Predicting therapeutic nanomedicine efficacy using a coimaging nanoparticle

Science Translational Medicine

7, 314ra183

DOI: 10.1126/scitranslmed.aac6522

Citation Report

#	Article	IF	CITATIONS
1	Nanomedicine gets personal. Science Translational Medicine, 2015, 7, 314fs47.	12.4	27
2	In situ activation of a doxorubicin prodrug using imaging-capable nanoparticles. Chemical Communications, 2016, 52, 6174-6177.	4.1	32
3	Nanomaterials: Promise in Balance with Safety. ACS Symposium Series, 2016, , 89-95.	0.5	3
4	The pitfalls of growing nanomaterials. Nanomedicine, 2016, 11, 1635-1638.	3.3	4
5	Nanomedicine Meets microRNA. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, e73-9.	2.4	33
6	Magnetically Actuated Protease Sensors for in Vivo Tumor Profiling. Nano Letters, 2016, 16, 6303-6310.	9.1	45
7	Why l'm Holding onto Hope for Nano in Oncology. Molecular Pharmaceutics, 2016, 13, 2603-2604.	4.6	18
8	Nanomedicine and tumor heterogeneity: Concept and complex reality. Nano Today, 2016, 11, 402-414.	11.9	59
9	Superparamagnetic iron oxide nanocargoes for combined cancer thermotherapy and MRI applications. Physical Chemistry Chemical Physics, 2016, 18, 21331-21339.	2.8	60
10	Overview of Present Problems Facing Commercialization of Nanomedicines. Fundamental Biomedical Technologies, 2016, , 3-36.	0.2	3
11	Emerging understanding of the protein corona at the nano-bio interfaces. Nano Today, 2016, 11, 817-832.	11.9	205
12	Imaging approaches to optimize molecular therapies. Science Translational Medicine, 2016, 8, 355ps16.	12.4	93
13	Nanomedicines for renal disease: current status and future applications. Nature Reviews Nephrology, 2016, 12, 738-753.	9.6	179
14	InÂvivo fate tracking of degradable nanoparticles for lung gene transfer using PET and Ä^erenkov imaging. Biomaterials, 2016, 98, 53-63.	11.4	36
15	Theranostic near-infrared fluorescent nanoplatform for imaging and systemic siRNA delivery to metastatic anaplastic thyroid cancer. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7750-7755.	7.1	73
16	Degradable Controlled-Release Polymers and Polymeric Nanoparticles: Mechanisms of Controlling Drug Release. Chemical Reviews, 2016, 116, 2602-2663.	47.7	2,018
17	Self-assembled gemcitabine–gadolinium nanoparticles for magnetic resonance imaging and cancer therapy. Acta Biomaterialia, 2016, 33, 34-39.	8.3	48
18	Imaging the pharmacology of nanomaterials by intravital microscopy: Toward understanding their biological behavior. Advanced Drug Delivery Reviews, 2017, 113, 61-86.	13.7	60

TATION PEDO

#	Article	IF	CITATIONS
19	Radiation effects on the tumor microenvironment: Implications for nanomedicine delivery. Advanced Drug Delivery Reviews, 2017, 109, 119-130.	13.7	126
20	Challenges and strategies in anti-cancer nanomedicine development: An industry perspective. Advanced Drug Delivery Reviews, 2017, 108, 25-38.	13.7	881
22	Correlation between Ferumoxytol Uptake in Tumor Lesions by MRI and Response to Nanoliposomal Irinotecan in Patients with Advanced Solid Tumors: A Pilot Study. Clinical Cancer Research, 2017, 23, 3638-3648.	7.0	149
23	Multi-color magnetic nanoparticle imaging using magnetorelaxometry. Physics in Medicine and Biology, 2017, 62, 3139-3157.	3.0	24
24	Improved Targeting of Cancers with Nanotherapeutics. Methods in Molecular Biology, 2017, 1530, 13-37.	0.9	11
25	Heterogeneity of macrophage infiltration and therapeutic response in lung carcinoma revealed by 3D organ imaging. Nature Communications, 2017, 8, 14293.	12.8	155
26	Ultrasensitive tumour-penetrating nanosensors of protease activity. Nature Biomedical Engineering, 2017, 1, .	22.5	94
27	Molecular Imaging in Nanotechnology and Theranostics. Molecular Imaging and Biology, 2017, 19, 363-372.	2.6	32
28	Nanoformulation of Olaparib Amplifies PARP Inhibition and Sensitizes <i>PTEN/TP53-</i> Deficient Prostate Cancer to Radiation. Molecular Cancer Therapeutics, 2017, 16, 1279-1289.	4.1	37
29	Rethinking cancer nanotheranostics. Nature Reviews Materials, 2017, 2, .	48.7	860
30	Surface chemistry governs cellular tropism of nanoparticles in the brain. Nature Communications, 2017, 8, 15322.	12.8	77
31	Imaging of anticancer drug action in single cells. Nature Reviews Cancer, 2017, 17, 399-414.	28.4	80
32	Nanomaterial-Enabled Cancer Therapy. Molecular Therapy, 2017, 25, 1501-1513.	8.2	110
33	Zwitterionic Nanocarrier Surface Chemistry Improves siRNA Tumor Delivery and Silencing Activity Relative to Polyethylene Glycol. ACS Nano, 2017, 11, 5680-5696.	14.6	96
34	Radiation therapy primes tumors for nanotherapeutic delivery via macrophage-mediated vascular bursts. Science Translational Medicine, 2017, 9, .	12.4	178
35	Investigating the Cellular Specificity in Tumors of a Surface-Converting Nanoparticle by Multimodal Imaging. Bioconjugate Chemistry, 2017, 28, 1413-1421.	3.6	13
36	Combinatorial optimization of PEG architecture and hydrophobic content improves ternary siRNA polyplex stability, pharmacokinetics, and potency in vivo. Journal of Controlled Release, 2017, 255, 12-26.	9.9	48
37	Mediating Passive Tumor Accumulation through Particle Size, Tumor Type, and Location. Nano Letters, 2017, 17, 2879-2886.	9.1	199

#	Article	IF	CITATIONS
38	64Cu-MM-302 Positron Emission Tomography Quantifies Variability of Enhanced Permeability and Retention of Nanoparticles in Relation to Treatment Response in Patients with Metastatic Breast Cancer. Clinical Cancer Research, 2017, 23, 4190-4202.	7.0	280
39	Targeting tumor associated macrophages: The new challenge for nanomedicine. Seminars in Immunology, 2017, 34, 103-113.	5.6	110
40	Mechanistic understanding of in vivo protein corona formation on polymeric nanoparticles and impact on pharmacokinetics. Nature Communications, 2017, 8, 777.	12.8	507
41	Engineering and physical sciences in oncology: challenges and opportunities. Nature Reviews Cancer, 2017, 17, 659-675.	28.4	204
42	Fast Image-Guided Stratification Using Anti-Programmed Death Ligand 1 Gold Nanoparticles for Cancer Immunotherapy. ACS Nano, 2017, 11, 11127-11134.	14.6	101
43	Integrating nanomedicine and imaging. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2017, 375, 20170110.	3.4	5
44	Tantalum Sulfide Nanosheets as a Theranostic Nanoplatform for Computed Tomography Imagingâ€Guided Combinatorial Chemoâ€Photothermal Therapy. Advanced Functional Materials, 2017, 27, 1703261.	14.9	89
45	Bridging Bio–Nano Science and Cancer Nanomedicine. ACS Nano, 2017, 11, 9594-9613.	14.6	304
46	Physicochemical properties of nanoparticles affect translocation across pulmonary surfactant monolayer. Molecular Physics, 2017, 115, 3143-3154.	1.7	4
47	The light at the end of the tunnel—second generation HPMA conjugates for cancer treatment. Current Opinion in Colloid and Interface Science, 2017, 31, 30-42.	7.4	60
48	Evolution of macromolecular complexity in drug delivery systems. Nature Reviews Chemistry, 2017, 1, .	30.2	233
49	Tumour-vessel-on-a-chip models for drug delivery. Lab on A Chip, 2017, 17, 3760-3771.	6.0	68
50	Transport of drugs from blood vessels to tumour tissue. Nature Reviews Cancer, 2017, 17, 738-750.	28.4	499
51	Magnetic Nanomaterials for Therapy. , 0, , 393-438.		2
52	Nano-palladium is a cellular catalyst for in vivo chemistry. Nature Communications, 2017, 8, 15906.	12.8	210
53	Tumor targeting by lentiviral vectors combined with magnetic nanoparticles in mice. Acta Biomaterialia, 2017, 59, 303-316.	8.3	33
54	Measurement of drug-target engagement in live cells by two-photon fluorescence anisotropy imaging. Nature Protocols, 2017, 12, 1472-1497.	12.0	19
55	Cancer nanomedicine: progress, challenges and opportunities. Nature Reviews Cancer, 2017, 17, 20-37.	28.4	4,153

#	Article	IF	CITATIONS
56	Advanced Functional Nanomaterials for Theranostics. Advanced Functional Materials, 2017, 27, 1603524.	14.9	190
57	Prediction of Anti-cancer Nanotherapy Efficacy by Imaging. Nanotheranostics, 2017, 1, 296-312.	5.2	64
58	Nanomedicine Strategies to Target Tumor-Associated Macrophages. International Journal of Molecular Sciences, 2017, 18, 979.	4.1	79
59	Nanoparticles as Theranostic Vehicles in Experimental and Clinical Applications—Focus on Prostate and Breast Cancer. International Journal of Molecular Sciences, 2017, 18, 1102.	4.1	59
60	Liposomal ⁶⁴ Cu-PET Imaging of Anti-VEGF Drug Effects on Liposomal Delivery to Colon Cancer Xenografts. Theranostics, 2017, 7, 4229-4239.	10.0	16
61	Tracking Perfluorocarbon Nanoemulsion Delivery by ¹⁹ F MRI for Precise High Intensity Focused Ultrasound Tumor Ablation. Theranostics, 2017, 7, 562-572.	10.0	35
62	Biotransport kinetics and intratumoral biodistribution of malonodiserinolamide-derivatized [60]fullerene in a murine model of breast adenocarcinoma. International Journal of Nanomedicine, 2017, Volume 12, 8289-8307.	6.7	17
63	Big Potential from Small Agents: Nanoparticles for Imaging-Based Companion Diagnostics. ACS Nano, 2018, 12, 2106-2121.	14.6	117
64	Highly penetrative liposome nanomedicine generated by a biomimetic strategy for enhanced cancer chemotherapy. Biomaterials Science, 2018, 6, 1546-1555.	5.4	34
65	pH protective Y1 receptor ligand functionalized antiphagocytosis BPLP-WPU micelles for enhanced tumor imaging and therapy with prolonged survival time. Biomaterials, 2018, 170, 70-81.	11.4	45
66	Progress and challenges towards targeted delivery of cancer therapeutics. Nature Communications, 2018, 9, 1410.	12.8	1,488
67	Indocyanine green nanoparticles undergo selective lymphatic uptake, distribution and retention and enable detailed mapping of lymph vessels, nodes and abnormalities. Journal of Drug Targeting, 2018, 26, 494-504.	4.4	28
68	Nanotechnology Strategies To Advance Outcomes in Clinical Cancer Care. ACS Nano, 2018, 12, 24-43.	14.6	192
69	Using PEGylated magnetic nanoparticles to describe the EPR effect in tumor for predicting therapeutic efficacy of micelle drugs. Nanoscale, 2018, 10, 1788-1797.	5.6	53
70	Imaging of Nanoparticle Distribution to Assess Treatments That Alter Delivery. Molecular Imaging and Biology, 2018, 20, 340-351.	2.6	8
71	Nanoparticle anchoring targets immune agonists to tumors enabling anti-cancer immunity without systemic toxicity. Nature Communications, 2018, 9, 6.	12.8	184
72	Multi-modal characterization of vasculature and nanoparticle accumulation in five tumor xenograft models. Journal of Controlled Release, 2018, 279, 292-305.	9.9	34
73	Design of drug delivery systems for physical energy-induced chemical surgery. Biomaterials, 2018, 178, 583-596.	11.4	15

#	Article	IF	Citations
74	Debugging Nano–Bio Interfaces: Systematic Strategies to Accelerate Clinical Translation of Nanotechnologies. Trends in Biotechnology, 2018, 36, 755-769.	9.3	145
75	Bridging the Knowledge of Different Worlds to Understand the Big Picture of Cancer Nanomedicines. Advanced Healthcare Materials, 2018, 7, 1700432.	7.6	30
76	Physical oncology: New targets for nanomedicine. Biomaterials, 2018, 150, 87-99.	11.4	36
77	Polyester micelles for drug delivery and cancer theranostics: Current achievements, progresses and future perspectives. Materials Science and Engineering C, 2018, 83, 218-232.	7.3	68
78	Determinants of drug-target interactions at the single cell level. PLoS Computational Biology, 2018, 14, e1006601.	3.2	23
79	Rational Design of Nanoparticles with Deep Tumor Penetration for Effective Treatment of Tumor Metastasis. Advanced Functional Materials, 2018, 28, 1801840.	14.9	112
80	Developing a Roadmap for Interventional Oncology. Oncologist, 2018, 23, 1162-1170.	3.7	19
81	Arg1 expression defines immunosuppressive subsets of tumor-associated macrophages. Theranostics, 2018, 8, 5842-5854.	10.0	203
82	Antibody conjugated nanoparticles as a novel form of antibody drug conjugate chemotherapy. Drug Discovery Today: Technologies, 2018, 30, 63-69.	4.0	61
83	Modular Nanoparticulate Prodrug Design Enables Efficient Treatment of Solid Tumors Using Bioorthogonal Activation. ACS Nano, 2018, 12, 12814-12826.	14.6	72
84	Nanoparticles targeting extra domain B of fibronectin-specific to the atherosclerotic lesion types III, IV, and V-enhance plaque detection and cargo delivery. Theranostics, 2018, 8, 6008-6024.	10.0	19
85	Quantitative Imaging of Tumor-Associated Macrophages and Their Response to Therapy Using ⁶⁴ Cu-Labeled Macrin. ACS Nano, 2018, 12, 12015-12029.	14.6	117
86	Biodistribution and Tumors MRI Contrast Enhancement of Magnetic Nanocubes, Nanoclusters, and Nanorods in Multiple Mice Models. Contrast Media and Molecular Imaging, 2018, 2018, 1-12.	0.8	15
87	Nanomedicines for developing cancer nanotherapeutics: from benchtop to bedside and beyond. Applied Microbiology and Biotechnology, 2018, 102, 9449-9470.	3.6	54
88	TLR7/8-agonist-loaded nanoparticles promote the polarization of tumour-associated macrophages to enhance cancer immunotherapy. Nature Biomedical Engineering, 2018, 2, 578-588.	22.5	714
89	Macrophage-Mediated Exocytosis of Elongated Nanoparticles Improves Hepatic Excretion and Cancer Phototherapy. ACS Applied Materials & Interfaces, 2018, 10, 28450-28457.	8.0	22
90	Radiomic analysis of contrast-enhanced ultrasound data. Scientific Reports, 2018, 8, 11359.	3.3	31
91	Magnetite-Gold nanohybrids as ideal all-in-one platforms for theranostics. Scientific Reports, 2018, 8, 11295.	3.3	77

		CITATION R	EPORT	
#	Article		IF	Citations
92	Harnessing albumin as a carrier for cancer therapies. Advanced Drug Delivery Reviews, 20)18, 130, 73-89.	13.7	365
93	Polymer Therapeutics: Biomarkers and New Approaches for Personalized Cancer Treatme Personalized Medicine, 2018, 8, 6.	nt. Journal of	2.5	21
94	Quantifying the Ligand-Coated Nanoparticle Delivery to Cancer Cells in Solid Tumors. AC 12, 8423-8435.	S Nano, 2018,	14.6	444
95	Radiation and Heat Improve the Delivery and Efficacy of Nanotherapeutics by Modulating Fluid Dynamics. ACS Nano, 2018, 12, 7583-7600.	g Intratumoral	14.6	55
96	Nanotheranostics and Their Potential in the Management of Metastatic Cancer. , 2018, ,	199-244.		2
97	Tumor targeting via EPR: Strategies to enhance patient responses. Advanced Drug Delive 2018, 130, 17-38.	rry Reviews,	13.7	897
98	Synthesis and Biomedical Applications of Multifunctional Nanoparticles. Advanced Mater e1802309.	[.] ials, 2018, 30,	21.0	216
99	Effect of the development of a cell barrier on nanoparticle uptake in endothelial cells. Na 2018, 10, 16645-16656.	noscale,	5.6	21
100	Companion Diagnostic 64Cu-Liposome Positron Emission Tomography Enables Characte Drug Delivery to Tumors and Predicts Response to Cancer Nanomedicines. Theranostics, 2300-2312.	rization of 2018, 8,	10.0	47
101	Deep Tumor Penetration of Drug-Loaded Nanoparticles by Click Reaction-Assisted Immu Targeting Strategy. Journal of the American Chemical Society, 2019, 141, 13829-13840.	ne Cell	13.7	88
102	Optimizing Advances in Nanoparticle Delivery for Cancer Immunotherapy. Advanced Dru Reviews, 2019, 144, 3-15.	g Delivery	13.7	44
103	Magnetic targeting combined with active targeting of dual-ligand iron oxide nanoprobes the penetration depth in tumors for effective magnetic resonance imaging and hyperthe Biomaterialia, 2019, 96, 491-504.	to promote rmia. Acta	8.3	74
104	Advances and Challenges of Nanoparticle-Based Macrophage Reprogramming for Cancel Immunotherapy. Biochemistry (Moscow), 2019, 84, 729-745.		1.5	8
105	Non-viral nano-immunotherapeutics targeting tumor microenvironmental immune cells. 2019, 219, 119401.	Biomaterials,	11.4	51
106	Spatiotemporal Tracking of Brain-Tumor-Associated Myeloid Cells <i>in Vivo</i> through Coherence Tomography with Plasmonic Labeling and Speckle Modulation. ACS Nano, 20	Optical 19, 13, 7985-7995.	14.6	18
107	National Cancer Institute Alliance for nanotechnology in cancer—Catalyzing research a translation toward novel cancer diagnostics and therapeutics. Wiley Interdisciplinary Rev Nanomedicine and Nanobiotechnology, 2019, 11, e1570.	nd views:	6.1	16
108	Iron oxide nanoparticles: Diagnostic, therapeutic and theranostic applications. Advanced Delivery Reviews, 2019, 138, 302-325.	Drug	13.7	731
109	Emerging Approaches of Cellâ€Based Nanosystems to Target Cancer Metastasis. Advanc Materials, 2019, 29, 1903441.	ed Functional	14.9	41

ARTICLE IF CITATIONS # Extravasating Neutrophils Open Vascular Barrier and Improve Liposomes Delivery to Tumors. ACS 110 14.6 39 Nano, 2019, 13, 12599-12612. Characterization of Redox-Responsive LXR-Activating Nanoparticle Formulations in Primary Mouse 111 3.8 Macrophages. Molecules, 2019, 24, 3751. 112 Screening for new macrophage therapeutics. Theranostics, 2019, 9, 7714-7729. 10.0 26 Smart cancer nanomedicine. Nature Nanotechnology, 2019, 14, 1007-1017. 113 31.5 Gemcitabine Combination Nano Therapies for Pancreatic Cancer. Pharmaceutics, 2019, 11, 574. 114 4.5 58 Magnetic nanoparticles in nanomedicine: a review of recent advances. Nanotechnology, 2019, 30, 2.6 340 502003. Co-targeting Bulk Tumor and CSCs in Clinically Translatable TNBC Patient-Derived Xenografts via 116 4.1 17 Combination Nanotherapy. Molecular Cancer Therapeutics, 2019, 18, 1755-1764. Employment of enhanced permeability and retention effect (EPR): Nanoparticle-based precision tools for targeting of therapeutic and diagnostic agent in cancer. Materials Science and Engineering C, 2019, 7.3 536 98, 1252-1276. Gadolinium-Doped Hydroxyapatite Nanorods as T1 Contrast Agents and Drug Carriers for Breast 118 5.0 30 Cancer Therapy. ACS Applied Nano Materials, 2019, 2, 1194-1201. Mathematical and computational modeling of nano-engineered drug delivery systems. Journal of Controlled Release, 2019, 307, 150-165. Integrating Nanotechnology into Cancer Care. ACS Nano, 2019, 13, 7370-7376. 120 14.6 102 Concepts of nanoparticle cellular uptake, intracellular trafficking, and kinetics in nanomedicine. 561 Advanced Drug Delivery Reviews, 2019, 143, 68-96. Tyrosine Kinase Inhibitor Gold Nanoconjugates for the Treatment of Non-Small Cell Lung Cancer. ACS 122 8.0 31 Applied Materials & amp; Interfaces, 2019, 11, 16336-16346. DNA-enabled rational design of fluorescence-Raman bimodal nanoprobes for cancer imaging and 12.8 86 therapy. Nature Communications, 2019, 10, 1926. 124 Passive Targeting of Nanoparticles to Cancer., 2019, , 125-143. 19 Targeted Drug Delivery and Image-Guided Therapy of Heterogeneous Ovarian Cancer Using HER2-Targeted Theranostic Nanoparticles. Theranostics, 2019, 9, 778-795. Nanotechnology in the diagnosis and treatment of lung cancer., 2019, 198, 189-205. 126 106 Conjugation of Urokinase to Water-Soluble Magnetic Nanoparticles for Enhanced Thrombolysis. Applied Sciences (Switzerland), 2019, 9, 4862.

#	ARTICLE	IF	CITATIONS
128	Transcytosis - An effective targeting strategy that is complementary to "EPR effect―for pancreatic cancer nano drug delivery. Theranostics, 2019, 9, 8018-8025.	10.0	103
129	Synthetic mRNA nanoparticle-mediated restoration of p53 tumor suppressor sensitizes <i>p53</i> -deficient cancers to mTOR inhibition. Science Translational Medicine, 2019, 11, .	12.4	177
130	Advances in clinical MRI technology. Science Translational Medicine, 2019, 11, .	12.4	34
131	Development of Adamantane-Conjugated TLR7/8 Agonists for Supramolecular Delivery and Cancer Immunotherapy. Theranostics, 2019, 9, 8426-8436.	10.0	65
132	Improving accessibility of EPR-insensitive tumor phenotypes using EPR-adaptive strategies: Designing a new perspective in nanomedicine delivery. Theranostics, 2019, 9, 8091-8108.	10.0	70
133	Active Nano-targeting of Macrophages. Current Pharmaceutical Design, 2019, 25, 1951-1961.	1.9	24
134	Delivery of Cancer Nanotherapeutics. Bioanalysis, 2019, , 163-205.	0.1	2
135	A Supramolecular Nanocarrier for Delivery of Amiodarone Anti-Arrhythmic Therapy to the Heart. Bioconjugate Chemistry, 2019, 30, 733-740.	3.6	24
136	Polymer–drug conjugate therapeutics: advances, insights and prospects. Nature Reviews Drug Discovery, 2019, 18, 273-294.	46.4	579
137	Aggregation-induced emission (AIE) fluorophores as imaging tools to trace the biological fate of nano-based drug delivery systems. Advanced Drug Delivery Reviews, 2019, 143, 161-176.	13.7	95
138	Targeting peptide-decorated biomimetic lipoproteins improve deep penetration and cancer cells accessibility in solid tumor. Acta Pharmaceutica Sinica B, 2020, 10, 529-545.	12.0	29
139	Tailor-made PEG coated iron oxide nanoparticles as contrast agents for long lasting magnetic resonance molecular imaging of solid cancers. Materials Science and Engineering C, 2020, 107, 110262.	7.3	40
140	Integrating Artificial Intelligence and Nanotechnology for Precision Cancer Medicine. Advanced Materials, 2020, 32, e1901989.	21.0	187
141	Ligandâ€Installed Nanocarriers toward Precision Therapy. Advanced Materials, 2020, 32, e1902604.	21.0	189
142	A novel cell membrane-cloaked magnetic nanogripper with enhanced stability for drug discovery. Biomaterials Science, 2020, 8, 673-681.	5.4	24
143	Nanocarrier-based drug combination therapy for glioblastoma. Theranostics, 2020, 10, 1355-1372.	10.0	203
144	Photodynamic Therapy and the Biophysics of the Tumor Microenvironment. Photochemistry and Photobiology, 2020, 96, 232-259.	2.5	55
145	Imaging-assisted anticancer nanotherapy. Theranostics, 2020, 10, 956-967.	10.0	40

		CITATION REPORT		
#	Article		IF	Citations
146	Polymer Capsules with Hydrophobic Liquid Cores as Functional Nanocarriers. Polymers	s, 2020, 12, 1999.	4.5	26
147	Synthesis of PCL–PEG–PCL Triblock Copolymer via Organocatalytic Ring-Opening Its Application as an Injectable Hydrogel—An Interdisciplinary Learning Trial. Journal o Education, 2020, 97, 4158-4165.	Polymerization and of Chemical	2.3	19
148	In vivo microscopy reveals macrophage polarization locally promotes coherent microtuin migrating cancer cells. Nature Communications, 2020, 11, 3521.	Jbule dynamics	12.8	17
149	Just dose it. Nature Materials, 2020, 19, 1257-1258.		27.5	8
150	Tumor Vessel Targeted Self-Assemble Nanoparticles for Amplification and Prediction o Embolization Effect in Hepatocellular Carcinoma. ACS Nano, 2020, 14, 14907-14918.	f the	14.6	27
151	Visualization of the distribution of nanoparticle-formulated AZD2811 in mouse tumor matrix-assisted laser desorption ionization mass spectrometry imaging. Scientific Repo	model using orts, 2020, 10,	3.3	9
152	Immunostimulatory biomaterials to boost tumor immunogenicity. Biomaterials Scienc 5516-5537.	e, 2020, 8,	5.4	11
153	The Evolution of Iron Oxide Nanoparticles as MRI Contrast Agents. MRS Advances, 202	20, 5, 2157-2168.	0.9	3
154	Engineering Stem Cell Derived Biomimetic Vesicles for Versatility and Effective Targete Advanced Functional Materials, 2020, 30, 2006169.	d Delivery.	14.9	48
155	A framework for designing delivery systems. Nature Nanotechnology, 2020, 15, 819-8	29.	31.5	305
156	Nanoparticles Loaded with Wnt and YAP/Mevalonate Inhibitors in Combination with Pathe Growth of TNBC Patientâ€Derived Xenografts and Diminish Tumorigenesis. Advance 2020, 3, 2000123.	aclitaxel Stop ced Therapeutics,	3.2	1
157	Factors Influencing the Delivery Efficiency of Cancer Nanomedicines. AAPS PharmSciTe	ech, 2020, 21, 132.	3.3	7
158	Metal–Organic Framework Nanoparticles Induce Pyroptosis in Cells Controlled by th pH. Advanced Materials, 2020, 32, e1907267.	e Extracellular	21.0	118
159	Stimuli-responsive nanocarriers for drug delivery, tumor imaging, therapy and theranos Theranostics, 2020, 10, 4557-4588.	stics.	10.0	334
160	The EPR effect and beyond: Strategies to improve tumor targeting and cancer nanome efficacy. Theranostics, 2020, 10, 7921-7924.	dicine treatment	10.0	459
161	Nanomaterials innovation as an enabler for effective cancer interventions. Biomaterials 119926.	5, 2020, 242,	11.4	33
162	Improving nanotherapy delivery and action through image-guided systems pharmacolo Theranostics, 2020, 10, 968-997.	ogy.	10.0	41
163	Enabling Technologies for Personalized and Precision Medicine. Trends in Biotechnolog 497-518.	gy, 2020, 38,	9.3	169

#	Article	IF	CITATIONS
164	Understanding the In Vivo Fate of Advanced Materials by Imaging. Advanced Functional Materials, 2020, 30, 1910369.	14.9	5
165	Realizing Cancer Precision Medicine by Integrating Systems Biology and Nanomaterial Engineering. Advanced Materials, 2020, 32, e1906783.	21.0	21
166	Physics in nanomedicine: Phenomena governing the <i>in vivo</i> performance of nanoparticles. Applied Physics Reviews, 2020, 7, .	11.3	36
167	Theranostic supramolecular polymers formed by the self-assembly of a metal-chelating prodrug. Biomaterials Science, 2021, 9, 463-470.	5.4	10
168	Clinical Translation of Self $\hat{a} \in$ Assembled Cancer Nanomedicines. Advanced Therapeutics, 2021, 4, .	3.2	34
169	Design and engineering of magneto-responsive devices for cancer theranostics: Nano to macro perspective. Progress in Materials Science, 2021, 116, 100742.	32.8	51
170	Antimonene Nanosheetsâ€Based Zâ€Scheme Heterostructure with Enhanced Reactive Oxygen Species Generation and Photothermal Conversion Efficiency for Photonic Therapy of Cancer. Advanced Healthcare Materials, 2021, 10, e2001835.	7.6	27
171	Macrophage imaging and subset analysis using single-cell RNA sequencing. Nanotheranostics, 2021, 5, 36-56.	5.2	5
172	Alternating stealth polymer coatings between administrations minimizes toxic and antibody immune responses towards nanomedicine treatment regimens. Acta Biomaterialia, 2021, 121, 527-540.	8.3	10
173	Nano–Bio Interactions in Cancer: From Therapeutics Delivery to Early Detection. Accounts of Chemical Research, 2021, 54, 291-301.	15.6	95
174	Challenges and opportunities in the delivery of cancer therapeutics: update on recent progress. Therapeutic Delivery, 2021, 12, 55-76.	2.2	42
175	Intravital imaging of liposome behavior upon repeated administration: A step towards the development of liposomal companion diagnostic for cancer nanotherapy. Journal of Controlled Release, 2021, 330, 244-256.	9.9	11
176	Imaging Beyond Seeing: Early Prognosis of Cancer Treatment. Small Methods, 2021, 5, e2001025.	8.6	14
177	What NIR photodynamic activation offers molecular targeted nanomedicines: Perspectives into the conundrum of tumor specificity and selectivity. Nano Today, 2021, 36, 101052.	11.9	21
178	Detecting Immune Response to Therapies Targeting PDL1 and BRAF by Using Ferumoxytol MRI and Macrin in Anaplastic Thyroid Cancer. Radiology, 2021, 298, 123-132.	7.3	19
179	Imaging methods to evaluate tumor microenvironment factors affecting nanoparticle drug delivery and antitumor response. , 2021, 4, 382-413.		5
180	Polymeric materials for immune engineering: Molecular interaction to biomaterial design. Acta Biomaterialia, 2021, 133, 139-152.	8.3	30
181	Intraoperative assessment and postsurgical treatment of prostate cancer tumors using tumor-targeted nanoprobes. Nanotheranostics, 2021, 5, 57-72.	5.2	1

#	Article	IF	CITATIONS
182	Magnetic Nanoparticles. , 2021, , 1-36.		0
183	Factors affecting the dynamics and heterogeneity of the EPR effect: pathophysiological and pathoanatomic features, drug formulations and physicochemical factors. Expert Opinion on Drug Delivery, 2022, 19, 199-212.	5.0	33
184	Investigating plasma volume expanders as novel macromolecular MRI EST contrast agents for tumor contrastâ€enhanced imaging. Magnetic Resonance in Medicine, 2021, 86, 995-1007.	3.0	6
185	Highway to Success—Developing Advanced Polymer Therapeutics. Advanced Therapeutics, 2021, 4, 2000285.	3.2	16
186	Quantitative imaging of intracellular nanoparticle exposure enables prediction of nanotherapeutic efficacy. Nature Communications, 2021, 12, 2385.	12.8	25
187	Insights into Multifunctional Nanoparticle-Based Drug Delivery Systems for Glioblastoma Treatment. Molecules, 2021, 26, 2262.	3.8	9
188	Multifunctional biomolecule nanostructures for cancer therapy. Nature Reviews Materials, 2021, 6, 766-783.	48.7	224
189	Therapeutically reprogrammed nutrient signalling enhances nanoparticulate albumin bound drug uptake and efficacy in KRAS-mutant cancer. Nature Nanotechnology, 2021, 16, 830-839.	31.5	55
190	Recent Advances in Tumor Targeting via EPR Effect for Cancer Treatment. Journal of Personalized Medicine, 2021, 11, 571.	2.5	199
191	Microfluidic formulation of nanoparticles for biomedical applications. Biomaterials, 2021, 274, 120826.	11.4	143
192	Optimizing nanoparticle design and surface modification toward clinical translation. MRS Bulletin, 2021, 46, 643-649.	3.5	5
193	The role of sex as a biological variable in the efficacy and toxicity of therapeutic nanomedicine. Advanced Drug Delivery Reviews, 2021, 174, 337-347.	13.7	21
194	Nanoprobe-Based Magnetic Resonance Imaging of Hypoxia Predicts Responses to Radiotherapy, Immunotherapy, and Sensitizing Treatments in Pancreatic Tumors. ACS Nano, 2021, 15, 13526-13538.	14.6	30
195	Adaptive Cylindrical Wireless Metasurfaces in Clinical Magnetic Resonance Imaging. Advanced Materials, 2021, 33, e2102469.	21.0	17
196	NMR diffusometry: A new perspective for nanomedicine exploration. Journal of Controlled Release, 2021, 337, 155-167.	9.9	10
197	Clinically translatable quantitative molecular photoacoustic imaging with liposome-encapsulated ICG J-aggregates. Nature Communications, 2021, 12, 5410.	12.8	60
198	Application of smart nanoparticles as a potential platform for effective colorectal cancer therapy. Coordination Chemistry Reviews, 2021, 442, 213949.	18.8	31
199	Image-guided cancer immunotherapy. , 2022, , 427-467.		0

#	Article	IF	CITATIONS
200	Enzyme Engineering Techniques for Biotechnological Applications. , 2020, , 235-249.		5
201	Roadmap on nanomedicine. Nanotechnology, 2021, 32, 012001.	2.6	17
203	Efficient blockade of locally reciprocated tumor-macrophage signaling using a TAM-avid nanotherapy. Science Advances, 2020, 6, eaaz8521.	10.3	22
204	Magnetic resonance imaging-guided stratified selection of patients for nano-therapy. Annals of Translational Medicine, 2016, 4, S54-S54.	1.7	11
205	Role of Nanomedicines in Cancer Immunotherapy. International Journal for Research in Applied Science and Engineering Technology, 2021, 9, 832-834.	0.1	0
206	Do Lipid-based Nanoparticles Hold Promise for Advancing the Clinical Translation of Anticancer Alkaloids?. Cancers, 2021, 13, 5346.	3.7	11
207	Translational Nanodiagnostics for InÂVivo Cancer Detection. Bioanalysis, 2019, , 133-162.	0.1	1
208	Magnetic resonance imaging for predicting personalized antitumor nanomedicine efficacy. Bulletin of Russian State Medical University, 2019, , 21-24.	0.2	0
209	ĐœĐ°Đ³Đ¼Đ,Ñ,Đ½Đ¾-Ñ€ĐµĐĐ¾Đ½Đ°Đ½ÑĐ½Đ°Ñ•Ñ,Đ¾Đ¼Đ¾Đ³Ñ€Đ°Ñ,,Đ,Ñ•ĐƊ»Ñ•Đ¿ĐµÑ€ÑĐ¾Đ½Đ	°Ð ». Ð,зÐ,	роÐ2аE
210	Predicting treatment outcome and enhancing immunotherapy with anti-PDL1 gold nanoparticles. , 2019,		Ο

212	Neutrophil-mediated clinical nanodrug for treatment of residual tumor after focused ultrasound ablation. Journal of Nanobiotechnology, 2021, 19, 345.	9.1	10
213	Nanomedicine for Treating Specific Disorders. Engineering Materials, 2020, , 303-319.	0.6	0
214	The Daniel K. Inouye College of Pharmacy Scripts: Targeted Nanocarrier Based Systems for the Treatment of Lung Cancer. Hawai'i Journal of Medicine & Public Health: A Journal of Asia Pacific Medicine & Public Health, 2017, 76, 318-325.	0.4	0
216	Magnetic Nanoparticles. , 2021, , 1011-1046.		0
217	Towards controlled drug delivery in brain tumors with microbubble-enhanced focused ultrasound. Advanced Drug Delivery Reviews, 2022, 180, 114043.	13.7	41
218	Iron Oxide Nanoparticles: Physicochemical Characteristics and Historical Developments to Commercialization for Potential Technological Applications. ACS Biomaterials Science and Engineering, 2021, 7, 5432-5450.	5.2	18
219	Reduction-responsive RNAi nanoplatform to reprogram tumor lipid metabolism and repolarize macrophage for combination pancreatic cancer therapy. Biomaterials, 2022, 280, 121264.	11.4	30
220	Passive targeting. , 2022, , 37-47.		0

#	Article	IF	CITATIONS
221	In Situ Generation of Gold Nanoparticles on Bacteriaâ€Derived Magnetosomes for Imagingâ€Guided Starving/Chemodynamic/Photothermal Synergistic Therapy against Cancer. Advanced Functional Materials, 2022, 32, .	14.9	24
222	Monitoring EPR Effect Dynamics during Nanotaxane Treatment with Theranostic Polymeric Micelles. Advanced Science, 2022, 9, e2103745.	11.2	20
223	Revisiting the outstanding questions in cancer nanomedicine with a future outlook. Nanoscale Advances, 2022, 4, 634-653.	4.6	12
224	Actively Targeted Nanomedicines in Breast Cancer: From Pre-Clinal Investigation to Clinic. Cancers, 2022, 14, 1198.	3.7	29
225	Emerging landscapes of nanosystems based on pre-metastatic microenvironment for cancer theranostics. Chinese Chemical Letters, 2022, 33, 4157-4168.	9.0	15
226	Multifunctional Therapeutic Approach of Nanomedicines against Inflammation in Cancer and Aging. Journal of Nanomaterials, 2022, 2022, 1-19.	2.7	38
227	Deciphering albumin-directed drug delivery by imaging. Advanced Drug Delivery Reviews, 2022, 185, 114237.	13.7	25
228	Optical magnetic multimodality imaging of plectin-1-targeted imaging agent for the precise detection of orthotopic pancreatic ductal adenocarcinoma in mice. EBioMedicine, 2022, 80, 104040.	6.1	14
229	Emerging Nanotheranostics for 5-Fluorouracil in Cancer Therapy: A Systematic Review on Efficacy, Safety, and Diagnostic Capability. Frontiers in Pharmacology, 2022, 13, .	3.5	3
230	Nanomedicines and nanomaterials for cancer therapy: Progress, challenge and perspectives. Chemical Engineering Journal, 2022, 446, 137147.	12.7	35
231	A neutrophil-biomimic platform for eradicating metastatic breast cancer stem-like cells by redox microenvironment modulation and hypoxia-triggered differentiation therapy. Acta Pharmaceutica Sinica B, 2023, 13, 298-314.	12.0	12
232	Turning adversity into opportunity: Small extracellular vesicles as nanocarriers for tumorâ€associated macrophages reâ€education. Bioengineering and Translational Medicine, 2023, 8, .	7.1	3
233	Recent development of contrast agents for magnetic resonance and multimodal imaging of glioblastoma. Journal of Nanobiotechnology, 2022, 20, .	9.1	15
234	Emerging Biomaterials Imaging Antitumor Immune Response. Advanced Materials, 2022, 34, .	21.0	22
235	Approaches to Improve Macromolecule and Nanoparticle Accumulation in the Tumor Microenvironment by the Enhanced Permeability and Retention Effect. Polymers, 2022, 14, 2601.	4.5	44
236	Thermosensitive liposomes for targeted breast cancer therapy. , 2022, , 351-368.		0
237	Nanocarriers for cancer nano-immunotherapy. Drug Delivery and Translational Research, 2023, 13, 1936-1954.	5.8	17
238	NOAEL Cancer Therapy: Tumor Targetable Docetaxel-Inorganic Polymer Nanohybrid Prevents Drug-Induced Neutropenia. Journal of Materials Chemistry B, 0, , .	5.8	0

#	Article	IF	CITATIONS
239	Development of functional nanomedicines for tumor associated macrophages-focused cancer immunotherapy. Theranostics, 2022, 12, 7821-7852.	10.0	12
240	Ultrasmall silica nanoparticles in translational biomedical research: Overview and outlook. Advanced Drug Delivery Reviews, 2023, 192, 114638.	13.7	7
241	Albumin-hitchhiking: Fostering the pharmacokinetics and anticancer therapeutics. Journal of Controlled Release, 2023, 353, 166-185.	9.9	17
242	Supermagnetic Human Serum Albumin (HSA) Nanoparticles and PLGA-Based Doxorubicin Nanoformulation: A Duet for Selective Nanotherapy. International Journal of Molecular Sciences, 2023, 24, 627.	4.1	4
243	Pretherapy Ferumoxytol-enhanced MRI to Predict Response to Liposomal Irinotecan in Metastatic Breast Cancer. Radiology Imaging Cancer, 2023, 5, .	1.6	3
244	Structural and Molecular Fusion MRI Nanoprobe for Differential Diagnosis of Malignant Tumors and Follow-Up Chemodynamic Therapy. ACS Nano, 2023, 17, 4009-4022.	14.6	9
245	Control of the post-infarct immune microenvironment through biotherapeutic and biomaterial-based approaches. Drug Delivery and Translational Research, 2023, 13, 1983-2014.	5.8	3
246	T cell-independent eradication of experimental glioma by intravenous TLR7/8-agonist-loaded nanoparticles. Nature Communications, 2023, 14, .	12.8	13
247	Accounts on the Nano-carrier System for Diagnosis Purposes. , 2023, , 280-320.		0
248	IONPs-Based Medical Imaging in Cancer Care: Moving Beyond Traditional Diagnosis and Therapeutic Assessment. International Journal of Nanomedicine, 0, Volume 18, 1741-1763.	6.7	1
249	Current status of Cancer Nanotheranostics: Emerging strategies for cancer management. Nanotheranostics, 2023, 7, 368-379.	5.2	4
250	Anticancer Evaluation of Methoxy Poly(Ethylene Glycol)-b-Poly(Caprolactone) Polymeric Micelles Encapsulating Fenbendazole and Rapamycin in Ovarian Cancer. International Journal of Nanomedicine, 0, Volume 18, 2209-2223.	6.7	3
251	Organoids technology for advancing the clinical translation of cancer nanomedicine. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2023, 15, .	6.1	2
252	Emerging biomedical imaging-based companion diagnostics for precision medicine. IScience, 2023, 26, 107277.	4.1	2
253	Tumor microenvironment-tailored nanoplatform for companion diagnostic applications of precise cancer therapy. CheM, 2023, 9, 3185-3211.	11.7	3
254	Nanoparticle-based drug delivery systems to enhance cancer immunotherapy in solid tumors. Frontiers in Immunology, 0, 14, .	4.8	2
255	Nanomedicine in cancer therapy. Signal Transduction and Targeted Therapy, 2023, 8, .	17.1	30
256	Cancer-mesothelial and cancer-macrophage interactions in the ovarian cancer microenvironment. American Journal of Physiology - Cell Physiology, 2023, 325, C721-C730.	4.6	1

#	Article	IF	CITATIONS
257	Nanoprobe-based molecular imaging for tumor stratification. Chemical Society Reviews, 2023, 52, 6447-6496.	38.1	7
258	A new "single―era of biomedicine and implications in disease research. Journal of Bio-X Research, 0, , .	0.2	Ο
259	Nanoparticles systemically biodistribute to regenerating skeletal muscle in DMD. Journal of Nanobiotechnology, 2023, 21, .	9.1	1
260	Current perspectives and trends in nanoparticle drug delivery systems in breast cancer: bibliometric analysis and review. Frontiers in Bioengineering and Biotechnology, 0, 11, .	4.1	0
261	Current landscape of treating different cancers using nanomedicines: Trends and perspectives. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2024, 16, .	6.1	0
262	Current Application of Nanoparticle Drug Delivery Systems to the Treatment of Anaplastic Thyroid Carcinomas. International Journal of Nanomedicine, 0, Volume 18, 6037-6058.	6.7	0
263	The Story of Ferumoxytol: Synthesis Production, Current Clinical Applications, and Therapeutic Potential. Advanced Healthcare Materials, 2024, 13, .	7.6	1
264	The spatiotemporal journey of nanomedicines in solid tumors on their therapeutic efficacy. Advanced Drug Delivery Reviews, 2023, 203, 115137.	13.7	2
265	Tailoring the surface charges of iron-crosslinked dextran nanogels towards improved tumor-associated macrophage targeting. Carbohydrate Polymers, 2024, 325, 121585.	10.2	0
266	A Nanodroplet Probe with Magnetic Response for Acoustic Droplet Vaporization Therapy and Molecular Imaging Evaluation. , 2023, , .		0
268	A Futuristic Approach on the Multifunctionality of Nanomaterials. Advances in Chemical and Materials Engineering Book Series, 2024, , 1-36.	0.3	0
269	Image-guided drug delivery: Biomedical and imaging advances. Advanced Drug Delivery Reviews, 2024, 206, 115187.	13.7	0
270	Nanotechnology-based delivery systems to overcome drug resistance in cancer. Medical Review, 2024, 4, 5-30.	1.2	0
271	Nanocarriers address intracellular barriers for efficient drug delivery, overcoming drug resistance, subcellular targeting and controlled release. Advanced Drug Delivery Reviews, 2024, 207, 115239.	13.7	0
272	Host-functionalization of macrin nanoparticles to enable drug loading and control tumor-associated macrophage phenotype. Frontiers in Immunology, 0, 15, .	4.8	0
273	A quantitative MRI-based approach to estimate the permeation and retention of nanomedicines in tumors. Journal of Controlled Release, 2024, 368, 728-739.	9.9	0