Early Childhood Gut Microbiomes Show Strong Geograp High Risk for Type 1 Diabetes

Diabetes Care 38, 329-332

DOI: 10.2337/dc14-0850

Citation Report

#	Article	IF	Citations
1	Development of the infant intestinal microbiome: A bird's eye view of a complex process. Birth Defects Research Part C: Embryo Today Reviews, 2015, 105, 228-239.	3.6	40
2	Short Course in the Microbiome. Journal of Circulating Biomarkers, 2015, 4, 8.	0.8	9
3	Perinatal factors and type 1 diabetes-associated dysbiosis in Mexican infants. BoletÃn Médico Del Hospital Infantil De México, 2015, 72, 333-338.	0.2	2
4	Role of the gastrointestinal ecosystem in the development of type 1 diabetes. Pediatric Diabetes, 2015, 16, 407-418.	1.2	13
5	Microbe-based approaches for the treatment of diabetes. Diabetes Management, 2015, 5, 139-142.	0.5	1
6	A model for the role of gut bacteria in the development of autoimmunity for type 1 diabetes. Diabetologia, 2015, 58, 1386-1393.	2.9	98
7	Oral microbiota species in acute apical endodontic abscesses. Journal of Oral Microbiology, 2016, 8, 30989.	1.2	46
9	Gut Immunity and Type 1 Diabetes: a Mélange of Microbes, Diet, and Host Interactions?. Current Diabetes Reports, 2016, 16, 60.	1.7	13
10	Heritable components of the human fecal microbiome are associated with visceral fat. Genome Biology, 2016, 17, 189.	3.8	183
11	Association between intestinal permeability and faecal microbiota composition in Italian children with beta cell autoimmunity at risk for type 1 diabetes. Diabetes/Metabolism Research and Reviews, 2016, 32, 700-709.	1.7	85
12	Interactions between host genetics and gut microbiome in diabetes and metabolic syndrome. Molecular Metabolism, 2016, 5, 795-803.	3.0	132
13	Tiny microbes, enormous impacts: what matters in gut microbiome studies?. Genome Biology, 2016, 17, 217.	3.8	128
14	Nutrition, gut microbiota and child health outcomes. Current Opinion in Clinical Nutrition and Metabolic Care, 2016, 19, 1.	1.3	20
15	Taking it Personally: Personalized Utilization of the Human Microbiome in Health and Disease. Cell Host and Microbe, 2016, 19, 12-20.	5.1	192
16	The role of the intestinal microbiota in type 1 diabetes mellitus. Nature Reviews Endocrinology, 2016, 12, 154-167.	4.3	335
17	The Influence of the Microbiome on Type 1 Diabetes. Journal of Immunology, 2017, 198, 590-595.	0.4	112
18	The role of early life nutrition in the establishment of gastrointestinal microbial composition and function. Gut Microbes, 2017, 8, 143-171.	4.3	129
19	Early exposure to agricultural soil accelerates the maturation of the early-life pig gut microbiota. Anaerobe, 2017, 45, 31-39.	1.0	50

#	Article	IF	Citations
20	The gut microbiome and hypertension. Current Opinion in Nephrology and Hypertension, 2017, 26, 1-8.	1.0	80
21	The role of the microbiome in human health and disease: an introduction for clinicians. BMJ: British Medical Journal, 2017, 356, j831.	2.4	357
22	Co-occurrence of Type 1 Diabetes and Celiac Disease Autoimmunity. Pediatrics, 2017, 140, .	1.0	70
23	<i>Helicobacter pylori</i> and gut microbiota in multiple sclerosis versus Alzheimer's disease: 10 pitfalls of microbiome studies. Clinical and Experimental Neuroimmunology, 2017, 8, 215-232.	0.5	43
24	Type 1 diabetes: a disease of developmental origins. Pediatric Diabetes, 2017, 18, 417-421.	1.2	12
25	Where genes meet environment—integrating the role of gut luminal contents, immunity and pancreas in type 1 diabetes. Translational Research, 2017, 179, 183-198.	2.2	22
27	Microbiota of the Gastrointestinal Tract in Infancy. , 2017, , 27-35.		3
28	Geography, Ethnicity or Subsistence-Specific Variations in Human Microbiome Composition and Diversity. Frontiers in Microbiology, 2017, 8, 1162.	1.5	695
29	Prevalence of early and late prematurity is similar among pediatric type 1 diabetes patients and the general population. Diabetes/Metabolism Research and Reviews, 2018, 34, e2996.	1.7	7
30	Evaluating Causality of Gut Microbiota in Obesity and Diabetes in Humans. Endocrine Reviews, 2018, 39, 133-153.	8.9	207
31	The developing gut microbiota and its consequences for health. Journal of Developmental Origins of Health and Disease, 2018, 9, 590-597.	0.7	113
32	Complementary Methodologies To Investigate Human Gut Microbiota in Host Health, Working towards Integrative Systems Biology. Journal of Bacteriology, 2018, 200, .	1.0	9
33	Obesity in Type 1 Diabetes: Pathophysiology, Clinical Impact, and Mechanisms. Endocrine Reviews, 2018, 39, 629-663.	8.9	154
34	Lifestyle Factors Affecting the Gut Microbiota's Relationship with Type 1 Diabetes. Current Diabetes Reports, 2018, 18, 111.	1.7	19
35	Immune Mechanisms and Pathways Targeted in Type 1 Diabetes. Current Diabetes Reports, 2018, 18, 90.	1.7	29
36	Common ground: shared risk factors for type 1 diabetes and celiac disease. Nature Immunology, 2018, 19, 685-695.	7.0	33
37	Genetic risk for autoimmunity is associated with distinct changes in the human gut microbiome. Nature Communications, 2019, 10, 3621.	5.8	132
38	Microbiome and type 1 diabetes. EBioMedicine, 2019, 46, 512-521.	2.7	111

#	Article	IF	Citations
39	GUT Microbiome-GUT Dysbiosis-Arterial Hypertension: New Horizons. Current Hypertension Reviews, 2019, 15, 40-46.	0.5	19
40	Association of HLA-dependent islet autoimmunity with systemic antibody responses to intestinal commensal bacteria in children. Science Immunology, 2019, 4, .	5.6	49
41	Gut microbiome dysbiosis and increased intestinal permeability in children with islet autoimmunity and type 1 diabetes: A prospective cohort study. Pediatric Diabetes, 2019, 20, 574-583.	1.2	86
42	Temporal trend of newly diagnosed type 1 diabetes children and adolescents identified over a 35-year period in a Brazilian institution. Diabetes Research and Clinical Practice, 2019, 151, 82-87.	1.1	1
43	Risk factors for type 1 diabetes, including environmental, behavioural and gut microbial factors: a case–control study. Scientific Reports, 2020, 10, 17566.	1.6	17
44	Gut Microbiota in T1DM-Onset Pediatric Patients: Machine-Learning Algorithms to Classify Microorganisms as Disease Linked. Journal of Clinical Endocrinology and Metabolism, 2020, 105, e3114-e3126.	1.8	34
45	Breastfeeding may have a long-term effect on oral microbiota: results from the Fin-HIT cohort. International Breastfeeding Journal, 2020, 15, 42.	0.9	13
46	The athletic gut microbiota. Journal of the International Society of Sports Nutrition, 2020, 17, 24.	1.7	157
47	Microbiota derived factors as drivers of type 1 diabetes. Progress in Molecular Biology and Translational Science, 2020, 171, 215-235.	0.9	2
48	Birth during the moderate weather seasons is associated with early onset of type 1 diabetes in the Mediterranean area. Diabetes/Metabolism Research and Reviews, 2020, 36, e3318.	1.7	3
49	Impact of type 1 diabetes on the composition and functional potential of gut microbiome in children and adolescents: possible mechanisms, current knowledge, and challenges. Gut Microbes, 2021, 13, 1-18.	4.3	35
50	Integrative analyses of TEDDY Omics data reveal lipid metabolism abnormalities, increased intracellular ROS and heightened inflammation prior to autoimmunity for type 1 diabetes. Genome Biology, 2021, 22, 39.	3.8	22
51	Inulin Fermentable Fiber Ameliorates Type I Diabetes via IL22 and Short-Chain Fatty Acids in Experimental Models. Cellular and Molecular Gastroenterology and Hepatology, 2021, 12, 983-1000.	2.3	33
52	Insights from Bacteroides Species in Children with Type 1 Diabetes. Microorganisms, 2021, 9, 1436.	1.6	9
54	Gut Microbiota-Modulated Metabolomic Profiling Shapes the Etiology and Pathogenesis of Autoimmune Diseases. Microorganisms, 2021, 9, 1930.	1.6	9
55	Environmental Determinants of Type 1 Diabetes: From Association to Proving Causality. Frontiers in Immunology, 2021, 12, 737964.	2.2	33
56	The intestinal proteome of diabetic and control children is enriched with different microbial and host proteins. Microbiology (United Kingdom), 2017, 163, 161-174.	0.7	46
57	MicroRNA-146a constrains multiple parameters of intestinal immunity and increases susceptibility to DSS colitis. Oncotarget, 2015, 6, 28556-28572.	0.8	53

#	Article	IF	CITATIONS
58	Exploring the Triple Interaction between the Host Genome, the Epigenome, and the Gut Microbiome in Type 1 Diabetes. International Journal of Molecular Sciences, 2021, 22, 125.	1.8	11
59	Contrasting Efforts: The Microbiome and Type 1 Diabetes. Diabetes Case Reports, 2017, 02, .	0.3	1
60	The Role of Epigenetics in Type 1 Diabetes. Advances in Experimental Medicine and Biology, 2020, 1253, 223-257.	0.8	18
61	TWO APPLICATIONS OF PERMUTATION TESTS IN BIOSTASTICS. Boletines De La Sociedad De CirugÃa De Rosario, 2013, 19, 255-266.	0.0	2
62	Routine methods of laboratory studies of intestinal microbiota: role and place in clinical practice. Russian Journal of Evidence-Based Gastroenterology, 2021, 10, 5.	0.3	0
63	The Role of the Gut Microbiota in the Pathogenesis of Diabetes. International Journal of Molecular Sciences, 2022, 23, 480.	1.8	55
64	Changes in early intestinal flora and Type 1 diabetes. Journal of Central South University (Medical) Tj ETQq 000	rgBT/Over	rlock 10 Tf 50
65	The dynamic effects of maternal high-calorie diet on glycolipid metabolism and gut microbiota from weaning to adulthood in offspring mice. Frontiers in Nutrition, 0, 9, .	1.6	7
66	Alterations of the Intestinal Mucus Layer Correlate with Dysbiosis and Immune Dysregulation in Human Type 1 Diabetes SSRN Electronic Journal, 0, , .	0.4	0
67	Adult-onset autoimmune diabetes. Nature Reviews Disease Primers, 2022, 8, .	18.1	16
68	Bioactive compounds in diabetes care and prevention. , 2023, , 387-438.		0
69	Alterations of the intestinal mucus layer correlate with dysbiosis and immune dysregulation in human Type 1 Diabetes. EBioMedicine, 2023, 91, 104567.	2.7	6
70	Intestinal microbiome diversity of diabetic and non-diabetic kidney disease: Current status and future perspective. Life Sciences, 2023, 316, 121414.	2.0	3
71	Type 1 Diabetes Mellitus and Autoimmune Diseases: A Critical Review of the Association and the Application of Personalized Medicine. Journal of Personalized Medicine, 2023, 13, 422.	1.1	21
72	Emerging trends and focus on the link between gut microbiota and type 1 diabetes: A bibliometric and visualization analysis. Frontiers in Microbiology, 0 , 14 , .	1.5	7