Mars methane detection and variability at Gale crater

Science 347, 415-417 DOI: 10.1126/science.1261713

Citation Report

#	Article	IF	CITATIONS
1	Mars water discoveries – implications for finding ancient and current life. Life Sciences in Space Research, 2015, 7, A1-A5.	1.2	4
2	Geological repositories: scientific priorities and potential high-technology transfer from the space and physics sectors. Mineralogical Magazine, 2015, 79, 1651-1664.	0.6	3
3	A Test of the Biogenicity Criteria Established for Microfossils and Stromatolites on Quaternary Tufa and Speleothem Materials Formed in the "Twilight Zone―at Caerwys, UK. Astrobiology, 2015, 15, 883-900.	1.5	21
4	Evidence to Clinch The Theory of Extraterrestrial Life. Journal of Astrobiology & Outreach, 2015, 03, .	0.1	2
5	Liquid Water at Crater Gale, Mars. Journal of Astrobiology & Outreach, 2015, 03, .	0.1	1
6	Planetary Exploration; Mars on the Scope. Journal of Astrobiology & Outreach, 2015, 03, .	0.1	0
7	The Physical, Chemical and Physiological Limits of Life. Life, 2015, 5, 1472-1486.	1.1	9
8	Assessing the Ecophysiology of Methanogens in the Context of Recent Astrobiological and Planetological Studies. Life, 2015, 5, 1652-1686.	1.1	55
9	Revisiting the identification of methane on Mars using TES data. Astronomy and Astrophysics, 2015, 581, A136.	2.1	10
10	Methane Clathrates in the Solar System. Astrobiology, 2015, 15, 308-326.	1.5	62
11	Stable carbon isotope fractionation by methanogens growing on different Mars regolith analogs. Planetary and Space Science, 2015, 112, 35-41.	0.9	10
12	The search for signs of life on exoplanets at the interface of chemistry and planetary science. Science Advances, 2015, 1, e1500047.	4.7	65
13	M-DLS laser and heterodyne IR spectrometer for studies of the Đœartian atmosphere from ExoMars-2018 landing platform. , 2015, , .		1
14	Play it again, SAM. Science, 2015, 347, 370-371.	6.0	24
15	Seepage in Serpentinised Peridotites and on Mars. , 2015, , 141-163.		0
16	Influence of Martian regolith analogs on the activity and growth of methanogenic archaea, with special regard to long-term desiccation. Frontiers in Microbiology, 2015, 6, 210.	1.5	25
17	Evidence for methane in Martian meteorites. Nature Communications, 2015, 6, 7399.	5.8	47
18	On the detectability of trace chemical species in the martian atmosphere using gas correlation filter radiometry. Icarus, 2015, 260, 103-127.	1.1	2

#	Article	IF	CITATIONS
19	The Significance of Microbe-Mineral-Biomarker Interactions in the Detection of Life on Mars and Beyond. Astrobiology, 2015, 15, 492-507.	1.5	32
20	Biogeochemical tales told by isotope clumps. Science, 2015, 348, 394-395.	6.0	6
21	Planetary atmospheres minor species sensor balloon flight test to near space. , 2015, , .		0
22	Analysing the consistency of martian methane observations by investigation of global methane transport. Icarus, 2015, 257, 23-32.	1.1	13
23	InAs-Based Single-Mode Distributed Feedback Interband Cascade Lasers. IEEE Journal of Quantum Electronics, 2015, 51, 1-7.	1.0	2
24	Low-threshold InAs-based interband cascade lasers operating at high temperatures. Applied Physics Letters, 2015, 106, .	1.5	35
25	Biosignatures on Mars: What, Where, and How? Implications for the Search for Martian Life. Astrobiology, 2015, 15, 998-1029.	1.5	209
26	Science objectives and performances of NOMAD, a spectrometer suite for the ExoMars TGO mission. Planetary and Space Science, 2015, 119, 233-249.	0.9	77
27	Time-resolved detection of aromatic compounds on planetary surfaces by ultraviolet laser induced fluorescence and Raman spectroscopy. Planetary and Space Science, 2015, 119, 200-207.	0.9	19
28	Polarization-independent gain in mid-infrared interband cascade lasers. AIP Advances, 2016, 6, .	0.6	4
29	New temperature and pressure retrieval algorithm for high-resolution infrared solar occultation spectroscopy: analysis and validation against ACE-FTS and COSMIC. Atmospheric Measurement Techniques, 2016, 9, 1063-1082.	1.2	3
30	Unique Spectroscopy and Imaging of Mars with the <i>James Webb Space Telescope</i> . Publications of the Astronomical Society of the Pacific, 2016, 128, 018004.	1.0	5
31	Insights into secondary reactions occurring during atmospheric ablation of micrometeoroids. Meteoritics and Planetary Science, 2016, 51, 1163-1183.	0.7	6
32	Formation of layers of methane in the atmosphere of Mars after surface release. Geophysical Research Letters, 2016, 43, 1868-1875.	1.5	20
33	Lessons learned from thirty years of geomicrobiological studies of RÃo Tinto. Research in Microbiology, 2016, 167, 539-545.	1.0	36
34	Geomorphological View of the Environmental History of Mars and Candidate Habitable Environments. Journal of Geography (Chigaku Zasshi), 2016, 125, 171-184.	0.1	4
35	Fluidized Ejecta Morphologies and Degradation Processes of Martian Impact Craters. Journal of Geography (Chigaku Zasshi), 2016, 125, 13-33.	0.1	3
36	The sluggish speed of making abiotic methane. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 13944-13946.	3.3	11

#	Article	IF	CITATIONS
37	Organic Matter Detection on Mars by Pyrolysis-FTIR: An Analysis of Sensitivity and Mineral Matrix Effects. Astrobiology, 2016, 16, 831-845.	1.5	14
38	Global analysis of the high temperature infrared emission spectrum of 12CH4 in the dyad (<i>μ2</i> 2/ <i>μ2</i> 4) region. Journal of Chemical Physics, 2016, 144, 024312.	1.2	35
39	Relevance and Significance of Extraterrestrial Abiological Hydrocarbon Chemistry. Journal of the American Chemical Society, 2016, 138, 6905-6911.	6.6	22
40	High-sensitivity remote detection of atmospheric pollutants and greenhouse gases at low ppm levels using near-infrared tunable diode lasers. , 2016, , .		1
41	AstRoMap European Astrobiology Roadmap. Astrobiology, 2016, 16, 201-243.	1.5	99
42	Large fractionations of C and H isotopes related to methane oxidation in Arctic lakes. Geochimica Et Cosmochimica Acta, 2016, 187, 141-155.	1.6	36
43	Concept study for a compact planetary homodyne interferometer (PHI) for temporal global observation of methane on Mars in IR. Proceedings of SPIE, 2016, , .	0.8	0
44	Hydrogen Isotopic Composition of Arctic and Atmospheric CH ₄ Determined by a Portable Near-Infrared Cavity Ring-Down Spectrometer with a Cryogenic Pre-Concentrator. Astrobiology, 2016, 16, 787-797.	1.5	4
45	On the possibility of galactic cosmic ray-induced radiolysis-powered life in subsurface environments in the Universe. Journal of the Royal Society Interface, 2016, 13, 20160459.	1.5	21
46	Aerosol optical depth as observed by the Mars Science Laboratory REMS UV photodiodes. Icarus, 2016, 280, 234-248.	1.1	48
47	Small edifice features in Chryse Planitia, Mars: Assessment of a mud volcano hypothesis. Icarus, 2016, 268, 56-75.	1.1	43
48	The provenance, formation, and implications of reduced carbon phases in Martian meteorites. Meteoritics and Planetary Science, 2016, 51, 2203-2225.	0.7	80
49	The Astrobiology Primer v2.0. Astrobiology, 2016, 16, 561-653.	1.5	133
50	NMR and EPR Studies of Free-Radical Intermediates from Experiments Mimicking the Winds on Mars: A Sink for Methane and Other Gases. Journal of Physical Chemistry C, 2016, 120, 26138-26149.	1.5	11
51	Mars: a small terrestrial planet. Astronomy and Astrophysics Review, 2016, 24, 1.	9.1	22
52	The sustainability of habitability on terrestrial planets: Insights, questions, and needed measurements from Mars for understanding the evolution of Earthâ€ŀike worlds. Journal of Geophysical Research E: Planets, 2016, 121, 1927-1961.	1.5	72
53	The Case for Extant Life on Mars and Its Possible Detection by the Viking Labeled Release Experiment. Astrobiology, 2016, 16, 798-810.	1.5	75
54	Alteration minerals, fluids, and gases on early Mars: Predictions from 1â€Ð flow geochemical modeling of mineral assemblages in meteorite <scp>ALH</scp> 84001. Meteoritics and Planetary Science, 2016, 51, 2154-2174.	0.7	28

#	Article	IF	CITATIONS
55	Early Mars serpentinizationâ€derived <scp>CH</scp> ₄ reservoirs, H ₂ â€induced warming and paleopressure evolution. Meteoritics and Planetary Science, 2016, 51, 2234-2245.	0.7	24
56	Cometary origin of atmospheric methane variations on Mars unlikely. Journal of Geophysical Research E: Planets, 2016, 121, 2108-2119.	1.5	16
57	Defining Multiple Characteristic Raman Bands of α-Amino Acids as Biomarkers for Planetary Missions Using a Statistical Method. Origins of Life and Evolution of Biospheres, 2016, 46, 323-346.	0.8	14
58	Hypotheses for Near-Surface Exchange of Methane on Mars. Astrobiology, 2016, 16, 539-550.	1.5	25
59	Martian zeolites as a source of atmospheric methane. Icarus, 2016, 278, 1-6.	1.1	16
60	Expected performances of the NOMAD/ExoMars instrument. Planetary and Space Science, 2016, 124, 94-104.	0.9	31
61	Methylated silicates may explain the release of chlorinated methane from Martian soil. Earth and Planetary Science Letters, 2016, 433, 226-231.	1.8	6
62	IR heterodyne spectrometer MILAHI for continuous monitoring observatory of Martian and Venusian atmospheres at Mt. HaleakalÄ; Hawaii. Planetary and Space Science, 2016, 126, 34-48.	0.9	18
63	The Miniaturized Infrared Detector of Atmospheric Species (MIDAS) a low-mass, MWIR low-power hyperspectral imager. Proceedings of SPIE, 2016, , .	0.8	1
64	Venturing into new realms? Microorganisms in space. FEMS Microbiology Reviews, 2016, 40, 722-737.	3.9	75
65	Chemical Aspects of Astrophysically Observed Extraterrestrial Methanol, Hydrocarbon Derivatives, and Ions. Journal of the American Chemical Society, 2016, 138, 1717-1722.	6.6	31
66	Regrowth-free mid-infrared distributed feedback quantum cascade lasers with sub-watt power consumption. Proceedings of SPIE, 2016, , .	0.8	0
67	Planetary Protection and Mars Special Regions—A Suggestion for Updating the Definition. Astrobiology, 2016, 16, 119-125.	1.5	36
68	The Argyre Region as a Prime Target for <i>in situ</i> Astrobiological Exploration of Mars. Astrobiology, 2016, 16, 143-158.	1.5	4
69	Comparative Planetary Evolution. , 2016, , 317-367.		0
71	Plasma ionization under simulated ambient Mars conditions for quantification of methane by mass spectrometry. Analyst, The, 2016, 141, 2270-2277.	1.7	8
72	Astrobiology and the Possibility of Life on Earth and Elsewhere…. Space Science Reviews, 2017, 209, 1-42.	3.7	66
73	Thermodynamics, Disequilibrium, Evolution: Far-From-Equilibrium Geological and Chemical Considerations for Origin-Of-Life Research. Origins of Life and Evolution of Biospheres, 2017, 47, 39-56.	0.8	54

	CITATION R	CITATION REPORT	
#	Article	IF	Citations
74	Transient reducing greenhouse warming on early Mars. Geophysical Research Letters, 2017, 44, 665-671.	1.5	178
75	Conditions of stichtite (Mg6Cr2(OH)16[CO3]·4H2O) formation and its geochemical and isotope record of early phanerozoic serpentinizing environments. Geochimica Et Cosmochimica Acta, 2017, 197, 43-61.	1.6	7
76	The relative abundances of resolved l2CH2D2 and 13CH3D and mechanisms controlling isotopic bond ordering in abiotic and biotic methane gases. Geochimica Et Cosmochimica Acta, 2017, 203, 235-264.	1.6	125
77	Our changing view of Mars. Physics Today, 2017, 70, 34-41.	0.3	6
78	Evidence for stabilization of the ice-cemented cryosphere in earlier martian history: Implications for the current abundance of groundwater at depth on Mars. Icarus, 2017, 288, 120-147.	1.1	28
79	Determination of foreign broadening coefficients for Methane Lines Targeted by the Tunable Laser Spectrometer (TLS) on the Mars Curiosity Rover. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 191, 59-66.	1.1	13
80	DAVINCI: Deep atmosphere venus investigation of noble gases, chemistry, and imaging. , 2017, , .		13
81	AEGIS autonomous targeting for ChemCam on Mars Science Laboratory: Deployment and results of initial science team use. Science Robotics, 2017, 2, .	9.9	76
82	MWIR hyperspectral imaging with the MIDAS instrument. , 2017, , .		4
83	A deep search for the release of volcanic gases on Mars using ground-based high-resolution infrared and submillimeter spectroscopy: Sensitive upper limits for OCS and SO 2. Icarus, 2017, 296, 1-14.	1.1	11
84	Two test-cases for synergistic detections in the Martian atmosphere: Carbon monoxide and methane. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 189, 86-104.	1.1	7
85	Survivability and growth kinetics of methanogenic archaea at various pHs and pressures: Implications for deep subsurface life on Mars. Planetary and Space Science, 2017, 136, 15-24.	0.9	9
86	UV production of methane from surface and sedimenting IDPs on Mars in light of REMS data and with insights for TGO. Planetary and Space Science, 2017, 147, 48-60.	0.9	11
87	Methane bursts as a trigger for intermittent lake-forming climates on post-Noachian Mars. Nature Geoscience, 2017, 10, 737-740.	5.4	49
88	The origin of methane and biomolecules from a CO2 cycle on terrestrial planets. Nature Astronomy, 2017, 1, 721-726.	4.2	27
89	A review of exoplanetary biosignatures. Physics Reports, 2017, 713, 1-17.	10.3	47
90	The Colour and Stereo Surface Imaging System (CaSSIS) for the ExoMars Trace Gas Orbiter. Space Science Reviews, 2017, 212, 1897-1944.	3.7	111
91	Did Viking discover life on Mars?. European Physical Journal Plus, 2017, 132, 1.	1.2	5

#	Article	IF	CITATIONS
92	Water in Extrasolar Planets and Implications for Habitability. Space Science Reviews, 2017, 212, 877-898.	3.7	45
93	Indexing of exoplanets in search for potential habitability: application to Mars-like worlds. Astrophysics and Space Science, 2017, 362, 1.	0.5	7
94	Methane Seepage on Mars: Where to Look and Why. Astrobiology, 2017, 17, 1233-1264.	1.5	78
95	Methane clumped isotopes: Progress and potential for a new isotopic tracer. Organic Geochemistry, 2017, 113, 262-282.	0.9	100
96	History of Mars Atmosphere Observations. , 2017, , 20-41.		4
97	Thermal Structure and Composition. , 2017, , 42-75.		19
98	Atmospheric Photochemistry. , 2017, , 405-432.		18
99	Dynamic Solid-State NMR Experiments Reveal Structural Changes for a Methyl Silicate Nanostructure on Deuterium Substitution. Journal of Physical Chemistry C, 2017, 121, 26507-26518.	1.5	1
102	Modelled isotopic fractionation and transient diffusive release of methane from potential subsurface sources on Mars. Icarus, 2017, 281, 240-247.	1.1	12
103	Low Pressure Tolerance by Methanogens in an Aqueous Environment: Implications for Subsurface Life on Mars. Origins of Life and Evolution of Biospheres, 2017, 47, 511-532.	0.8	15
104	Ocean worlds exploration. Acta Astronautica, 2017, 131, 123-130.	1.7	93
105	The Breakthrough Listen Search for Intelligent Life: 1.1–1.9 GHz Observations of 692 Nearby Stars. Astrophysical Journal, 2017, 849, 104.	1.6	108
106	The vertical transport of methane from different potential emission types on Mars. Geophysical Research Letters, 2017, 44, 8611-8620.	1.5	8
107	Measurement of atmospheric carbon dioxide and water vapor in built-up urban areas in the Gandhinagar-Ahmedabad region in India using a portable tunable diode laser spectroscopy system. Applied Optics, 2017, 56, H57.	0.9	9
108	Glaciers and Ice Sheets As Analog Environments of Potentially Habitable Icy Worlds. Frontiers in Microbiology, 2017, 8, 1407.	1.5	49
109	Microbial biodiversity assessment of the European Space Agency's ExoMars 2016 mission. Microbiome, 2017, 5, 143.	4.9	27
110	Impacts of Cosmic Dust on Planetary Atmospheres and Surfaces. Space Science Reviews, 2018, 214, 1.	3.7	43
111	A candidate methane-clathrate destabilisation event on Mars: A model for sub-millennial-scale climatic change on Earth. Gondwana Research, 2018, 59, 43-56.	3.0	3

#	Article	IF	CITATIONS
112	Survival of non-psychrophilic methanogens exposed to martian diurnal and 48-h temperature cycles. Planetary and Space Science, 2018, 157, 63-71.	0.9	5
113	The Propitious Role of Solar Energetic Particles in the Origin of Life. Astrophysical Journal, 2018, 853, 10.	1.6	29
114	Image Simulation and Assessment of the Colour and Spatial Capabilities of the Colour and Stereo Surface Imaging System (CaSSIS) on the ExoMars Trace Gas Orbiter. Space Science Reviews, 2018, 214, 1.	3.7	24
115	The Coevolution of Life and Environment on Mars: An Ecosystem Perspective on the Robotic Exploration of Biosignatures. Astrobiology, 2018, 18, 1-27.	1.5	64
116	The Atmospheric Chemistry Suite (ACS) of Three Spectrometers for the ExoMars 2016 Trace Gas Orbiter. Space Science Reviews, 2018, 214, 1.	3.7	119
117	Low pressure microenvironments: Methane production at 50â€ [−] mbar and 100â€ [−] mbar by methanogens. Planetary and Space Science, 2018, 153, 79-88.	0.9	5
118	Planetary boundary layer and circulation dynamics at Gale Crater, Mars. Icarus, 2018, 302, 537-559.	1.1	32
119	A Field Guide to Finding Fossils on Mars. Journal of Geophysical Research E: Planets, 2018, 123, 1012-1040.	1.5	86
120	Understanding the origin of methane on Mars through isotopic and molecular data from the ExoMars orbiter. Planetary and Space Science, 2018, 159, 93-96.	0.9	7
121	Atmospheric Biosignatures. , 2018, , 1-14.		1
122	Applicability of neural networks to etalon fringe filtering in laser spectrometers. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 211, 115-122.	1.1	8
123	The early Earth geochemical and isotope record of serpentinizing environments from Archean stichtite (Mg6Cr2(OH)16[CO3]·4H2O). Precambrian Research, 2018, 310, 198-212.	1.2	2
124	Adsorption of methane and CO 2 onto olivine surfaces in Martian dust conditions. Planetary and Space Science, 2018, 153, 163-171.	0.9	7
125	Anaerobic microorganisms in astrobiological analogue environments: from field site to culture collection. International Journal of Astrobiology, 2018, 17, 314-328.	0.9	21
126	Geo-Biological Coupling of Authigenic Carbonate Formation and Autotrophic Faunal Colonization at Deep-Sea Methane Seeps I: Geo-Biological Settings. , 2018, , .		2
127	LDM (Life Detection Microscope): In Situ Imaging of Living Cells on Surface of Mars. Transactions of the Japan Society for Aeronautical and Space Sciences Aerospace Technology Japan, 2018, 16, 299-305.	0.1	5
128	Life in the Universe. , 2018, , .		23
129	Optimizing Space Exploration. , 2018, , 275-286.		0

#	Article	IF	CITATIONS
130	Atmospheric Biosignatures. , 2018, , 3159-3172.		1
131	Effect of UVC Radiation on Hydrated and Desiccated Cultures of Slightly Halophilic and Non-Halophilic Methanogenic Archaea: Implications for Life on Mars. Microorganisms, 2018, 6, 43.	1.6	4
132	Methane on Mars and Habitability: Challenges and Responses. Astrobiology, 2018, 18, 1221-1242.	1.5	50
133	Fine Resolution Epithermal Neutron Detector (FREND) Onboard the ExoMars Trace Gas Orbiter. Space Science Reviews, 2018, 214, 1.	3.7	33
134	Extraterrestrial lava lakes. Journal of Volcanology and Geothermal Research, 2018, 366, 74-95.	0.8	4
135	Experimental Evolution to Explore Adaptation of Terrestrial Bacteria to the Martian Environment. Grand Challenges in Biology and Biotechnology, 2018, , 241-265.	2.4	1
136	Mars scientists edge closer to solving methane mystery. Nature, 2018, 563, 18-19.	13.7	0
137	NOMAD, an Integrated Suite of Three Spectrometers for the ExoMars Trace Gas Mission: Technical Description, Science Objectives and Expected Performance. Space Science Reviews, 2018, 214, 1.	3.7	95
138	The DREAMS Experiment Onboard the Schiaparelli Module of the ExoMars 2016 Mission: Design, Performances and Expected Results. Space Science Reviews, 2018, 214, 1.	3.7	19
139	Stringent upper limit of CH ₄ on Mars based on SOFIA/EXES observations. Astronomy and Astrophysics, 2018, 610, A78.	2.1	10
140	A Compact Reaction Mechanism of Methane Oxidation at High Pressures. Progress in Reaction Kinetics and Mechanism, 2018, 43, 62-78.	1.1	27
141	Large carbon isotope variability during methanogenesis under alkaline conditions. Geochimica Et Cosmochimica Acta, 2018, 237, 18-31.	1.6	39
142	Nitrate-Dependent Iron Oxidation: A Potential Mars Metabolism. Frontiers in Microbiology, 2018, 9, 513.	1.5	46
143	Low Energy Subsurface Environments as Extraterrestrial Analogs. Frontiers in Microbiology, 2018, 9, 1605.	1.5	37
144	Atmospheric Physics and Atmospheres of Solar-System Bodies. Astrophysics and Space Science Library, 2018, , 135-199.	1.0	0
145	Concluding Remarks: Bridging Strategic Knowledge Gaps in the Search for Biosignatures on Mars—A Blueprint â~†. , 2018, , 349-360.		0
146	Experimental investigation on the controls of clumped isotopologue and hydrogen isotope ratios in microbial methane. Geochimica Et Cosmochimica Acta, 2018, 237, 339-356.	1.6	48
147	Non-Psychrophilic Methanogens Capable of Growth Following Long-Term Extreme Temperature Changes, with Application to Mars. Microorganisms, 2018, 6, 34.	1.6	10

#	Article	IF	CITATIONS
148	Vibration-rotation energy levels and corresponding eigenfunctions of 12CH4 up to the tetradecad. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 219, 85-104.	1.1	7
149	Background levels of methane in Mars' atmosphere show strong seasonal variations. Science, 2018, 360, 1093-1096.	6.0	224
150	Raman and reflectance spectroscopy of serpentinites and related hydrated silicates: Effects of physical properties and observational parameters, and implications for detection and characterization on Mars. Planetary and Space Science, 2018, 159, 66-83.	0.9	8
151	The Ladder of Life Detection. Astrobiology, 2018, 18, 1375-1402.	1.5	162
152	The Methane Diurnal Variation and Microseepage Flux at Gale Crater, Mars as Constrained by the ExoMars Trace Gas Orbiter and Curiosity Observations. Geophysical Research Letters, 2019, 46, 9430-9438.	1.5	31
153	Abiotic methane synthesis and serpentinization in olivine-hosted fluid inclusions. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 17666-17672.	3.3	105
154	Validation of the HITRAN 2016 and GEISA 2015 line lists using ACE-FTS solar occultation observations. Journal of Quantitative Spectroscopy and Radiative Transfer, 2019, 236, 106590.	1.1	7
155	Potential for Aerobic Methanotrophic Metabolism on Mars. Astrobiology, 2019, 19, 1187-1195.	1.5	9
156	Follow the Oxygen: Comparative Histories of Planetary Oxygenation and Opportunities for Aerobic Life. Astrobiology, 2019, 19, 811-824.	1.5	17
157	Comparing MSL Curiosity Rover TLSâ€SAM Methane Measurements With Mars Regional Atmospheric Modeling System Atmospheric Transport Experiments. Journal of Geophysical Research E: Planets, 2019, 124, 2141-2167.	1.5	19
158	Timing and origin of natural gas accumulation in the Siljan impact structure, Sweden. Nature Communications, 2019, 10, 4736.	5.8	34
159	Seasonal Variations in Atmospheric Composition as Measured in Gale Crater, Mars. Journal of Geophysical Research E: Planets, 2019, 124, 3000-3024.	1.5	71
160	An Analysis Tool for the Detection of Methane in the Martian Atmosphere. , 2019, , .		0
161	CO2-broadening coefficients in the \hat{l} fundamental band of methane. Journal of Molecular Spectroscopy, 2019, 360, 1-6.	0.4	5
162	Gale surface wind characterization based on the Mars Science Laboratory REMS dataset. Part I: Wind retrieval and Gale's wind speeds and directions. Icarus, 2019, 319, 909-925.	1.1	45
163	Light on windy nights on Mars: A study of saltation-mediated ionization of argon in a Mars-like atmosphere. Icarus, 2019, 332, 14-18.	1.1	10
164	Aeolian abrasion of rocks as a mechanism to produce methane in the Martian atmosphere. Scientific Reports, 2019, 9, 8229.	1.6	1
165	A Simple Instrument Suite for Characterizing Habitability and Weathering: The Modern Aqueous Habitat Reconnaissance Suite (MAHRS). Astrobiology, 2019, 19, 849-866.	1.5	1

#	Article	IF	CITATIONS
166	Mars atmospheric chemistry simulations with the GEM-Mars general circulation model. Icarus, 2019, 326, 197-224.	1.1	52
167	The potential science and engineering value of samples delivered to Earth by Mars sample return. Meteoritics and Planetary Science, 2019, 54, S3.	0.7	73
168	Methane seasonal cycle at Gale Crater on Mars consistent with regolith adsorption and diffusion. Nature Geoscience, 2019, 12, 321-325.	5.4	24
169	The Search for Life on Mars. , 2019, , 367-381.		4
170	Solar Occultation FTIR Spectrometry at Mars for Trace Gas Detection: A Sensitivity Study. Earth and Space Science, 2019, 6, 836-860.	1.1	3
171	No detection of methane on Mars from early ExoMars Trace Gas Orbiter observations. Nature, 2019, 568, 517-520.	13.7	111
172	Independent confirmation of a methane spike on Mars and a source region east of Gale Crater. Nature Geoscience, 2019, 12, 326-332.	5.4	63
173	A Maximum Subsurface Biomass on Mars from Untapped Free Energy: CO and H ₂ as Potential Antibiosignatures. Astrobiology, 2019, 19, 655-668.	1.5	19
175	The Solar System. , 2019, , 1-10.		0
176	Atmospheric Structure. , 2019, , 11-29.		0
178	Aerosol Extinction and Scattering. , 2019, , 52-64.		0
179	Quantitative Spectroscopy. , 2019, , 65-77.		0
180	Spectrographs. , 2019, , 78-85.		0
181	Spectroscopic Methods to Study Planetary Atmospheres. , 2019, , 86-102.		0
182	Solar Radiation, Its Absorption in the Atmospheres, and Airglow. , 2019, , 103-119.		0
183	Chemical Kinetics. , 2019, , 120-139.		0
184	Photochemical Modeling. , 2019, , 140-154.		0
187	Titan. , 2019, , 367-442.		0

#	Article	IF	CITATIONS
188	Triton. , 2019, , 443-466.		0
189	Pluto and Charon. , 2019, , 467-496.		Ο
192	Response of Methanogenic Archaea from Siberian Permafrost and Non-permafrost Environments to Simulated Mars-like Desiccation and the Presence of Perchlorate. Astrobiology, 2019, 19, 197-208.	1.5	14
193	Limits of Life and the Habitability of Mars: The ESA Space Experiment BIOMEX on the ISS. Astrobiology, 2019, 19, 145-157.	1.5	111
194	Atmospheric transport of subsurface, sporadic, time-varying methane releases on Mars. Icarus, 2019, 325, 39-54.	1.1	7
195	Methane spikes, background seasonality and non-detections on Mars: A geological perspective. Planetary and Space Science, 2019, 168, 52-61.	0.9	23
196	Biosignatures Search in Habitable Planets. Galaxies, 2019, 7, 82.	1.1	7
197	Photochemical Reduction of CO2 on Terrestrial Planets. , 2019, , .		0
198	The Hydrology of Mars Including a Potential Cryosphere. , 2019, , 185-246.		7
199	Formation of Methane and (Per)Chlorates on Mars. ACS Earth and Space Chemistry, 2019, 3, 221-232.	1.2	24
200	Methane on Mars: New insights into the sensitivity of CH4 with the NOMAD/ExoMars spectrometer through its first in-flight calibration. Icarus, 2019, 321, 671-690.	1.1	32
201	Fluids mobilization in Arabia Terra, Mars: Depth of pressurized reservoir from mounds self-similar clustering. Icarus, 2019, 321, 938-959.	1.1	22
202	UV luminescence characterisation of organics in Mars-analogue substrates. Icarus, 2019, 321, 929-937.	1.1	5
203	Exoplanetary Biosignatures for Astrobiology. Advances in Astrobiology and Biogeophysics, 2019, , 223-249.	0.6	0
204	The Enigma of Methane on Mars. Advances in Astrobiology and Biogeophysics, 2019, , 253-266.	0.6	6
205	Statistical analysis of Curiosity data shows no evidence for a strong seasonal cycle of martian methane. Icarus, 2020, 336, 113407.	1.1	21
206	Subsurface robotic exploration for geomorphology, astrobiology and mining during MINAR6 campaign, Boulby Mine, UK: part I (Rover development). International Journal of Astrobiology, 2020, 19, 110-125.	0.9	4
207	First Detections of Dichlorobenzene Isomers and Trichloromethylpropane from Organic Matter Indigenous to Mars Mudstone in Gale Crater, Mars: Results from the Sample Analysis at Mars Instrument Onboard the Curiosity Rover, Astrobiology, 2020, 20, 292-306.	1.5	50

#	Article	IF	Citations
208	DFT study of electronic and redox properties of TiO2 supported on olivine for modelling regolith on Moon and Mars conditions. Planetary and Space Science, 2020, 180, 104760.	0.9	4
209	Mars-Analog Calcium Sulfate Veins Record Evidence of Ancient Subsurface Life. Astrobiology, 2020, 20, 1212-1223.	1.5	3
210	How to survive winter?. , 2020, , 101-125.		1
211	Vertebrate viruses in polar ecosystems. , 2020, , 126-148.		0
213	Life in the extreme environments of our planet under pressure. , 2020, , 151-183.		0
214	Chemical ecology in the Southern Ocean. , 2020, , 251-278.		1
218	Physiological traits of the Greenland sharkSomniosus microcephalusobtained during the TUNU-Expeditions to Northeast Greenland. , 2020, , 11-41.		0
219	Metazoan adaptation to deep-sea hydrothermal vents. , 2020, , 42-67.		4
220	Extremophiles populating high-level natural radiation areas (HLNRAs) in Iran. , 2020, , 68-86.		1
222	Metazoan life in anoxic marine sediments. , 2020, , 89-100.		0
223	The ecophysiology of responding to change in polar marine benthos. , 2020, , 184-217.		0
224	The Southern Ocean: an extreme environment or just home of unique ecosystems?. , 2020, , 218-233.		1
225	Metabolic and taxonomic diversity in antarctic subglacial environments. , 2020, , 279-296.		2
226	Analytical astrobiology: the search for life signatures and the remote detection of biomarkers through their Raman spectral interrogation. , 2020, , 301-318.		1
227	Adaptation/acclimatisation mechanisms of oxyphototrophic microorganisms and their relevance to astrobiology. , 2020, , 319-342.		0
228	Life at the extremes. , 2020, , 343-354.		0
229	Microorganisms in cryoturbated organic matter of Arctic permafrost soils. , 2020, , 234-250.		0
232	Photochemistry of Methane and Ethane in the Martian Atmosphere. Journal of Geophysical Research E: Planets, 2020, 125, e2020JE006491.	1.5	2

#	Article	IF	CITATIONS
233	Mission for an Impermanent Surface Stay to Investigate Our Neighbor, Mars. , 2020, , .		0
234	Exploring Carbon Mineral Systems: Recent Advances in C Mineral Evolution, Mineral Ecology, and Network Analysis. Frontiers in Earth Science, 2020, 8, .	0.8	29
235	Nebulae: A Proposed Concept of Operation for Deep Space Computing Clouds. , 2020, , .		3
236	Curiosity Mars methane measurements are not confused by ozone. Astronomy and Astrophysics, 2020, 641, L3.	2.1	6
238	Radiolysis of Ices by Cosmic-Rays: CH ₄ and H ₂ O Ices Mixtures Irradiated by 40 MeV ⁵⁸ Ni ¹¹⁺ Ions. Astrophysical Journal, 2020, 894, 132.	1.6	8
239	Resonant tunneling of electrons in AlSb/GalnAsSb double barrier quantum wells. AIP Advances, 2020, 10, 055024.	0.6	7
240	Atmospheric Escape Processes and Planetary Atmospheric Evolution. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027639.	0.8	58
241	Quasi-Fermi Level Pinning in Interband Cascade Lasers. IEEE Journal of Quantum Electronics, 2020, 56, 1-10.	1.0	5
242	Advective Fluxes in the Martian Regolith as a Mechanism Driving Methane and Other Trace Gas Emissions to the Atmosphere. Geophysical Research Letters, 2020, 47, e2019GL085694.	1.5	9
243	Microbial Diversity and Biosignatures: An Icy Moons Perspective. Space Science Reviews, 2020, 216, 1.	3.7	14
244	Mid-infrared dual-comb spectroscopy with room-temperature bi-functional interband cascade lasers and detectors. Applied Physics Letters, 2020, 116, .	1.5	30
245	Effects of temperatures and high pressures on the growth and survivability of methanogens and stable carbon isotope fractionation: implications for deep subsurface life on Mars. International Journal of Astrobiology, 2021, 20, 179-185.	0.9	2
246	Effects of Laser Beam Focusing Characteristics on Laser-Induced Breakdown Spectra. Applied Spectroscopy, 2021, 75, 127-136.	1.2	10
247	Comprehensive investigation of Mars methane and organics with ExoMars/NOMAD. Icarus, 2021, 357, 114266.	1.1	27
248	Quantum electronic control on chemical activation of methane by collision with spin–orbit state selected vanadium cation. Physical Chemistry Chemical Physics, 2021, 23, 273-286.	1.3	7
249	Stability and composition of CH4-rich clathrate hydrates in the present martian subsurface. Icarus, 2021, 353, 114099.	1.1	3
250	Methane on Mars: subsurface sourcing and conflicting atmospheric measurements. , 2021, , 149-174.		2
251	Subsurface robotic exploration for geomorphology, astrobiology and mining during MINAR6 campaign, Boulby Mine, UK: part II (Results and Discussion). International Journal of Astrobiology, 2021–20, 93-108	0.9	0

#	Article	IF	CITATIONS
252	Astrobiology and Development of Human Civilization. , 2021, , 215-261.		1
253	Life on Other Planets. , 2021, , 159-167.		0
254	Resolving Martian enigmas, discovering new ones: the case ofÂCuriosity and Gale crater. , 2021, , 1-10.		0
255	A review of the meteor shower hypothesis for methane on Mars. , 2021, , 175-203.		1
256	Life on Mars: Clues, Evidence or Proof?. , 0, , .		1
257	Carbonateâ€Phyllosilicate Parageneses and Environments of Aqueous Alteration in Nili Fossae and Mars. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006698.	1.5	7
258	Analytical Chemistry in Astrobiology. Analytical Chemistry, 2021, 93, 5981-5997.	3.2	7
259	Upper limits for phosphine (PH ₃) in the atmosphere of Mars. Astronomy and Astrophysics, 2021, 649, L1.	2.1	4
261	Dubiofossils from a Marsâ€analogue subsurface palaeoenvironment: The limits of biogenicity criteria. Geobiology, 2021, 19, 473-488.	1.1	10
262	A stringent upper limit of 20 pptv for methane on Mars and constraints on its dispersion outside Gale crater. Astronomy and Astrophysics, 0, , .	2.1	16
263	China's Mars Exploration Mission and Science Investigation. Space Science Reviews, 2021, 217, 1.	3.7	66
264	宇宙ã«ãĚã'ã,‹ç"Ÿå'½å†å€™æŽ¢æŸ». Bunseki Kagaku, 2021, 70, 309-326.	0.1	1
268	Transcriptional response to prolonged perchlorate exposure in the methanogen Methanosarcina barkeri and implications for Martian habitability. Scientific Reports, 2021, 11, 12336.	1.6	3
270	Day-night differences in Mars methane suggest nighttime containment at Gale crater. Astronomy and Astrophysics, 2021, 650, A166.	2.1	22
271	A three-dimensional atmospheric dispersion model for Mars. Progress in Earth and Planetary Science, 2021, 8, .	1.1	4
273	Comparative planetary evolution. , 2022, , 305-352.		0
274	Heterogeneous Physical Chemistry in the Atmospheres of Earth, Mars, and Venus: Perspectives for Rocky Exoplanets. ACS Earth and Space Chemistry, 2021, 5, 149-162.	1.2	3
275	Ultra-wide-dynamic-range gas sensing by optical pathlength multiplexed absorption spectroscopy. Photonics Research, 2021, 9, 193.	3.4	14

	CITATION RE	PORT	
# 276	ARTICLE Prospects for Life Beyond Earth. , 2021, , 258-262.	IF	CITATIONS 0
277	Synthetic Biology for Space Exploration: Promises and Societal Implications. Wissenschaftsethik Und Technikfolgenbeurteilung, 2016, , 73-100.	0.8	12
279	First detection of ozone in the mid-infrared at Mars: implications for methane detection. Astronomy and Astrophysics, 2020, 639, A141.	2.1	23
280	Serpentinite and the search for life beyond Earth. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2020, 378, 20180421.	1.6	29
281	High-temperature and low-threshold interband cascade lasers at wavelengths longer than 6  μm. Optic Engineering, 2017, 57, 1.	al _{0.5}	2
282	Miniaturized ring-down spectrometer for CubeSat-based planetary science. Applied Optics, 2019, 58, 1941.	0.9	6
283	Mid-infrared dual-comb spectroscopy with interband cascade lasers. Optics Letters, 2019, 44, 2113.	1.7	49
284	Interleaved difference-frequency generation for microcomb spectral densification in the mid-infrared. Optica, 2020, 7, 309.	4.8	18
285	An Unusual Inverted Saline Microbial Mat Community in an Interdune Sabkha in the Rub' al Khali (the) Tj ETQq0 0	0_rgBT /O	verlock 10 T
286	A Geologically Robust Procedure for Observing Rocky Exoplanets to Ensure that Detection of Atmospheric Oxygen Is a Modern Earth-like Biosignature. Astrophysical Journal Letters, 2020, 898, L17.	3.0	5
287	Detection of Microorganisms and Metabolism in Dune Sand of a Low Organic Content. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2021JG006404.	1.3	1
288	Curiosity rover sniffs Martian methane. Nature, 0, , .	13.7	0
289	Comment on Liquid Water and Life on Mars. Journal of Astrobiology & Outreach, 2015, 03, .	0.1	0
290	Life on Mars: time to start. Journal of Astrobiology & Outreach, 2015, 03, .	0.1	0
291	Continuous-wave operation of InAs-based interband cascade lasers above room temperature. , 2015, , .		0
293	The Basic Principles of Creation of Habitable Planets around Stars in the Milky Way Galaxy. International Journal of Astronomy and Astrophysics, 2016, 06, 512-554.	0.2	4
294	Auf der Suche nach Signaturen des Lebens. , 2017, , 1-81.		0

295	Water in Extrasolar Planets and Implications for Habitability. Space Sciences Series of ISSI, 2017, , 429-450.	0.0	0
-----	--	-----	---

	CIMICI		
#	Article	IF	Citations
296	Gamma irradiation of Fabry–Perot interband cascade lasers. Optical Engineering, 2017, 57, 1.	0.5	1
297	Interband Cascade Laser-based Dual-Comb Spectroscopy for Methane Sensing. , 2018, , .		0
298	Curiosity's Chemistry Instruments. , 2018, , 294-348.		0
299	Dual-comb spectroscopy with passively mode-locked interband cascade laser frequency combs. , 2018, ,		0
302	Signaturen des Lebens. , 2019, , 1-114.		0
303	Near-infrared frequency comb generation in mid-infrared interband cascade lasers. Optics Letters, 2019, 44, 5828.	1.7	4
304	Biomolecules in Space: The Way to Search for Life on Mars. SpringerBriefs in Space Life Sciences, 2020, , 1-39.	0.1	1
305	Mars Methane Sources in Northwestern Gale Crater Inferred From Back Trajectory Modeling. Earth and Space Science, 2021, 8, e2021EA001915.	1.1	8
306	Evolution of the Scientific Instrumentation for In Situ Mars Exploration. , 0, , .		2
308	Quasi-continuous wavelength tuning of single-mode interband cascade lasers based on V-coupled cavity. , 2020, , .		0
309	No detection of SO ₂ , H ₂ S, or OCS in the atmosphere of Mars from the first two Martian years of observations from TGO/ACS. Astronomy and Astrophysics, 2022, 658, A86.	2.1	1
310	In Situ X-Ray Diffraction Study on Hydrate Formation at Low Temperature in a High Vacuum. Journal of Physical Chemistry C, 2021, 125, 26892-26900.	1.5	5
311	Aeolian driven silicate comminution unlikely to be responsible for the rapid loss of Martian methane. Icarus, 2021, 375, 114827.	1.1	0
312	Mars: new insights and unresolved questions. International Journal of Astrobiology, 2021, 20, 394-426.	0.9	19
313	Depleted carbon isotope compositions observed at Gale crater, Mars. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	33
315	Reviewing in situ analytical techniques used to research Martian geochemistry: From the Viking Project to the MMX future mission. Analytica Chimica Acta, 2022, 1197, 339499.	2.6	9
316	Physical and chemical mechanisms that impact the detection, identification, and quantification of organic matter and the survival of microorganisms on the Martian surface – a review. International Journal of Astrobiology, 2022, 21, 356-379.	0.9	3
317	Invited review: Infrared spectroscopy of planetary atmospheres: Searching for insights into their past and present histories. Icarus, 2022, 376, 114885.	1.1	2

#	Article	IF	CITATIONS
318	Reaction of methane and UV-activated perchlorate: Relevance to heterogeneous loss of methane in the atmosphere of Mars. Icarus, 2022, 376, 114832.	1.1	2
319	A Large-scale Approach to Modeling Molecular Biosignatures: The Diatomics. Astrophysical Journal, 2022, 925, 57.	1.6	0
320	Laboratory experiment of ATP measurement using Mars soil simulant: as a method for extraterrestrial life detection. Analytical Sciences, 2022, 38, 725-730.	0.8	2
321	Atmospheric processes affecting methane on Mars. Icarus, 2022, 382, 114940.	1.1	3
322	The case and context for atmospheric methane as an exoplanet biosignature. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2117933119.	3.3	35
323	Analytical Chemistry Throughout This Solar System. Annual Review of Analytical Chemistry, 2022, 15, 197-219.	2.8	2
324	From Atmospheric Evolution to the Search of Species of Astrobiological Interest in the Solar System—Case Studies Using the Planetary Spectrum Generator. Atmosphere, 2022, 13, 461.	1.0	1
325	Time-Sensitive Aspects of Mars Sample Return (MSR) Science. Astrobiology, 2021, , .	1.5	10
326	Constraints on Emission Source Locations of Methane Detected by Mars Science Laboratory. Journal of Geophysical Research E: Planets, 2021, 126, .	1.5	5
327	Scientific Value of Including an Atmospheric Sample as Part of Mars Sample Return (MSR). Astrobiology, 2022, 22, S-165-S-175.	1.5	7
332	Seasonality in Mars atmospheric methane driven by microseepage, barometric pumping, and adsorption. Icarus, 2022, 383, 115079.	1.1	2
333	L'exploration de Mars : $ ilde{A}$ ©tat des lieux et nouveaux enjeux. , 2022, , 4-9.	0.1	0
334	The Effect of Grain Size on Porewater Radiolysis. Earth and Space Science, 2022, 9, .	1.1	1
335	Observations and Modeling of Martian Auroras. Space Science Reviews, 2022, 218, .	3.7	1
336	Machine Learning for Mars Exploration. International Journal of Computer Sciences and Engineering, 2021, 9, 29-38.	0.0	1
337	Database on mineral mediated carbon reduction: implications for future research. International Journal of Astrobiology, 0, , 1-18.	0.9	1
338	Comparative study of methods for detecting extraterrestrial life in the exploration mission of Mars and the solar system. Life Sciences in Space Research, 2022, , .	1.2	4
339	Barometric Pumping Through Fractured Rock: A Mechanism for Venting Deep Methane to Mars' Atmosphere. Geophysical Research Letters, 2022, 49, .	1.5	3

#	Article	IF	CITATIONS
340	Biomarkers in the Atacama Desert along the moisture gradient and the depth in the hyperarid zone: Phosphatase activity as trace of microbial activity. International Journal of Astrobiology, 0, , 1-23.	0.9	3
341	Extraterrestrial Life Signature Detection Microscopy: Search and Analysis of Cells and Organics on Mars and Other Solar System Bodies. Space Science Reviews, 2022, 218, .	3.7	2
342	Serpentine-magnesite association of Salem Ultramafic Complex, southern India: A potential analogue for mars. Planetary and Space Science, 2022, , 105528.	0.9	1
343	Low 13C-13C abundances in abiotic ethane. Nature Communications, 2022, 13, .	5.8	3
344	Mars On-Site Shared Analytics Information and Computing. , 0, 29, 707-715.		6
345	Investigation of Absorption Bands around 3.3 \hat{I} /4m in CRISM Data. Remote Sensing, 2022, 14, 5028.	1.8	0
346	Using Organic Contaminants to Constrain the Terrestrial Journey of the Martian Meteorite Lafayette. Astrobiology, 2022, 22, 1351-1362.	1.5	0
347	Highlight Advances in Planetary Physics in the Solar System: In Situ Detection Over the Past 20 Years. Space: Science & Technology, 2023, 3, .	1.0	0
348	MEMS Ion Optical Spectrometer for Methane Detection on Mars. , 2022, , .		0
349	The Fermi Paradox and Astrobiology. , 2023, , 209-266.		0
350	Reversibility controls on extreme methane clumped isotope signatures from anaerobic oxidation of methane. Geochimica Et Cosmochimica Acta, 2023, 348, 165-186.	1.6	6
351	Multibeam Blind Search of Targeted SETI Observations toward 33 Exoplanet Systems with FAST. Astronomical Journal, 2023, 165, 132.	1.9	5
352	Mars climate change research: Perspective of sulfur replacing carbon in martian sedimentary rocks. Icarus, 2023, 399, 115558.	1.1	0
354	Mars Simulation Facilities: A Review of Recent Developments, Capabilities and Applications. Journal of the Indian Institute of Science, 0, , .	0.9	1
357	Trace Gases of Mars Atmosphere. Astrophysics and Space Science Library, 2023, , 171-177.	1.0	0
366	Dynamics and clouds in planetary atmospheres from telescopic observations. Astronomy and Astrophysics Review, 2023, 31, .	9.1	0