPR-Mediated Post-Transcriptional Gene Silencing in a Hyperthermophilic Archaeon Using Multiplexed crRNA Expression. G3: Genes, Genomes, Genetics, 2016, 6, 3161-3168.	0.8	25

#	Article	IF	CITATIONS
131	Epigenetic Editing: On the Verge of Reprogramming Gene Expression at Will. Current Genetic Medicine Reports, 2016, 4, 170-179.	1.9	52
132	Generation of induced pluripotent stem cells (iPSCs) stably expressing CRISPR-based synergistic activation mediator (SAM). Stem Cell Research, 2016, 17, 665-669.	0.3	10
133	Generation and Characterization of a MYF5 Reporter Human iPS Cell Line Using CRISPR/Cas9 Mediated Homologous Recombination. Scientific Reports, 2016, 6, 18759.	1.6	24
134	Role of Angiomotinâ€like 2 monoâ€ubiquitination on YAP inhibition. EMBO Reports, 2016, 17, 64-78.	2.0	46
135	Multiplexed pancreatic genome engineering and cancer induction by transfection-based CRISPR/Cas9 delivery in mice. Nature Communications, 2016, 7, 10770.	5.8	145
136	Identification and Validation of PCAT14 as Prognostic Biomarker in Prostate Cancer. Neoplasia, 2016, 18, 489-499.	2.3	55
137	Reprogramming cell fate with a genome-scale library of artificial transcription factors. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E8257-E8266.	3.3	23
138	A network-based drug repositioning infrastructure for precision cancer medicine through targeting significantly mutated genes in the human cancer genomes. Journal of the American Medical Informatics Association: JAMIA, 2016, 23, 681-691.	2.2	46
139	Designed nucleases for targeted genome editing. Plant Biotechnology Journal, 2016, 14, 448-462.	4.1	57
140	Directed evolution and synthetic biology applications to microbial systems. Current Opinion in Biotechnology, 2016, 39, 126-133.	3.3	56
141	Genome Editing in Human Pluripotent Stem Cells. Cold Spring Harbor Protocols, 2016, 2016, pdb.top086819.	0.2	5
142	Gene editing and its application for hematological diseases. International Journal of Hematology, 2016, 104, 18-28.	0.7	24
143	CRISPR/Cas9 for Human Genome Engineering and Disease Research. Annual Review of Genomics and Human Genetics, 2016, 17, 131-154.	2.5	80
144	The Past, Present, and Future of Genetic Manipulation in Toxoplasma gondii. Trends in Parasitology, 2016, 32, 542-553.	1.5	36
145	The future of iPS cells in advancing regenerative medicine. Genetical Research, 2016, 98, e4.	0.3	5
146	Genome engineering in ophthalmology: Application of CRISPR/Cas to the treatment of eye disease. Progress in Retinal and Eye Research, 2016, 53, 1-20.	7.3	42
147	Comparison of Cas9 activators in multiple species. Nature Methods, 2016, 13, 563-567.	9.0	438
148	Genome editing in pluripotent stem cells: research and therapeutic applications. Biochemical and Biophysical Research Communications, 2016, 473, 665-674.	1.0	17

#	Article	IF	CITATIONS
149	Engineering microbial hosts for production of bacterial natural products. Natural Product Reports, 2016, 33, 963-987.	5.2	117
150	Multiplexed labeling of genomic loci with dCas9 and engineered sgRNAs using CRISPRainbow. Nature Biotechnology, 2016, 34, 528-530.	9.4	365
151	Imaging Specific Genomic DNA in Living Cells. Annual Review of Biophysics, 2016, 45, 1-23.	4.5	67
152	Characterization of Cas9–Guide RNA Orthologs. Cold Spring Harbor Protocols, 2016, 2016, pdb.top086793.	0.2	12
153	The expanding footprint of CRISPR/Cas9 in the plant sciences. Plant Cell Reports, 2016, 35, 1451-1468.	2.8	30
154	Synthetic biology — application-oriented cell engineering. Current Opinion in Biotechnology, 2016, 40, 139-148.	3.3	34
155	Induced Pluripotent Stem Cells Meet Genome Editing. Cell Stem Cell, 2016, 18, 573-586.	5.2	398
156	CRISPR/Cas9 for plant genome editing: accomplishments, problems and prospects. Plant Cell Reports, 2016, 35, 1417-1427.	2.8	72
157	Crystal Structure of Cpf1 in Complex with Guide RNA and Target DNA. Cell, 2016, 165, 949-962.	13.5	552
158	CRISPR/Cas9 in Genome Editing and Beyond. Annual Review of Biochemistry, 2016, 85, 227-264.	5.0	897
159	Golden Gate Assembly of CRISPR gRNA expression array for simultaneously targeting multiple genes. Cellular and Molecular Life Sciences, 2016, 73, 4315-4325.	2.4	52
160	A genome editing primer for the hematologist. Blood, 2016, 127, 2525-2535.	0.6	23
161	Development of Lightâ€Activated CRISPR Using Guide RNAs with Photocleavable Protectors. Angewandte Chemie, 2016, 128, 12628-12632.	1.6	29
162	A multifunctional AAV–CRISPR–Cas9 and its host response. Nature Methods, 2016, 13, 868-874.	9.0	506
163	Applications of CRISPR Genome Engineering in Cell Biology. Trends in Cell Biology, 2016, 26, 875-888.	3.6	68
164	Applications of CRISPR technologies in research and beyond. Nature Biotechnology, 2016, 34, 933-941.	9.4	735
165	Guide RNA engineering for versatile Cas9 functionality. Nucleic Acids Research, 2016, 44, gkw908.	6.5	55
166	Translating Lung Function Genome-Wide Association Study (GWAS) Findings. Advances in Genetics, 2016, 93, 57-145.	0.8	17

#	Article	IF	CITATIONS
167	Challenges of CRISPR/Cas9 applications for long non-coding RNA genes. Nucleic Acids Research, 2017, 45, gkw883.	6.5	138
168	Genome-Editing Technologies: Principles and Applications. Cold Spring Harbor Perspectives in Biology, 2016, 8, a023754.	2.3	209
169	Deciphering Combinatorial Genetics. Annual Review of Genetics, 2016, 50, 515-538.	3.2	16
170	Methods for Optimizing CRISPR-Cas9 Genome Editing Specificity. Molecular Cell, 2016, 63, 355-370.	4.5	247
171	Diverse evolutionary roots and mechanistic variations of the CRISPR-Cas systems. Science, 2016, 353, aad5147.	6.0	523
172	Inhibition of histone deacetylase reduces transcription of NADPH oxidases and ROS production and ameliorates pulmonary arterial hypertension. Free Radical Biology and Medicine, 2016, 99, 167-178.	1.3	83
173	Lack of Transcription Triggers H3K27me3 Accumulation in the Gene Body. Cell Reports, 2016, 16, 696-706.	2.9	65
174	CRISPR/Cas9 genome editing in human pluripotent stem cells: Harnessing human genetics in a dish. Developmental Dynamics, 2016, 245, 788-806.	0.8	20
175	Emerging role of long noncoding RNAs as regulators of innate immune cell development and inflammatory gene expression. European Journal of Immunology, 2016, 46, 504-512.	1.6	125
176	Opportunities and challenges in modeling human brain disorders in transgenic primates. Nature Neuroscience, 2016, 19, 1123-1130.	7.1	115
177	CRISPR-Cas9 for in vivo Gene Therapy: Promise and Hurdles. Molecular Therapy - Nucleic Acids, 2016, 5, e349.	2.3	120
178	Development of Lightâ€Activated CRISPR Using Guide RNAs with Photocleavable Protectors. Angewandte Chemie - International Edition, 2016, 55, 12440-12444.	7.2	144
179	CRISPR technologies for bacterial systems: Current achievements and future directions. Biotechnology Advances, 2016, 34, 1180-1209.	6.0	124
181	Adoptive Cellular Therapy With Synthetic T Cells as an "Instant Vaccine―for Cancer and Immunity. , 2016, , 581-596.		2
182	Research Techniques Made Simple: The Application of CRISPR-Cas9 and Genome Editing in Investigative Dermatology, 2016, 136, e87-e93.	0.3	15
183	Genetic dissection of mammalian ERAD through comparative haploid and CRISPR forward genetic screens. Nature Communications, 2016, 7, 11786.	5.8	64
184	Systems Metabolic Engineering of <i>Escherichia coli</i> . EcoSal Plus, 2016, 7, .	2.1	31
185	Using genome-wide CRISPR library screening with library resistant DCK to find new sources of Ara-C drug resistance in AML. Scientific Reports, 2016, 6, 36199.	1.6	54

CITATION REPORT ARTICLE IF CITATIONS <scp>CRISPR</scp>â€Cas9 technology and its application in haematological disorders. British Journal of 1.2 22 Haematology, 2016, 175, 208-225. CRISPR/Cas9: a historical and chemical biology perspective of targeted genome engineering. Chemical 18.7 Society Reviews, 2016, 45, 6666-6684. Reconstructed cell fateâ€"regulatory programs in stem cells reveal hierarchies and key factors of 2.4 25 neurogenesis. Genome Research, 2016, 26, 1505-1519. EGRINs (Environmental Gene Regulatory Influence Networks) in Rice That Function in the Response to 3.1 139 Water Deficit, High Temperature, and Agricultural Environments. Plant Cell, 2016, 28, 2365-2384. Editing DNA Methylation in the Mammalian Genome. Cell, 2016, 167, 233-247.e17. 13.5 932 Determining antigen specificity of a monoclonal antibody using genome-scale CRISPR-Cas9 knockout library. Journal of Immunological Methods, 2016, 439, 8-14. CRISPR-Cas9 therapeutics in cancer: promising strategies and present challenges. Biochimica Et 3.3 45 Biophysica Acta: Reviews on Cancer, 2016, 1866, 197-207. Practical Considerations for Using Pooled Lentiviral CRISPR Libraries. Current Protocols in 2.9 14 Molecular Biology, 2016, 115, 31.5.1-31.5.13. The present and future of genome editing in cancer research. Human Genetics, 2016, 135, 1083-1092. 1.8 13 Genome editing: the road of CRISPR/Cas9 from bench to clinic. Experimental and Molecular Medicine, 3.2 74 2016, 48, e265-e265. Delivery methods for site-specific nucleases: Achieving the full potential of therapeutic gene editing. 17 4.8 Journal of Controlled Release, 2016, 244, 83-97. An RNA-aptamer-based two-color CRISPR labeling system. Scientific Reports, 2016, 6, 26857. 1.6 Functional Genomic Characterization of Cancer Genomes. Cold Spring Harbor Symposia on 2.0 17 Quantitative Biology, 2016, 81, 237-246. A Molecular Chipper technology for CRISPR sgRNA library generation and functional mapping of noncoding regions. Nature Communications, 2016, 7, 11178. 5.8 Highly Efficient Genome Editing of Murine and Human Hematopoietic Progenitor Cells by CRISPR/Cas9. 2.9 223 Cell Reports, 2016, 17, 1453-1461.

202	Current status of potential applications of repurposed Cas9 for structural and functional genomics of plants. Biochemical and Biophysical Research Communications, 2016, 480, 499-507.	1.0	22
203	Regulation of PCGEM1 by p54/nrb in prostate cancer. Scientific Reports, 2016, 6, 34529.	1.6	40

3.1

A CRISPR-based approach for targeted DNA demethylation. Cell Discovery, 2016, 2, 16009.

#

186

188

190

192

194

196

198

199

	C	itation Repo	RT	
#	Article	IF		Citations
204	Zebrafish Genome Engineering Using the CRISPR–Cas9 System. Trends in Genetics, 2016, 32, 815	-827. 2.	.9	128
205	Different Effects of sgRNA Length on CRISPR-mediated Gene Knockout Efficiency. Scientific Reports, 2016, 6, 28566.	1.	6	77
206	Genome-scale deletion screening of human long non-coding RNAs using a paired-guide RNA CRISPR–Cas9 library. Nature Biotechnology, 2016, 34, 1279-1286.	9.	.4	380
207	CRISPR-dCas9 and sgRNA scaffolds enable dual-colour live imaging of satellite sequences and repeat-enriched individual loci. Nature Communications, 2016, 7, 11707.	5.	.8	119
208	Ligand-binding domains of nuclear receptors facilitate tight control of split CRISPR activity. Nature Communications, 2016, 7, 12009.	5.	.8	90
209	Directed evolution using dCas9-targeted somatic hypermutation in mammalian cells. Nature Methoc 2016, 13, 1036-1042.	ls, 9.	.0	378
210	Writing of H3K4Me3 overcomes epigenetic silencing in a sustained but context-dependent manner. Nature Communications, 2016, 7, 12284.	5.	.8	195
211	Empower multiplex cell and tissue-specific CRISPR-mediated gene manipulation with self-cleaving ribozymes and tRNA. Nucleic Acids Research, 2017, 45, gkw1048.	6.	.5	55
212	Versatile in vivo regulation of tumor phenotypes by dCas9-mediated transcriptional perturbation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E3892	2-900. ^{3.}	.3	87
213	Human Induced Pluripotent Stem Cells as a Platform for Personalized and Precision Cardiovascular Medicine. Physiological Reviews, 2016, 96, 1093-1126.	1	3.1	93
214	Insert, remove or replace: A highly advanced genome editing system using CRISPR/Cas9. Biochimica Biophysica Acta - Molecular Cell Research, 2016, 1863, 2333-2344.	Et 1.	9	112
215	Transcriptional regulation with CRISPR-Cas9: principles, advances, and applications. Current Opinion in Biotechnology, 2016, 40, 177-184.	3.	.3	69
216	Development of a CRISPR-Cas9 Tool Kit for Comprehensive Engineering of Bacillus subtilis. Applied a Environmental Microbiology, 2016, 82, 4876-4895.	nd 1.	4	157
217	C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science, 201 aaf5573.	6, 353, ₆ .	.0	1,647
219	CRISPR/Cas9: From Genome Engineering to Cancer Drug Discovery. Trends in Cancer, 2016, 2, 313-3	324. 3.	.8	43
220	Exploring the membrane fusion mechanism through force-induced disassembly of HIV-1 six-helix bundle. Biochemical and Biophysical Research Communications, 2016, 473, 1185-1190.	1.	0	0
221	Genomic Copy Number Dictates a Gene-Independent Cell Response to CRISPR/Cas9 Targeting. Canc Discovery, 2016, 6, 914-929.	er 7.	7	485
222	The Chromatin Remodeling Component <i>Arid1a</i> Is a Suppressor of Spontaneous Mammary Turin Mice. Genetics, 2016, 203, 1601-1611.	nors 1.	2	8

ARTICLE IF CITATIONS # Benchmarking of TALE- and CRISPR/dCas9-Based Transcriptional Regulators in Mammalian Cells for the 223 1.9 20 Construction of Synthetic Genetic Circuits. ACS Synthetic Biology, 2016, 5, 1050-1058. Cellular Therapies: Gene Editing and Next-Gen CAR T Cells., 2016, , 203-247. 224 Engineering Synthetic Gene Circuits in Living Cells with CRISPR Technology. Trends in Biotechnology, 225 4.9 111 2016, 34, 535-547. Development and potential applications of CRISPR-Cas9 genome editing technology in sarcoma. Cancer Letters, 2016, 373, 109-118. Editing the epigenome: technologies for programmable transcription and epigenetic modulation. 227 9.0 341 Nature Methods, 2016, 13, 127-137. Casilio: a versatile CRISPR-Cas9-Pumilio hybrid for gene regulation and genomic labeling. Cell 5.7 Research, 2016, 26, 254-257. Specific Reactivation of Latent HIV-1 by dCas9-SunTag-VP64-mediated Guide RNA Targeting the HIV-1 229 3.7 67 Promoter. Molecular Therapy, 2016, 24, 508-521. Role of non-coding sequence variants in cancer. Nature Reviews Genetics, 2016, 17, 93-108. 230 7.7 420 Unique features of long non-coding RNA biogenesis and function. Nature Reviews Genetics, 2016, 17, 231 7.7 2,891 47-62. Beyond editing: repurposing CRISPRâ€"Cas9 for precision genome regulation and interrogation. Nature 16.1 698 Reviews Molecular Cell Biology, 2016, 17, 5-15. CRISPR-Cas9 for medical genetic screens: applications and future perspectives. Journal of Medical 233 1.5 45 Genetics, 2016, 53, 91-97. Towards a compendium of essential genes $\hat{a} \in \mathbb{C}$ From model organisms to synthetic lethality in cancer cells. Critical Reviews in Biochemistry and Molecular Biology, 2016, 51, 74-85. 234 2.3 Applications of CRISPRâ€"Cas systems in neuroscience. Nature Reviews Neuroscience, 2016, 17, 36-44. 235 4.9 245 Long-term dual-color tracking of genomic loci by modified sgRNAs of the CRISPR/Cas9 system. Nucleic Acids Research, 2016, 44, e86-e86. 6.5 138 Sequence-targeted nucleosome sliding in vivo by a hybrid Chd1 chromatin remodeler. Genome 237 30 2.4 Research, 2016, 26, 693-704. Cytokines in cancer drug resistance: Cues to new therapeutic strategies. Biochimica Et Biophysica Acta: Reviews on Cancer, 2016, 1865, 255-265. Cellular Engineering and Disease Modeling with Gene-Editing Nucleases. Advances in Experimental 239 0.8 1 Medicine and Biology, 2016, , 223-258. Structural Basis for the Altered PAM Specificities of Engineered CRISPR-Cas9. Molecular Cell, 2016, 61, 240 4.5 886-894.

#	Article	IF	CITATIONS
241	Structural Plasticity of PAM Recognition by Engineered Variants of the RNA-Guided Endonuclease Cas9. Molecular Cell, 2016, 61, 895-902.	4.5	161
242	Divergent IncRNAs Regulate Gene Expression and Lineage Differentiation in Pluripotent Cells. Cell Stem Cell, 2016, 18, 637-652.	5.2	358
243	CRISPR library designer (CLD): software for multispecies design of single guide RNA libraries. Genome Biology, 2016, 17, 55.	3.8	68
244	Piperlongumine as a direct TrxR1 inhibitor with suppressive activity against gastric cancer. Cancer Letters, 2016, 375, 114-126.	3.2	115
245	Energy biotechnology in the CRISPR-Cas9 era. Current Opinion in Biotechnology, 2016, 38, 79-84.	3.3	26
246	Multiplexed barcoded CRISPR-Cas9 screening enabled by CombiGEM. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 2544-2549.	3.3	210
247	Synthetic biology to access and expand nature's chemical diversity. Nature Reviews Microbiology, 2016, 14, 135-149.	13.6	393
248	Post-translational Regulation of Cas9 during G1 Enhances Homology-Directed Repair. Cell Reports, 2016, 14, 1555-1566.	2.9	237
249	Emerging landscape of cell penetrating peptide in reprogramming and gene editing. Journal of Controlled Release, 2016, 226, 124-137.	4.8	59
250	Targeted Gene Manipulation in Plants Using the CRISPR/Cas Technology. Journal of Genetics and Genomics, 2016, 43, 251-262.	1.7	57
251	Cas-Database: web-based genome-wide guide RNA library design for gene knockout screens using CRISPR-Cas9. Bioinformatics, 2016, 32, 2017-2023.	1.8	46
252	Functional overexpression and characterization of lipogenesis-related genes in the oleaginous yeast Yarrowia lipolytica. Applied Microbiology and Biotechnology, 2016, 100, 3781-3798.	1.7	85
254	Chemical Biology Approaches to Genome Editing: Understanding, Controlling, and Delivering Programmable Nucleases. Cell Chemical Biology, 2016, 23, 57-73.	2.5	42
256	Quantitative CRISPR interference screens in yeast identify chemical-genetic interactions and new rules for guide RNA design. Genome Biology, 2016, 17, 45.	3.8	165
257	RNA Study Using DNA Nanotechnology. Progress in Molecular Biology and Translational Science, 2016, 139, 121-163.	0.9	0
258	CRISPR/Cas9 advances engineering of microbial cell factories. Metabolic Engineering, 2016, 34, 44-59.	3.6	179
259	Essential RNA-Based Technologies and Their Applications in Plant Functional Genomics. Trends in Biotechnology, 2016, 34, 106-123.	4.9	50
260	CRISPR Technology for Genome Activation and Repression in Mammalian Cells. Cold Spring Harbor Protocols, 2016, 2016, pdb.prot090175.	0.2	20

#	Article	IF	CITATIONS
261	An Introduction to CRISPR Technology for Genome Activation and Repression in Mammalian Cells. Cold Spring Harbor Protocols, 2016, 2016, pdb.top086835.	0.2	7
262	Synthetic biology: applying biological circuits beyond novel therapies. Integrative Biology (United) Tj ETQq1 1	0.784314 rg 0.6	gBT ₁ /Overlock
263	Multi-gene engineering in plants with RNA-guided Cas9 nuclease. Current Opinion in Biotechnology, 2016, 37, 69-75.	3.3	32
264	A novel luciferase knock-in reporter system for studying transcriptional regulation of the human Sox2 gene. Journal of Biotechnology, 2016, 219, 110-116.	1.9	10
265	CRISPR/dCas9-mediated Transcriptional Inhibition Ameliorates the Epigenetic Dysregulation at D4Z4 and Represses DUX4-fl in FSH Muscular Dystrophy. Molecular Therapy, 2016, 24, 527-535.	3.7	73
266	Potent and Targeted Activation of Latent HIV-1 Using the CRISPR/dCas9 Activator Complex. Molecular Therapy, 2016, 24, 488-498.	3.7	109
267	CRISPR-mediated Activation of Latent HIV-1 Expression. Molecular Therapy, 2016, 24, 499-507.	3.7	89
268	Transcriptional Regulation with CRISPR/Cas9 Effectors in Mammalian Cells. Methods in Molecular Biology, 2016, 1358, 43-57.	0.4	28
269	Advances in computational approaches for prioritizing driver mutations and significantly mutated genes in cancer genomes. Briefings in Bioinformatics, 2016, 17, 642-656.	3.2	120
270	Application of CRISPR-mediated genome engineering in cancer research. Cancer Letters, 2017, 387, 10-17.	3.2	16
271	Using hiPSCs to model neuropsychiatric copy number variations (CNVs) has potential to reveal underlying disease mechanisms. Brain Research, 2017, 1655, 283-293.	1.1	16
272	The applications of CRISPR screen in functional genomics. Briefings in Functional Genomics, 2017, 16, 34-37.	1.3	7
273	Emerging roles for long noncoding RNAs in skeletal biology and disease. Connective Tissue Research, 2017, 58, 116-141.	1.1	90
274	Genome-scale CRISPR pooled screens. Analytical Biochemistry, 2017, 532, 95-99.	1.1	52
275	Targeted genome regulation via synthetic programmable transcriptional regulators. Critical Reviews in Biotechnology, 2017, 37, 429-440.	5.1	22
276	Genome engineering of stem cell organoids for disease modeling. Protein and Cell, 2017, 8, 315-327.	4.8	30
277	Synthetic lethality: emerging targets and opportunities in melanoma. Pigment Cell and Melanoma Research, 2017, 30, 183-193.	1.5	12
278	Increased Expression of Laminin Subunit Alpha 1 Chain by dCas9-VP160. Molecular Therapy - Nucleic Acids, 2017, 6, 68-79.	2.3	31

#	Article	IF	Citations
279	Towards a CRISPR view of early human development: applications, limitations and ethical concerns of genome editing in human embryos. Development (Cambridge), 2017, 144, 3-7.	1.2	51
280	Orthogonal Genetic Regulation in Human Cells Using Chemically Induced CRISPR/Cas9 Activators. ACS Synthetic Biology, 2017, 6, 686-693.	1.9	37
281	GB3.0: a platform for plant bio-design that connects functional DNA elements with associated biological data. Nucleic Acids Research, 2017, 45, gkw1326.	6.5	70
282	CRISPR-Cas type II-based Synthetic Biology applications in eukaryotic cells. RNA Biology, 2017, 14, 1286-1293.	1.5	10
283	Genome editing of crops: A renewed opportunity for food security. GM Crops and Food, 2017, 8, 1-12.	2.0	130
284	Direct Cytosolic Delivery of CRISPR/Cas9-Ribonucleoprotein for Efficient Gene Editing. ACS Nano, 2017, 11, 2452-2458.	7.3	423
285	Genome-Scale Networks Link Neurodegenerative Disease Genes to α-Synuclein through Specific Molecular Pathways. Cell Systems, 2017, 4, 157-170.e14.	2.9	102
286	Strain Development by Whole-Cell Directed Evolution. , 2017, , 173-200.		2
287	CRISPR/CAS9 Technologies. Journal of Bone and Mineral Research, 2017, 32, 883-888.	3.1	19
288	A stable but reversible integrated surrogate reporter for assaying CRISPR/Cas9-stimulated homology-directed repair. Journal of Biological Chemistry, 2017, 292, 6148-6162.	1.6	13
289	CRISPR-targeted genome editing of mesenchymal stem cell-derived therapies for type 1 diabetes: a path to clinical success?. Stem Cell Research and Therapy, 2017, 8, 62.	2.4	38
290	Towards combinatorial transcriptional engineering. Biotechnology Advances, 2017, 35, 390-405.	6.0	17
291	Modern Genome Editing Technologies in Huntington's Disease Research. Journal of Huntington's Disease, 2017, 6, 19-31.	0.9	20
292	LncRNA AK023948 is a positive regulator of AKT. Nature Communications, 2017, 8, 14422.	5.8	92
293	An inducible CRISPR-ON system for controllable gene activation in human pluripotent stem cells. Protein and Cell, 2017, 8, 379-393.	4.8	36
294	What rheumatologists need to know about CRISPR/Cas9. Nature Reviews Rheumatology, 2017, 13, 205-216.	3.5	18
295	Gene Editing With CRISPR/Cas9 RNA-Directed Nuclease. Circulation Research, 2017, 120, 876-894.	2.0	61
296	Rational design of inducible CRISPR guide RNAs for de novo assembly of transcriptional programs. Nature Communications, 2017, 8, 14633.	5.8	75

#	Article	IF	CITATIONS
297	Metabolic gatekeeper function of B-lymphoid transcription factors. Nature, 2017, 542, 479-483.	13.7	175
298	Directed Enzyme Evolution: Advances and Applications. , 2017, , .		18
299	Gene Regulatory Elements, Major Drivers of Human Disease. Annual Review of Genomics and Human Genetics, 2017, 18, 45-63.	2.5	115
300	CRISPR/Cas9: Transcending the Reality of Genome Editing. Molecular Therapy - Nucleic Acids, 2017, 7, 211-222.	2.3	81
301	Multiplexed Engineering and Analysis of Combinatorial Enhancer Activity in Single Cells. Molecular Cell, 2017, 66, 285-299.e5.	4.5	245
302	Applications of the CRISPR-Cas9 system in kidney research. Kidney International, 2017, 92, 324-335.	2.6	15
303	Advancing chimeric antigen receptor T cell therapy with CRISPR/Cas9. Protein and Cell, 2017, 8, 634-643.	4.8	81
304	Animal models for neuropsychiatric disorders: prospects for circuit intervention. Current Opinion in Neurobiology, 2017, 45, 59-65.	2.0	19
305	A CRISPR toolbox to study virus–host interactions. Nature Reviews Microbiology, 2017, 15, 351-364.	13.6	147
306	Locus-specific histone deacetylation using a synthetic CRISPR-Cas9-based HDAC. Nature Communications, 2017, 8, 15315.	5.8	176
307	Genetic interaction mapping in mammalian cells using CRISPR interference. Nature Methods, 2017, 14, 577-580.	9.0	142
308	A Wnt-producing niche drives proliferative potential and progression in lung adenocarcinoma. Nature, 2017, 545, 355-359.	13.7	265
309	Sphingosine kinase 1: A novel independent prognosis biomarker in hepatocellular carcinoma. Oncology Letters, 2017, 13, 2316-2322.	0.8	28
310	CRISPR Editing in Biological and Biomedical Investigation. Journal of Cellular Biochemistry, 2017, 118, 4152-4162.	1.2	6
311	Current application of CRISPR/Cas9 gene-editing technique to eradication of HIV/AIDS. Gene Therapy, 2017, 24, 377-384.	2.3	29
312	Genetic suppression: Extending our knowledge from lab experiments to natural populations. BioEssays, 2017, 39, 1700023.	1.2	7
313	The Effects of Voluntary Physical Exercise-Activated Neurotrophic Signaling in Rat Hippocampus on mRNA Levels of Downstream Signaling Molecules. Journal of Molecular Neuroscience, 2017, 62, 142-153.	1.1	9
314	Switchable Cas9. Current Opinion in Biotechnology, 2017, 48, 119-126.	3.3	38

#	Article	IF	CITATIONS
315	Applying CRISPR/Cas for genome engineering in plants: the best is yet to come. Current Opinion in Plant Biology, 2017, 36, 1-8.	3.5	264
316	CRISPR-Cas9 technology: applications in genome engineering, development of sequence-specific antimicrobials, and future prospects. Integrative Biology (United Kingdom), 2017, 9, 109-122.	0.6	47
317	Rapidly evolving homing CRISPR barcodes. Nature Methods, 2017, 14, 195-200.	9.0	179
318	Green listed—a CRISPR screen tool. Bioinformatics, 2017, 33, 1099-1100.	1.8	12
319	Applications of CRISPR-Cas for synthetic biology and genetic recording. Current Opinion in Systems Biology, 2017, 5, 9-15.	1.3	18
320	CRISPR system in filamentous fungi: Current achievements and future directions. Gene, 2017, 627, 212-221.	1.0	65
321	Genome editing in Drosophila melanogaster: from basic genome engineering to the multipurpose CRISPR-Cas9 system. Science China Life Sciences, 2017, 60, 476-489.	2.3	12
322	RNA Activation. Advances in Experimental Medicine and Biology, 2017, , .	0.8	1
323	Mammalian synthetic biology in the age of genome editing and personalized medicine. Current Opinion in Chemical Biology, 2017, 40, 57-64.	2.8	16
324	Disruptive non-disruptive applications of CRISPR/Cas9. Current Opinion in Biotechnology, 2017, 48, 203-209.	3.3	7
325	One-Step piggyBac Transposon-Based CRISPR/Cas9 Activation of Multiple Genes. Molecular Therapy - Nucleic Acids, 2017, 8, 64-76.	2.3	30
326	CRISPRcloud: a secure cloud-based pipeline for CRISPR pooled screen deconvolution. Bioinformatics, 2017, 33, 2963-2965.	1.8	22
327	The long noncoding RNA <i>Wisper</i> controls cardiac fibrosis and remodeling. Science Translational Medicine, 2017, 9, .	5.8	232
328	Mammalian Synthetic Biology: Engineering Biological Systems. Annual Review of Biomedical Engineering, 2017, 19, 249-277.	5.7	47
329	CRISPR/Cas9-Based Genome Editing for Disease Modeling and Therapy: Challenges and Opportunities for Nonviral Delivery. Chemical Reviews, 2017, 117, 9874-9906.	23.0	418
330	Progress and Application of CRISPR/Cas Technology in Biological and Biomedical Investigation. Journal of Cellular Biochemistry, 2017, 118, 3061-3071.	1.2	10
331	Hit and go CAS9 delivered through a lentiviral based self-limiting circuit. Nature Communications, 2017, 8, 15334.	5.8	75
332	De Novo Gene Expression Reconstruction in Space. Trends in Molecular Medicine, 2017, 23, 583-593.	3.5	6

#	Article	IF	CITATIONS
333	Engineered CRISPR Systems for Next Generation Gene Therapies. ACS Synthetic Biology, 2017, 6, 1614-1626.	1.9	30
334	RNA-Guided Activation of Pluripotency Genes in Human Fibroblasts. Cellular Reprogramming, 2017, 19, 189-198.	0.5	16
335	CRISPR–Cas9 epigenome editing enables high-throughput screening for functional regulatory elements in the human genome. Nature Biotechnology, 2017, 35, 561-568.	9.4	362
336	Purified Cas9 Fusion Proteins for Advanced Genome Manipulation. Small Methods, 2017, 1, 1600052.	4.6	11
337	Genome-scale CRISPR-Cas9 knockout and transcriptional activation screening. Nature Protocols, 2017, 12, 828-863.	5.5	858
338	Efficient Transcriptional Gene Repression by Type V-A CRISPR-Cpf1 from <i>Eubacterium eligens</i> . ACS Synthetic Biology, 2017, 6, 1273-1282.	1.9	69
339	Applications of CRISPR genome editing technology in drug target identification and validation. Expert Opinion on Drug Discovery, 2017, 12, 541-552.	2.5	15
340	CRISPR/Cas9 editing of the genome for cancer modeling. Methods, 2017, 121-122, 130-137.	1.9	34
341	Progress towards precision functional genomics in cancer. Current Opinion in Systems Biology, 2017, 2, 74-83.	1.3	7
342	Functional interrogation of non-coding DNA through CRISPR genome editing. Methods, 2017, 121-122, 118-129.	1.9	28
343	Live cell imaging of low- and non-repetitive chromosome loci using CRISPR-Cas9. Nature Communications, 2017, 8, 14725.	5.8	199
344	Transcriptional reprogramming in yeast using dCas9 and combinatorial gRNA strategies. Microbial Cell Factories, 2017, 16, 46.	1.9	102
345	Editing the genome of hiPSC with CRISPR/Cas9: disease models. Mammalian Genome, 2017, 28, 348-364.	1.0	72
346	CRISPR/Cas9-mediated genome editing in plants. Methods, 2017, 121-122, 94-102.	1.9	46
347	Artificial Induction of Native Aquaporin-1 Expression in Human Salivary Cells. Journal of Dental Research, 2017, 96, 444-449.	2.5	10
348	Transcriptional activation of the MICA gene with an engineered CRISPR-Cas9 system. Biochemical and Biophysical Research Communications, 2017, 486, 521-525.	1.0	14
349	Cornerstones of CRISPR–Cas in drug discovery and therapy. Nature Reviews Drug Discovery, 2017, 16, 89-100.	21.5	370
350	CRISPR/Cas9 system-mediated impairment of synaptobrevin/VAMP function in postmitotic hippocampal neurons. Journal of Neuroscience Methods, 2017, 278, 57-64.	1.3	3

#	Article	IF	CITATIONS
351	Design and Experimental Validation of Small Activating RNAs Targeting an Exogenous Promoter in Human Cells. ACS Synthetic Biology, 2017, 6, 628-637.	1.9	2
352	Genome engineering in human pluripotent stem cells. Current Opinion in Chemical Engineering, 2017, 15, 56-67.	3.8	1
353	Synthetic Biology—The Synthesis of Biology. Angewandte Chemie - International Edition, 2017, 56, 6396-6419.	7.2	141
354	Synthetische Biologie – die Synthese der Biologie. Angewandte Chemie, 2017, 129, 6494-6519.	1.6	11
355	Rewiring human cellular input–output using modular extracellular sensors. Nature Chemical Biology, 2017, 13, 202-209.	3.9	124
356	Cas13b Is a Type VI-B CRISPR-Associated RNA-Guided RNase Differentially Regulated by Accessory Proteins Csx27 and Csx28. Molecular Cell, 2017, 65, 618-630.e7.	4.5	445
358	Control of Adipogenic Differentiation in Mesenchymal Stem Cells via Endogenous Gene Activation Using CRISPR-Cas9. ACS Synthetic Biology, 2017, 6, 2191-2197.	1.9	25
359	Key elements for designing and performing a CRISPR/Cas9-based genetic screen. Journal of Genetics and Genomics, 2017, 44, 439-449.	1.7	16
360	High-Throughput Approaches to Pinpoint Function within the Noncoding Genome. Molecular Cell, 2017, 68, 44-59.	4.5	54
361	Methods and Applications of CRISPR-Mediated Base Editing in Eukaryotic Genomes. Molecular Cell, 2017, 68, 26-43.	4.5	199
362	CRISPR/Cas9-Based Engineering of the Epigenome. Cell Stem Cell, 2017, 21, 431-447.	5.2	215
363	The chemistry of Cas9 and its CRISPR colleagues. Nature Reviews Chemistry, 2017, 1, .	13.8	111
364	Drug-tunable multidimensional synthetic gene control using inducible degron-tagged dCas9 effectors. Nature Communications, 2017, 8, 1191.	5.8	49
365	Randomized CRISPR-Cas Transcriptional Perturbation Screening Reveals Protective Genes against Alpha-Synuclein Toxicity. Molecular Cell, 2017, 68, 247-257.e5.	4.5	31
366	CRISPR/Cas9 screening using unique molecular identifiers. Molecular Systems Biology, 2017, 13, 945.	3.2	51
367	Multiplex Enhancer Interference Reveals Collaborative Control of Gene Regulation by Estrogen Receptor α-Bound Enhancers. Cell Systems, 2017, 5, 333-344.e5.	2.9	85
368	Engineering species-like barriers to sexual reproduction. Nature Communications, 2017, 8, 883.	5.8	41
369	CRISPR-UMI: single-cell lineage tracing of pooled CRISPR–Cas9 screens. Nature Methods, 2017, 14, 1191-1197.	9.0	95

#	Article	IF	CITATIONS
370	Multiscale 3D Genome Rewiring during Mouse Neural Development. Cell, 2017, 171, 557-572.e24.	13.5	1,060
371	The REMOTE-control system: a system for reversible and tunable control of endogenous gene expression in mice. Nucleic Acids Research, 2017, 45, 12256-12269.	6.5	10
372	Rapid and reversible epigenome editing by endogenous chromatin regulators. Nature Communications, 2017, 8, 560.	5.8	118
373	APOBEC: From mutator to editor. Journal of Genetics and Genomics, 2017, 44, 423-437.	1.7	54
374	Genome Engineering for Personalized Arthritis Therapeutics. Trends in Molecular Medicine, 2017, 23, 917-931.	3.5	54
375	CRISPR–Cas9-based photoactivatable transcription systems to induce neuronal differentiation. Nature Methods, 2017, 14, 963-966.	9.0	138
376	Hypoxia inducible factor HIF-1 promotes myeloid-derived suppressor cells accumulation through ENTPD2/CD39L1 in hepatocellular carcinoma. Nature Communications, 2017, 8, 517.	5.8	319
377	Engineering Synthetic Signaling Pathways with Programmable dCas9-Based Chimeric Receptors. Cell Reports, 2017, 20, 2639-2653.	2.9	64
378	Epitranscriptomic Enhancement of Influenza A Virus Gene Expression and Replication. Cell Host and Microbe, 2017, 22, 377-386.e5.	5.1	163
379	MicroRNA-218 acts by repressing TNFR1-mediated activation of NF-κB, which is involved in MUC5AC hyper-production and inflammation in smoking-induced bronchiolitis of COPD. Toxicology Letters, 2017, 280, 171-180.	0.4	46
380	Systems-level interference strategies to decipher host factors involved in bacterial pathogen interaction: from RNAi to CRISPRi. Current Opinion in Microbiology, 2017, 39, 34-41.	2.3	10
381	Transposons As Tools for Functional Genomics in Vertebrate Models. Trends in Genetics, 2017, 33, 784-801.	2.9	64
382	The Pursuit of Therapeutic Biomarkers with High-Throughput Cancer Cell Drug Screens. Cell Chemical Biology, 2017, 24, 1066-1074.	2.5	22
383	Beyond Native Cas9: Manipulating Genomic Information and Function. Trends in Biotechnology, 2017, 35, 983-996.	4.9	64
384	Bidirectional manipulation of gene expression in adipocytes using CRISPRa and siRNA. Molecular Metabolism, 2017, 6, 1313-1320.	3.0	38
385	IncRNAs in development and disease: from functions to mechanisms. Open Biology, 2017, 7, 170121.	1.5	126
386	Polycomb Responds to Low Levels of Transcription. Cell Reports, 2017, 20, 785-793.	2.9	18
387	A CRISPR/Cas9 guidance RNA screen platform for HIV provirus disruption and HIV/AIDS gene therapy in astrocytes. Scientific Reports, 2017, 7, 5955.	1.6	20

#	Article	IF	CITATIONS
388	Towards <scp>CRISPR</scp> /Cas crops – bringing together genomics and genome editing. New Phytologist, 2017, 216, 682-698.	3.5	235
389	Evaluating Synthetic Activation and Repression of Neuropsychiatric-Related Genes in hiPSC-Derived NPCs, Neurons, and Astrocytes. Stem Cell Reports, 2017, 9, 615-628.	2.3	76
390	Cardiovascular Disease and Long Noncoding RNAs. Circulation: Cardiovascular Genetics, 2017, 10, e001556.	5.1	14
391	Orthogonal Ribosome Biofirewall. ACS Synthetic Biology, 2017, 6, 2108-2117.	1.9	11
392	Optimised metrics for CRISPR-KO screens with second-generation gRNA libraries. Scientific Reports, 2017, 7, 7384.	1.6	37
393	A CRISPR Activation Screen Identifies a Pan-avian Influenza Virus Inhibitory Host Factor. Cell Reports, 2017, 20, 1503-1512.	2.9	104
394	Application of genomeâ€editing technology in crop improvement. Cereal Chemistry, 2018, 95, 35-48.	1.1	8
395	Genome-scale activation screen identifies a IncRNA locus regulating a gene neighbourhood. Nature, 2017, 548, 343-346.	13.7	336
396	Mapping a diversity of genetic interactions in yeast. Current Opinion in Systems Biology, 2017, 6, 14-21.	1.3	20
397	Optimized strategy for in vivo Cas9-activation in <i>Drosophila</i> . Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 9409-9414.	3.3	75
398	An all-in-one UniSam vector system for efficient gene activation. Scientific Reports, 2017, 7, 6394.	1.6	17
399	Characterization of noncoding regulatory DNA in the human genome. Nature Biotechnology, 2017, 35, 732-746.	9.4	79
400	Conserved Gene Microsynteny Unveils Functional Interaction Between Protein Disulfide Isomerase and Rho Guanine-Dissociation Inhibitor Families. Scientific Reports, 2017, 7, 17262.	1.6	16
401	A transcribed enhancer dictates mesendoderm specification in pluripotency. Nature Communications, 2017, 8, 1806.	5.8	56
402	InÂVivo Target Gene Activation via CRISPR/Cas9-Mediated Trans-epigenetic Modulation. Cell, 2017, 171, 1495-1507.e15.	13.5	334
403	YY1 Is a Structural Regulator of Enhancer-Promoter Loops. Cell, 2017, 171, 1573-1588.e28.	13.5	749
404	Techniques and strategies employing engineered transcription factors. Current Opinion in Biomedical Engineering, 2017, 4, 152-162.	1.8	1
405	Fusion guide RNAs for orthogonal gene manipulation with Cas9 and Cpf1. Nature Communications, 2017, 8, 1723.	5.8	36

#	Article	IF	CITATIONS
406	Combinatorial metabolic engineering using an orthogonal tri-functional CRISPR system. Nature Communications, 2017, 8, 1688.	5.8	244
407	Assembly of CRISPR ribonucleoproteins with biotinylated oligonucleotides via an RNA aptamer for precise gene editing. Nature Communications, 2017, 8, 1711.	5.8	121
408	Genome Editing. Journal of the American College of Cardiology, 2017, 70, 2808-2821.	1.2	27
409	CRISPR–Cas9 for Drug Discovery in Oncology. Annual Reports in Medicinal Chemistry, 2017, , 61-85.	0.5	2
410	A potent Cas9-derived gene activator for plant and mammalian cells. Nature Plants, 2017, 3, 930-936.	4.7	187
411	A thermostable Cas9 with increased lifetime in human plasma. Nature Communications, 2017, 8, 1424.	5.8	142
412	Precision Medicine, CRISPR, and Genome Engineering. Advances in Experimental Medicine and Biology, 2017, , .	0.8	2
413	Advancing towards a global mammalian gene regulation model through single-cell analysis and synthetic biology. Current Opinion in Biomedical Engineering, 2017, 4, 174-193.	1.8	7
414	From Reductionism to Holism: Toward a More Complete View of Development Through Genome Engineering. Advances in Experimental Medicine and Biology, 2017, 1016, 45-74.	0.8	7
415	Target Discovery for Precision Medicine Using High-Throughput Genome Engineering. Advances in Experimental Medicine and Biology, 2017, 1016, 123-145.	0.8	6
416	CRISPR Transcriptional Activation Analysis Unmasks an Occult γ-Secretase Processivity Defect in Familial Alzheimer's Disease Skin Fibroblasts. Cell Reports, 2017, 21, 1727-1736.	2.9	24
417	Synthetic lethality and cancer. Nature Reviews Genetics, 2017, 18, 613-623.	7.7	444
418	Labelâ€Free Dynamic Mass Redistribution and Bioâ€Impedance Methods for Drug Discovery. Current Protocols in Pharmacology, 2017, 77, 9.24.1-9.24.21.	4.0	8
419	Gene editing tools: state-of-the-art and the road ahead for the model and non-model fishes. Transgenic Research, 2017, 26, 577-589.	1.3	27
420	Enabling Graded and Large-Scale Multiplex of Desired Genes Using a Dual-Mode dCas9 Activator in <i>Saccharomyces cerevisiae</i> . ACS Synthetic Biology, 2017, 6, 1931-1943.	1.9	53
421	The determinants of alternative RNA splicing in human cells. Molecular Genetics and Genomics, 2017, 292, 1175-1195.	1.0	68
422	Quantitative proteomics identify Tenascin-C as a promoter of lung cancer progression and contributor to a signature prognostic of patient survival. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E5625-E5634.	3.3	116
423	The applications and advances of CRISPR-Cas9 in medical research. Briefings in Functional Genomics, 2017, 16, 1-3.	1.3	0

#	Article	IF	CITATIONS
424	Multiplexed Gene Editing and Protein Overexpression Using a <i>Tobacco mosaic virus</i> Viral Vector. Plant Physiology, 2017, 175, 23-35.	2.3	86
425	CRISPR/Cas9, a universal tool for genomic engineering. Russian Journal of Genetics: Applied Research, 2017, 7, 440-458.	0.4	4
426	Multidimensional chemical control of CRISPR–Cas9. Nature Chemical Biology, 2017, 13, 9-11.	3.9	146
427	Loss-of-function genetic tools for animal models: cross-species and cross-platform differences. Nature Reviews Genetics, 2017, 18, 24-40.	7.7	159
428	GenomeCRISPR - a database for high-throughput CRISPR/Cas9 screens. Nucleic Acids Research, 2017, 45, D679-D686.	6.5	65
429	CRISPR-Cas9: A revolution in genome editing in rheumatic diseases. Joint Bone Spine, 2017, 84, 1-4.	0.8	4
430	PROTOCADHERIN 7 Acts through SET and PP2A to Potentiate MAPK Signaling by EGFR and KRAS during Lung Tumorigenesis. Cancer Research, 2017, 77, 187-197.	0.4	55
431	CRISPR-Based Technologies for the Manipulation of Eukaryotic Genomes. Cell, 2017, 168, 20-36.	13.5	783
432	The potential application and challenge of powerful CRISPR/Cas9 system in cardiovascular research. International Journal of Cardiology, 2017, 227, 191-193.	0.8	14
433	CRISPR/Cas9-The ultimate weapon to battle infectious diseases?. Cellular Microbiology, 2017, 19, e12693.	1.1	56
434	CRISPR/Cas9 in allergic and immunologic diseases. Expert Review of Clinical Immunology, 2017, 13, 5-9.	1.3	8
435	Adaptation of CRISPR nucleases for eukaryotic applications. Analytical Biochemistry, 2017, 532, 90-94.	1.1	8
437	Targeted Gene Activation Using RNA-Guided Nucleases. Methods in Molecular Biology, 2017, 1468, 235-250.	0.4	5
438	CRISPR/Cas9 Immune System as a Tool for Genome Engineering. Archivum Immunologiae Et Therapiae Experimentalis, 2017, 65, 233-240.	1.0	102
439	Definition and identification of small RNA sponges: Focus on miRNA sequestration. Methods, 2017, 117, 35-47.	1.9	20
440	Engineering cell sensing and responses using a GPCR-coupled CRISPR-Cas system. Nature Communications, 2017, 8, 2212.	5.8	81
441	Dual direction CRISPR transcriptional regulation screening uncovers gene networks driving drug resistance. Scientific Reports, 2017, 7, 17693.	1.6	43
442	Role of the CRISPR system in controlling gene transcription and monitoring cell fate (Review). Molecular Medicine Reports, 2017, 17, 1421-1427.	1.1	14

#	Article	IF	CITATIONS
443	ENCoRE: an efficient software for CRISPR screens identifies new players in extrinsic apoptosis. BMC Genomics, 2017, 18, 905.	1.2	15
444	Use of Natural Diversity and Biotechnology to Increase the Quality and Nutritional Content of Tomato and Grape. Frontiers in Plant Science, 2017, 8, 652.	1.7	60
445	New Directions for Epigenetics: Application of Engineered DNA-Binding Molecules to Locus-Specific Epigenetic Research. , 2017, , 635-652.		2
446	CRISPR-based tools for plant genome engineering. Emerging Topics in Life Sciences, 2017, 1, 135-149.	1.1	15
447	Elucidating the Role of Host Long Non-Coding RNA during Viral Infection: Challenges and Paths Forward. Vaccines, 2017, 5, 37.	2.1	12
448	Volatile Semiochemical Mediated Plant Defense in Cereals: A Novel Strategy for Crop Protection. Agronomy, 2017, 7, 58.	1.3	15
449	Epigenetic Regulation of Interleukin 6 by Histone Acetylation in Macrophages and Its Role in Paraquat-Induced Pulmonary Fibrosis. Frontiers in Immunology, 2016, 7, 696.	2.2	72
450	Targeting TRIM5α in HIV Cure Strategies for the CRISPR-Cas9 Era. Frontiers in Immunology, 2017, 8, 1616.	2.2	6
451	Mechanisms of Long Non-Coding RNAs in the Assembly and Plasticity of Neural Circuitry. Frontiers in Neural Circuits, 2017, 11, 76.	1.4	37
452	CRISPR Libraries and Screening. Progress in Molecular Biology and Translational Science, 2017, 152, 69-82.	0.9	12
453	New Insights Into Cellular Stress Responses to Environmental Metal Toxicants. International Review of Cell and Molecular Biology, 2017, 331, 55-82.	1.6	6
454	Activation of the NRF2 antioxidant program generates an imbalance in central carbon metabolism in cancer. ELife, 2017, 6, .	2.8	167
455	Modeling Cancer Using CRISPR-Cas9 Technology. , 2017, , 905-924.		0
456	dCas9-mediated transcriptional activation of tissue inhibitor of metalloproteinases. Metalloproteinases in Medicine, 2017, Volume 4, 63-73.	1.0	6
457	RNA-guided transcriptional activation via CRISPR/dCas9 mimics overexpression phenotypes in Arabidopsis. PLoS ONE, 2017, 12, e0179410.	1.1	62
458	EINCR1 is an EGF inducible lincRNA overexpressed in lung adenocarcinomas. PLoS ONE, 2017, 12, e0181902.	1.1	5
459	CRISPR History: Discovery, Characterization, and Prosperity. Progress in Molecular Biology and Translational Science, 2017, 152, 1-21.	0.9	20
460	Annotating long intergenic non-coding RNAs under artificial selection during chicken domestication. BMC Evolutionary Biology, 2017, 17, 192.	3.2	12

#	Article	IF	CITATIONS
461	A proteomic analysis of LRRK2 binding partners reveals interactions with multiple signaling components of the WNT/PCP pathway. Molecular Neurodegeneration, 2017, 12, 54.	4.4	44
462	Crossing enhanced and high fidelity SpCas9 nucleases to optimize specificity and cleavage. Genome Biology, 2017, 18, 190.	3.8	102
463	Current status and perspectives of genome editing technology for microalgae. Biotechnology for Biofuels, 2017, 10, 267.	6.2	102
464	Three-dimensional genome architecture and emerging technologies: looping in disease. Genome Medicine, 2017, 9, 87.	3.6	65
465	CRISPR/Cas9 Technology: Applications and Human Disease Modeling. Progress in Molecular Biology and Translational Science, 2017, 152, 23-48.	0.9	17
466	Potential impact of genome editing in world agriculture. Emerging Topics in Life Sciences, 2017, 1, 117-133.	1.1	30
467	Origins and Applications of CRISPR-Mediated Genome Editing. The Einstein Journal of Biology and Medicine: EJBM, 2017, 31, 2.	0.2	3
468	Genetic and epigenetic control of gene expression by CRISPR–Cas systems. F1000Research, 2017, 6, 747.	0.8	58
469	Advanced Gene Manipulation Methods for Stem Cell Theranostics. Theranostics, 2017, 7, 2775-2793.	4.6	12
470	Drug Discovery Technologies: Current and Future Trends. , 2017, , 1-32.		4
471	Discovery of the Hypoxia-Activated Prodrug SN30000. , 2017, , 58-94.		4
472	Folate cycle enzyme MTHFD1L confers metabolic advantages in hepatocellular carcinoma. Journal of Clinical Investigation, 2017, 127, 1856-1872.	3.9	100
474	CRISPR and personalized Treg therapy: new insights into the treatment of rheumatoid arthritis. Immunopharmacology and Immunotoxicology, 2018, 40, 201-211.	1.1	38
475	RNA-dependent chromatin targeting of TET2 for endogenous retrovirus control in pluripotent stem cells. Nature Genetics, 2018, 50, 443-451.	9.4	122
476	Knockdown of Human AMPK Using the CRISPR/Cas9 Genome-Editing System. Methods in Molecular Biology, 2018, 1732, 171-194.	0.4	8
477	A Systems Biology Approach to Advancing Adverse Outcome Pathways for Risk Assessment. , 2018, , .		8
478	Mapping a functional cancer genome atlas of tumor suppressors in mouse liver using AAV-CRISPR–mediated direct in vivo screening. Science Advances, 2018, 4, eaao5508.	4.7	64
479	The Application of Omics Data to the Development of AOPs. , 2018, , 177-198.		1

#	Article	IF	CITATIONS
480	CRISPR-based methods for high-throughput annotation of regulatory DNA. Current Opinion in Biotechnology, 2018, 52, 32-41.	3.3	13
481	CRISPR–Cas9 screens in human cells and primary neurons identify modifiers of C9ORF72 dipeptide-repeat-protein toxicity. Nature Genetics, 2018, 50, 603-612.	9.4	178
482	Recent advances in metabolic engineering of Saccharomyces cerevisiae: New tools and their applications. Metabolic Engineering, 2018, 50, 85-108.	3.6	228
483	Next-generation CRISPR/Cas9 transcriptional activation in <i>Drosophila</i> using flySAM. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4719-4724.	3.3	52
484	Modular Ligation Extension of Guide RNA Operons (LEGO) for Multiplexed dCas9 Regulation of Metabolic Pathways in <i>Saccharomyces cerevisiae</i> . Biotechnology Journal, 2018, 13, e1700582.	1.8	31
485	Non-viral delivery systems for CRISPR/Cas9-based genome editing: Challenges and opportunities. Biomaterials, 2018, 171, 207-218.	5.7	289
486	CRISPR/Cas9 cleavage efficiency regression through boosting algorithms and Markov sequence profiling. Bioinformatics, 2018, 34, 3069-3077.	1.8	39
487	An Integrated Genome-wide CRISPRa Approach to Functionalize IncRNAs in Drug Resistance. Cell, 2018, 173, 649-664.e20.	13.5	238
488	CRISPR-Cas9; an efficient tool for precise plant genome editing. Molecular and Cellular Probes, 2018, 39, 47-52.	0.9	8
489	The <scp>CRISPR</scp> /Cas revolution reaches the <scp>RNA</scp> world: Cas13, a new Swiss Army knife for plant biologists. Plant Journal, 2018, 94, 767-775.	2.8	83
490	Innovations in CRISPR technology. Current Opinion in Biotechnology, 2018, 52, 95-101.	3.3	17
491	Development and application of CRISPR/Cas9 technologies in genomic editing. Human Molecular Genetics, 2018, 27, R79-R88.	1.4	47
492	Induction of Signal Transduction by Using Nonâ€Channelrhodopsinâ€Type Optogenetic Tools. ChemBioChem, 2018, 19, 1217-1231.	1.3	6
493	High-throughput genetic screens using CRISPR–Cas9 system. Archives of Pharmacal Research, 2018, 41, 875-884.	2.7	23
494	Intragenic transcriptional interference regulates the human immune ligand <scp>MICA</scp> . EMBO Journal, 2018, 37, .	3.5	13
495	Integrated design, execution, and analysis of arrayed and pooled CRISPR genome-editing experiments. Nature Protocols, 2018, 13, 946-986.	5.5	70
496	CRISPR/Cas9 Inhibits Multiple Steps of HIV-1 Infection. Human Gene Therapy, 2018, 29, 1264-1276.	1.4	33
497	Realâ€ŧime observation of flexible domain movements in CRISPR–Cas9. EMBO Journal, 2018, 37, .	3.5	39

#	Article	IF	Citations
498	CRISPR interference-based specific and efficient gene inactivation in the brain. Nature Neuroscience, 2018, 21, 447-454.	7.1	133
499	Genome-Scale Signatures of Gene Interaction from Compound Screens Predict Clinical Efficacy of Targeted Cancer Therapies. Cell Systems, 2018, 6, 343-354.e5.	2.9	40
500	The multiplexed CRISPR targeting platforms. Drug Discovery Today: Technologies, 2018, 28, 53-61.	4.0	9
501	Hallmarks of cancer: The CRISPR generation. European Journal of Cancer, 2018, 93, 10-18.	1.3	54
502	Personalised genome editing – The future for corneal dystrophies. Progress in Retinal and Eye Research, 2018, 65, 147-165.	7.3	31
503	Boosting, Not Breaking: CRISPR Activators Treat Disease Models. Molecular Therapy, 2018, 26, 334-336.	3.7	3
504	Exosome–Liposome Hybrid Nanoparticles Deliver CRISPR/Cas9 System in MSCs. Advanced Science, 2018, 5, 1700611.	5.6	373
505	Genomic dissection of enhancers uncovers principles of combinatorial regulation and cell type-specific wiring of enhancer–promoter contacts. Nucleic Acids Research, 2018, 46, 2868-2882.	6.5	30
506	Reprogramming cell fate with artificial transcription factors. FEBS Letters, 2018, 592, 888-900.	1.3	13
507	Genome and epigenome engineering CRISPR toolkit for <i>in vivo</i> modulation of <i>cis</i> -regulatory interactions and gene expression in the chicken embryo. Development (Cambridge), 2018, 145, .	1.2	58
508	Modulating Gene Expression in Epsteinâ€Barr Virus (EBV)â€Positive B Cell Lines with CRISPRa and CRISPRi. Current Protocols in Molecular Biology, 2018, 121, 31.13.1-31.13.18.	2.9	4
509	CRISPR-Based Chromatin Remodeling of the Endogenous Oct4 or Sox2 Locus Enables Reprogramming to Pluripotency. Cell Stem Cell, 2018, 22, 252-261.e4.	5.2	133
510	Long noncoding RNA LISPR1 is required for S1P signaling and endothelial cell function. Journal of Molecular and Cellular Cardiology, 2018, 116, 57-68.	0.9	35
511	Epigenetic editing: How cutting-edge targeted epigenetic modification might provide novel avenues for autoimmune disease therapy. Clinical Immunology, 2018, 196, 49-58.	1.4	32
512	Activation of the Anti-Aging and Cognition-Enhancing Gene Klotho by CRISPR-dCas9 Transcriptional Effector Complex. Journal of Molecular Neuroscience, 2018, 64, 175-184.	1.1	33
513	Interferons and beyond: Induction of antiretroviral restriction factors. Journal of Leukocyte Biology, 2018, 103, 465-477.	1.5	28
514	CRISPR Approaches to Small Molecule Target Identification. ACS Chemical Biology, 2018, 13, 366-375.	1.6	68
515	Use of CRISPR/Cas9 gene-editing tools for developing models in drug discovery. Drug Discovery Today, 2018, 23, 519-533.	3.2	31

#	Article	IF	CITATIONS
516	Dual gene activation and knockout screen reveals directional dependencies in genetic networks. Nature Biotechnology, 2018, 36, 170-178.	9.4	120
517	Rapid chromatin repression by Aire provides precise control of immune tolerance. Nature Immunology, 2018, 19, 162-172.	7.0	69
518	In vivo simultaneous transcriptional activation of multiple genes in the brain using CRISPR–dCas9-activator transgenic mice. Nature Neuroscience, 2018, 21, 440-446.	7.1	218
519	Multiple Chemical Inducible Tal Effectors for Genome Editing and Transcription Activation. ACS Chemical Biology, 2018, 13, 609-617.	1.6	11
520	Chemical Control of a CRISPR-Cas9 Acetyltransferase. ACS Chemical Biology, 2018, 13, 455-460.	1.6	29
521	Multimode drug inducible CRISPR/Cas9 devices for transcriptional activation and genome editing. Nucleic Acids Research, 2018, 46, e25-e25.	6.5	38
522	Robust Transcriptional Activation in Plants Using Multiplexed CRISPR-Act2.0 and mTALE-Act Systems. Molecular Plant, 2018, 11, 245-256.	3.9	179
523	Promoter of IncRNA Gene PVT1 Is a Tumor-Suppressor DNA Boundary Element. Cell, 2018, 173, 1398-1412.e22.	13.5	362
524	CRISPR/Cas9: the Jedi against the dark empire of diseases. Journal of Biomedical Science, 2018, 25, 29.	2.6	27
525	Pulling the genome in opposite directions to dissect gene networks. Genome Biology, 2018, 19, 42.	3.8	1
526	Transforming plant biology and breeding with <scp>CRISPR</scp> /Cas9, Cas12 and Cas13. FEBS Letters, 2018, 592, 1954-1967.	1.3	74
527	Harnessing "A Billion Years of Experimentationâ€: The Ongoing Exploration and Exploitation of CRISPR–Cas Immune Systems. CRISPR Journal, 2018, 1, 141-158.	1.4	44
528	Systematic Screens in Zebrafish Shed Light on Cellular and Molecular Mechanisms of Complex Brain Phenotypes. , 2018, , 385-400.		1
529	CRISPR genetic screens to discover host–virus interactions. Current Opinion in Virology, 2018, 29, 87-100.	2.6	23
530	RNA-guided transcriptional silencing in vivo with S. aureus CRISPR-Cas9 repressors. Nature Communications, 2018, 9, 1674.	5.8	123
531	Mathematical Modeling of RNA-Based Architectures for Closed Loop Control of Gene Expression. ACS Synthetic Biology, 2018, 7, 1219-1228.	1.9	42
532	A CRISPR/molecular beacon hybrid system for live-cell genomic imaging. Nucleic Acids Research, 2018, 46, e80-e80.	6.5	37
533	Simple method for assembly of CRISPR synergistic activation mediator gRNA expression array. Journal of Biotechnology, 2018, 274, 54-57.	1.9	3

ARTICLE IF CITATIONS # Cancer CRISPR Screens In Vivo. Trends in Cancer, 2018, 4, 349-358. 534 3.8 70 CRISPR Gene Editing in the Kidney. American Journal of Kidney Diseases, 2018, 71, 874-883. 2.1 Chemically Modified Cpf1-CRISPR RNAs Mediate Efficient Genome Editing in Mammalian Cells. Molecular 536 3.7 60 Therapy, 2018, 26, 1228-1240. High-Level dCas9 Expression Induces Abnormal Cell Morphology in <i>Escherichia coli</i>. ACS 1.9 Synthetic Biology, 2018, 7, 1085-1094. Entering the post-epigenomic age: back to epigenetics. Open Biology, 2018, 8, 180013. 538 1.5 5 Genome Editing During Development Using the CRISPR-Cas Technology. Methods in Molecular Biology, 0.4 2018, 1752, 177-190. Zinc Fingers, TALEs, and CRISPR Systems: A Comparison of Tools for Epigenome Editing. Methods in 540 0.4 73 Molecular Biology, 2018, 1767, 19-63. Screening Regulatory Element Function with CRISPR/Cas9-based Epigenome Editing. Methods in 0.4 Molecular Biology, 2018, 1767, 447-480. Designing Epigenome Editors: Considerations of Biochemical and Locus Specificities. Methods in 542 0.4 2 Molecular Biology, 2018, 1767, 65-87. CRISPR/dCas9 Switch Systems for Temporal Transcriptional Control. Methods in Molecular Biology, 543 0.4 2018, 1767, 167-185. Emerging roles of long non-coding RNAs in plant response to biotic and abiotic stresses. Critical 544 100 5.1Reviews in Biotechnology, 2018, 38, 93-105. High efficient multisites genome editing in allotetraploid cotton ($\langle i \rangle$ Cossypium hirsutum $\langle i \rangle$) using 4.1 202 CRISPR/Cas9 system. Plant Biotechnology Journal, 2018, 16, 137-150. CRISPR-Cas9 system-driven site-specific selection pressure on Herpes simplex virus genomes. Virus 546 1.1 13 Research, 2018, 244, 286-295. Genome Engineering and Modification Toward Synthetic Biology for the Production of Antibiotics. 547 5.0 16 Medicinal Research Reviews, 2018, 38, 229-260. CRISPR-engineered genome editing for the next generation neurological disease modeling. Progress in 548 2.511 Neuro-Psychopharmacology and Biological Psychiatry, 2018, 81, 459-467. Combinatorial genetics in liver repopulation and carcinogenesis with a in vivo CRISPR activation 549 platformâ€. Hepatology, 2018, 68, 663-676. Genomes in Focus: Development and Applications of CRISPRâ€Cas9 Imaging Technologies. Angewandte 550 7.2 67 Chemie - International Edition, 2018, 57, 4329-4337. PICKLES: the database of pooled in-vitro CRISPR knockout library essentiality screens. Nucleic Acids 6.5 74 Research, 2018, 46, D776-D780.

#	Article	IF	Citations
552	Enhanced Genome Editing Tools For Multiâ€Gene Deletion Knockâ€Out Approaches Using Paired CRISPR sgRNAs in CHO Cells. Biotechnology Journal, 2018, 13, e1700211.	1.8	34
553	CRISPR/Cas9-mediated noncoding RNA editing in human cancers. RNA Biology, 2018, 15, 35-43.	1.5	78
554	Ebola virus requires phosphatidylinositol (3,5) bisphosphate production for efficient viral entry. Virology, 2018, 513, 17-28.	1.1	41
555	CRISPRi and CRISPRa Screens in Mammalian Cells for Precision Biology and Medicine. ACS Chemical Biology, 2018, 13, 406-416.	1.6	248
556	RAD50 Expression Is Associated with Poor Clinical Outcomes after Radiotherapy for Resected Non–small Cell Lung Cancer. Clinical Cancer Research, 2018, 24, 341-350.	3.2	31
557	Genome Editing: Insights from Chemical Biology to Support Safe and Transformative Therapeutic Applications. ACS Chemical Biology, 2018, 13, 333-342.	1.6	7
558	Carbonic anhydrase III protects osteocytes from oxidative stress. FASEB Journal, 2018, 32, 440-452.	0.2	27
559	A CRISPR reimagining: New twists and turns of CRISPR beyond the genomeâ€engineering revolution. Journal of Cellular Biochemistry, 2018, 119, 1299-1308.	1.2	7
560	RNA N6â€methyladenosine methyltransferaseâ€like 3 promotes liver cancer progression through YTHDF2â€dependent posttranscriptional silencing of SOCS2. Hepatology, 2018, 67, 2254-2270.	3.6	980
561	Sirt1 overexpression suppresses fluoride-induced p53 acetylation to alleviate fluoride toxicity in ameloblasts responsible for enamel formation. Archives of Toxicology, 2018, 92, 1283-1293.	1.9	28
562	Harnessing CRISPR/Cas systems for programmable transcriptional and post-transcriptional regulation. Biotechnology Advances, 2018, 36, 295-310.	6.0	87
563	Direct and indirect approaches to identify drug modes of action. IUBMB Life, 2018, 70, 9-22.	1.5	33
564	Genome im Fokus: Entwicklung und Anwendungen von CRISPR as9â€Bildgebungstechnologien. Angewandte Chemie, 2018, 130, 4412-4420.	1.6	7
565	Modeling Cancer in the CRISPR Era. Annual Review of Cancer Biology, 2018, 2, 111-131.	2.3	15
566	Evaluating different DNA binding domains to modulate L1 ORF2p-driven site-specific retrotransposition events in human cells. Gene, 2018, 642, 188-198.	1.0	2
567	CRISPR/Cas9 library screening for drug target discovery. Journal of Human Genetics, 2018, 63, 179-186.	1.1	70
568	Emerging Approaches for Spatiotemporal Control of Targeted Genome with Inducible CRISPR-Cas9. Analytical Chemistry, 2018, 90, 429-439.	3.2	33
569	Diverse Class 2 CRISPR-Cas Effector Proteins for Genome Engineering Applications. ACS Chemical Biology, 2018, 13, 347-356.	1.6	25

#	Article	IF	CITATIONS
570	Cancer induction and suppression with transcriptional control and epigenome editing technologies. Journal of Human Genetics, 2018, 63, 187-194.	1.1	10
571	CRISPR-Cas based antiviral strategies against HIV-1. Virus Research, 2018, 244, 321-332.	1.1	69
572	CRISPR editing in biological and biomedical investigation. Journal of Cellular Physiology, 2018, 233, 3875-3891.	2.0	19
573	Enhanced intrinsic CYP3A4 activity in human hepatic C3A cells with optically controlled CRISPR/dCas9 activator complex. Integrative Biology (United Kingdom), 2018, 10, 780-790.	0.6	4
574	A CRISPR–Cas9-triggered strand displacement amplification method for ultrasensitive DNA detection. Nature Communications, 2018, 9, 5012.	5.8	244
575	Pooled extracellular receptor-ligand interaction screening using CRISPR activation. Genome Biology, 2018, 19, 205.	3.8	44
576	A Transcription Factor Addiction in Leukemia Imposed by the MLL Promoter Sequence. Cancer Cell, 2018, 34, 970-981.e8.	7.7	53
577	Modulating the expression of long nonâ€coding <scp>RNA</scp> s for functional studies. EMBO Reports, 2018, 19, .	2.0	57
578	Repurposing CRISPR-Cas12b for mammalian genome engineering. Cell Discovery, 2018, 4, 63.	3.1	183
579	Osmosensing, osmosignalling and inflammation: how intervertebral disc cells respond to altered osmolarity. , 2018, 36, 231-250.		30
580	Transcription Factors in Mammalian Myogenesis. , 2018, , .		0
581	Paring down to the essentials. Science, 2018, 362, 904-904.	6.0	0
582	Sustained activation of the Aryl hydrocarbon Receptor transcription factor promotes resistance to BRAF-inhibitors in melanoma. Nature Communications, 2018, 9, 4775.	5.8	70
583	CRISPR/Cas9 for Cancer Therapy: Hopes and Challenges. Biomedicines, 2018, 6, 105.	1.4	76
584	Long Non-coding RNAs as Local Regulators of Pancreatic Islet Transcription Factor Genes. Frontiers in Genetics, 2018, 9, 524.	1.1	26
585	Synaptic Regulation of Metabolism. Advances in Experimental Medicine and Biology, 2018, 1090, 49-77.	0.8	2
586	Aptazyme-mediated direct modulation of post-transcriptional sgRNA level for conditional genome editing and gene expression. Journal of Biotechnology, 2018, 288, 23-29.	1.9	11
587	Identification of LncRNA Linc00513 Containing Lupus-Associated Genetic Variants as a Novel Regulator of Interferon Signaling Pathway. Frontiers in Immunology, 2018, 9, 2967.	2.2	56

#	Article	IF	CITATIONS
588	Optimized libraries for CRISPR-Cas9 genetic screens with multiple modalities. Nature Communications, 2018, 9, 5416.	5.8	535
589	Applications of CRISPR-Cas in Bioengineering, Biotechnology, and Translational Research. CRISPR Journal, 2018, 1, 379-404.	1.4	17
590	Epigenetics of Modified DNA Bases: 5-Methylcytosine and Beyond. Frontiers in Genetics, 2018, 9, 640.	1.1	181
592	Transcription-associated histone pruning demarcates macroH2A chromatin domains. Nature Structural and Molecular Biology, 2018, 25, 958-970.	3.6	36
593	CRISPR Guide RNA Cloning for Mammalian Systems. Journal of Visualized Experiments, 2018, , .	0.2	6
594	The Non-Coding RNA Journal Club: Highlights on Recent Papers—6. Non-coding RNA, 2018, 4, 23.	1.3	0
595	CRISPR/Cas9 gene-editing: Research technologies, clinical applications and ethical considerations. Seminars in Perinatology, 2018, 42, 487-500.	1.1	50
596	Overexpression of GPR35 confers drug resistance in NSCLC cells by β-arrestin/Akt signaling. OncoTargets and Therapy, 2018, Volume 11, 6249-6257.	1.0	23
597	In vivo epigenome editing and transcriptional modulation using CRISPR technology. Transgenic Research, 2018, 27, 489-509.	1.3	26
598	Downregulation of SNCA Expression by Targeted Editing of DNA Methylation: A Potential Strategy for Precision Therapy in PD. Molecular Therapy, 2018, 26, 2638-2649.	3.7	127
599	Rationally-engineered reproductive barriers using CRISPR & amp; CRISPRa: an evaluation of the synthetic species concept in Drosophila melanogaster. Scientific Reports, 2018, 8, 13125.	1.6	15
600	CRISPhieRmix: a hierarchical mixture model for CRISPR pooled screens. Genome Biology, 2018, 19, 159.	3.8	36
601	CRISPR Activation Screens Systematically Identify Factors that Drive Neuronal Fate and Reprogramming. Cell Stem Cell, 2018, 23, 758-771.e8.	5.2	161
602	Intrinsic Nucleotide Preference of Diversifying Base Editors Guides Antibody ExÂVivo Affinity Maturation. Cell Reports, 2018, 25, 884-892.e3.	2.9	28
603	LncRNAs Coming of Age. Circulation Research, 2018, 123, 535-537.	2.0	18
604	Interactions Between Regulatory Variants in <i>CYP7A1</i> (Cholesterol 7α-Hydroxylase) Promoter and Enhancer Regions Regulate CYP7A1 Expression. Circulation Genomic and Precision Medicine, 2018, 11, e002082.	1.6	18
605	The CRISPR/Cas revolution continues: From efficient gene editing for crop breeding to plant synthetic biology. Journal of Integrative Plant Biology, 2018, 60, 1127-1153.	4.1	109
606	Transient Retrovirus-Based CRISPR/Cas9 All-in-One Particles for Efficient, Targeted Gene Knockout. Molecular Therapy - Nucleic Acids, 2018, 13, 256-274.	2.3	34

щ		15	CITATIONS
#	ARTICLE	IF	CITATIONS
607	CRISPR/Cas9 System: A Bacterial Tailor for Genomic Engineering. Genetics Research International, 2018, 2018, 1-17.	2.0	19
608	Three-Component Repurposed Technology for Enhanced Expression: Highly Accumulable Transcriptional Activators via Branched Tag Arrays. CRISPR Journal, 2018, 1, 337-347.	1.4	29
609	CRISPRa-mediated NEAT1 lncRNA upregulation induces formation of intact paraspeckles. Biochemical and Biophysical Research Communications, 2018, 504, 218-224.	1.0	19
610	Barcoding chemical modifications into nucleic acids improves drug stability <i>in vivo</i> . Journal of Materials Chemistry B, 2018, 6, 7197-7203.	2.9	17
611	Genetics and genomics of animal welfare. , 2018, , 25-48.		5
612	Comprehensive off-target analysis of dCas9-SAM-mediated HIV reactivation via long noncoding RNA and mRNA profiling. BMC Medical Genomics, 2018, 11, 78.	0.7	15
613	Highly multiplexed genome engineering using CRISPR/Cas9 gRNA arrays. PLoS ONE, 2018, 13, e0198714.	1.1	46
614	Establishment of a HEK293 cell line by CRISPR/Cas9-mediated luciferase knock-in to study transcriptional regulation of the human SREBP1 gene. Biotechnology Letters, 2018, 40, 1495-1506.	1.1	7
615	Contribution of allelic imbalance to colorectal cancer. Nature Communications, 2018, 9, 3664.	5.8	25
616	Delivery approaches for CRISPR/Cas9 therapeutics <i>in vivo</i> : advances and challenges. Expert Opinion on Drug Delivery, 2018, 15, 905-913.	2.4	98
617	Long Non-coding RNA Structure and Function: Is There a Link?. Frontiers in Physiology, 2018, 9, 1201.	1.3	176
618	Patchable micro/nanodevices interacting with skin. Biosensors and Bioelectronics, 2018, 122, 189-204.	5.3	47
619	Metabolic Engineering of Fungal Strains for Efficient Production of Cellulolytic Enzymes. , 2018, , 27-41.		11
620	Adeno-associated virus-mediated delivery of CRISPR-Cas9 for genome editing in the central nervous system. Current Opinion in Biomedical Engineering, 2018, 7, 33-41.	1.8	13
621	Synthetic transcription factors for cell fate reprogramming. Current Opinion in Genetics and Development, 2018, 52, 13-21.	1.5	29
622	Delivering CRISPR: a review of the challenges and approaches. Drug Delivery, 2018, 25, 1234-1257.	2.5	776
623	The new normal of structure/function studies in the era of CRISPR/Cas9. Biochemical Journal, 2018, 475, 1635-1642.	1.7	1
624	Transcriptional activities of DUX4 fusions in B-cell acute lymphoblastic leukemia. Haematologica, 2018, 103, e522-e526.	1.7	17

#	Article	IF	CITATIONS
625	The Long Noncoding RNA Cancer Susceptibility 9 and RNA Binding Protein Heterogeneous Nuclear Ribonucleoprotein L Form a Complex and Coregulate Genes Linked to AKT Signaling. Hepatology, 2018, 68, 1817-1832.	3.6	110
626	Heterochromatin-Encoded Satellite RNAs Induce Breast Cancer. Molecular Cell, 2018, 70, 842-853.e7.	4.5	96
627	Editing the Epigenome: Reshaping the Genomic Landscape. Annual Review of Genomics and Human Genetics, 2018, 19, 43-71.	2.5	109
628	Application of the CRISPR/Cas9 System to Drug Resistance in Breast Cancer. Advanced Science, 2018, 5, 1700964.	5.6	61
629	Programmable sequential mutagenesis by inducible Cpf1 crRNA array inversion. Nature Communications, 2018, 9, 1903.	5.8	9
630	The CRISPR tool kit for genome editing and beyond. Nature Communications, 2018, 9, 1911.	5.8	1,159
631	Applications of the CRISPR/Cas system beyond gene editing. Biology Methods and Protocols, 2018, 3, bpy002.	1.0	21
632	Recent developments in synthetic biology and metabolic engineering in microalgae towards biofuel production. Biotechnology for Biofuels, 2018, 11, 185.	6.2	172
633	Pooled CRISPR interference screening enables genome-scale functional genomics study in bacteria with superior performance. Nature Communications, 2018, 9, 2475.	5.8	168
634	Mouse medulloblastoma driven by CRISPR activation of cellular Myc. Scientific Reports, 2018, 8, 8733.	1.6	17
635	Enhanced Cytosolic Delivery and Release of CRISPR/Cas9 by Black Phosphorus Nanosheets for Genome Editing. Angewandte Chemie, 2018, 130, 10425-10429.	1.6	43
636	cis–trans Engineering: Advances and Perspectives on Customized Transcriptional Regulation in Plants. Molecular Plant, 2018, 11, 886-898.	3.9	49
637	Platforms for Investigating LncRNA Functions. SLAS Technology, 2018, 23, 493-506.	1.0	136
638	Synthetic CRISPR-Cas gene activators for transcriptional reprogramming in bacteria. Nature Communications, 2018, 9, 2489.	5.8	140
639	Enhanced Cytosolic Delivery and Release of CRISPR/Cas9 by Black Phosphorus Nanosheets for Genome Editing. Angewandte Chemie - International Edition, 2018, 57, 10268-10272.	7.2	154
640	Switchable genome editing via genetic code expansion. Scientific Reports, 2018, 8, 10051.	1.6	11
641	Synthetic far-red light-mediated CRISPR-dCas9 device for inducing functional neuronal differentiation. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E6722-E6730.	3.3	124
642	Functional Genomics. , 2018, , 77-88.		0

#	Article	IF	CITATIONS
643	Synthetic Lethal Networks for Precision Oncology: Promises and Pitfalls. Journal of Molecular Biology, 2018, 430, 2900-2912.	2.0	21
644	IL-6 augments IL-4-induced polarization of primary human macrophages through synergy of STAT3, STAT6 and BATF transcription factors. Oncolmmunology, 2018, 7, e1494110.	2.1	37
645	Myoediting: Toward Prevention of Muscular Dystrophy by Therapeutic Genome Editing. Physiological Reviews, 2018, 98, 1205-1240.	13.1	31
646	A revised airway epithelial hierarchy includes CFTR-expressing ionocytes. Nature, 2018, 560, 319-324.	13.7	878
647	Development of Toolboxes for Precision Genome/Epigenome Editing and Imaging of Epigenetics. Chemical Record, 2018, 18, 1717-1726.	2.9	5
648	Functions of the COPII gene paralogs SEC23A and SEC23B are interchangeable in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E7748-E7757.	3.3	58
649	Gene Editing of Stem Cells to Model and Treat Disease. Current Stem Cell Reports, 2018, 4, 253-263.	0.7	0
650	One step generation of customizable gRNA vectors for multiplex CRISPR approaches through string assembly gRNA cloning (STAgR). PLoS ONE, 2018, 13, e0196015.	1.1	27
651	A novel enhancer regulates MGMT expression and promotes temozolomide resistance in glioblastoma. Nature Communications, 2018, 9, 2949.	5.8	183
652	Programmable DNA repair with CRISPRa/i enhanced homology-directed repair efficiency with a single Cas9. Cell Discovery, 2018, 4, 46.	3.1	45
653	Neuro-Immuno-Gene- and Genome-Editing-Therapy for Alzheimer's Disease: Are We There Yet?. Journal of Alzheimer's Disease, 2018, 65, 321-344.	1.2	17
654	Application of CRISPR/Cas to Understand Cis- and Trans-Regulatory Elements in Plants. Methods in Molecular Biology, 2018, 1830, 23-40.	0.4	26
655	Generation and Utilization of CRISPR/Cas9 Screening Libraries in Mammalian Cells. , 0, , 223-234.		1
656	Genome Editing of Pluripotent Stem Cells. , 0, , 270-284.		1
657	Inducible CRISPR-based Genome Editing for the Characterization of Cancer Genes. , 0, , 337-357.		0
658	Disruption of the psychiatric risk gene Ankyrin 3 enhances microtubule dynamics through GSK3/CRMP2 signaling. Translational Psychiatry, 2018, 8, 135.	2.4	26
659	CRISPR-Based Perturbation of Gene Function in Drosophila Cells. , 2018, , 193-206.		0
660	Small RNA-mediated prevention, diagnosis and therapies of cancer. , 2018, , 341-436.		Ο

#	Article	IF	CITATIONS
661	TCF21/POD-1, a Transcritional Regulator of SF-1/NR5A1, as a Potential Prognosis Marker in Adult and Pediatric Adrenocortical Tumors. Frontiers in Endocrinology, 2018, 9, 38.	1.5	9
662	Human pluripotent reprogramming with CRISPR activators. Nature Communications, 2018, 9, 2643.	5.8	128
663	Blue-Light Receptors for Optogenetics. Chemical Reviews, 2018, 118, 10659-10709.	23.0	176
664	Application of CRISPR-Cas9 Based Genome-Wide Screening Approaches to Study Cellular Signalling Mechanisms. International Journal of Molecular Sciences, 2018, 19, 933.	1.8	42
665	CRISPR/Cas9-Based Cellular Engineering for Targeted Gene Overexpression. International Journal of Molecular Sciences, 2018, 19, 946.	1.8	19
666	Applications of CRISPR/Cas System to Bacterial Metabolic Engineering. International Journal of Molecular Sciences, 2018, 19, 1089.	1.8	108
667	CRISPR-Cas Targeting of Host Genes as an Antiviral Strategy. Viruses, 2018, 10, 40.	1.5	35
668	An enhanced CRISPR repressor for targeted mammalian gene regulation. Nature Methods, 2018, 15, 611-616.	9.0	361
669	Frequent sgRNA-barcode recombination in single-cell perturbation assays. PLoS ONE, 2018, 13, e0198635.	1.1	41
670	Tackling HIV Persistence: Pharmacological versus CRISPR-Based Shock Strategies. Viruses, 2018, 10, 157.	1.5	23
671	Strategies to Annotate and Characterize Long Noncoding RNAs: Advantages and Pitfalls. Trends in Genetics, 2018, 34, 704-721.	2.9	86
672	CRISPR as9: A cornerstone for the evolution of precision medicine. Annals of Human Genetics, 2018, 82, 331-357.	0.3	13
673	Functional Interrogation of Primary Human T Cells via CRISPR Genetic Editing. Journal of Immunology, 2018, 201, 1586-1598.	0.4	27
674	Cellomics approach for high-throughput functional annotation of Caenorhabditis elegans neural network. Scientific Reports, 2018, 8, 10380.	1.6	8
675	An automated microfluidic gene-editing platform for deciphering cancer genes. Lab on A Chip, 2018, 18, 2300-2312.	3.1	31
676	Loss of XIST in Breast Cancer Activates MSN-c-Met and Reprograms Microglia via Exosomal miRNA to Promote Brain Metastasis. Cancer Research, 2018, 78, 4316-4330.	0.4	233
677	Epigenome Editing Enters the Arena. A New Tool to Reveal (and Reverse?) Pathologic Gene Regulation. American Journal of Respiratory and Critical Care Medicine, 2018, 198, 549-551.	2.5	1
678	Construction of CRISPR Libraries for Functional Screening. Methods in Molecular Biology, 2018, 1772, 139-150.	0.4	2

#	Article	IF	CITATIONS
679	CRISPR/dCas9-mediated transcriptional improvement of the biosynthetic gene cluster for the epothilone production in Myxococcus xanthus. Microbial Cell Factories, 2018, 17, 15.	1.9	47
680	Multiplexed CRISPR Activation of Cryptic Sugar Metabolism Enables <i>Yarrowia Lipolytica</i> Growth on Cellobiose. Biotechnology Journal, 2018, 13, e1700584.	1.8	69
681	How to switch on genes with CRISPR/Cas9?. Acta Physiologica, 2018, 224, e13087.	1.8	2
682	Biased genome editing using the local accumulation of DSB repair molecules system. Nature Communications, 2018, 9, 3270.	5.8	23
683	Testing thousands of nanoparticles inÂvivo using DNA barcodes. Current Opinion in Biomedical Engineering, 2018, 7, 1-8.	1.8	52
684	Epigenetic regulation of the circadian gene Per1 contributes to age-related changes in hippocampal memory. Nature Communications, 2018, 9, 3323.	5.8	118
685	The Implications of CRISPR-Cas9 Genome Editing for IR. Journal of Vascular and Interventional Radiology, 2018, 29, 1264-1267.e1.	0.2	0
686	Systematic identification of non-coding pharmacogenomic landscape in cancer. Nature Communications, 2018, 9, 3192.	5.8	73
687	Gene editing in the context of an increasingly complex genome. BMC Genomics, 2018, 19, 595.	1.2	8
688	CRISPR Technology for Breast Cancer: Diagnostics, Modeling, and Therapy. Advanced Biology, 2018, 2, 1800132.	3.0	11
689	Novel Epigenetic Techniques Provided by the CRISPR/Cas9 System. Stem Cells International, 2018, 2018, 1-12.	1.2	50
690	Targeted Nucleotide Editing Technologies for Microbial Metabolic Engineering. Biotechnology Journal, 2018, 13, e1700596.	1.8	39
691	Genetic Epidemiology. Methods in Molecular Biology, 2018, , .	0.4	1
693	Applications of CRISPR-Cas Enzymes in Cancer Therapeutics and Detection. Trends in Cancer, 2018, 4, 499-512.	3.8	89
694	From Identification to Function: Current Strategies to Prioritise and Follow-Up GWAS Results. Methods in Molecular Biology, 2018, 1793, 259-275.	0.4	2
695	Employing CRISPR/Cas9 genome engineering to dissect the molecular requirements for mitosis. Methods in Cell Biology, 2018, 144, 75-105.	0.5	8
696	Synthetic gene circuits for the detection, elimination and prevention of disease. Nature Biomedical Engineering, 2018, 2, 399-415.	11.6	88
697	CRISPR therapeutic tools for complex genetic disorders and cancer (Review). International Journal of Oncology, 2018, 53, 443-468.	1.4	28

#	Article	IF	CITATIONS
698	IncRNA PAPAS tethered to the rDNA enhancer recruits hypophosphorylated CHD4/NuRD to repress rRNA synthesis at elevated temperatures. Genes and Development, 2018, 32, 836-848.	2.7	94
699	Noncoding RNA-Targeted Therapeutics in Autoimmune Diseases: From Bench to Bedside. , 2018, , 359-386.		2
700	5′ capped and 3′ polyA-tailed sgRNAs enhance the efficiency of CRISPR-Cas9 system. Protein and Cell, 2019 10, 223-228.	' 4.8	17
701	Genome editing in the mammalian brain using the CRISPR–Cas system. Neuroscience Research, 2019, 141, 4-12.	1.0	21
702	Future of human mitochondrial DNA editing technologies. Mitochondrial DNA Part A: DNA Mapping, Sequencing, and Analysis, 2019, 30, 214-221.	0.7	20
703	Functional Genomics via CRISPR–Cas. Journal of Molecular Biology, 2019, 431, 48-65.	2.0	62
704	A CRISPR–dCas Toolbox for Genetic Engineering and Synthetic Biology. Journal of Molecular Biology, 2019, 431, 34-47.	2.0	225
705	Programmable activation of <i>Bombyx</i> gene expression using CRISPR/dCas9 fusion systems. Insect Science, 2019, 26, 983-990.	1.5	9
706	A versatile platform for single-molecule enzymology of restriction endonuclease. Journal of Innovative Optical Health Sciences, 2019, 12, 1841002.	0.5	1
707	Prediction and diversity of tracrRNAs from type II CRISPR-Cas systems. RNA Biology, 2019, 16, 423-434.	1.5	22
708	Transcriptionally active HERV-H retrotransposons demarcate topologically associating domains in human pluripotent stem cells. Nature Genetics, 2019, 51, 1380-1388.	9.4	236
709	Angptl8 mediates food-driven resetting of hepatic circadian clock in mice. Nature Communications, 2019, 10, 3518.	5.8	54
710	Expanding C–T base editing toolkit with diversified cytidine deaminases. Nature Communications, 2019, 10, 3612.	5.8	49
712	Systematic Evaluation of CRISPRa and CRISPRi Modalities Enables Development of a Multiplexed, Orthogonal Gene Activation and Repression System. ACS Synthetic Biology, 2019, 8, 1998-2006.	1.9	41
713	Genetic Interaction-Based Biomarkers Identification for Drug Resistance and Sensitivity in Cancer Cells. Molecular Therapy - Nucleic Acids, 2019, 17, 688-700.	2.3	15
714	The IncRNA Locus Handsdown Regulates Cardiac Gene Programs and Is Essential for Early Mouse Development. Developmental Cell, 2019, 50, 644-657.e8.	3.1	66
715	Beyond the Exome: The Non-coding Genome and Enhancers in Neurodevelopmental Disorders and Malformations of Cortical Development. Frontiers in Cellular Neuroscience, 2019, 13, 352.	1.8	53
716	A split CRISPR–Cpf1 platform for inducible genome editing and gene activation. Nature Chemical Biology, 2019, 15, 882-888.	3.9	62

CITATION REPORT					
	C 1-	T A T I	0.11	DEDC	DT
			ON	KFP(ו או

#	Article	IF	CITATIONS
717	Multiplexed genome engineering by Cas12a and CRISPR arrays encoded on single transcripts. Nature Methods, 2019, 16, 887-893.	9.0	187
718	Ligand-Free Estrogen Receptor <i>α</i> (ESR1) as Master Regulator for the Expression of CYP3A4 and Other Cytochrome P450 Enzymes in the Human Liver. Molecular Pharmacology, 2019, 96, 430-440.	1.0	26
719	Identifying chemogenetic interactions from CRISPR screens with drugZ. Genome Medicine, 2019, 11, 52.	3.6	127
720	MYC paralog-dependent apoptotic priming orchestrates a spectrum of vulnerabilities in small cell lung cancer. Nature Communications, 2019, 10, 3485.	5.8	54
721	Strategies to Increase On-Target and Reduce Off-Target Effects of the CRISPR/Cas9 System in Plants. International Journal of Molecular Sciences, 2019, 20, 3719.	1.8	61
722	Porcine antiviral activity is increased by CRISPRa-SAM system. Bioscience Reports, 2019, 39, .	1.1	4
723	CRISPR Tools for Systematic Studies of RNA Regulation. Cold Spring Harbor Perspectives in Biology, 2019, 11, a035386.	2.3	22
724	Src-Dependent DBL Family Members Drive Resistance to Vemurafenib in Human Melanoma. Cancer Research, 2019, 79, 5074-5087.	0.4	13
725	The II9 CNS-25 Regulatory Element Controls Mast Cell and Basophil IL-9 Production. Journal of Immunology, 2019, 203, 1111-1121.	0.4	23
726	The emerging and uncultivated potential of CRISPR technology in plant science. Nature Plants, 2019, 5, 778-794.	4.7	294
727	Delivering Cas9/sgRNA ribonucleoprotein (RNP) by lentiviral capsid-based bionanoparticles for efficient â€~hit-and-run' genome editing. Nucleic Acids Research, 2019, 47, e99-e99.	6.5	67
728	Automated Design of Diverse Stand-Alone Riboswitches. ACS Synthetic Biology, 2019, 8, 1838-1846.	1.9	34
729	The study of genes and signal transduction pathways involved in mustard lung injury: A gene therapy approach. Gene, 2019, 714, 143968.	1.0	3
730	CRISPR-Cas9 system: A new-fangled dawn in gene editing. Life Sciences, 2019, 232, 116636.	2.0	160
731	Notum produced by Paneth cells attenuates regeneration of aged intestinal epithelium. Nature, 2019, 571, 398-402.	13.7	166
732	CRISPR Craze to Transform Cardiac Biology. Trends in Molecular Medicine, 2019, 25, 791-802.	3.5	21
733	Potential of Genome Editing to Improve Aquaculture Breeding and Production. Trends in Genetics, 2019, 35, 672-684.	2.9	125
734	Functional genomics identifies predictive markers and clinically actionable resistance mechanisms to CDK4/6 inhibition in bladder cancer. Journal of Experimental and Clinical Cancer Research, 2019, 38, 322	3.5	23

#	Article	IF	CITATIONS
735	Importance of genetic screens in precision oncology. ESMO Open, 2019, 4, e000505.	2.0	10
736	Engineering nucleic acid chemistry for precise and controllable CRISPR/Cas9 genome editing. Science Bulletin, 2019, 64, 1841-1849.	4.3	15
737	Cutting back malaria: CRISPR/Cas9 genome editing of Plasmodium. Briefings in Functional Genomics, 2019, 18, 281-289.	1.3	38
738	Mammalian synthetic biology by CRISPRs engineering and applications. Current Opinion in Chemical Biology, 2019, 52, 79-84.	2.8	7
739	CRISPR–Cas Gene Editing for Neurological Disease. , 2019, , 365-376.		1
740	Epigenetics and addiction. Current Opinion in Neurobiology, 2019, 59, 128-136.	2.0	85
741	Reversible Regulation of Polyubiquitin Gene UBC via Modified Inducible CRISPR/Cas9 System. International Journal of Molecular Sciences, 2019, 20, 3168.	1.8	4
742	Recent advances towards gene therapy for propionic acidemia: translation to the clinic. Expert Review of Precision Medicine and Drug Development, 2019, 4, 229-237.	0.4	0
743	CRISPR/dCas9â€mediated activation of multiple endogenous target genes directly converts human foreskin fibroblasts into Leydigâ€like cells. Journal of Cellular and Molecular Medicine, 2019, 23, 6072-6084.	1.6	14
744	CRISPR-Cas9-mediated loss-of-function screens. Frontiers in Life Science: Frontiers of Interdisciplinary Research in the Life Sciences, 2019, 12, 1-13.	1.1	3
745	Transcriptional landscape and clinical utility of enhancer RNAs for eRNA-targeted therapy in cancer. Nature Communications, 2019, 10, 4562.	5.8	165
746	Methods and applications of CRISPR/Cas system for genome editing in stem cells. Cell Regeneration, 2019, 8, 33-41.	1.1	24
747	Pluripotent Stem Cells in Eye Disease Therapy. Advances in Experimental Medicine and Biology, 2019, , .	0.8	4
748	CRISPR/Cas System: Recent Advances and Future Prospects for Genome Editing. Trends in Plant Science, 2019, 24, 1102-1125.	4.3	292
749	STING-Mediated IFI16 Degradation Negatively Controls Type I Interferon Production. Cell Reports, 2019, 29, 1249-1260.e4.	2.9	52
750	Novel Lipid Long Intervening Noncoding RNA, Oligodendrocyte Maturationâ€Associated Long Intergenic Noncoding RNA, Regulates the Liver Steatosis Gene Stearoyl oenzyme A Desaturase As an Enhancer RNA. Hepatology Communications, 2019, 3, 1356-1372.	2.0	28
751	A green tea–triggered genetic control system for treating diabetes in mice and monkeys. Science Translational Medicine, 2019, 11, .	5.8	49
752	Prediction of sgRNA on-target activity in bacteria by deep learning. BMC Bioinformatics, 2019, 20, 517.	1.2	19

#	Article	IF	Citations
753	Advances in the Differentiation of Retinal Ganglion Cells from Human Pluripotent Stem Cells. Advances in Experimental Medicine and Biology, 2019, 1186, 121-140.	0.8	8
754	Genetic compensation byepobin pronephros development inepoamutant zebrafish. Cell Cycle, 2019, 18, 2683-2696.	1.3	8
755	Microbial CRISPRi and CRISPRa Systems for Metabolic Engineering. Biotechnology and Bioprocess Engineering, 2019, 24, 579-591.	1.4	31
756	Guide RNA modification as a way to improve CRISPR/Cas9-based genome-editing systems. Biochimie, 2019, 167, 49-60.	1.3	45
757	Mitigation of off-target toxicity in CRISPR-Cas9 screens for essential non-coding elements. Nature Communications, 2019, 10, 4063.	5.8	104
758	Human Induced Pluripotent Stem-Cell-Derived Cardiomyocytes as Models for Genetic Cardiomyopathies. International Journal of Molecular Sciences, 2019, 20, 4381.	1.8	43
759	Genetically Engineered Mouse Models of Gliomas: Technological Developments for Translational Discoveries. Cancers, 2019, 11, 1335.	1.7	31
760	Modified nucleobase-specific gene regulation using engineered transcription activator-like effectors. Advanced Drug Delivery Reviews, 2019, 147, 59-65.	6.6	6
761	MUC16 in non-small cell lung cancer patients affected by familial lung cancer and indoor air pollution: clinical characteristics and cell behaviors. Translational Lung Cancer Research, 2019, 8, 476-488.	1.3	9
762	A Broad Application of CRISPR Cas9 in Infectious Diseases of Central Nervous System. Journal of NeuroImmune Pharmacology, 2019, 14, 578-594.	2.1	5
763	Chemoresistance in Pancreatic Cancer. International Journal of Molecular Sciences, 2019, 20, 4504.	1.8	338
764	CRISPR technologies for stem cell engineering and regenerative medicine. Biotechnology Advances, 2019, 37, 107447.	6.0	59
765	Mapping human cell phenotypes to genotypes with single-cell genomics. Science, 2019, 365, 1401-1405.	6.0	71
766	A Brief Overview of IncRNAs in Endothelial Dysfunction-Associated Diseases: From Discovery to Characterization. Epigenomes, 2019, 3, 20.	0.8	1
767	H3K18ac Primes Mesendodermal Differentiation upon Nodal Signaling. Stem Cell Reports, 2019, 13, 642-656.	2.3	16
768	CRISPR-based tools for targeted transcriptional and epigenetic regulation in plants. PLoS ONE, 2019, 14, e0222778.	1.1	75
769	Validation of a Miniaturized Permeability Assay Compatible with CRISPR-Mediated Genome-Wide Screen. Scientific Reports, 2019, 9, 14238.	1.6	1
770	C9-ALS/FTD-linked proline–arginine dipeptide repeat protein associates with paraspeckle components and increases paraspeckle formation. Cell Death and Disease, 2019, 10, 746.	2.7	31

#	ARTICLE Tim-3 Promotes Listeria monocytogenes Immune Evasion by Suppressing Major Histocompatibility	IF	CITATIONS
771	Complex Class I. Journal of Infectious Diseases, 2020, 221, 830-840.	1.9	13
772	CRISPR–Cas: a tool for cancer research and therapeutics. Nature Reviews Clinical Oncology, 2019, 16, 281-295.	12.5	127
773	Integrative single-cell analysis. Nature Reviews Genetics, 2019, 20, 257-272.	7.7	932
774	How the epigenome integrates information and reshapes the synapse. Nature Reviews Neuroscience, 2019, 20, 133-147.	4.9	115
775	CRISPR-Based Tools in Immunity. Annual Review of Immunology, 2019, 37, 571-597.	9.5	38
776	Integrative analysis of pooled CRISPR genetic screens using MAGeCKFlute. Nature Protocols, 2019, 14, 756-780.	5.5	260
777	Modern Molecular Biology Technologies and Higher Usability of Ancient Knowledge of Medicinal Plants for Treatment of Human Diseases. , 2019, , 173-205.		2
778	CRISPR-Cas9 for cancer therapy: Opportunities and challenges. Cancer Letters, 2019, 447, 48-55.	3.2	135
779	Guide RNAs with embedded barcodes boost CRISPR-pooled screens. Genome Biology, 2019, 20, 20.	3.8	50
780	CRISPR to the Rescue: Advances in Gene Editing for the FMR1 Gene. Brain Sciences, 2019, 9, 17.	1.1	10
781	Design and Assembly of CRISPR/Cas9 Lentiviral and rAAV Vectors for Targeted Genome Editing. Methods in Molecular Biology, 2019, 1937, 29-45.	0.4	4
782	CRISPR–Casâ€Mediated Chemical Control of Transcriptional Dynamics in Yeast. ChemBioChem, 2019, 20, 1519-1523.	1.3	9
783	A simplified transposon mutagenesis method to perform phenotypic forward genetic screens in cultured cells. BMC Genomics, 2019, 20, 497.	1.2	5
784	CRISPR/Cas9 guided genome and epigenome engineering and its therapeutic applications in immune mediated diseases. Seminars in Cell and Developmental Biology, 2019, 96, 32-43.	2.3	9
785	LADL: light-activated dynamic looping for endogenous gene expression control. Nature Methods, 2019, 16, 633-639.	9.0	108
786	Delivery of CRISPR/Cas9 for therapeutic genome editing. Journal of Gene Medicine, 2019, 21, e3107.	1.4	93
787	Development of CRISPR-Cas systems for genome editing and beyond. Quarterly Reviews of Biophysics, 2019, 52, .	2.4	108
788	CRISPR/Cas9-targeted removal of unwanted sequences from small-RNA sequencing libraries. Nucleic Acids Research, 2019, 47, e84-e84.	6.5	17

#	Article	IF	CITATIONS
789	Illuminating the Onco-GPCRome: Novel G protein–coupled receptor-driven oncocrine networks and targets for cancer immunotherapy. Journal of Biological Chemistry, 2019, 294, 11062-11086.	1.6	129
790	Large scale control and programming of gene expression using CRISPR. Seminars in Cell and Developmental Biology, 2019, 96, 124-132.	2.3	5
791	The next generation of CRISPR–Cas technologies and applications. Nature Reviews Molecular Cell Biology, 2019, 20, 490-507.	16.1	957
792	Lysolipid receptor cross-talk regulates lymphatic endothelial junctions in lymph nodes. Journal of Experimental Medicine, 2019, 216, 1582-1598.	4.2	54
793	The giant titin: how to evaluate its role in cardiomyopathies. Journal of Muscle Research and Cell Motility, 2019, 40, 159-167.	0.9	11
794	A CRISPR Activation Screen Identifies Genes That Protect against Zika Virus Infection. Journal of Virology, 2019, 93, .	1.5	50
795	Active fusions of Cas9 orthologs. Journal of Biotechnology, 2019, 301, 18-23.	1.9	12
796	Targeted Transgene Activation in the Brain Tissue by Systemic Delivery of Engineered AAV1 Expressing CRISPRa. Molecular Therapy - Nucleic Acids, 2019, 16, 637-649.	2.3	36
797	Live-Animal Epigenome Editing: Convergence of Novel Techniques. Trends in Genetics, 2019, 35, 527-541.	2.9	15
798	Zfp281 Shapes the Transcriptome of Trophoblast Stem Cells and Is Essential for Placental Development. Cell Reports, 2019, 27, 1742-1754.e6.	2.9	34
799	CRISPR/Cas9-based epigenome editing: An overview of dCas9-based tools with special emphasis on off-target activity. Methods, 2019, 164-165, 109-119.	1.9	42
800	Genetic circuits to engineer tissues with alternative functions. Journal of Biological Engineering, 2019, 13, 39.	2.0	39
801	CRISPR-Cas9: A multifaceted therapeutic strategy for cancer treatment. Seminars in Cell and Developmental Biology, 2019, 96, 4-12.	2.3	15
802	Ezh2-dCas9 and KRAB-dCas9 enable engineering of epigenetic memory in a context-dependent manner. Epigenetics and Chromatin, 2019, 12, 26.	1.8	101
803	Computational Methods for Mapping, Assembly and Quantification for Coding and Non-coding Transcripts. Computational and Structural Biotechnology Journal, 2019, 17, 628-637.	1.9	25
804	Transcriptional repression of endogenous genes in BmE cells using CRISPRi system. Insect Biochemistry and Molecular Biology, 2019, 111, 103172.	1.2	4
805	What has single-cell RNA-seq taught us about mammalian spermatogenesis?. Biology of Reproduction, 2019, 101, 617-634.	1.2	46
806	â€~Artificial spermatid'-mediated genome editingâ€. Biology of Reproduction, 2019, 101, 538-548.	1.2	8

#	Article	IF	CITATIONS
807	Cause-and-Effect relationship between FGFR1 expression and epithelial-mesenchymal transition in EGFR-mutated non-small cell lung cancer cells. Lung Cancer, 2019, 132, 132-140.	0.9	20
808	Recent advances in neuroepigenetic editing. Current Opinion in Neurobiology, 2019, 59, 26-33.	2.0	13
809	Programmable targeted epigenetic editing using CRISPR system in Bombyx mori. Insect Biochemistry and Molecular Biology, 2019, 110, 105-111.	1.2	15
810	In vivo Application of the REMOTE-control System for the Manipulation of Endogenous Gene Expression. Journal of Visualized Experiments, 2019, , .	0.2	2
811	CRISPRai for simultaneous gene activation and inhibition to promote stem cell chondrogenesis and calvarial bone regeneration. Nucleic Acids Research, 2019, 47, e74-e74.	6.5	48
812	Therapeutic Potential of Wnt and Notch Signaling and Epigenetic Regulation in Mammalian Sensory Hair Cell Regeneration. Molecular Therapy, 2019, 27, 904-911.	3.7	69
813	A compact synthetic pathway rewires cancer signaling to therapeutic effector release. Science, 2019, 364, .	6.0	33
814	A modular degron library for synthetic circuits in mammalian cells. Nature Communications, 2019, 10, 2013.	5.8	34
815	Targeted deletion of BCL11A gene by CRISPR-Cas9 system for fetal hemoglobin reactivation: A promising approach for gene therapy of beta thalassemia disease. European Journal of Pharmacology, 2019, 854, 398-405.	1.7	53
816	Strong gene activation in plants with genomeâ€wide specificity using a new orthogonal <scp>CRISPR</scp> /Cas9â€based programmable transcriptional activator. Plant Biotechnology Journal, 2019, 17, 1703-1705.	4.1	87
817	Targeted Epigenome Editing of Plant Defense Genes via CRISPR Activation (CRISPRa). , 2019, , 267-289.		1
818	A High-Throughput Platform to Identify Small-Molecule Inhibitors of CRISPR-Cas9. Cell, 2019, 177, 1067-1079.e19.	13.5	133
819	Reversible Disruption of Specific Transcription Factor-DNA Interactions Using CRISPR/Cas9. Molecular Cell, 2019, 74, 622-633.e4.	4.5	45
820	ETV6-RUNX1 interacts with a region in SPIB intron 1 to regulate gene expression in pre-B-cell acute lymphoblastic leukemia. Experimental Hematology, 2019, 73, 50-63.e2.	0.2	6
821	Cell-specific CRISPR–Cas9 activation by microRNA-dependent expression of anti-CRISPR proteins. Nucleic Acids Research, 2019, 47, e75-e75.	6.5	79
822	In vivo genome editing rescues photoreceptor degeneration via a Cas9/RecA-mediated homology-directed repair pathway. Science Advances, 2019, 5, eaav3335.	4.7	67
823	Perspectives on gene expression regulation techniques in Drosophila. Journal of Genetics and Genomics, 2019, 46, 213-220.	1.7	6
824	Generation of a novel HEK293 luciferase reporter cell line by CRISPR/Cas9-mediated site-specific integration in the genome to explore the transcriptional regulation of the PGRN gene. Bioengineered, 2019, 10, 98-107.	1.4	6

#	Article	IF	CITATIONS
825	Application of CRISPR/Cas9-Based Gene Editing in HIV-1/AIDS Therapy. Frontiers in Cellular and Infection Microbiology, 2019, 9, 69.	1.8	112
826	Elucidating the mechanism of action of domatinostat (4SC-202) in cutaneous T cell lymphoma cells. Journal of Hematology and Oncology, 2019, 12, 30.	6.9	34
827	Genome Editing with mRNA Encoding ZFN, TALEN, and Cas9. Molecular Therapy, 2019, 27, 735-746.	3.7	148
828	Applications of CRISPR systems in respiratory health: Entering a new â€~red pen' era in genome editing. Respirology, 2019, 24, 628-637.	1.3	13
829	Genome editing: A perspective on the application of CRISPR/Cas9 to study human diseases (Review). International Journal of Molecular Medicine, 2019, 43, 1559-1574.	1.8	67
830	CRISPR genomic screening informs gene–environment interactions. Current Opinion in Toxicology, 2019, 18, 46-53.	2.6	6
831	Expanding the CRISPR Toolbox in Zebrafish for Studying Development and Disease. Frontiers in Cell and Developmental Biology, 2019, 7, 13.	1.8	102
832	Overexpressing Long Noncoding RNAs Using Gene-activating CRISPR. Journal of Visualized Experiments, 2019, , .	0.2	5
833	Long Non-Coding RNAs in Thyroid Cancer: Implications for Pathogenesis, Diagnosis, and Therapy. Oncology Research and Treatment, 2019, 42, 136-142.	0.8	60
834	CRISPR-Cas: Converting A Bacterial Defence Mechanism into A State-of-the-Art Genetic Manipulation Tool. Antibiotics, 2019, 8, 18.	1.5	48
836	Toward In Vivo Gene Therapy Using CRISPR. Methods in Molecular Biology, 2019, 1961, 293-306.	0.4	7
837	Genome-Scale CRISPRa Screen Identifies Novel Factors for Cellular Reprogramming. Stem Cell Reports, 2019, 12, 757-771.	2.3	45
838	Linear doubleâ€stranded <scp>DNA</scp> s as innovative biological parts to implement genetic circuits in mammalian cells. FEBS Journal, 2019, 286, 2341-2354.	2.2	8
839	WP1130 reveals USP24 as a novel target in T-cell acute lymphoblastic leukemia. Cancer Cell International, 2019, 19, 56.	1.8	18
840	Single-Cell Heterogeneity Analysis and CRISPR Screen Identify Key β-Cell-Specific Disease Genes. Cell Reports, 2019, 26, 3132-3144.e7.	2.9	90
841	CRISPR-mediated activation of endogenous BST-2/tetherin expression inhibits wild-type HIV-1 production. Scientific Reports, 2019, 9, 3134.	1.6	17
842	A Practical Guide to Genome Editing Using Targeted Nuclease Technologies. , 2019, 9, 665-714.		7
843	Optimization of lentiviral transduction parameters and its application for CRISPR-based secretome modification of human endometrial mesenchymal stem cells. Cell Cycle, 2019, 18, 742-758.	1.3	13

#	Article	IF	CITATIONS
844	Application of the CRISPR/Cas system for genome editing in microalgae. Applied Microbiology and Biotechnology, 2019, 103, 3239-3248.	1.7	37
845	Enhancement of Precise Gene Editing by the Association of Cas9 With Homologous Recombination Factors. Frontiers in Genetics, 2019, 10, 365.	1.1	56
846	Targeted Transcriptional Activation in Plants Using a Potent Dead Cas9–Derived Synthetic Gene Activator. Current Protocols in Molecular Biology, 2019, 127, e89.	2.9	10
847	Lentiviral Vector Platform for the Efficient Delivery of Epigenome-editing Tools into Human Induced Pluripotent Stem Cell-derived Disease Models. Journal of Visualized Experiments, 2019, , .	0.2	9
848	Liver Cancer Gene Discovery Using Gene Targeting, Sleeping Beauty, and CRISPR/Cas9. Seminars in Liver Disease, 2019, 39, 261-274.	1.8	21
849	Multiplexed and tunable transcriptional activation by promoter insertion using nuclease-assisted vector integration. Nucleic Acids Research, 2019, 47, e67-e67.	6.5	8
850	Disruptive Technology: CRISPR/Cas-Based Tools and Approaches. Molecular Diagnosis and Therapy, 2019, 23, 187-200.	1.6	22
851	PI3K Inhibition Activates SGK1 via a Feedback Loop to Promote Chromatin-Based Regulation of ER-Dependent Gene Expression. Cell Reports, 2019, 27, 294-306.e5.	2.9	49
852	Targeted Therapeutic Genome Engineering: Opportunities and Bottlenecks in Medical Translation. ACS Symposium Series, 2019, , 1-34.	0.5	0
853	Decoupling tRNA promoter and processing activities enables specific Pol-II Cas9 guide RNA expression. Nature Communications, 2019, 10, 1490.	5.8	31
854	Functional-genetic approaches to understanding drug response and resistance. Current Opinion in Genetics and Development, 2019, 54, 41-47.	1.5	3
855	Identification of Novel Regulatory Genes in APAP Induced Hepatocyte Toxicity by a Genome-Wide CRISPR-Cas9 Screen. Scientific Reports, 2019, 9, 1396.	1.6	8
856	Pharmacological reactivation of MYC-dependent apoptosis induces susceptibility to anti-PD-1 immunotherapy. Nature Communications, 2019, 10, 620.	5.8	60
858	Reduced mitochondrial fusion and Huntingtin levels contribute to impaired dendritic maturation and behavioral deficits in Fmr1-mutant mice. Nature Neuroscience, 2019, 22, 386-400.	7.1	67
859	Determination of local chromatin interactions using a combined CRISPR and peroxidase APEX2 system. Nucleic Acids Research, 2019, 47, e52-e52.	6.5	37
860	Synergistic lethality between BRCA1 and H3K9me2 loss reflects satellite derepression. Genes and Development, 2019, 33, 436-451.	2.7	48
861	Improvements of TKC Technology Accelerate Isolation of Transgene-Free CRISPR/Cas9-Edited Rice Plants. Rice Science, 2019, 26, 109-117.	1.7	30
862	RNA Strand Displacement Responsive CRISPR/Cas9 System for mRNA Sensing. Analytical Chemistry, 2019, 91, 3989-3996.	3.2	106

#	Article	IF	CITATIONS
863	Hacking the Cancer Genome: Profiling Therapeutically Actionable Long Non-coding RNAs Using CRISPR-Cas9 Screening. Cancer Cell, 2019, 35, 545-557.	7.7	163
864	A CRISPR Interference Platform for Efficient Genetic Repression in <i>Candida albicans</i> . MSphere, 2019, 4, .	1.3	49
865	Protocols for CRISPR-Cas9 Screening in Lymphoma Cell Lines. Methods in Molecular Biology, 2019, 1956, 337-350.	0.4	11
866	Site-specific manipulation of Arabidopsis loci using CRISPR-Cas9 SunTag systems. Nature Communications, 2019, 10, 729.	5.8	215
867	Current and Future Treatment Strategies for Rhabdomyosarcoma. Frontiers in Oncology, 2019, 9, 1458.	1.3	100
868	IncRNAs: function and mechanism in cartilage development, degeneration, and regeneration. Stem Cell Research and Therapy, 2019, 10, 344.	2.4	53
869	Application of CRISPR genetic screens to investigate neurological diseases. Molecular Neurodegeneration, 2019, 14, 41.	4.4	25
870	Induced Pluripotent Stem Cells as Vasculature Forming Entities. Journal of Clinical Medicine, 2019, 8, 1782.	1.0	11
871	Chemogenetic interactions in human cancer cells. Computational and Structural Biotechnology Journal, 2019, 17, 1318-1325.	1.9	8
872	Genome-scale CRISPR activation screen uncovers tumor-intrinsic modulators of CD3 bispecific antibody efficacy. Scientific Reports, 2019, 9, 20068.	1.6	15
873	Multi-functional genome-wide CRISPR system for high throughput genotype–phenotype mapping. Nature Communications, 2019, 10, 5794.	5.8	104
874	CRISPR-Switch regulates sgRNA activity by Cre recombination for sequential editing of two loci. Nature Communications, 2019, 10, 5454.	5.8	31
875	Aptamers: A Review of Their Chemical Properties and Modifications for Therapeutic Application. Molecules, 2019, 24, 4229.	1.7	170
876	The targetable kinase PIM1 drives ALK inhibitor resistance in high-risk neuroblastoma independent of MYCN status. Nature Communications, 2019, 10, 5428.	5.8	28
877	CRISPR-based Activation of Endogenous Neurotrophic Genes in Adipose Stem Cell Sheets to Stimulate Peripheral Nerve Regeneration. Theranostics, 2019, 9, 6099-6111.	4.6	44
879	Transcriptional control by enhancers and enhancer RNAs. Transcription, 2019, 10, 171-186.	1.7	49
880	Advances in detecting and reducing off-target effects generated by CRISPR-mediated genome editing. Journal of Genetics and Genomics, 2019, 46, 513-521.	1.7	45
881	Advancing CRISPR-Based Programmable Platforms beyond Genome Editing in Mammalian Cells. ACS Synthetic Biology, 2019, 8, 2607-2619.	1.9	5

#	Article	IF	CITATIONS
882	PTENα and PTENβ promote carcinogenesis through WDR5 and H3K4 trimethylation. Nature Cell Biology, 2019, 21, 1436-1448.	4.6	44
883	Dead Cas Systems: Types, Principles, and Applications. International Journal of Molecular Sciences, 2019, 20, 6041.	1.8	74
884	Targeted regulation of fibroblast state by CRISPR-mediated CEBPA expression. Respiratory Research, 2019, 20, 281.	1.4	14
885	Multiplexed activation of endogenous genes by CRISPRa elicits potent antitumor immunity. Nature Immunology, 2019, 20, 1494-1505.	7.0	83
886	Hypoxia regulates the mitochondrial activity of hepatocellular carcinoma cells through HIF/HEY1/PINK1 pathway. Cell Death and Disease, 2019, 10, 934.	2.7	98
887	Gene activation by dCas9-CBP and the SAM system differ in target preference. Scientific Reports, 2019, 9, 18104.	1.6	18
888	RNAi/CRISPR Screens: from a Pool to a Valid Hit. Trends in Biotechnology, 2019, 37, 38-55.	4.9	90
889	Systematic genetic mapping of necroptosis identifies SLC39A7 as modulator of death receptor trafficking. Cell Death and Differentiation, 2019, 26, 1138-1155.	5.0	26
890	CRISPR-Cap: multiplexed double-stranded DNA enrichment based on the CRISPR system. Nucleic Acids Research, 2019, 47, e1-e1.	6.5	24
891	S100A7, Jab1, and p27 ^{kip1} expression in psoriasis and S100A7 CRISPRâ€activated human keratinocyte cell line. Journal of Cellular Biochemistry, 2019, 120, 3384-3392.	1.2	9
892	Engineering mammalian cells for disease diagnosis and treatment. Current Opinion in Biotechnology, 2019, 55, 87-94.	3.3	33
893	Up-Regulated FGFR1 Expression as a Mediator of Intrinsic TKI Resistance in EGFR-Mutated NSCLC. Translational Oncology, 2019, 12, 432-440.	1.7	20
894	The stability and oncogenic function of LIN28A are regulated by USP28. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 599-610.	1.8	22
895	CRISPR/Cas9-Based Positive Screens for Cancer-Related Traits. Methods in Molecular Biology, 2019, 1907, 137-144.	0.4	4
896	A Simple Cloning-free Method to Efficiently Induce Gene Expression Using CRISPR/Cas9. Molecular Therapy - Nucleic Acids, 2019, 14, 184-191.	2.3	13
897	Plant Genome Editing with CRISPR Systems. Methods in Molecular Biology, 2019, , .	0.4	12
898	CRISPR-Mediated Approaches to Regulate YAP/TAZ Levels. Methods in Molecular Biology, 2019, 1893, 203-214.	0.4	0
899	Genomic sequencing and editing revealed the GRM8 signaling pathway as potential therapeutic targets of squamous cell lung cancer. Cancer Letters, 2019, 442, 53-67.	3.2	29

#	Article	IF	CITATIONS
900	To kill a piroplasm: genetic technologies to advance drug discovery and target identification in Babesia. International Journal for Parasitology, 2019, 49, 153-163.	1.3	15
901	Activating PTEN Tumor Suppressor Expression with the CRISPR/dCas9 System. Molecular Therapy - Nucleic Acids, 2019, 14, 287-300.	2.3	68
902	An Agrobacterium-Mediated CRISPR/Cas9 Platform for Genome Editing in Maize. Methods in Molecular Biology, 2019, 1917, 121-143.	0.4	8
903	CRISPR-Act2.0: An Improved Multiplexed System for Plant Transcriptional Activation. Methods in Molecular Biology, 2019, 1917, 83-93.	0.4	3
904	CRISPR-DT: designing gRNAs for the CRISPR-Cpf1 system with improved target efficiency and specificity. Bioinformatics, 2019, 35, 2783-2789.	1.8	62
905	Structurally Conserved Primate LncRNAs Are Transiently Expressed during Human Cortical Differentiation and Influence Cell-Type-Specific Genes. Stem Cell Reports, 2019, 12, 245-257.	2.3	53
906	Precision Control of CRISPR-Cas9 Using Small Molecules and Light. Biochemistry, 2019, 58, 234-244.	1.2	92
907	CRISPR–Cas9 a boon or bane: the bumpy road ahead to cancer therapeutics. Cancer Cell International, 2019, 19, 12.	1.8	46
908	Multistage Delivery Nanoparticle Facilitates Efficient CRISPR/dCas9 Activation and Tumor Growth Suppression In Vivo. Advanced Science, 2019, 6, 1801423.	5.6	128
909	CRISPR–Cas9 in genome editing: Its function and medical applications. Journal of Cellular Physiology, 2019, 234, 5751-5761.	2.0	29
910	Development and application of a CRISPR/Cas9 system for Bacillus licheniformis genome editing. International Journal of Biological Macromolecules, 2019, 122, 329-337.	3.6	29
911	Efficient CRISPR/Cas9â€Mediated Mutagenesis in Primary Murine T Lymphocytes. Current Protocols in Immunology, 2019, 124, e62.	3.6	13
912	Molecular Additives Significantly Enhance Glycopolymer-Mediated Transfection of Large Plasmids and Functional CRISPR-Cas9 Transcription Activation Ex Vivo in Primary Human Fibroblasts and Induced Pluripotent Stem Cells. Bioconjugate Chemistry, 2019, 30, 418-431.	1.8	11
914	CRISPR-mediated activation of a promoter or enhancer rescues obesity caused by haploinsufficiency. Science, 2019, 363, .	6.0	230
915	Intracellular Activation of Complement C3 Leads to PD-L1 Antibody Treatment Resistance by Modulating Tumor-Associated Macrophages. Cancer Immunology Research, 2019, 7, 193-207.	1.6	64
916	In Vitro and in Vivo RNA Inhibition by CD9-HuR Functionalized Exosomes Encapsulated with miRNA or CRISPR/dCas9. Nano Letters, 2019, 19, 19-28.	4.5	194
917	Functional Genomics for Cancer Research: Applications In Vivo and In Vitro. Annual Review of Cancer Biology, 2019, 3, 345-363.	2.3	9
918	Prediction of CRISPR sgRNA Activity Using a Deep Convolutional Neural Network. Journal of Chemical Information and Modeling, 2019, 59, 615-624.	2.5	64

#	Article	IF	CITATIONS
919	Transcriptional activation of fucosyltransferase (FUT) genes using the CRISPR-dCas9-VPR technology reveals potent N-glycome alterations in colorectal cancer cells. Glycobiology, 2019, 29, 137-150.	1.3	27
920	HELLS Regulates Chromatin Remodeling and Epigenetic Silencing of Multiple Tumor Suppressor Genes in Human Hepatocellular Carcinoma. Hepatology, 2019, 69, 2013-2030.	3.6	56
921	Fast and global detection of periodic sequence repeats in large genomic resources. Nucleic Acids Research, 2019, 47, e8-e8.	6.5	7
922	Identification of Antinorovirus Genes in Human Cells Using Genome-Wide CRISPR Activation Screening. Journal of Virology, 2019, 93, .	1.5	40
923	Yeast genetic interaction screens in the age of CRISPR/Cas. Current Genetics, 2019, 65, 307-327.	0.8	29
924	Non-Viral Delivery To Enable Genome Editing. Trends in Biotechnology, 2019, 37, 281-293.	4.9	86
925	CRISPRInc: a manually curated database of validated sgRNAs for IncRNAs. Nucleic Acids Research, 2019, 47, D63-D68.	6.5	37
926	The regulatory network behind MHC class I expression. Molecular Immunology, 2019, 113, 16-21.	1.0	122
927	New insights into RAS biology reinvigorate interest in mathematical modeling of RAS signaling. Seminars in Cancer Biology, 2019, 54, 162-173.	4.3	16
928	CRISPR/Cas9 for cancer research and therapy. Seminars in Cancer Biology, 2019, 55, 106-119.	4.3	206
929	Translatable gene therapy for lung cancer using Crispr CAS9—an exploratory review. Cancer Gene Therapy, 2020, 27, 116-124.	2.2	20
930	CRISPR technology for immuno-oncology applications. Methods in Enzymology, 2020, 635, 251-266.	0.4	1
931	Lineage reprogramming of fibroblasts into induced cardiac progenitor cells by CRISPR/Cas9-based transcriptional activators. Acta Pharmaceutica Sinica B, 2020, 10, 313-326.	5.7	51
932	CRISPR/Cas brings plant biology and breeding into the fast lane. Current Opinion in Biotechnology, 2020, 61, 7-14.	3.3	89
934	dCas9-Based Scn1a Gene Activation Restores Inhibitory Interneuron Excitability and Attenuates Seizures in Dravet Syndrome Mice. Molecular Therapy, 2020, 28, 235-253.	3.7	135
935	Genome editing in animals: an overview. , 2020, , 75-104.		2
936	Positional effects on efficiency of CRISPR/Cas9-based transcriptional activation in rice plants. ABIOTECH, 2020, 1, 1-5.	1.8	13
937	Targeted knock-in into the OVA locus of chicken cells using CRISPR/Cas9 system with homology-independent targeted integration. Journal of Bioscience and Bioengineering, 2020, 129, 363-370.	1.1	6

#	Article	IF	Citations
938	<scp>CRISPR</scp> / <scp>dC</scp> as9 platforms in plants: strategies and applications beyond genome editing. Plant Biotechnology Journal, 2020, 18, 32-44.	4.1	129
939	The working dead: repurposing inactive CRISPR-associated nucleases as programmable transcriptional regulators in plants. ABIOTECH, 2020, 1, 32-40.	1.8	8
940	Genome editing in wheat microspores and haploid embryos mediated by delivery of ZFN proteins and cellâ€penetrating peptide complexes. Plant Biotechnology Journal, 2020, 18, 1307-1316.	4.1	39
941	CRISPR: A Screener's Guide. SLAS Discovery, 2020, 25, 233-240.	1.4	11
942	Mesenchymal stem cells asÂcarrier of the therapeutic agent in the gene therapy of blood disorders. Journal of Cellular Physiology, 2020, 235, 4120-4134.	2.0	20
943	CRISPR-associated nucleases: the Dawn of a new age of efficient crop improvement. Transgenic Research, 2020, 29, 1-35.	1.3	31
944	Modelling the Cancer Phenotype in the Era of CRISPR-Cas9 Gene Editing. Clinical Oncology, 2020, 32, 69-74.	0.6	2
945	Recent developments and applications of genetic transformation and genome editing technologies in wheat. Theoretical and Applied Genetics, 2020, 133, 1603-1622.	1.8	28
946	Plant gene expression control using genome- and epigenome-editing technologies. Journal of Crop Improvement, 2020, 34, 1-63.	0.9	14
947	Anillin regulates breast cancer cell migration, growth, and metastasis by non-canonical mechanisms involving control of cell stemness and differentiation. Breast Cancer Research, 2020, 22, 3.	2.2	33
948	GTP Cyclohydrolase 1/Tetrahydrobiopterin Counteract Ferroptosis through Lipid Remodeling. ACS Central Science, 2020, 6, 41-53.	5.3	551
949	A Versatile ES Cell–Based Melanoma Mouse Modeling Platform. Cancer Research, 2020, 80, 912-921.	0.4	11
950	CRISPR-Mediated Activation of Endogenous Gene Expression in the Postnatal Heart. Circulation Research, 2020, 126, 6-24.	2.0	37
951	Heat-Triggered Remote Control of CRISPR-dCas9 for Tunable Transcriptional Modulation. ACS Chemical Biology, 2020, 15, 533-542.	1.6	23
952	A tunable orthogonal coiled-coil interaction toolbox for engineering mammalian cells. Nature Chemical Biology, 2020, 16, 513-519.	3.9	89
953	Cas9 Protein Triggers Differential Expression of Inherent Genes Especially NGFR Expression in 293T Cells. Cellular and Molecular Bioengineering, 2020, 13, 61-72.	1.0	3
954	A neuroscientist's guide to transgenic mice and other genetic tools. Neuroscience and Biobehavioral Reviews, 2020, 108, 732-748.	2.9	64
955	Epigenome editing by CRISPR/Cas9 in clinical settings: possibilities and challenges. Briefings in Functional Genomics, 2020, 19, 215-228.	1.3	9

#	Article	IF	CITATIONS
956	Coactivation of Endogenous Wnt10b and Foxc2 by CRISPR Activation Enhances BMSC Osteogenesis and Promotes Calvarial Bone Regeneration. Molecular Therapy, 2020, 28, 441-451.	3.7	37
957	CXCR2 Ligands and mTOR Activation Enhance Reprogramming of Human Somatic Cells to Pluripotent Stem Cells. Stem Cells and Development, 2020, 29, 119-132.	1.1	13
958	CRISPR-cas9: a powerful tool towards precision medicine in cancer treatment. Acta Pharmacologica Sinica, 2020, 41, 583-587.	2.8	32
959	Dose-dependent activation of gene expression is achieved using CRISPR and small molecules that recruit endogenous chromatin machinery. Nature Biotechnology, 2020, 38, 50-55.	9.4	51
960	Wholeâ€Genome Regulation for Yeast Metabolic Engineering. Small Methods, 2020, 4, 1900640.	4.6	12
961	CRISPR as9–induced IGF1 gene activation as a tool for enhancing muscle differentiation via multiple isoform expression. FASEB Journal, 2020, 34, 555-570.	0.2	7
962	Cell Reprogramming for Immunotherapy. Methods in Molecular Biology, 2020, , .	0.4	2
963	Experimental Approaches to Identify Host Factors Important for Influenza Virus. Cold Spring Harbor Perspectives in Medicine, 2020, 10, a038521.	2.9	9
964	Development and Validation of CRISPR Activator Systems for Overexpression of CB1 Receptors in Neurons. Frontiers in Molecular Neuroscience, 2020, 13, 168.	1.4	16
965	Mechanisms of Acquired BRAF Inhibitor Resistance in Melanoma: A Systematic Review. Cancers, 2020, 12, 2801.	1.7	73
966	Enhanced Efficiency of flySAM by Optimization of sgRNA Parameters in <i>Drosophila</i> . G3: Genes, Genomes, Genetics, 2020, 10, 4483-4488.	0.8	4
967	Efficiency of Chitosan-Coated PLGA Nanocarriers for Cellular Delivery of siRNA and CRISPR/Cas9 Complex. Journal of Pharmaceutical Innovation, 2022, 17, 180-193.	1.1	6
968	CRISPR/Cas: From Tumor Gene Editing to T Cell-Based Immunotherapy of Cancer. Frontiers in Immunology, 2020, 11, 2062.	2.2	45
969	Elevated 4-hydroxynonenal induces hyperglycaemia via Aldh3a1 loss in zebrafish and associates with diabetes progression in humans. Redox Biology, 2020, 37, 101723.	3.9	36
970	CHD7 promotes neural progenitor differentiation in embryonic stem cells via altered chromatin accessibility and nascent gene expression. Scientific Reports, 2020, 10, 17445.	1.6	23
971	Chromodomain Helicase DNA-Binding Protein 5 Inhibits Renal Cell Carcinoma Tumorigenesis by Activation of the p53 and RB Pathways. BioMed Research International, 2020, 2020, 1-12.	0.9	2
972	In Vivo Cancer-Based Functional Genomics. Trends in Cancer, 2020, 6, 1002-1017.	3.8	5
973	LncRNA <i>Platr22</i> promotes super-enhancer activity and stem cell pluripotency. Journal of Molecular Cell Biology, 2021, 13, 295-313.	1.5	13

#	Article	IF	CITATIONS
974	Strategies and technologies for exploring long noncoding RNAs in heart failure. Biomedicine and Pharmacotherapy, 2020, 131, 110572.	2.5	6
975	CRISPR/Cas9: A powerful genome editing technique for the treatment of cancer cells with present challenges and future directions. Life Sciences, 2020, 263, 118525.	2.0	35
976	Thermoreversible Control of Nucleic Acid Structure and Function with Glyoxal Caging. Journal of the American Chemical Society, 2020, 142, 17766-17781.	6.6	33
977	Modulating gene regulation to treat genetic disorders. Nature Reviews Drug Discovery, 2020, 19, 757-775.	21.5	41
978	Computational Methods for Analysis of Large-Scale CRISPR Screens. Annual Review of Biomedical Data Science, 2020, 3, 137-162.	2.8	4
980	CRISPR/Cas9 technologies in epigenetics research. , 2020, , 537-567.		1
981	Advances in CRISPR technologies enable novel in vitro tools for ADME studies. , 2020, , 595-607.		0
982	CRISPR–Cas immune systems and genome engineering. , 2020, , 157-177.		0
983	Transcriptional repression of PTEN in neural cells using CRISPR/dCas9 epigenetic editing. Scientific Reports, 2020, 10, 11393.	1.6	11
984	Critical cancer vulnerabilities identified by unbiased CRISPR/Cas9 screens inform on efficient cancer Immunotherapy. European Journal of Immunology, 2020, 50, 1871-1884.	1.6	6
985	Genome Editing for CNS Disorders. Frontiers in Neuroscience, 2020, 14, 579062.	1.4	18
986	LncRNA MIAT correlates with immune infiltrates and drug reactions in hepatocellular carcinoma. International Immunopharmacology, 2020, 89, 107071.	1.7	47
987	CRISPR-mediated modification of DNA methylation pattern in the new era of cancer therapy. Epigenomics, 2020, 12, 1845-1859.	1.0	15
988	CloneSifter: enrichment of rare clones from heterogeneous cell populations. BMC Biology, 2020, 18, 177.	1.7	12
989	G Proteinâ€Coupled receptors and heterotrimeric G proteins as cancer drivers. FEBS Letters, 2020, 594, 4201-4232.	1.3	82
990	Master Regulators and Cofactors of Human Neuronal Cell Fate Specification Identified by CRISPR Gene Activation Screens. Cell Reports, 2020, 33, 108460.	2.9	38
991	Revealing Temozolomide Resistance Mechanisms via Genome-Wide CRISPR Libraries. Cells, 2020, 9, 2573.	1.8	24
992	Inhibition of Chlamydial Infection by CRISPR/Cas9-SAM Mediated Enhancement of Human Peptidoglycan Recognition Proteins Gene Expression in HeLa Cells. Biochemistry (Moscow), 2020, 85, 1310-1318.	0.7	1

#	Article	IF	CITATIONS
993	Epigenome engineering: new technologies for precision medicine. Nucleic Acids Research, 2020, 48, 12453-12482.	6.5	34
994	Programmable Liveâ€Cell CRISPR Imaging with Toeholdâ€&witchâ€Mediated Strand Displacement. Angewandte Chemie, 2020, 132, 20793-20799.	1.6	9
995	In vivo locus-specific editing of the neuroepigenome. Nature Reviews Neuroscience, 2020, 21, 471-484.	4.9	44
996	Cell Reprogramming With CRISPR/Cas9 Based Transcriptional Regulation Systems. Frontiers in Bioengineering and Biotechnology, 2020, 8, 882.	2.0	29
997	CRISPR/Cas9 novel therapeutic road for the treatment of neurodegenerative diseases. Life Sciences, 2020, 259, 118165.	2.0	24
998	Integration of CRISPR-engineering and hiPSC-based models of psychiatric genomics. Molecular and Cellular Neurosciences, 2020, 107, 103532.	1.0	8
999	A Cellular Stress Response Induced by the CRISPR-dCas9 Activation System Is Not Heritable Through Cell Divisions. CRISPR Journal, 2020, 3, 188-197.	1.4	2
1000	Programmable Live ell CRISPR Imaging with Toeholdâ€&witchâ€Mediated Strand Displacement. Angewandte Chemie - International Edition, 2020, 59, 20612-20618.	7.2	48
1001	Intrinsic ATR signaling shapes DNA end resection and suppresses toxic DNA-PKcs signaling. NAR Cancer, 2020, 2, zcaa006.	1.6	10
1002	The Development and Application of a Base Editor in Biomedicine. BioMed Research International, 2020, 2020, 1-12.	0.9	2
1003	Screening Cancer Immunotherapy: When Engineering Approaches Meet Artificial Intelligence. Advanced Science, 2020, 7, 2001447.	5.6	30
1004	CRISPR/Cas9 in Male Factor Infertility. Current Tissue Microenvironment Reports, 2020, 1, 89-97.	1.3	3
1005	Engineered RNA-Interacting CRISPR Guide RNAs for Genetic Sensing and Diagnostics. CRISPR Journal, 2020, 3, 398-408.	1.4	12
1006	CRISPR-Cas Activators for Engineering Gene Expression in Higher Eukaryotes. CRISPR Journal, 2020, 3, 350-364.	1.4	32
1007	Synthetic Biology on Acetogenic Bacteria for Highly Efficient Conversion of C1 Gases to Biochemicals. International Journal of Molecular Sciences, 2020, 21, 7639.	1.8	35
1008	Most Commonly Mutated Genes in High-Grade Serous Ovarian Carcinoma Are Nonessential for Ovarian Surface Epithelial Stem Cell Transformation. Cell Reports, 2020, 32, 108086.	2.9	16
1009	Small-molecule inducible transcriptional control in mammalian cells. Critical Reviews in Biotechnology, 2020, 40, 1131-1150.	5.1	10
1010	Aptamerâ€Mediated Reversible Transactivation of Gene Expression by Light. Angewandte Chemie, 2020, 132, 22600-22604.	1.6	6

#	Article	IF	CITATIONS
1011	Synthetic immunomodulation with a CRISPR super-repressor in vivo. Nature Cell Biology, 2020, 22, 1143-1154.	4.6	27
1012	Genome-wide CRISPR screens for the identification of therapeutic targets for cancer treatment. Expert Opinion on Therapeutic Targets, 2020, 24, 1147-1158.	1.5	4
1013	Designing custom CRISPR libraries for hypothesis-driven drug target discovery. Computational and Structural Biotechnology Journal, 2020, 18, 2237-2246.	1.9	10
1014	Interrogating genome function using CRISPR tools: a narrative review. Journal of Bio-X Research, 2020, 3, 83-91.	0.3	0
1015	Complex roles of the actinâ€binding protein Girdin/GIV in DNA damageâ€induced apoptosis of cancer cells. Cancer Science, 2020, 111, 4303-4317.	1.7	6
1016	Metabolic Signaling Cascades Prompted by Glutaminolysis in Cancer. Cancers, 2020, 12, 2624.	1.7	23
1017	CrisPam: SNP-Derived PAM Analysis Tool for Allele-Specific Targeting of Genetic Variants Using CRISPR-Cas Systems. Frontiers in Genetics, 2020, 11, 851.	1.1	16
1018	A Single Cas9-VPR Nuclease for Simultaneous Gene Activation, Repression, and Editing in <i>Saccharomyces cerevisiae</i> . ACS Synthetic Biology, 2020, 9, 2252-2257.	1.9	24
1019	CRISPR Screens in Plants: Approaches, Guidelines, and Future Prospects. Plant Cell, 2020, , tpc.00463.2020.	3.1	9
1020	Synthetic Virus-Derived Nanosystems (SVNs) for Delivery and Precision Docking of Large Multifunctional DNA Circuitry in Mammalian Cells. Pharmaceutics, 2020, 12, 759.	2.0	13
1021	CRISPR-engineered human brown-like adipocytes prevent diet-induced obesity and ameliorate metabolic syndrome in mice. Science Translational Medicine, 2020, 12, .	5.8	80
1022	The later stages of viral infection: An undiscovered country of host dependency factors. PLoS Pathogens, 2020, 16, e1008777.	2.1	6
1023	Use of Customizable Nucleases for Gene Editing and Other Novel Applications. Genes, 2020, 11, 976.	1.0	9
1024	sgBE: a structure-guided design of sgRNA architecture specifies base editing window and enables simultaneous conversion of cytosine and adenosine. Genome Biology, 2020, 21, 222.	3.8	15
1025	Radioresistance, DNA Damage and DNA Repair in Cells With Moderate Overexpression of RPA1. Frontiers in Genetics, 2020, 11, 855.	1.1	12
1026	Aptamerâ€Mediated Reversible Transactivation of Gene Expression by Light. Angewandte Chemie - International Edition, 2020, 59, 22414-22418.	7.2	21
1027	Generation of Inducible CRISPRi and CRISPRa Human Stromal/Stem Cell Lines for Controlled Target Gene Transcription during Lineage Differentiation. Stem Cells International, 2020, 2020, 1-11.	1.2	6
1028	Discovering functional sequences with RELICS, an analysis method for CRISPR screens. PLoS Computational Biology, 2020, 16, e1008194.	1.5	7

#	Article	IF	CITATIONS
1029	<i>RICTOR</i> Amplification Promotes NSCLC Cell Proliferation through Formation and Activation of mTORC2 at the Expense of mTORC1. Molecular Cancer Research, 2020, 18, 1675-1684.	1.5	5
1030	Therapeutic Target Discovery Using High-Throughput Genetic Screens in Acute Myeloid Leukemia. Cells, 2020, 9, 1888.	1.8	4
1031	Enhancer RNAs predict enhancer–gene regulatory links and are critical for enhancer function in neuronal systems. Nucleic Acids Research, 2020, 48, 9550-9570.	6.5	61
1032	CRISPR and transposon in vivo screens for cancer drivers and therapeutic targets. Genome Biology, 2020, 21, 204.	3.8	14
1033	Application of Aptamers Improves CRISPR-Based Live Imaging of Plant Telomeres. Frontiers in Plant Science, 2020, 11, 1254.	1.7	17
1034	PINCER: improved CRISPR/Cas9 screening by efficient cleavage at conserved residues. Nucleic Acids Research, 2020, 48, 9462-9477.	6.5	6
1035	Activation of the miR-371/372/373 miRNA Cluster Enhances Oncogenicity and Drug Resistance in Oral Carcinoma Cells. International Journal of Molecular Sciences, 2020, 21, 9442.	1.8	16
1036	The long non-coding RNA LUCAT1 is a negative feedback regulator of interferon responses in humans. Nature Communications, 2020, 11, 6348.	5.8	48
1037	Engineering Metabolism in Nicotiana Species: A Promising Future. Trends in Biotechnology, 2021, 39, 901-913.	4.9	35
1038	Human myotube formation is determined by MyoD–Myomixer/Myomaker axis. Science Advances, 2020, 6,	4.7	52
1039	Functional Screening Techniques to Identify Long Non-Coding RNAs as Therapeutic Targets in Cancer. Cancers, 2020, 12, 3695.	1.7	11
1040	A guide to the design of synthetic gene networks in mammalian cells. FEBS Journal, 2021, 288, 5265-5288.	2.2	15
1041	Functional Genomics in Pancreatic β Cells: Recent Advances in Gene Deletion and Genome Editing Technologies for Diabetes Research. Frontiers in Endocrinology, 2020, 11, 576632.	1.5	13
1042	LncRNAs in Cancer: From garbage to Junk. Cancers, 2020, 12, 3220.	1.7	41
1043	CRISPR-Cas Tools and Their Application in Genetic Engineering of Human Stem Cells and Organoids. Cell Stem Cell, 2020, 27, 705-731.	5.2	95
1044	A collection of genetic mouse lines and related tools for inducible and reversible intersectional misexpression. Development (Cambridge), 2020, 147, .	1.2	10
1045	An MXD1-derived repressor peptide identifies noncoding mediators of MYC-driven cell proliferation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 6571-6579.	3.3	35
1046	ZKSCAN3 counteracts cellular senescence by stabilizing heterochromatin. Nucleic Acids Research, 2020, 48, 6001-6018.	6.5	54

#	Article	IF	CITATIONS
1047	Insights Into Genetic and Molecular Elements for Transgenic Crop Development. Frontiers in Plant Science, 2020, 11, 509.	1.7	46
1048	Generation and Profiling of 2,135 Human ESC Lines for the Systematic Analyses of Cell States Perturbed by Inducing Single Transcription Factors. Cell Reports, 2020, 31, 107655.	2.9	28
1049	Anlotinib can overcome acquired resistance to <scp>EGFRâ€TKIs</scp> via <scp>FGFR1</scp> signaling in nonâ€small cell lung cancer without harboring <scp>EGFR T790M</scp> mutation. Thoracic Cancer, 2020, 11, 1934-1943.	0.8	18
1050	Zika Virus. Methods in Molecular Biology, 2020, , .	0.4	Ο
1051	Functional Genomic Screening Independently Identifies CUL3 as a Mediator of Vemurafenib Resistance via Src-Rac1 Signaling Axis. Frontiers in Oncology, 2020, 10, 442.	1.3	45
1052	Automated 3D light-sheet screening with high spatiotemporal resolution reveals mitotic phenotypes. Journal of Cell Science, 2020, 133, .	1.2	21
1053	CRISPR screen in mechanism and target discovery for cancer immunotherapy. Biochimica Et Biophysica Acta: Reviews on Cancer, 2020, 1874, 188378.	3.3	25
1054	CRISPR-mediated transcriptional activation with synthetic guide RNA. Journal of Biotechnology, 2020, 319, 25-35.	1.9	12
1055	Human thermogenic adipocyte regulation by the long noncoding RNA LINC00473. Nature Metabolism, 2020, 2, 397-412.	5.1	65
1056	Significance of Single-Nucleotide Variants in Long Intergenic Non-protein Coding RNAs. Frontiers in Cell and Developmental Biology, 2020, 8, 347.	1.8	30
1057	lncRNA Oip5â€as1 attenuates myocardial ischaemia/reperfusion injury by sponging miRâ€29a to activate the SIRT1/AMPK/PGC1α pathway. Cell Proliferation, 2020, 53, e12818.	2.4	69
1058	Electrogenetic cellular insulin release for real-time glycemic control in type 1 diabetic mice. Science, 2020, 368, 993-1001.	6.0	117
1059	The Role of the Microbiota–Gut–Brain Axis and Antibiotics in ALS and Neurodegenerative Diseases. Microorganisms, 2020, 8, 784.	1.6	37
1060	Development and Application of CRISPR/Cas in Microbial Biotechnology. Frontiers in Bioengineering and Biotechnology, 2020, 8, 711.	2.0	37
1061	Genetically modified immune cells targeting tumor antigens. , 2020, 214, 107603.		17
1062	Valproic Acid Significantly Improves CRISPR/Cas9-Mediated Gene Editing. Cells, 2020, 9, 1447.	1.8	10
1063	The Effects of Chronic Stress on Brain Myelination in Humans and in Various Rodent Models. Neuroscience, 2020, 441, 226-238.	1.1	35
1064	Long Noncoding RNAs: Molecular Modalities to Organismal Functions. Annual Review of Biochemistry, 2020, 89, 283-308.	5.0	183

#	Article	IF	CITATIONS
1065	Non-coding RNAs in cancer: platforms and strategies for investigating the genomic "dark matter― Journal of Experimental and Clinical Cancer Research, 2020, 39, 117.	3.5	137
1066	IL10RA Modulates Crizotinib Sensitivity in NPM1-ALK-positive Anaplastic Large Cell Lymphoma. Blood, 2020, 136, 1657-1669.	0.6	22
1067	Filoviruses Use the HOPS Complex and UVRAG To Traffic to Niemann-Pick C1 Compartments during Viral Entry. Journal of Virology, 2020, 94, .	1.5	5
1068	MAUDE: inferring expression changes in sorting-based CRISPR screens. Genome Biology, 2020, 21, 134.	3.8	18
1069	SWISS: multiplexed orthogonal genome editing in plants with a Cas9 nickase and engineered CRISPR RNA scaffolds. Genome Biology, 2020, 21, 141.	3.8	38
1070	Recombinant Adeno-Associated Viral Vectors (rAAV)-Vector Elements in Ocular Gene Therapy Clinical Trials and Transgene Expression and Bioactivity Assays. International Journal of Molecular Sciences, 2020, 21, 4197.	1.8	54
1071	Direct-seq:Âprogrammed gRNA scaffold for streamlined scRNA-seq in CRISPR screen. Genome Biology, 2020, 21, 136.	3.8	10
1072	Various strategies of effector accumulation to improve the efficiency of genome editing and derivative methodologies. In Vitro Cellular and Developmental Biology - Animal, 2020, 56, 359-366.	0.7	5
1073	CRISPR/Cas system of prokaryotic extremophiles and its applications. , 2020, , 155-168.		1
1074	Repurposing type l–F CRISPR–Cas system as a transcriptional activation tool in human cells. Nature Communications, 2020, 11, 3136.	5.8	45
1075	Synthetic Biology Speeds Up Drug Target Discovery. Frontiers in Pharmacology, 2020, 11, 119.	1.6	13
1076	Massively parallel Cas13 screens reveal principles for guide RNA design. Nature Biotechnology, 2020, 38, 722-727.	9.4	233
1077	Reporter gene knock-in into Marc-145 cells using CRISPR/Cas9-mediated homologous recombination. Biotechnology Letters, 2020, 42, 1317-1325.	1.1	1
1078	Spatiotemporal Control of CRISPR/Cas9 Function in Cells and Zebrafish using Lightâ€Activated Guide RNA. Angewandte Chemie - International Edition, 2020, 59, 8998-9003.	7.2	90
1079	Multiplexed CRISPR technologies for gene editing and transcriptional regulation. Nature Communications, 2020, 11, 1281.	5.8	279
1080	The Restrictome of Flaviviruses. Virologica Sinica, 2020, 35, 363-377.	1.2	17
1081	In vivo CRISPRa decreases seizures and rescues cognitive deficits in a rodent model of epilepsy. Brain, 2020, 143, 891-905.	3.7	79
1082	gscreend: modelling asymmetric count ratios in CRISPR screens to decrease experiment size and improve phenotype detection. Genome Biology, 2020, 21, 53.	3.8	34

#	Article	IF	Citations
1083	A 100 bp GAGA motif-containing sequence in AGAMOUS second intron is able to suppress the activity of CaMV35S enhancer in vegetative tissues. PLoS ONE, 2020, 15, e0230203.	1.1	2
1084	Blackjack mutations improve the on-target activities of increased fidelity variants of SpCas9 with 5′G-extended sgRNAs. Nature Communications, 2020, 11, 1223.	5.8	28
1085	A widespread role for SLC transmembrane transporters in resistance to cytotoxic drugs. Nature Chemical Biology, 2020, 16, 469-478.	3.9	84
1086	CAMIO: a transgenic CRISPR pipeline to create diverse targeted genome deletions in Drosophila. Nucleic Acids Research, 2020, 48, 4344-4356.	6.5	3
1087	Modeling the complex genetic architectures of brain disease. Nature Genetics, 2020, 52, 363-369.	9.4	35
1088	Deciphering cancer clues from blood. Science, 2020, 367, 1424-1425.	6.0	20
1089	A Cas12a ortholog with stringent PAM recognition followed by low off-target editing rates for genome editing. Genome Biology, 2020, 21, 78.	3.8	51
1090	CRISPR-based technology to silence the expression of IncRNAs. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 8225-8227.	3.3	9
1091	CRISPR-Cas9 system "a mighty player in cancer therapy― , 2020, , 95-99.		2
1092	Technologies and Computational Analysis Strategies for CRISPR Applications. Molecular Cell, 2020, 79, 11-29.	4.5	28
1093	The Histone Chaperone FACT Induces Cas9 Multi-turnover Behavior and Modifies Genome Manipulation in Human Cells. Molecular Cell, 2020, 79, 221-233.e5.	4.5	28
1094	Decipher the complexity of cis-regulatory regions by a modified Cas9. PLoS ONE, 2020, 15, e0235530.	1.1	0
1095	Localized delivery of CRISPR/dCas9 via layer-by-layer self-assembling peptide coating on nanofibers for neural tissue engineering. Biomaterials, 2020, 256, 120225.	5.7	32
1096	A Single-Cell Transcriptomics CRISPR-Activation Screen Identifies Epigenetic Regulators of the Zygotic Genome Activation Program. Cell Systems, 2020, 11, 25-41.e9.	2.9	59
1097	CRISPR-based functional genomics for neurological disease. Nature Reviews Neurology, 2020, 16, 465-480.	4.9	89
1098	Epigenome Editing. , 2020, , .		1
1099	Photoactivatable RNA N ⁶ â€Methyladenosine Editing with CRISPR as13. Small, 2020, 16, e1907301.	5.2	52
1100	Application of Various Delivery Methods for CRISPR/dCas9. Molecular Biotechnology, 2020, 62, 355-363.	1.3	11

#	Article	IF	CITATIONS
1101	The novel insight into the outcomes of CRISPR/Cas9 editing intra- and inter-species. International Journal of Biological Macromolecules, 2020, 163, 711-717.	3.6	7
1102	Poly(Beta-Amino Ester) Nanoparticles Enable Nonviral Delivery of CRISPR-Cas9 Plasmids for Gene Knockout and Gene Deletion. Molecular Therapy - Nucleic Acids, 2020, 20, 661-672.	2.3	36
1103	Challenges and opportunities with CRISPR activation in bacteria for data-driven metabolic engineering. Current Opinion in Biotechnology, 2020, 64, 190-198.	3.3	29
1104	Exploiting CRISPR Cas9 in Three-Dimensional Stem Cell Cultures to Model Disease. Frontiers in Bioengineering and Biotechnology, 2020, 8, 692.	2.0	21
1105	Deregulation of ribosomal protein expression and translation promotes breast cancer metastasis. Science, 2020, 367, 1468-1473.	6.0	214
1106	Cancer Cell–Derived Matrisome Proteins Promote Metastasis in Pancreatic Ductal Adenocarcinoma. Cancer Research, 2020, 80, 1461-1474.	0.4	99
1107	The COMET toolkit for composing customizable genetic programs in mammalian cells. Nature Communications, 2020, 11, 779.	5.8	57
1108	On-chip multiplexed single-cell patterning and controllable intracellular delivery. Microsystems and Nanoengineering, 2020, 6, 2.	3.4	37
1109	CRISPR/Cas9â€mediated genome editing: From basic research to translational medicine. Journal of Cellular and Molecular Medicine, 2020, 24, 3766-3778.	1.6	61
1110	Chemical Biology Framework to Illuminate Proteostasis. Annual Review of Biochemistry, 2020, 89, 529-555.	5.0	30
1111	Robustness of Catalytically Dead Cas9 Activators in Human Pluripotent and Mesenchymal Stem Cells. Molecular Therapy - Nucleic Acids, 2020, 20, 196-204.	2.3	12
1112	Chromosome 19 microRNA cluster enhances cell reprogramming by inhibiting epithelial-to-mesenchymal transition. Scientific Reports, 2020, 10, 3029.	1.6	40
1113	Synergistic Upregulation of Target Genes by TET1 and VP64 in the dCas9–SunTag Platform. International Journal of Molecular Sciences, 2020, 21, 1574.	1.8	23
1114	A lncRNA-SWI/SNF complex crosstalk controls transcriptional activation at specific promoter regions. Nature Communications, 2020, 11, 936.	5.8	69
1115	Impact of CRISPR interference on strain development in biotechnology. Biotechnology and Applied Biochemistry, 2020, 67, 7-21.	1.4	31
1116	Systematic identification of silencers in human cells. Nature Genetics, 2020, 52, 254-263.	9.4	119
1117	Pathways towards human immunodeficiency virus elimination. EBioMedicine, 2020, 53, 102667.	2.7	12
1118	Continuous evolution of SpCas9 variants compatible with non-G PAMs. Nature Biotechnology, 2020, 38, 471-481.	9.4	234

# 1119	ARTICLE Recent Advances of CRISPR/Cas9-Based Genetic Engineering and Transcriptional Regulation in Industrial Biology. Frontiers in Bioengineering and Biotechnology, 2019, 7, 459.	IF 2.0	CITATIONS
1120	Epigenetic Silencing of CDR1as Drives IGF2BP3-Mediated Melanoma Invasion and Metastasis. Cancer Cell, 2020, 37, 55-70.e15.	7.7	200
1121	CRISPR-Based Synthetic Transcription Factors InÂVivo: The Future of Therapeutic Cellular Programming. Cell Systems, 2020, 10, 1-14.	2.9	51
1122	Interrogation of enhancer function by enhancer-targeting CRISPR epigenetic editing. Nature Communications, 2020, 11, 485.	5.8	139
1123	RIPK3 upregulation confers robust proliferation and collateral cystine-dependence on breast cancer recurrence. Cell Death and Differentiation, 2020, 27, 2234-2247.	5.0	35
1124	Long Noncoding RNAs in Cardiac Development. Cold Spring Harbor Perspectives in Biology, 2020, 12, a037374.	2.3	6
1125	Cell-Type-Specific CRISPR/Cas9 Delivery by Biomimetic Metal Organic Frameworks. Journal of the American Chemical Society, 2020, 142, 1715-1720.	6.6	162
1126	CRISPR-Cpf1 Activation of Endogenous BMP4 Gene for Osteogenic Differentiation of Umbilical-Cord-Derived Mesenchymal Stem Cells. Molecular Therapy - Methods and Clinical Development, 2020, 17, 309-316.	1.8	18
1127	CRISPR/Cas Systems in Genome Editing: Methodologies and Tools for sgRNA Design, Offâ€Target Evaluation, and Strategies to Mitigate Offâ€Target Effects. Advanced Science, 2020, 7, 1902312.	5.6	162
1128	DUX-miR-344-ZMYM2-Mediated Activation of MERVL LTRs Induces a Totipotent 2C-like State. Cell Stem Cell, 2020, 26, 234-250.e7.	5.2	99
1129	Multiplex Generation, Tracking, and Functional Screening of Substitution Mutants Using a CRISPR/Retron System. ACS Synthetic Biology, 2020, 9, 1003-1009.	1.9	17
1130	A method to specifically activate the Klotho promoter by using zinc finger proteins constructed from modular building blocks and from naturally engineered Egr1 transcription factor backbone. FASEB Journal, 2020, 34, 7234-7246.	0.2	4
1131	Spatiotemporal Control of CRISPR/Cas9 Function in Cells and Zebrafish using Lightâ€Activated Guide RNA. Angewandte Chemie, 2020, 132, 9083-9088.	1.6	23
1132	CRISPR as a tool in tumor therapy: A short review. Biotechnology and Applied Biochemistry, 2020, 67, 875-879.	1.4	2
1133	Gene delivery into cells and tissues. , 2020, , 519-554.		3
1134	Photoswitchable gRNAs for Spatiotemporally Controlled CRISPR-Cas-Based Genomic Regulation. ACS Central Science, 2020, 6, 695-703.	5.3	69
1135	Effective CRISPRa-mediated control of gene expression in bacteria must overcome strict target site requirements. Nature Communications, 2020, 11, 1618.	5.8	65
1136	Innovative Precision Geneâ€Editing Tools in Personalized Cancer Medicine. Advanced Science, 2020, 7, 1902552.	5.6	9

#	Article	IF	CITATIONS
1137	Large-Scale Transgenic <i>Drosophila</i> Resource Collections for Loss- and Gain-of-Function Studies. Genetics, 2020, 214, 755-767.	1.2	81
1138	CRISPR/Cas9 Epigenome Editing Potential for Rare Imprinting Diseases: A Review. Cells, 2020, 9, 993.	1.8	33
1139	Genome-scale CRISPR activation screening identifies a role of LRP8 in Sorafenib resistance in Hepatocellular carcinoma. Biochemical and Biophysical Research Communications, 2020, 526, 1170-1176.	1.0	17
1140	Super-Enhancer Redistribution as a Mechanism of Broad Gene Dysregulation in Repeatedly Drug-Treated Cancer Cells. Cell Reports, 2020, 31, 107532.	2.9	29
1141	CGD: Comprehensive guide designer for CRISPR-Cas systems. Computational and Structural Biotechnology Journal, 2020, 18, 814-820.	1.9	6
1142	CRISPR-mediated modeling and functional validation of candidate tumor suppressor genes in small cell lung cancer. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 513-521.	3.3	54
1143	A Tandem Guide RNA-Based Strategy for Efficient CRISPR Gene Editing of Cell Populations with Low Heterogeneity of Edited Alleles. CRISPR Journal, 2020, 3, 123-134.	1.4	10
1144	Systematic in vitro profiling of off-target affinity, cleavage and efficiency for CRISPR enzymes. Nucleic Acids Research, 2020, 48, 5037-5053.	6.5	26
1145	Fighting Persistence: How Chronic Infections with Mycobacterium tuberculosis Evade T Cell-Mediated Clearance and New Strategies To Defeat Them. Infection and Immunity, 2020, 88, .	1.0	26
1146	Noncoding Variants Connect Enhancer Dysregulation with Nuclear Receptor Signaling in Hematopoietic Malignancies. Cancer Discovery, 2020, 10, 724-745.	7.7	25
1147	CRISPRi-based radiation modifier screen identifies long non-coding RNA therapeutic targets in glioma. Genome Biology, 2020, 21, 83.	3.8	76
1148	Second Generation Genome Editing Technologies in Drug Discovery. , 2020, , 213-242.		0
1149	Molecular AND logic gate for multiple single-nucleotide mutations detection based on CRISPR/Cas9n system-trigged signal amplification. Analytica Chimica Acta, 2020, 1112, 46-53.	2.6	16
1150	MK2 is a therapeutic target for high-risk multiple myeloma. Haematologica, 2021, 106, 1774-1777.	1.7	6
1151	Targeting cancer epigenetics with CRISPR-dCAS9: Principles and prospects. Methods, 2021, 187, 77-91.	1.9	16
1152	CRISPR Tools for Physiology and Cell State Changes: Potential of Transcriptional Engineering and Epigenome Editing. Physiological Reviews, 2021, 101, 177-211.	13.1	13
1153	LncRNA regulation: New frontiers in epigenetic solutions to drug chemoresistance. Biochemical Pharmacology, 2021, 189, 114228.	2.0	33
1154	Chromatin interactions in differentiating keratinocytes reveal novel atopic dermatitis– and psoriasis-associated genes. Journal of Allergy and Clinical Immunology, 2021, 147, 1742-1752.	1.5	18

#	Article	IF	CITATIONS
1155	Multiplex and optimization of dCas9â€TVâ€mediated gene activation in plants. Journal of Integrative Plant Biology, 2021, 63, 634-645.	4.1	26
1156	An overview of currently available molecular Cas-tools for precise genome modification. Gene, 2021, 769, 145225.	1.0	5
1157	CRISPR-Mediated Induction of Neuron-Enriched Mitochondrial Proteins Boosts Direct Glia-to-Neuron Conversion. Cell Stem Cell, 2021, 28, 524-534.e7.	5.2	39
1158	High-resolution temporal transcriptome sequencing unravels ERF and WRKY as the master players in the regulatory networks underlying sesame responses to waterlogging and recovery. Genomics, 2021, 113, 276-290.	1.3	21
1159	Coassembly of nucleus-targeting gold nanoclusters with CRISPR/Cas9 for simultaneous bioimaging and therapeutic genome editing. Journal of Materials Chemistry B, 2021, 9, 94-100.	2.9	45
1160	Human RNase3 immune modulation by catalytic-dependent and independent modes in a macrophage-cell line infection model. Cellular and Molecular Life Sciences, 2021, 78, 2963-2985.	2.4	10
1161	White adipose remodeling during browning in mice involves YBX1 to drive thermogenic commitment. Molecular Metabolism, 2021, 44, 101137.	3.0	13
1162	A Single-Cell Transcriptomic Atlas of Human Skin Aging. Developmental Cell, 2021, 56, 383-397.e8.	3.1	145
1163	Transcriptome Analysis Identifies SenZfp536, a Sense LncRNA that Suppresses Self-renewal of Cortical Neural Progenitors. Neuroscience Bulletin, 2021, 37, 183-200.	1.5	7
1164	Gene Regulatory Network Analysis and Engineering Directs Development and Vascularization of Multilineage Human Liver Organoids. Cell Systems, 2021, 12, 41-55.e11.	2.9	59
1165	Transcriptional behavior of the HIV-1 promoter in context of the BACH2 prominent proviral integration gene. Virus Research, 2021, 293, 198260.	1.1	3
1166	Micro-RNAs in the regulation of immune response against SARS CoV-2 and other viral infections. Journal of Advanced Research, 2021, 30, 133-145.	4.4	45
1168	Sophisticated CRISPR/Cas tools for fine-tuning plant performance. Journal of Plant Physiology, 2021, 257, 153332.	1.6	10
1169	Hepatic stellate cell reprogramming via exosome-mediated CRISPR/dCas9-VP64 delivery. Drug Delivery, 2021, 28, 10-18.	2.5	36
1170	Development of aptamer-based inhibitors for CRISPR/Cas system. Nucleic Acids Research, 2021, 49, 1330-1344.	6.5	19
1171	CRISPR-Mediated Engineering across the Central Dogma in Plant Biology for Basic Research and Crop Improvement. Molecular Plant, 2021, 14, 127-150.	3.9	71
1172	CRISPR-based metabolic pathway engineering. Metabolic Engineering, 2021, 63, 148-159.	3.6	24
1174	Transcriptional enhancers: from prediction to functional assessment on a genome-wide scale. Genome, 2021, 64, 426-448.	0.9	12

		CITATION REPORT		
#	Article		IF	CITATIONS
1175	CRISPR Guide RNA Design. Methods in Molecular Biology, 2021, , .		0.4	2
1176	Rational designs of in vivo CRISPR-Cas delivery systems. Advanced Drug Delivery Review	ws, 2021, 168, 3-29.	6.6	125
1177	Trends in CRISPR-Cas9 technology application in cancer. Progress in Molecular Biology Translational Science, 2021, 178, 175-192.	and	0.9	0
1178	Using Synthetically Engineered Guide RNAs to Enhance CRISPR Genome Editing System Cells. Frontiers in Genome Editing, 2020, 2, 617910.	ns in Mammalian	2.7	43
1179	CRISPR-Cas9 system for functional genomics of filamentous fungi: applications and ch 541-576.	allenges. , 2021, ,		2
1180	Epigenetics and regenerative medicine. , 2021, , 853-872.			0
1181	Mesoscale Modeling and Single-Nucleosome Tracking Reveal Remodeling of Clutch Fol Dynamics in Stem Cell Differentiation. Cell Reports, 2021, 34, 108614.	ding and	2.9	47
1182	QRICH1 dictates the outcome of ER stress through transcriptional control of proteosta 2021, 371, .	asis. Science,	6.0	73
1184	Functional Genomics Approaches to Elucidate Vulnerabilities of Intrinsic and Acquired (Resistance. Cells, 2021, 10, 260.	Chemotherapy	1.8	4
1185	CRISPR/Cas9 in epigenetics studies of health and disease. Progress in Molecular Biolog Translational Science, 2021, 181, 309-343.	y and	0.9	6
1186	CRISPR-Cas epigenome editing: improving crop resistance to pathogens. , 2021, , 65-1	06.		0
1187	Emerging role of RNF2 in cancer: From bench to bedside. Journal of Cellular Physiology, 5453-5465.	, 2021, 236,	2.0	11
1188	CRISPR–Cas systems in bioactive peptide research. , 2021, , 285-307.			0
1189	Alternative Splicing of a Transposable Element into the Human Long Noncoding RNA < a Switch for Cardiac Precursor Cell Specification. SSRN Electronic Journal, 0, , .	i>CARMEN Is	0.4	0
1190	Sequential Activation of Guide RNAs to Enable Successive CRISPR-Cas9 Activities. Mole 81, 226-238.e5.	ecular Cell, 2021,	4.5	7
1191	Identification of Drug Resistance Genes Using a Pooled Lentiviral CRISPR/Cas9 Screenin Methods in Molecular Biology, 2021, 2381, 227-242.	ng Approach.	0.4	5
1192	Photoenhanced cytosolic protein delivery based on a photocleavable group-modified d Nanoscale, 2021, 13, 17784-17792.	endrimer.	2.8	10
1193	CRISPR technologies for precise epigenome editing. Nature Cell Biology, 2021, 23, 11-2	22.	4.6	248

#	Article	IF	CITATIONS
1194	A genome-scale CRISPR screen reveals factors regulating Wnt-dependent renewal of mouse gastric epithelial cells. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	32
1195	New Technologies to Study Functional Genomics of Age-Related Macular Degeneration. Frontiers in Cell and Developmental Biology, 2020, 8, 604220.	1.8	10
1196	Alternative types of editing. , 2021, , 123-143.		1
1197	Genome editing of immune cells using CRISPR/Cas9. BMB Reports, 2021, 54, 59-69.	1.1	8
1198	Functional Comparison between VP64-dCas9-VP64 and dCas9-VP192 CRISPR Activators in Human Embryonic Kidney Cells. International Journal of Molecular Sciences, 2021, 22, 397.	1.8	5
1199	CRISPR/dCas9 as a Therapeutic Approach for Neurodevelopmental Disorders: Innovations and Limitations Compared to Traditional Strategies. Developmental Neuroscience, 2021, 43, 253-261.	1.0	10
1200	Genome editing for plant research and crop improvement. Journal of Integrative Plant Biology, 2021, 63, 3-33.	4.1	70
1201	CDK13 upregulation-induced formation of the positive feedback loop among circCDK13, miR-212-5p/miR-449a and E2F5 contributes to prostate carcinogenesis. Journal of Experimental and Clinical Cancer Research, 2021, 40, 2.	3.5	28
1202	Systematic screening reveals synergistic interactions that overcome MAPK inhibitor resistance in cancer cells. Cancer Biology and Medicine, 2021, 18, 0-0.	1.4	0
1203	Mutagenomics for Functional Analysis of Plant Genome using CRISPR Library Screen. Concepts and Strategies in Plant Sciences, 2021, , 339-367.	0.6	0
1205	Attenuation of Antiviral Immune Response Caused by Perturbation of TRIM25-Mediated RIG-I Activation under Simulated Microgravity. Cell Reports, 2021, 34, 108600.	2.9	11
1206	Theophylline-induced synergic activation of guide RNA to control CRISPR/Cas9 function. Chemical Communications, 2021, 57, 5418-5421.	2.2	6
1207	CRISPR/Cas9 technologies to manipulate human induced pluripotent stem cells. , 2021, , 249-287.		0
1208	Genetic transformation methods and advancement of CRISPR/Cas9 technology in wheat. , 2021, , 253-275.		0
1209	Generation of functional Na _V 1.5 current by endogenous transcriptional activation of <i>SCN5A</i> . Biotechnology and Biotechnological Equipment, 2021, 35, 469-477.	0.5	1
1210	Chromatin Manipulation and Editing: Challenges, New Technologies and Their Use in Plants. International Journal of Molecular Sciences, 2021, 22, 512.	1.8	9
1211	CRISPR/dCas system as the modulator of gene expression. Progress in Molecular Biology and Translational Science, 2021, 178, 99-122.	0.9	10
1212	Efficient Immune Cell Genome Engineering with Enhanced CRISPR Editing Tools. ImmunoHorizons, 2021, 5, 117-132.	0.8	4

#	Article	IF	CITATIONS
1213	RSPO4-CRISPR alleviates liver injury and restores gut microbiota in a rat model of liver fibrosis. Communications Biology, 2021, 4, 230.	2.0	15
1214	Applications of CRISPR/Cas9 in the Synthesis of Secondary Metabolites in Filamentous Fungi. Frontiers in Microbiology, 2021, 12, 638096.	1.5	42
1215	Accelerating target deconvolution for therapeutic antibody candidates using highly parallelized genome editing. Nature Communications, 2021, 12, 1277.	5.8	3
1216	Evaluating Capture Sequence Performance for Single-Cell CRISPR Activation Experiments. ACS Synthetic Biology, 2021, 10, 640-645.	1.9	3
1217	Targeting Human IncRNAs for Treating Cardiometabolic Diseases. Cardiovascular Drugs and Therapy, 2021, 35, 655-662.	1.3	2
1218	Imaging-based screens of pool-synthesized cell libraries. Nature Methods, 2021, 18, 358-365.	9.0	15
1219	Targeted de-repression of neuronal Nrf2 inhibits α-synuclein accumulation. Cell Death and Disease, 2021, 12, 218.	2.7	9
1220	The use of CRISPR/Cas9-based gene editing strategies to explore cancer gene function in mice. Current Opinion in Genetics and Development, 2021, 66, 57-62.	1.5	16
1221	In vivo Genome Editing Therapeutic Approaches for Neurological Disorders: Where Are We in the Translational Pipeline?. Frontiers in Neuroscience, 2021, 15, 632522.	1.4	11
1222	Development and Characterization of a Modular CRISPR and RNA Aptamer Mediated Base Editing System. CRISPR Journal, 2021, 4, 58-68.	1.4	9
1223	Programmable human histone phosphorylation and gene activation using a CRISPR/Cas9-based chromatin kinase. Nature Communications, 2021, 12, 896.	5.8	39
1224	Regulation of Gene Expression and the Elucidative Role of CRISPR-Based Epigenetic Modifiers and CRISPR-Induced Chromosome Conformational Changes. CRISPR Journal, 2021, 4, 43-57.	1.4	7
1225	The Therapeutic Potential of Epigenome-Modifying Drugs in Cardiometabolic Disease. Current Genetic Medicine Reports, 2021, 9, 22-36.	1.9	0
1226	Synthetic biology-driven microbial production of folates: Advances and perspectives. Bioresource Technology, 2021, 324, 124624.	4.8	4
1227	Lentiviral Capsid-Mediated <i>Streptococcus pyogenes</i> Cas9 Ribonucleoprotein Delivery for Efficient and Safe Multiplex Genome Editing. CRISPR Journal, 2021, , .	1.4	18
1228	CRISPR-Cas9 and He Jiankui's Case: an Islamic Bioethics Review using Maqasid al-Shari'a and Qawaid Fighiyyah. Asian Bioethics Review, 2021, 13, 149-165.	0.9	6
1229	Chromatin assembly factor 1 suppresses epigenetic reprogramming toward adaptive drug resistance. Journal of the National Cancer Center, 2021, 1, 15-22.	3.0	6
1230	A CRISPR/Cas9â€based method for targeted DNA methylation enables cancer initiation in B lymphocytes. Genetics & Genomics Next, 2021, 2, e10040.	0.8	2

#	Article	IF	CITATIONS
1231	Nuclease-Deficient Clustered Regularly Interspaced Short Palindromic Repeat-Based Approaches for In Vitro and In Vivo Gene Activation. Human Gene Therapy, 2021, 32, 260-274.	1.4	2
1232	CRISPR screens identify tumorâ€promoting genes conferring melanoma cell plasticity and resistance. EMBO Molecular Medicine, 2021, 13, e13466.	3.3	16
1233	The NFIBâ€ERO1A axis promotes breast cancer metastatic colonization of disseminated tumour cells. EMBO Molecular Medicine, 2021, 13, e13162.	3.3	27
1234	An improved in vivo tethering assay with single molecule FISH reveals that a nematode Nanos enhances reporter expression and mRNA stability. Rna, 2021, 27, 643-652.	1.6	0
1235	Targeted RNA <i>N</i> ⁶ â€Methyladenosine Demethylation Controls Cell Fate Transition in Human Pluripotent Stem Cells. Advanced Science, 2021, 8, e2003902.	5.6	20
1236	Delivery Platforms for CRISPR/Cas9 Genome Editing of Glial Cells in the Central Nervous System. Frontiers in Genome Editing, 2021, 3, 644319.	2.7	11
1238	MiniCAFE, a CRISPR/Cas9-based compact and potent transcriptional activator, elicits gene expression <i>inÂvivo</i> . Nucleic Acids Research, 2021, 49, 4171-4185.	6.5	28
1240	Selective Activation of CNS and Reference PPARGC1A Promoters Is Associated with Distinct Gene Programs Relevant for Neurodegenerative Diseases. International Journal of Molecular Sciences, 2021, 22, 3296.	1.8	5
1242	Genome Editing in iPSC-Based Neural Systems: From Disease Models to Future Therapeutic Strategies. Frontiers in Genome Editing, 2021, 3, 630600.	2.7	22
1243	CRISPR Screens in Synthetic Lethality and Combinatorial Therapies for Cancer. Cancers, 2021, 13, 1591.	1.7	20
1244	Targeting G-quadruplex Forming Sequences with Cas9. ACS Chemical Biology, 2021, 16, 596-603.	1.6	11
1245	Editing GWAS: experimental approaches to dissect and exploit disease-associated genetic variation. Genome Medicine, 2021, 13, 41.	3.6	32
1246	Proteasomal degradation of the tumour suppressor FBW7 requires branched ubiquitylation by TRIP12. Nature Communications, 2021, 12, 2043.	5.8	21
1247	Perspectives for epigenetic editing in crops. Transgenic Research, 2021, 30, 381-400.	1.3	13
1248	Dead Cas9–sgRNA Complex Shelters Vulnerable DNA Restriction Enzyme Sites from Cleavage for Cloning Applications. CRISPR Journal, 2021, 4, 275-289.	1.4	7
1249	Potential of genomic technologies to improve disease resistance in molluscan aquaculture. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200168.	1.8	18
1250	Using CRISPR to understand and manipulate gene regulation. Development (Cambridge), 2021, 148, .	1.2	9
1251	CRISPR/dCas9-mediated epigenetic modification reveals differential regulation of histone acetylation on Aspergillus niger secondary metabolite. Microbiological Research, 2021, 245, 126694.	2.5	18

#	Article	IF	CITATIONS
1252	Frontiers of CRISPR-Cas9 for Cancer Research and Therapy. Journal of Exploratory Research in Pharmacology, 2021, 000, 000-000.	0.2	1
1253	Regulation of polyubiquitin genes to meet cellular ubiquitin requirement. BMB Reports, 2021, 54, 189-195.	1.1	8
1255	Chemical Modification and Transformation Strategies of Guide RNAs in CRISPR as9 Gene Editing Systems. ChemPlusChem, 2021, 86, 587-600.	1.3	5
1256	A CRISPR/Cas13a-powered catalytic electrochemical biosensor for successive and highly sensitive RNA diagnostics. Biosensors and Bioelectronics, 2021, 178, 113027.	5.3	87
1257	CRISPR/dCas-mediated transcriptional and epigenetic regulation in plants. Current Opinion in Plant Biology, 2021, 60, 101980.	3.5	50
1259	Silencing of LINE-1 retrotransposons is a selective dependency of myeloid leukemia. Nature Genetics, 2021, 53, 672-682.	9.4	47
1260	CRISPR-Cas9 editing of non-coding genomic loci as a means of controlling gene expression in the sea urchin. Developmental Biology, 2021, 472, 85-97.	0.9	15
1261	Identification of X-chromosomal genes that drive sex differences in embryonic stem cells through a hierarchical CRISPR screening approach. Genome Biology, 2021, 22, 110.	3.8	28
1262	CRISPR/Cas: a Nobel Prize award-winning precise genome editing technology for gene therapy and crop improvement. Journal of Zhejiang University: Science B, 2021, 22, 253-284.	1.3	97
1263	Suppression of pancreatic ductal adenocarcinoma growth and metastasis by fibrillar collagens produced selectively by tumor cells. Nature Communications, 2021, 12, 2328.	5.8	45
1264	Genome-wide programmable transcriptional memory by CRISPR-based epigenome editing. Cell, 2021, 184, 2503-2519.e17.	13.5	312
1266	CRISPR-Induced Expression of N-Terminally Truncated Dicer in Mouse Cells. Genes, 2021, 12, 540.	1.0	0
1267	CRISPR Genome Editing Made Easy Through the CHOPCHOP Website. Current Protocols, 2021, 1, e46.	1.3	25
1268	CRISPR screens in plants: approaches, guidelines, and future prospects. Plant Cell, 2021, 33, 794-813.	3.1	54
1269	Rational engineering of a modular bacterial CRISPR–Cas activation platform with expanded target range. Nucleic Acids Research, 2021, 49, 4793-4802.	6.5	22
1271	CRISPR Screens in Toxicology Research: An Overview. Current Protocols, 2021, 1, e136.	1.3	5
1272	Tissue-specific activation of gene expression by the Synergistic Activation Mediator (SAM) CRISPRa system in mice. Nature Communications, 2021, 12, 2770.	5.8	13
1274	CRISPR-Based Genome Editing as a New Therapeutic Tool in Retinal Diseases. Molecular Biotechnology, 2021, 63, 768-779.	1.3	9

#	Article	IF	Citations
1275	The Role of Serotonin in Breast Cancer Stem Cells. Molecules, 2021, 26, 3171.	1.7	9
1276	In vivo genome-wide CRISPR screen reveals breast cancer vulnerabilities and synergistic mTOR/Hippo targeted combination therapy. Nature Communications, 2021, 12, 3055.	5.8	55
1277	An ultrasensitive CRISPR/Cas12a based electrochemical biosensor for Listeria monocytogenes detection. Biosensors and Bioelectronics, 2021, 179, 113073.	5.3	151
1278	Pooled CRISPR screening in pancreatic cancer cells implicates co-repressor complexes as a cause of multiple drug resistance via regulation of epithelial-to-mesenchymal transition. BMC Cancer, 2021, 21, 632.	1.1	13
1280	RNA m6A modification orchestrates a LINE-1–host interaction that facilitates retrotransposition and contributes to long gene vulnerability. Cell Research, 2021, 31, 861-885.	5.7	47
1281	Reversing Post-Infectious Epigenetic-Mediated Immune Suppression. Frontiers in Immunology, 2021, 12, 688132.	2.2	21
1282	Exploring liver cancer biology through functional genetic screens. Nature Reviews Gastroenterology and Hepatology, 2021, 18, 690-704.	8.2	31
1283	Applying CRISPR Screen in Diabetes Research. Diabetes, 2021, 70, 1962-1969.	0.3	2
1286	Shape of promoter antisense RNAs regulates ligand-induced transcription activation. Nature, 2021, 595, 444-449.	13.7	23
1287	Improved plant cytosine base editors with high editing activity, purity, and specificity. Plant Biotechnology Journal, 2021, 19, 2052-2068.	4.1	55
1288	Key regulators of sensitivity to immunomodulatory drugs in cancer treatment. Biomarker Research, 2021, 9, 43.	2.8	8
1289	Alternative splicing is a developmental switch for hTERT expression. Molecular Cell, 2021, 81, 2349-2360.e6.	4.5	19
1290	CRISPR-Cas9—The Potential "Holy Grail―for Generating Biomedically Relevant Cells through Cell Fate Engineering. Re:GEN Open, 2021, 1, 1-13.	0.7	0
1291	Genome engineering and disease modeling <i>via</i> programmable nucleases for insulin gene therapy; promises of CRISPR/Cas9 technology. World Journal of Stem Cells, 2021, 13, 485-502.	1.3	3
1292	Reprogramming the anti-tumor immune response via CRISPR genetic and epigenetic editing. Molecular Therapy - Methods and Clinical Development, 2021, 21, 592-606.	1.8	11
1293	CRISPR/Cas9 in cancer: An attempt to the present trends and future prospects. Biotechnology and Applied Biochemistry, 2022, 69, 1238-1251.	1.4	2
1294	HIV-based lentiviral vectors: Origin and sequence differences. Molecular Therapy - Methods and Clinical Development, 2021, 21, 451-465.	1.8	8
1295	ARL15 modulates magnesium homeostasis through N-glycosylation of CNNMs. Cellular and Molecular Life Sciences, 2021, 78, 5427-5445.	2.4	18

#	Article	IF	CITATIONS
1296	Pooled CRISPR-activation screening coupled with single-cell RNA-seq in mouse embryonic stem cells. STAR Protocols, 2021, 2, 100426.	0.5	2
1297	Transcriptional super-enhancers control cancer stemness and metastasis genes in squamous cell carcinoma. Nature Communications, 2021, 12, 3974.	5.8	49
1298	Epigenetic Editing in Prostate Cancer: Challenges and Opportunities. Epigenetics, 2022, 17, 564-588.	1.3	4
1299	Direct Reprogramming of Cardiac Fibroblasts to Repair the Injured Heart. Journal of Cardiovascular Development and Disease, 2021, 8, 72.	0.8	9
1300	CRISPR–Act3.0 for highly efficient multiplexed gene activation in plants. Nature Plants, 2021, 7, 942-953.	4.7	99
1301	Exploiting DNA Endonucleases to Advance Mechanisms of DNA Repair. Biology, 2021, 10, 530.	1.3	7
1302	Diversification of the CRISPR Toolbox: Applications of CRISPR-Cas Systems Beyond Genome Editing. CRISPR Journal, 2021, 4, 400-415.	1.4	5
1303	USP9X deubiquitinates connexin43 to prevent high glucose-induced epithelial-to-mesenchymal transition in NRK-52E cells. Biochemical Pharmacology, 2021, 188, 114562.	2.0	12
1304	BAP1/ASXL complex modulation regulates epithelial-mesenchymal transition during trophoblast differentiation and invasion. ELife, 2021, 10, .	2.8	27
1305	Self-Assembling Nucleic Acid Nanostructures Functionalized with Aptamers. Chemical Reviews, 2021, 121, 13797-13868.	23.0	84
1306	Spatiotemporal control of CRISPR/Cas9 gene editing. Signal Transduction and Targeted Therapy, 2021, 6, 238.	7.1	73
1307	Highly Photoluminescent Nitrogen- and Zinc-Doped Carbon Dots for Efficient Delivery of CRISPR/Cas9 and mRNA. Bioconjugate Chemistry, 2021, 32, 1875-1887.	1.8	17
1308	Challenges in delivery systems for CRISPR-based genome editing and opportunities of nanomedicine. Biomedical Engineering Letters, 2021, 11, 217-233.	2.1	11
1309	Portable bacterial CRISPR transcriptional activation enables metabolic engineering in Pseudomonas putida. Metabolic Engineering, 2021, 66, 283-295.	3.6	30
1310	Epigenetic regulation during human cortical development: Seq-ing answers from the brain to the organoid. Neurochemistry International, 2021, 147, 105039.	1.9	12
1311	A Cre-Dependent CRISPR/dCas9 System for Gene Expression Regulation in Neurons. ENeuro, 2021, 8, ENEURO.0188-21.2021.	0.9	12
1312	Therapeutic Perspectives of Thermogenic Adipocytes in Obesity and Related Complications. International Journal of Molecular Sciences, 2021, 22, 7177.	1.8	12
1313	Reprogramming astrocytes to motor neurons by activation of endogenous Ngn2 and Isl1. Stem Cell Reports, 2021, 16, 1777-1791.	2.3	20

#	Article	IF	CITATIONS
1315	The GB4.0 Platform, an All-In-One Tool for CRISPR/Cas-Based Multiplex Genome Engineering in Plants. Frontiers in Plant Science, 2021, 12, 689937.	1.7	17
1316	Genome-wide CRISPR/Cas9 screening identifies CARHSP1 responsible for radiation resistance in glioblastoma. Cell Death and Disease, 2021, 12, 724.	2.7	12
1317	Improving T cell therapy: in vivo CRISPR-Cas9 screens tell us how to do. Precision Clinical Medicine, 2021, 4, 176-178.	1.3	1
1318	Immunity and Viral Infections: Modulating Antiviral Response via CRISPR–Cas Systems. Viruses, 2021, 13, 1373.	1.5	9
1319	CRISPRpas: programmable regulation of alternative polyadenylation by dCas9. Nucleic Acids Research, 2022, 50, e25-e25.	6.5	9
1320	Directed evolution of orthogonal RNA–RBP pairs through library-vs-library <i>in vitro</i> selection. Nucleic Acids Research, 2022, 50, 601-616.	6.5	6
1321	Get ready for the CRISPR/Cas system: A beginner's guide to the engineering and design of guide RNAs. Journal of Gene Medicine, 2021, 23, e3377.	1.4	3
1322	Multilayer Genetic Circuits for Dynamic Regulation of Metabolic Pathways. ACS Synthetic Biology, 2021, 10, 1587-1597.	1.9	14
1323	Targeted protein degradation: A promise for undruggable proteins. Cell Chemical Biology, 2021, 28, 934-951.	2.5	115
1324	Durable CRISPR-Based Epigenetic Silencing. Biodesign Research, 2021, 2021, .	0.8	14
1324 1325	Durable CRISPR-Based Epigenetic Silencing. Biodesign Research, 2021, 2021, . Lentiviral Vectors for Delivery of Gene-Editing Systems Based on CRISPR/Cas: Current State and Perspectives. Viruses, 2021, 13, 1288.	0.8 1.5	14 44
	Lentiviral Vectors for Delivery of Gene-Editing Systems Based on CRISPR/Cas: Current State and		
1325	Lentiviral Vectors for Delivery of Gene-Editing Systems Based on CRISPR/Cas: Current State and Perspectives. Viruses, 2021, 13, 1288. Gene Editing and Modulation: the Holy Grail for the Genetic Epilepsies?. Neurotherapeutics, 2021, 18,	1.5	44
1325 1326	Lentiviral Vectors for Delivery of Gene-Editing Systems Based on CRISPR/Cas: Current State and Perspectives. Viruses, 2021, 13, 1288. Gene Editing and Modulation: the Holy Grail for the Genetic Epilepsies?. Neurotherapeutics, 2021, 18, 1515-1523. A Novel Human Long Noncoding RNA <i>SCDAL</i>	1.5 2.1	44 7
1325 1326 1327	Lentiviral Vectors for Delivery of Gene-Editing Systems Based on CRISPR/Cas: Current State and Perspectives. Viruses, 2021, 13, 1288. Gene Editing and Modulation: the Holy Grail for the Genetic Epilepsies?. Neurotherapeutics, 2021, 18, 1515-1523. A Novel Human Long Noncoding RNA <i>SCDAL</i> Promotes Angiogenesis through SNF5â€Mediated GDF6 Expression. Advanced Science, 2021, 8, e2004629. CRISPR/Cas-Based Epigenome Editing: Advances, Applications, and Clinical Utility. Trends in	1.5 2.1 5.6	44 7 11
1325 1326 1327 1328	Lentiviral Vectors for Delivery of Gene-Editing Systems Based on CRISPR/Cas: Current State and Perspectives. Viruses, 2021, 13, 1288. Gene Editing and Modulation: the Holy Grail for the Genetic Epilepsies?. Neurotherapeutics, 2021, 18, 1515-1523. A Novel Human Long Noncoding RNA <i>SCDAL</i> Promotes Angiogenesis through SNF5â€Mediated GDF6 Expression. Advanced Science, 2021, 8, e2004629. CRISPR/Cas-Based Epigenome Editing: Advances, Applications, and Clinical Utility. Trends in Biotechnology, 2021, 39, 678-691. Reduced Acrolein Detoxification in <i>akr1a1a</i> Zebrafish Mutants Causes Impaired Insulin Receptor	1.5 2.1 5.6 4.9	44 7 11 47
1325 1326 1327 1328 1330	Lentiviral Vectors for Delivery of Gene-Editing Systems Based on CRISPR/Cas: Current State and Perspectives. Viruses, 2021, 13, 1288. Gene Editing and Modulation: the Holy Grail for the Genetic Epilepsies?. Neurotherapeutics, 2021, 18, 1515-1523. A Novel Human Long Noncoding RNA <i>SCDAL</i> Promotes Angiogenesis through SNF5â€Mediated GDF6 Expression. Advanced Science, 2021, 8, e2004629. CRISPR/Cas-Based Epigenome Editing: Advances, Applications, and Clinical Utility. Trends in Biotechnology, 2021, 39, 678-691. Reduced Acrolein Detoxification in <i>akr1a1a</i> Zebrafish Mutants Causes Impaired Insulin Receptor Signaling and Microvascular Alterations. Advanced Science, 2021, 8, e2101281.	1.5 2.1 5.6 4.9 5.6	44 7 11 47 11

#	Article	IF	CITATIONS
1334	Identification of a quality-control factor that monitors failures during proteasome assembly. Science, 2021, 373, 998-1004.	6.0	26
1335	Evidence for and localization of proposed causative variants in cattle and pig genomes. Genetics Selection Evolution, 2021, 53, 67.	1.2	15
1336	Advances in promoter engineering: Novel applications and predefined transcriptional control. Biotechnology Journal, 2021, 16, e2100239.	1.8	44
1337	An optimized genome-wide, virus-free CRISPR screen for mammalian cells. Cell Reports Methods, 2021, 1, 100062.	1.4	14
1339	Biological role of miRNA-146a at virus infections. Modern strategy of search of new safe pharmacological agents for treatment. Reviews on Clinical Pharmacology and Drug Therapy, 2021, 19, 145-174.	0.2	1
1340	TALENs—an indispensable tool in the era of CRISPR: a mini review. Journal of Genetic Engineering and Biotechnology, 2021, 19, 125.	1.5	41
1341	Deciphering Plant Chromatin Regulation via CRISPR/dCas9-Based Epigenome Engineering. Epigenomes, 2021, 5, 17.	0.8	9
1342	Will Plant Genome Editing Play a Decisive Role in "Quantum-Leap―Improvements in Crop Yield to Feed an Increasing Global Human Population?. Plants, 2021, 10, 1667.	1.6	10
1344	Feedback regulation of Notch signaling and myogenesis connected by MyoD–Dll1 axis. PLoS Genetics, 2021, 17, e1009729.	1.5	13
1345	Bi-directional gene activation and repression promote ASC differentiation and enhance bone healing in osteoporotic rats. Molecular Therapy, 2022, 30, 92-104.	3.7	5
1346	Chromatin Alterations in Neurological Disorders and Strategies of (Epi)Genome Rescue. Pharmaceuticals, 2021, 14, 765.	1.7	3
1347	Transgenic mice for in vivo epigenome editing with CRISPR-based systems. Nature Methods, 2021, 18, 965-974.	9.0	56
1348	Genome-wide CRISPR activation screen identifies candidate receptors for SARS-CoV-2 entry. Science China Life Sciences, 2022, 65, 701-717.	2.3	48
1351	Applications of piggyBac Transposons for Genome Manipulation in Stem Cells. Stem Cells International, 2021, 2021, 1-13.	1.2	5
1352	CRISPR-Cas Gene Perturbation and Editing in Human Induced Pluripotent Stem Cells. CRISPR Journal, 2021, 4, 634-655.	1.4	5
1353	The deubiquitinase USP10 restores PTEN activity and inhibits non–small cell lung cancer cell proliferation. Journal of Biological Chemistry, 2021, 297, 101088.	1.6	34
1354	Neuronal Cell-type Engineering by Transcriptional Activation. Frontiers in Genome Editing, 2021, 3, 715697.	2.7	5
1355	HIF1α epigenetically repressed macrophages via CRISPR/Cas9-EZH2 system for enhanced cancer immunotherapy. Bioactive Materials, 2021, 6, 2870-2880.	8.6	16

#	Article		CITATIONS
1356	The menin-MLL1 interaction is a molecular dependency in <i>NUP98</i> -rearranged AML. Blood, 2022, 139, 894-906.	0.6	42
1357	Nucleoporin 50 mediates <i>Kcna4</i> transcription to regulate cardiac electrical activity. Journal of Cell Science, 2021, 134, .	1.2	4
1358	From Descriptive to Functional Genomics of Leukemias Focusing on Genome Engineering Techniques. International Journal of Molecular Sciences, 2021, 22, 10065.	1.8	5
1359	A new era in functional genomics screens. Nature Reviews Genetics, 2022, 23, 89-103.	7.7	104
1360	A simple and rapid method for enzymatic synthesis of CRISPR-Cas9 sgRNA libraries. Nucleic Acids Research, 2021, 49, e131-e131.	6.5	4
1361	A CRISPR knockout screen reveals new regulators of canonical Wnt signaling. Oncogenesis, 2021, 10, 63.	2.1	4
1362	Engineered miniature CRISPR-Cas system for mammalian genome regulation and editing. Molecular Cell, 2021, 81, 4333-4345.e4.	4.5	177
1365	RNA-Centric Methods: Toward the Interactome of Specific RNA Transcripts. Trends in Biotechnology, 2021, 39, 890-900.	4.9	19
1366	Application of CHyMErA Cas9-Cas12a combinatorial genome-editing platform for genetic interaction mapping and gene fragment deletion screening. Nature Protocols, 2021, 16, 4722-4765.	5.5	8
1368	Targeting the IRE1α/XBP1s pathway suppresses CARM1-expressing ovarian cancer. Nature Communications, 2021, 12, 5321.	5.8	17
1370	ETV6-RUNX1 and RUNX1 directly regulate RAG1 expression: one more step in the understanding of childhood B-cellÂacute lymphoblastic leukemia leukemogenesis. Leukemia, 2022, 36, 549-554.	3.3	11
1372	Optical Control of Base Editing and Transcription through Lightâ€Activated Guide RNA. ChemPhotoChem, 0, , .	1.5	8
1374	Long non-coding RNA NR2F1-AS1 induces breast cancer lung metastatic dormancy by regulating NR2F1 and l"Np63. Nature Communications, 2021, 12, 5232.	5.8	50
1375	Unraveling the functional role of DNA demethylation at specific promoters by targeted steric blockage of DNA methyltransferase with CRISPR/dCas9. Nature Communications, 2021, 12, 5711.	5.8	38
1376	An integrated pipeline for mammalian genetic screening. Cell Reports Methods, 2021, 1, 100082.	1.4	11
1377	Reductionâ€Sensitive Fluorinatedâ€Pt(IV) Universal Transfection Nanoplatform Facilitating CT45â€Targeted CRISPR/dCas9 Activation for Synergistic and Individualized Treatment of Ovarian Cancer. Small, 2021, 17, e2102494.	5.2	24
1378	CRISPR/dCas9-Based Systems: Mechanisms and Applications in Plant Sciences. Plants, 2021, 10, 2055.	1.6	32
1379	Application of the CRISPR/Cas9-based gene editing technique in basic research, diagnosis, and therapy of cancer. Molecular Cancer, 2021, 20, 126.	7.9	86

#	Article	IF	CITATIONS
1380	Genetical engineering for NK and T cell immunotherapy with CRISPR/Cas9 technology: Implications and challenges. Cellular Immunology, 2021, 369, 104436.	1.4	5
1381	CRISPR-activated patient fibroblasts for modeling of familial Alzheimer's disease. Neuroscience Research, 2021, 172, 7-12.	1.0	2
1382	Moving from in vitro to in vivo CRISPR screens. Gene and Genome Editing, 2021, 2, 100008.	1.3	25
1383	Genome-wide activation screens to increase adeno-associated virus production. Molecular Therapy - Nucleic Acids, 2021, 26, 94-103.	2.3	8
1384	CRISPR Interference (CRISPRi) and CRISPR Activation (CRISPRa) to Explore the Oncogenic IncRNA Network. Methods in Molecular Biology, 2021, 2348, 189-204.	0.4	12
1385	Modulation of alternative cleavage and polyadenylation events by dCas9-mediated CRISPRpas. Methods in Enzymology, 2021, 655, 459-482.	0.4	2
1386	Genetic screening for single-cell variability modulators driving therapy resistance. Nature Genetics, 2021, 53, 76-85.	9.4	41
1387	Exploiting the CRISPR as9 geneâ€editing system for human cancers and immunotherapy. Clinical and Translational Immunology, 2021, 10, e1286.	1.7	11
1388	Targeted attenuation of elevated histone marks at <i>SNCA</i> alleviates αâ€synuclein in Parkinson's disease. EMBO Molecular Medicine, 2021, 13, e12188.	3.3	43
1389	Elucidation of the BMI1 interactome identifies novel regulatory roles in glioblastoma. NAR Cancer, 2021, 3, zcab009.	1.6	4
1391	Exploring Endophytes Using "Omicsâ€: An Approach for Sustainable Production of Bioactive Metabolites. Fungal Biology, 2021, , 349-376.	0.3	4
1392	Genome-Wide CRISPRi/a Screening in an In Vitro Coculture Assay of Human Immune Cells with Tumor Cells. Methods in Molecular Biology, 2020, 2097, 231-252.	0.4	2
1393	CRISPR Guide RNA Design Guidelines for Efficient Genome Editing. Methods in Molecular Biology, 2020, 2166, 331-342.	0.4	10
1394	Optogenetics and CRISPR: A New Relationship Built to Last. Methods in Molecular Biology, 2020, 2173, 261-281.	0.4	8
1395	Notes on Functional Modules in the Assembly of CRISPR/Cas9-Mediated Epigenetic Modifiers. Methods in Molecular Biology, 2021, 2198, 401-428.	0.4	2
1396	Genome-Scale Perturbation of Long Noncoding RNA Expression Using CRISPR Interference. Methods in Molecular Biology, 2021, 2254, 323-338.	0.4	5
1397	CRISPR-Cas RNA Scaffolds for Transcriptional Programming in Yeast. Methods in Molecular Biology, 2017, 1632, 341-357.	0.4	3
1398	CRISPR/Cas9 Editing in Induced Pluripotent Stem Cells: A Way Forward for Treating Cystic Fibrosis?. , 2019, , 153-178.		2

ARTICLE IF CITATIONS # Repurposing CRISPR System for Transcriptional Activation. Advances in Experimental Medicine and 1399 0.8 25 Biology, 2017, 983, 147-157. CRISPR Applications in Plant Genetic Engineering and Biotechnology., 2019, , 429-459. 1400 Functional Genomics for Cancer Drug Target Discovery. Cancer Cell, 2020, 38, 31-43. 7.7 46 1401 Untangling a complex web: Computational analyses of tumor molecular profiles to decode driver 1402 mechanisms. Journal of Genetics and Genomics, 2020, 47, 595-609. Multiple Input Sensing and Signal Integration Using a Split Cas12a System. Molecular Cell, 2020, 78, 1403 4.5 62 184-191.e3. CRISPR/dCas9-based Scn1a gene activation in inhibitory neurons ameliorates epileptic and behavioral 1404 2.1 phenotypes of Dravet syndrome model mice. Neurobiology of Disease, 2020, 141, 104954. Am I ready for CRISPR? A user's guide to genetic screens. Nature Reviews Genetics, 2018, 19, 67-80. 1405 7.7 325 Rewiring of endogenous signaling pathways to genomic targets for therapeutic cell reprogramming. 1406 5.8 Nature Communications, 2020, 11, 608. RNA-targeting CRISPR systems from metagenomic discovery to transcriptomic engineering. Nature Cell Biology, 2020, 22, 143-150. 1407 4.6 48 Direct cell reprogramming: approaches, mechanisms and progress. Nature Reviews Molecular Cell 1408 16.1 178 Biology, 2021, 22, 410-424 1409 Gene editing and CRISPR in the clinic: current and future perspectives. Bioscience Reports, 2020, 40, . 1.1 122 CRISPR-based gene expression control for synthetic gene circuits. Biochemical Society Transactions, 1410 1.6 2020, 48, 1979-1993. Gene therapy in wound healing using nanotechnology. Wound Repair and Regeneration, 2021, 29, 1450 1.5 11 225-239. Screening Genes Promoting Exit from Naive Pluripotency Based on Genome-Scale CRISPR-Cas9 1451 1.2 Knockout. Stem Cells International, 2020, 2020, 1-15. A G protein–coupled, IP3/protein kinase C pathway controlling the synthesis of phosphaturic hormone 1452 2.316 FGF23. JCI Insight, 2019, 4, . Recent advances in lineage differentiation from stem cells: hurdles and opportunities?. F1000Research, 1453 2018, 7, 220. Genome-edited human stem cell-derived beta cells: a powerful tool for drilling down on type 2 1454 0.8 10 diabetes GWAS biology. F1000Research, 2016, 5, 1711. 1455 CRISPR/Cas9-Mediated Genome Editing in Soybean Hairy Roots. PLoS ONE, 2015, 10, e0136064. 1.1

#	Article	IF	CITATIONS
1456	Reactivation of Latent HIV-1 Expression by Engineered TALE Transcription Factors. PLoS ONE, 2016, 11, e0150037.	1.1	10
1457	CRISPR/Cas-based customization of pooled CRISPR libraries. PLoS ONE, 2018, 13, e0199473.	1.1	6
1458	The big bang of genome editing technology: development and application of the CRISPR/Cas9 system in disease animal models. Zoological Research, 2016, 37, 191-204.	0.6	13
1459	Genetically Engineering the Nervous System with CRISPR-Cas. ENeuro, 2020, 7, ENEURO.0419-19.2020.	0.9	12
1460	A Neuron-Optimized CRISPR/dCas9 Activation System for Robust and Specific Gene Regulation. ENeuro, 2019, 6, ENEURO.0495-18.2019.	0.9	97
1461	Distinct ILâ€1αâ€responsive enhancers promote acute and coordinated changes in chromatin topology in a hierarchical manner. EMBO Journal, 2020, 39, e101533.	3.5	25
1462	Programmable CRISPRâ€Cas transcriptional activation in bacteria. Molecular Systems Biology, 2020, 16, e9427.	3.2	56
1463	DNA methylation in epigenetic inheritance of metabolic diseases through the male germ line. Journal of Molecular Endocrinology, 2018, 60, R39-R56.	1.1	47
1464	CRISPR-on for activation of endogenous SMARCA4 and TFAP2C expression in bovine embryos. Reproduction, 2020, 159, 767-778.	1.1	6
1466	Narrowing the focus: a toolkit to systematically connect oncogenic signaling pathways with cancer phenotypes. Genes and Cancer, 2016, 7, 218-228.	0.6	5
1467	CRISPR-mediated multiplexed genetic manipulation. Oncotarget, 2016, 7, 80103-80104.	0.8	2
1468	The CRISPR/Cas9 system efficiently reverts the tumorigenic ability of <i>BCR/ABL in vitro</i> and in a xenograft model of chronic myeloid leukemia. Oncotarget, 2017, 8, 26027-26040.	0.8	30
1469	CRISPR-ON-Mediated KLF4 overexpression inhibits the proliferation, migration and invasion of urothelial bladder cancer <i>in vitro</i> and <i>in vivo</i> . Oncotarget, 2017, 8, 102078-102087.	0.8	13
1470	Polycomb protein RING1A limits hematopoietic differentiation in myelodysplastic syndromes. Oncotarget, 2017, 8, 115002-115017.	0.8	6
1471	CRISPR-Cas9 HDR system enhances AQP1 gene expression. Oncotarget, 2017, 8, 111683-111696.	0.8	10
1472	Regulatory Assessment of Off-Target Changes and Spurious DNA Insertions in Gene-Edited Organisms for Agri-Food Use. , 2021, 9, 1-15.		8
1473	The transformational impact of site-specific DNA modifiers on biomedicine and agriculture. Animal Reproduction, 2018, 15, 171-179.	0.4	1
1474	Prader-Willi Syndrome: Molecular Mechanism and Epigenetic Therapy. Current Gene Therapy, 2020, 20, 36-43.	0.9	7

#	Article	IF	CITATIONS
1475	flySAM Transgenic CRISPRa System Manual. Bio-protocol, 2019, 9, e3147.	0.2	5
1477	dCas9: A Versatile Tool for Epigenome Editing. Current Issues in Molecular Biology, 2018, 26, 15-32.	1.0	70
1478	Expanding the repertoire of glucocorticoid receptor target genes by engineering genomic response elements. Life Science Alliance, 2019, 2, e201800283.	1.3	13
1479	In vivo and in vitro knockout system labelled using fluorescent protein via microhomology-mediated end joining. Life Science Alliance, 2020, 3, e201900528.	1.3	5
1480	Specific Expression of Interferon-źï¿¼ Induced by Synergistic Activation Mediator-Derived Systems Activates Innate Immunity and Inhibits Tumorigenesis. Journal of Microbiology and Biotechnology, 2017, 27, 1855-1866.	0.9	5
1481	An Overview Of The Crispr-Based Genomic- And Epigenome-Editing System: Function, Applications, And Challenges. Advanced Biomedical Research, 2019, 8, 49.	0.2	5
1482	CRISPR/Cas system: An emerging technology in stem cell research. World Journal of Stem Cells, 2019, 11, 937-956.	1.3	23
1483	Astonishing advances in mouse genetic tools for biomedical research. Swiss Medical Weekly, 2015, 145, w14186.	0.8	15
1484	CRISPR-Sunspot: Imaging of endogenous low-abundance RNA at the single-molecule level in live cells. Theranostics, 2020, 10, 10993-11012.	4.6	23
1485	Gene activation by a CRISPR-assisted trans enhancer. ELife, 2019, 8, .	2.8	21
1486	Cancer systems immunology. ELife, 2020, 9, .	2.8	14
1487	RNA-guided retargeting of Sleeping Beauty transposition in human cells. ELife, 2020, 9, .	2.8	44
1488	Beyond the RNA-dependent function of LncRNA genes. ELife, 2020, 9, .	2.8	137
1489	Simultaneous quantification of mRNA and protein in single cells reveals post-transcriptional effects of genetic variation. ELife, 2020, 9, .	2.8	33
1490	CRISPR screening identifies M1AP as a new MYC regulator with a promoter-reporter system. PeerJ, 2020, 8, e9046.	0.9	5
1491	A programmable hierarchical-responsive nanoCRISPR elicits robust activation of endogenous target to treat cancer. Theranostics, 2021, 11, 9833-9846.	4.6	13
1492	ATâ€rich interaction domain 5A regulates the transcription of interleukinâ€6 gene in prostate cancer cells. Prostate, 2022, 82, 97-106.	1.2	4
1493	Strong and tunable antiâ€CRISPR/Cas activities in plants. Plant Biotechnology Journal, 2022, 20, 399-408.	4.1	22

#	Article		CITATIONS
1494	The Role of Long Non-coding RNAs in Human Imprinting Disorders: Prospective Therapeutic Targets. Frontiers in Cell and Developmental Biology, 2021, 9, 730014.	1.8	14
1495	Interrogating Mitochondrial Biology and Disease Using CRISPR/Cas9 Gene Editing. Genes, 2021, 12, 1604.	1.0	10
1496	MS4A15 drives ferroptosis resistance through calcium-restricted lipid remodeling. Cell Death and Differentiation, 2022, 29, 670-686.	5.0	35
1497	A FLASH pipeline for arrayed CRISPR library construction and the gene function discovery of rice receptor-like kinases. Molecular Plant, 2022, 15, 243-257.	3.9	22
1499	Lnc-DC promotes estrogen independent growth and tamoxifen resistance in breast cancer. Cell Death and Disease, 2021, 12, 1000.	2.7	9
1500	CRISPR-Mediated Transcriptional Repression in Toxoplasma gondii. MSphere, 2021, 6, e0047421.	1.3	4
1501	Fine-tuning gene expression for improved biosynthesis of natural products: From transcriptional to post-translational regulation. Biotechnology Advances, 2022, 54, 107853.	6.0	10
1502	CRISPR screens guide the way for PARP and ATR inhibitor biomarker discovery. FEBS Journal, 2021, , .	2.2	5
1503	CRISPR activation of endogenous genes reprograms fibroblasts into cardiovascular progenitor cells for myocardial infarction therapy. Molecular Therapy, 2022, 30, 54-74.	3.7	22
1504	Transcriptional Regulation of Carboxylesterase 1 in Human Liver: Role of the Nuclear Receptor Subfamily 1 Group H Member 3 and Its Splice Isoforms. Drug Metabolism and Disposition, 2022, 50, 43-48.	1.7	0
1505	Carrier-Free Cellular Transport of CRISPR/Cas9 Ribonucleoprotein for Genome Editing by Cold Atmospheric Plasma. Biology, 2021, 10, 1038.	1.3	5
1506	Internal Promoters and Their Effects on the Transcription of Operon Genes for Epothilone Production in Myxococcus xanthus. Frontiers in Bioengineering and Biotechnology, 2021, 9, 758561.	2.0	6
1508	Synthetic biology applications of the yeast mating signal pathway. Trends in Biotechnology, 2021, , .	4.9	5
1510	A CRISPR Activation Screen Identifies an Atypical Rho GTPase That Enhances Zika Viral Entry. Viruses, 2021, 13, 2113.	1.5	10
1511	G <i>α</i> s–Protein Kinase A (PKA) Pathway Signalopathies: The Emerging Genetic Landscape and Therapeutic Potential of Human Diseases Driven by Aberrant G <i>α</i> s-PKA Signaling. Pharmacological Reviews, 2021, 73, 1326-1368.	7.1	27
1512	A sensitive electrochemical method for rapid detection of dengue virus by CRISPR/Cas13a-assisted catalytic hairpin assembly. Analytica Chimica Acta, 2021, 1187, 339131.	2.6	24
1513	Cut and paste the genome: Genome editing for research and therapy. Journal of Cellular Biotechnology, 2015, 1, 95-106.	0.1	1
1514	Genome Editing in Human Pluripotent Stem Cells. Pancreatic Islet Biology, 2016, , 43-67.	0.1	Ο

		CITATION RE	PORT	
#	Article		IF	CITATIONS
1516	Type III CRISPR complexes from Thermus thermophilus Acta Biochimica Polonica, 201	6, 63, 377-86.	0.3	1
1519	Making better CRISPR libraries. ELife, 2016, 5, .		2.8	0
1536	Applications of CRSIPR/Cas9 in Cancer Research. Journal of Cancer Science and Resear	ch, 2018, 01, .	0.1	0
1555	Human mitochondrial genome surgery. Genes and Cells, 2018, 13, 32-37.		0.2	0
1556	CRISPR-based Technologies for Genome Engineering: Properties, Current Improvement Applications in Medicine. RSC Drug Discovery Series, 2019, , 400-433.	s and	0.2	1
1559	An Update on the Applications of CRISPR/Cas9 Technology in Tomato. Energy, Environ Sustainability, 2019, , 249-263.	ment, and	0.6	0
1569	The CRISPR System and Cancer Immunotherapy Biomarkers. Methods in Molecular Bio 301-322.	logy, 2020, 2055,	0.4	2
1580	Discovery of Zika Virus Dependency and Restriction Factors Using Flow-Based Arrayed Screening for Identification of Targets (FACS-IT). Methods in Molecular Biology, 2020,		0.4	1
1589	Study of the effect of the introduction of mitochondrial import determinants into the s structure on the activity of the gRNA/SpCas9 complex in vitro. Vavilovskii Zhurnal Gene 2020, 24, 512-518.		0.4	1
1590	Harnessing tRNA for Processing Ability and Promoter Activity. Methods in Molecular Bi 2162, 89-114.	ology, 2021,	0.4	0
1592	Establishment of a pig CRISPR/Cas9 knockout library for functional gene screening in p Biotechnology Journal, 2022, 17, e2100408.	vig cells.	1.8	6
1593	CRISPR Tackles Emerging Viral Pathogens. Viruses, 2021, 13, 2157.		1.5	6
1594	Transcriptional activation with Cas9 activator nanocomplexes rescues Alzheimer's dise Biomaterials, 2021, 279, 121229.	ase pathology.	5.7	8
1595	Monitoring the Levels of Cellular NF-κB Activation States. Cancers, 2021, 13, 5351.		1.7	15
1596	CRISPR/Cas-based Functional Genomic Approaches to Phenotypic Screening. RSC Drug 2020, , 58-82.	g Discovery Series,	0.2	0
1602	EIN2-directed histone acetylation requires EIN3-mediated positive feedback regulation ethylene. Plant Cell, 2021, 33, 322-337.	in response to	3.1	40
1604	CRISPR-Cas orthologs and variants. , 2022, , 7-38.			0
1605	Computer Designed PRC2 Inhibitor, EBdCas9, Reveals Functional TATA Boxes in Distal Regions. SSRN Electronic Journal, 0, , .	Promoter	0.4	0

		CITATION RE	PORT	
#	Article		IF	CITATIONS
1606	Recent Advances in Genetic Engineering Tools for Metabolic Engineering. , 2020, , 93-109.			0
1607	Components from the Human c-myb Transcriptional Regulation System Reactivate Epigenetic Repressed Transgenes. International Journal of Molecular Sciences, 2020, 21, 530.	ally	1.8	3
1608	Tumorigenesis-Related Long Noncoding RNAs and Their Targeting as Therapeutic Approach in RNA Technologies, 2020, , 277-303.	Cancer.	0.2	0
1610	Genome Engineering Tools in Immunotherapy. , 2020, , 73-102.			0
1612	CRISPR/Cas9-based genome editing, with focus on transcription factors, for plant improveme , 63-84.	nt., 2020,		0
1615	A Robust Protocol for CRISPR as9 Gene Editing in Human Suspension Cell Lines. Current P 2021, 1, e286.	rotocols,	1.3	3
1616	Polyethylenimine-Functionalized Carbon Dots for Delivery of CRISPR/Cas9 Complexes. ACS Ap Materials, 2021, 4, 7979-7992.	plied Bio	2.3	14
1617	Functional disruption of cell wall invertase inhibitor by genome editing increases sugar conter tomato fruit without decrease fruit weight. Scientific Reports, 2021, 11, 21534.	nt of	1.6	18
1619	Downregulating CREBBP inhibits proliferation and cell cycle progression and induces daunorubicin resistance in leukemia cells. Molecular Medicine Reports, 2020, 22, 2905-2915.		1.1	6
1623	Targeting Noncoding RNA Domains to Genomic Loci with CRISPR-Display: Guidelines for Designing, Building, and Testing sgRNA–ncRNA Expression Constructs. Methods in Molecular Biology, 2021, 2162, 115-152.		0.4	0
1624	Controlling the Activity of CRISPR Transcriptional Regulators with Inducible sgRNAs. Methods Molecular Biology, 2021, 2162, 153-184.	in	0.4	0
1627	Development and Application of CRISPR-Mediated Genetic Screening in Oncology. , 2020, , .			1
1628	Editing the Neuronal Genome: a CRISPR View of Chromatin Regulation in Neuronal Developm Function, and Plasticity. Yale Journal of Biology and Medicine, 2016, 89, 457-470.	ent,	0.2	4
1629	CRISPR-Mediated Epigenome Editing. Yale Journal of Biology and Medicine, 2016, 89, 471-486	5.	0.2	30
1630	Applications of CRISPR/Cas9 in the Mammalian Central Nervous System. Yale Journal of Biolog Medicine, 2017, 90, 567-581.	gy and	0.2	31
1631	Genome Surgery and Gene Therapy in Retinal Disorders. Yale Journal of Biology and Medicine, 523-532.	2017, 90,	0.2	9
1633	CRISPR screen in cancer: status quo and future perspectives. American Journal of Cancer Rese 2021, 11, 1031-1050.	arch,	1.4	4
1634	Delivery of CRISPR-Cas9 system for screening and editing RNA binding proteins in cancer. Adv Drug Delivery Reviews, 2022, 180, 114042.	anced	6.6	20

		CITATION RE	PORT	
#	Article		IF	CITATIONS
1635	LncRNAs in domesticated animals: from dog to livestock species. Mammalian Genome, 2022	, 33, 248-270.	1.0	10
1636	Using Multiplexed CRISPR/Cas9 for Suppression of Cotton Leaf Curl Virus. International Jourr Molecular Sciences, 2021, 22, 12543.	al of	1.8	16
1637	CRISPR/Cas System and Factors Affecting Its Precision and Efficiency. Frontiers in Cell and Developmental Biology, 2021, 9, 761709.		1.8	20
1638	The Roles and Mechanisms of IncRNAs in Liver Fibrosis. Frontiers in Pharmacology, 2021, 12,	779606.	1.6	4
1639	The Fusion of CLEC12A and MIR223HG Arises from a trans-Splicing Event in Normal and Tran Human Cells. International Journal of Molecular Sciences, 2021, 22, 12178.	sformed	1.8	4
1640	Engineering a PAM-flexible SpdCas9 variant as a universal gene repressor. Nature Communica 2021, 12, 6916.	ations,	5.8	17
1641	Mammalian chemical genomics towards identifying targets and elucidating modesâ€ofâ€act bioactive compounds. ChemBioChem, 2021, , .	ion of	1.3	2
1642	Applications of CRISPR-Cas Technologies to Proteomics. Genes, 2021, 12, 1790.		1.0	5
1643	An Efficient Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)/CRISPR-Associated Protein 9 Mutagenesis System for Oil Palm (Elaeis guineensis). Frontiers in Plant Science, 2021, 12, 773656.		1.7	14
1644	To Discover the Efficient and Novel Drug Targets in Human Cancers Using CRISPR/Cas Screening and Databases. International Journal of Molecular Sciences, 2021, 22, 12322.		1.8	8
1645	CRISPR Screen Contributes to Novel Target Discovery in Prostate Cancer. International Journa Molecular Sciences, 2021, 22, 12777.	al of	1.8	16
1646	Coordinated Actions of Cas9 HNH and RuvC Nuclease Domains Are Regulated by the Bridge I the Target DNA Sequence. Biochemistry, 2021, , .	Helix and	1.2	11
1648	miR-6077 Promotes Cisplatin/Pemetrexed Resistance in Lung Adenocarcinoma by Targeting (Cycle Arrest and KEAP1/Ferroptosis Pathways. SSRN Electronic Journal, 0, , .	CDKN1A/Cell	0.4	0
1649	Epigenome editing: targeted manipulation of epigenetic modifications in plants. Genes and C 2022, 44, 307-315.	Genomics,	0.5	13
1650	Heterogeneity of human corneal endothelium implicates lncRNA NEAT1 in Fuchs endothelial dystrophy. Molecular Therapy - Nucleic Acids, 2022, 27, 880-893.	corneal	2.3	15
1651	An Update on In Utero Gene Therapy for Cystic Fibrosis. Georgetown Medical Review, 2020,	4, .	0.1	0
1653	A Review on CRISPR-mediated Epigenome Editing: A Future Directive for Therapeutic Manage Cancer. Current Drug Targets, 2022, 23, 836-853.	ment of	1.0	7
1654	Proximity labeling identifies a repertoire of site-specific R-loop modulators. Nature Communic 2022, 13, 53.	cations,	5.8	49

#	Article	IF	Citations
1656	Functional Genomic Identification of Predictors of Sensitivity and Mechanisms of Resistance to Multivalent Second-Generation TRAIL-R2 Agonists. Molecular Cancer Therapeutics, 2022, 21, 594-606.	1.9	1
1657	High-throughput methods for genome editing: the more the better. Plant Physiology, 2022, 188, 1731-1745.	2.3	10
1658	History and Classification of CRISPR/Cas System. , 2022, , 29-52.		4
1660	The Role of Recombinant AAV in Precise Genome Editing. Frontiers in Genome Editing, 2021, 3, 799722.	2.7	24
1661	Deciphering the Design Rules of Toehold-Gated sgRNA for Conditional Activation of Gene Expression and Protein Degradation in Mammalian Cells. ACS Synthetic Biology, 2022, 11, 397-405.	1.9	9
1662	Optogenetic control of RNA function and metabolism using engineered light-switchable RNA-binding proteins. Nature Biotechnology, 2022, 40, 779-786.	9.4	35
1663	CRISPR–Cas-mediated transcriptional control and epi-mutagenesis. Plant Physiology, 2022, 188, 1811-1824.	2.3	21
1664	Advances and application of CRISPR-Cas systems. , 2022, , 331-348.		0
1665	Application of CRISPR/Cas system in iPSC-based disease model of hereditary deafness. , 2022, , 225-245.		0
1666	Generation of Leydig-like cells: approaches, characterization, and challenges. Asian Journal of Andrology, 2022, 24, 335.	0.8	3
1668	Highly efficient activation of endogenous gene in grape using CRISPR/dCas9-based transcriptional activators. Horticulture Research, 2022, 9, .	2.9	16
1669	Microbial DNA Enrichment Promotes Adrenomedullary Inflammation, Catecholamine Secretion, and Hypertension in Obese Mice. Journal of the American Heart Association, 2022, , e024561.	1.6	5
1670	CRISPR-based therapeutics: current challenges and future applications. Trends in Pharmacological Sciences, 2022, 43, 151-161.	4.0	32
1671	Upregulation of CD14 in mesenchymal stromal cells accelerates lipopolysaccharide-induced response and enhances antibacterial properties. IScience, 2022, 25, 103759.	1.9	5
1672	Improved alpharetrovirus-based Gag.MS2 particles for efficient and transient delivery of CRISPR-Cas9 into target cells. Molecular Therapy - Nucleic Acids, 2022, 27, 810-823.	2.3	8
1673	Harnessing plasmid replication mechanism to enable dynamic control of gene copy in bacteria. Metabolic Engineering, 2022, 70, 67-78.	3.6	16
1674	High-content CRISPR screening. Nature Reviews Methods Primers, 2022, 2, .	11.8	155
1675	IncExACT1 and DCHS2 Regulate Physiological and Pathological Cardiac Growth. Circulation, 2022, 145, 1218-1233.	1.6	43

		CITATION REI	PORT	
#	Article		IF	Citations
1676	High-content CRISPR screening. Nature Reviews Methods Primers, 2022, 2, .		11.8	24
1677	Maybe you can turn me on: CRISPRa-based strategies for therapeutic applications. Cellula Molecular Life Sciences, 2022, 79, 130.	r and	2.4	14
1678	The use of new CRISPR tools in cardiovascular research and medicine. Nature Reviews Car 2022, 19, 505-521.	diology,	6.1	21
1679	A genomeâ€wide CRISPR activation screen reveals Hexokinase 1 as a critical factor in propresent of the propresent of th	noting 22, 36, e22191.	0.2	11
1680	How to train your cell - Towards controlling phenotypes by harnessing the epigenome of C hamster ovary production cell lines. Biotechnology Advances, 2022, 56, 107924.	Chinese	6.0	9
1681	CRISPR activation and interference screens decode stimulation responses in primary huma Science, 2022, 375, eabj4008.	an T cells.	6.0	119
1682	dCas9-VPR-mediated transcriptional activation of functionally equivalent genes for gene t Nature Protocols, 2022, 17, 781-818.	herapy.	5.5	11
1684	Activation of melatonin receptor 1 by CRISPR as9 activator ameliorates cognitive defic Alzheimer's disease mouse model. Journal of Pineal Research, 2022, 72, .	its in an	3.4	12
1685	Epigenome rewiring in human pluripotent stem cells. Trends in Cell Biology, 2022, 32, 259	∂-271.	3.6	4
1688	CRISPR Guide RNA Library Screens in Human Induced Pluripotent Stem Cells. Methods in I Biology, 2022, , 1.	Molecular	0.4	1
1690	Recent Advances in Plant Gene Silencing Methods. Methods in Molecular Biology, 2022, 2	2408, 1-22.	0.4	4
1692	CRISPR-Based Screening for Stress Response Factors in Mammalian Cells. Methods in Mol Biology, 2022, 2428, 19-40.	ecular	0.4	0
1694	Dissecting Molecular Phenotypes Through FACS-Based Pooled CRISPR Screens. Methods i Biology, 2022, , 1-24.	n Molecular	0.4	7
1695	Genomeâ€wide metaâ€analysis identifies susceptibility loci for autoimmune hepatitis type 2022, 76, 564-575.	e 1. Hepatology,	3.6	11
1696	CRISPR in cancer biology and therapy. Nature Reviews Cancer, 2022, 22, 259-279.		12.8	157
1697	Deciphering the Retinal Epigenome during Development, Disease and Reprogramming: Ac Challenges and Perspectives. Cells, 2022, 11, 806.	vancements,	1.8	3
1698	LGL1 binds to Integrin \hat{l}^21 and inhibits downstream signaling to promote epithelial branch mammary gland. Cell Reports, 2022, 38, 110375.	ing in the	2.9	6
1699	Epigenomic reprogramming via HRP2-MINA dictates response to proteasome inhibitors in myeloma with t(4;14) translocation. Journal of Clinical Investigation, 2022, 132, .	multiple	3.9	12

~		<u> </u>	
CITATI	ION	KEDC	JDL

#	Article	IF	CITATIONS
1701	Combinatorial Approach of Binary Colloidal Crystals and CRISPR Activation to Improve Induced Pluripotent Stem Cell Differentiation into Neurons. ACS Applied Materials & Interfaces, 2022, 14, 8669-8679.	4.0	10
1703	MESH1 knockdown triggers proliferation arrest through TAZ repression. Cell Death and Disease, 2022, 13, 221.	2.7	6
1704	CRISPR based therapeutics: a new paradigm in cancer precision medicine. Molecular Cancer, 2022, 21, 85.	7.9	15
1705	ABCA1 Expression Is Upregulated in an EMT in Breast Cancer Cell Lines via MYC-Mediated De-Repression of Its Proximal Ebox Element. Biomedicines, 2022, 10, 581.	1.4	7
1706	LINC01296 promotes neuroblastoma tumorigenesis via the NCL-SOX11 regulatory complex. Molecular Therapy - Oncolytics, 2022, 24, 834-848.	2.0	7
1707	Epigenetic basis and targeting of cancer metastasis. Trends in Cancer, 2022, 8, 226-241.	3.8	20
1709	Intratumoral heterogeneity of MYC drives medulloblastoma metastasis and angiogenesis. Neuro-Oncology, 2022, 24, 1509-1523.	0.6	12
1710	miR-6077 promotes cisplatin/pemetrexed resistance in lung adenocarcinoma via CDKN1A/cell cycle arrest and KEAP1/ferroptosis pathways. Molecular Therapy - Nucleic Acids, 2022, 28, 366-386.	2.3	35
1712	Epigenome editing and epigenetic gene regulation in disease phenotypes. Korean Journal of Chemical Engineering, 0, , 1.	1.2	0
1713	Precise tumor immune rewiring via synthetic CRISPRa circuits gated by concurrent gain/loss of transcription factors. Nature Communications, 2022, 13, 1454.	5.8	6
1714	dCas9 fusion to computer-designed PRC2 inhibitor reveals functional TATA box in distal promoter region. Cell Reports, 2022, 38, 110457.	2.9	12
1715	CRISPR activation screen identifies BCL-2 proteins and B3GNT2 as drivers of cancer resistance to T cell-mediated cytotoxicity. Nature Communications, 2022, 13, 1606.	5.8	40
1716	Concurrent Gene Insertion, Deletion, and Inversion during the Construction of a Novel Attenuated BoHV-1 Using CRISPR/Cas9 Genome Editing. Veterinary Sciences, 2022, 9, 166.	0.6	2
1717	Reprogramming of fibroblasts into expandable cardiovascular progenitor cells via small molecules in xeno-free conditions. Nature Biomedical Engineering, 2022, 6, 403-420.	11.6	18
1719	A copper switch for inducing CRISPR/Cas9-based transcriptional activation tightly regulates gene expression in Nicotiana benthamiana. BMC Biotechnology, 2022, 22, 12.	1.7	16
1720	Knowledge graph-based recommendation framework identifies drivers of resistance in EGFR mutant non-small cell lung cancer. Nature Communications, 2022, 13, 1667.	5.8	33
1721	Bioorthogonal Chemical Epigenetic Modifiers Enable Dose-Dependent CRISPR Targeted Gene Activation in Mammalian Cells. ACS Synthetic Biology, 2022, 11, 1397-1407.	1.9	3
1722	CRISPR somatic genome engineering and cancer modeling in the mouse pancreas and liver. Nature Protocols, 2022, 17, 1142-1188.	5.5	13

		CITATION REPORT		
#	Article		IF	CITATIONS
1724	Nanoparticle delivery systems for substance use disorder. Neuropsychopharmacology,	, 2022, , .	2.8	10
1725	Carrier strategies boost the application of CRISPR/Cas system in gene therapy. Explore	ition, 2022, 2, .	5.4	30
1726	Destabilizing heterochromatin by APOE mediates senescence. Nature Aging, 2022, 2,	303-316.	5.3	36
1727	Parkinson's disease motor symptoms rescue by CRISPRaâ€reprogramming astrocytes neurons. EMBO Molecular Medicine, 2022, 14, e14797.	into GABAergic	3.3	26
1728	Lupus enhancer risk variant causes dysregulation of IRF8 through cooperative lncRNA methylation machinery. Nature Communications, 2022, 13, 1855.	and DNA	5.8	16
1729	A split prime editor with untethered reverse transcriptase and circular RNA template. N Biotechnology, 2022, 40, 1388-1393.	lature	9.4	71
1731	Inhibition of the NOTCH1 Pathway in the Stressed Heart Limits Fibrosis and Promotes Non-Myocyte Cells into the Cardiomyocyte Fate. Journal of Cardiovascular Developme 2022, 9, 111.		0.8	3
1732	Controlling <scp>CRISPR as9</scp> by guide <scp>RNA</scp> engineering. Wiley Reviews RNA, 2023, 14, e1731.	Interdisciplinary	3.2	6
1733	A genome-scale gain-of-function CRISPR screen in CD8 TÂcells identifies proline metab to enhance CAR-T therapy. Cell Metabolism, 2022, 34, 595-614.e14.	oolism as a means	7.2	70
1734	Secretory defects in pediatric osteosarcoma result from downregulation of selective C proteins. IScience, 2022, 25, 104100.	OPII coatomer	1.9	2
1735	Refactoring transcription factors for metabolic engineering. Biotechnology Advances, 107935.	2022, 57,	6.0	35
1736	CRISPR-Based Genetic Switches and Other Complex Circuits: Research and Applicatior 1255.	ı. Life, 2021, 11,	1.1	5
1738	Hairy CRISPR: Genome Editing in Plants Using Hairy Root Transformation. Plants, 2022	2, 11, 51.	1.6	26
1739	Ultrasound-Controlled CRISPR/Cas9 System Augments Sonodynamic Therapy of Hepa Carcinoma. ACS Central Science, 2021, 7, 2049-2062.	tocellular	5.3	44
1740	NEAT1 is essential for metabolic changes that promote breast cancer growth and met Metabolism, 2021, 33, 2380-2397.e9.	astasis. Cell	7.2	73
1742	Compact SchCas9 Recognizes the Simple NNGR PAM. Advanced Science, 2022, 9, e21	104789.	5.6	13
1743	CRISPR-Based Approaches for the High-Throughput Characterization of Long Non-Cod Non-coding RNA, 2021, 7, 79.	ing RNAs.	1.3	6
1744	State-of-the-art CRISPR for in vivo and cell-based studies in Drosophila. Trends in Gene 437-453.	tics, 2022, 38,	2.9	26

#	Article	IF	CITATIONS
1747	Developing CRISPR/Cas9-Mediated Fluorescent Reporter Human Pluripotent Stem-Cell Lines for High-Content Screening. Molecules, 2022, 27, 2434.	1.7	2
1748	Current advances and future prospects in production of recombinant insulin and other proteins to treat diabetes mellitus. Biotechnology Letters, 2022, 44, 643-669.	1.1	6
1749	Targeted Molecular Strategies for Genetic Neurodevelopmental Disorders: Emerging Lessons from Dravet Syndrome. Neuroscientist, 2023, 29, 732-750.	2.6	0
1750	CRISPR-Mediated Activation of αV Integrin Subtypes Promotes Neuronal Differentiation of Neuroblastoma Neuro2a Cells. Frontiers in Genome Editing, 2022, 4, 846669.	2.7	5
1751	Overview of advances in CRISPR/deadCas9 technology and its applications in human diseases. Gene, 2022, 830, 146518.	1.0	10
1752	Inducible CRISPR activation screen for interferon-stimulated genes identifies OAS1 as a SARS-CoV-2 restriction factor. PLoS Pathogens, 2022, 18, e1010464.	2.1	24
1753	Epigenetic drug screening defines a PRMT5 inhibitor–sensitive pancreatic cancer subtype. JCI Insight, 2022, 7, .	2.3	6
1754	Genome editing: An essential technology for cancer treatment. Medicine in Omics, 2022, , 100015.	0.6	3
1775	Recent advancements in CRISPR/Cas technology for accelerated crop improvement. Planta, 2022, 255, 109.	1.6	9
1776	The nuclear receptor THRB facilitates differentiation of human PSCs into more mature hepatocytes. Cell Stem Cell, 2022, 29, 795-809.e11.	5.2	5
1778	CRISPR accelerates the cancer drug discovery. Biocell, 2022, .	0.4	0
1779	CRISPR-Cas9 library screening approach for anti-cancer drug discovery: overview and perspectives. Theranostics, 2022, 12, 3329-3344.	4.6	16
1781	Engineering CRISPR/Cas9 for Multiplexed Recombinant Coagulation Factor Production. International Journal of Molecular Sciences, 2022, 23, 5090.	1.8	1
1782	Comprehensive Transcriptional Profiling and Mouse Phenotyping Reveals Dispensable Role for Adipose Tissue Selective Long Noncoding RNA Gm15551. Non-coding RNA, 2022, 8, 32.	1.3	1
1783	Customâ€made design of metabolite composition in <i>N. benthamiana</i> leaves using CRISPR activators. Plant Biotechnology Journal, 2022, 20, 1578-1590.	4.1	18
1784	Epigenome editing reveals core DNA methylation for imprinting control in the <i>Dlk1-Dio3</i> imprinted domain. Nucleic Acids Research, 2022, 50, 5080-5094.	6.5	10
1785	Decrypting the mechanistic basis of CRISPR/Cas9 protein. Progress in Biophysics and Molecular Biology, 2022, 172, 60-76.	1.4	5
1786	Synthetic biology and opportunities within agricultural crops. , 2022, 1, 89-107.		13

#	Article	IF	Citations
1787	The Mitochondrial Protein C1QBP Promotes Hepatocellular Carcinoma Progression by Enhancing Cell Survival, Migration and Invasion. Journal of Cancer, 2022, 13, 2477-2489.	1.2	1
1788	Genomeâ€wide gainâ€ofâ€function screening identifies EZH2 mediating resistance to PI3Kα inhibitors in oesophageal squamous cell carcinoma. Clinical and Translational Medicine, 2022, 12, .	1.7	8
1789	Application of CRISPR/Cas Genomic Editing Tools for HIV Therapy: Toward Precise Modifications and Multilevel Protection. Frontiers in Cellular and Infection Microbiology, 2022, 12, .	1.8	6
1791	CRISPR-mediated protein-tagging signal amplification systems for efficient transcriptional activation and repression in <i>Saccharomyces cerevisiae</i> . Nucleic Acids Research, 2022, 50, 5988-6000.	6.5	10
1792	Ingestion of single guide RNAs induces gene overexpression and extends lifespan in Caenorhabditis elegans via CRISPR activation. Journal of Biological Chemistry, 2022, 298, 102085.	1.6	5
1793	Dead Cas(t) light on new life: CRISPRa-mediated reprogramming of somatic cells into neurons. Cellular and Molecular Life Sciences, 2022, 79, .	2.4	2
1794	XIST loss impairs mammary stem cell differentiation and increases tumorigenicity through Mediator hyperactivation. Cell, 2022, 185, 2164-2183.e25.	13.5	22
1796	Epigenetic regulation of T cell exhaustion. Nature Immunology, 2022, 23, 848-860.	7.0	82
1798	Engineering the next generation of cell-based therapeutics. Nature Reviews Drug Discovery, 2022, 21, 655-675.	21.5	93
1799	Integration of in silico and in vitro approaches to evaluate antioxidant and anticancer properties of Tribulus terrestris extracts. Arabian Journal of Chemistry, 2022, 15, 103984.	2.3	3
1802	A Programmable <i>In Vivo</i> CRISPR Activation Model Elucidates the Oncogenic and Immunosuppressive Functions of MYC in Lung Adenocarcinoma. Cancer Research, 2022, 82, 2761-2776.	0.4	8
1803	Genome-wide CRISPR/Cas9 transcriptional activation screen identifies a histone acetyltransferase inhibitor complex as a regulator of HIV-1 integration. Nucleic Acids Research, 2022, 50, 6687-6701.	6.5	6
1804	3D Chromatin Organization Involving MEIS1 Factor in the cis-Regulatory Landscape of GJB2. International Journal of Molecular Sciences, 2022, 23, 6964.	1.8	0
1805	CRISPR activation screen identifies TGFÎ ² -associated PEG10 as a crucial tumor suppressor in Ewing sarcoma. Scientific Reports, 2022, 12, .	1.6	0
1806	CRISPR Modeling and Correction of Cardiovascular Disease. Circulation Research, 2022, 130, 1827-1850.	2.0	32
1807	Exploring the genetic space of the <scp>DNA</scp> damage response for cancer therapy through <scp>CRISPR</scp> â€based screens. Molecular Oncology, 2022, 16, 3778-3791.	2.1	5
1809	Dissecting Plant Gene Functions Using CRISPR Toolsets for Crop Improvement. Journal of Agricultural and Food Chemistry, 2022, 70, 7343-7359.	2.4	4
1810	BCL-2 isoform β promotes angiogenesis by TRiC-mediated upregulation of VEGF-A in lymphoma. Oncogene, 2022, 41, 3655-3663.	2.6	6

#	Article	IF	CITATIONS
1811	Systematic HIV-1 promoter targeting with CRISPR/dCas9-VPR reveals optimal region for activation of the latent provirus. Journal of General Virology, 2022, 103, .	1.3	3
1812	Multidrug Resistance in Cancer: Understanding Molecular Mechanisms, Immunoprevention and Therapeutic Approaches. Frontiers in Oncology, 0, 12, .	1.3	108
1813	Highly efficient CRISPR systems for loss-of-function and gain-of-function research in pear calli. Horticulture Research, 2022, 9, .	2.9	12
1814	Comparative analysis of dCas9-VP64 variants and multiplexed guide RNAs mediating CRISPR activation. PLoS ONE, 2022, 17, e0270008.	1.1	4
1815	CRISPR interference interrogation of COPD GWAS genes reveals the functional significance of desmoplakin in iPSC-derived alveolar epithelial cells. Science Advances, 2022, 8, .	4.7	6
1816	Transcriptional Activation of Biosynthetic Gene Clusters in Filamentous Fungi. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	14
1817	The HHIP-AS1 lncRNA promotes tumorigenicity through stabilization of dynein complex 1 in human SHH-driven tumors. Nature Communications, 2022, 13, .	5.8	16
1818	Programmable Transcriptional Modulation with a Structured RNA-Mediated CRISPR-dCas9 Complex. Journal of the American Chemical Society, 2022, 144, 12690-12697.	6.6	4
1819	A Nodal enhanced micropeptide NEMEP regulates glucose uptake during mesendoderm differentiation of embryonic stem cells. Nature Communications, 2022, 13, .	5.8	7
1821	Enhancing glycosylase base-editor activity by fusion to transactivation modules. Cell Reports, 2022, 40, 111090.	2.9	7
1822	Hijacking of transcriptional condensates by endogenous retroviruses. Nature Genetics, 2022, 54, 1238-1247.	9.4	33
1823	High-Throughput CRISPR Screening in Hematological Neoplasms. Cancers, 2022, 14, 3612.	1.7	3
1824	Modulating CRISPR-Cas Genome Editing Using Guide-Complementary DNA Oligonucleotides. CRISPR Journal, 2022, 5, 571-585.	1.4	0
1826	EZH2 regulates a SETDB1/ΔNp63α axis via RUNX3 to drive a cancer stem cell phenotype in squamous cell carcinoma. Oncogene, 2022, 41, 4130-4144.	2.6	9
1828	Genome-wide bidirectional CRISPR screens identify mucins as host factors modulating SARS-CoV-2 infection. Nature Genetics, 2022, 54, 1078-1089.	9.4	61
1829	Bidirectional genome-wide CRISPR screens reveal host factors regulating SARS-CoV-2, MERS-CoV and seasonal HCoVs. Nature Genetics, 2022, 54, 1090-1102.	9.4	52
1830	Small noncoding RNAs play superior roles in maintaining hematopoietic stem cell homeostasis. Blood Science, 2022, 4, 125-132.	0.4	0
1831	Therapeutic Strategies to Enhance Tumor Antigenicity: Making the Tumor Detectable by the Immune System. Biomedicines, 2022, 10, 1842.	1.4	5

#	Article	IF	CITATIONS
1832	Systematic comparison of CRISPR-based transcriptional activators uncovers gene-regulatory features of enhancer–promoter interactions. Nucleic Acids Research, 2022, 50, 7842-7855.	6.5	12
1833	Therapeutic targeting of ATR in alveolar rhabdomyosarcoma. Nature Communications, 2022, 13, .	5.8	6
1834	High throughput CRISPRi and CRISPRa technologies in 3D genome regulation for neuropsychiatric diseases. Human Molecular Genetics, 0, , .	1.4	1
1835	Neurodevelopmental copy-number variants: A roadmap to improving outcomes by uniting patient advocates, researchers, and clinicians for collective impact. American Journal of Human Genetics, 2022, 109, 1353-1365.	2.6	9
1836	A Ctnnb1 enhancer regulates neocortical neurogenesis by controlling the abundance of intermediate progenitors. Cell Discovery, 2022, 8, .	3.1	3
1837	Disruption of nuclear envelope integrity as a possible initiating event in tauopathies. Cell Reports, 2022, 40, 111249.	2.9	19
1839	A novel fluorescence biosensor based on CRISPR/Cas12a integrated MXenes for detecting Aflatoxin B1. Talanta, 2023, 252, 123773.	2.9	53
1841	Constitutive heterochromatin propagation contributes to the X chromosome inactivation. Chromosome Research, 0, , .	1.0	0
1842	The protein arginine methyltransferase PRMT9 attenuates MAVS activation through arginine methylation. Nature Communications, 2022, 13, .	5.8	13
1843	CRISPR base editing of cis-regulatory elements enables the perturbation of neurodegeneration-linked genes. Molecular Therapy, 2022, 30, 3619-3631.	3.7	10
1846	New Advances in Using Virus-like Particles and Related Technologies for Eukaryotic Genome Editing Delivery. International Journal of Molecular Sciences, 2022, 23, 8750.	1.8	5
1847	Multi-hallmark long noncoding RNA maps reveal non-small cell lung cancer vulnerabilities. Cell Genomics, 2022, 2, 100171.	3.0	9
1848	PIWI-Interacting RNA (piRNA) and Epigenetic Editing in Environmental Health Sciences. Current Environmental Health Reports, 2022, 9, 650-660.	3.2	4
1849	Closely related type II-C Cas9 orthologs recognize diverse PAMs. ELife, 0, 11, .	2.8	13
1851	A CRISPR activation screen identifies genes that enhance SARS-CoV-2 infection. Protein and Cell, 0, , .	4.8	0
1852	Selective Polyprotein Processing Determines Norovirus Sensitivity to Trim7. Journal of Virology, 2022, 96, .	1.5	1
1853	Generation of a CRISPR activation mouse that enables modelling of aggressive lymphoma and interrogation of venetoclax resistance. Nature Communications, 2022, 13, .	5.8	12
1854	CRISPR-RNAa: targeted activation of translation using dCas13 fusions to translation initiation factors. Nucleic Acids Research, 2022, 50, 8986-8998.	6.5	17

#	Article	IF	CITATIONS
1855	CRISPR/dCas9 for hepatic fibrosis therapy: implications and challenges. Molecular Biology Reports, 2022, 49, 11403-11408.	1.0	1
1856	Applications of CRISPR-Cas9 in Alzheimer's Disease and Related Disorders. International Journal of Molecular Sciences, 2022, 23, 8714.	1.8	14
1857	Modest increase of <i>KIF11</i> expression exposes fragilities in the mitotic spindle, causing chromosomal instability. Journal of Cell Science, 2022, 135, .	1.2	1
1858	CRISPR-mediated activation of autism gene Itgb3 restores cortical network excitability via mGluR5 signaling. Molecular Therapy - Nucleic Acids, 2022, 29, 462-480.	2.3	8
1859	Capturing nucleic acid variants with precision using CRISPR diagnostics. Biosensors and Bioelectronics, 2022, 217, 114712.	5.3	4
1860	New Directions for Epigenetics: Application of Engineered DNA-binding Molecules to Locus-specific Epigenetic Research. , 2023, , 843-868.		0
1861	Point-of-care electrochemical biosensors using CRISPR/Cas for RNA analysis. , 2022, , 317-333.		2
1862	Potential Role of Probiotics on Gut Microbiota in Neurological Disease. , 2022, , 153-178.		0
1863	Off-Target Effects of Crop Genome Editing and Its Minimization. , 2022, , 185-208.		0
1864	CRISPR-Based Transcriptional Activation in Drosophila. Methods in Molecular Biology, 2022, , 177-199.	0.4	0
1865	Stimuli-responsive delivery strategies for controllable gene editing in tumor therapeutics. Journal of Materials Chemistry B, 2022, 10, 7694-7707.	2.9	7
1866	Medical Application of Molecular Robots. , 2022, , 247-281.		0
1867	Genome-Wide CRISPR Screening to Identify Mammalian Factors that Regulate Intron Retention. Methods in Molecular Biology, 2022, , 263-284.	0.4	0
1868	Identification of Genes Regulating Hepatocyte Injury by a Genome-Wide CRISPR-Cas9 Screen. Methods in Molecular Biology, 2022, , 227-251.	0.4	0
1869	Lymphocyte Networks are Dynamic Cellular Communities in the Immunoregulatory Landscape of Lung Adenocarcinoma. SSRN Electronic Journal, 0, , .	0.4	0
1870			
	The application of genome-wide CRISPR-Cas9 screens to dissect the molecular mechanisms of toxins. Computational and Structural Biotechnology Journal, 2022, 20, 5076-5084.	1.9	7
1871		1.9	7 0

#	Article	IF	CITATIONS
1875	CRISPR/Cas9 system: a reliable and facile genome editing tool in modern biology. Molecular Biology Reports, 2022, 49, 12133-12150.	1.0	9
1877	GB_SynP: A Modular dCas9-Regulated Synthetic Promoter Collection for Fine-Tuned Recombinant Gene Expression in Plants. ACS Synthetic Biology, 2022, 11, 3037-3048.	1.9	16
1878	Modeling diverse genetic subtypes of lung adenocarcinoma with a next-generation alveolar type 2 organoid platform. Genes and Development, 2022, 36, 936-949.	2.7	14
1879	Activation of stably silenced genes by recruitment of a synthetic de-methylating module. Nature Communications, 2022, 13, .	5.8	6
1880	CRISPR/dCas-mediated gene activation toolkit development and its application for parthenogenesis induction in maize. Plant Communications, 2023, 4, 100449.	3.6	6
1881	Gain-of-function genetic screens in human cells identify SLC transporters overcoming environmental nutrient restrictions. Life Science Alliance, 2022, 5, e202201404.	1.3	8
1882	Efficient Targeted DNA Methylation with dCas9-Coupled DNMT3A-DNMT3L Methyltransferase. Methods in Molecular Biology, 2023, , 177-188.	0.4	0
1883	Quantification of Genome Editing and Transcriptional Control Capabilities Reveals Hierarchies among Diverse CRISPR/Cas Systems in Human Cells. ACS Synthetic Biology, 2022, 11, 3239-3250.	1.9	9
1885	Activation of long non-coding RNA NEAT1 leads to survival advantage of multiple myeloma cells by supporting a positive regulatory loop with DNA repair proteins. Haematologica, 2023, 108, 219-233.	1.7	7
1886	Multiplexed functional genomic assays to decipher the noncoding genome. Human Molecular Genetics, 2022, 31, R84-R96.	1.4	4
1887	Regulation of Gene Expression Using dCas9-SunTag Platforms. Methods in Molecular Biology, 2023, , 189-195.	0.4	1
1888	Concatenated Coiled-Coil Tag for Highly Efficient, Small Molecule-Inducible Upregulation of Endogenous Mammalian Genes. Methods in Molecular Biology, 2023, , 197-209.	0.4	1
1890	SAM-based Genome Editing to Obtain Isogenic Cell Lines Overexpressing Human CD5 Protein. , 2022, 2, 56-62.		0
1891	Small Molecules for Enhancing the Precision and Safety of Genome Editing. Molecules, 2022, 27, 6266.	1.7	6
1892	Reversibility and therapeutic development for neurodevelopmental disorders, insights from genetic animal models. Advanced Drug Delivery Reviews, 2022, 191, 114562.	6.6	4
1893	LINE-1 activation in the cerebellum drives ataxia. Neuron, 2022, 110, 3278-3287.e8.	3.8	15
1894	TGF-β-Upregulated Lnc-Nr6a1 Acts as a Reservoir of miR-181 and Mediates Assembly of a Glycolytic Complex. Non-coding RNA, 2022, 8, 62.	1.3	1
1895	A competitive precision CRISPR method to identify the fitness effects of transcription factor binding sites. Nature Biotechnology, 0, , .	9.4	3

#	Article	IF	CITATIONS
1896	Recent Progress and Future Prospect of CRISPR/Cas-Derived Transcription Activation (CRISPRa) System in Plants. Cells, 2022, 11, 3045.	1.8	9
1897	Design, Construction, and Validation of Targeted Gene Activation with TREE System in Human Cells. Methods in Molecular Biology, 2023, , 211-226.	0.4	0
1898	Identification of the Factor That Leads Human Mesenchymal Stem Cell Lines into Decellularized Bone. Bioengineering, 2022, 9, 490.	1.6	1
1899	ZBTB7A promotes virus-host homeostasis during human coronavirus 229E infection. Cell Reports, 2022, 41, 111540.	2.9	9
1900	NOTCH Signaling Limits the Response of Low-Grade Serous Ovarian Cancers to MEK Inhibition. Molecular Cancer Therapeutics, 2022, 21, 1862-1874.	1.9	4
1902	RNA-Responsive gRNAs for Controlling CRISPR Activity: Current Advances, Future Directions, and Potential Applications. CRISPR Journal, 2022, 5, 642-659.	1.4	5
1903	CRISPR Activation Screening Identifies VGLL3–TEAD1–RUNX1/3 as a Transcriptional Complex for PD-L1 Expression. Journal of Immunology, 2022, 209, 907-915.	0.4	3
1904	Base and Prime Editing in the Retina—From Preclinical Research toward Human Clinical Trials. International Journal of Molecular Sciences, 2022, 23, 12375.	1.8	4
1905	CDK12 orchestrates superâ€enhancerâ€associated CCDC137 transcription to direct hepatic metastasis in colorectal cancer. Clinical and Translational Medicine, 2022, 12, .	1.7	4
1906	A Novel CRISPR Interference Effector Enabling Functional Gene Characterization with Synthetic Guide RNAs. CRISPR Journal, 2022, 5, 769-786.	1.4	2
1907	A synthetic transcription platform for programmable gene expression in mammalian cells. Nature Communications, 2022, 13, .	5.8	7
1908	Adding a Chemical Biology Twist to CRISPR Screening. Israel Journal of Chemistry, 0, , .	1.0	Ο
1909	An Exploration of Pepino (Solanum muricatum) Flavor Compounds Using Machine Learning Combined with Metabolomics and Sensory Evaluation. Foods, 2022, 11, 3248.	1.9	6
1910	KCNQ1OT1 promotes genome-wide transposon repression by guiding RNA–DNA triplexes and HP1 binding. Nature Cell Biology, 2022, 24, 1617-1629.	4.6	20
1911	Perlecan Improves Blood Spinal Cord Barrier Repair Through the Integrin β1/ROCK/MLC Pathway After Spinal Cord Injury. Molecular Neurobiology, 2023, 60, 51-67.	1.9	7
1912	FBXO34 promotes latent HIV-1 activation by post-transcriptional modulation. Emerging Microbes and Infections, 2022, 11, 2785-2799.	3.0	2
1914	CRISPR Activation/Interference Screen to Identify Genetic Networks in HDAC-Inhibitor-Resistant Cells. Methods in Molecular Biology, 2023, , 429-454.	0.4	1
1915	Gene regulatory and gene editing tools and their applications for retinal diseases and neuroprotection: From proof-of-concept to clinical trial. Frontiers in Neuroscience, 0, 16, .	1.4	3

#	Article	IF	CITATIONS
1916	Therapeutic modulation of gene expression in the disease state: Treatment strategies and approaches for the development of next-generation of the epigenetic drugs. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	8
1917	Exploring and engineering PAM-diverse Streptococci Cas9 for PAM-directed bifunctional and titratable gene control in bacteria. Metabolic Engineering, 2023, 75, 68-77.	3.6	6
1918	Advances in CRISPR therapeutics. Nature Reviews Nephrology, 2023, 19, 9-22.	4.1	41
1920	HIF1α-AS1 is a DNA:DNA:RNA triplex-forming lncRNA interacting with the HUSH complex. Nature Communications, 2022, 13, .	5.8	13
1921	Targeted activation of <i>HNF4α/HGF1/FOXA2</i> reverses hepatic fibrosis via exosome-mediated delivery of CRISPR/dCas9-SAM system. Nanomedicine, 2022, 17, 1411-1427.	1.7	4
1922	Acute depletion of human core nucleoporin reveals direct roles in transcription control but dispensability for 3D genome organization. Cell Reports, 2022, 41, 111576.	2.9	11
1923	Tumor-intrinsic SIRPA promotes sensitivity to checkpoint inhibition immunotherapy in melanoma. Cancer Cell, 2022, 40, 1324-1340.e8.	7.7	11
1924	Epigenome editing in mice: The dawn of the reverse epigenetics era. Gene and Genome Editing, 2022, 3-4, 100012.	1.3	1
1925	MACC1 promotes pancreatic cancer metastasis by interacting with the EMT regulator SNAI1. Cell Death and Disease, 2022, 13, .	2.7	13
1926	Epigenetic regulation of aging: implications for interventions of aging and diseases. Signal Transduction and Targeted Therapy, 2022, 7, .	7.1	108
1927	Studying Virus-Host Interactions with CRISPR Technology. Methods in Molecular Biology, 2023, , 105-117.	0.4	0
1928	Pooled genetic screens with imageâ€based profiling. Molecular Systems Biology, 2022, 18, .	3.2	8
1929	Increasing Genome Editing Efficiency of Cas9 Nucleases by the Simultaneous Use of Transcriptional Activators and Histone Acetyltransferase Activator. CRISPR Journal, 2022, 5, 854-867.	1.4	2
1930	A CRISPR Path to Finding Vulnerabilities and Solving Drug Resistance: Targeting the Diverse Cancer Landscape and Its Ecosystem. Genetics & Genomics Next, 2022, 3, .	0.8	3
1931	Ascertaining cells' synaptic connections and RNA expression simultaneously with barcoded rabies virus libraries. Nature Communications, 2022, 13, .	5.8	4
1932	Long non-coding RNA PCAT19 safeguards DNA in quiescent endothelial cells by preventing uncontrolled phosphorylation of RPA2. Cell Reports, 2022, 41, 111670.	2.9	7
1933	Biofabrication of synthetic human liver tissue with advanced programmable functions. IScience, 2022, 25, 105503.	1.9	2
1934	EpiCas-DL: Predicting sgRNA activity for CRISPR-mediated epigenome editing by deep learning. Computational and Structural Biotechnology Journal, 2023, 21, 202-211.	1.9	5

#	Article	IF	Citations
1936	Towards elucidating disease-relevant states of neurons and glia by CRISPR-based functional genomics. Genome Medicine, 2022, 14, .	3.6	1
1937	Atlas of interactions between SARS-CoV-2 macromolecules and host proteins. , 2023, 2, 100068.		6
1938	Multiplexing with CRISPR-Cas Arrays. , 2022, , .		0
1939	High-content CRISPR screening in tumor immunology. Frontiers in Immunology, 0, 13, .	2.2	3
1941	Gene activation guided by nascent RNA-bound transcription factors. Nature Communications, 2022, 13,	5.8	2
1943	Long noncoding RNA study: Genome-wide approaches. Genes and Diseases, 2023, 10, 2491-2510.	1.5	2
1944	Transcription regulation strategies in methylotrophs: progress and challenges. Bioresources and Bioprocessing, 2022, 9, .	2.0	3
1945	Development and applications of a CRISPR activation system for facile genetic overexpression in <i>Candida albicans</i> . G3: Genes, Genomes, Genetics, 2023, 13, .	0.8	5
1946	An Optogeneticâ€Controlled Cell Reprogramming System for Driving Cell Fate and Lightâ€Responsive Chimeric Mice. Advanced Science, 2023, 10, .	5.6	2
1947	Plant Genome Editing. , 2022, , 205-216.		0
1948	Hyperactivation of p53 using CRISPRa kills human papillomavirus-driven cervical cancer cells. Virus Genes, 2023, 59, 312-316.	0.7	1
1949	Engineering inducible biomolecular assemblies for genome imaging and manipulation in living cells. Nature Communications, 2022, 13, .	5.8	6
1952	Genome Editing in Dyslipidemia and Atherosclerosis. Advances in Experimental Medicine and Biology, 2023, , 139-156.	0.8	1
1954	From DNA-protein interactions to the genetic circuit design using CRISPR-dCas systems. Frontiers in Molecular Biosciences, 0, 9, .	1.6	1
1957	A transposable element into the human long noncoding RNA <i>CARMEN</i> is a switch for cardiac precursor cell specification. Cardiovascular Research, 2023, 119, 1361-1376.	1.8	2
1958	CRISPR activation and interference as investigative tools in the cardiovascular system. International Journal of Biochemistry and Cell Biology, 2023, 155, 106348.	1.2	1
1959	Design of a self-driven probiotic-CRISPR/Cas9 nanosystem for sono-immunometabolic cancer therapy. Nature Communications, 2022, 13, .	5.8	16
1960	Clustered regularly interspaced short palindromic repeats screens in pediatric tumours: A review. Clinical and Translational Discovery, 2022, 2, .	0.2	О

#	Article	IF	CITATIONS
1961	CRISPRi-microfluidics screening enables genome-scale target identification for high-titer protein production and secretion. Metabolic Engineering, 2023, 75, 192-204.	3.6	12
1962	Nucleic acid-assisted CRISPR-Cas systems for advanced biosensing and bioimaging. TrAC - Trends in Analytical Chemistry, 2023, 159, 116931.	5.8	14
1964	Integration of DNA barcoding and nanotechnology in drug delivery. International Journal of Biological Macromolecules, 2023, 230, 123262.	3.6	3
1965	Engineered PROTAC-CID Systems for Mammalian Inducible Gene Regulation. Journal of the American Chemical Society, 0, , .	6.6	3
1966	CRISPR/Cas9 therapeutics: progress and prospects. Signal Transduction and Targeted Therapy, 2023, 8, .	7.1	73
1967	A transcription factor atlas of directed differentiation. Cell, 2023, 186, 209-229.e26.	13.5	45
1968	Androgen-Independent Prostate Cancer Is Sensitive to CDC42-PAK7 Kinase Inhibition. Biomedicines, 2023, 11, 101.	1.4	2
1969	The lncRNA LUCAT1 is elevated in inflammatory disease and restrains inflammation by regulating the splicing and stability of NR4A2. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	14
1970	Building Blocks of Artificial CRISPR-Based Systems beyond Nucleases. International Journal of Molecular Sciences, 2023, 24, 397.	1.8	2
1972	Gene Modulation with CRISPR-based Tools in Human iPSC-Cardiomyocytes. Stem Cell Reviews and Reports, 0, , .	1.7	3
1973	Recent Advances in CRISPR-Cas Technologies for Synthetic Biology. Journal of Microbiology, 2023, 61, 13-36.	1.3	4
1974	Roles of innovative genome editing technologies in stem cell engineering, rheumatic diseases and other joint/bone diseases. , 2023, , 53-77.		0
1975	CRISPR Activator Approaches to Study Endogenous Androglobin Gene Regulation. Methods in Molecular Biology, 2023, , 167-185.	0.4	0
1976	Reversing the Central Dogma: RNA-guided control of DNA in epigenetics and genome editing. Molecular Cell, 2023, 83, 442-451.	4.5	5
1978	Toward the Development of Epigenome Editing-Based Therapeutics: Potentials and Challenges. International Journal of Molecular Sciences, 2023, 24, 4778.	1.8	10
1979	Targeting epigenetic aberrations of sarcoma in <scp>CRISPR</scp> era. Genes Chromosomes and Cancer, 2023, 62, 510-525.	1.5	0
1980	Use of CRISPR-based screens to identify mechanisms of chemotherapy resistance. Cancer Gene Therapy, 2023, 30, 1043-1050.	2.2	6
1981	PRMT3-mediated arginine methylation of IGF2BP1 promotes oxaliplatin resistance in liver cancer. Nature Communications, 2023, 14, .	5.8	11

#	Article	IF	CITATIONS
1982	Direct cardiac reprogramming: A new technology for cardiac repair. Journal of Molecular and Cellular Cardiology, 2023, 178, 51-58.	0.9	0
1983	Split dCas12a activator for lncRNA H19 activation to enhance BMSC differentiation and promote calvarial bone healing. Biomaterials, 2023, 297, 122106.	5.7	2
1984	GOLGA8 increases bulk antisense oligonucleotide uptake and activity in mammalian cells. Molecular Therapy - Nucleic Acids, 2023, 32, 289-301.	2.3	2
1985	Simultaneous engineering of natural killer cells for CAR transgenesis and CRISPR-Cas9 knockout using retroviral particles. Molecular Therapy - Methods and Clinical Development, 2023, 29, 173-184.	1.8	5
1986	Potential of the endogenous and artificially inserted CRISPR-Cas system for controlling virulence and antimicrobial resistance of food pathogens. , 2023, 2, 100229.		2
1988	Overexpression of CmWRKY8-1–VP64 Fusion Protein Reduces Resistance in Response to Fusarium oxysporum by Modulating the Salicylic Acid Signaling Pathway in Chrysanthemum morifolium. International Journal of Molecular Sciences, 2023, 24, 3499.	1.8	2
1989	LINC00478-derived novel cytoplasmic IncRNA LacRNA stabilizes PHB2 and suppresses breast cancer metastasis via repressing MYC targets. Journal of Translational Medicine, 2023, 21, .	1.8	5
1990	Revolutionizing DNA repair research and cancer therapy with CRISPR–Cas screens. Nature Reviews Molecular Cell Biology, 2023, 24, 477-494.	16.1	17
1991	Transplantation of Adipose-Tissue-Engineered Constructs with CRISPR-Mediated UCP1 Activation. International Journal of Molecular Sciences, 2023, 24, 3844.	1.8	1
1993	Therapeutic strategies for autism: targeting three levels of the central dogma of molecular biology. Translational Psychiatry, 2023, 13, .	2.4	6
1994	A versatile, high-efficiency platform for CRISPR-based gene activation. Nature Communications, 2023, 14, .	5.8	9
1995	Targeted epigenetic silencing of UCHL1 expression suppresses collagen-1 production in human lung epithelial cells. Epigenetics, 2023, 18, .	1.3	0
1996	Advances in plant synthetic biology approaches to control expression of gene circuits. Biochemical and Biophysical Research Communications, 2023, 654, 55-61.	1.0	2
1997	The MYC-regulated IncRNA LNROP (ENSG00000254887) enables MYC-driven cell proliferation by controlling the expression of OCT2. Cell Death and Disease, 2023, 14, .	2.7	2
1998	A genome–wide CRISPR activation screen identifies SCREEM a novel SNAI1 super-enhancer demarcated by eRNAs. Frontiers in Molecular Biosciences, 0, 10, .	1.6	0
1999	<i>OBSCN</i> restoration via <i>OBSCN-AS1</i> Âlong-noncoding RNA CRISPR-targeting suppresses metastasis in triple-negative breast cancer. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	2
2000	Transcriptional and Epigenetic Regulation of Context-Dependent Plasticity in T-Helper Lineages. Immune Network, 2023, 23, .	1.6	5
2002	Remodeling Tumor Immunogenicity with Dual-Activatable Binary CRISPR Nanomedicine for Cancer Immunotherapy. ACS Nano, 2023, 17, 5713-5726.	7.3	5

#	Article	IF	CITATIONS
2003	CRISPR-assisted transcription activation by phase-separation proteins. Protein and Cell, 2023, 14, 874-887.	4.8	4
2004	Epigenome editing based on CRISPR/dCas9p300 facilitates transdifferentiation of human fibroblasts into Leydig-like cells. Experimental Cell Research, 2023, 425, 113551.	1.2	1
2005	Massively parallel characterization of CRISPR activator efficacy in human induced pluripotent stem cells and neurons. Molecular Cell, 2023, 83, 1125-1139.e8.	4.5	9
2006	A IncRNA identifies Irf8 enhancer element in negative feedback control of dendritic cell differentiation. ELife, 0, 12, .	2.8	3
2007	A precise design strategy for a cell-derived extracellular matrix based on CRISPR/Cas9 for regulating neural stem cell function. Biomaterials Science, 2023, 11, 6537-6544.	2.6	0
2011	Bioinformatics approaches to analyzing CRISPR screen data: from dropout screens to singleâ€cell CRISPR screens. Quantitative Biology, 2022, 10, 307-320.	0.3	3
2012	Perspective Chapter: Epigenetic Therapy - The Future Treatment for Cancer. , 0, , .		0
2013	Limitations of the Plasmid-Based Cas9-Zinc Finger Fusion System for Homology-Directed Knock-In in Chinese Hamster Ovary Cells. Biotechnology and Bioprocess Engineering, 0, , .	1.4	0
2014	Evaluation of Radiation Sensitivity Differences in Mouse Liver Tumor Organoids Using CRISPR/Cas9-Mediated Gene Mutation. Technology in Cancer Research and Treatment, 2023, 22, .	0.8	2
2015	CRISPR-Cas-mediated transcriptional modulation: The therapeutic promises of CRISPRa and CRISPRi. Molecular Therapy, 2023, 31, 1920-1937.	3.7	15
2016	MORF2-mediated plastidial retrograde signaling is involved in stress response and skotomorphogenesis beyond RNA editing. Frontiers in Plant Science, 0, 14, .	1.7	4
2017	Droplet-based forward genetic screening of astrocyte–microglia cross-talk. Science, 2023, 379, 1023-1030.	6.0	35
2019	Targeted DNA integration in human cells without double-strand breaks using CRISPR-associated transposases. Nature Biotechnology, 2024, 42, 87-98.	9.4	27
2020	PD-L1ATTAC mice reveal the potential of depleting PD-L1 expressing cells in cancer therapy. Aging, 2023, 15, 1791-1807.	1.4	0
2021	<scp>CRISPR</scp> â€Based <scp>KCC2</scp> Upregulation Attenuates Drugâ€Resistant Seizure in Mouse Models of Epilepsy. Annals of Neurology, 2023, 94, 91-105.	2.8	2
2023	Plant Mutagenesis Tools for Precision Breeding: Conventional CRISPR/Cas9 Tools and Beyond. , 2023, , 269-291.		0
2024	Direct Lineage Reprogramming for Induced Keratinocyte Stem Cells: A Potential Approach for Skin Repair. Stem Cells Translational Medicine, 0, , .	1.6	1
2025	Nanotechnology-enabled gene delivery for cancer and other genetic diseases. Expert Opinion on Drug Delivery, 2023, 20, 523-540.	2.4	2

#	Article	IF	CITATIONS
2026	FHL5 Controls Vascular Disease–Associated Gene Programs in Smooth Muscle Cells. Circulation Research, 2023, 132, 1144-1161.	2.0	5
2027	CRISPR-Cas System: The Current and Emerging Translational Landscape. Cells, 2023, 12, 1103.	1.8	7
2028	Engineered CRISPR-OsCas12f1 and RhCas12f1 with robust activities and expanded target range for genome editing. Nature Communications, 2023, 14, .	5.8	17
2029	A Review of CRISPR-Based Advances in Dermatological Diseases. Molecular Diagnosis and Therapy, 2023, 27, 445-456.	1.6	1
2030	Lymphocyte networks are dynamic cellular communities in the immunoregulatory landscape of lung adenocarcinoma. Cancer Cell, 2023, 41, 871-886.e10.	7.7	18
2032	Targeted Modulation of Chicken Genes In Vitro Using CRISPRa and CRISPRi Toolkit. Genes, 2023, 14, 906.	1.0	1
2034	Application of CRISPR/Cas9-mediated gene editing for abiotic stress management in crop plants. Frontiers in Plant Science, 0, 14, .	1.7	12
2035	Pooled genome-wide CRISPR activation screening for rapamycin resistance genes in Drosophila cells. ELife, 0, 12, .	2.8	2
2036	Vector enabled CRISPR gene editing $\hat{a} \in$ A revolutionary strategy for targeting the diversity of brain pathologies. Coordination Chemistry Reviews, 2023, 487, 215172.	9.5	0
2037	Genome-edited crops. , 2023, , 73-99.		Ο
2038	Systematic elucidation of genetic mechanisms underlying cholesterol uptake. Cell Genomics, 2023, , 100304.	3.0	2
2039	CRISPR-Combo–mediated orthogonal genome editing and transcriptional activation for plant breeding. Nature Protocols, 2023, 18, 1760-1794.	5.5	5
2040	Using traditional machine learning and deep learning methods for on- and off-target prediction in CRISPR/Cas9: a review. Briefings in Bioinformatics, 2023, 24, .	3.2	8
2042	CRISPR technology and its potential role in treating rare imprinting diseases. , 2023, , 273-300.		0
2044	Discovery of Diverse CRISPR-Cas Systems and Expansion of the Genome Engineering Toolbox. Biochemistry, 2023, 62, 3465-3487.	1.2	13
2055	CRISPR, epigenetics, and cancer. , 2023, , 687-707.		0
2059	Expanding the RNA and RNP-Based Regulatory World in Mammalian Cells. , 2023, , 1-35.		0

#	Article	IF	CITATIONS
2091	Genome-Wide CRISPR Screening for the Identification of Therapy Resistance-Associated Genes in Urothelial Carcinoma. Methods in Molecular Biology, 2023, , 155-165.	0.4	0
2102	Expanding the RNA- and RNP-Based Regulatory World in Mammalian Cells. , 2023, , 2361-2395.		0
2126	Design principles for synthetic control systems to engineer plants. Plant Cell Reports, 2023, 42, 1875-1889.	2.8	1
2131	Targeted Activation of Arabidopsis Genes by a Potent CRISPR–Act3.0 System. Methods in Molecular Biology, 2023, , 27-40.	0.4	0
2194	CRISPR-Cas Fundamentals and Advancements in Translational Biotechnology. , 2023, , 281-291.		0
2199	Techniques for investigating lncRNA transcript functions in neurodevelopment. Molecular Psychiatry, 0, , .	4.1	1
2200	CRISPR/Cas9-Mediated Modification of PTP Expression. Methods in Molecular Biology, 2024, , 43-56.	0.4	0
2203	Genetically-engineered mouse models of small cell lung cancer: the next generation. Oncogene, 2024, 43, 457-469.	2.6	0
2213	CRISPR-Cas-led advancements in translational biotechnology. , 2024, , 71-91.		0
2221	Types of RNA therapeutics. Progress in Molecular Biology and Translational Science, 2024, , 41-63.	0.9	0
2243	How Gene Editing Is Changing Drug Development. , 2024, , 709-717.		0
2244	Gene editing for HD: Therapeutic prospects. , 2024, , 551-570.		0
2264	CRISPR Activation in Mouse Trophoblast Stem Cells. Methods in Molecular Biology, 2024, , 93-103.	0.4	0