Estimation and modeling of coal pore accessibility using

Fuel 161, 323-332

DOI: 10.1016/j.fuel.2015.08.067

Citation Report

#	Article	IF	Citations
1	Determination of closed porosity in rocks by small-angle neutron scattering. Journal of Applied Crystallography, 2016, 49, 2021-2030.	1.9	29
2	Anisotropy characteristics of coal shrinkage/swelling and its impact on coal permeability evolution with CO ₂ injection., 2016, 6, 615-632.		64
3	Toward Molecule-Specific Geochemistry of Heavy Ends: Application to the Upstream Oil Industry. Industrial & Engineering Chemistry Research, 2016, 55, 4403-4414.	1.8	15
4	Experimental and theoretical characterization of methane and CO2 sorption hysteresis in coals based on Langmuir desorption. International Journal of Coal Geology, 2017, 171, 49-60.	1.9	83
5	Neutron Scattering Measurements of Carbon Dioxide Adsorption in Pores within the Marcellus Shale: Implications for Sequestration. Environmental Science & Environmental Science & 2017, 51, 6515-6521.	4.6	40
6	Changes in pore structure of coal caused by coal-to-gas bioconversion. Scientific Reports, 2017, 7, 3840.	1.6	23
7	Pore characteristics of Longmaxi shale gas reservoir in the Northwest of Guizhou, China: Investigations using small-angle neutron scattering (SANS), helium pycnometry, and gas sorption isotherm. International Journal of Coal Geology, 2017, 171, 61-68.	1.9	124
8	Pore structure characterization of low volatile bituminous coals with different particle size and tectonic deformation using low pressure gas adsorption. International Journal of Coal Geology, 2017, 183, 1-13.	1.9	101
9	Ultra micropores in macromolecular structure of subbituminous coal vitrinite. Fuel, 2017, 210, 298-306.	3.4	67
10	Integrating SANS and fluid-invasion methods to characterize pore structure of typical American shale oil reservoirs. Scientific Reports, 2017, 7, 15413.	1.6	44
11	Fractal evolution under in situ pressure and sorption conditions for coal and shale. Scientific Reports, 2017, 7, 8971.	1.6	40
12	Oedometric Small-Angle Neutron Scattering: In Situ Observation of Nanopore Structure During Bentonite Consolidation and Swelling in Dry and Hydrous CO ₂ Environments. Environmental Science & Environments, 52, 3758-3768.	4.6	4
13	Porosity of the Marcellus Shale: A contrast matching small-angle neutron scattering study. International Journal of Coal Geology, 2018, 188, 156-164.	1.9	59
14	Temperature effect on gas adsorption capacity in different sized pores of coal: Experiment and numerical modeling. Journal of Petroleum Science and Engineering, 2018, 165, 821-830.	2.1	54
15	Nanopore characterization of mine roof shales by SANS, nitrogen adsorption, and mercury intrusion: Impact on water adsorption/retention behavior. International Journal of Coal Geology, 2018, 200, 173-185.	1.9	75
16	Rapid Quality Assessment of Coal. Coke and Chemistry, 2018, 61, 79-86.	0.0	O
17	Numerical Modeling of Gas Flow in Coal Using a Modified Dual-Porosity Model: A Multi-Mechanistic Approach and Finite Difference Method. Rock Mechanics and Rock Engineering, 2018, 51, 2863-2880.	2.6	29
18	Experimental study of impact of anisotropy and heterogeneity on gas flow in coal. Part I: Diffusion and adsorption. Fuel, 2018, 232, 444-453.	3.4	54

#	ARTICLE	IF	CITATIONS
19	Discovering Inherent Characteristics of Polyethylenimine-Functionalized Porous Materials for CO ₂ Capture. ACS Applied Materials & Interfaces, 2019, 11, 36515-36524.	4.0	31
20	Pore connectivity and water accessibility in Upper Permian transitional shales, southern China. Marine and Petroleum Geology, 2019, 107, 407-422.	1.5	31
21	Effects of chemical composition, disorder degree and crystallite structure of coal macromolecule on nanopores (0.4â€"150â€"nm) in different rank naturally-matured coals. Fuel, 2019, 242, 553-561.	3.4	51
22	Characterizations of pore, mineral and petrographic properties of marine shale using multiple techniques and their implications on gas storage capability for Sichuan Longmaxi gas shale field in China. Fuel, 2019, 241, 360-371.	3.4	83
23	Pore structure characterization of shales using synchrotron SAXS and NMR cryoporometry. Marine and Petroleum Geology, 2019, 102, 116-125.	1.5	53
24	Investigation of Accessible Pore Structure Evolution under Pressurization and Adsorption for Coal and Shale Using Small-Angle Neutron Scattering. Energy & Energy & 2019, 33, 837-847.	2.5	37
25	Experimental comparisons of multiscale pore structures between primary and disturbed coals and their effects on adsorption and seepage of coalbed methane. Journal of Petroleum Science and Engineering, 2019, 174, 704-715.	2.1	41
26	Anisotropy of coal at various scales and its variation with sorption. International Journal of Coal Geology, 2019, 201, 14-25.	1.9	16
27	SANS coupled with fluid invasion approaches for characterization of overall nanopore structure and mesopore connectivity of organic-rich marine shales in China. International Journal of Coal Geology, 2020, 217, 103343.	1.9	20
28	Quantification of pore modification in coals due to pulverization using synchrotron small angle X-ray scattering. Journal of Natural Gas Science and Engineering, 2020, 84, 103669.	2.1	16
29	A Novel Data-Driven Method to Estimate Methane Adsorption Isotherm on Coals Using the Gradient Boosting Decision Tree: A Case Study in the Qinshui Basin, China. Energies, 2020, 13, 5369.	1.6	13
30	Carbonate Caprock-Brine-CO2 Interaction: Alteration of Hydromechanical Properties. , 2020, , .		O
31	Pore-Scale Water Vapor Condensation Behaviors in Shales: An Experimental Study. Transport in Porous Media, 2020, 135, 713-734.	1,2	15
32	Small-angle Neutron Scattering (SANS) Characterization of Clay- and Carbonate-rich Shale at Elevated Pressures. Energy &	2.5	22
33	Characterizing Anisotropic Pore Structure and Its Impact on Gas Storage and Transport in Coalbed Methane and Shale Gas Reservoirs. Energy & Samp; Fuels, 2020, 34, 3161-3172.	2.5	24
34	Impacts of Mineralogical Variation on CO ₂ Behavior in Small Pores from Producing Intervals of the Marcellus Shale: Results from Neutron Scattering. Energy & Energy	2.5	5
35	Quantitative Characterization of Pore Connectivity and Movable Fluid Distribution of Tight Sandstones: A Case Study of the Upper Triassic Chang 7 Member, Yanchang Formation in Ordos Basin, China. Geofluids, 2020, 2020, 1-13.	0.3	3
36	Anisotropic pore structure of shale and gas injection-induced nanopore alteration: A small-angle neutron scattering study. International Journal of Coal Geology, 2020, 219, 103384.	1.9	25

#	ARTICLE	IF	CITATIONS
37	Experimental Study on the Physisorption Characteristics of O2 in Coal Powder are Effected by Coal Nanopore Structure. Scientific Reports, 2020, 10, 6946.	1.6	16
38	Evaluating the changes of sorption and diffusion behaviors of Illinois coal with various water-based fracturing fluid treatments. Fuel, 2021, 283, 118884.	3.4	54
39	Unraveling high-pressure gas storage mechanisms in shale nanopores through SANS. Environmental Science: Nano, 2021, 8, 2706-2717.	2.2	5
40	Carbonate Caprock–Brine–Carbon Dioxide Interaction: Alteration of Hydromechanical Properties and Implications on Carbon Dioxide Leakage. SPE Journal, 2021, 26, 2780-2792.	1.7	9
41	Evaluation of pore properties in coal through compressibility correction based on mercury intrusion porosimetry: A practical approach. Fuel, 2021, 291, 120130.	3 . 4	41
42	Methods for Petrological and Petrophysical Characterization of Gas Shales. Energy &	2.5	19
43	Investigating Hierarchical Gas Confinement in High-Rank Coal through Small-Angle Neutron Scattering. Energy & Scattering. Energy & Scattering. Energy & Ener	2.5	2
44	Degradation of Adsorbed Bisphenol A by Soluble Mn(III). Environmental Science & Eamp; Technology, 2021, 55, 13014-13023.	4.6	9
45	The molecular model of Marcellus shale kerogen: Experimental characterization and structure reconstruction. International Journal of Coal Geology, 2021, 246, 103833.	1.9	29
46	Nanoscale Coal Deformation and Alteration of Porosity and Pore Orientation Under Uniaxial Compression: An In Situ SANS Study. Rock Mechanics and Rock Engineering, 2021, 54, 3593-3608.	2.6	7
47	Effect of particle size and adsorption equilibrium time on pore structure characterization in low pressure N2 adsorption of coal: An experimental study. Advanced Powder Technology, 2020, 31, 4275-4281.	2.0	49
48	The determination of surface relaxivity and application to coal spontaneous imbibition. Fuel, 2022, 309, 122165.	3.4	10
49	Monitoring the CO ₂ enhanced oil recovery process at the nanoscale: an <i>in situ</i> neutron scattering study. Energy Advances, 2022, 1, 67-75.	1.4	2
50	Evolution of pore characteristics and methane adsorption characteristics of Nanshan 1/3 coking coal under different stresses. Scientific Reports, 2022, 12, 3117.	1.6	6
51	Pore accessibility by wettable fluids in overmature marine shales of China: Investigations from contrast-matching small-angle neutron scattering (CM-SANS). International Journal of Coal Geology, 2022, 255, 103987.	1.9	10
52	A Comparative Analysis of Pore Attributes of Sub-Bituminous Gondwana Coal from the Damodar and Wardha Valleys: Implication for Enhanced Coalbed Methane Recovery. Energy & Samp; Fuels, 2022, 36, 6187-6197.	2.5	10
53	CENTAURâ€"The small- and wide-angle neutron scattering diffractometer/spectrometer for the Second Target Station of the Spallation Neutron Source. Review of Scientific Instruments, 2022, 93, .	0.6	9
54	Effect of Analytical Particle Size on Pore Structure of High Volatile Bituminous Coal and Anthracite Using Low-Pressure N ₂ and CO ₂ Adsorption. Adsorption Science and Technology, 2022, 2022, .	1.5	1

CITATION REPORT

#	Article	IF	CITATION
55	Gas desorption and diffusion characteristics in different rank coals under different pressure-drop conditions., 2023, 221, 111269.		2
56	Characterization of Porosity and Pore Accessibility of Vitrinite-Rich Bituminous and Subbituminous Coals by Small-Angle Neutron Scattering, Mercury Intrusion Porosimetry, and Low-Pressure N ₂ Adsorption. Energy & Energy & 191-203.	2.5	6
57	Characterization and Analysis of Molecular-Scale Pore Structure of Coal with Different Metamorphic Degrees. Energy & Samp; Fuels, 2023, 37, 3634-3653.	2.5	5
62	Pore structures and fluid behaviors in geomaterials. , 2023, , 115-181.		O
63	Pore accessibility characterization for natural rocks. , 2023, , 31-114.		0
64	Connections between small-angle scattering and other techniques and the application in geomaterials., 2023,, 183-253.		0