Semi-transparent perovskite solar cells for tandems with

Energy and Environmental Science 8, 956-963 DOI: 10.1039/c4ee03322a

Citation Report

#	Article	IF	CITATIONS
1	High-efficiency tandem perovskite solar cells. MRS Bulletin, 2015, 40, 681-686.	3.5	123
2	Fano resonances of dielectric gratings: symmetries and broadband filtering. Optics Express, 2015, 23, A1672.	3.4	29
3	Enhanced absorption in tandem solar cells by applying hydrogenated In2O3 as electrode. Applied Physics Letters, 2015, 107, .	3.3	21
4	Stability of Metal Halide Perovskite Solar Cells. Advanced Energy Materials, 2015, 5, 1500963.	19.5	1,045
5	Targeting Ideal Dualâ€Absorber Tandem Water Splitting Using Perovskite Photovoltaics and Culn <i>_x</i> Ga _{1â€<i>x</i>} Se ₂ Photocathodes. Advanced Energy Materials, 2015, 5, 1501520.	19.5	109
6	Monolithic Perovskiteâ€CIGS Tandem Solar Cells via In Situ Band Gap Engineering. Advanced Energy Materials, 2015, 5, 1500799.	19.5	219
7	Printable Dielectric Mirrors with Easily Adjustable and Wellâ€Defined Reflection Maxima for Semitransparent Organic Solar Cells. Advanced Optical Materials, 2015, 3, 1424-1430.	7.3	23
8	Using combined photoreflectance and photoluminescence for understanding optical transitions in perovskites. , 2015, , .		2
9	Optical loss analysis of monolithic perovskite/Si tandem solar cell. , 2015, , .		4
10	Beyond silicon: Alternative photovoltaic technologies. , 2015, , .		1
11	Combining novel device architecture and NIR dye towards the fabrication of transparent conductive oxide-less tandem dye sensitized solar cells. Applied Physics Express, 2015, 8, 102301.	2.4	8
12	Mechanically stacked and monolithically integrated perovskite/silicon tandems and the challenges for high efficiency. , 2015, , .		4
13	17.6% stabilized efficiency in low-temperature processed planar perovskite solar cells. Energy and Environmental Science, 2015, 8, 2365-2370.	30.8	300
14	Towards the efficiency limits of silicon solar cells: How thin is too thin?. Solar Energy Materials and Solar Cells, 2015, 143, 260-268.	6.2	48
15	Sputtered rear electrode with broadband transparency for perovskite solar cells. Solar Energy Materials and Solar Cells, 2015, 141, 407-413.	6.2	223
16	Optical losses of CdS films on FTO, ITO, and AZO electrodes in CdTe–HgCdTe tandem solar cells. Journal of Materials Science: Materials in Electronics, 2015, 26, 7607-7613.	2.2	3
17	Effects of organic inorganic hybrid perovskite materials on the electronic properties and morphology of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) and the photovoltaic performance of planar perovskite solar cells. Journal of Materials Chemistry A, 2015, 3, 15897-15904.	10.3	85
18	High-Efficiency Polycrystalline Thin Film Tandem Solar Cells. Journal of Physical Chemistry Letters, 2015, 6, 2676-2681.	4.6	166

ATION REDO

#	Article	IF	CITATIONS
19	Bifacial Si heterojunction-perovskite organic-inorganic tandem to produce highly efficient (ηT* â^¼ 33%) solar cell. Applied Physics Letters, 2015, 106, .	3.3	82
20	Semitransparent Fully Air Processed Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 17776-17781.	8.0	75
21	Under the spotlight: The organic–inorganic hybrid halide perovskite for optoelectronic applications. Nano Today, 2015, 10, 355-396.	11.9	891
22	Multilayer Transparent Top Electrode for Solution Processed Perovskite/Cu(In,Ga)(Se,S) ₂ Four Terminal Tandem Solar Cells. ACS Nano, 2015, 9, 7714-7721.	14.6	157
23	Transparent Conductive Oxide-Free Perovskite Solar Cells with PEDOT:PSS as Transparent Electrode. ACS Applied Materials & Interfaces, 2015, 7, 15314-15320.	8.0	201
24	Perovskite Solar Cells with Large-Area CVD-Graphene for Tandem Solar Cells. Journal of Physical Chemistry Letters, 2015, 6, 2745-2750.	4.6	170
25	Efficient Semitransparent Perovskite Solar Cells with Graphene Electrodes. Advanced Materials, 2015, 27, 3632-3638.	21.0	456
26	A 2-terminal perovskite/silicon multijunction solar cell enabled by a silicon tunnel junction. Applied Physics Letters, 2015, 106, .	3.3	488
27	Perovskite cells charge forward. Nature Materials, 2015, 14, 559-561.	27.5	78
28	Metal-halide perovskites for photovoltaic and light-emitting devices. Nature Nanotechnology, 2015, 10, 391-402.	31.5	2,604
29	Device engineering of perovskite solar cells to achieve near ideal efficiency. Applied Physics Letters, 2015, 107, .	3.3	55
30	Pushing efficiency limits for semitransparent perovskite solar cells. Journal of Materials Chemistry A, 2015, 3, 24071-24081.	10.3	95
31	Graphene-Based Bulk-Heterojunction Solar Cells: A Review. Journal of Nanoscience and Nanotechnology, 2015, 15, 6237-6278.	0.9	71
32	Mixed Iodide–Bromide Methylammonium Lead Perovskite-based Diodes for Light Emission and Photovoltaics. Journal of Physical Chemistry Letters, 2015, 6, 3743-3748.	4.6	100
33	Low-temperature-processed efficient semi-transparent planar perovskite solar cells for bifacial and tandem applications. Nature Communications, 2015, 6, 8932.	12.8	398
34	Perovskite Solar Cells: Progress and Advancements. Energies, 2016, 9, 861.	3.1	106
35	Neutral- and Multi-Colored Semitransparent Perovskite Solar Cells. Molecules, 2016, 21, 475.	3.8	56
36	Design guidelines for perovskite/silicon 2-terminal tandem solar cells: an optical study. Optics Express, 2016, 24, A1454.	3.4	76

#	Article	IF	CITATIONS
37	The Progress of Interface Design in Perovskiteâ€Based Solar Cells. Advanced Energy Materials, 2016, 6, 1600460.	19.5	139
38	Electroâ€Optics of Colloidal Quantum Dot Solids for Thinâ€Film Solar Cells. Advanced Functional Materials, 2016, 26, 1253-1260.	14.9	26
39	Highâ€Performance Integrated Perovskite and Organic Solar Cells with Enhanced Fill Factors and Nearâ€Infrared Harvesting. Advanced Materials, 2016, 28, 3159-3165.	21.0	84
40	A transparent, solvent-free laminated top electrode for perovskite solar cells. Science and Technology of Advanced Materials, 2016, 17, 260-266.	6.1	44
41	Semitransparent Solar Cells with Ultrasmooth and Low-Scattering Perovskite Thin Films. Journal of Physical Chemistry C, 2016, 120, 28933-28938.	3.1	32
42	Numerical design of thin perovskite solar cell with fiber array-based anti-reflection front electrode for light-trapping enhancement. Journal of Optics (United Kingdom), 2016, 18, 125901.	2.2	19
43	Development of solution-processed nanowire composites for opto-electronics. MRS Communications, 2016, 6, 341-347.	1.8	3
44	Metal grid contact design of four-terminal tandem solar cells. , 2016, , .		0
45	Optical approaches to improving perovskite/Si tandem cells. MRS Advances, 2016, 1, 901-910.	0.9	6
46	Mixture interlayer for high performance organic-inorganic perovskite photodetectors. Applied Physics Letters, 2016, 109, .	3.3	38
47	A simple rule for determining the band offset at CH3NH3PbI3/organic semiconductor heterojunctions. Applied Physics Letters, 2016, 108, .	3.3	21
48	Tunable bandgap in hybrid perovskite CH3NH3Pb(Br3â^'yXy) single crystals and photodetector applications. AIP Advances, 2016, 6, .	1.3	64
49	Silver Nanowire Top Electrodes in Flexible Perovskite Solar Cells using Titanium Metal as Substrate. ChemSusChem, 2016, 9, 31-35.	6.8	90
50	Tailoring Mixed-Halide, Wide-Gap Perovskites via Multistep Conversion Process. ACS Applied Materials & Interfaces, 2016, 8, 14301-14306.	8.0	23
51	Progress in emerging solution-processed thin film solar cells – Part II: Perovskite solar cells. Renewable and Sustainable Energy Reviews, 2016, 62, 1012-1031.	16.4	111
52	Synthesis of Perfectly Oriented and Micrometer-Sized MAPbBr ₃ Perovskite Crystals for Thin-Film Photovoltaic Applications. ACS Energy Letters, 2016, 1, 150-154.	17.4	103
53	Towards optical optimization of planar monolithic perovskite/silicon-heterojunction tandem solar cells. Journal of Optics (United Kingdom), 2016, 18, 064012.	2.2	82
54	A re-evaluation of transparent conductor requirements for thin-film solar cells. Journal of Materials Chemistry A, 2016, 4, 4490-4496.	10.3	42

		CITATION REPORT		
#	Article		IF	CITATIONS
55	The benefits of graphene for hybrid perovskite solar cells. Synthetic Metals, 2016, 222,	3-16.	3.9	52
56	Pathways toward high-performance perovskite solar cells: review of recent advances in halide perovskites for photovoltaic applications. Journal of Photonics for Energy, 2016,	organo-metal 6, 022001.	1.3	218
57	Inorganic photovoltaics – Planar and nanostructured devices. Progress in Materials S 294-404.	cience, 2016, 82,	32.8	50
58	Comprehensive review on material requirements, present status, and future prospects building-integrated semitransparent photovoltaics (BISTPV). Journal of Materials Chem 8512-8540.	for istry A, 2016, 4,	10.3	94
59	Room Temperature as a Goldilocks Environment for CH ₃ NH ₃ Perovskite Solar Cells: The Importance of Temperature on Device Performance. Journal Chemistry C, 2016, 120, 11382-11393.	›Pbl ₃ of Physical	3.1	58
60	Interfacial Charge-Carrier Trapping in CH ₃ NH ₃ PbI _{3Heterolayered Structures Revealed by Time-Resolved Photoluminescence Spectroscopy Physical Chemistry Letters, 2016, 7, 1972-1977.}	ub>-Based v. Journal of	4.6	58
61	Optical analysis of perovskite/silicon tandem solar cells. Journal of Materials Chemistry 5679-5689.	C, 2016, 4,	5.5	112
62	Progress, challenges and perspectives in flexible perovskite solar cells. Energy and Envir Science, 2016, 9, 3007-3035.	ronmental	30.8	345
63	Engineering TiO ₂ /Perovskite Planar Heterojunction for Hysteresisâ€Less S Advanced Materials Interfaces, 2016, 3, 1600493.	iolar Cells.	3.7	24
64	Filterless Spectral Splitting Perovskite–Silicon Tandem System With >23% Calcula IEEE Journal of Photovoltaics, 2016, 6, 1432-1439.	ated Efficiency.	2.5	15
65	Optical Resonance Engineering for Infrared Colloidal Quantum Dot Photovoltaics. ACS Letters, 2016, 1, 852-857.	Energy	17.4	27
66	Efficiency Limit of Perovskite/Si Tandem Solar Cells. ACS Energy Letters, 2016, 1, 863-8	68.	17.4	198
67	Efficient Near-Infrared-Transparent Perovskite Solar Cells Enabling Direct Comparison o and Monolithic Perovskite/Silicon Tandem Cells. ACS Energy Letters, 2016, 1, 474-480.	f 4-Terminal	17.4	332
68	Novel insight into the function of PC61BM in efficient planar perovskite solar cells. Nar 2016, 27, 561-568.	io Energy,	16.0	14
69	Perovskite Solar Cells for the Generation of Fuels from Sunlight. , 2016, , 285-305.			4
70	Solution-processable MoOx nanocrystals enable highly efficient reflective and semitran polymer solar cells. Nano Energy, 2016, 28, 277-287.	sparent	16.0	27
71	Ordered macroporous CH ₃ NH ₃ PbI ₃ perovskite film for high-performance solar cells. Journal of Materials Chemistry A, 2016, 4, 15662-	semitransparent 15669.	10.3	54
72		aterials, 2016, 28,	21.0	302

#	Article	IF	CITATIONS
73	A road towards 25% efficiency and beyond: perovskite tandem solar cells. Molecular Systems Design and Engineering, 2016, 1, 370-376.	3.4	108
74	Reducibleâ€Shellâ€Derived Pureâ€Copperâ€Nanowire Network and Its Application to Transparent Conducting Electrodes. Advanced Functional Materials, 2016, 26, 6545-6554.	14.9	61
75	Radiation Hardness and Selfâ€Healing of Perovskite Solar Cells. Advanced Materials, 2016, 28, 8726-8731.	21.0	195
76	Metal-nanostructures $\hat{a} \in $ a modern and powerful platform to create transparent electrodes for thin-film photovoltaics. Journal of Materials Chemistry A, 2016, 4, 14481-14508.	10.3	77
77	Probing Photocurrent Nonuniformities in the Subcells of Monolithic Perovskite/Silicon Tandem Solar Cells. Journal of Physical Chemistry Letters, 2016, 7, 5114-5120.	4.6	22
78	Layered 2D alkyldiammonium lead iodide perovskites: synthesis, characterization, and use in solar cells. Journal of Materials Chemistry A, 2016, 4, 15638-15646.	10.3	170
79	Functional Singleâ€Walled Carbon Nanotubes and Nanoengineered Networks for Organic―and Perovskiteâ€5olar ell Applications. Advanced Materials, 2016, 28, 9668-9685.	21.0	22
80	Tandem Architecture of Perovskite and Cu(In,Ga)(S,Se) ₂ Created by Solution Processes for Solar Cells. Advanced Optical Materials, 2016, 4, 2102-2108.	7.3	14
81	Fabrication of Efficient Low-Bandgap Perovskite Solar Cells by Combining Formamidinium Tin Iodide with Methylammonium Lead Iodide. Journal of the American Chemical Society, 2016, 138, 12360-12363.	13.7	362
82	Advances in Perovskite Solar Cells. Advanced Science, 2016, 3, 1500324.	11.2	482
83	Techno-economic analysis of tandem photovoltaic systems. RSC Advances, 2016, 6, 66911-66923.	3.6	47
84	Unreacted PbI ₂ as a Double-Edged Sword for Enhancing the Performance of Perovskite Solar Cells. Journal of the American Chemical Society, 2016, 138, 10331-10343.	13.7	696
85	Organic-Inorganic Halide Perovskite Photovoltaics. , 2016, , .		115
86	Forthcoming perspectives of photoelectrochromic devices: a critical review. Energy and Environmental Science, 2016, 9, 2682-2719.	30.8	122
87	Parallelized Nanopillar Perovskites for Semitransparent Solar Cells Using an Anodized Aluminum Oxide Scaffold. Advanced Energy Materials, 2016, 6, 1601055.	19.5	95
88	Energy-yield prediction for II–VI-based thin-film tandem solar cells. Energy and Environmental Science, 2016, 9, 2644-2653.	30.8	43
89	Nanostructured Silicon Used for Flexible and Mobile Electricity Generation. Advanced Materials, 2016, 28, 10539-10547.	21.0	37
90	Toward a Lowâ€Cost Artificial Leaf: Driving Carbonâ€Based and Bifunctional Catalyst Electrodes with Solutionâ€Processed Perovskite Photovoltaics. Advanced Energy Materials, 2016, 6, 1600738.	19.5	28

#	Article	IF	CITATIONS
91	Efficient Semitransparent Perovskite Solar Cells for 23.0%â€Efficiency Perovskite/Silicon Fourâ€Terminal Tandem Cells. Advanced Energy Materials, 2016, 6, 1601128.	19.5	240
92	The Bright Side of Perovskites. Journal of Physical Chemistry Letters, 2016, 7, 4322-4334.	4.6	115
93	A molecularly engineered hole-transporting material for efficient perovskite solar cells. Nature Energy, 2016, 1, .	39.5	816
94	Highly stable tandem solar cell monolithically integrating dye-sensitized and CIGS solar cells. Scientific Reports, 2016, 6, 30868.	3.3	25
95	High-performance integrated perovskite and organic solar cells with efficient near-infrared harvesting. , 2016, , .		1
96	Analysis of Sputtering Damage on <i>I</i> – <i>V</i> Curves for Perovskite Solar Cells and Simulation with Reversed Diode Model. Journal of Physical Chemistry C, 2016, 120, 28441-28447.	3.1	61
97	Doping and alloying for improved perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 17623-17635.	10.3	157
98	Light-Induced Phase Segregation in Halide-Perovskite Absorbers. ACS Energy Letters, 2016, 1, 1199-1205.	17.4	532
99	Unravelling the low-temperature metastable state in perovskite solar cells by noise spectroscopy. Scientific Reports, 2016, 6, 34675.	3.3	32
100	Interface Optoelectronics Engineering for Mechanically Stacked Tandem Solar Cells Based on Perovskite and Silicon. ACS Applied Materials & amp; Interfaces, 2016, 8, 33553-33561.	8.0	36
101	Two-terminal DSSC/silicon tandem solar cells exceeding 18% efficiency. Energy and Environmental Science, 2016, 9, 3657-3665.	30.8	41
102	Organic-Lead Halide Perovskite Solar Cell with ITO Transparent Electrode Deposited by Sputtering Process. Zairyo/Journal of the Society of Materials Science, Japan, 2016, 65, 642-646.	0.2	0
103	Fast Freeâ€Carrier Diffusion in CH ₃ NH ₃ PbBr ₃ Single Crystals Revealed by Timeâ€Resolved One―and Twoâ€Photon Excitation Photoluminescence Spectroscopy. Advanced Electronic Materials, 2016, 2, 1500290.	5.1	111
104	Tandem Dye-Sensitized Solar Cells Based on TCO-less Back Contact Bottom Electrodes. Journal of Physics: Conference Series, 2016, 704, 012003.	0.4	4
105	A PCBM-assisted perovskite growth process to fabricate high efficiency semitransparent solar cells. Journal of Materials Chemistry A, 2016, 4, 11648-11655.	10.3	49
106	Intriguing Optoelectronic Properties of Metal Halide Perovskites. Chemical Reviews, 2016, 116, 12956-13008.	47.7	1,343
107	On the methodology of energy yield assessment for one-Sun tandem solar cells. Solar Energy, 2016, 135, 598-604.	6.1	24
108	Mechanical integrity of solution-processed perovskite solar cells. Extreme Mechanics Letters, 2016, 9, 353-358.	4.1	150

#	Article	IF	CITATIONS
109	Fine Tuned Nanolayered Metal/Metal Oxide Electrode for Semitransparent Colloidal Quantum Dot Solar Cells. Advanced Functional Materials, 2016, 26, 1921-1929.	14.9	37
110	Thermal and Environmental Stability of Semiâ€Transparent Perovskite Solar Cells for Tandems Enabled by a Solutionâ€Processed Nanoparticle Buffer Layer and Sputtered ITO Electrode. Advanced Materials, 2016, 28, 3937-3943.	21.0	419
111	Ultrafast Carrier Dynamics in Methylammonium Lead Bromide Perovskite. Journal of Physical Chemistry C, 2016, 120, 2542-2547.	3.1	54
112	Perovskites for Photovoltaics in the Spotlight: Photoinduced Physical Changes and Their Implications. Accounts of Chemical Research, 2016, 49, 320-329.	15.6	57
113	Recent progress and challenges of organometal halide perovskite solar cells. Reports on Progress in Physics, 2016, 79, 026501.	20.1	107
114	All-solution processed semi-transparent perovskite solar cells with silver nanowires electrode. Nanotechnology, 2016, 27, 095202.	2.6	55
115	A two-terminal perovskite/perovskite tandem solar cell. Journal of Materials Chemistry A, 2016, 4, 1208-1213.	10.3	139
116	Molecular-ink route to 13.0% efficient low-bandgap Culn(S,Se) ₂ and 14.7% efficient Cu(In,Ga)(S,Se) ₂ solar cells. Energy and Environmental Science, 2016, 9, 130-134.	30.8	122
117	Dielectric properties of hybrid perovskites and drift-diffusion modeling of perovskite cells. Proceedings of SPIE, 2016, , .	0.8	8
118	High Efficiency Tandem Thin-Perovskite/Polymer Solar Cells with a Graded Recombination Layer. ACS Applied Materials & Interfaces, 2016, 8, 7070-7076.	8.0	111
119	Stabilized Wide Bandgap MAPbBr <i>_x</i> I _{3–<i>x</i>} Perovskite by Enhanced Grain Size and Improved Crystallinity. Advanced Science, 2016, 3, 1500301.	11.2	229
120	Low temperature processed planar heterojunction perovskite solar cells employing silver nanowires as top electrode. Applied Surface Science, 2016, 369, 308-313.	6.1	25
121	Aging Precursor Solution in High Humidity Remarkably Promoted Grain Growth in Cu ₂ ZnSnS ₄ Films. ACS Applied Materials & Interfaces, 2016, 8, 5432-5438.	8.0	34
122	Organohalide Lead Perovskites for Photovoltaic Applications. Journal of Physical Chemistry Letters, 2016, 7, 851-866.	4.6	159
123	High-efficiency crystalline silicon solar cells: status and perspectives. Energy and Environmental Science, 2016, 9, 1552-1576.	30.8	790
124	Thin-film semiconductor perspective of organometal trihalide perovskite materials for high-efficiency solar cells. Materials Science and Engineering Reports, 2016, 101, 1-38.	31.8	117
125	Hydrophobic Organic Hole Transporters for Improved Moisture Resistance in Metal Halide Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 5981-5989.	8.0	184
126	Semitransparent quantum dot solar cell. Nano Energy, 2016, 22, 70-78.	16.0	37

#	ARTICLE	IF	CITATIONS
127	Working from Both Sides: Composite Metallic Semitransparent Top Electrode for High Performance Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 4523-4531.	8.0	56
128	Cesium Lead Halide Perovskites with Improved Stability for Tandem Solar Cells. Journal of Physical Chemistry Letters, 2016, 7, 746-751.	4.6	966
129	Room-temperature solution-processed and metal oxide-free nano-composite for the flexible transparent bottom electrode of perovskite solar cells. Nanoscale, 2016, 8, 5946-5953.	5.6	83
130	Semitransparent Perovskite Solar Cell With Sputtered Front and Rear Electrodes for a Four-Terminal Tandem. IEEE Journal of Photovoltaics, 2016, 6, 679-687.	2.5	80
131	Exploration of the compositional space for mixed lead halogen perovskites for high efficiency solar cells. Energy and Environmental Science, 2016, 9, 1706-1724.	30.8	622
132	Optoelectronic Quality and Stability of Hybrid Perovskites from MAPbl ₃ to MAPbl ₂ Br Using Composition Spread Libraries. Journal of Physical Chemistry C, 2016, 120, 893-902.	3.1	65
133	Perovskite-organic hybrid tandem solar cells using a nanostructured perovskite layer as the light window and a PFN/doped-MoO ₃ /MoO ₃ multilayer as the interconnecting layer. Nanoscale, 2016, 8, 3638-3646.	5.6	59
134	Efficient Monolithic Perovskite/Silicon Tandem Solar Cell with Cell Area >1 cm ² . Journal of Physical Chemistry Letters, 2016, 7, 161-166.	4.6	448
135	High Photoluminescence Quantum Yield in Band Gap Tunable Bromide Containing Mixed Halide Perovskites. Nano Letters, 2016, 16, 800-806.	9.1	269
136	A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science, 2016, 351, 151-155.	12.6	2,514
137	Manipulating Crystallization of Organolead Mixed-Halide Thin Films in Antisolvent Baths for Wide-Bandgap Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 2232-2237.	8.0	91
138	Solar energy conversion properties and defect physics of ZnSiP ₂ . Energy and Environmental Science, 2016, 9, 1031-1041.	30.8	49
139	Annealing-free efficient vacuum-deposited planar perovskite solar cells with evaporated fullerenes as electron-selective layers. Nano Energy, 2016, 19, 88-97.	16.0	125
140	Fully solution-processed transparent electrodes based on silver nanowire composites for perovskite solar cells. Nanoscale, 2016, 8, 6308-6316.	5.6	99
141	Monolithic perovskite/silicon-heterojunction tandem solar cells processed at low temperature. Energy and Environmental Science, 2016, 9, 81-88.	30.8	536
142	An efficient planar-heterojunction solar cell based on wide-bandgap CH3NH3PbI2.1Br0.9 perovskite film for tandem cell application. Chemical Communications, 2016, 52, 304-307.	4.1	42
144	Tuning of perovskite solar cell performance via low-temperature brookite scaffolds surface modifications. APL Materials, 2017, 5, .	5.1	23
145	Simulations of chalcopyrite/c-Si tandem cells using SCAPS-1D. Solar Energy, 2017, 145, 52-58.	6.1	95

#	Article	IF	CITATIONS
146	Origin of Reversible Photoinduced Phase Separation in Hybrid Perovskites. Nano Letters, 2017, 17, 1028-1033.	9.1	529
147	Transition metal-substituted lead halide perovskite absorbers. Journal of Materials Chemistry A, 2017, 5, 3578-3588.	10.3	62
148	Solution-processed chalcopyrite–perovskite tandem solar cells in bandgap-matched two- and four-terminal architectures. Journal of Materials Chemistry A, 2017, 5, 3214-3220.	10.3	23
149	Large-grained perovskite films via FA x MA 1â^'x Pb(I x Br 1â^'x) 3 single crystal precursor for efficient solar cells. Nano Energy, 2017, 34, 264-270.	16.0	35
150	Recent advances in perovskite solar cells: efficiency, stability and lead-free perovskite. Journal of Materials Chemistry A, 2017, 5, 11462-11482.	10.3	378
151	Towards high efficiency thin film solar cells. Progress in Materials Science, 2017, 87, 246-291.	32.8	85
152	Real-Time Nanoscale Open-Circuit Voltage Dynamics of Perovskite Solar Cells. Nano Letters, 2017, 17, 2554-2560.	9.1	111
153	The detailed balance limit of perovskite/silicon and perovskite/CdTe tandem solar cells. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1600955.	1.8	44
154	23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability. Nature Energy, 2017, 2, .	39.5	1,204
155	Over 20% Efficient CIGS–Perovskite Tandem Solar Cells. ACS Energy Letters, 2017, 2, 807-812.	17.4	135
156	Chalcopyrite compound semiconductors for thin film solar cells. Current Opinion in Green and Sustainable Chemistry, 2017, 4, 1-7.	5.9	40
157	Low-bandgap mixed tin–lead iodide perovskite absorbers with long carrier lifetimes for all-perovskite tandem solar cells. Nature Energy, 2017, 2, .	39.5	634
158	A life cycle assessment of perovskite/silicon tandem solar cells. Progress in Photovoltaics: Research and Applications, 2017, 25, 679-695.	8.1	74
159	Progress in Tandem Solar Cells Based on Hybrid Organic–Inorganic Perovskites. Advanced Energy Materials, 2017, 7, 1602400.	19.5	130
160	Multilayer and open structure of dendritic crosslinked CeO 2 -ZrO 2 composite: Enhanced photocatalytic degradation and water splitting performance. International Journal of Hydrogen Energy, 2017, 42, 5916-5929.	7.1	58
161	Shaping thin film growth and microstructure pathways via plasma and deposition energy: a detailed theoretical, computational and experimental analysis. Physical Chemistry Chemical Physics, 2017, 19, 5591-5610.	2.8	30
162	Metal Grid Contact Design for Four-Terminal Tandem Solar Cells. IEEE Journal of Photovoltaics, 2017, 7, 934-940.	2.5	14
163	Polymorphic Phase Control Mechanism of Organic–Inorganic Hybrid Perovskite Engineered by Dual-Site Alloving, Journal of Physical Chemistry C. 2017, 121, 9508-9515.	3.1	16

#	Article	IF	CITATIONS
164	Fourâ€Terminal Perovskite/Silicon Multijunction Solar Modules. Advanced Energy Materials, 2017, 7, 1602807.	19.5	75
165	Nanotube enhanced carbon grids as top electrodes for fully printable mesoscopic semitransparent perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 10374-10379.	10.3	55
166	Metalâ€Nanowireâ€Electrodeâ€Based Perovskite Solar Cells: Challenging Issues and New Opportunities. Advanced Energy Materials, 2017, 7, 1602751.	19.5	62
167	Nondestructive Probing of Perovskite Silicon Tandem Solar Cells Using Multiwavelength Photoluminescence Mapping. IEEE Journal of Photovoltaics, 2017, 7, 1081-1086.	2.5	24
168	Single crystals of caesium formamidinium lead halide perovskites: solution growth and gamma dosimetry. NPG Asia Materials, 2017, 9, e373-e373.	7.9	145
169	Benchmarking photoactive thinâ€film materials using a laserâ€induced steadyâ€state photocarrier grating. Progress in Photovoltaics: Research and Applications, 2017, 25, 605-613.	8.1	4
170	Halide Perovskites for Tandem Solar Cells. Journal of Physical Chemistry Letters, 2017, 8, 1999-2011.	4.6	47
171	Scalable perovskite/CICS thin-film solar module with power conversion efficiency of 17.8%. Journal of Materials Chemistry A, 2017, 5, 9897-9906.	10.3	47
172	Perovskite Tandem Solar Cells. Advanced Energy Materials, 2017, 7, 1602761.	19.5	193
173	Indiumâ€Free Perovskite Solar Cells Enabled by Impermeable Tinâ€Oxide Electron Extraction Layers. Advanced Materials, 2017, 29, 1606656.	21.0	88
174	Model development of monolithic tandem silicon-perovskite solar cell by SCAPS simulation. AIP Conference Proceedings, 2017, , .	0.4	13
175	Enhanced light absorption of thin perovskite solar cells using textured substrates. Solar Energy Materials and Solar Cells, 2017, 168, 214-220.	6.2	50
176	Environmental benefits of reduced electricity use exceed impacts from lead use for perovskite based tandem solar cell. Renewable Energy, 2017, 111, 906-913.	8.9	38
177	Synergistic Effects of Lead Thiocyanate Additive and Solvent Annealing on the Performance of Wide-Bandgap Perovskite Solar Cells. ACS Energy Letters, 2017, 2, 1177-1182.	17.4	190
179	Configuration-centered photovoltaic applications of metal halide perovskites. Journal of Materials Chemistry A, 2017, 5, 902-909.	10.3	18
180	Solution-processed perovskite-kesterite reflective tandem solar cells. Solar Energy, 2017, 155, 35-38.	6.1	16
181	Excitonic metal oxide heterojunction (NiO/ZnO) solar cells for all-transparent module integration. Solar Energy Materials and Solar Cells, 2017, 170, 246-253.	6.2	104
182	Low temperature reactively sputtered crystalline TiO2 thin film as effective blocking layer for perovskite solar cells. Thin Solid Films, 2017, 636, 307-313.	1.8	20

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
183	Ionic Influences on Recombination in Perovskite Solar Cells. ACS Energy Letters, 2017, 2, 1683-1689.	17.4	93
184	Perovskite Nanopillar Array Based Tandem Solar Cell. ACS Photonics, 2017, 4, 2025-2035.	6.6	24
185	All solution processed perovskite solar cells with Ag@Au nanowires as top electrode. Solar Energy Materials and Solar Cells, 2017, 171, 43-49.	6.2	26
186	Flexible NIR-transparent perovskite solar cells for all-thin-film tandem photovoltaic devices. Journal of Materials Chemistry A, 2017, 5, 13639-13647.	10.3	68
187	Perovskite solar cells - An overview of critical issues. Progress in Quantum Electronics, 2017, 53, 1-37.	7.0	132
188	Novel integration of carbon counter electrode based perovskite solar cell with thermoelectric generator for efficient solar energy conversion. Nano Energy, 2017, 38, 457-466.	16.0	40
189	A modeling framework for optimizing current density in four-terminal tandem solar cells: A case study on GaAs/Si tandem. Solar Energy Materials and Solar Cells, 2017, 170, 167-177.	6.2	10
190	Patterned honeycomb-like ZnO cavities for Cu(In,Ca)Se 2 thin film solar cells with omnidirectionally enhanced light harvesting. Solar Energy Materials and Solar Cells, 2017, 170, 211-218.	6.2	20
191	Monolithic CIGS–Perovskite Tandem Cell for Optimal Light Harvesting without Current Matching. ACS Photonics, 2017, 4, 861-867.	6.6	27
192	Seleniumâ€Graded Sb ₂ (S _{1â^'x} Se _x) ₃ for Planar Heterojunction Solar Cell Delivering a Certified Power Conversion Efficiency of 5.71%. Solar Rrl, 2017, 1, 1700017.	5.8	82
193	Roadmap and roadblocks for the band gap tunability of metal halide perovskites. Journal of Materials Chemistry A, 2017, 5, 11401-11409.	10.3	307
194	Transparent Electrodes for Efficient Optoelectronics. Advanced Electronic Materials, 2017, 3, 1600529.	5.1	310
195	Effect of Blend Composition on Bulk Heterojunction Organic Solar Cells: A Review. Solar Rrl, 2017, 1, 1700035.	5.8	29
196	Energy Harvesting: Breakthrough Technologies Through Polymer Composites. Springer Series on Polymer and Composite Materials, 2017, , 1-42.	0.7	1
197	A transparent poly(3,4-ethylenedioxylenethiophene):poly(styrene sulfonate) cathode for low temperature processed, metal-oxide free perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 6974-6980.	10.3	60
198	Selfâ€Encapsulating Thermostable and Airâ€Resilient Semitransparent Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1602599.	19.5	129
199	Recent progress of interconnecting layer for tandem organic solar cells. Science China Chemistry, 2017, 60, 460-471.	8.2	21
200	Development of Transparent Organic Hole-transporting Materials Using Partially Oxygen-bridged Triphenylamine Skeletons. Chemistry Letters, 2017, 46, 817-820.	1.3	20

#	Article	IF	CITATIONS
201	Atomic Layer Deposition Enabled Perovskite/PEDOT Solar Cells in a Regular n–i–p Architectural Design. Advanced Materials Interfaces, 2017, 4, 1700043.	3.7	33
202	Tailoring metal halide perovskites through metal substitution: influence on photovoltaic and material properties. Energy and Environmental Science, 2017, 10, 236-246.	30.8	230
203	Hybrid Perovskite Photovoltaic Devices: Properties, Architecture, and Fabrication Methods. Energy Technology, 2017, 5, 373-401.	3.8	26
204	High-efficiency inverted semi-transparent planar perovskite solar cells in substrate configuration. Nature Energy, 2017, 2, .	39.5	247
205	Efficient Monolithic Perovskite/Perovskite Tandem Solar Cells. Advanced Energy Materials, 2017, 7, 1602121.	19.5	255
206	Nanowire reinforced nanoparticle nanocomposite for highly flexible transparent electrodes: borrowing ideas from macrocomposites in steel-wire reinforced concrete. Journal of Materials Chemistry C, 2017, 5, 791-798.	5.5	52
207	Use of TCO as splitter in the optical splitting system for solar cells combination: a simulation study. Materials Research Express, 2017, 4, 105503.	1.6	2
208	Research progress on large-area perovskite thin films and solar modules. Journal of Materiomics, 2017, 3, 231-244.	5.7	75
209	Numerical simulation and experimental validation of inverted planar perovskite solar cells based on NiO x hole transport layer. Superlattices and Microstructures, 2017, 112, 383-393.	3.1	26
210	The Potential of Multijunction Perovskite Solar Cells. ACS Energy Letters, 2017, 2, 2506-2513.	17.4	272
211	Low temperature perovskite solar cells with an evaporated TiO2 compact layer for perovskite silicon tandem solar cells. Energy Procedia, 2017, 124, 567-576.	1.8	21
212	Panchromatic thin perovskite solar cells with broadband plasmonic absorption enhancement and efficient light scattering management by Au@Ag core-shell nanocuboids. Nano Energy, 2017, 41, 654-664.	16.0	68
213	Influence of the Grain Size on the Properties of CH ₃ NH ₃ PbI ₃ Thin Films. ACS Applied Materials & Interfaces, 2017, 9, 38428-38435.	8.0	25
214	Halide Re-Shelled Quantum Dot Inks for Infrared Photovoltaics. ACS Applied Materials & Interfaces, 2017, 9, 37536-37541.	8.0	35
215	ABX3 Perovskites for Tandem Solar Cells. Joule, 2017, 1, 769-793.	24.0	176
216	Enhanced Moisture Stability of Perovskite Solar Cells With Mixedâ€Dimensional and Mixedâ€Compositional Lightâ€Absorbing Materials. Solar Rrl, 2017, 1, 1700125.	5.8	29
217	Electronic structure of organic–inorganic lanthanide iodide perovskite solar cell materials. Journal of Materials Chemistry A, 2017, 5, 23131-23138.	10.3	28
218	Monolithic tandem solar cells comprising electrodeposited CuInSe ₂ and perovskite solar cells with a nanoparticulate ZnO buffer layer. Journal of Materials Chemistry A, 2017, 5, 19439-19446.	10.3	45

#	Article	IF	CITATIONS
219	Modeling the Performance Limitations and Prospects of Perovskite/Si Tandem Solar Cells under Realistic Operating Conditions. ACS Energy Letters, 2017, 2, 2089-2095.	17.4	86
220	Air-stable layered bismuth-based perovskite-like materials: Structures and semiconductor properties. Physica B: Condensed Matter, 2017, 526, 136-142.	2.7	26
221	Low-Temperature Solution Processed Random Silver Nanowire as a Promising Replacement for Indium Tin Oxide. ACS Applied Materials & Interfaces, 2017, 9, 34093-34100.	8.0	23
222	Imaging the Spatial Evolution of Degradation in Perovskite/Si Tandem Solar Cells After Exposure to Humid Air. IEEE Journal of Photovoltaics, 2017, 7, 1563-1568.	2.5	14
223	Perovskite solar cells: In pursuit of efficiency and stability. Materials and Design, 2017, 136, 54-80.	7.0	83
224	Impact of H ₂ O on organic–inorganic hybrid perovskite solar cells. Energy and Environmental Science, 2017, 10, 2284-2311.	30.8	345
225	Highly transparent singlet fission solar cell with multistacked thin metal contacts for tandem applications. Progress in Photovoltaics: Research and Applications, 2017, 25, 936-941.	8.1	5
226	Emerging Semitransparent Solar Cells: Materials and Device Design. Advanced Materials, 2017, 29, 1700192.	21.0	200
227	Optical Analysis of Planar Multicrystalline Perovskite Solar Cells. Advanced Optical Materials, 2017, 5, 1700151.	7.3	51
228	15.3%-Efficient GaAsP Solar Cells on GaP/Si Templates. ACS Energy Letters, 2017, 2, 1911-1918.	17.4	44
229	Environmental analysis of perovskites and other relevant solar cell technologies in a tandem configuration. Energy and Environmental Science, 2017, 10, 1874-1884.	30.8	104
230	Ohmic shunts in two-terminal dual-junction solar cells with current mismatch. Japanese Journal of Applied Physics, 2017, 56, 08MA05.	1.5	10
231	Improved Morphology and Efficiency of n–i–p Planar Perovskite Solar Cells by Processing with Glycol Ether Additives. ACS Energy Letters, 2017, 2, 1960-1968.	17.4	47
232	Nanoscale Back Contact Perovskite Solar Cell Design for Improved Tandem Efficiency. Nano Letters, 2017, 17, 5206-5212.	9.1	85
233	Predicting and optimising the energy yield of perovskite-on-silicon tandem solar cells under real world conditions. Energy and Environmental Science, 2017, 10, 1983-1993.	30.8	192
234	Interfaces in Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1700623.	19.5	276
235	Metal halide perovskite tandem and multiple-junction photovoltaics. Nature Reviews Chemistry, 2017, 1,	30.2	344
236	Improving the performance and reliability of inverted planar perovskite solar cells with a carbon nanotubes/PEDOT:PSS hybrid hole collector. Nanoscale, 2017, 9, 9754-9761.	5.6	24

#	Article	IF	CITATIONS
237	Photovoltaics: Upconversion Configurations versus Tandem Cells. MRS Advances, 2017, 2, 2997-3004.	0.9	1
238	Performance prediction of chalcopyrite-based dual-junction tandem solar cells. Solar Energy, 2017, 155, 167-177.	6.1	16
239	Hybrid silver nanowires/nanogold particles film for a Cu(In,Ga)Se2 thin film solar cell. Chinese Journal of Physics, 2017, 55, 1219-1224.	3.9	3
240	The GaAs/GaAs/Si solar cell – Towards current matching in an integrated two terminal tandem. Solar Energy Materials and Solar Cells, 2017, 160, 94-100.	6.2	21
241	Efficient Indiumâ€Doped TiO <i>_x</i> Electron Transport Layers for Highâ€Performance Perovskite Solar Cells and Perovskiteâ€Silicon Tandems. Advanced Energy Materials, 2017, 7, 1601768.	19.5	167
242	Artifact Interpretation of Spectral Response Measurements on Twoâ€Terminal Multijunction Solar Cells. Advanced Energy Materials, 2017, 7, 1601930.	19.5	3
243	Hybrid Perovskite Thinâ€Film Photovoltaics: In Situ Diagnostics and Importance of the Precursor Solvate Phases. Advanced Materials, 2017, 29, 1604113.	21.0	155
244	Graded bandgap perovskite solar cells. Nature Materials, 2017, 16, 522-525.	27.5	135
245	Progress in thin film CIGS photovoltaics – Research and development, manufacturing, and applications. Progress in Photovoltaics: Research and Applications, 2017, 25, 645-667.	8.1	248
246	Influence of TiO2 compact layer precursor on the performance of perovskite solar cells. Organic Electronics, 2017, 41, 287-293.	2.6	39
247	Reflective perovskite solar cells for efficient tandem applications. Journal of Materials Chemistry C, 2017, 5, 134-139.	5.5	27
248	Modeling and designing multilayer 2D perovskite / silicon bifacial tandem photovoltaics for high efficiencies and long-term stability. Optics Express, 2017, 25, A311.	3.4	19
249	Thin Film Solar Cells. , 0, , 66-96.		0
250	Predicting the Efficiency of the Silicon Bottom Cell in a Two-Terminal Tandem Solar Cell. , 2017, , .		1
251	Theoretical Design of Perovskite/CdTe Four-terminal Tandem Solar Cells. , 2017, , .		1
252	Highly Efficient 3rd Generation Multi-Junction Solar Cells Using Silicon Heterojunction and Perovskite Tandem: Prospective Life Cycle Environmental Impacts. Energies, 2017, 10, 841.	3.1	24
253	Strategies for high performance perovskite/crystalline silicon four-terminal tandem solar cells. Solar Energy Materials and Solar Cells, 2018, 179, 36-44.	6.2	31
254	Delayed Annealing Treatment for High-Quality CuSCN: Exploring Its Impact on Bifacial Semitransparent n-i-p Planar Perovskite Solar Cells. ACS Applied Energy Materials, 2018, 1, 1575-1584.	5.1	30

#	Article	IF	CITATIONS
255	Key parameters of two typical intercalation reactions to prepare hybrid inorganic–organic perovskite films. Chinese Physics B, 2018, 27, 018807.	1.4	0
256	Evolution of organometal halide solar cells. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2018, 35, 74-107.	11.6	32
257	A Review on Eco-Friendly Quantum Dot Solar Cells: Materials and Manufacturing Processes. International Journal of Precision Engineering and Manufacturing - Green Technology, 2018, 5, 349-358.	4.9	36
258	Device simulation of inverted CH3NH3PbI3â° xClx perovskite solar cells based on PCBM electron transport layer and NiO hole transport layer. Solar Energy, 2018, 169, 11-18.	6.1	92
259	Developing a Robust Recombination Contact to Realize Monolithic Perovskite Tandems With Industrially Common p-Type Silicon Solar Cells. IEEE Journal of Photovoltaics, 2018, 8, 1023-1028.	2.5	27
260	Nb-doped amorphous titanium oxide compact layer for formamidinium-based high efficiency perovskite solar cells by low-temperature fabrication. Journal of Materials Chemistry A, 2018, 6, 9583-9591.	10.3	30
261	Effect of emissive quantum cluster consisting of 22 Au atoms on the performance of semi-transparent plastic solar cells under low intensity illumination. Nano Energy, 2018, 48, 518-525.	16.0	12
262	Transparent heat regulating (THR) materials and coatings for energy saving window applications: Impact of materials design, micro-structural, and interface quality on the THR performance. Progress in Materials Science, 2018, 95, 42-131.	32.8	128
263	A review of recent progress in heterogeneous silicon tandem solar cells. Journal Physics D: Applied Physics, 2018, 51, 133002.	2.8	103
264	Two-Terminal Tandem Solar Cells DSC/c-Si: Optimization of TiO2-based Photoelectrode Parameters. Semiconductors, 2018, 52, 88-92.	0.5	5
265	Tandem perovskite solar cells. Renewable and Sustainable Energy Reviews, 2018, 84, 89-110.	16.4	93
266	Amideâ€Catalyzed Phaseâ€Selective Crystallization Reduces Defect Density in Wideâ€Bandgap Perovskites. Advanced Materials, 2018, 30, e1706275.	21.0	80
267	Compositional Engineering for Efficient Wide Band Gap Perovskites with Improved Stability to Photoinduced Phase Segregation. ACS Energy Letters, 2018, 3, 428-435.	17.4	344
268	Emerging Novel Metal Electrodes for Photovoltaic Applications. Small, 2018, 14, e1703140.	10.0	73
269	Extending the Compositional Space of Mixed Lead Halide Perovskites by Cs, Rb, K, and Na Doping. Journal of Physical Chemistry C, 2018, 122, 13548-13557.	3.1	70
270	Sputtered indium zinc oxide rear electrodes for inverted semitransparent perovskite solar cells without using a protective buffer layer. Organic Electronics, 2018, 54, 48-53.	2.6	34
271	Fully Vacuum-Processed Wide Band Gap Mixed-Halide Perovskite Solar Cells. ACS Energy Letters, 2018, 3, 214-219.	17.4	91
272	Computational analysis of hybrid perovskite on silicon 2-T tandem solar cells based on a Si tunnel junction. Optical and Quantum Electronics, 2018, 50, 1.	3.3	26

#	Article	IF	CITATIONS
273	Doping of [In ₂ (phen) ₃ Cl ₆]·CH ₃ CN·2H ₂ O Indiumâ€Based Metal–Organic Framework into Hole Transport Layer for Enhancing Perovskite Solar Cell Efficiencies. Advanced Energy Materials, 2018, 8, 1702052.	19.5	55
274	Transparent electrode for monolithic perovskite/silicon-heterojunction two-terminal tandem solar cells. Nano Energy, 2018, 45, 280-286.	16.0	67
275	Metal halide perovskite: a game-changer for photovoltaics and solar devices via a tandem design. Science and Technology of Advanced Materials, 2018, 19, 53-75.	6.1	28
276	Balancing electrical and optical losses for efficient 4-terminal Si–perovskite solar cells with solution processed percolation electrodes. Journal of Materials Chemistry A, 2018, 6, 3583-3592.	10.3	102
277	Highâ€Performance Hazy Silver Nanowire Transparent Electrodes through Diameter Tailoring for Semitransparent Photovoltaics. Advanced Functional Materials, 2018, 28, 1705409.	14.9	84
278	Mechanically-stacked perovskite/CIGS tandem solar cells with efficiency of 23.9% and reduced oxygen sensitivity. Energy and Environmental Science, 2018, 11, 394-406.	30.8	209
279	New-generation integrated devices based on dye-sensitized and perovskite solar cells. Energy and Environmental Science, 2018, 11, 476-526.	30.8	364
280	Compositionally Graded Absorber for Efficient and Stable Nearâ€Infraredâ€Transparent Perovskite Solar Cells. Advanced Science, 2018, 5, 1700675.	11.2	65
281	Wet-chemically etched silicon nanowire: Effect of etching parameters on the morphology and optical characterizations. Solar Energy, 2018, 161, 180-186.	6.1	11
282	Metal Oxide Particles and Their Prospects for Applications. , 2018, , 3-42.		20
283	Efficient Bifacial Semitransparent Perovskite Solar Cells Using Ag/V ₂ O ₅ as Transparent Anodes. ACS Applied Materials & Interfaces, 2018, 10, 12731-12739.	8.0	46
284	Highly efficient Ag-alloyed Cu(In,Ga)Se2 solar cells with wide bandgaps and their application to chalcopyrite-based tandem solar cells. Nano Energy, 2018, 48, 345-352.	16.0	33
285	Spectral Response of CuGaSe2/Cu(In,Ga)Se2 Monolithic Tandem Solar Cell With Open-Circuit Voltage Over 1 V. IEEE Journal of Photovoltaics, 2018, , 1-9.	2.5	5
286	Life cycle analysis of metals in emerging photovoltaic (PV) technologies: A modeling approach to estimate use phase leaching. Journal of Cleaner Production, 2018, 186, 632-639.	9.3	33
287	Facile fabrication method of small-sized crystal silicon solar cells for ubiquitous applications and tandem device with perovskite solar cells. Materials Today Energy, 2018, 7, 190-198.	4.7	19
288	Fully Solutionâ€Processed TCOâ€Free Semitransparent Perovskite Solar Cells for Tandem and Flexible Applications. Advanced Energy Materials, 2018, 8, 1701569.	19.5	77
289	Long-term stable silver nanowire transparent composite as bottom electrode for perovskite solar cells. Nano Research, 2018, 11, 1998-2011.	10.4	71
290	Perovskite/Silicon Tandem Solar Cells: Marriage of Convenience or True Love Story? – An Overview. Advanced Materials Interfaces, 2018, 5, 1700731.	3.7	321

#	Article	IF	CITATIONS
291	A brief review on the lead element substitution in perovskite solar cells. Journal of Energy Chemistry, 2018, 27, 1054-1066.	12.9	38
292	Energy Payback Time (EPBT) and Energy Return on Energy Invested (EROI) of Perovskite Tandem Photovoltaic Solar Cells. IEEE Journal of Photovoltaics, 2018, 8, 305-309.	2.5	58
293	Applications of Phosphorene and Black Phosphorus in Energy Conversion and Storage Devices. Advanced Energy Materials, 2018, 8, 1702093.	19.5	385
294	Semiâ€transparent plastic solar cell based on oxideâ€metalâ€oxide multilayer electrodes. Progress in Photovoltaics: Research and Applications, 2018, 26, 188-195.	8.1	36
295	Recent progress in organohalide lead perovskites for photovoltaic and optoelectronic applications. Coordination Chemistry Reviews, 2018, 373, 258-294.	18.8	67
296	Performance loss analysis and design space optimization of perovskite solar cells. Journal of Applied Physics, 2018, 124, .	2.5	21
297	Optimization of highly efficient GaAs–silicon hybrid solar cell. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	2.3	24
298	Optical bandgap tuning of ferroelectric semiconducting BiFeO3-based oxide perovskites via chemical substitution for photovoltaics. AIP Advances, 2018, 8, .	1.3	18
301	Dye Sensitization of Titania Compact Layer for Efficient and Stable Perovskite Solar Cells. ACS Applied Energy Materials, 2018, 1, 6161-6171.	5.1	41
302	Above 14% efficiency earth-abundant selenium solar cells by introducing gold nanoparticles and Titanium sub-layer. Optical Materials, 2018, 86, 24-31.	3.6	6
303	Recent Studies of Semitransparent Solar Cells. Coatings, 2018, 8, 329.	2.6	39
304	Enhanced Optical Properties of Colored Semitransparent Ultrathin Hybrid Solar Cells Employing Fabry–Pérot Etalon With a Dielectric Overlay. IEEE Photonics Journal, 2018, 10, 1-10.	2.0	4
305	High Efficiency Inorganic/Inorganic Amorphous Silicon/Heterojunction Silicon Tandem Solar Cells. Scientific Reports, 2018, 8, 15386.	3.3	14
306	Building bridges between halide perovskite nanocrystals and thin-film solar cells. Sustainable Energy and Fuels, 2018, 2, 2381-2397.	4.9	37
307	Inorganic Materials as Hole Selective Contacts and Intermediate Tunnel Junction Layer for Monolithic Perovskite IGSe Tandem Solar Cells. Advanced Energy Materials, 2018, 8, 1801692.	19.5	17
308	Challenges for commercializing perovskite solar cells. Science, 2018, 361, .	12.6	1,327
309	Efficiency Enhancement of Perovskite Solar Cells with Plasmonic Nanoparticles: A Simulation Study. Materials, 2018, 11, 1626.	2.9	27
310	Effect of Silicon Surface for Perovskite/Silicon Tandem Solar Cells: Flat or Textured?. ACS Applied Materials & Interfaces, 2018, 10, 35016-35024.	8.0	40

#	Article	IF	CITATIONS
311	All-Nanoparticle SnO ₂ /TiO ₂ Electron-Transporting Layers Processed at Low Temperature for Efficient Thin-Film Perovskite Solar Cells. ACS Applied Energy Materials, 0, , .	5.1	8
312	Highly photostable and efficient semitransparent quantum dot solar cells by using solution-phase ligand exchange. Nano Energy, 2018, 53, 373-382.	16.0	29
313	Flexible multi-wavelength photodetector based on porous silicon nanowires. Nanoscale, 2018, 10, 17705-17711.	5.6	17
314	Recent progressive efforts in perovskite solar cells toward commercialization. Journal of Materials Chemistry A, 2018, 6, 12215-12236.	10.3	56
315	Cost Analysis of Perovskite Tandem Photovoltaics. Joule, 2018, 2, 1559-1572.	24.0	266
316	Efficiency evaluation for triple-junction solar cells in five tandem configurations. Renewable Energy, 2018, 129, 317-327.	8.9	12
317	Modeling of four-terminal solar photovoltaic systems for field application. AIP Conference Proceedings, 2018, , .	0.4	0
318	Innovative approaches in thin-film photovoltaic cells. , 2018, , 595-632.		0
319	Evolution of Perovskite Solar Cells. , 2018, , 43-88.		18
320	Fabrication and Life Time of Perovskite Solar Cells. , 2018, , 231-287.		7
321	Interfacial Effects of Tin Oxide Atomic Layer Deposition in Metal Halide Perovskite Photovoltaics. Advanced Energy Materials, 2018, 8, 1800591.	19.5	62
322	Theoretical and Experimental Investigation of Mixed Pb–In Halide Perovskites. Journal of Physical Chemistry C, 2018, 122, 15945-15953.	3.1	19
323	Large area efficient interface layer free monolithic perovskite/homo-junction-silicon tandem solar cell with over 20% efficiency. Energy and Environmental Science, 2018, 11, 2432-2443.	30.8	172
324	Fully solution processed semi-transparent perovskite solar cells with spray-coated silver nanowires/ZnO composite top electrode. Solar Energy Materials and Solar Cells, 2018, 185, 399-405.	6.2	111
325	Phaseâ€Controlled Synthesis of Highâ€Biâ€Ratio Ternary Sulfide Nanocrystals of Cu _{1.57} Bi _{4.57} S ₈ and Cu _{2.93} Bi _{4.89} S ₉ . ChemPlusChem, 2018, 83, 812-818.	2.8	9
326	Synthesis of Nanoparticles. , 2018, , 392-429.		15
327	Tunable Polaron Distortions Control the Extent of Halide Demixing in Lead Halide Perovskites. Journal of Physical Chemistry Letters, 2018, 9, 3998-4005.	4.6	129
328	A review of transparent solar photovoltaic technologies. Renewable and Sustainable Energy Reviews, 2018, 94, 779-791.	16.4	315

#	Article	IF	CITATIONS
329	Opportunities and challenges for tandem solar cells using metal halide perovskite semiconductors. Nature Energy, 2018, 3, 828-838.	39.5	716
330	Influence of potassium treatment on electronic properties of Cu(In _{1â[^]} <i> _x) Tj ETQq1</i>	1 0.78431 1.5	4 rgBT /Ov 6
331	lapanese lournal of Applied Physics. 2018. 57. 08RC13. Rapid Thermal Treatment of Reactive Sputtering Grown Nanocrystalline Co ₃ O ₄ for Enhanced All-Oxide Photovoltaics. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1800216.	1.8	16
332	Performance Evaluation of Semitransparent Perovskite Solar Cells for Application in Four-Terminal Tandem Cells. ACS Energy Letters, 2018, 3, 1861-1867.	17.4	11
333	Modeling Multijunction Solar Cells by Nonlocal Tunneling and Subcell Analysis. IEEE Journal of Photovoltaics, 2018, 8, 1363-1369.	2.5	23
334	Light-absorption enhancement design of ultrathin perovskite solar cells with conformal structure. Journal Physics D: Applied Physics, 2018, 51, 245101.	2.8	2
335	All-Solution-Processed Thermally and Chemically Stable Copper–Nickel Core–Shell Nanowire-Based Composite Window Electrodes for Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 30337-30347.	8.0	24
336	High-performance metal oxide-free inverted perovskite solar cells using poly(bis(4-phenyl)(2,4,6-trimethylphenyl)amine) as the hole transport layer. Journal of Materials Chemistry C, 2018, 6, 6975-6981.	5.5	51
337	Ferroelectric and Piezoelectric Effects on the Optical Process in Advanced Materials and Devices. Advanced Materials, 2018, 30, e1707007.	21.0	159
338	Inorganic Nanofibers by Electrospinning Techniques and Their Application in Energy Conversion and Storage Systems. Semiconductors and Semimetals, 2018, 98, 1-70.	0.7	15
339	A transparent photovoltaic device based on Cu2O/ZnO/AZO for see-through applications. Materials Letters, 2019, 255, 126517.	2.6	9
340	Highly Efficient Semitransparent Perovskite Solar Cells for Four Terminal Perovskite-Silicon Tandems. ACS Applied Materials & Interfaces, 2019, 11, 34178-34187.	8.0	71
341	A review on the crystalline silicon bottom cell for monolithic perovskite/silicon tandem solar cells. Materials Today Nano, 2019, 7, 100045.	4.6	46
342	Surface Plasmonâ€Assisted Transparent Conductive Electrode for Flexible Perovskite Solar Cells. Advanced Optical Materials, 2019, 7, 1900847.	7.3	13
343	Recent progress in fundamental understanding of halide perovskite semiconductors. Progress in Materials Science, 2019, 106, 100580.	32.8	95
344	Highly Efficient Semitransparent Solar Cells with Selective Absorption and Tandem Architecture. Advanced Materials, 2019, 31, e1901683.	21.0	89
345	Efficiency Improvement of Nearâ€Stoichiometric CuInSe ₂ Solar Cells for Application in Tandem Devices. Advanced Energy Materials, 2019, 9, 1901428.	19.5	69
346	Light coupling to quasi-guided modes in nanoimprinted perovskite solar cells. Solar Energy Materials and Solar Cells, 2019, 201, 110080.	6.2	29

#	Article	IF	CITATIONS
347	Theoretical Analysis of Twoâ€Terminal and Fourâ€Terminal Perovskite/Copper Indium Gallium Selenide Tandem Solar Cells. Solar Rrl, 2019, 3, 1900303.	5.8	38
348	Light induced degradation in mixed-halide perovskites. Journal of Materials Chemistry C, 2019, 7, 9326-9334.	5.5	67
349	Bimolecular Additives Improve Wide-Band-Gap Perovskites for Efficient Tandem Solar Cells with CIGS. Joule, 2019, 3, 1734-1745.	24.0	227
350	The Effect of Lithium Doping in Solutionâ€Processed Nickel Oxide Films for Perovskite Solar Cells. ChemPhysChem, 2019, 20, 3322-3327.	2.1	31
351	Enhanced Nearâ€Infrared Photoresponse of Inverted Perovskite Solar Cells Through Rational Design of Bulkâ€Heterojunction Electronâ€Transporting Layers. Advanced Science, 2019, 6, 1901714.	11.2	23
352	Semi-Transparent Perovskite Solar Cells with ITO Directly Sputtered on Spiro-OMeTAD for Tandem Applications. ACS Applied Materials & Interfaces, 2019, 11, 45796-45804.	8.0	63
353	Filterless Polarizationâ€6ensitive 2D Perovskite Narrowband Photodetectors. Advanced Optical Materials, 2019, 7, 1900988.	7.3	83
354	Efficient and semi-transparent perovskite solar cells using a room-temperature processed MoO _x /ITO/Ag/ITO electrode. Journal of Materials Chemistry C, 2019, 7, 10981-10987.	5.5	31
355	Transfer-free graphene electrodes for super-flexible and semi-transparent perovskite solar cells fabricated under ambient air. Nano Energy, 2019, 65, 104018.	16.0	77
356	Inorganic perovskite solar cells: an emerging member of the photovoltaic community. Journal of Materials Chemistry A, 2019, 7, 21036-21068.	10.3	137
357	Enhanced X-ray Sensitivity of MAPbBr ₃ Detector by Tailoring the Interface-States Density. ACS Applied Materials & Interfaces, 2019, 11, 7522-7528.	8.0	96
358	Perovskite—a Perfect Top Cell for Tandem Devices to Break the S–Q Limit. Advanced Science, 2019, 6, 1801704.	11.2	80
359	Development of wide bandgap perovskites for next-generation low-cost CdTe tandem solar cells. Chemical Engineering Science, 2019, 199, 388-397.	3.8	28
360	Numerical Simulation of Planar Heterojunction Perovskite Solar Cells Based on SnO ₂ Electron Transport Layer. ACS Applied Energy Materials, 2019, 2, 4504-4512.	5.1	83
361	Light Management: A Key Concept in High-Efficiency Perovskite/Silicon Tandem Photovoltaics. Journal of Physical Chemistry Letters, 2019, 10, 3159-3170.	4.6	81
362	Efficient Planar Perovskite Solar Cells via a Sputtered Cathode. Solar Rrl, 2019, 3, 1900209.	5.8	14
363	Metal nanostructures for solar cells. , 2019, , 447-511.		2
364	Carbon nanotubes embedded poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) hybrid hole collector for inverted planar perovskite solar cells. Journal of Power Sources, 2019, 435, 226765.	7.8	22

#	Article	IF	CITATIONS
365	Toward scalable perovskiteâ€based multijunction solar modules. Progress in Photovoltaics: Research and Applications, 2019, 27, 733-738.	8.1	17
366	Wide-bandgap, low-bandgap, and tandem perovskite solar cells. Semiconductor Science and Technology, 2019, 34, 093001.	2.0	89
367	Metal nanowire networks: Recent advances and challenges for new generation photovoltaics. Materials Today Energy, 2019, 13, 152-185.	4.7	29
368	Fabrication of perovskite solar cells with ITO deposited at a high rate by activated reactive evaporation using a pressure-gradient-type plasma gun. Japanese Journal of Applied Physics, 2019, 58, 068010.	1.5	1
369	Twoâ€Terminal Perovskites Tandem Solar Cells: Recent Advances and Perspectives. Solar Rrl, 2019, 3, 1900080.	5.8	55
370	Band gap shift of Cu2ZnSnS4 thin film by residual stress. Journal of Alloys and Compounds, 2019, 799, 247-255.	5.5	16
371	Significantly Enhanced Detectivity of CIGS Broadband High-Speed Photodetectors by Grain Size Control and ALD-Al ₂ O ₃ Interfacial-Layer Modification. ACS Applied Materials & Interfaces, 2019, 11, 20157-20166.	8.0	34
372	Enhanced Performance of Dye-Sensitized Solar Cells Using Perovskite/DSSCs Tandem Design. Journal of Electronic Materials, 2019, 48, 5403-5408.	2.2	18
373	ZnO1â^'xTex highly mismatched alloys beyond the dilute alloy limit: Synthesis and electronic band structure. Journal of Applied Physics, 2019, 125, 155702.	2.5	13
374	Recent Developments in Solar Energy-Harvesting Technologies for Building Integration and Distributed Energy Generation. Energies, 2019, 12, 1080.	3.1	83
375	The recorded open-circuit voltage and fill factor achievement of a-Si:H p-i-n/HIT-type tandem solar cells by tuning up the crystalline in tunneling recombination junction layer. Semiconductor Science and Technology, 2019, 34, 065004.	2.0	5
376	Performance enhancement of perovskite solar cells <i>via</i> material quality improvement assisted by MAI/IPA solution post-treatment. Dalton Transactions, 2019, 48, 5292-5298.	3.3	8
377	Optimization of device design for low cost and high efficiency planar monolithic perovskite/silicon tandem solar cells. Nano Energy, 2019, 60, 213-221.	16.0	79
379	Study on the overall energy performance of a novel c-Si based semitransparent solar photovoltaic window. Applied Energy, 2019, 242, 854-872.	10.1	89
380	Highly stable semi-transparent MAPbI3 perovskite solar cells with operational output for 4000†h. Solar Energy Materials and Solar Cells, 2019, 195, 323-329.	6.2	84
381	Highly transparent, conducting, body-attachable metallized fibers as a flexible and stretchable film. Journal of Alloys and Compounds, 2019, 790, 1127-1136.	5.5	19
382	Simulation studies of non-toxic tin-based perovskites: Critical insights into solar performance kinetics through comparison with standard lead-based devices. Superlattices and Microstructures, 2019, 130, 20-27.	3.1	20
383	Atomic layer deposition of vanadium oxide to reduce parasitic absorption and improve stability in n–i–p perovskite solar cells for tandems. Sustainable Energy and Fuels, 2019, 3, 1517-1525.	4.9	76

		CITATION R	EPORT	
#	Article		IF	CITATIONS
384	Bismuth perovskite as a viable alternative to Pb perovskite solar cells: device simulation critical efficiency dynamics. Journal of Materials Science: Materials in Electronics, 2019,	is to delineate , 30, 9438-9443.	2.2	10
385	Nonprecious Copperâ€Based Transparent Top Electrode via Seed Layer–Assisted The Highâ€Performance Semitransparent nâ€iâ€p Perovskite Solar Cells. Advanced Materia 4, 1800688.	rmal Evaporation for ls Technologies, 2019,	5.8	41
386	Lowâ€Bandgap Mixed Tinâ€Lead Perovskites and Their Applications in Allâ€Perovskite Advanced Functional Materials, 2019, 29, 1808801.	Fandem Solar Cells.	14.9	133
387	Hybrid perovskites for device applications. , 2019, , 211-256.			13
388	Solution-Processed Electrodes for Flexible Organic and Perovskite Solar Cells. , 2019, , .			0
389	Modeling and Analysis of Novel Tandem Solar Cells. , 2019, , .			2
390	Optimization of Efficient Copper-Indium-Gallium Di-Selenide Solar Cell. , 2019, , .			0
391	CulnSe2 nanotube arrays for efficient solar energy conversion. Scientific Reports, 2019	, 9, 16751.	3.3	2
392	A perovskite/silicon hybrid system with a solar-to-electric power conversion efficiency o Journal of Materials Chemistry A, 2019, 7, 26479-26489.	f 25.5%.	10.3	23
393	Interfacial Modification in Organic and Perovskite Solar Cells. Advanced Materials, 2019	9, 31, e1805708.	21.0	106
394	Advances in Solar Energy: Solar Cells and Their Applications. Energy, Environment, and 2019, , 75-127.	Sustainability,	1.0	1
395	Scalable Processing of Low-Temperature TiO ₂ Nanoparticles for High-Effic Perovskite Solar Cells. ACS Applied Energy Materials, 2019, 2, 47-58.	iency	5.1	33
396	Energy autonomous electronic skin. Npj Flexible Electronics, 2019, 3, .		10.7	245
397	Solution-Processed All-Perovskite Multi-junction Solar Cells. Joule, 2019, 3, 387-401.		24.0	177
398	Progress and challenges in perovskite photovoltaics from single- to multi-junction cells. Today Energy, 2019, 12, 70-94.	Materials	4.7	67
399	Earth-to-space and high-speed "air―transportation: an aerospaceplane design. Airo Aerospace Technology, 2019, 91, 381-403.	traft Engineering and	1.2	0
400	High-performance metal-oxide-free perovskite solar cells based on organic electron trar and cathode. Organic Electronics, 2019, 64, 195-201.	isport layer	2.6	12
401	Minimizing Voltage Loss in Wide-Bandgap Perovskites for Tandem Solar Cells. ACS Ene 4, 259-264.	rgy Letters, 2019,	17.4	143

ARTICLE IF CITATIONS Energy yield of all thinâ€film perovskite/CIGS tandem solar modules. Progress in Photovoltaics: 402 8.1 31 Research and Applications, 2019, 27, 290-298. Two-dimensional materials in perovskite solar cells. Materials Today Energy, 2019, 11, 128-158. 93 Improved performance of inverted planar MAPbI3 based perovskite solar cells using bromide 404 6.1 10 post-synthesis treatment. Solar Energy, 2019, 177, 538-544. Semiconductor behavior of halide perovskites AGeX3 (A = K, Rb and Cs; X = F, Cl and Br): first-principles calculations. Indian Journal of Physics, 2020, 94, 455-467. Semitransparent Perovskite Solar Cells: From Materials and Devices to Applications. Advanced 406 21.0 148 Materials, 2020, 32, e1806474. Strategies Toward Extending the Nearâ€Infrared Photovoltaic Response of Perovskite Solar Cells. Solar 5.8 Rrl, 2020, 4, 1900280. Perovskite PV-Powered RFID: Enabling Low-Cost Self-Powered IoT Sensors. IEEE Sensors Journal, 2020, 408 4.7 46 20, 471-478. Semi-transparent perovskite solar cells with directly sputtered amorphous InZnSnO top cathodes for 409 2.6 16 building integrated photovoltaics. Organic Electronics, 2020, 78, 105560. 410 Advanced Wearable Microfluidic Sensors for Healthcare Monitoring. Small, 2020, 16, e1903822. 10.0 107 Halide perovskite materials as light harvesters for solar energy conversion. EnergyChem, 2020, 2, 411 19.1 24 100026. Fluorine plasma treatment on carbon-based perovskite solar cells for rapid moisture protection layer 412 4.1 22 formation and performance enhancement. Chemical Communications, 2020, 56, 535-538. A solution processed Ag-nanowires/C60 composite top electrode for efficient and translucent 6.1 perovskite solar cells. Solar Energy, 2020, 196, 582-588. Cerium-doped indium oxide transparent electrode for semi-transparent perovskite and 414 6.1 34 perovskite/silicon tandem solar cells. Solar Energy, 2020, 196, 409-418. Defect activation and annihilation in CIGS solar cells: an operando x-ray microscopy study. JPhys 5.3 Energy, 2020, 2, 025001. Bifacial, Color-Tunable Semitransparent Perovskite Solar Cells for Building-Integrated Photovoltaics. 416 8.0 80 ACS Applied Materials & amp; Interfaces, 2020, 12, 484-493. Organic-inorganic metal halide perovskite tandem devices., 2020, , 237-254. The Race for Lowest Costs of Electricity Production: Techno-Economic Analysis of Silicon, Perovskite 418 2.562 and Tandem Solar Cells. IEEE Journal of Photovoltaics, 2020, 10, 1632-1641. Analysis of CIGS-based thin film tandem solar cell with ZnS buffer layers. Optical and Quantum 419 3.3 Electronics, 2020, 52, 1.

#	Article	IF	CITATIONS
420	In Situ Formation of Ag ₂ MoO ₄ in a Ag/MoO ₃ Buffer Layer Enables Highly Efficient Inverted Perovskite Cell for a Tandem Structure. ACS Applied Energy Materials, 2020, 3, 9742-9749.	5.1	2
421	Review of CIGS-based solar cells manufacturing by structural engineering. Solar Energy, 2020, 207, 1146-1157.	6.1	106
422	Perovskiteâ€Based Tandem Solar Cells: Get the Most Out of the Sun. Advanced Functional Materials, 2020, 30, 2001904.	14.9	78
423	Perovskite Solar Cells for BIPV Application: A Review. Buildings, 2020, 10, 129.	3.1	60
424	Thermally-evaporated C ₆₀ /Ag/C ₆₀ multilayer electrodes for semi-transparent perovskite photovoltaics and thin film heaters. Science and Technology of Advanced Materials, 2020, 21, 435-449.	6.1	13
425	Optoelectronic Properties of Mixed Sn/Pb Perovskite Solar Cells: The Study of Compressive Strain by Raman Modes. Journal of Physical Chemistry C, 2020, 124, 27136-27147.	3.1	21
426	Perovskite Tandem Solar Cells: From Fundamentals to Commercial Deployment. Chemical Reviews, 2020, 120, 9835-9950.	47.7	248
427	A theoretical study for high-performance inverted p-i-n architecture perovskite solar cells with cuprous iodide as hole transport material. Current Applied Physics, 2020, 20, 1080-1089.	2.4	13
428	Nearâ€Infraredâ€Transparent Perovskite Solar Cells and Perovskiteâ€Based Tandem Photovoltaics. Small Methods, 2020, 4, 2000395.	8.6	63
429	Carbon Nanotube Electrodeâ€Based Perovskite–Silicon Tandem Solar Cells. Solar Rrl, 2020, 4, 2000353.	5.8	19
430	The Application of Graphene Derivatives in Perovskite Solar Cells. Small Methods, 2020, 4, 2000507.	8.6	35
431	Hybrid and organic photovoltaics for greenhouse applications. Applied Energy, 2020, 278, 115582.	10.1	75
432	High-Efficiency Silicon Heterojunction Solar Cells: Materials, Devices and Applications. Materials Science and Engineering Reports, 2020, 142, 100579.	31.8	139
433	Chemical Vapour Deposition of Graphene—Synthesis, Characterisation, and Applications: A Review. Molecules, 2020, 25, 3856.	3.8	155
434	Recent Advances of Synthesis, Properties, Film Fabrication Methods, Modifications of Poly(3,4â€ethylenedioxythiophene), and Applications in Solutionâ€Processed Photovoltaics. Advanced Functional Materials, 2020, 30, 2006213.	14.9	90
435	Recent Progress in Metal Halide Perovskiteâ€Based Tandem Solar Cells. Advanced Materials, 2020, 32, e2002228	21.0	39
436	Room-Temperature Sputtered Aluminum-Doped Zinc Oxide for Semitransparent Perovskite Solar Cells. ACS Applied Energy Materials, 2020, 3, 9610-9617.	5.1	19
437	Stress Effects on Vibrational Spectra of a Cubic Hybrid Perovskite: A Probe of Local Strain. Journal of Physical Chemistry C, 2020, 124, 27287-27299.	3.1	7

#	Article	IF	CITATIONS
438	Enhanced moisture stability of perovskite nanostructure using methyl ammonium lead iodide and benzyl ammonium iodide as additive. AIP Conference Proceedings, 2020, , .	0.4	1
439	Choose Your Own Adventure: Fabrication of Monolithic Allâ€Perovskite Tandem Photovoltaics. Advanced Materials, 2020, 32, e2003312.	21.0	39
440	Recent Advances in Plasmonic Perovskite Solar Cells. Advanced Science, 2020, 7, 1902448.	11.2	78
441	A review of photovoltaic performance of organic/inorganic solar cells for future renewable and sustainable energy technologies. Superlattices and Microstructures, 2020, 143, 106549.	3.1	90
442	Determining In-Plane Carrier Diffusion in Two-Dimensional Perovskite Using Local Time-Resolved Photoluminescence. ACS Applied Materials & Interfaces, 2020, 12, 26384-26390.	8.0	20
443	Solution-processed perovskite solar cells. Journal of Central South University, 2020, 27, 1104-1133.	3.0	34
444	Progress in Materials Development for the Rapid Efficiency Advancement of Perovskite Solar Cells. Small, 2020, 16, e1907531.	10.0	23
445	Structure engineering of hierarchical layered perovskite interface for efficient and stable wide bandgap photovoltaics. Nano Energy, 2020, 75, 104917.	16.0	44
446	Strategies for high performance perovskite/c-Si tandem solar cells: Effects of bandgap engineering, solar concentration and device temperature. Optical Materials, 2020, 106, 109935.	3.6	18
447	Origin of Ionic Inhomogeneity in MAPb(I _{<i>x</i>} Br _{1–<i>x</i>}) ₃ Perovskite Thin Films Revealed by In-Situ Spectroscopy during Spin Coating and Annealing. ACS Applied Materials & Interfaces, 2020, 12, 30343-30352.	8.0	20
448	Silver and copper nanowire films as cost-effective and robust transparent electrode in energy harvesting through photovoltaic: A review. Materials Today Communications, 2020, 24, 101317.	1.9	22
449	Low Temperature (<40 °C) Atmospheric-Pressure Dielectric-Barrier-Discharge-jet (DBDjet) Plasma Treatment on Jet-Sprayed Silver Nanowires (AgNWs) Electrodes for Fully Solution-Processed n-i-p Structure Perovskite Solar Cells. ECS Journal of Solid State Science and Technology, 2020, 9, 055016.	1.8	6
450	Recent Progress on Semi-transparent Perovskite Solar Cell for Building-integrated Photovoltaics. Chemical Research in Chinese Universities, 2020, 36, 366-376.	2.6	16
451	Transparent photovoltaic technologies: Current trends towards upscaling. Energy Conversion and Management, 2020, 219, 112982.	9.2	112
452	2D/3D Heterostructure for Semitransparent Perovskite Solar Cells with Engineered Bandgap Enables Efficiencies Exceeding 25% in Fourâ€Terminal Tandems with Silicon and CIGS. Advanced Functional Materials, 2020, 30, 1909919.	14.9	123
453	Cu(In,Ga)Se2 for selective and efficient photoelectrochemical conversion of CO2 into CO. Journal of Catalysis, 2020, 384, 88-95.	6.2	36
454	Scalable Synthesis of Micron Size Crystals of CH 3 NH 3 PbI 3 at Room Temperature in Acetonitrile via Rapid Reactive Crystallization. ChemistrySelect, 2020, 5, 3266-3271.	1.5	1
455	Structural Designs and inâ€situ Xâ€ray Characterizations of Metal Phosphides for Electrocatalysis. ChemCatChem, 2020, 12, 3621-3638.	3.7	13

#	Article	IF	CITATIONS
456	<i>In situ</i> study of the film formation mechanism of organic–inorganic hybrid perovskite solar cells: controlling the solvate phase using an additive system. Journal of Materials Chemistry A, 2020, 8, 7695-7703.	10.3	29
457	2-Terminal CIGS-perovskite tandem cells: A layer by layer exploration. Solar Energy, 2020, 207, 270-288.	6.1	44
458	Intrinsic and environmental stability issues of perovskite photovoltaics. Progress in Energy, 2020, 2, 022002.	10.9	33
459	Mechanically Stacked, Two-Terminal Graphene-Based Perovskite/Silicon Tandem Solar Cell with Efficiency over 26%. Joule, 2020, 4, 865-881.	24.0	125
460	Atomistic Origins of the Limited Phase Stability of Cs ⁺ -Rich FA _{<i>x</i>} Cs _(1–<i>x</i>) Pbl ₃ Mixtures. Chemistry of Materials, 2020, 32, 2605-2614.	6.7	24
461	Ag/In leadâ€free double perovskites. EcoMat, 2020, 2, e12017.	11.9	16
462	Self-augmented ion blocking of sandwiched 2D/1D/2D electrode for solution processed high efficiency semitransparent perovskite solar cell. Nano Energy, 2020, 71, 104567.	16.0	35
463	Passivating contacts and tandem concepts: Approaches for the highest silicon-based solar cell efficiencies. Applied Physics Reviews, 2020, 7, .	11.3	150
464	Degradation mechanisms in mixed-cation and mixed-halide Cs _x FA _{1â^'x} Pb(Br _y 1âr'y) ₃ perovskite films under ambient conditions. Journal of Materials Chemistry A, 2020, 8, 9302-9312.	10.3	26
465	Efficient Interconnection in Perovskite Tandem Solar Cells. Small Methods, 2020, 4, 2000093.	8.6	43
466	EQCM study on the electrochemical redox behavior of gallium in alkaline solution. Hydrometallurgy, 2020, 194, 105344.	4.3	9
467	Review on applications of PEDOTs and PEDOT:PSS in perovskite solar cells. Journal of Materials Science: Materials in Electronics, 2021, 32, 12746-12757.	2.2	59
468	Recent advances in semitransparent perovskite solar cells. InformaÄnÃ-Materiály, 2021, 3, 101-124.	17.3	55
469	Perovskite-based tandem solar cells. Science Bulletin, 2021, 66, 621-636.	9.0	91
470	Recent progress of metal-halide perovskite-based tandem solar cells. Materials Chemistry Frontiers, 2021, 5, 4538-4564.	5.9	15
471	Top transparent electrodes for fabricating semitransparent organic and perovskite solar cells. Journal of Materials Chemistry C, 2021, 9, 9102-9123.	5.5	17
472	Photon management to reduce energy loss in perovskite solar cells. Chemical Society Reviews, 2021, 50, 7250-7329.	38.1	83
473	A first-principles study of the stability, electronic structure, and optical properties of halide double perovskite Rb ₂ Sn _{1â^x} Te _x I ₆ for solar cell applications. Physical Chemistry Chemical Physics, 2021, 23, 4646-4657.	2.8	19

#	Article	IF	CITATIONS
474	Perovskite-inspired materials for photovoltaics and beyond—from design to devices. Nanotechnology, 2021, 32, 132004.	2.6	106
475	Device design for highâ€efficiency monolithic twoâ€terminal, fourâ€terminal mechanically stacked, and fourâ€terminal optically coupled perovskiteâ€silicon tandem solar cells. International Journal of Energy Research, 2021, 45, 10538-10545.	4.5	15
476	Present Status of Solutionâ€Processing Routes for Cu(In,Ga)(S,Se) ₂ Solar Cell Absorbers. Advanced Energy Materials, 2021, 11, 2003743.	19.5	57
477	Improving the performance of pure sulfide Cu(InGa)S2 solar cells via injection annealing system. Current Applied Physics, 2021, 22, 71-76.	2.4	2
478	Interconnecting layers of different crystalline silicon bottom cells in monolithic perovskite/silicon tandem solar cells. Superlattices and Microstructures, 2021, 151, 106811.	3.1	4
479	The investigation of CsPb(I1â^'xBrx)3/crystalline silicon two- and four-terminal tandem solar cells. Solar Energy, 2021, 216, 145-150.	6.1	16
480	Review on persistent challenges of perovskite solar cells' stability. Solar Energy, 2021, 218, 469-491.	6.1	80
481	Twoâ€Terminal Perovskiteâ€Based Tandem Solar Cells for Energy Conversion and Storage. Small, 2021, 17, e2006145.	10.0	16
482	Electron Beam Irradiation of Lead Halide Perovskite Solar Cells: Dedoping of Organic Hole Transport Materials despite Hardness of the Perovskite Layer. ACS Applied Materials & Interfaces, 2021, 13, 24824-24832.	8.0	8
483	An Exploration of Allâ€Inorganic Perovskite/Gallium Arsenide Tandem Solar Cells. Solar Rrl, 2021, 5, 2100121.	5.8	19
484	Review on Modern Photovoltaic Panels – Technologies and Performances. IOP Conference Series: Earth and Environmental Science, 2021, 664, 012032.	0.3	2
485	Prospects for metal halide perovskite-based tandem solar cells. Nature Photonics, 2021, 15, 411-425.	31.4	195
486	Carbon-based all-inorganic perovskite solar cells: Progress, challenges and strategies toward 20% efficiency. Materials Today, 2021, 50, 239-258.	14.2	33
487	Fabrication of Perovskite Solar Cells with Digital Control of Transparency by Inkjet Printing. ACS Applied Materials & Interfaces, 2021, 13, 30524-30532.	8.0	29
488	28.3%-efficiency perovskite/silicon tandem solar cell by optimal transparent electrode for high efficient semitransparent top cell. Nano Energy, 2021, 84, 105934.	16.0	93
489	Nickel Oxide for Perovskite Photovoltaic Cells. Advanced Photonics Research, 2021, 2, 2000178.	3.6	25
490	Over 30% efficiency bifacial 4-terminal perovskite-heterojunction silicon tandem solar cells with spectral albedo. Scientific Reports, 2021, 11, 15524.	3.3	35
491	Hotspots, frontiers, and emerging trends of tandem solar cell research: A comprehensive review. International Journal of Energy Research, 2022, 46, 104-123.	4.5	12

#	Article	IF	CITATIONS
492	Oxide and Organic–Inorganic Halide Perovskites with Plasmonics for Optoelectronic and Energy Applications: A Contributive Review. Catalysts, 2021, 11, 1057.	3.5	10
495	Dyeâ€sensitized solar cells based on nickelâ€doped tungsten diselenide counter electrodes. Energy Storage, 2022, 4, e276.	4.3	1
497	Molecular Precursor Route to Bournonite (CuPbSbS ₃) Thin Films and Powders. Inorganic Chemistry, 2021, 60, 13691-13698.	4.0	10
498	Technoeconomically competitive four-terminal perovskite/graphene-silicon tandem solar cells with over 20% efficiency. Journal of Energy Chemistry, 2021, 63, 477-483.	12.9	4
499	A Perspective on the Commercial Viability of Perovskite Solar Cells. Solar Rrl, 2021, 5, 2100401.	5.8	33
500	Enhanced photovoltaic response in ferroelectric Ti-doped BFO heterojunction through interface engineering for building integrated applications. Solar Energy, 2021, 225, 863-874.	6.1	14
501	Optimization of various terminal topologies of bifacial perovskite/FeSi2 tandem solar cell. Japanese Journal of Applied Physics, 0, , .	1.5	3
502	Laminated high-performance semi-transparent perovsktie solar cells: Enabled by sticky polyethyleminine as glue. Organic Electronics, 2022, 100, 106352.	2.6	4
503	Perovskite/Si tandem solar cells: Fundamentals, advances, challenges, and novel applications. SusMat, 2021, 1, 324-344.	14.9	70
504	Modeling and simulation of bifacial perovskite/PERT-silicon tandem solar cells. Solar Energy, 2021, 227, 292-302.	6.1	7
505	Performance estimation of a V-shaped perovskite/silicon tandem device: A case study based on a bifacial heterojunction silicon cell. Applied Energy, 2021, 301, 117496.	10.1	9
507	Strategy for <scp>largeâ€scale</scp> monolithic <scp>Perovskite</scp> /Silicon tandem solar cell: A review of recent progress. EcoMat, 2021, 3, e12084.	11.9	38
508	Electron-transport-layer-free two-dimensional perovskite solar cells based on a flexible poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) cathode. Sustainable Energy and Fuels, 2021, 5, 2595-2601.	4.9	2
509	Fundamentals of tin iodide perovskites: a promising route to highly efficient, lead-free solar cells. Journal of Materials Chemistry A, 2021, 9, 11812-11826.	10.3	32
510	Recent Development of Organic-Inorganic Perovskite-Based Tandem Solar Cells. Solar Rrl, 2017, 1, 1700045.	5.8	32
512	CHAPTER 4. Solution-processed Solar Cells: Perovskite Solar Cells. Inorganic Materials Series, 2019, , 153-192.	0.7	6
513	Recent progress in developing efficient monolithic all-perovskite tandem solar cells. Journal of Semiconductors, 2020, 41, 051201.	3.7	19
514	PV-Tiles: Towards Closely-Coupled Photovoltaic and Digital Materials for Useful, Beautiful and Sustainable Interactive Surfaces. , 2020, , .		13

# 515	ARTICLE Nanostructured front electrodes for perovskite/c-Si tandem photovoltaics. Optics Express, 2020, 28, 8878.	IF 3.4	Citations 8
516	Optical Optimization of Perovskite-Silicon Reflective Tandem Solar Cells. , 2015, , .		2
517	Progress in perovskite based solar cells: scientific and engineering state of the art. Reviews on Advanced Materials Science, 2020, 59, 10-25.	3.3	9
518	Pyroelectric Bi _{5-x} (Bi ₂ S ₃) ₃₉ l< Fibonacci Superstructure, Synthesis Options and Solar Cell Potential. World Journal of Condensed Matter Physics 2015 05 66-77	;sub>1 0.2	2&{t;/sub>
519	Bio-inspired strategies for next-generation perovskite solar mobile power sources. Chemical Society Reviews, 2021, 50, 12915-12984.	38.1	15
520	Semitransparent Perovskite Solar Cells for Building Integration and Tandem Photovoltaics: Design Strategies and Challenges. Solar Rrl, 2021, 5, 2100702.	5.8	31
521	Halide Perovskite Solar Cells for Building Integrated Photovoltaics: Transforming Building Façades into Power Generators. Advanced Materials, 2022, 34, e2104661.	21.0	37
522	Interlayer Microstructure Analysis of the Transition Zone in the Silicon/Perovskite Tandem Solar Cell. Energies, 2021, 14, 6819.	3.1	2
524	Review on perovskite silicon tandem solar cells: Status and prospects 2T, 3T and 4T for real world conditions. Materials and Design, 2021, 211, 110138.	7.0	53
525	Enhanced absorption in monolithic perovskite/CuInGaSe2 tandem solar cells with double surface-engineered nanostructures. Journal of Photonics for Energy, 2018, 8, 1.	1.3	0
526	Toward high-efficiency solution-processed tandem solar cells. , 2018, , .		0
527	Atomic Force Microscopy Study of Cross-Sections of Perovskite Layers. Eurasian Chemico-Technological Journal, 2019, , 83.	0.6	0
528	Organic-Inorganic Perovskite for Highly Efficient Tandem Solar Cells. Ceramist, 2019, 22, 146-169.	0.1	1
529	Silicon heterojunction-based tandem solar cells: past, status, and future prospects. Nanophotonics, 2021, 10, 2001-2022.	6.0	21
531	Ma'an – a new approach to the autonomous building. IOP Conference Series: Materials Science and Engineering, 0, 960, 032104.	0.6	1
532	Carrier transport and performance limit of semi-transparent photovoltaics: Culn1â^' <i>x</i> Ga <i>x</i> Se2 as a case study. Journal of Applied Physics, 2021, 130, .	2.5	4
533	Passivating contacts for high-efficiency silicon-based solar cells: From single-junction to tandem architecture. Nano Energy, 2022, 92, 106712.	16.0	30
534	Review on Tailoring PEDOT:PSS Layer for Improved Device Stability of Perovskite Solar Cells. Nanomaterials, 2021, 11, 3119.	4.1	35

#	Article	IF	CITATIONS
535	Numerical Modelling Analysis for Carrier Concentration Level Optimization of CdTe Heterojunction Thin Film–Based Solar Cell with Different Non–Toxic Metal Chalcogenide Buffer Layers Replacements: Using SCAPS–1D Software. Crystals, 2021, 11, 1454.	2.2	23
537	A short review on progress in perovskite solar cells. Materials Research Bulletin, 2022, 149, 111700.	5.2	48
538	Featuring Semitransparent p–i–n Perovskite Solar Cells for Highâ€Efficiency Fourâ€Terminal/Silicon Tandem Solar Cells. Solar RrI, 0, , 2100891.	5.8	3
539	Recent Progress in Semitransparent Organic and Perovskite Solar Cells. Physica Status Solidi (A) Applications and Materials Science, 2022, 219, .	1.8	6
540	Electronic and Photovoltaic Properties of Superlattices Constructed by Organic–Inorganic Perovskites: a Theoretical Perspective. ACS Applied Energy Materials, 2022, 5, 2430-2441.	5.1	3
541	Large-Scale Transparent Photovoltaics for a Sustainable Energy Future: Review of Inorganic Transparent Photovoltaics. Applied Science and Convergence Technology, 2022, 31, 1-8.	0.9	2
542	Concept for Efficient Light Harvesting in Perovskite Materials via Solar Harvester with Multi-Functional Folded Electrode. Nanomaterials, 2021, 11, 3362.	4.1	4
543	Influence of Substrate Temperature and Sulfurization on Sputtered Cu ₂ SnGe(S,Se) ₃ Thin Films for Solar Cell Application. IEEE Transactions on Electron Devices, 2022, 69, 2488-2493.	3.0	3
544	Development of Copper Indium Gallium Selenide (CIGS) /Perovskite Laminated Thin Film Solar Cell System and Prospect for Its Typical Application. Lecture Notes in Electrical Engineering, 2022, , 672-679.	0.4	0
545	Inverted perovskite/silicon V-shaped tandem solar cells with 27.6% efficiency <i>via</i> self-assembled monolayer-modified nickel oxide layer. Journal of Materials Chemistry A, 2022, 10, 7251-7262.	10.3	24
546	Optical properties of new organic-inorganic hybrid perovskites (CH3)2NH2CdCl3 andCH3NH3CdCl3 for solar cell applications. Optical Materials, 2022, 125, 112084.	3.6	9
547	A facile method to fabricate transparent TiO2 photoanodes for quantum dot–sensitized solar cells. Ionics, 2022, 28, 3049-3056.	2.4	4
548	Design of a Hybrid Renewable Energy Operated Commercial Establishment. , 2021, , .		0
549	An open-access database and analysis tool for perovskite solar cells based on the FAIR data principles. Nature Energy, 2022, 7, 107-115.	39.5	136
550	Transparent graphene electrodes based hybrid perovskites photodetectors with broad spectral response from UV–visible to near-infrared. Nanotechnology, 2022, 33, 085204.	2.6	3
551	Extrinsic Doping of Inkâ€Based Cu(In,Ga)(S,Se) ₂ â€Absorbers for Photovoltaic Applications. Advanced Energy Materials, 2022, 12, .	19.5	13
552	Review of Transparent and Semi-Transparent Building-Integrated Photovoltaics for Fenestration Application Modeling in Building Simulations. Energies, 2022, 15, 3286.	3.1	13
553	Impact of Precursor Concentration on Perovskite Crystallization for Efficient Wide-Bandgap Solar Cells. Materials, 2022, 15, 3185.	2.9	12

#	Article	IF	CITATIONS
554	Developing the Next-Generation Perovskite/Si Tandems: Toward Efficient, Stable, and Commercially Viable Photovoltaics. ACS Applied Materials & amp; Interfaces, 2022, 14, 34262-34268.	8.0	9
555	Thin film absorber selection to pair with silicon for 1-Sun tandem photovoltaics. Solar Energy, 2022, 238, 178-188.	6.1	1
556	Review on two-terminal and four-terminal crystalline-silicon/perovskite tandem solar cells; progress, challenges, and future perspectives. Energy Reports, 2022, 8, 5820-5851.	5.1	24
557	Low bandâ€gap CuIn(S,Se) ₂ thin film solar cells using molecular ink with 9.5% efficiency. Physica Status Solidi C: Current Topics in Solid State Physics, 2017, 14, 1600169.	0.8	0
558	Exploration of charge transport materials to improve the radiation tolerance of lead halide perovskite solar cells. Materials Advances, 2022, 3, 4861-4869.	5.4	4
559	Challenges of Scalable Development for Perovskite/Silicon Tandem Solar Cells. ACS Applied Energy Materials, 2022, 5, 6499-6515.	5.1	10
560	Perovskite-based tandem solar cells: Device architecture, stability, and economic perspectives. Renewable and Sustainable Energy Reviews, 2022, 165, 112553.	16.4	16
563	Mixed Solvents Assisted Postâ€Treatment Enables Highâ€Efficiency Singleâ€Junction Perovskite and 4T Perovskite/CIGS Tandem Solar Cells. Advanced Science, 2022, 9, .	11.2	10
564	Optimization of the substrate temperature of narrow bandgap CIS solar cells by three stage coevaporation process. Materials Science in Semiconductor Processing, 2022, 149, 106879.	4.0	2
565	Oxide/Halide/Oxide Architecture for High Performance Semiâ€Transparent Perovskite Solar Cells. Advanced Energy Materials, 2022, 12, .	19.5	11
566	Semi-transparent Perovskite Solar Cells for Four-Terminal Perovskite/CIGS Tandem Solar Cells. ACS Applied Energy Materials, 2022, 5, 8103-8111.	5.1	22
567	Modeling of Perovskite-Silicon Tandem Solar Cells: A TCAD-based Approach. , 2020, , .		1
568	Stability and efficiency issues, solutions and advancements in perovskite solar cells: A review. Solar Energy, 2022, 244, 516-535.	6.1	76
569	Nanoscale color control of perovskite solar cells using Fano resonances of aluminum arsenide nanoarrays. AIP Advances, 2022, 12, .	1.3	1
570	Computational Modelling and Optimization of a Methylammoniumâ€free Perovskite and Gaâ€free Chalcogenide Tandem Solar Cell with an Efficiency above 25 %. ChemistrySelect, 2022, 7, .	1.5	1
571	Advancement in Copper Indium Gallium Diselenide (CIGS)-Based Thin-Film Solar Cells. Advances in Sustainability Science and Technology, 2022, , 5-39.	0.6	3
572	Perovskite Solar Cells: Concepts and Prospects. Engergy Systems in Electrical Engineering, 2022, , 97-133.	0.7	0
573	Investigation of Electron Transport Material-Free Perovskite/CICS Tandem Solar Cell. Energies, 2022, 15, 6326.	3.1	11

#	Article	IF	CITATIONS
574	Pivotal Routes for Maximizing Semitransparent Perovskite Solar Cell Performance: Photon Propagation Management and Carrier Kinetics Regulation. Advanced Materials, 2023, 35, .	21.0	11
575	Comparative architecture in monolithic perovskite/silicon tandem solar cells. Science China: Physics, Mechanics and Astronomy, 2023, 66, .	5.1	3
576	Fourâ€Terminal Perovskite/Copper Indium Gallium Selenide Tandem Solar Cells: Unveiling the Path to >27% in Power Conversion Efficiency. Solar Rrl, 2022, 6, .	5.8	14
577	In-Situ Degradation Pathway Analyses on Hybrid Perovskites with Mixed Cations and Anions. Journal of Physical Chemistry C, 2022, 126, 16825-16833.	3.1	2
578	Solar and infrared light sensing comparison of Yb/CIGS photodiode. Sensors and Actuators A: Physical, 2022, 347, 113973.	4.1	1
579	Numerical Simulation and Optimization of n-Al-ZnO/n-CdS/p-CIGS/p-Si/p-MoOx/Mo Tandem Solar Cell. Silicon, 2023, 15, 2125-2135.	3.3	4
580	Semitransparent Perovskite Solar Cells for Photovoltaic Application. Solar Rrl, 2023, 7, .	5.8	2
581	An asymmetric low concentrator and spectral splitting approach to bifacial fourâ€ŧerminal photovoltaic modules. Progress in Photovoltaics: Research and Applications, 0, , .	8.1	1
583	On current technology for light absorber materials used in highly efficient industrial solar cells. Renewable and Sustainable Energy Reviews, 2023, 173, 113027.	16.4	9
584	Solution processed high performance perovskite solar cells based on a silver nanowire-titanium dioxide hybrid top electrode. RSC Advances, 2022, 12, 35350-35357.	3.6	4
585	Understanding and Minimizing <i>V</i> _{OC} Losses in Allâ€Perovskite Tandem Photovoltaics. Advanced Energy Materials, 2023, 13, .	19.5	28
586	Research progress of perovskite/crystalline silicon tandem solar cells with efficiency of over 30%. Wuli Xuebao/Acta Physica Sinica, 2023, 72, 058801.	0.5	0
587	A Comparative Study on the Perovskite/Silicon Tandem Solar Cell's Module Configuration. , 2022, , .		0
588	Inkjetâ€Printed Flexible Semitransparent Solar Cells with Perovskite and Polymeric Pillars. Solar Rrl, 2023, 7, .	5.8	3
589	Data Transmission Dielectric Recombination Proving Ground Besides Bilateral Interaction Sites Software Architecture. , 2022, , .		0
590	Brief Outlook on Top Cell Absorber of Siliconâ€Based Tandem Solar Cells. Solar Rrl, 2023, 7, .	5.8	2
591	Plasma damage-free deposition of transparent Sn-doped In2O3 top cathode using isolated plasma soft deposition for perovskite solar cells. Nano Energy, 2023, 111, 108431.	16.0	1
592	Perovskite-CIGS Monolithic Tandem Solar Cells with 29.7% Efficiency: A Numerical Study. Energy & Fuels, 2023, 37, 3083-3090	5.1	42

ARTICLE IF CITATIONS # Design and numerical characterization of high-performance all-perovskite multi-junction solar cells. 593 2.9 1 Optik, 2023, 277, 170714. Potential of Iron Oxides in Photovoltaic Technology. Crystal Growth and Design, 2023, 23, 3034-3055. 594 595 Innovative Approaches to Semi-Transparent Perovskite Solar Cells. Nanomaterials, 2023, 13, 1084. 7 4.1 An Overview of Lead, Tin, and Mixed Tin–Leadâ€Based ABI₃ Perovskite Solar Cells. Advanced 596 5.8 Energy and Sustainability Research, 2023, 4, . Aesthetically Appealing Building Integrated Photovoltaic Systems for Net-Zero Energy Buildings. 597 3.1 8 Current Status, Challenges, and Future Developmentsâ€"Á Review. Buildings, 2023, 13, 863. Recent advancements in materials for colored and semi-transparent perovskite solar cell applications. 598 5.7 Emergent Materials, 0, , . 599 Influence of Nanostructures in Perovskite Solar Cells., 2016, , 484-497. 0 All-Perovskite Tandem Solar Cells: From Certified 25% and Beyond. Energies, 2023, 16, 3519. 3.1 600 Insight on PV parameters on CIGS solar cell under different grading profiles. Materials Today: 601 0 1.8 Proceedings, 2023, , . Optimization of Efficient Perovskite-Si Hybrid Tandem Solar Cells. Material Science Research India, 2023, 20, 25-40. Progress of Photocapacitors. Chemical Reviews, 2023, 123, 9327-9355. 603 47.7 11 Elucidating Charge Carrier Dynamics in Perovskiteâ€Based Tandem Solar Cells. Small Methods, 2024, 8, . 604 8.6 A Current Matching Design and Its Impact of High-Efficiency Two-Terminal Perovskite/Silicon Tandem 605 2.5 0 Photovoltaics. IEEE Journal of Photovoltaics, 2023, , 1-6. Recent Progress in Perovskite Tandem Solar Cells. Nanomaterials, 2023, 13, 1886. 606 4.1 Silver and copper nanowire-based nanocomposite for transparent electrodes: deposition methods and 607 2.30 applications in solar cells. Composite Interfaces, 0, , 1-33. Current performance and future development paths of transparent PV glazing in a multi-domain 608 perspective. Energy and Buildings, 2023, 292, 113140. Over 28% efficiency perovskite/Cu(InGa)Se₂ tandem solar cells: highly efficient sub-cells 609 30.8 7 and their bandgap matching. Energy and Environmental Science, 2023, 16, 5029-5042. Recent Progresses on Transparent Electrodes and Active Layers Toward Neutral, Color 5.8 Semitransparent Perovskite Solar Cells. Solar Rrl, 2023, 7, .

#	Article	IF	Citations
611	A new 1-D polymeric chains of (C2H5N4)[CdCl3(H2O)] perovskite: elaboration, structure, surface interaction analysis, vibrational study, and thermal behavior. Chemical Papers, 0, , .	2.2	0
612	Efficient Integrated Perovskite/Organic Solar Cells <i>via</i> Interdigitated Interfacial Charge Transfer. ACS Applied Materials & Interfaces, 2023, 15, 34742-34749.	8.0	2
613	Halide perovskite photovoltaics. Contemporary Physics, 2022, 63, 280-304.	1.8	1
614	A Review on Energy Conversion Efficiencies of Various Perovskite Solar Cells. , 2023, , .		0
615	Bifacial perovskite solar cells: a universal component that goes beyond albedo utilization. Science Bulletin, 2023, 68, 2247-2267.	9.0	1
616	Semitransparent Perovskite Solar Cells with Ultrathin Protective Buffer Layers. ACS Applied Energy Materials, 2023, 6, 10340-10353.	5.1	1
617	The Intermediate Connection of Subcells in Siâ \in based Tandem Solar Cells. Small Methods, 2024, 8, .	8.6	0
618	Optical Optimization of Tandem Solar Cells: A Systematic Review for Enhanced Power Conversion. Nanomaterials, 2023, 13, 2985.	4.1	0
619	Matching the Photocurrent of 2â€Terminal Mechanicallyâ€Stacked Perovskite/Organic Tandem Solar Modules by Varying the Cell Width. Solar Rrl, 2024, 8, .	5.8	1
620	Perovskite/silicon tandem solar cells–compositions for improved stability and power conversion efficiency. Photochemical and Photobiological Sciences, 2024, 23, 1-22.	2.9	2
621	Perovskite/CIGS tandem solar cells: progressive advances from technical perspectives. Materials Today Energy, 2024, 39, 101473.	4.7	0
622	Research progress and challenges in extending the infra-red absorption of perovskite tandem solar cells. Nano Energy, 2024, 121, 109175.	16.0	0
623	Playdough-like carbon electrode: A promising strategy for high efficiency perovskite solar cells and modules. EScience, 2023, , 100221.	41.6	0
624	Recent advances in perovskite/Cu(In,Ga)Se2 tandem solar cells. , 2024, 7, 100086.		0
625	Research Perspective for Perovskite/Silicon Tandem Solar Cells. Energy Technology, 2024, 12, .	3.8	0
626	Highly Efficient and Reliable Organic Light–Emitting Diodes Enabled by a Multifunctional Hazy Substrate for Extreme Environments. Advanced Functional Materials, 2024, 34, .	14.9	0
627	Pressurized Back-Junction Doping via Spray-Coating Silver Nanowires Top Electrodes for Efficient Charge Collection in Bifacial Colloidal PbS Quantum Dot Solar Cells. ACS Applied Materials & Interfaces, 2024, 16, 7130-7140.	8.0	0
628	Dry Transfer Printed Hole Transport Layer for Hysteresis-Free Colloidal Quantum Dot Solar Cells. International Journal of Precision Engineering and Manufacturing - Green Technology, 0, , .	4.9	0

#	Article	IF	CITATIONS
629	Study of an Efficient and Environmentally Friendly Germanium-Based CsGeI3 Perovskite Structure For Single and Double Solar Cells. International Journal of Computational and Experimental Science and Engineering, 2024, 10, .	10.0	0
630	A Review of Perovskite/Copper Indium Gallium Selenide Tandem Solar Cells. Solar Rrl, O, , .	5.8	0