Endophilin-A2 functions in membrane scission in clathi

Nature 517, 493-496

DOI: 10.1038/nature14064

Citation Report

#	Article	IF	Citations
1	Proteolytic cleavage, trafficking, and functions of nuclear receptor tyrosine kinases. FEBS Journal, 2015, 282, 3693-3721.	4.7	73
2	Pearling instability of membrane tubes driven by curved proteins and actin polymerization. Physical Biology, 2015, 12, 066022.	1.8	20
3	Bioinspired membrane-based systems for a physical approach of cell organization and dynamics: usefulness and limitations. Interface Focus, 2015, 5, 20150038.	3.0	53
4	Revisiting the Endocytosis of the M2 Muscarinic Acetylcholine Receptor. Membranes, 2015, 5, 197-213.	3.0	3
5	Endocytosis and Trafficking of Natriuretic Peptide Receptor-A: Potential Role of Short Sequence Motifs. Membranes, 2015, 5, 253-287.	3.0	22
6	Exploiting endocytic pathways to prevent bacterial toxin infection. , 2015, , 1072-1094.		2
7	Biogenesis of endosome-derived transport carriers. Cellular and Molecular Life Sciences, 2015, 72, 3441-3455.	5.4	40
8	Membrane tension controls the assembly of curvature-generating proteins. Nature Communications, 2015, 6, 7219.	12.8	141
9	Retrograde transport is not required for cytosolic translocation of the B-subunit of Shiga toxin. Journal of Cell Science, 2015, 128, 2373-2387.	2.0	15
10	Endophilin A2 Promotes TNBC Cell Invasion and Tumor Metastasis. Molecular Cancer Research, 2015, 13, 1044-1055.	3.4	16
11	Asymmetric formation of coated pits on dorsal and ventral surfaces at the leading edges of motile cells and on protrusions of immobile cells. Molecular Biology of the Cell, 2015, 26, 2044-2053.	2.1	34
12	A new gateway into cells. Nature Reviews Molecular Cell Biology, 2015, 16, 68-68.	37.0	6
13	Microtubule Motors Power Plasma Membrane Tubulation in Clathrinâ€Independent Endocytosis. Traffic, 2015, 16, 572-590.	2.7	52
14	Shiga toxin stimulates clathrin-independent endocytosis of VAMP2/3/8 SNARE proteins. Journal of Cell Science, 2015, 128, 2891-902.	2.0	16
15	How synthetic membrane systems contribute to the understanding of lipid-driven endocytosis. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 2992-3005.	4.1	35
16	Regulation of Membrane-Shape Transitions Induced by I-BAR Domains. Biophysical Journal, 2015, 109, 298-307.	0.5	34
17	Celebrating Soft Matter's 10th anniversary: screening of the calcium-induced spontaneous curvature of lipid membranes. Soft Matter, 2015, 11, 5030-5036.	2.7	31
18	Building endocytic pits without clathrin. Nature Reviews Molecular Cell Biology, 2015, 16, 311-321.	37.0	175

#	Article	IF	Citations
19	When Physics Takes Over: BAR Proteins and Membrane Curvature. Trends in Cell Biology, 2015, 25, 780-792.	7.9	247
20	Deficiency in the Lipid Exporter ABCA1 Impairs Retrograde Sterol Movement and Disrupts Sterol Sensing at the Endoplasmic Reticulum. Journal of Biological Chemistry, 2015, 290, 23464-23477.	3.4	56
21	Sorting of Clathrinâ€Independent Cargo Proteins Depends on Rab35 Delivered by Clathrinâ€Mediated Endocytosis. Traffic, 2015, 16, 994-1009.	2.7	48
22	Cell-sized liposomes that mimic cell motility and the cell cortex. Methods in Cell Biology, 2015, 128, 271-285.	1.1	20
23	Podocyte endocytosis in the regulation of the glomerular filtration barrier. American Journal of Physiology - Renal Physiology, 2015, 309, F398-F405.	2.7	52
24	On the endocytosis rollercoaster. Nature, 2015, 517, 446-447.	27.8	15
25	Endophilin marks and controls a clathrin-independent endocytic pathway. Nature, 2015, 517, 460-465.	27.8	428
26	Clostridium difficile Toxin A Undergoes Clathrin-Independent, PACSIN2-Dependent Endocytosis. PLoS Pathogens, 2016, 12, e1006070.	4.7	39
27	A time course of orchestrated endophilin action in sensing, bending, and stabilizing curved membranes. Molecular Biology of the Cell, 2016, 27, 2119-2132.	2.1	16
28	Retromer Sets a Trap for Endosomal Cargo Sorting. Cell, 2016, 167, 1452-1454.	28.9	8
29	Multiple routes of endocytic internalization of PDGFR \hat{l}^2 contribute to PDGF-induced STAT3 signaling. Journal of Cell Science, 2017, 130, 577-589.	2.0	39
30	Membrane invagination induced by Shiga toxin B-subunit: from molecular structure to tube formation. Soft Matter, 2016, 12, 5164-5171.	2.7	82
31	Endophilin-A2-mediated increase in scavenger receptor expression contributes to macrophage-derived foam cell formation. Atherosclerosis, 2016, 254, 133-141.	0.8	18
32	How cellular membrane properties are affected by the actin cytoskeleton. Biochimie, 2016, 130, 33-40.	2.6	22
33	Chapter Six - The Ubiquitin Network in the Control of EGFR Endocytosis and Signaling. Progress in Molecular Biology and Translational Science, 2016, 141, 225-276.	1.7	34
34	How curvature-generating proteins build scaffolds on membrane nanotubes. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11226-11231.	7.1	120
35	Endocytic regulation of cytokine receptor signaling. Cytokine and Growth Factor Reviews, 2016, 32, 63-73.	7.2	102
36	DRP1-Dependent Endocytosis is Essential for Polar Localization and Boron-Induced Degradation of the Borate Transporter BOR1 in <i>Arabidopsis thaliana</i>	3.1	66

#	Article	IF	CITATIONS
37	Association of Endophilin B1 with Cytoplasmic Vesicles. Biophysical Journal, 2016, 111, 565-576.	0.5	12
38	Quantum dot-loaded monofunctionalized DNA icosahedra for single-particle tracking of endocytic pathways. Nature Nanotechnology, 2016, 11, 1112-1119.	31.5	142
39	Membrane curvature in cell biology: An integration of molecular mechanisms. Journal of Cell Biology, 2016, 214, 375-387.	5 . 2	264
40	Endophilin A2 Influences Volume-Regulated Chloride Current by Mediating ClC-3 Trafficking in Vascular Smooth Muscle Cells. Circulation Journal, 2016, 80, 2397-2406.	1.6	15
41	The N-Terminal Amphipathic Helix of Endophilin Does Not Contribute to Its Molecular Curvature Generation Capacity. Journal of the American Chemical Society, 2016, 138, 14616-14622.	13.7	46
42	Analysis of diffusion in curved surfaces and its application to tubular membranes. Molecular Biology of the Cell, 2016, 27, 3937-3946.	2.1	25
43	Glycolipids and Lectins in Endocytic Uptake Processes. Journal of Molecular Biology, 2016, 428, 4792-4818.	4.2	84
44	Endocytosis of Wingless via a dynamin-independent pathway is necessary for signaling in <i>Drosophila</i> wing discs. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E6993-E7002.	7.1	38
45	ALG-2 interacting protein-X (Alix) is essential for clathrin-independent endocytosis and signaling. Scientific Reports, 2016, 6, 26986.	3.3	33
46	SH3GL1 inhibition reverses multidrug resistance in colorectal cancer cells by downregulation of MDR1/P-glycoprotein via EGFR/ERK/AP-1 pathway. Tumor Biology, 2016, 37, 12153-12160.	1.8	11
47	Multiscale simulations of protein-facilitated membrane remodeling. Journal of Structural Biology, 2016, 196, 57-63.	2.8	14
48	Physical basis of some membrane shaping mechanisms. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374, 20160034.	3.4	40
49	CPG2 Recruits Endophilin B2 to the Cytoskeleton for Activity-Dependent Endocytosis of Synaptic Glutamate Receptors. Current Biology, 2016, 26, 296-308.	3.9	11
50	A combined proteomics and metabolomics approach to assess the effects of gold nanoparticles <i>in vitro</i> . Nanotoxicology, 2016, 10, 736-748.	3.0	75
51	Spatial and Temporal Regulation of Receptor Tyrosine Kinase Activation and Intracellular Signal Transduction. Annual Review of Biochemistry, 2016, 85, 573-597.	11.1	98
52	Modes and mechanisms of synaptic vesicle recycling. Current Opinion in Neurobiology, 2016, 39, 17-23.	4.2	74
53	Higher-order assemblies of BAR domain proteins for shaping membranes. Microscopy (Oxford,) Tj ETQq0 0 0 rgB	Γ /Overlock	k 10 Tf 50 10 15
54	cBid, Bax and Bcl-xL exhibit opposite membrane remodeling activities. Cell Death and Disease, 2016, 7, e2121-e2121.	6.3	33

#	Article	IF	CITATIONS
55	Cross-linking of glycosphingolipids at the plasma membrane: consequences for intracellular signaling and traffic. Cellular and Molecular Life Sciences, 2016, 73, 1301-1316.	5.4	21
56	Sphingosine and Sphingosine Kinase 1 Involvement in Endocytic Membrane Trafficking. Journal of Biological Chemistry, 2017, 292, 3074-3088.	3.4	65
57	Exogenous lysophospholipids with large head groups perturb clathrinâ€mediated endocytosis. Traffic, 2017, 18, 176-191.	2.7	12
58	Synaptic Vesicle Endocytosis Occurs on Multiple Timescales and Is Mediated by Formin-Dependent Actin Assembly. Neuron, 2017, 93, 854-866.e4.	8.1	144
59	Deciphering the BAR code of membrane modulators. Cellular and Molecular Life Sciences, 2017, 74, 2413-2438.	5.4	57
60	Fast and ultrafast endocytosis. Current Opinion in Cell Biology, 2017, 47, 64-71.	5.4	137
61	Reticulon 3–dependent ER-PM contact sites control EGFR nonclathrin endocytosis. Science, 2017, 356, 617-624.	12.6	118
62	Generation of wavy structure on lipid membrane by peripheral proteins: a linear elastic analysis. FEBS Letters, 2017, 591, 1333-1348.	2.8	11
63	Friction Mediates Scission of Tubular Membranes Scaffolded by BAR Proteins. Cell, 2017, 170, 172-184.e11.	28.9	171
64	Endocytosis and Synaptic Function. , 2017, , 207-243.		O
64	Endocytosis and Synaptic Function., 2017,, 207-243. Membrane fission by protein crowding. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E3258-E3267.	7.1	0 142
	Membrane fission by protein crowding. Proceedings of the National Academy of Sciences of the United	7.1	
65	Membrane fission by protein crowding. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E3258-E3267. Membrane remodeling by the M2 amphipathic helix drives influenza virus membrane scission. Scientific		142
65 66	Membrane fission by protein crowding. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E3258-E3267. Membrane remodeling by the M2 amphipathic helix drives influenza virus membrane scission. Scientific Reports, 2017, 7, 44695. Quantitative Global Proteomics of Yeast PBP1 Deletion Mutants and Their Stress Responses Identifies Glucose Metabolism, Mitochondrial, and Stress Granule Changes. Journal of Proteome Research, 2017,	3.3	142 54
65 66 67	Membrane fission by protein crowding. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E3258-E3267. Membrane remodeling by the M2 amphipathic helix drives influenza virus membrane scission. Scientific Reports, 2017, 7, 44695. Quantitative Global Proteomics of Yeast PBP1 Deletion Mutants and Their Stress Responses Identifies Glucose Metabolism, Mitochondrial, and Stress Granule Changes. Journal of Proteome Research, 2017, 16, 504-515.	3.3	142 54 22
65 66 67	Membrane fission by protein crowding. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E3258-E3267. Membrane remodeling by the M2 amphipathic helix drives influenza virus membrane scission. Scientific Reports, 2017, 7, 44695. Quantitative Global Proteomics of Yeast PBP1 Deletion Mutants and Their Stress Responses Identifies Glucose Metabolism, Mitochondrial, and Stress Granule Changes. Journal of Proteome Research, 2017, 16, 504-515. Endocytosis, Metastasis and Beyond: Multiple Facets of SNX9. Trends in Cell Biology, 2017, 27, 189-200.	3.3 3.7 7.9	142 54 22 56
65 66 67 68	Membrane fission by protein crowding. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E3258-E3267. Membrane remodeling by the M2 amphipathic helix drives influenza virus membrane scission. Scientific Reports, 2017, 7, 44695. Quantitative Global Proteomics of Yeast PBP1 Deletion Mutants and Their Stress Responses Identifies Glucose Metabolism, Mitochondrial, and Stress Granule Changes. Journal of Proteome Research, 2017, 16, 504-515. Endocytosis, Metastasis and Beyond: Multiple Facets of SNX9. Trends in Cell Biology, 2017, 27, 189-200. Cholera toxin B subunit induces local curvature on lipid bilayers. FEBS Open Bio, 2017, 7, 1638-1645.	3.3 3.7 7.9 2.3	142 54 22 56 38

#	Article	IF	Citations
73	The mesoscopic membrane with proteins (MesM-P) model. Journal of Chemical Physics, 2017, 147, 044101.	3.0	20
75	Pulling Membrane Nanotubes from Giant Unilamellar Vesicles. Journal of Visualized Experiments, 2017,	0.3	31
76	Biology and physics rendezvous at the membrane. Science, 2017, 358, 1265-1265.	12.6	1
77	Long-Range Organization of Membrane-Curving Proteins. ACS Central Science, 2017, 3, 1246-1253.	11.3	36
78	Membrane curvature induced by proximity of anionic phospholipids can initiate endocytosis. Nature Communications, 2017, 8, 1393.	12.8	80
79	Endocytosis: Remote Control from Deep Inside. Current Biology, 2017, 27, R663-R666.	3.9	1
80	Efficient Prevention of Neurodegenerative Diseases by Depletion of Starvation Response Factor Ataxin-2. Trends in Neurosciences, 2017, 40, 507-516.	8.6	51
81	Friction at the BAR Leads to Membrane Breakup. Cell, 2017, 170, 14-16.	28.9	28
82	Membrane protein reconstitution into giant unilamellar vesicles: a review on current techniques. European Biophysics Journal, 2017, 46, 103-119.	2.2	89
83	Negative charge and membrane-tethered viral 3B cooperate to recruit viral RNA dependent RNA polymerase 3D pol. Scientific Reports, 2017, 7, 17309.	3.3	18
84	Drp1 polymerization stabilizes curved tubular membranes similar to those of constricted mitochondria. Journal of Cell Science, 2018, 132, .	2.0	16
85	Endocytosis and the Endosomal Membrane System. , 2017, , 377-392.		2
86	Shiga Toxinâ€"A Model for Glycolipid-Dependent and Lectin-Driven Endocytosis. Toxins, 2017, 9, 340.	3.4	68
87	Cytokine Receptor Endocytosis: New Kinase Activity-Dependent and -Independent Roles of PI3K. Frontiers in Endocrinology, 2017, 8, 78.	3.5	19
88	The Calcineurin-Binding, Activity-Dependent Splice Variant Dynamin1xb Is Highly Enriched in Synapses in Various Regions of the Central Nervous System. Frontiers in Molecular Neuroscience, 2017, 10, 230.	2.9	6
89	A Functional Study of AUXILIN-LIKE1 and 2, Two Putative Clathrin Uncoating Factors in Arabidopsis. Plant Cell, 2018, 30, 700-716.	6.6	75
90	Local actin polymerization during endocytic carrier formation. Biochemical Society Transactions, 2018, 46, 565-576.	3.4	55
91	An image-processing method to detect sub-optical features based on understanding noise in intensity measurements. European Biophysics Journal, 2018, 47, 531-538.	2.2	4

#	Article	IF	Citations
92	Structure Versus Stochasticityâ€"The Role of Molecular Crowding and Intrinsic Disorder in Membrane Fission. Journal of Molecular Biology, 2018, 430, 2293-2308.	4.2	18
93	Guided by curvature: shaping cells by coupling curved membrane proteins and cytoskeletal forces. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170115.	4.0	74
94	Mechanisms of clathrin-mediated endocytosis. Nature Reviews Molecular Cell Biology, 2018, 19, 313-326.	37.0	1,060
95	Quantitative and Statistical Study of the Dynamics of Clathrin-Dependent and -Independent Endocytosis Reveal a Differential Role of EndophilinA2. Cell Reports, 2018, 22, 1574-1588.	6.4	22
96	I-BAR protein IRSp53 regulates clathrin-independent endocytosis in a biphasic manner. Science Bulletin, 2018, 63, 149-151.	9.0	0
97	Mechanisms of Carrier Formation during Clathrin-Independent Endocytosis. Trends in Cell Biology, 2018, 28, 188-200.	7.9	151
98	Increasing Diversity of Biological Membrane Fission Mechanisms. Trends in Cell Biology, 2018, 28, 274-286.	7.9	45
99	Membrane re-modelling by BAR domain superfamily proteins via molecular and non-molecular factors. Biochemical Society Transactions, 2018, 46, 379-389.	3.4	37
100	The †endocytic matrix reloaded' and its impact on the plasticity of migratory strategies. Current Opinion in Cell Biology, 2018, 54, 9-17.	5 . 4	13
101	Roles for Arc in metabotropic glutamate receptor-dependent LTD and synapse elimination: Implications in health and disease. Seminars in Cell and Developmental Biology, 2018, 77, 51-62.	5.0	46
102	Directed Supramolecular Organization of N-BAR Proteins through Regulation of HO Membrane Immersion Depth. Scientific Reports, 2018, 8, 16383.	3.3	5
104	BAR domain proteins—a linkage between cellular membranes, signaling pathways, and the actin cytoskeleton. Biophysical Reviews, 2018, 10, 1587-1604.	3.2	110
105	Simulating Protein-Mediated Membrane Remodeling at Multiple Scales. , 2018, , 351-384.		0
106	Common Energetic and Mechanical Features of Membrane Fusion and Fission Machineries. , 2018, , 421-469.		3
107	The phospholipid PI(3,4)P2 is an apical identity determinant. Nature Communications, 2018, 9, 5041.	12.8	54
108	Mechanochemical feedback control of dynamin independent endocytosis modulates membrane tension in adherent cells. Nature Communications, 2018, 9, 4217.	12.8	106
109	Time course and temperature dependence of synaptic vesicle endocytosis. FEBS Letters, 2018, 592, 3606-3614.	2.8	27
110	Quantitative Lipid Imaging Reveals a New Signaling Function of Phosphatidylinositol-3,4-Bisphophate: Isoform- and Site-Specific Activation of Akt. Molecular Cell, 2018, 71, 1092-1104.e5.	9.7	89

#	Article	IF	Citations
111	Clathrin-independent endocytosis: an increasing degree of complexity. Histochemistry and Cell Biology, 2018, 150, 107-118.	1.7	148
112	Synaptojanin and Endophilin Mediate Neck Formation during Ultrafast Endocytosis. Neuron, 2018, 98, 1184-1197.e6.	8.1	85
113	FBP17 and CIP4 recruit SHIP2 and lamellipodin to prime the plasma membrane for fast endophilin-mediated endocytosis. Nature Cell Biology, 2018, 20, 1023-1031.	10.3	79
114	Modeling endophilin-mediated A \hat{I}^2 disposal in glioma cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2018, 1865, 1385-1396.	4.1	7
115	Revisiting the Role of Clathrin-Mediated Endoytosis in Synaptic Vesicle Recycling. Frontiers in Cellular Neuroscience, 2018, 12, 27.	3.7	72
116	Sensing Exocytosis and Triggering Endocytosis at Synapses: Synaptic Vesicle Exocytosis–Endocytosis Coupling. Frontiers in Cellular Neuroscience, 2018, 12, 66.	3.7	27
117	Endophilin A1 Promotes Actin Polymerization in Dendritic Spines Required for Synaptic Potentiation. Frontiers in Molecular Neuroscience, 2018, 11, 177.	2.9	19
118	Endophilin A and B Join Forces With Clathrin to Mediate Synaptic Vesicle Recycling in Caenorhabditis elegans. Frontiers in Molecular Neuroscience, 2018, 11, 196.	2.9	19
119	Molecular mechanisms of force production in clathrinâ€mediated endocytosis. FEBS Letters, 2018, 592, 3586-3605.	2.8	74
120	Regulation of membrane dynamics by Parkinson's disease-associated genes. Journal of Genetics, 2018, 97, 715-727.	0.7	8
121	Small GTPases and BAR domain proteins regulate branched actin polymerisation for clathrin and dynamin-independent endocytosis. Nature Communications, 2018, 9, 1835.	12.8	74
122	The AFF-1 exoplasmic fusogen is required for endocytic scission and seamless tube elongation. Nature Communications, 2018, 9, 1741.	12.8	17
123	Endocytosis and Signaling. Progress in Molecular and Subcellular Biology, 2018, , .	1.6	2
124	EGFR Trafficking in Physiology and Cancer. Progress in Molecular and Subcellular Biology, 2018, 57, 235-272.	1.6	58
125	A novel fluorescence microscopic approach to quantitatively analyse protein-induced membrane remodelling. Journal of Biosciences, 2018, 43, 431-435.	1.1	0
126	A New Centennial Seaâ€Level Record for Antalya, Eastern Mediterranean. Journal of Geophysical Research: Oceans, 2018, 123, 4503-4517.	2.6	6
127	Competition between TIAM1 and Membranes Balances Endophilin A3 Activity in Cancer Metastasis. Developmental Cell, 2018, 45, 738-752.e6.	7.0	27
128	Ubiquitin recognition in endocytic trafficking $\hat{a}\in$ with or without ESCRT-0. Journal of Cell Science, 2019, 132, .	2.0	37

#	Article	IF	CITATIONS
129	Spoiled for Choice: Diverse Endocytic Pathways Function at the Cell Surface. Annual Review of Cell and Developmental Biology, 2019, 35, 55-84.	9.4	77
130	Quantitative proteomics reveals reduction of endocytic machinery components in gliomas. EBioMedicine, 2019, 46, 32-41.	6.1	26
131	Curving Cells Inside and Out: Roles of BAR Domain Proteins in Membrane Shaping and Its Cellular Implications. Annual Review of Cell and Developmental Biology, 2019, 35, 111-129.	9.4	102
132	Shiga toxin signals via ATP and its effect is blocked by purinergic receptor antagonism. Scientific Reports, 2019, 9, 14362.	3.3	12
133	Variable-Angle Nanoplasmonic Fluorescence Microscopy: An Axially Resolved Method for Tracking the Endocytic Pathway. Analytical Chemistry, 2019, 91, 13658-13664.	6.5	13
134	Synthetic cell division via membrane-transforming molecular assemblies. BMC Biology, 2019, 17, 43.	3.8	52
135	Chasing Uptake: Super-Resolution Microscopy in Endocytosis and Phagocytosis. Trends in Cell Biology, 2019, 29, 727-739.	7.9	20
136	Endophilin-A2 dependent VEGFR2 endocytosis promotes sprouting angiogenesis. Nature Communications, 2019, 10, 2350.	12.8	60
137	Endophilin-A2-mediated endocytic pathway is critical for enterovirus 71 entry into caco-2 cells. Emerging Microbes and Infections, 2019, 8, 773-786.	6.5	17
138	Recent advances in understanding phosphoinositide signaling in the nervous system. F1000Research, 2019, 8, 278.	1.6	13
139	Membrane interactions of intrinsically disordered proteins: The example of alpha-synuclein. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2019, 1867, 879-889.	2.3	35
140	Cholesterol Depletion by MÎ 2 CD Enhances Cell Membrane Tension and Its Variations-Reducing Integrity. Biophysical Journal, 2019, 116, 1456-1468.	0.5	63
141	Phosphoinositide switches in endocytosis and in the endolysosomal system. Current Opinion in Cell Biology, 2019, 59, 50-57.	5.4	38
142	Macropinosome formation, maturation and membrane recycling: lessons from clathrin-independent endosomal membrane systems. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180148.	4.0	26
143	More from less – bottom-up reconstitution of cell biology. Journal of Cell Science, 2019, 132, .	2.0	61
144	Endophilinâ€A regulates presynaptic Ca ²⁺ influx and synaptic vesicle recycling in auditory hair cells. EMBO Journal, 2019, 38, .	7.8	39
145	Nanoscale coupling of endocytic pit growth and stability. Science Advances, 2019, 5, eaax5775.	10.3	17
146	Gaussian curvature and the budding kinetics of enveloped viruses. PLoS Computational Biology, 2019, 15, e1006602.	3.2	17

#	ARTICLE	IF	CITATIONS
148	Protein Amphipathic Helix Insertion: A Mechanism to Induce Membrane Fission. Frontiers in Cell and Developmental Biology, 2019, 7, 291.	3.7	50
149	An Abl-FBP17 mechanosensing system couples local plasma membrane curvature and stress fiber remodeling during mechanoadaptation. Nature Communications, 2019, 10, 5828.	12.8	50
150	A Screen for Membrane Fission Catalysts Identifies the ATPase EHD1. Biochemistry, 2019, 58, 65-71.	2.5	11
151	BAR scaffolds drive membrane fission by crowding disordered domains. Journal of Cell Biology, 2019, 218, 664-682.	5.2	69
152	Polyphosphoinositide-Binding Domains: Insights from Peripheral Membrane and Lipid-Transfer Proteins. Advances in Experimental Medicine and Biology, 2019, 1111, 77-137.	1.6	32
153	Endophilin A2 regulates calcium-activated chloride channel activity via selective autophagy-mediated TMEM16A degradation. Acta Pharmacologica Sinica, 2020, 41, 208-217.	6.1	9
154	Cells Control BIN1-Mediated Membrane Tubulation by Altering the Membrane Charge. Journal of Molecular Biology, 2020, 432, 1235-1250.	4.2	12
155	Clathrin-independent endocytosis, retrograde trafficking, and cell polarity. Current Opinion in Cell Biology, 2020, 65, 112-121.	5.4	46
156	Shiga Toxin Uptake and Sequestration in Extracellular Vesicles Is Mediated by Its B-Subunit. Toxins, 2020, 12, 449.	3.4	12
157	The helix 0 of endophilin modifies membrane material properties and induces local curvature. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183397.	2.6	7
158	Endophilin-A2 dependent tubular endocytosis promotes plasma membrane repair and parasite invasion. Journal of Cell Science, 2020, 134, .	2.0	7
159	Tailoring Iron Oxide Nanoparticles for Efficient Cellular Internalization and Endosomal Escape. Nanomaterials, 2020, 10, 1816.	4.1	38
160	Neuronal Signaling Involved in Neuronal Polarization and Growth: Lipid Rafts and Phosphorylation. Frontiers in Molecular Neuroscience, 2020, 13, 150.	2.9	18
161	Imaging endocytic vesicle formation at high spatial and temporal resolutions with the pulsed-pH protocol. Nature Protocols, 2020, 15, 3088-3104.	12.0	10
162	The Role of BAR Proteins and the Glycocalyx in Brain Endothelium Transcytosis. Cells, 2020, 9, 2685.	4.1	10
163	Fluctuations of a membrane nanotube covered with an actin sleeve. Physical Review E, 2020, 102, 052402.	2.1	3
164	Glycosylation and raft endocytosis in cancer. Cancer and Metastasis Reviews, 2020, 39, 375-396.	5.9	31
165	Structured clustering of the glycosphingolipid GM1 is required for membrane curvature induced by cholera toxin. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 14978-14986.	7.1	58

#	ARTICLE	IF	CITATIONS
166	Molecular Biology of Escherichia coli Shiga Toxins' Effects on Mammalian Cells. Toxins, 2020, 12, 345.	3.4	42
167	Endophilin-A coordinates priming and fusion of neurosecretory vesicles via intersectin. Nature Communications, 2020, 11, 1266.	12.8	26
168	Endophilin-A3 and Galectin-8 control the clathrin-independent endocytosis of CD166. Nature Communications, 2020, 11, 1457.	12.8	65
169	Targeting of EGFR by a combination of antibodies mediates unconventional EGFR trafficking and degradation. Scientific Reports, 2020, 10, 663.	3.3	23
170	Flotillin membrane domains in cancer. Cancer and Metastasis Reviews, 2020, 39, 361-374.	5.9	32
171	Mechanisms of neuronal survival safeguarded by endocytosis and autophagy. Journal of Neurochemistry, 2021, 157, 263-296.	3.9	25
172	Endophilin recruitment drives membrane curvature generation through coincidence detection of GPCR loopÂinteractions and negative lipid charge. Journal of Biological Chemistry, 2021, 296, 100140.	3.4	6
173	Specialised endocytic proteins regulate diverse internalisation mechanisms and signalling outputs in physiology and cancer. Biology of the Cell, 2021, 113, 165-182.	2.0	6
174	Active probing of the mechanical properties of biological and synthetic vesicles. Biochimica Et Biophysica Acta - General Subjects, 2021, 1865, 129486.	2.4	27
175	Arrestin-Dependent and -Independent Internalization of G Protein–Coupled Receptors: Methods, Mechanisms, and Implications on Cell Signaling. Molecular Pharmacology, 2021, 99, 242-255.	2.3	41
176	Myosin II isoforms promote internalization of spatially distinct clathrin-independent endocytosis cargoes through modulation of cortical tension downstream of ROCK2. Molecular Biology of the Cell, 2021, 32, 226-236.	2.1	11
177	WIPI1 promotes fission of endosomal transport carriers and formation of autophagosomes through distinct mechanisms. Autophagy, 2021, 17, 3644-3670.	9.1	25
178	Cdk5 and GSK3β inhibit fast endophilin-mediated endocytosis. Nature Communications, 2021, 12, 2424.	12.8	24
179	Multiple roles for actin in secretory and endocytic pathways. Current Biology, 2021, 31, R603-R618.	3.9	45
180	Endophilin A1 drives acute structural plasticity of dendritic spines in response to Ca2+/calmodulin. Journal of Cell Biology, 2021, 220, .	5.2	10
181	Therapeutic Uses of Bacterial Subunit Toxins. Toxins, 2021, 13, 378.	3.4	15
182	Inositol triphosphate-triggered calcium release blocks lipid exchange at endoplasmic reticulum-Golgi contact sites. Nature Communications, 2021, 12, 2673.	12.8	27
183	Brainâ€specific functions of the endocytic machinery. FEBS Journal, 2022, 289, 2219-2246.	4.7	8

#	Article	IF	CITATIONS
184	The Cellular and Chemical Biology of Endocytic Trafficking and Intracellular Delivery—The GL–Lect Hypothesis. Molecules, 2021, 26, 3299.	3.8	8
185	Endocytosis in the context-dependent regulation of individual and collective cell properties. Nature Reviews Molecular Cell Biology, 2021, 22, 625-643.	37.0	59
186	An Emerging Role for Phosphoinositides in the Pathophysiology of Parkinson's Disease. Journal of Parkinson's Disease, 2021, 11, 1725-1750.	2.8	3
187	Impact of Endocytosis Mechanisms for the Receptors Targeted by the Currently Approved Antibody-Drug Conjugates (ADCs)â€"A Necessity for Future ADC Research and Development. Pharmaceuticals, 2021, 14, 674.	3.8	26
188	Endophilin A2 regulates Bâ€cell endocytosis and is required for germinal center and humoral responses. EMBO Reports, 2021, 22, e51328.	4.5	8
189	Unconventional endocytic mechanisms. Current Opinion in Cell Biology, 2021, 71, 120-129.	5.4	57
191	Cholera Toxin as a Probe for Membrane Biology. Toxins, 2021, 13, 543.	3.4	30
192	Recent developments in membrane curvature sensing and induction by proteins. Biochimica Et Biophysica Acta - General Subjects, 2021, 1865, 129971.	2.4	29
193	Dependence of SARS-CoV-2 infection on cholesterol-rich lipid raft and endosomal acidification. Computational and Structural Biotechnology Journal, 2021, 19, 1933-1943.	4.1	69
194	Interleukin-6 controls recycling and degradation, but not internalization of its receptors. Journal of Biological Chemistry, 2021, 296, 100434.	3.4	11
195	High-Content Drug Discovery Screening of Endocytosis Pathways. Methods in Molecular Biology, 2021, 2233, 71-91.	0.9	5
196	Molecular mechanism of Fast Endophilin-Mediated Endocytosis. Biochemical Journal, 2020, 477, 2327-2345.	3.7	68
197	The roles of the diversity of amphipathic lipids in shaping membranes by membrane-shaping proteins. Biochemical Society Transactions, 2020, 48, 837-851.	3.4	9
204	Recent advances in clathrin-independent endocytosis. F1000Research, 2019, 8, 138.	1.6	27
205	Endocytosis. Materials and Methods, 0, 9, .	0.0	1
206	Redundant and nonredundant organismal functions of EPS15 and EPS15L1. Life Science Alliance, 2019, 2, e201800273.	2.8	10
207	Linking common non-coding RNAs of human lung cancer and M. tuberculosis. Bioinformation, 2018, 14, 337-345.	0.5	5
208	Actin filaments target the oligomeric maturation of the dynamin GTPase Drp1 to mitochondrial fission sites. ELife, 2015, 4, e11553.	6.0	252

#	Article	IF	Citations
209	Structural inhibition of dynamin-mediated membrane fission by endophilin. ELife, 2017, 6, .	6.0	40
210	The Dynamic Composition of an Archetypal Plant Condensate Highlights a Tug-of-War between Condensates and Cell Vertex. SSRN Electronic Journal, 0, , .	0.4	1
211	Glycocalyx Curving the Membrane: Forces Emerging from the Cell Exterior. Annual Review of Cell and Developmental Biology, 2021, 37, 257-283.	9.4	19
217	Quantitative Proteomics Reveals Global Reduction of Endocytic Machinery Components in Gliomas. SSRN Electronic Journal, 0, , .	0.4	0
223	Dynamic mechanochemical feedback between curved membranes and BAR protein self-organization. Nature Communications, 2021, 12, 6550.	12.8	9
224	Hydrophobic Mismatch Controls the Mode of Membrane-Mediated Interactions of Transmembrane Peptides. Membranes, 2022, 12, 89.	3.0	6
226	A novel fluorescence microscopic approach to quantitatively analyse protein-induced membrane remodelling. Journal of Biosciences, 2018, 43, 431-435.	1.1	0
227	Regulation of membrane dynamics by Parkinson's disease-associated genes. Journal of Genetics, 2018, 97, 715-725.	0.7	4
228	Interorganellar Communication: Components $\hat{a} \in \text{``Bar Domains}$ and BAR Domain Superfamily Proteins. , 2022, , .		0
229	Mechanisms of Endocytosis II Non-Clathrin. , 2022, , .		0
230	The roles of dynein and myosin VI motor proteins in endocytosis. Journal of Cell Science, 2022, 135, .	2.0	5
231	The endophilin curvature-sensitive motif requires electrostatic guidance to recycle synaptic vesicles inÂvivo. Developmental Cell, 2022, 57, 750-766.e5.	7.0	4
232	Computational investigation for deformation of lipid membrane by BAR proteins due to electrostatic interaction. Materials Today: Proceedings, 2022, 61, 1-9.	1.8	1
233	Integrating protein copy numbers with interaction networks to quantify stoichiometry in clathrin-mediated endocytosis. Scientific Reports, 2022, 12, 5413.	3.3	1
234	STxB as an Antigen Delivery Tool for Mucosal Vaccination. Toxins, 2022, 14, 202.	3.4	10
243	Curvature dependence of BAR protein membrane association and dissociation kinetics. Scientific Reports, 2022, 12, 7676.	3.3	3
244	Endocytic trafficking of GAS6–AXL complexes is associated with sustained AKT activation. Cellular and Molecular Life Sciences, 2022, 79, .	5.4	6
245	IncR26319/miRâ€2834/ <i>EndophilinA</i> axis regulates oogenesis of the silkworm, <i>Bombyx mori</i> Insect Science, 2023, 30, 65-80.	3.0	7

#	Article	IF	CITATIONS
246	Alix is required for activity-dependent bulk endocytosis at brain synapses. PLoS Biology, 2022, 20, e3001659.	5.6	4
247	Rac1, the actin cytoskeleton and microtubules are key players in clathrin-independent endophilin-A3-mediated endocytosis. Journal of Cell Science, 2022, 135, .	2.0	5
248	Friction-driven membrane scission by the human ESCRT-III proteins CHMP1B and IST1. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	16
250	Multivalent interactions between molecular components involved in fast endophilin mediated endocytosis drive protein phase separation. Nature Communications, 2022, 13, .	12.8	18
251	BAR domains. , 2023, , 47-63.		0
252	Activation of Host Cellular Signaling and Mechanism of Enterovirus 71 Viral Proteins Associated with Hand, Foot and Mouth Disease. Viruses, 2022, 14, 2190.	3.3	9
253	Insight into the role of clathrinâ€mediated endocytosis inhibitors in SARS oVâ€2 infection. Reviews in Medical Virology, 2023, 33, .	8.3	14
254	Caveolin-1 dolines form a distinct and rapid caveolae-independent mechanoadaptation system. Nature Cell Biology, 2023, 25, 120-133.	10.3	15
255	Membrane reshaping by protein condensates. Biochimica Et Biophysica Acta - Biomembranes, 2023, 1865, 184121.	2.6	6
256	Rab21 regulates caveolinâ€1â€mediated endocytic trafficking to promote immature neurite pruning. EMBO Reports, 0, , .	4.5	4
257	Nâ€BAR and Fâ€BAR proteinsâ€"endophilinâ€A3 and PSTPIP1â€"control clathrinâ€independent endocytosis of L1CAM. Traffic, 2023, 24, 190-212.	2.7	2
258	O-GlcNAc Dynamics: The Sweet Side of Protein Trafficking Regulation in Mammalian Cells. Cells, 2023, 12, 1396.	4.1	2
260	BAR Domain Proteins as Putative Regulators of the Protein Liquid Phase in Nerve Terminals in the Central Nervous System. Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology, 2023, 17, 69-82.	0.6	0
261	Endocytosis in cancer and cancer therapy. Nature Reviews Cancer, 2023, 23, 450-473.	28.4	22
263	The Chemical Inhibitors of Endocytosis: From Mechanisms to Potential Clinical Applications. Cells, 2023, 12, 2312.	4.1	4
264	The SH3 binding site in front of the WH1 domain contributes to the membrane binding of the BAR domain protein endophilin A2. Journal of Biochemistry, 0 , , .	1.7	O
266	Endocytic Roles of Glycans on Proteins and Lipids. Cold Spring Harbor Perspectives in Biology, 2024, 16, a041398.	5 . 5	1
267	A mechanosensing mechanism controls plasma membrane shape homeostasis at the nanoscale. ELife, 0, 12, .	6.0	1

#	Article	IF	CITATIONS
270	The Small GTPase Rab7 Regulates Antigen Processing in B Cells in a Possible Interplay with Autophagy Machinery. Cells, 2023, 12, 2566.	4.1	1
272	A CIE change in our understanding of endocytic mechanisms. Frontiers in Cell and Developmental Biology, 0, 11 , .	3.7	1
273	Mechano-regulation by clathrin pit-formation and passive cholesterol-dependent tubules during de-adhesion. Cellular and Molecular Life Sciences, 2024, 81, .	5.4	0
274	Dissecting membrane interfacial cellular processes: an in vitro reconstitution approach. European Physical Journal: Special Topics, 0, , .	2.6	0
275	Dynein functions in galectin-3 mediated processes of clathrin-independent endocytosis. Journal of Biosciences, 2024, 49, .	1.1	0
276	Rho GTPase signaling and mDia facilitate endocytosis via presynaptic actin. ELife, 0, 12, .	6.0	O