Electrical stimulation alleviates depressive-like behavio targets and potential mechanisms

Translational Psychiatry 5, e535-e535 DOI: 10.1038/tp.2015.24

Citation Report

#	Article	IF	CITATIONS
1	Deep Brain Stimulation: Expanding Applications. Neurologia Medico-Chirurgica, 2015, 55, 861-877.	1.0	21
2	Activation and blockade of serotonin7 receptors in the prelimbic cortex regulate depressive-like behaviors in a 6-hydroxydopamine-induced Parkinson's disease rat model. Neuroscience, 2015, 311, 45-55.	1.1	19
3	Habenula. Neurology, 2015, 85, 992-1000.	1.5	47
4	Deep Brain Stimulation for Treatment-Refractory Mood and Obsessive-Compulsive Disorders. Current Behavioral Neuroscience Reports, 2015, 2, 187-197.	0.6	24
5	Neuronal correlates of depression. Cellular and Molecular Life Sciences, 2015, 72, 4825-4848.	2.4	101
6	Serotonin modulates glutamatergic transmission to neurons in the lateral habenula. Scientific Reports, 2016, 6, 23798.	1.6	39
7	Behavioral, neurochemical and molecular changes after acute deep brain stimulation of the infralimbic prefrontal cortex. Neuropharmacology, 2016, 108, 91-102.	2.0	46
8	Tetratricopeptide repeat domain 9A modulates anxiety-like behavior in female mice. Scientific Reports, 2016, 6, 37568.	1.6	14
9	Reduced response to chronic mild stress in PACAP mutant mice is associated with blunted FosB expression in limbic forebrain and brainstem centers. Neuroscience, 2016, 330, 335-358.	1.1	41
10	Translating the Habenulaâ \in "From Rodents to Humans. Biological Psychiatry, 2017, 81, 296-305.	0.7	130
11	Construct and face validity of a new model for the three-hit theory of depression using PACAP mutant mice on CD1 background. Neuroscience, 2017, 354, 11-29.	1.1	36
12	The Rodent Forced Swim Test Measures Stress-Coping Strategy, Not Depression-like Behavior. ACS Chemical Neuroscience, 2017, 8, 955-960.	1.7	345
13	The habenula as a critical node in chronic stress-related anxiety. Experimental Neurology, 2017, 289, 46-54.	2.0	42
14	Understanding Mood Disorders Using Electrophysiology and Circuit Breaking. , 2017, , 343-370.		0
15	Adult hippocampal neurogenesis: Is it the alpha and omega of antidepressant action?. Biochemical Pharmacology, 2017, 141, 86-99.	2.0	55
16	The chronic mild stress (CMS) model of depression: History, evaluation and usage. Neurobiology of Stress, 2017, 6, 78-93.	1.9	636
17	Electrical Stimulation Normalizes c-Fos Expression in the Deep Cerebellar Nuclei of Depressive-like Rats: Implication of Antidepressant Activity. Cerebellum, 2017, 16, 398-410.	1.4	18
18	Cellular and molecular mechanisms triggered by Deep Brain Stimulation in depression: A preclinical and clinical approach. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2017, 73, 1-10.	2.5	29

ATION RED

#	Article	IF	CITATIONS
19	Deep brain stimulation and fluoxetine exert different long-term changes in the serotonergic system. Neuropharmacology, 2018, 135, 63-72.	2.0	22
20	Deep brain stimulation for treatment-resistant depression: an integrative review of preclinical and clinical findings and translational implications. Molecular Psychiatry, 2018, 23, 1094-1112.	4.1	204
21	Reproducibility of myelin contentâ€based human habenula segmentation at 3 Tesla. Human Brain Mapping, 2018, 39, 3058-3071.	1.9	17
22	Effect of Deep Brain Stimulation of the ventromedial prefrontal cortex on the noradrenergic system in rats. Brain Stimulation, 2018, 11, 222-230.	0.7	26
23	One year double blind study of high vs low frequency subcallosal cingulate stimulation for depression. Journal of Psychiatric Research, 2018, 96, 124-134.	1.5	39
24	Tuning Neuromodulation Effects by Orientation Selective Deep Brain Stimulation in the Rat Medial Frontal Cortex. Frontiers in Neuroscience, 2018, 12, 899.	1.4	9
25	Dysregulation of the Lateral Habenula in Major Depressive Disorder. Frontiers in Synaptic Neuroscience, 2018, 10, 46.	1.3	71
26	Enriched Environment Facilitates Anxiolytic Efficacy Driven by Deep-Brain Stimulation of Medial Prefrontal Cortex. Frontiers in Behavioral Neuroscience, 2018, 12, 204.	1.0	8
27	Rapid antidepressant effects of deep brain stimulation of the pre-frontal cortex in an animal model of treatment-resistant depression. Journal of Psychopharmacology, 2018, 32, 1133-1140.	2.0	27
28	The Lateral Habenula Directs Coping Styles Under Conditions of Stress via Recruitment of the Endocannabinoid System. Biological Psychiatry, 2018, 84, 611-623.	0.7	47
29	Functional Connectivity-Based Modelling Simulates Subject-Specific Network Spreading Effects of Focal Brain Stimulation. Neuroscience Bulletin, 2018, 34, 921-938.	1.5	11
30	A 3D Printed Device for Low Cost Neural Stimulation in Mice. Frontiers in Neuroscience, 2019, 13, 784.	1.4	11
31	In Vivo Brain Sampling Using a Microextraction Probe Reveals Metabolic Changes in Rodents after Deep Brain Stimulation. Analytical Chemistry, 2019, 91, 9875-9884.	3.2	47
32	Genomic Screening of Wistar and Wistar-Kyoto Rats Exposed to Chronic Mild Stress and Deep Brain Stimulation of Prefrontal Cortex. Neuroscience, 2019, 423, 66-75.	1.1	11
33	How Deep Brain Stimulation of the Nucleus Accumbens Affects the Cingulate Gyrus and Vice Versa. Brain Sciences, 2019, 9, 5.	1.1	4
34	Deep brain stimulation: current challenges and future directions. Nature Reviews Neurology, 2019, 15, 148-160.	4.9	721
35	Acute 5â€Hz deep brain stimulation of the lateral habenula is associated with depressive-like behavior in male wild-type Wistar rats. Brain Research, 2019, 1721, 146283.	1.1	16
36	The role of prefrontal cortex dopamine D2 and D3 receptors in the mechanism of action of venlafaxine and deep brain stimulation in animal models of treatment-responsive and treatment-resistant depression. Journal of Psychopharmacology, 2019, 33, 748-756.	2.0	18

#	Article	IF	CITATIONS
37	Severe seizures as a side effect of deep brain stimulation in the dorsal peduncular cortex in a rat model of depression. Epilepsy and Behavior, 2019, 92, 269-275.	0.9	1
38	Deep Brain Stimulation: Mechanisms Underpinning Antidepressant Effects. , 2019, , 375-382.		0
39	Investigation of Architectures for Models of Neural Responses to Electrical Brain Stimulation. , 2019, 2019, 6892-6895.		1
40	Effects of different patterns of electric stimulation of the ventromedial prefrontal cortex on hippocampal–prefrontal coherence in a rat model of depression. Behavioural Brain Research, 2019, 356, 179-188.	1.2	13
41	Validation of chronic mild stress in the Wistar-Kyoto rat as an animal model of treatment-resistant depression. Behavioural Pharmacology, 2019, 30, 239-250.	0.8	53
42	Medial Forebrain Bundle Deep Brain Stimulation Reverses Anhedonic-Like Behavior in a Chronic Model of Depression: Importance of BDNF and Inflammatory Cytokines. Molecular Neurobiology, 2019, 56, 4364-4380.	1.9	33
43	Remediation of chronic immobilization stress-induced negative affective behaviors and altered metabolism of monoamines in the prefrontal cortex by inactivation of basolateral amygdala. Neurochemistry International, 2020, 141, 104858.	1.9	2
44	AMPA receptors mediate the pro-cognitive effects of electrical and optogenetic stimulation of the medial prefrontal cortex in antidepressant non-responsive Wistar–Kyoto rats. Journal of Psychopharmacology, 2020, 34, 1418-1430.	2.0	13
45	Dysregulation of the orexinergic system: A potential neuropeptide target in depression. Neuroscience and Biobehavioral Reviews, 2020, 118, 384-396.	2.9	17
46	A Decade of Progress in Deep Brain Stimulation of the Subcallosal Cingulate for the Treatment of Depression. Journal of Clinical Medicine, 2020, 9, 3260.	1.0	11
47	Hericium erinaceus potentially rescues behavioural motor deficits through ERK-CREB-PSD95 neuroprotective mechanisms in rat model of 3-acetylpyridine-induced cerebellar ataxia. Scientific Reports, 2020, 10, 14945.	1.6	17
48	Deep Brain Stimulation for Treatment-Resistant Depression: Towards a More Personalized Treatment Approach. Journal of Clinical Medicine, 2020, 9, 2729.	1.0	26
49	Prelimbic Cortical Stimulation Improves Spatial Memory Through Distinct Patterns of Hippocampal Gene Expression in Aged Rats. Neurotherapeutics, 2020, 17, 2054-2068.	2.1	10
50	Impaired emotional response to stress in mice lacking galectin-1 or galectin-3. Physiology and Behavior, 2020, 220, 112862.	1.0	7
51	Emerging Modalities and Implantable Technologies for Neuromodulation. Cell, 2020, 181, 115-135.	13.5	152
52	Behavioural responses of anxiety in aversive and non-aversive conditions between young and aged Sprague-Dawley rats. Behavioural Brain Research, 2020, 385, 112559.	1.2	6
53	The Paradoxical Effect of Deep Brain Stimulation on Memory. , 2020, 11, 179.		14
54	Where is Cingulate Cortex? A Cross-Species View. Trends in Neurosciences, 2020, 43, 285-299.	4.2	150

CITATION REPORT

#	Article	IF	CITATIONS
55	Lowâ€intensity pulsed ultrasound ameliorates depressionâ€like behaviors in a rat model of chronic unpredictable stress. CNS Neuroscience and Therapeutics, 2021, 27, 233-243.	1.9	23
56	New insights on brainâ€derived neurotrophic factor epigenetics: from depression to memory extinction. Annals of the New York Academy of Sciences, 2021, 1484, 9-31.	1.8	24
57	Stimulation in the Rat Anterior Insula and Anterior Cingulate During an Effortful Weightlifting Task. Frontiers in Neuroscience, 2021, 15, 643384.	1.4	4
58	Prelimbic cortical stimulation disrupts fear memory consolidation through ventral hippocampal dopamine D 2 receptors. British Journal of Pharmacology, 2021, 178, 3587-3601.	2.7	8
59	Biomarkers for Deep Brain Stimulation in Animal Models of Depression. Neuromodulation, 2022, 25, 161-170.	0.4	5
60	Perspectives for therapy of treatmentâ€resistant depression. British Journal of Pharmacology, 2022, 179, 4181-4200.	2.7	30
61	A narrative review on invasive brain stimulation for treatment-resistant depression. Revista Brasileira De Psiquiatria, 2022, 44, 317-330.	0.9	3
62	Blockade of pre-synaptic and post-synaptic GABAB receptors in the lateral habenula produces different effects on anxiety-like behaviors in 6-hydroxydopamine hemiparkinsonian rats. Neuropharmacology, 2021, 196, 108705.	2.0	7
63	Therapeutic Potential of Human Stem Cell Implantation in Alzheimer's Disease. International Journal of Molecular Sciences, 2021, 22, 10151.	1.8	17
64	Strain-dependent sex differences in a long-term forced swim paradigm Behavioral Neuroscience, 2017, 131, 428-436.	0.6	28
66	Discovering the Potentials of Medicinal Mushrooms in Combating Depression – A Review. Mini-Reviews in Medicinal Chemistry, 2020, 20, 1518-1531.	1.1	7
67	Ventromedial prefrontal cortex stimulation enhances memory and hippocampal neurogenesis in the middle-aged rats. ELife, 2015, 4, .	2.8	59
68	Insufficiency of ventral hippocampus to medial prefrontal cortex transmission explains antidepressant non-response. Journal of Psychopharmacology, 2021, 35, 1253-1264.	2.0	7
69	A Short Glance at the Neural Circuitry Mechanism Underlying Depression. World Journal of Neuroscience, 2016, 06, 184-192.	0.1	1
70	Deep Brain Stimulation: A Promising Therapeutic Approach to the Treatment of Severe Depressed Patients — Current Evidence and Intrinsic Mechanisms. , 2017, , 251-264.		0
72	Treatment-Resistant Depression: Deep Brain Stimulation. , 2020, , 417-432.		1
74	Deep brain stimulation improved depressive-like behaviors and hippocampal synapse deficits by activating the BDNF/mTOR signaling pathway. Behavioural Brain Research, 2022, 419, 113709.	1.2	8
75	Optogenetic stimulation of medial prefrontal cortex excites GABAergic cells in the nucleus accumbens and hippocampus of Wistar-Kyoto rats exposed to chronic mild stress. Psychopharmacology, 2022, 239, 2299-2307.	1.5	2

CITATION REPORT

#	Article	IF	CITATIONS
76	Neurogenesis-dependent antidepressant-like activity of Hericium erinaceus in an animal model of depression. Chinese Medicine, 2021, 16, 132.	1.6	22
79	Effects of lateral habenula and ventral medial prefrontal cortex deep brain stimulation in rats. Journal of Neurorestoratology, 2022, 10, 43.	1.1	0
80	Antidepressant-like effects of transcorneal electrical stimulation in rat models. Brain Stimulation, 2022, 15, 843-856.	0.7	11
81	Transcorneal electrical stimulation enhances cognitive functions in aged and 5XFAD mouse models. Annals of the New York Academy of Sciences, 2022, 1515, 249-265.	1.8	8
82	Deep Brain Stimulation for Depression. Neurotherapeutics, 2022, 19, 1229-1245.	2.1	36
83	Distribution and inter-regional relationship of amyloid-beta plaque deposition in a 5xFAD mouse model of Alzheimer's disease. Frontiers in Aging Neuroscience, 0, 14, .	1.7	8
84	The antidepressant effect of nucleus accumbens deep brain stimulation is mediated by parvalbumin-positive interneurons in the dorsal dentate gyrus. Neurobiology of Stress, 2022, 21, 100492.	1.9	4
85	Serotonin 5-HT1B receptors mediate the antidepressant- and anxiolytic-like effects of ventromedial prefrontal cortex deep brain stimulation in a mouse model of social defeat. Psychopharmacology, 2022, 239, 3875-3892.	1.5	6
86	Prelimbic Cortical Stimulation with L-methionine Enhances Cognition through Hippocampal DNA Methylation and Neuroplasticity Mechanisms. , 2023, 14, 112.		4
88	Neurochemical mechanisms of deep brain stimulation for depression in animal models. European Neuropsychopharmacology, 2023, 68, 11-26.	0.3	4
89	Optogenetic stimulation of transmission from prelimbic cortex to nucleus accumbens core overcomes resistance to venlafaxine in an animal model of treatment-resistant depression. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2023, 123, 110715.	2.5	1
90	Deep brain stimulation in the lateral habenula reverses local neuronal hyperactivity and ameliorates depression-like behaviors in rats. Neurobiology of Disease, 2023, 180, 106069.	2.1	2
91	New and emerging approaches to treat psychiatric disorders. Nature Medicine, 2023, 29, 317-333.	15.2	22
92	Sex differences in amygdalohippocampal oscillations and neuronal activation in a rodent anxiety model and in response to infralimbic deep brain stimulation. Frontiers in Behavioral Neuroscience, 0, 17, .	1.0	8
93	Differential Modulation of Dorsal Raphe Serotonergic Activity in Rat Brain by the Infralimbic and Prelimbic Cortices. International Journal of Molecular Sciences, 2023, 24, 4891.	1.8	4