Asymptomatic transmission and the resurgence of Boro

BMC Medicine

13, 146

DOI: 10.1186/s12916-015-0382-8

Citation Report

#	Article	IF	CITATIONS
1	Detection of Bordetella pertussis using a PCR test in infants younger than one year old hospitalized with whooping cough in five Peruvian hospitals. International Journal of Infectious Diseases, 2015, 41, 36-41.	1.5	26
2	New Insight into Filamentous Hemagglutinin Secretion Reveals a Role for Full-Length FhaB in $\langle i \rangle$ Bordetella $\langle i \rangle$ Virulence. MBio, 2015, 6, .	1.8	28
3	Defining long-term drivers of pertussis resurgence, and optimal vaccine control strategies. Vaccine, 2015, 33, 5794-5800.	1.7	25
4	Mechanism and Function of Type IV Secretion During Infection of the Human Host., 0,, 265-303.		O
5	Factors influencing the spread of pertussis in households: a prospective study, Catalonia and Navarre, Spain, 2012 to 2013. Eurosurveillance, 2016, 21, .	3.9	17
6	Emerging cases of pertussis among early infants born to unvaccinated mothers, an infectious disease long absent in Northwestern Greece. Mediterranean Journal of Hematology and Infectious Diseases, 2016, 9, e2017043.	0.5	2
7	Pertussis Toxin Exploits Host Cell Signaling Pathways Induced by Meningitis-Causing E. coli K1-RS218 and Enhances Adherence of Monocytic THP-1 Cells to Human Cerebral Endothelial Cells. Toxins, 2016, 8, 291.	1.5	3
8	Rediscovering Pertussis. Frontiers in Pediatrics, 2016, 4, 52.	0.9	21
9	Dismantling the Taboo against Vaccines in Pregnancy. International Journal of Molecular Sciences, 2016, 17, 894.	1.8	16
10	Using Combined Diagnostic Test Results to Hindcast Trends of Infection from Cross-Sectional Data. PLoS Computational Biology, 2016, 12, e1004901.	1.5	15
11	Concentrations of Immunoglobulin G Antibodies Against Pertussis Toxin Does Not Decrease Over a Long Period of Time in Japan. Internal Medicine, 2016, 55, 3257-3263.	0.3	4
12	Live pertussis vaccines: will they protect against carriage and spread of pertussis?. Clinical Microbiology and Infection, 2016, 22, S96-S102.	2.8	17
13	Mechanism and Function of Type IV Secretion During Infection of the Human Host. Microbiology Spectrum, 2016, 4, .	1.2	57
14	Epidemiological and Economic Effects of Priming With the Whole-Cell <i>Bordetella pertussis</i> Vaccine. JAMA Pediatrics, 2016, 170, 459.	3.3	22
15	Cost-effectiveness of next-generation vaccines: The case of pertussis. Vaccine, 2016, 34, 3405-3411.	1.7	3
16	Pertussis Vaccine Effectiveness in the Setting of Pertactin-Deficient Pertussis. Pediatrics, 2016, 137, .	1.0	53
17	Pertussis: Where did we go wrong and what can we do about it?. Journal of Infection, 2016, 72, S34-S40.	1.7	20
18	Investigating the pertussis resurgence in England and Wales, and options for future control. BMC Medicine, 2016, 14, 121.	2.3	52

#	Article	IF	CITATIONS
19	The Pertussis resurgence: putting together the pieces of the puzzle. Tropical Diseases, Travel Medicine and Vaccines, 2016, 2, 26.	0.9	28
20	The pertussis enigma: reconciling epidemiology, immunology and evolution. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20152309.	1.2	104
21	Comparison of Three Whole-Cell Pertussis Vaccines in the Baboon Model of Pertussis. Vaccine Journal, 2016, 23, 47-54.	3.2	45
22	Bordetella pertussis epidemiology and evolution in the light of pertussis resurgence. Infection, Genetics and Evolution, 2016, 40, 136-143.	1.0	64
23	Pertussis: acellular, whole-cell, new vaccines, what to choose?. Expert Review of Vaccines, 2016, 15, 671-673.	2.0	15
24	Immunity against vaccine-preventable diseases in Finnish pediatric healthcare workers in 2015. Vaccine, 2017, 35, 1608-1614.	1.7	19
25	Population-Based Pertussis Incidence and Risk Factors in Infants Less Than 6 Months in Nepal. Journal of the Pediatric Infectious Diseases Society, 2017, 6, 33-39.	0.6	6
26	Geospatial analysis of nonmedical vaccine exemptions and pertussis outbreaks in the United States. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 7101-7105.	3.3	45
27	Live Attenuated Pertussis Vaccine BPZE1 Protects Baboons Against Bordetella pertussis Disease and Infection. Journal of Infectious Diseases, 2017, 216, 117-124.	1.9	67
28	What Is Wrong with Pertussis Vaccine Immunity?. Cold Spring Harbor Perspectives in Biology, 2017, 9, a029454.	2.3	82
29	The BvgAS Regulon of <i>Bordetella pertussis</i> . MBio, 2017, 8, .	1.8	61
30	Identifying transmission routes of <i>Streptococcus pneumoniae</i> and sources of acquisitions in high transmission communities. Epidemiology and Infection, 2017, 145, 2750-2758.	1.0	52
31	Pertussis disease and transmission and host responses: insights from the baboon model of pertussis. Journal of Infection, 2017, 74, S114-S119.	1.7	35
32	The pertussis hypothesis: Bordetella pertussis colonization in the pathogenesis of Alzheimer's disease. Immunobiology, 2017, 222, 228-240.	0.8	18
33	Parents as source of pertussis transmission in hospitalized young infants. Infection, 2017, 45, 171-178.	2.3	29
35	Public health measures for pertussis prevention and control. Australian and New Zealand Journal of Public Health, 2017, 41, 557-560.	0.8	4
36	An Extracellular Polysaccharide Locus Required for Transmission of Bordetella bronchiseptica. Journal of Infectious Diseases, 2017, 216, 899-906.	1.9	8
37	A compartmental network model for the spread of whooping cough. , 2017, , .		0

#	Article	IF	Citations
38	A New Whooping Cough Vaccine That May Prevent Colonization and Transmission. Vaccines, 2017, 5, 43.	2.1	4
39	Quantifying the contribution of asymptomatic infection to the cumulative incidence. Epidemiology and Infection, 2017, 145, 1256-1258.	1.0	4
40	Controlling pertussis: how can we do it? A focus on immunization. Expert Review of Vaccines, 2018, 17, 289-297.	2.0	24
41	Effectiveness of maternal pertussis vaccination in preventing infection and disease in infants: The NSW Public Health Network case-control study. Vaccine, 2018, 36, 1887-1892.	1.7	73
42	Primary transcriptome analysis reveals importance of IS elements for the shaping of the transcriptional landscape of <i>Bordetella pertussis </i> . RNA Biology, 2018, 15, 967-975.	1.5	32
43	School-age children and adolescents suspected of having been to be infected with pertussis in Japan. Vaccine, 2018, 36, 2910-2915.	1.7	10
44	Pertussis and the Minnesota State Fair: Demonstrating a Novel Setting for Efficiently Conducting Seroepidemiologic Studies. Journal of Community Health, 2018, 43, 937-943.	1.9	2
45	Core pertussis transmission groups in England and Wales: A tale of two eras. Vaccine, 2018, 36, 1160-1166.	1.7	8
46	Bordetella pertussis (Bp) disease: Before (2003–2011) and after (2013–2016) maternal immunization strategy in a pediatric hospital. Vaccine, 2018, 36, 1375-1380.	1.7	16
47	Construction and evaluation of Bordetella pertussis live attenuated vaccine strain BPZE1 producing Fim3. Vaccine, 2018, 36, 1345-1352.	1.7	10
48	Effectiveness of acellular pertussis vaccine and evolution of pertussis incidence in the community of Madrid from 1998 to 2015. Vaccine, 2018, 36, 1643-1649.	1.7	14
49	Immunization during pregnancy. Expert Review of Vaccines, 2018, 17, 383-393.	2.0	8
50	Fatal malignant pertussis with hyperleukocytosis in a Chinese infant. Medicine (United States), 2018, 97, e0549.	0.4	8
51	The impact of past vaccination coverage and immunity on pertussis resurgence. Science Translational Medicine, 2018, 10, .	5.8	76
52	Pertussis and Rotavirus Vaccines – Controversies and Solutions. Indian Journal of Pediatrics, 2018, 85, 53-59.	0.3	3
53	Marked Underreporting of Pertussis Requiring Hospitalization in Infants as Estimated by Capture–Recapture Methodology, Germany, 2013–2015. Pediatric Infectious Disease Journal, 2018, 37, 119-125.	1.1	15
54	Resurgence of Pertussis and Emergence of the Ptxp3 Toxin Promoter Allele in South Italy. Pediatric Infectious Disease Journal, 2018, 37, e126-e131.	1.1	9
55	Diagnostic performance of commercial serological assays measuring Bordetella pertussis IgG antibodies. Diagnostic Microbiology and Infectious Disease, 2018, 90, 157-162.	0.8	5

#	Article	IF	Citations
56	Will we have new pertussis vaccines?. Vaccine, 2018, 36, 5460-5469.	1.7	33
57	Preventive and Protective Properties of Pertussis Vaccines: Current Situation and Future Challenges. , 0, , .		O
59	Fol and Age-Dependent Incidence. Use R!, 2018, , 57-80.	0.3	0
60	Infection-acquired versus vaccine-acquired immunity in an SIRWS model. Infectious Disease Modelling, 2018, 3, 118-135.	1.2	8
61	Age-appropriate compliance and completion of up to five doses of pertussis vaccine in US children. Human Vaccines and Immunotherapeutics, 2018, 14, 2932-2939.	1.4	3
62	Seasonality of respiratory viruses causing hospitalizations for acute respiratory infections in children in Nha Trang, Vietnam. International Journal of Infectious Diseases, 2018, 75, 18-25.	1.5	31
63	Could this be whooping cough?. Emergency Medicine Journal, 2018, 35, 639-642.	0.4	4
64	IL-17-dependent SIgA-mediated protection against nasal Bordetella pertussis infection by live attenuated BPZE1 vaccine. Mucosal Immunology, 2018, 11, 1753-1762.	2.7	55
65	The pertussis hypothesis: Bordetella pertussis colonization in the etiology of asthma and diseases of allergic sensitization. Medical Hypotheses, 2018, 120, 101-115.	0.8	13
66	Sustained protective immunity against Bordetella pertussis nasal colonization by intranasal immunization with a vaccine-adjuvant combination that induces IL-17-secreting TRM cells. Mucosal Immunology, 2018, 11, 1763-1776.	2.7	98
67	Contributions from the silent majority dominate dengue virus transmission. PLoS Pathogens, 2018, 14, e1006965.	2.1	118
68	Boosting Teenagers With Acellular Pertussis Vaccines Containing Recombinant or Chemically Inactivated Pertussis Toxin: A Randomized Clinical Trial. Clinical Infectious Diseases, 2019, 68, 1213-1222.	2.9	16
69	Pertussis: New preventive strategies for an old disease. Paediatric Respiratory Reviews, 2019, 29, 68-73.	1.2	22
70	Seroepidemiology of pertussis in Hangzhou, China, during 2009–2017. Human Vaccines and Immunotherapeutics, 2019, 15, 2564-2570.	1.4	4
71	Human Immune Responses to Pertussis Vaccines. Advances in Experimental Medicine and Biology, 2019, 1183, 99-113.	0.8	6
72	Pertussis Vaccines and Vaccination Strategies. An Ever-Challenging Health Problem. Advances in Experimental Medicine and Biology, 2019, 1183, 161-167.	0.8	0
73	A Retrospective Cohort Study of Safety Outcomes in New Zealand Infants Exposed to Tdap Vaccine in Utero. Vaccines, 2019, 7, 147.	2.1	12
74	Intranasal acellular pertussis vaccine provides mucosal immunity and protects mice from Bordetella pertussis. Npj Vaccines, 2019, 4, 40.	2.9	33

#	Article	IF	Citations
75	The Role of Mucosal Immunity in Pertussis. Frontiers in Immunology, 2018, 9, 3068.	2.2	47
77	Pertussis vaccines and protective immunity. Current Opinion in Immunology, 2019, 59, 72-78.	2.4	70
78	The burden of pertussis in older adults: what is the role of vaccination? A systematic literature review. Expert Review of Vaccines, 2019, 18, 439-455.	2.0	52
79	Neonatal Immunity to <i>Bordetella pertussis</i> Infection and Current Prevention Strategies. Journal of Immunology Research, 2019, 2019, 1-10.	0.9	20
80	Immunization with whole cell but not acellular pertussis vaccines primes CD4 T $<$ sub $>$ RM $<$ /sub $>$ cells that sustain protective immunity against nasal colonization with $<$ i $>$ Bordetella pertussis $<$ /i $>$. Emerging Microbes and Infections, 2019, 8, 169-185.	3.0	75
81	Does the economic recession influence the incidence of pertussis in a cosmopolitan European city?. BMC Public Health, 2019, 19, 144.	1.2	6
82	Tracking U.S. Pertussis Incidence: Correlation of Public Health Surveillance and Google Search Data Varies by State. Scientific Reports, 2019, 9, 19801.	1.6	6
83	Vaccine-driven virulence evolution: consequences of unbalanced reductions in mortality and transmission and implications for pertussis vaccines. Journal of the Royal Society Interface, 2019, 16, 20190642.	1.5	14
84	PERISCOPE: road towards effective control of pertussis. Lancet Infectious Diseases, The, 2019, 19, e179-e186.	4.6	67
85	Toward a Controlled Human Infection Model of Pertussis. Clinical Infectious Diseases, 2020, 71, 412-414.	2.9	10
86	Controlled Human Infection With Bordetella pertussis Induces Asymptomatic, Immunizing Colonization. Clinical Infectious Diseases, 2020, 71, 403-411.	2.9	40
87	Asymptomatic Infection and Transmission of Pertussis in Households: A Systematic Review. Clinical Infectious Diseases, 2020, 70, 152-161.	2.9	18
89	Evolution and Conservation of Bordetella Intracellular Survival in Eukaryotic Host Cells. Frontiers in Microbiology, 2020, 11, 557819.	1.5	5
90	Safety and immunogenicity of the live attenuated intranasal pertussis vaccine BPZE1: a phase 1b, double-blind, randomised, placebo-controlled dose-escalation study. Lancet Infectious Diseases, The, 2020, 20, 1290-1301.	4.6	34
91	Beyond <i>R</i> ₀ : heterogeneity in secondary infections and probabilistic epidemic forecasting. Journal of the Royal Society Interface, 2020, 17, 20200393.	1.5	59
92	Acellular Pertussis Vaccine Inhibits Bordetella pertussis Clearance from the Nasal Mucosa of Mice. Vaccines, 2020, 8, 695.	2.1	25
93	The potential for improved protection against pertussis. Lancet Infectious Diseases, The, 2020, 20, 1220-1222.	4.6	1
95	Transversal sero-epidemiological study of Bordetella pertussis in Tehran, Iran. PLoS ONE, 2020, 15, e0238398.	1.1	4

#	ARTICLE	IF	Citations
96	Acellular Pertussis Vaccines Induce Anti-pertactin Bactericidal Antibodies Which Drives the Emergence of Pertactin-Negative Strains. Frontiers in Microbiology, 2020, 11, 2108.	1.5	27
97	Next-Generation Pertussis Vaccines Based on the Induction of Protective T Cells in the Respiratory Tract. Vaccines, 2020, 8, 621.	2.1	27
98	Pathogenesis of COVID-19 from the Perspective of the Damage-Response Framework. MBio, 2020, 11, .	1.8	54
99	Tdap vaccination during pregnancy interrupts a twenty-year increase in the incidence of pertussis. Vaccine, 2020, 38, 2700-2706.	1.7	15
100	A qPCR assay for Bordetella pertussis cells that enumerates both live and dead bacteria. PLoS ONE, 2020, 15, e0232334.	1,1	3
101	Development and Validation of a <i>Bordetella pertussis</i> Whole-Genome Screening Strategy. Journal of Immunology Research, 2020, 2020, 1-11.	0.9	23
102	Clinical Endpoints for Evaluating Efficacy in COVID-19 Vaccine Trials. Annals of Internal Medicine, 2021, 174, 221-228.	2.0	86
103	Safety and immunogenicity of the epicutaneous reactivation of pertussis toxin immunity in healthy adults: a phase I, randomized, double-blind, placebo-controlled trial. Clinical Microbiology and Infection, 2021, 27, 878-885.	2.8	9
104	Distinct Features and Functions of Systemic and Mucosal Humoral Immunity Among SARS-CoV-2 Convalescent Individuals. Frontiers in Immunology, 2020, 11, 618685.	2.2	87
105	Suppression of mucosal Th17 memory responses by acellular pertussis vaccines enhances nasal Bordetella pertussis carriage. Npj Vaccines, 2021, 6, 6.	2.9	30
106	Intranasal Immunization with Acellular Pertussis Vaccines Results in Long-Term Immunity to Bordetella pertussis in Mice. Infection and Immunity, 2021, 89, .	1.0	16
107	The Path to New Pediatric Vaccines against Pertussis. Vaccines, 2021, 9, 228.	2.1	9
108	Differences in clinical severity of respiratory viral infections in hospitalized children. Scientific Reports, 2021, 11, 5163.	1.6	7
109	Is there a potential for novel, nasal pertussis vaccines?. Expert Review of Vaccines, 2021, 20, 1-9.	2.0	1
110	Pertussis vaccine effectiveness and duration of protection $\hat{a} \in A$ systematic review and meta-analysis. Vaccine, 2021, 39, 3120-3130.	1.7	15
111	How Asymptomatic Transmission Influences Mitigation and Suppression Strategies during a Pandemic. Risk Analysis, 2023, 43, 649-659.	1.5	5
112	Infant rhesus macaques as a non-human primate model of Bordetella pertussis infection. BMC Infectious Diseases, 2021, 21, 407.	1.3	7
113	IL-17 mediates protective immunity against nasal infection with Bordetella pertussis by mobilizing neutrophils, especially Siglec-F+ neutrophils. Mucosal Immunology, 2021, 14, 1183-1202.	2.7	39

#	ARTICLE	IF	Citations
115	Asymptomatic Bordetella pertussis infections in a longitudinal cohort of young African infants and their mothers. ELife, $2021,10,.$	2.8	20
116	Cost-Effectiveness of Pertussis Vaccination Schedule in Israel. Vaccines, 2021, 9, 590.	2.1	1
117	Mucosal Immunization Against Pertussis: Lessons From the Past and Perspectives. Frontiers in Immunology, 2021, 12, 701285.	2.2	17
118	Long-lived immunity to genetically detoxified pertussis vaccines. EClinicalMedicine, 2021, 37, 101014.	3.2	0
119	Bordetella Adenylate Cyclase Toxin Elicits Airway Mucin Secretion through Activation of the cAMP Response Element Binding Protein. International Journal of Molecular Sciences, 2021, 22, 9064.	1.8	3
120	Vaccine-Induced Cellular Immunity against Bordetella pertussis: Harnessing Lessons from Animal and Human Studies to Improve Design and Testing of Novel Pertussis Vaccines. Vaccines, 2021, 9, 877.	2.1	8
121	Lessons from a mature acellular pertussis vaccination program and strategies to overcome suboptimal vaccine effectiveness. Expert Review of Vaccines, 2022, 21, 899-907.	2.0	0
122	PTX Instructs the Development of Lung-Resident Memory T Cells in Bordetella pertussis Infected Mice. Toxins, 2021, 13, 632.	1.5	0
123	The History of Pertussis Toxin. Toxins, 2021, 13, 623.	1.5	14
124	Mucosal Immunization with DTaP Confers Protection against <i>Bordetella pertussis </i> Infection and Cough in Sprague-Dawley Rats. Infection and Immunity, 2021, 89, e0034621.	1.0	7
125	Circulation of Bordetella pertussis in the Caribbean Netherlands: a population-based seroepidemiological study. International Journal of Infectious Diseases, 2021, 111, 21-27.	1.5	0
126	Pathogenicity and virulence of <i>Bordetella pertussis</i> and its adaptation to its strictly human host. Virulence, 2021, 12, 2608-2632.	1.8	26
131	Live attenuated pertussis vaccine BPZE1 induces a broad antibody response in humans. Journal of Clinical Investigation, 2020, 130, 2332-2346.	3.9	37
132	The relationship between mucosal immunity, nasopharyngeal carriage, asymptomatic transmission and the resurgence of Bordetella pertussis. F1000Research, 2017, 6, 1568.	0.8	28
133	Superspreading events in the transmission dynamics of SARS-CoV-2: Opportunities for interventions and control. PLoS Biology, 2020, 18, e3000897.	2.6	183
134	Is Pertussis Infection Neglected in China? Evidence from a Seroepidemiology Survey in Zhejiang, an Eastern Province of China. PLoS ONE, 2016, 11, e0155965.	1.1	23
135	Knowledge, Attitude and Practice Regarding Pertussis among a Public University Students in Malaysia. Pesquisa Brasileira Em Odontopediatria E Clinica Integrada, 0, 20, .	0.7	1
136	Systematic review and meta-analysis of pertussis epidemiology in Latin America and the Caribbean: 1980-2015. Revista Panamericana De Salud Publica/Pan American Journal of Public Health, 2017, 41, e102.	0.6	4

#	Article	IF	Citations
137	Effect of change in vaccine schedule on pertussis epidemiology in France: a modelling and serological study. Lancet Infectious Diseases, The, 2022, 22, 265-273.	4.6	12
139	AGENT BASED MODELING: FINE-SCALE SPATIO-TEMPORAL ANALYSIS OF PERTUSSIS. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 0, IV-4/W2, 37-46.	0.0	0
140	The Experience of the Retrospective Epidemiological Analysis of Outbreaks of Pertussis in the Moscow Suburbs. Epidemiologiya I Vaktsinoprofilaktika, 2017, 16, 62-68.	0.2	0
141	Đ—Đ°Ñ…Đ²Đ¾Ñ€ÑŽĐ²Đ°Đ½Ñ–ÑÑ,ÑŒ Đ½Đ° ааÑƊ»ÑŽĐ° у Đ›ÑŒĐ²Ñ–Đ²ÑÑŒĐºÑ–Đ¹ Đ¾Đ±Đ»Đ°ÑÑ	l,Ñ- ⊕. Æktua	ılÊ \ naâ Infe
143	Analysis of an epidemic model for transmitted diseases in a group of adults and an extension to two age classes., 2020, 49, 921-934.	0.3	6
144	Evaluation of Outer Membrane Vesicles Obtained from Predominant Local Isolate of Bordetella pertussis as a Vaccine Candidate. Iranian Biomedical Journal, 2021, 25, 399-407.	0.4	1
145	Causes and consequences of delayed vaccination against pertussis infection in the Russian Federation. Zhurnal Mikrobiologii Epidemiologii I Immunobiologii, 2020, 97, 492-502.	0.3	3
146	A Network-Based Compartmental Model For The Spread Of Whooping Cough In Nebraska. AMIA Summits on Translational Science Proceedings, 2019, 2019, 388-397.	0.4	3
147	Epidemiology incidence and geographical distribution of Pertussis using GIS and its incidence prediction in Iran in 2021. Medical Journal of the Islamic Republic of Iran, 2021, 35, 108.	0.9	0
148	Non-primate animal models for pertussis: back to the drawing board?. Applied Microbiology and Biotechnology, 2022, 106, 1383.	1.7	0
149	Novel Strategies to Inhibit Pertussis Toxin. Toxins, 2022, 14, 187.	1.5	4
150	The Fim and FhaB adhesins play a crucial role in nasal cavity infection and Bordetella pertussis transmission in a novel mouse catarrhal infection model. PLoS Pathogens, 2022, 18, e1010402.	2.1	9
151	Intranasal Immunization With a c-di-GMP-Adjuvanted Acellular Pertussis Vaccine Provides Superior Immunity Against Bordetella pertussis in a Mouse Model. Frontiers in Immunology, 2022, 13, 878832.	2.2	7
152	Dissecting recurrent waves of pertussis across the boroughs of London. PLoS Computational Biology, 2022, 18, e1009898.	1.5	3
154	Pertussis toxin suppresses dendritic cell-mediated delivery of B. pertussis into lung-draining lymph nodes. PLoS Pathogens, 2022, 18, e1010577.	2.1	5
155	Whole-Cell and Acellular Pertussis Vaccine: Reflections on Efficacy. Medical Principles and Practice, 2022, 31, 313-321.	1.1	5
156	Seroepidemiology of pertussis and diphtheria among healthy adults in Shaanxi Province, northwest China: A large - scale cross-sectional study. Human Vaccines and Immunotherapeutics, 2022, 18, .	1.4	2
157	Novel approaches to reactivate pertussis immunity. Expert Review of Vaccines, 2022, 21, 1787-1797.	2.0	3

#	Article	IF	CITATIONS
158	The Catalytic Model. Use R!, 2023, , 87-103.	0.3	0
159	Stochastics. Use R!, 2023, , 165-184.	0.3	O
160	Prior exposure to B. pertussis shapes the mucosal antibody response to acellular pertussis booster vaccination. Nature Communications, 2022, 13 , .	5.8	6
161	Evaluation of Whole-Cell and Acellular Pertussis Vaccines in the Context of Long-Term Herd Immunity. Vaccines, 2023, $11,1.$	2.1	3
162	Antigen Discovery for Next-Generation Pertussis Vaccines Using Immunoproteomics and Transposon-Directed Insertion Sequencing. Journal of Infectious Diseases, 2023, 227, 583-591.	1.9	4
163	Genome Sequences of Bordetella pertussis Isolates from Outbreaks in Northeastern Mexico. Microbiology Resource Announcements, 0, , .	0.3	O
164	Incidence and Transmission Dynamics of <i>Bordetella pertussis</i> Infection in Rural and Urban Communities, South Africa, 2016â€'2018. Emerging Infectious Diseases, 2023, 29, 294-303.	2.0	2
165	Evaluation of the effectiveness of maternal immunization against pertussis in Alberta using agent-based modeling: A Canadian immunization research network study. Vaccine, 2023, 41, 2430-2438.	1.7	O
166	Architecture and matrix assembly determinants of Bordetella pertussis biofilms on primary human airway epithelium. PLoS Pathogens, 2023, 19, e1011193.	2.1	2
167	Immunogenicity and safety of BPZE1, an intranasal live attenuated pertussis vaccine, versus tetanus–diphtheria–acellular pertussis vaccine: a randomised, double-blind, phase 2b trial. Lancet, The, 2023, 401, 843-855.	6.3	7
168	The incidence, duration, risk factors, and age-based variation of missed opportunities to diagnose pertussis: A population-based cohort study. Infection Control and Hospital Epidemiology, 2023, 44, 1629-1636.	1.0	0
169	A pangenome approach-based loop-mediated isothermal amplification assay for the specific and early detection of Bordetella pertussis. Scientific Reports, 2023, 13, .	1.6	0
170	Maternal vaccination against pertussis as part of the national immunization program: a qualitative evaluation among obstetric care providers one year after the implementation in December 2019. BMC Health Services Research, 2023, 23, .	0.9	0