Baicalein Attenuates Angiotensin II-Induced Cardiac Re ERK1/2, NF-ΰB, and Calcineurin Signaling Pathways in

American Journal of Hypertension 28, 518-526 DOI: 10.1093/ajh/hpu194

Citation Report

#	Article	IF	CITATIONS
1	Inhibition of Proteasome Activity by Low-dose Bortezomib Attenuates Angiotensin II-induced Abdominal Aortic Aneurysm in Apo Eâ~'/â~' Mice. Scientific Reports, 2015, 5, 15730.	3.3	19
2	Angiotensin II-Induced Egr-1 Expression is Suppressed by Peroxisome Proliferator- Activated Receptor-γ Ligand 15d-PGJ2 in Macrophages. Cellular Physiology and Biochemistry, 2015, 35, 689-698.	1.6	25
3	Continuous infusion of angiotensin II modulates hypertrophic differentiation and apoptosis of chondrocytes in cartilage formation in a fracture model mouse. Hypertension Research, 2015, 38, 382-393.	2.7	12
4	QiShenYiQi Pills, a compound in Chinese medicine, protects against pressure overload-induced cardiac hypertrophy through a multi-component and multi-target mode. Scientific Reports, 2015, 5, 11802.	3.3	53
5	Effect of the Lipoxygenase Inhibitor Baicalein on Muscles in Ovariectomized Rats. Journal of Nutrition and Metabolism, 2016, 2016, 1-14.	1.8	18
6	San-Huang-Xie-Xin-Tang Constituents Exert Drug-Drug Interaction of Mutual Reinforcement at Both Pharmacodynamics and Pharmacokinetic Level: A Review. Frontiers in Pharmacology, 2016, 7, 448.	3.5	18
7	The role of mid-chain hydroxyeicosatetraenoic acids in the pathogenesis of hypertension and cardiac hypertrophy. Archives of Toxicology, 2016, 90, 119-136.	4.2	39
8	Baicalein Attenuates Neurological Deficits and Preserves Blood–Brain Barrier Integrity in a Rat Model of Intracerebral Hemorrhage. Neurochemical Research, 2016, 41, 3095-3102.	3.3	31
9	Cardioprotective effects of baicalein on heart failure via modulation of Ca2+ handling proteins in vivo and in vitro. Life Sciences, 2016, 145, 213-223.	4.3	46
10	Baicalein Promotes Neuronal and Behavioral Recovery After Intracerebral Hemorrhage Via Suppressing Apoptosis, Oxidative Stress and Neuroinflammation. Neurochemical Research, 2017, 42, 1345-1353.	3.3	38
11	Choline ameliorates cardiovascular damage by improving vagal activity and inhibiting the inflammatory response in spontaneously hypertensive rats. Scientific Reports, 2017, 7, 42553.	3.3	30
12	Baicalein increases cisplatin sensitivity of A549 lung adenocarcinoma cells via PI3K/Akt/NF-κB pathway. Biomedicine and Pharmacotherapy, 2017, 90, 677-685.	5.6	146
13	MicroRNA-19a/b-3p protect the heart from hypertension-induced pathological cardiac hypertrophy through PDE5A. Journal of Hypertension, 2018, 36, 1847-1857.	0.5	26
14	Baicalin inhibits pressure overload-induced cardiac fibrosis through regulating AMPK/TGF-β/Smads signaling pathway. Archives of Biochemistry and Biophysics, 2018, 640, 37-46.	3.0	51
15	Baicalein attenuates monocrotaline-induced pulmonary arterial hypertension by inhibiting vascular remodeling in rats. Pulmonary Pharmacology and Therapeutics, 2018, 48, 124-135.	2.6	39
16	Cellular and Molecular Mechanisms of Polyphenol-Induced Beneficial Effects on Cardiac Remodeling. , 2018, , 77-88.		1
17	A comprehensive review on phytochemistry, pharmacology, and flavonoid biosynthesis of <i>Scutellaria baicalensis</i> . Pharmaceutical Biology, 2018, 56, 465-484.	2.9	230
18	Discussion on Comprehensive Utilization Value of Scutellaria Baicalensis Flower. IOP Conference Series: Materials Science and Engineering, 2018, 301, 012150.	0.6	0

		CITATION REPORT		
#	Article		IF	CITATIONS
19	Therapeutic Potential of Polyphenols in Cardiac Fibrosis. Frontiers in Pharmacology, 2018, 9, 12	2.	3.5	41
20	Baicalein Ameliorates Pulmonary Arterial Hypertension Caused by Monocrotaline through Downregulation of ET-1 and ET _A R in Pneumonectomized Rats. The American Journ Chinese Medicine, 2018, 46, 769-783.	al of	3.8	20
21	Food Bioactive HDAC Inhibitors in the Epigenetic Regulation of Heart Failure. Nutrients, 2018, 1	0, 1120.	4.1	28
22	<i>S-</i> Enantiomer of 19-Hydroxyeicosatetraenoic Acid Preferentially Protects Against Angiote II-Induced Cardiac Hypertrophy. Drug Metabolism and Disposition, 2018, 46, 1157-1168.	ensin	3.3	28
23	Hypertension-induced cardiac impairment is reversed by the inhibition of endoplasmic reticulum stress. Journal of Pharmacy and Pharmacology, 2019, 71, 1809-1821.	1	2.4	13
24	Advanced Glycation End Products: Potential Mechanism and Therapeutic Target in Cardiovascul Complications under Diabetes. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-12.	ar	4.0	79
25	Regulation of DNA methylation and 2-OG/TET signaling by choline alleviated cardiac hypertroph spontaneously hypertensive rats. Journal of Molecular and Cellular Cardiology, 2019, 128, 26-37	y in 7.	1.9	10
26	Therapeutic potential of IKK-β inhibitors from natural phenolics for inflammation in cardiovascu diseases. Inflammopharmacology, 2020, 28, 19-37.	ar	3.9	23
27	Therapeutic potential of polyphenols in cardiovascular diseases: Regulation of mTOR signaling pathway. Pharmacological Research, 2020, 152, 104626.		7.1	77
28	Mechanisms of diabetic cardiomyopathy and potential therapeutic strategies: preclinical and cli evidence. Nature Reviews Cardiology, 2020, 17, 585-607.	nical	13.7	353
29	Baicalein attenuates cardiac hypertrophy in mice via suppressing oxidative stress and activating autophagy in cardiomyocytes. Acta Pharmacologica Sinica, 2021, 42, 701-714.		6.1	57
30	Divergent and Overlapping Roles for Selected Phytochemicals in the Regulation of Pathological Cardiac Hypertrophy. Molecules, 2021, 26, 1210.		3.8	8
31	Promising influences of <i>Scutellaria baicalensis</i> and its two active constituents, baicalin, a baicalein, against metabolic syndrome: A review. Phytotherapy Research, 2021, 35, 3558-3574.	nd	5.8	43
32	Targeting inflammationâ€associated <scp>AMPK</scp> //Mfnâ€2/ <scp>MAPKs</scp> signaling baicalein exerts antiâ€atherosclerotic action. Phytotherapy Research, 2021, 35, 4442-4455.	pathways by	5.8	26
33	Integrating systematic pharmacology-based strategy and experimental validation to explore the synergistic pharmacological mechanisms of Guanxin V in treating ventricular remodeling. Bioorg Chemistry, 2021, 115, 105187.	çanic	4.1	19
34	Regulation and functions of NLRP3 inflammasome in cardiac fibrosis: Current knowledge and cli significance. Biomedicine and Pharmacotherapy, 2021, 143, 112219.	nical	5.6	19
35	Inhibitory effects of formononetin on the monocrotaline‑induced pulmonary arterial hyperten rats. Molecular Medicine Reports, 2020, 21, 1192-1200.	sion in	2.4	5
36	Levocetirizine and Amlodipine Restores Hepato-Cardiac Function in the Forced Swim-Induced Ca Remodelling Rat Model. Journal of Pharmaceutical Research International, 2018, 21, 1-10.	ardiac	1.0	1

#	Article	IF	CITATIONS
37	Study on the Mechanism of Prunella Vulgaris L on Diabetes Mellitus Complicated with Hypertension Based on Network Pharmacology and Molecular Docking Analyses. Journal of Diabetes Research, 2021, 2021, 1-14.	2.3	6
38	Cardioprotective effects of phytopigments via multiple signaling pathways. Phytomedicine, 2022, 95, 153859.	5.3	8
39	Guanxin V Acts as an Antioxidant in Ventricular Remodeling. Frontiers in Cardiovascular Medicine, 2021, 8, 778005.	2.4	6
40	Baicalein suppresses high glucose-induced inflammation and apoptosis in trophoblasts by targeting the miRNA-17-5p-Mfn1/2-NF-I®B pathway. Placenta, 2022, 121, 126-136.	1.5	12
41	Mechanistic and therapeutic perspectives of baicalin and baicalein on pulmonary hypertension: A comprehensive review. Biomedicine and Pharmacotherapy, 2022, 151, 113191.	5.6	11
42	Advances in Nanoformulated Polyphenols for Protection Against Cardiovascular Diseases. Journal of Cardiovascular Pharmacology, 2022, 80, 648-660.	1.9	1
43	Pharmacological properties of total flavonoids in Scutellaria baicalensis for the treatment of cardiovascular diseases. Phytomedicine, 2022, 107, 154458.	5.3	13
44	Baicalein alleviates fibrosis and inflammation in systemic sclerosis by regulating B-cell abnormalities. BMC Complementary Medicine and Therapies, 2023, 23, .	2.7	0
45	Therapeutic mechanism of baicalein in peritoneal dialysis-associated peritoneal fibrosis based on network pharmacology and experimental validation. Frontiers in Pharmacology, 0, 14, .	3.5	0
46	Qingda granules mitigate cardiac inflammation in spontaneously hypertensive rats via the MCP-1/CCR2 signaling pathway. , 2021, 2, 249-260.		0
47	Guanxin V Relieves Ventricular Remodeling by Inhibiting Inflammation: Implication from Virtual Screening, Systematic Pharmacology, Molecular Docking, and Experimental Validation. Chinese Journal of Integrative Medicine, 2023, 29, 1077-1086.	1.6	1
48	Vasculoprotective Potential of Baicalein in Angiotensin II-Infused Abdominal Aortic Aneurysms through Inhibiting Inflammation and Oxidative Stress. International Journal of Molecular Sciences, 2023, 24, 16004.	4.1	0