Three-dimensional head-direction coding in the bat bra

Nature 517, 159-164 DOI: 10.1038/nature14031

Citation Report

#	Article	IF	CITATIONS
1	The self-organization of grid cells in 3D. ELife, 2015, 4, .	6.0	40
2	Is there a pilot in the brain? Contribution of the self-positioning system to spatial navigation. Frontiers in Behavioral Neuroscience, 2015, 9, 292.	2.0	15
3	Neural encoding of large-scale three-dimensional space—properties and constraints. Frontiers in Psychology, 2015, 6, 927.	2.1	57
4	Spatial cognition in bats and rats: from sensory acquisition to multiscale maps and navigation. Nature Reviews Neuroscience, 2015, 16, 94-108.	10.2	236
6	Recalculating…. Cell, 2015, 160, 1035-1037.	28.9	0
7	A three-dimensional neural compass. Nature, 2015, 517, 156-157.	27.8	3
8	Topological Schemas of Cognitive Maps and Spatial Learning. Frontiers in Computational Neuroscience, 2016, 10, 18.	2.1	28
9	Cellular Basis of Head Direction and Contextual Cues in the Insect Brain. Current Biology, 2016, 26, 1816-1828.	3.9	84
10	Path integration in 3D from visual motion cues: A human fMRI study. NeuroImage, 2016, 142, 512-521.	4.2	22
11	3-D Maps and Compasses in the Brain. Annual Review of Neuroscience, 2016, 39, 171-196.	10.7	76
12	Perceptual Modalities Guiding Bat Flight in a Native Habitat. Scientific Reports, 2016, 6, 27252.	3.3	15
13	Gravity orientation tuning in macaque anterior thalamus. Nature Neuroscience, 2016, 19, 1566-1568.	14.8	69
14	Perspectives and Challenges for Future Research in Bat Hearing. Springer Handbook of Auditory Research, 2016, , 289-304.	0.7	0
15	Bat Bioacoustics. Springer Handbook of Auditory Research, 2016, , .	0.7	30
16	Ten Years of Grid Cells. Annual Review of Neuroscience, 2016, 39, 19-40.	10.7	180
17	The Neural Basis of Long-Distance Navigation in Birds. Annual Review of Physiology, 2016, 78, 133-154.	13.1	107
18	Vectorial representation of spatial goals in the hippocampus of bats. Science, 2017, 355, 176-180.	12.6	227
19	The Emperor's new topology. Physics of Life Reviews, 2017, 21, 26-28.	2.8	3

TATION REDO

		CITATION REPORT		
#	Article		IF	CITATIONS
20	Beyond the anatomy-based representation of brain function. Physics of Life Reviews, 201	7, 21, 42-45.	2.8	5
21	A neural circuit architecture for angular integration in Drosophila. Nature, 2017, 546, 101	106.	27.8	294
22	Multivoxel Pattern Analysis Reveals 3D Place Information in the Human Hippocampus. Jou Neuroscience, 2017, 37, 4270-4279.	ırnal of	3.6	49
23	The development of spatial and memory circuits in the rat. Wiley Interdisciplinary Reviews Science, 2017, 8, e1424.	s: Cognitive	2.8	47
24	Spatial representation in the hippocampal formation: a history. Nature Neuroscience, 201 1448-1464.	.7, 20,	14.8	362
25	Our sense of direction: progress, controversies and challenges. Nature Neuroscience, 201 1465-1473.	.7, 20,	14.8	154
26	Choosing the right bar: a complex problem. Nature Neuroscience, 2017, 20, 1323-1324.		14.8	0
27	The vestibulocochlear bases for wartime posttraumatic stress disorder manifestations. M Hypotheses, 2017, 106, 44-56.	edical	1.5	1
28	Brain projective reality: Novel clothes for the emperor. Physics of Life Reviews, 2017, 21,	46-55.	2.8	2
29	Navigational Strategies and Their Neural Correlates. Journal of the Indian Institute of Scie 97, 511-525.	nce, 2017,	1.9	10
30	Spatial Navigation and the Central Complex: Sensory Acquisition, Orientation, and Motor Frontiers in Behavioral Neuroscience, 2017, 11, 4.	Control.	2.0	47
31	Bat Navigation. , 2017, , 333-345.			4
32	Spatial Memory. , 2017, , 209-231.			2
33	Introduction to Maps and Librarians. , 2017, , 1-15.			1
34	The Brain Compass: A Perspective on How Self-Motion Updates the Head Direction Cell A Neuron, 2018, 97, 275-289.	ttractor.	8.1	54
35	Social place-cells in the bat hippocampus. Science, 2018, 359, 218-224.		12.6	159
36	Hippocampus, Retrosplenial and Parahippocampal Cortices Encode Multicompartment 31 Hierarchical Manner. Cerebral Cortex, 2018, 28, 1898-1909.) Space in a	2.9	27
37	A dual-axis rotation rule for updating the head direction cell reference frame during move three dimensions. Journal of Neurophysiology, 2018, 119, 192-208.	ment in	1.8	33

# 38	ARTICLE Sensory Substitution and the Neural Correlates of Navigation in Blindness. , 2018, , 167-200.	IF	Citations 64
39	A Continuous-Attractor Model of Flip Cell Phenomena. Advances in Intelligent Systems and Computing, 2018, , 163-172.	0.6	0
40	Navigating cognition: Spatial codes for human thinking. Science, 2018, 362, .	12.6	371
41	Recording the Spatial Mapping Cells: Place, Head Direction, and Grid Cells. Handbook of Behavioral Neuroscience, 2018, 28, 95-121.	0.7	0
42	Navigation in Real-World Environments: New Opportunities Afforded by Advances in Mobile Brain Imaging. Frontiers in Human Neuroscience, 2018, 12, 361.	2.0	48
43	In Vivo Electrophysiological Approaches for Studying Head Direction Cells. Handbook of Behavioral Neuroscience, 2018, , 169-187.	0.7	1
44	Nonoscillatory Phase Coding and Synchronization in the Bat Hippocampal Formation. Cell, 2018, 175, 1119-1130.e15.	28.9	81
45	A hierarchical anti-Hebbian network model for the formation of spatial cells in three-dimensional space. Nature Communications, 2018, 9, 4046.	12.8	14
46	3D Hippocampal Place Field Dynamics in Free-Flying Echolocating Bats. Frontiers in Cellular Neuroscience, 2018, 12, 270.	3.7	22
47	Optimal dynamic coding by mixed-dimensionality neurons in the head-direction system of bats. Nature Communications, 2018, 9, 3590.	12.8	23
48	Neuroethology of bat navigation. Current Biology, 2018, 28, R997-R1004.	3.9	21
49	The Neurobiology of Mammalian Navigation. Current Biology, 2018, 28, R1023-R1042.	3.9	117
50	Insect Orientation: Stay on Course with the Sun. Current Biology, 2018, 28, R933-R936.	3.9	5
51	Evaluation of injectable anaesthesia with five medetomidine-midazolam based combinations in Egyptian fruit bats (<i>Rousettus aegyptiacus</i>). Laboratory Animals, 2018, 52, 515-525.	1.0	11
52	Cellular components and circuitry of the presubiculum and its functional role in the head direction system. Cell and Tissue Research, 2018, 373, 541-556.	2.9	26
53	Hippocampal place cell encoding of sloping terrain. Hippocampus, 2018, 28, 767-782.	1.9	18
54	Three-Dimensional Representation of Motor Space in the Mouse Superior Colliculus. Current Biology, 2018, 28, 1744-1755.e12.	3.9	41
55	Interspike interval analysis and spikelets in presubicular head-direction cells. Journal of Neurophysiology, 2018, 120, 564-575.	1.8	11

#	Article	IF	CITATIONS
56	100 bats and a long, dark tunnel: one neuroscientist's quest to unlock the secrets of 3D navigation. Nature, 2018, 559, 165-168.	27.8	2
57	Self-Organized Attractor Dynamics in the Developing Head Direction Circuit. Current Biology, 2018, 28, 609-615.e3.	3.9	36
58	The influence of locomotory style on three-dimensional spatial learning. Animal Behaviour, 2018, 142, 39-47.	1.9	7
59	Role of the head-direction signal in spatial tasks: when and how does it guide behavior?. Journal of Neurophysiology, 2018, 120, 78-87.	1.8	10
60	Bats – Using Sound to Reveal Cognition. , 0, , 31-59.		3
61	Neural Circuits: When Neurons â€ ⁻ Remember' Their Connectivity. Current Biology, 2018, 28, R662-R664.	3.9	0
62	Motor Control: Three-Dimensional Metric of Head Movements in the Mouse Brain. Current Biology, 2018, 28, R660-R662.	3.9	0
63	Cognitive Data Visualization—A New Field with a Long History. Topics in Intelligent Engineering and Informatics, 2019, , 49-77.	0.4	3
64	The intrinsic attractor manifold and population dynamics of a canonical cognitive circuit across waking and sleep. Nature Neuroscience, 2019, 22, 1512-1520.	14.8	214
65	Cerebellar Prediction of the Dynamic Sensory Consequences of Gravity. Current Biology, 2019, 29, 2698-2710.e4.	3.9	33
66	A model-based reassessment of the three-dimensional tuning of head direction cells in rats. Journal of Neurophysiology, 2019, 122, 1274-1287.	1.8	8
67	Correlated Neural Activity across the Brains of Socially Interacting Bats. Cell, 2019, 178, 413-428.e22.	28.9	97
68	A new perspective on the head direction cell system and spatial behavior. Neuroscience and Biobehavioral Reviews, 2019, 105, 24-33.	6.1	25
69	Thalamocortical processing of the head-direction sense. Progress in Neurobiology, 2019, 183, 101693.	5.7	25
70	Reply to Laurens and Angelaki: A model-based reassessment of the three-dimensional tuning of head direction cells in rats. Journal of Neurophysiology, 2019, 122, 1288-1289.	1.8	2
71	Anticipatory Neural Activity Improves the Decoding Accuracy for Dynamic Head-Direction Signals. Journal of Neuroscience, 2019, 39, 2847-2859.	3.6	6
72	The place cell activity is information-efficient constrained by energy. Neural Networks, 2019, 116, 110-118.	5.9	19
73	Three brain states in the hippocampus and cortex. Hippocampus, 2019, 29, 184-238.	1.9	49

	CHATION R	EPORT	
#	Article	IF	CITATIONS
74	Encoding of 3D head direction information in the human brain. Hippocampus, 2019, 29, 619-629.	1.9	29
75	Altered neural odometry in the vertical dimension. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 4631-4636.	7.1	29
76	Sensory gaze stabilization in echolocating bats. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20191496.	2.6	13
77	A passive, camera-based head-tracking system for real-time, three-dimensional estimation of head position and orientation in rodents. Journal of Neurophysiology, 2019, 122, 2220-2242.	1.8	11
78	Three-dimensional tuning of head direction cells in rats. Journal of Neurophysiology, 2019, 121, 4-37.	1.8	24
79	The head direction cell network: attractor dynamics, integration within the navigation system, and three-dimensional properties. Current Opinion in Neurobiology, 2020, 60, 136-144.	4.2	22
80	"lt's all in their head― hierarchical exploration of a three-dimensional layered pyramid in rats. Animal Cognition, 2020, 23, 277-288.	1.8	7
81	Mechanisms Underlying the Neural Computation of Head Direction. Annual Review of Neuroscience, 2020, 43, 31-54.	10.7	76
82	How do rodents explore a three-dimensional environment? Habitat-dependent and direction-dependent differences. Behavioural Processes, 2020, 178, 104183.	1.1	7
83	Neuronal circuits and the magnetic sense: central questions. Journal of Experimental Biology, 2020, 223, .	1.7	3
84	On the absence or presence of 3D tuned head direction cells in rats: a review and rebuttal. Journal of Neurophysiology, 2020, 123, 1808-1827.	1.8	1
85	Nonlinear mixed selectivity supports reliable neural computation. PLoS Computational Biology, 2020, 16, e1007544.	3.2	47
86	Cognitive map–based navigation in wild bats revealed by a new high-throughput tracking system. Science, 2020, 369, 188-193.	12.6	98
87	Limitation of Rayleigh sky model for bioinspired polarized skylight navigation in three-dimensional attitude determination. Bioinspiration and Biomimetics, 2020, 15, 046007.	2.9	16
88	Multiple head direction signals within entorhinal cortex: origin and function. Current Opinion in Neurobiology, 2020, 64, 32-40.	4.2	10
89	Equilibrium States and Their Stability in the Head-Direction Ring Network. Frontiers in Computational Neuroscience, 2020, 13, 96.	2.1	0
90	Decision making in foraging bats. Current Opinion in Neurobiology, 2020, 60, 169-175.	4.2	17
91	A model of collective behavior based purely on vision. Science Advances, 2020, 6, eaay0792.	10.3	76

# 92	ARTICLE Bio-inspired multi-scale fusion. Biological Cybernetics, 2020, 114, 209-229.	IF 1.3	CITATIONS
93	A gravity-based three-dimensional compass in the mouse brain. Nature Communications, 2020, 11, 1855.	12.8	36
94	Commutative Properties of Head Direction Cells during Locomotion in 3D: Are All Routes Equal?. Journal of Neuroscience, 2020, 40, 3035-3051.	3.6	6
95	Volumetric spatial behaviour in rats reveals the anisotropic organisation of navigation. Animal Cognition, 2021, 24, 133-163.	1.8	9
96	The fully automated bat (FAB) flight room: A human-free environment for studying navigation in flying bats and its initial application to the retrosplenial cortex. Journal of Neuroscience Methods, 2021, 348, 108970.	2.5	6
97	Updating headings in 3D navigation. Quarterly Journal of Experimental Psychology, 2021, 74, 889-909.	1.1	2
98	A Bio-Inspired 3-D Neural Compass Based on Head Direction Cells. IEEE Access, 2021, 9, 110753-110761.	4.2	0
99	Wild Animals as the Model Subjects to Study the Hippocampal Formation, Spatial Navigation and Memory. Advances in Intelligent Systems and Computing, 2021, , 496-503.	0.6	0
100	Mouse entorhinal cortex encodes a diverse repertoire of self-motion signals. Nature Communications, 2021, 12, 671.	12.8	19
102	Wireless and battery-free technologies for neuroengineering. Nature Biomedical Engineering, 2023, 7, 405-423.	22.5	141
104	Multiscale representation of very large environments in the hippocampus of flying bats. Science, 2021, 372, .	12.6	50
109	Directional tuning in the hippocampal formation of birds. Current Biology, 2021, 31, 2592-2602.e4.	3.9	35
110	Millimeter-Wave Bat for Mapping and Quantifying Micromotions in Full Field of View. Research, 2021, 2021, 9787484.	5.7	11
111	Locally ordered representation of 3D space in the entorhinal cortex. Nature, 2021, 596, 404-409.	27.8	50
113	A brain-inspired localization system for the UAV based on navigation cells. Aircraft Engineering and Aerospace Technology, 2021, 93, 1221-1228.	1.2	0
117	Thalamocortical interactions in cognition and disease: The mediodorsal and anterior thalamic nuclei. Neuroscience and Biobehavioral Reviews, 2021, 130, 162-177.	6.1	33
119	The development of spatial and memory circuits in the rat. Wiley Interdisciplinary Reviews: Cognitive Science, 2017, 8, .	2.8	5
121	EthoLoop: automated closed-loop neuroethology in naturalistic environments. Nature Methods, 2020, 17, 1052-1059.	19.0	53

#	Article	IF	CITATIONS
130	On the Value of Reptilian Brains to Map the Evolution of the Hippocampal Formation. Brain, Behavior and Evolution, 2017, 90, 41-52.	1.7	27
131	Brain-state invariant thalamo-cortical coordination revealed by non-linear encoders. PLoS Computational Biology, 2018, 14, e1006041.	3.2	9
132	Efficient sensory coding of multidimensional stimuli. PLoS Computational Biology, 2020, 16, e1008146.	3.2	12
133	Probable nature of higher-dimensional symmetries underlying mammalian grid-cell activity patterns. ELife, 2015, 4, .	6.0	43
134	Visual cue-related activity of cells in the medial entorhinal cortex during navigation in virtual reality. ELife, 2020, 9, .	6.0	26
135	Spatial modulation of hippocampal activity in freely moving macaques. Neuron, 2021, 109, 3521-3534.e6.	8.1	55
136	MouseVenue3D: A Markerless Three-Dimension Behavioral Tracking System for Matching Two-Photon Brain Imaging in Free-Moving Mice. Neuroscience Bulletin, 2022, 38, 303-317.	2.9	7
137	Cortical representation of group social communication in bats. Science, 2021, 374, eaba9584.	12.6	46
139	Spatial representability of neuronal activity. Scientific Reports, 2021, 11, 20957.	3.3	1
140	'Bat-nav' system enables three-dimensional manoeuvres. Nature, 0, , .	27.8	0
151	Spatial memory for vertical locations Journal of Experimental Psychology: Learning Memory and Cognition, 2019, 45, 1205-1223.	0.9	1
154	Electrophysiology and the magnetic sense: a guide to best practice. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2021, 208, 185.	1.6	5
156	The Impact of Vestibular Signals on Cells Responsible for Orientation and Navigation. , 2020, , 496-511.		0
157	Mother bats facilitate pup navigation learning. Current Biology, 2022, 32, 350-360.e4.	3.9	12
158	Flight-induced compass representation in the monarch butterfly heading network. Current Biology, 2022, 32, 338-349.e5.	3.9	42
159	Multiscale Representation Learning for Image Classification: A Survey. IEEE Transactions on Artificial Intelligence, 2023, 4, 23-43.	4.7	15
160	Wide-angle, monocular head tracking using passive markers. Journal of Neuroscience Methods, 2022, 368, 109453.	2.5	6
161	Toroidal topology of population activity in grid cells. Nature, 2022, 602, 123-128.	27.8	152

ARTICLE IF CITATIONS # Animal behaviour: Mother bats teach their pups to help build independence. Current Biology, 2022, 32, 162 3.9 0 R74-R76. Head direction cells in a migratory bird prefer north. Science Advances, 2022, 8, eabl6848. 10.3 The geometry of decision-making in individuals and collectives. Proceedings of the National Academy 164 7.1 49 of Sciences of the United States of America, 2021, 118, . Learning to represent continuous variables in heterogeneous neural networks. Cell Reports, 2022, 39, 6.4 110612 Leaving flatland: Advances in 3D behavioral measurement. Current Opinion in Neurobiology, 2022, 73, 167 4.2 20 102522. Adaptive cognitive maps for curved surfaces in the 3D world. Cognition, 2022, 225, 105126. 2.2 Emerging Optoelectronic Devices Based on Microscale LEDs and Their Use as Implantable Biomedical 170 2.9 3 Applications. Micromachines, 2022, 13, 1069. Rodents Prefer Going Downhill All the Way (Gravitaxis) Instead of Taking an Uphill Task. Biology, 2022, 2.8 11, 1090. The retrosplenial cortex of <scp> <i>Carollia perspicillata</i> </scp> , <scp>Seba's</scp> shortâ€tailed 173 1.9 0 fruit bat. Hippocampus, 0, , . Hippocampal volume in patients with bilateral and unilateral peripheral vestibular dysfunction. 174 2.7 NeuroImage: Clinical, 2022, 36, 103212. Graph Representation Learning Meets Computer Vision: A Survey. IEEE Transactions on Artificial 175 4.714 Intelligence, 2023, 4, 2-22. Volumetric and connectivity assessment of the caudate nucleus in California sea lions and coyotes. 1.8 Animal Cognition, 2022, 25, 1231-1240. Design of Three-Dimensional Pleated Clothing Pattern Based on Computer Animation Technology. 177 1.1 0 Mathematical Problems in Engineering, 2022, 2022, 1-7. Neural Correlates of Spatial Navigation in Primate Hippocampus. Neuroscience Bulletin, 2023, 39, 178 315-327. An artificial neural network explains how bats might use vision for navigation. Communications 180 0 4.4 Biology, 2022, 5, . Symmetries and asymmetries in the neural encoding of 3D space. Philosophical Transactions of the Róyal Society B: Biólogical Sciences, 2023, 378, . Contextual and pure time coding for self and other in the hippocampus. Nature Neuroscience, 2023, 26, 182 14.8 3 285-294. Spatial coding in the hippocampus and hyperpallium of flying owls. Proceedings of the National 7.1 Academy of Sciences of the United States of America, 2023, 120, .

#	Article	IF	CITATIONS
184	Brain-Inspired Remote Sensing Interpretation: A Comprehensive Survey. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16, 2992-3033.	4.9	7
185	Computational <scp>crossâ€species</scp> views of the hippocampal formation. Hippocampus, 2023, 33, 586-599.	1.9	7
186	Bayesian inference in ring attractor networks. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	8
187	Organization of projections from the entorhinal cortex to the hippocampal formation of the Egyptian fruit bat <i>Rousettus aegyptiacus</i> . Hippocampus, 2023, 33, 889-905.	1.9	2
188	An optical design enabling lightweight and large field-of-view head-mounted microscopes. Nature Methods, 2023, 20, 546-549.	19.0	10
189	A custom-made AAV1 variant (AAV1-T593K) enables efficient transduction of Japanese quail neurons in vitro and in vivo. Communications Biology, 2023, 6, .	4.4	0
190	Five discoveries of Volodymyr Betz. Part one. Betz and the islands of entorhinal cortex. Ukrainian Scientific Medical Youth Journal, 2023, 136, 30-59.	0.1	0
191	Are grid cells used for navigation? On local metrics, subjective spaces, and black holes. Neuron, 2023, 111, 1858-1875.	8.1	11
192	Brain-inspired multimodal hybrid neural network for robot place recognition. Science Robotics, 2023, 8, .	17.6	6
193	A map of spatial navigation for neuroscience. Neuroscience and Biobehavioral Reviews, 2023, 152, 105200.	6.1	2
194	A somaâ€synapses neuron model and FPGA implementation. Concurrency Computation Practice and Experience, 2023, 35, .	2.2	0
195	Cortical Integration of Vestibular and Visual Cues for Navigation, Visual Processing, and Perception. Annual Review of Neuroscience, 2023, 46, 301-320.	10.7	0
196	Perceiving like a Bat: Hierarchical 3D Geometric–Semantic Scene Understanding Inspired by a Biomimetic Mechanism. Biomimetics, 2023, 8, 436.	3.3	1
197	An automated, low-latency environment for studying the neural basis of behavior in freely moving rats. BMC Biology, 2023, 21, .	3.8	0
198	Neural representation of goal direction in the monarch butterfly brain. Nature Communications, 2023, 14, .	12.8	6
199	Brain-inspired Remote Sensing Foundation Models and Open Problems: A Comprehensive Survey. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, , 1-38.	4.9	0
201	Spherical coordinates from persistent cohomology. Journal of Applied and Computational Topology, 2024, 8, 149-173.	2.0	1
202	The mosaic structure of the mammalian cognitive map. Learning and Behavior, 2024, 52, 19-34.	1.0	Ο

#	Article	IF	CITATIONS
203	\$C^{2}N^{2}\$: Complex-Valued Contourlet Neural Network. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17, 4478-4491.	4.9	0
204	Converting an allocentric goal into an egocentric steering signal. Nature, 2024, 626, 808-818.	27.8	3
205	Geometrical Structure of Bifurcations during Spatial Decision-Making. , 2024, 2, .		0
206	Topological Characteristics of the Pore Network in the Tight Sandstone Using Persistent Homology. ACS Omega, 2024, 9, 11589-11596.	3.5	0