Expanding the toolbox of asymmetric organocatalysis b

Chemical Communications 51, 3708-3722 DOI: 10.1039/c4cc08748h

Citation Report

#	Article	IF	CITATIONS
1	Decatungstate Photocatalyzed Acylations and Alkylations in Flow v <i>ia</i> Hydrogen Atom Transfer. Advanced Synthesis and Catalysis, 2015, 357, 3687-3695.	2.1	65
3	Heterogeneous Dipeptideâ€Catalyzed αâ€Amination of Aldehydes in a Continuousâ€Flow Reactor: Effect of Residence Time on Enantioselectivity. Advanced Synthesis and Catalysis, 2015, 357, 3671-3680.	2.1	27
4	Acetaldehyde in asymmetric organocatalytic transformations. RSC Advances, 2015, 5, 55926-55937.	1.7	19
5	Asymmetric Organocatalysis in Continuous Flow: Opportunities for Impacting Industrial Catalysis. ACS Catalysis, 2015, 5, 1972-1985.	5.5	177
6	Advances in Immobilized Organocatalysts for the Heterogeneous Asymmetric Direct Aldol Reactions. Catalysis Reviews - Science and Engineering, 2015, 57, 192-255.	5.7	35
7	Exploiting novel process windows for the synthesis of meso-substituted porphyrins under continuous flow conditions. RSC Advances, 2015, 5, 84350-84355.	1.7	20
8	Exploring New Parameter Spaces for the Oxidative Homocoupling of Aniline Derivatives: Sustainable Synthesis of Azobenzenes in a Flow System. ACS Sustainable Chemistry and Engineering, 2015, 3, 3388-3397.	3.2	23
9	Lipase immobilization towards improved productivity on kinetic resolutions by a continuous-flow process. RSC Advances, 2015, 5, 102409-102415.	1.7	17
10	Electron-transfer-initiated benzoin- and Stetter-like reactions in packed-bed reactors for process intensification. Beilstein Journal of Organic Chemistry, 2016, 12, 2719-2730.	1.3	4
11	Flow Metalâ€Free ArC Bond Formation <i>via</i> Photogenerated Phenyl Cations. Advanced Synthesis and Catalysis, 2016, 358, 1164-1172.	2.1	18
12	Integrated on-chip mass spectrometry reaction monitoring in microfluidic devices containing porous polymer monolithic columns. Analyst, The, 2016, 141, 5412-5416.	1.7	26
13	Applications of Continuous-Flow Photochemistry in Organic Synthesis, Material Science, and Water Treatment. Chemical Reviews, 2016, 116, 10276-10341.	23.0	1,166
14	Flow "Fine―Synthesis: High Yielding and Selective Organic Synthesis by Flow Methods. Chemistry - an Asian Journal, 2016, 11, 425-436.	1.7	197
15	Direct aldol and nitroaldol condensation in an aminosilane-grafted Si/Zr/Ti composite hollow fiber as a heterogeneous catalyst and continuous-flow reactor. Journal of Catalysis, 2016, 341, 149-159.	3.1	29
16	Enantioselective reaction monitoring utilizing two-dimensional heart-cut liquid chromatography on an integrated microfluidic chip. Lab on A Chip, 2016, 16, 4648-4652.	3.1	40
17	Continuous Flow Synthesis: A Short Perspective. , 2016, , 1-5.		0
18	Harnessing the Versatility of Continuous-Flow Processes: Selective and Efficient Reactions. Chemical Record, 2016, 16, 1018-1033.	2.9	41
19	Textile Catalysts—An unconventional approach towards heterogeneous catalysis. ChemCatChem, 2016, 8, 1428-1436.	1.8	26

CITATION REPORT

#	Article	IF	CITATIONS
20	Iron-Catalyzed Amination of Sulfides and Sulfoxides with Azides in Photochemical Continuous Flow Synthesis. ACS Catalysis, 2016, 6, 1109-1112.	5.5	60
21	A monolithic 5-(pyrrolidin-2-yl)tetrazole flow microreactor for the asymmetric aldol reaction in water–ethanol solvent. Reaction Chemistry and Engineering, 2016, 1, 183-193.	1.9	18
22	A Recyclable, Immobilized Analogue of Benzotetramisole for Catalytic Enantioselective Domino Michael Addition/Cyclization Reactions in Batch and Flow. ACS Catalysis, 2016, 6, 348-356.	5.5	93
23	Exploiting photooxygenations mediated by porphyrinoid photocatalysts under continuous flow conditions. RSC Advances, 2016, 6, 12717-12725.	1.7	28
24	Kinetic and Mechanistic Examination of Acid–Base Bifunctional Aminosilica Catalysts in Aldol and Nitroaldol Condensations. ACS Catalysis, 2016, 6, 460-468.	5.5	72
25	Flow Chemistry: Recent Developments in the Synthesis of Pharmaceutical Products. Organic Process Research and Development, 2016, 20, 2-25.	1.3	674
26	Liquid phase oxidation chemistry in continuous-flow microreactors. Chemical Society Reviews, 2016, 45, 83-117.	18.7	421
27	Combining batch and continuous flow setups in the end-to-end synthesis of naturally occurring curcuminoids. Reaction Chemistry and Engineering, 2017, 2, 366-374.	1.9	38
28	On-chip integration of organic synthesis and HPLC/MS analysis for monitoring stereoselective transformations at the micro-scale. Lab on A Chip, 2017, 17, 76-81.	3.1	45
29	The Hitchhiker's Guide to Flow Chemistry. Chemical Reviews, 2017, 117, 11796-11893.	23.0	1,410
30	Regioselective and Enantioselective Intermolecular Buchner Ring Expansions in Flow. Organic Letters, 2017, 19, 5268-5271.	2.4	39
31	Immobilization of Privileged Triazolium Carbene Catalyst for Batch and Flow Stereoselective Umpolung Processes. ACS Catalysis, 2017, 7, 6365-6375.	5.5	48
32	Process Catalyst Mass Efficiency by Using Proline Tetrazole Columnâ€Flow System. Chemistry - A European Journal, 2018, 24, 1076-1079.	1.7	16
33	The Literature of Heterocyclic Chemistry, Part XV, 2015. Advances in Heterocyclic Chemistry, 2018, , 121-173.	0.9	6
34	Asymmetric fluorination of indanone-2-carboxylates using a polystyrene-supported diphenylamine-linked bis(oxazoline) complex. Organic and Biomolecular Chemistry, 2018, 16, 7702-7710.	1.5	18
35	An Integrated Labâ€onâ€aâ€chip Approach to Study Heterogeneous Enantioselective Catalysts at the Microscale. ChemCatChem, 2018, 10, 5382-5385.	1.8	24
36	Esterification of glycerol and solketal by oxidative NHC-catalysis under heterogeneous batch and flow conditions. Reaction Chemistry and Engineering, 2018, 3, 816-825.	1.9	20
37	Knoevenagel Condensation of Aldehydes and Ketones with Alkyl Nitriles Catalyzed by Strongly Basic Anion Exchange Resins under Continuousâ€Flow Conditions. Asian Journal of Organic Chemistry, 2018, 7, 2061-2064.	1.3	29

#	Article	IF	CITATIONS
38	Membrane-Grafted Asymmetric Organocatalyst for an Integrated Synthesis–Separation Platform. ACS Catalysis, 2018, 8, 7430-7438.	5.5	93
39	A Nickelâ€Diamine/Mesoporous Silica Composite as a Heterogeneous Chiral Catalyst for Asymmetric 1,4â€Addition Reactions. Angewandte Chemie, 2019, 131, 13447-13451.	1.6	8
40	A Nickelâ€Diamine/Mesoporous Silica Composite as a Heterogeneous Chiral Catalyst for Asymmetric 1,4â€Addition Reactions. Angewandte Chemie - International Edition, 2019, 58, 13313-13317.	7.2	34
41	Alternating Multilayer Structural Epoxy Composite Coating for Corrosion Protection of Steel. Macromolecular Materials and Engineering, 2019, 304, 1900374.	1.7	71
42	From Immobilization to Catalyst Use: A Complete Continuousâ€Flow Approach Towards the Use of Immobilized Organocatalysts. ChemCatChem, 2019, 11, 5553-5561.	1.8	17
43	Synergistic Catalytic Mechanism of Acidic Silanol and Basic Alkylamine Bifunctional Groups Over SBA-15 Zeolite toward Aldol Condensation. Journal of Physical Chemistry C, 2019, 123, 4903-4913.	1.5	20
44	Supported Ionic Liquidâ€Like Phases (SILLPs) as Immobilised Catalysts for the Multistep and Multicatalytic Continuous Flow Synthesis of Chiral Cyanohydrins. ChemCatChem, 2019, 11, 1955-1962.	1.8	17
45	Basic Anion-Exchange Resin-Catalyzed Aldol Condensation of Aromatic Ketones with Aldehydes in Continuous Flow. Organic Process Research and Development, 2019, 23, 961-967.	1.3	16
46	Asymmetric synthesis with cinchona-decorated cyclodextrin in a continuous-flow membrane reactor. Journal of Catalysis, 2019, 371, 255-261.	3.1	52
47	Density Functional Theory Study of ZnIn ₂ S ₄ and CdIn ₂ S ₄ Polymorphs Using Fullâ€Potential Linearized Augmented Plane Wave Method and Modified Becke–Johnson Potential. Physica Status Solidi (B): Basic Research, 2020, 257, 1900485.	0.7	19
49	β-Isocupreidinate‒CaAl-layered double hydroxide composites—heterogenized catalysts for asymmetric Michael addition. Molecular Catalysis, 2020, 482, 110675.	1.0	7
50	Recent Advances in Continuous-Flow Reactions Using Metal-Free Homogeneous Catalysts. Catalysts, 2020, 10, 1321.	1.6	11
51	Recent advances in continuous-flow organocatalysis for process intensification. Reaction Chemistry and Engineering, 2020, 5, 1017-1052.	1.9	62
52	Organocatalysis in Continuous Flow for Drug Discovery. Topics in Medicinal Chemistry, 2021, , 241-274.	0.4	2
53	Obtaining Kinetics From Continuous Processes: Sampling Multiple Time Points Concurrently With a Single Valve Rotation. Chemistry Methods, 2021, 1, 131-134.	1.8	3
54	Recyclable Organocatalysts in Asymmetric Synthesis. Asian Journal of Organic Chemistry, 2021, 10, 1251-1266.	1.3	16
55	Expanding the Toolbox of Heterogeneous Asymmetric Organocatalysts: Bifunctional Cyclopropenimine Superbases for Enantioselective Catalysis in Batch and Continuous Flow. Advanced Synthesis and Catalysis, 2021, 363, 5473-5485.	2.1	8
56	Continuous flow asymmetric synthesis of chiral active pharmaceutical ingredients and their advanced intermediates. Green Chemistry, 2021, 23, 6117-6138.	4.6	62

#	Article	IF	CITATIONS
57	Novel polystyrene-immobilized chiral amino alcohols as heterogeneous ligands for the enantioselective arylation of aldehydes in batch and continuous flow regime. Catalysis Today, 2018, 308, 86-93.	2.2	9
58	Chiral Heterogeneous Scandium Lewis Acid Catalysts for Continuousâ€Flow Enantioselective Friedel–Crafts Carbon–Carbon Bondâ€Forming Reactions. Angewandte Chemie - International Edition, 2021, 60, 26566-26570.	7.2	24
59	Chiral Heterogeneous Scandium Lewis Acid Catalysts for Continuousâ€Flow Enantioselective Friedel–Crafts Carbon–Carbon Bondâ€Forming Reactions. Angewandte Chemie, 0, , .	1.6	2
63	Introduction and Strategy. Springer Theses, 2023, , 1-16.	0.0	Ο
64	Evolution of design approaches in asymmetric organocatalysis over the last decade. , 2023, 5, 100035.		2

CITATION REPORT