Replication stress activates DNA repair synthesis in mit

Nature 528, 286-290 DOI: 10.1038/nature16139

Citation Report

#	Article	IF	CITATIONS
1	From Mutational Mechanisms in Single Cells to Mutational Patterns in Cancer Genomes. Cold Spring Harbor Symposia on Quantitative Biology, 2015, 80, 117-137.	2.0	11
2	Maintaining Genome Stability in Defiance of Mitotic DNA Damage. Frontiers in Genetics, 2016, 7, 128.	1.1	4
3	A Mechanism for Controlled Breakage of Under-replicated Chromosomes during Mitosis. Developmental Cell, 2016, 39, 740-755.	3.1	105
4	RAD52 Facilitates Mitotic DNA Synthesis Following Replication Stress. Molecular Cell, 2016, 64, 1117-1126.	4.5	310
5	Roles of human POLD1 and POLD3 in genome stability. Scientific Reports, 2016, 6, 38873.	1.6	46
6	Stressing Out About RAD52. Molecular Cell, 2016, 64, 1017-1019.	4.5	16
7	Profiling DNA damage response following mitotic perturbations. Nature Communications, 2016, 7, 13887.	5.8	46
8	Mammalian RAD52 Functions in Break-Induced Replication Repair of Collapsed DNA Replication Forks. Molecular Cell, 2016, 64, 1127-1134.	4.5	223
9	Jumping the nuclear envelope barrier: Improving polyplex-mediated gene transfection efficiency by a selective CDK1 inhibitor RO-3306. Journal of Controlled Release, 2016, 234, 90-97.	4.8	12
10	A Genome-wide CRISPR Screen Identifies CDC25A as a Determinant of Sensitivity to ATR Inhibitors. Molecular Cell, 2016, 62, 307-313.	4.5	155
11	Genome maintenance in the context of 4D chromatin condensation. Cellular and Molecular Life Sciences, 2016, 73, 3137-3150.	2.4	11
12	Unreplicated DNA remaining from unperturbed S phases passes through mitosis for resolution in daughter cells. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E5757-64.	3.3	111
13	Mutations in genes encoding condensin complex proteins cause microcephaly through decatenation failure at mitosis. Genes and Development, 2016, 30, 2158-2172.	2.7	106
14	Rad51 and Rad54 promote noncrossover recombination between centromere repeats on the same chromatid to prevent isochromosome formation. Nucleic Acids Research, 2016, 44, 10744-10757.	6.5	30
15	Chromatin, Nuclear Organization, and Genome Stability in Mammals. , 2016, , 391-407.		0
16	The Impact of dUTPase on Ribonucleotide Reductase-Induced Genome Instability in Cancer Cells. Cell Reports, 2016, 16, 1287-1299.	2.9	22
17	miR-137 plays tumor suppressor roles in gastric cancer cell lines by targeting KLF12 and MYO1C. Tumor Biology, 2016, 37, 13557-13569.	0.8	39
18	POLD3 Is Haploinsufficient for DNA Replication in Mice. Molecular Cell, 2016, 63, 877-883.	4.5	34

TATION REDO

#	Article	IF	CITATIONS
19	Biological differences that distinguish the 2 major stages of wound healing in potato tubers. Plant Signaling and Behavior, 2016, 11, e1256531.	1.2	26
20	Proteomic Profiling Reveals a Specific Role for Translesion DNA Polymerase \hat{I} in the Alternative Lengthening of Telomeres. Cell Reports, 2016, 17, 1858-1871.	2.9	113
21	Break-induced telomere synthesis underlies alternative telomere maintenance. Nature, 2016, 539, 54-58.	13.7	336
22	Role of the Common Fragile Sites in Cancers with a Human Papillomavirus Etiology. Cytogenetic and Genome Research, 2016, 150, 217-226.	0.6	7
23	Proliferation of Double-Strand Break-Resistant Polyploid Cells Requires Drosophila FANCD2. Developmental Cell, 2016, 37, 444-457.	3.1	39
24	The complex nature of fragile site plasticity and its importance in cancer. Current Opinion in Cell Biology, 2016, 40, 131-136.	2.6	56
25	Breaks in the brain. Nature, 2016, 532, 46-47.	13.7	11
26	The cell cycle flavours of repair. Nature Reviews Molecular Cell Biology, 2016, 17, 65-65.	16.1	3
27	The cell cycle flavours of repair. Nature Reviews Genetics, 2016, 17, 65-65.	7.7	3
28	Moonlighting at replication forks – a new life for homologous recombination proteins <scp>BRCA</scp> 1, <scp>BRCA</scp> 2 and <scp>RAD</scp> 51. FEBS Letters, 2017, 591, 1083-1100.	1.3	141
29	Genomic rearrangements induced by unscheduled <scp>DNA</scp> double strand breaks in somatic mammalian cells. FEBS Journal, 2017, 284, 2324-2344.	2.2	39
30	Mitotic DNA Damage Response: At the Crossroads of Structural and Numerical Cancer Chromosome Instabilities. Trends in Cancer, 2017, 3, 225-234.	3.8	59
31	Rescue from replication stress during mitosis. Cell Cycle, 2017, 16, 613-633.	1.3	51
32	The SMX DNA Repair Tri-nuclease. Molecular Cell, 2017, 65, 848-860.e11.	4.5	98
33	Break induced replication in eukaryotes: mechanisms, functions, and consequences. Critical Reviews in Biochemistry and Molecular Biology, 2017, 52, 395-413.	2.3	116
34	Acute inactivation of the replicative helicase in human cells triggers MCM8–9-dependent DNA synthesis. Genes and Development, 2017, 31, 816-829.	2.7	47
35	Close encounters: Moving along bumps, breaks, and bubbles on expanded trinucleotide tracts. DNA Repair, 2017, 56, 144-155.	1.3	32
36	Endogenous Replication Stress in Mother Cells Leads to Quiescence of Daughter Cells. Cell Reports, 2017, 19, 1351-1364.	2.9	146

#	Article	IF	CITATIONS
37	Chromosome Mis-segregation Generates Cell-Cycle-Arrested Cells with Complex Karyotypes that Are Eliminated by the Immune System. Developmental Cell, 2017, 41, 638-651.e5.	3.1	263
38	RECQ5 Helicase Cooperates with MUS81 Endonuclease in Processing Stalled Replication Forks at Common Fragile Sites during Mitosis. Molecular Cell, 2017, 66, 658-671.e8.	4.5	81
39	Dormant origins as a built-in safeguard in eukaryotic DNA replication against genome instability and disease development. DNA Repair, 2017, 56, 166-173.	1.3	23
40	Control of structure-specific endonucleases to maintain genome stability. Nature Reviews Molecular Cell Biology, 2017, 18, 315-330.	16.1	138
41	The control of DNA repair by the cell cycle. Nature Cell Biology, 2017, 19, 1-9.	4.6	549
42	<i>SIR2</i> suppresses replication gaps and genome instability by balancing replication between repetitive and unique sequences. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 552-557.	3.3	33
43	Break-induced replication: an unhealthy choice for stress relief?. Nature Structural and Molecular Biology, 2017, 24, 11-12.	3.6	11
44	MRE11 and EXO1 nucleases degrade reversed forks and elicit MUS81-dependent fork rescue in BRCA2-deficient cells. Nature Communications, 2017, 8, 860.	5.8	311
45	Chromosome copy number variation in telomerized human bone marrow stromal cells; insights for monitoring safe ex-vivo expansion of adult stem cells. Stem Cell Research, 2017, 25, 6-17.	0.3	5
47	Synergy of WEE1 and mTOR Inhibition in Mutant <i>KRAS</i> -Driven Lung Cancers. Clinical Cancer Research, 2017, 23, 6993-7005.	3.2	29
48	Rebuilding Chromosomes After Catastrophe: Emerging Mechanisms of Chromothripsis. Trends in Cell Biology, 2017, 27, 917-930.	3.6	162
49	BRCA2 suppresses replication stress-induced mitotic and G1 abnormalities through homologous recombination. Nature Communications, 2017, 8, 525.	5.8	119
50	Fragile sites in cancer: more than meets the eye. Nature Reviews Cancer, 2017, 17, 489-501.	12.8	187
51	Progression through mitosis promotes PARP inhibitor-induced cytotoxicity in homologous recombination-deficient cancer cells. Nature Communications, 2017, 8, 15981.	5.8	83
52	The impact of replication stress on replication dynamics and DNA damage in vertebrate cells. Nature Reviews Genetics, 2017, 18, 535-550.	7.7	199
53	MUS81 nuclease activity is essential for replication stress tolerance and chromosome segregation in BRCA2-deficient cells. Nature Communications, 2017, 8, 15983.	5.8	86
54	Alternative Lengthening of Telomeres Mediated by Mitotic DNA Synthesis Engages Break-Induced Replication Processes. Molecular and Cellular Biology, 2017, 37, .	1.1	156
55	CTCF driven TERRA transcription facilitates completion of telomere DNA replication. Nature Communications, 2017, 8, 2114.	5.8	66

		CITATION REPORT	
#	Article	IF	CITATIONS
56	Replication Fork Reversal: Players and Guardians. Molecular Cell, 2017, 68, 830-833.	4.5	218
57	Knotty Problems during Mitosis: Mechanistic Insight into the Processing of Ultrafine DNA Bridges Anaphase. Cold Spring Harbor Symposia on Quantitative Biology, 2017, 82, 187-195.	s in 2.0	13
58	Nucleases Acting at Stalled Forks: How to Reboot the Replication Program with a Few Shortcuts. Annual Review of Genetics, 2017, 51, 477-499.	3.2	90
59	A meeting at risk: Unrepaired DSBs go for broke. Nucleus, 2017, 8, 589-599.	0.6	8
60	Control of Mus81 nuclease during the cell cycle. FEBS Letters, 2017, 591, 2048-2056.	1.3	28
61	The Role of Aneuploidy in Cancer Evolution. Cold Spring Harbor Perspectives in Medicine, 2017, 7 a028373.	7, 2.9	189
62	Transcription-replication conflicts at chromosomal fragile sites—consequences in M phase and beyond. Chromosoma, 2017, 126, 213-222.	1.0	17
63	Esc2 promotes Mus81 complex-activity via its SUMO-like and DNA binding domains. Nucleic Acid Research, 2017, 45, 215-230.	ls 6.5	26
64	Cellular responses to replication stress: Implications in cancer biology and therapy. DNA Repair, 2 49, 9-20.	2017, 1.3	11
65	Analysis of Structure-Selective Endonuclease Activities From Yeast and Human Extracts. Methods Enzymology, 2017, 591, 271-286.	s in 0.4	4
66	Homologous Recombination and Replication Fork Protection: BRCA2 and More!. Cold Spring Har Symposia on Quantitative Biology, 2017, 82, 329-338.	bor 2.0	54
67	Around and beyond 53BP1 Nuclear Bodies. International Journal of Molecular Sciences, 2017, 18	, 2611. 1.8	27
68	Replication Fork Protection Factors Controlling R-Loop Bypass and Suppression. Genes, 2017, 8,	33. 1.0	30
69	Oncogene-Induced Replication Stress Drives Genome Instability and Tumorigenesis. International Journal of Molecular Sciences, 2017, 18, 1339.	1.8	18
70	53BP1 and BRCA1 control pathway choice for stalled replication restart. ELife, 2017, 6, .	2.8	64
71	Break-induced replication promotes formation of lethal joint molecules dissolved by Srs2. Nature Communications, 2017, 8, 1790.	5.8	55
72	Role of PCNA and RFC in promoting Mus81-complex activity. BMC Biology, 2017, 15, 90.	1.7	14
73	Let-7c-5p inhibits cell proliferation and induces cell apoptosis by targeting ERCC6 in breast cance Oncology Reports, 2017, 38, 1851-1856.	er. 1.2	50

#	Article	IF	CITATIONS
74	Centromere Stability: The Replication Connection. Genes, 2017, 8, 37.	1.0	8
75	Never tear us a-PARP: Dealing with DNA lesions during mitosis. Molecular and Cellular Oncology, 2018, 5, e1382670.	0.3	6
76	Mechanisms of Oncogene-Induced Replication Stress: Jigsaw Falling into Place. Cancer Discovery, 2018, 8, 537-555.	7.7	274
77	<i>Pold3</i> is required for genomic stability and telomere integrity in embryonic stem cells and meiosis. Nucleic Acids Research, 2018, 46, 3468-3486.	6.5	22
78	Replication stress induces accumulation of FANCD2 at central region of large fragile genes. Nucleic Acids Research, 2018, 46, 2932-2944.	6.5	70
79	Telomeres in cancer. Differentiation, 2018, 99, 41-50.	1.0	20
80	Removal of RTF2 from Stalled Replisomes Promotes Maintenance of Genome Integrity. Molecular Cell, 2018, 69, 24-35.e5.	4.5	40
81	Unresolved recombination intermediates lead to ultra-fine anaphase bridges, chromosome breaks and aberrations. Nature Cell Biology, 2018, 20, 92-103.	4.6	149
82	Determinants and clinical implications of chromosomal instability in cancer. Nature Reviews Clinical Oncology, 2018, 15, 139-150.	12.5	272
83	Break-Induced Replication: The Where, The Why, and The How. Trends in Genetics, 2018, 34, 518-531.	2.9	190
84	Pathways for maintenance of telomeres and common fragile sites during DNA replication stress. Open Biology, 2018, 8, 180018.	1.5	61
85	Integrating DNA damage repair with the cell cycle. Current Opinion in Cell Biology, 2018, 52, 120-125.	2.6	49
86	Anaphase: a fortune-teller of genomic instability. Current Opinion in Cell Biology, 2018, 52, 112-119.	2.6	41
87	The Detection and Analysis of Chromosome Fragile Sites. Methods in Molecular Biology, 2018, 1672, 471-482.	0.4	6
88	Replication stress in hematopoietic stem cells in mouse and man. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2018, 808, 74-82.	0.4	13
89	DNA replication stress drives fragile site instability. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2018, 808, 56-61.	0.4	19
90	Inherited DNA lesions determine G1 duration in the next cell cycle. Cell Cycle, 2018, 17, 24-32.	1.3	59
91	Role of specialized DNA polymerases in the limitation of replicative stress and DNA damage transmission. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2018, 808, 62-73	0.4	20

#	Article	IF	CITATIONS
92	Beyond interstrand crosslinks repair: contribution of FANCD2 and other Fanconi Anemia proteins to the replication of DNA. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2018, 808, 83-92.	0.4	15
93	Unraveling the associations of the tilapia DNA polymerase delta subunit 3 (POLD3) gene with saline tolerance traits. Aquaculture, 2018, 485, 53-58.	1.7	10
94	A mitosis-specific and R loop–driven ATR pathway promotes faithful chromosome segregation. Science, 2018, 359, 108-114.	6.0	244
95	Modernizing Human Cancer Risk Assessment of Therapeutics. Trends in Pharmacological Sciences, 2018, 39, 232-247.	4.0	17
96	Replication Stress Shapes a Protective Chromatin Environment across Fragile Genomic Regions. Molecular Cell, 2018, 69, 36-47.e7.	4.5	75
97	Chromosomal instability causes sensitivity to protein folding stress and ATP depletion. Biology Open, 2018, 7, .	0.6	8
98	Common Chromosomal Fragile Sites—Conserved Failure Stories. Genes, 2018, 9, 580.	1.0	17
99	Regulation of Structure-Specific Endonucleases in Replication Stress. Genes, 2018, 9, 634.	1.0	11
100	SLX4: multitasking to maintain genome stability. Critical Reviews in Biochemistry and Molecular Biology, 2018, 53, 475-514.	2.3	35
101	DNA Polymerase Eta Prevents Tumor Cell-Cycle Arrest and Cell Death during Recovery from Replication Stress. Cancer Research, 2018, 78, 6549-6560.	0.4	28
102	Mitotic entry drives replisome disassembly at stalled replication forks. Biochemical and Biophysical Research Communications, 2018, 506, 108-113.	1.0	4
103	Stress signaling in breast cancer cells induces matrix components that promote chemoresistant metastasis. EMBO Molecular Medicine, 2018, 10, .	3.3	77
104	Chromosome instability: From molecular mechanisms to disease. DNA Repair, 2018, 66-67, 72-75.	1.3	1
105	Polî-, a Y-family translesion synthesis polymerase, promotes cellular tolerance of Myc-induced replication stress. Journal of Cell Science, 2018, 131, .	1.2	20
106	DNA Replication Determines Timing of Mitosis by Restricting CDK1 and PLK1 Activation. Molecular Cell, 2018, 71, 117-128.e3.	4.5	97
107	Investigation of Break-Induced Replication in Yeast. Methods in Enzymology, 2018, 601, 161-203.	0.4	8
108	DNA replication stress triggers rapid DNA replication fork breakage by Artemis and XPF. PLoS Genetics, 2018, 14, e1007541.	1.5	27
109	Human cancer cells utilize mitotic DNA synthesis to resist replication stress at telomeres regardless of their telomere maintenance mechanism. Oncotarget, 2018, 9, 15836-15846.	0.8	73

#	Article	IF	CITATIONS
110	Inducing and Detecting Mitotic DNA Synthesis at Difficult-to-Replicate Loci. Methods in Enzymology, 2018, 601, 45-58.	0.4	21
111	Phosphorylation by CK2 regulates MUS81/EME1 in mitosis and after replication stress. Nucleic Acids Research, 2018, 46, 5109-5124.	6.5	29
112	Mechanistic Distinctions between CHK1 and WEE1 Inhibition Guide the Scheduling of Triple Therapy with Gemcitabine. Cancer Research, 2018, 78, 3054-3066.	0.4	32
113	Preserving replication fork integrity and competence via the homologous recombination pathway. DNA Repair, 2018, 71, 135-147.	1.3	133
114	Mechanisms for stalled replication fork stabilization: new targets for synthetic lethality strategies in cancer treatments. EMBO Reports, 2018, 19, .	2.0	136
115	Direct Quantitative Monitoring of Homology-Directed DNA Repair of Damaged Telomeres. Methods in Enzymology, 2018, 600, 107-134.	0.4	7
116	Mild replication stress causes chromosome mis-segregation via premature centriole disengagement. Nature Communications, 2019, 10, 3585.	5.8	92
117	AT-dinucleotide rich sequences drive fragile site formation. Nucleic Acids Research, 2019, 47, 9685-9695.	6.5	28
118	DNA double-strand break repair-pathway choice in somatic mammalian cells. Nature Reviews Molecular Cell Biology, 2019, 20, 698-714.	16.1	839
119	Inflammatory signaling in genomically instable cancers. Cell Cycle, 2019, 18, 1830-1848.	1.3	21
119 120		1.3 2.3	21
	Inflammatory signaling in genomically instable cancers. Cell Cycle, 2019, 18, 1830-1848. Regulation of ETAA1-mediated ATR activation couples DNA replication fidelity and genome stability.		
120	Inflammatory signaling in genomically instable cancers. Cell Cycle, 2019, 18, 1830-1848. Regulation of ETAA1-mediated ATR activation couples DNA replication fidelity and genome stability. Journal of Cell Biology, 2019, 218, 3943-3953. Cell-Cycle Asynchrony Generates DNA Damage at Mitotic Entry in Polyploid Cells. Current Biology,	2.3	13
120 121	Inflammatory signaling in genomically instable cancers. Cell Cycle, 2019, 18, 1830-1848. Regulation of ETAA1-mediated ATR activation couples DNA replication fidelity and genome stability. Journal of Cell Biology, 2019, 218, 3943-3953. Cell-Cycle Asynchrony Generates DNA Damage at Mitotic Entry in Polyploid Cells. Current Biology, 2019, 29, 3937-3945.e7. Mild replication stress causes aneuploidy by deregulating microtubule dynamics in mitosis. Cell Cycle,	2.3 1.8	13 24
120 121 122	Inflammatory signaling in genomically instable cancers. Cell Cycle, 2019, 18, 1830-1848. Regulation of ETAA1-mediated ATR activation couples DNA replication fidelity and genome stability. Journal of Cell Biology, 2019, 218, 3943-3953. Cell-Cycle Asynchrony Generates DNA Damage at Mitotic Entry in Polyploid Cells. Current Biology, 2019, 29, 3937-3945.e7. Mild replication stress causes aneuploidy by deregulating microtubule dynamics in mitosis. Cell Cycle, 2019, 18, 2770-2783. How Cells Handle DNA Breaks during Mitosis: Detection, Signaling, Repair, and Fate Choice. Cells, 2019,	2.3 1.8 1.3	13 24 27
120 121 122 123	Inflammatory signaling in genomically instable cancers. Cell Cycle, 2019, 18, 1830-1848. Regulation of ETAA1-mediated ATR activation couples DNA replication fidelity and genome stability. Journal of Cell Biology, 2019, 218, 3943-3953. Cell-Cycle Asynchrony Generates DNA Damage at Mitotic Entry in Polyploid Cells. Current Biology, 2019, 29, 3937-3945.e7. Mild replication stress causes aneuploidy by deregulating microtubule dynamics in mitosis. Cell Cycle, 2019, 18, 2770-2783. How Cells Handle DNA Breaks during Mitosis: Detection, Signaling, Repair, and Fate Choice. Cells, 2019, 8, 1049. Replication stress induces mitotic death through parallel pathways regulated by WAPL and telomere	2.3 1.8 1.3 1.8	13 24 27 13
120 121 122 123 124	Inflammatory signaling in genomically instable cancers. Cell Cycle, 2019, 18, 1830-1848. Regulation of ETAA1-mediated ATR activation couples DNA replication fidelity and genome stability. Journal of Cell Biology, 2019, 218, 3943-3953. Cell-Cycle Asynchrony Generates DNA Damage at Mitotic Entry in Polyploid Cells. Current Biology, 2019, 29, 3937-3945.e7. Mild replication stress causes aneuploidy by deregulating microtubule dynamics in mitosis. Cell Cycle, 2019, 18, 2770-2783. How Cells Handle DNA Breaks during Mitosis: Detection, Signaling, Repair, and Fate Choice. Cells, 2019, 8, 1049. Replication stress induces mitotic death through parallel pathways regulated by WAPL and telomere deprotection. Nature Communications, 2019, 10, 4224.	2.3 1.8 1.3 1.8 5.8	13 24 27 13 38

	Сітатіо	n Report	
Article		IF	Citations
Clustered telomeres in phase-separated nuclear condensates engage mitotic DNA synt BLM and RAD52. Genes and Development, 2019, 33, 814-827.	hesis through	2.7	130
Defective mitosis-linked DNA damage response and chromosomal instability in liver can Et Biophysica Acta: Reviews on Cancer, 2019, 1872, 60-65.	ncer. Biochimica	3.3	18
Proteomic characterization of chromosomal common fragile site (CFS)-associated prot ATRX as a regulator of CFS stability. Nucleic Acids Research, 2019, 47, 8004-8018.	eins uncovers	6.5	25
Mitotic DNA Synthesis Is Differentially Regulated between Cancer and Noncancerous C Cancer Research, 2019, 17, 1687-1698.	Cells. Molecular	1.5	20
Targeted and Persistent 8-Oxoguanine Base Damage at Telomeres Promotes Telomere Molecular Cell, 2019, 75, 117-130.e6.	Loss and Crisis.	4.5	179
Sequence and Nuclease Requirements for Breakage and Healing of a Structure-Forming within Fragile Site FRA16D. Cell Reports, 2019, 27, 1151-1164.e5.	g (AT)n Sequence	2.9	33
Replication Licensing Aberrations, Replication Stress, and Genomic Instability. Trends in Sciences, 2019, 44, 752-764.	n Biochemical	3.7	81
Structure-Specific Endonucleases and the Resolution of Chromosome Underreplicatior 10, 232.	n. Genes, 2019,	1.0	27
The RIF1-PP1 Axis Controls Abscission Timing in Human Cells. Current Biology, 2019, 2	9, 1232-1242.e5.	1.8	42
Mitotic CDK Promotes Replisome Disassembly, Fork Breakage, and Complex DNA Rear Molecular Cell, 2019, 73, 915-929.e6.	rangements.	4.5	110
Regulation of R-loops and genome instability in Fanconi anemia. Journal of Biochemistr 465-470.	y, 2019, 165,	0.9	19
The macroH2A1.2 histone variant links ATRX loss to alternative telomere lengthening. Structural and Molecular Biology, 2019, 26, 213-219.	Nature	3.6	36

140	Mitotic functions of poly(ADP-ribose) polymerases. Biochemical Pharmacology, 2019, 167, 33-43.	2.0	46
141	Exploiting DNA Replication Stress for Cancer Treatment. Cancer Research, 2019, 79, 1730-1739.	0.4	154
142	53BP1 nuclear bodies enforce replication timing at under-replicated DNA to limit heritable DNA damage. Nature Cell Biology, 2019, 21, 487-497.	4.6	80
143	Replication stress: Driver and therapeutic target in genomically instable cancers. Advances in Protein Chemistry and Structural Biology, 2019, 115, 157-201.	1.0	15
144	ATAD5 promotes replication restart by regulating RAD51 and PCNA in response to replication stress. Nature Communications, 2019, 10, 5718.	5.8	35
145	MUS81 Participates in the Progression of Serous Ovarian Cancer Associated With Dysfunctional DNA Repair System. Frontiers in Oncology, 2019, 9, 1189.	1.3	14

#

128

130

132

134

136

#	Article	IF	CITATIONS
146	Sumoylation of Smc5 Promotes Error-free Bypass at Damaged Replication Forks. Cell Reports, 2019, 29, 3160-3172.e4.	2.9	19
147	Transcription-dependent regulation of replication dynamics modulates genome stability. Nature Structural and Molecular Biology, 2019, 26, 58-66.	3.6	63
148	Genomic instability in fragile sites—still adding the pieces. Genes Chromosomes and Cancer, 2019, 58, 295-304.	1.5	15
149	A journey with common fragile sites: From S phase to telophase. Genes Chromosomes and Cancer, 2019, 58, 305-316.	1.5	36
150	Common fragile site instability in normal cells: Lessons and perspectives. Genes Chromosomes and Cancer, 2019, 58, 260-269.	1.5	4
151	The role of fork stalling and DNA structures in causing chromosome fragility. Genes Chromosomes and Cancer, 2019, 58, 270-283.	1.5	62
152	DNA replication stress and its impact on chromosome segregation and tumorigenesis. Seminars in Cancer Biology, 2019, 55, 61-69.	4.3	23
153	Fork Cleavage-Religation Cycle and Active Transcription Mediate Replication Restart after Fork Stalling at Co-transcriptional R-Loops. Molecular Cell, 2020, 77, 528-541.e8.	4.5	99
154	When RAD52 Allows Mitosis to Accept Unscheduled DNA Synthesis. Cancers, 2020, 12, 26.	1.7	16
155	TDP-43 dysfunction results in R-loop accumulation and DNA replication defects. Journal of Cell Science, 2020, 133, .	1.2	35
156	Under-Replicated DNA: The Byproduct of Large Genomes?. Cancers, 2020, 12, 2764.	1.7	18
157	Common Fragile Sites Are Characterized by Faulty Condensin Loading after Replication Stress. Cell Reports, 2020, 32, 108177.	2.9	33
158	Roles of OB-Fold Proteins in Replication Stress. Frontiers in Cell and Developmental Biology, 2020, 8, 574466.	1.8	18
159	ATR Restrains DNA Synthesis and Mitotic Catastrophe in Response to CDC7 Inhibition. Cell Reports, 2020, 32, 108096.	2.9	32
160	Overexpression of Cyclin E1 or Cdc25A leads to replication stress, mitotic aberrancies, and increased sensitivity to replication checkpoint inhibitors. Oncogenesis, 2020, 9, 88.	2.1	37
161	3D genome organization contributes to genome instability at fragile sites. Nature Communications, 2020, 11, 3613.	5.8	46
162	Topoisomerase Ilα prevents ultrafine anaphase bridges by two mechanisms. Open Biology, 2020, 10, 190259.	1.5	15
163	Twin peaks: finding fragile sites with MiDAS-seq. Cell Research, 2020, 30, 944-945.	5.7	4

		CITATION RE	PORT	
#	ARTICLE		IF	Citations
164	A unified model for the G1/S cell cycle transition. Nucleic Acids Research, 2020, 48, 124	83-12501.	6.5	96
165	Identification of Characteristic Genomic Markers in Human Hepatoma HuH-7 and Huh7 Frontiers in Genetics, 2020, 11, 546106.	.5.1-8 Cell Lines.	1.1	24
166	Small but mighty: the causes and consequences of micronucleus rupture. Experimental Medicine, 2020, 52, 1777-1786.	and Molecular	3.2	70
167	Cell-cycle-dependent phosphorylation of RRM1 ensures efficient DNA replication and re vulnerability to ATR inhibition. Oncogene, 2020, 39, 5721-5733.	gulates cancer	2.6	14
168	EBVâ€miRâ€BART12 accelerates migration and invasion in EBVâ€associated cancer cell polymerizationâ€promoting protein 1. FASEB Journal, 2020, 34, 16205-16223.	s by targeting tubulin	0.2	19
169	Replication stress conferred by POT1 dysfunction promotes telomere relocalization to t pore. Genes and Development, 2020, 34, 1619-1636.	he nuclear	2.7	36
170	Timing Is Everything: Misincorporation of 80x0dG during Mitosis Is Lethal. Cancer Resea 3459-3460.	ırch, 2020, 80,	0.4	0
171	Break-induced replication promotes fragile telomere formation. Genes and Developmen 1392-1405.	t, 2020, 34,	2.7	41
172	An updated perspective on the polymerase division of labor during eukaryotic DNA repli Critical Reviews in Biochemistry and Molecular Biology, 2020, 55, 469-481.	cation.	2.3	37
173	The impact of transcription-mediated replication stress on genome instability and huma Genome Instability & Disease, 2020, 1, 207-234.	n disease.	0.5	8
174	Checkpoint Regulation of Nuclear Tos4 Defines S Phase Arrest in Fission Yeast. G3: Gen Genetics, 2020, 10, 255-266.	es, Genomes,	0.8	6
175	Anaphase Bridges: Not All Natural Fibers Are Healthy. Genes, 2020, 11, 902.		1.0	22
176	Nonrandom DNA Segregation Detection under Replication Stress. STAR Protocols, 2020), 1, 100143.	0.5	0
177	Mus81-Eme1–dependent aberrant processing of DNA replication intermediates in mit genome integrity. Science Advances, 2020, 6, .	tosis impairs	4.7	22
178	Errorâ€prone DNA repair pathways as determinants of immunotherapy activity: an eme cancer treatment. International Journal of Cancer, 2020, 147, 2658-2668.	ging scenario for	2.3	13
179	Budding yeast complete DNA synthesis after chromosome segregation begins. Nature (2020, 11, 2267.	Communications,	5.8	35
180	RTEL1 suppresses G-quadruplex-associated R-loops at difficult-to-replicate loci in the hu Nature Structural and Molecular Biology, 2020, 27, 424-437.	man genome.	3.6	60
181	SLX4 interacts with RTEL1 to prevent transcription-mediated DNA replication perturbat Structural and Molecular Biology, 2020, 27, 438-449.	ons. Nature	3.6	39

#	Article	IF	CITATIONS
182	Mechanisms Underlying Recurrent Genomic Amplification in Human Cancers. Trends in Cancer, 2020, 6, 462-477.	3.8	43
183	Saccharomyces cerevisiae Mus81-Mms4 prevents accelerated senescence in telomerase-deficient cells. PLoS Genetics, 2020, 16, e1008816.	1.5	2
184	DNA Replication Stress and Chromosomal Instability: Dangerous Liaisons. Genes, 2020, 11, 642.	1.0	94
185	Genome-wide high-resolution mapping of mitotic DNA synthesis sites and common fragile sites by direct sequencing. Cell Research, 2020, 30, 1009-1023.	5.7	41
186	A Survey of Essential Genome Stability Genes Reveals That Replication Stress Mitigation Is Critical for Peri-Implantation Embryogenesis. Frontiers in Cell and Developmental Biology, 2020, 8, 416.	1.8	9
187	High-resolution mapping of mitotic DNA synthesis regions and common fragile sites in the human genome through direct sequencing. Cell Research, 2020, 30, 997-1008.	5.7	74
188	Seq'ing identity and function in a repeat-derived noncoding RNA world. Chromosome Research, 2020, 28, 111-127.	1.0	3
189	Current Understanding of RAD52 Functions: Fundamental and Therapeutic Insights. Cancers, 2020, 12, 705.	1.7	6
190	Impaired Replication Timing Promotes Tissue-Specific Expression of Common Fragile Sites. Genes, 2020, 11, 326.	1.0	16
191	Common fragile sites: protection and repair. Cell and Bioscience, 2020, 10, 29.	2.1	29
192	The plasticity of DNA replication forks in response to clinically relevant genotoxic stress. Nature Reviews Molecular Cell Biology, 2020, 21, 633-651.	16.1	198
193	Folate stress induces SLX1- and RAD51-dependent mitotic DNA synthesis at the fragile X locus in human cells. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 16527-16536.	3.3	26
194	Epigenetic Regulation of DNA Repair Pathway Choice by MacroH2A1 Splice Variants Ensures Genome Stability. Molecular Cell, 2020, 79, 836-845.e7.	4.5	25
195	Working on Genomic Stability: From the S-Phase to Mitosis. Genes, 2020, 11, 225.	1.0	33
196	From R-Loops to C-Quadruplexes: Emerging New Threats for the Replication Fork. International Journal of Molecular Sciences, 2020, 21, 1506.	1.8	25
197	RECQ5: A Mysterious Helicase at the Interface of DNA Replication and Transcription. Genes, 2020, 11, 232.	1.0	15
198	Physiological Tolerance to ssDNA Enables Strand Uncoupling during DNA Replication. Cell Reports, 2020, 30, 2416-2429.e7.	2.9	45
199	Biomarkers of genome instability in normal mammalian genomes following drugâ€induced replication stress. Environmental and Molecular Mutagenesis, 2020, 61, 770-785.	0.9	5

		CITATION REPORT		
#	Article		IF	CITATIONS
200	Physiological and Pathological Roles of RAD52 at DNA Replication Forks. Cancers, 2020,	12, 402.	1.7	20
201	Alternative Lengthening of Telomeres: Building Bridges To Connect Chromosome Ends. T Cancer, 2020, 6, 247-260.	rends in	3.8	43
202	How Cells Respond to DNA Breaks in Mitosis. Trends in Biochemical Sciences, 2020, 45, 3	321-331.	3.7	44
203	DNA damage induced during mitosis undergoes DNA repair synthesis. PLoS ONE, 2020, 1	.5, e0227849.	1.1	20
204	MTH1 Inhibitor TH588 Disturbs Mitotic Progression and Induces Mitosis-Dependent Accu Genomic 8-oxodG. Cancer Research, 2020, 80, 3530-3541.	imulation of	0.4	16
205	A distinct role for recombination repair factors in an early cellular response to transcription–replication conflicts. Nucleic Acids Research, 2020, 48, 5467-5484.		6.5	23
206	Inducible Degradation of the Human SMC5/6 Complex Reveals an Essential Role Only dur Cell Reports, 2020, 31, 107533.	ring Interphase.	2.9	37
207	Mechanisms generating cancer genome complexity from a single cell division error. Scien	.ce, 2020, 368,	6.0	298
208	Burning bridges in cancer genomes. Science, 2020, 368, 240-241.		6.0	1
209	Sporadic activation of an oxidative stress–dependent NRF2-p53 signaling network in b spheroids and premalignancies. Science Signaling, 2020, 13, .	reast epithelial	1.6	25
210	The Key Characteristics of Carcinogens: Relationship to the Hallmarks of Cancer, Relevan Biomarkers, and Assays to Measure Them. Cancer Epidemiology Biomarkers and Preventi 1887-1903.	t on, 2020, 29,	1.1	52
211	Ongoing replication forks delay the nuclear envelope breakdown upon mitotic entry. Jour Biological Chemistry, 2021, 296, 100033.	rnal of	1.6	2
212	Functions of TopBP1 in preserving genome integrity during mitosis. Seminars in Cell and Developmental Biology, 2021, 113, 57-64.		2.3	26
213	RAD51: Beyond the break. Seminars in Cell and Developmental Biology, 2021, 113, 38-46	5.	2.3	39
214	Read, Write, Adapt: Challenges and Opportunities during Kinetoplastid Genome Replicati Genetics, 2021, 37, 21-34.	on. Trends in	2.9	9
215	Mitotic cells can repair DNA double-strand breaks via a homology-directed pathway. Jourr Radiation Research, 2021, 62, 25-33.	hal of	0.8	7
216	Computational investigation of possible inhibitors of the winged-helix domain of MUS81. Molecular Graphics and Modelling, 2021, 103, 107771.	. Journal of	1.3	5
217	The Hammer and the Dance of Cell Cycle Control. Trends in Biochemical Sciences, 2021,	46, 301-314.	3.7	42

#	Article	IF	CITATIONS
218	Sites of chromosomal instability in the context of nuclear architecture and function. Cellular and Molecular Life Sciences, 2021, 78, 2095-2103.	2.4	4
219	The Ubiquitin Ligase TRAIP: Double-Edged Sword at the Replisome. Trends in Cell Biology, 2021, 31, 75-85.	3.6	18
220	Small but strong: Mutational and functional landscapes of micronuclei in cancer genomes. International Journal of Cancer, 2021, 148, 812-824.	2.3	17
221	Tracking break-induced replication shows that it stalls at roadblocks. Nature, 2021, 590, 655-659.	13.7	36
222	A FOXO-dependent replication checkpoint restricts proliferation of damaged cells. Cell Reports, 2021, 34, 108675.	2.9	11
223	Coordinated roles of SLX4 and MutSβ in DNA repair and the maintenance of genome stability. Critical Reviews in Biochemistry and Molecular Biology, 2021, 56, 157-177.	2.3	16
226	Persistence of RNA transcription during DNA replication delays duplication of transcription start sites until G2/M. Cell Reports, 2021, 34, 108759.	2.9	31
227	The phospho-dependent role of BRCA2 on the maintenance of chromosome integrity. Cell Cycle, 2021, 20, 731-741.	1.3	3
229	Human MUS81: A Fence-Sitter in Cancer. Frontiers in Cell and Developmental Biology, 2021, 9, 657305.	1.8	4
230	CENP-A chromatin prevents replication stress at centromeres to avoid structural aneuploidy. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	49
231	Shaping the BRCAness mutational landscape by alternative double-strand break repair, replication stress and mitotic aberrancies. Nucleic Acids Research, 2021, 49, 4239-4257.	6.5	42
232	Critical DNA damaging pathways in tumorigenesis. Seminars in Cancer Biology, 2022, 85, 164-184.	4.3	8
233	Chromothripsis as an on-target consequence of CRISPR–Cas9 genome editing. Nature Genetics, 2021, 53, 895-905.	9.4	305
234	A Link between Replicative Stress, Lamin Proteins, and Inflammation. Genes, 2021, 12, 552.	1.0	8
235	Elucidating Recombination Mediator Function Using Biophysical Tools. Biology, 2021, 10, 288.	1.3	2
236	LRR1-mediated replisome disassembly promotes DNA replication by recycling replisome components. Journal of Cell Biology, 2021, 220, .	2.3	9
237	Underappreciated Roles of DNA Polymerase δin Replication Stress Survival. Trends in Genetics, 2021, 37, 476-487.	2.9	22
239	RTEL1 influences the abundance and localization of TERRA RNA. Nature Communications, 2021, 12, 3016.	5.8	30

#	Article	IF	CITATIONS
241	Overexpression of oncogenic H-Ras in hTERT-immortalized and SV40-transformed human cells targets replicative and specialized DNA polymerases for depletion. PLoS ONE, 2021, 16, e0251188.	1.1	2
242	Mind the replication gap. Royal Society Open Science, 2021, 8, 201932.	1.1	9
243	Fanconi anemia proteins participate in a break-induced-replication-like pathway to counter replication stress. Nature Structural and Molecular Biology, 2021, 28, 487-500.	3.6	16
244	Repair of DNA Breaks by Break-Induced Replication. Annual Review of Biochemistry, 2021, 90, 165-191.	5.0	45
245	RPA shields inherited DNA lesions for post-mitotic DNA synthesis. Nature Communications, 2021, 12, 3827.	5.8	16
246	Elongation factor ELOF1 drives transcription-coupled repair and prevents genome instability. Nature Cell Biology, 2021, 23, 608-619.	4.6	41
247	The Heritability of Replication Problems. Cells, 2021, 10, 1464.	1.8	1
248	Locus-specific transcription silencing at the <i>FHIT</i> gene suppresses replication stress-induced copy number variant formation and associated replication delay. Nucleic Acids Research, 2021, 49, 7507-7524.	6.5	16
249	Genetic variants of <scp><i>CHEK1</i></scp> , <scp><i>PRIM2</i></scp> and <scp><i>CDK6</i></scp> in the mitotic phaseâ€related pathway are associated with nonsmall cell lung cancer survival. International Journal of Cancer, 2021, 149, 1302-1312.	2.3	9
250	Structural Chromosome Instability: Types, Origins, Consequences, and Therapeutic Opportunities. Cancers, 2021, 13, 3056.	1.7	26
251	The Replication Stress Response on a Narrow Path Between Genomic Instability and Inflammation. Frontiers in Cell and Developmental Biology, 2021, 9, 702584.	1.8	22
252	Dealing with DNA lesions: When one cell cycle is not enough. Current Opinion in Cell Biology, 2021, 70, 27-36.	2.6	24
253	Folate Deficiency Triggers the Abnormal Segregation of a Region With Large Cluster of CG-Rich Trinucleotide Repeats on Human Chromosome 2. Frontiers in Genetics, 2021, 12, 695124.	1.1	2
254	The Fate of Two Unstoppable Trains After Arriving Destination: Replisome Disassembly During DNA Replication Termination. Frontiers in Cell and Developmental Biology, 2021, 9, 658003.	1.8	3
255	Cyclin-Dependent Kinase-Mediated Phosphorylation of FANCD2 Promotes Mitotic Fidelity. Molecular and Cellular Biology, 2021, 41, e0023421.	1.1	5
256	Abraxas suppresses DNA end resection and limits break-induced replication by controlling SLX4/MUS81 chromatin loading in response to TOP1 inhibitor-induced DNA damage. Nature Communications, 2021, 12, 4373.	5.8	9
258	Challenging endings: How telomeres prevent fragility. BioEssays, 2021, 43, 2100157.	1.2	11
259	Valproic Acid Regulates HR and Cell Cycle Through MUS81-pRPA2 Pathway in Response to Hydroxyurea. Frontiers in Oncology, 2021, 11, 681278.	1.3	4

		CITATION REPORT		
#	Article	IF		Citations
260	DNA replication: the recombination connection. Trends in Cell Biology, 2022, 32, 45-57.	3.	.6	37
261	The "Dark Side―of autophagy on the maintenance of genome stability: Does it really exis excessive activation?. Journal of Cellular Physiology, 2022, 237, 178-188.	t during 2.	.0	3
262	An open-source platform to quantify subnuclear foci and protein colocalization in response to replication stress. DNA Repair, 2021, 105, 103156.	1.	3	7
263	Common Threads: Aphidicolin-Inducible and Folate-Sensitive Fragile Sites in the Human Genon Frontiers in Genetics, 2021, 12, 708860.	าย. 1.	1	9
264	The RAD51 recombinase protects mitotic chromatin in human cells. Nature Communications, 5380.	2021, 12, 5.	.8	24
265	Mechanism, cellular functions and cancer roles of polymerase-theta-mediated DNA end joining Reviews Molecular Cell Biology, 2022, 23, 125-140.	. Nature 16	5.1	84
266	Non-Recombinogenic Functions of Rad51, BRCA2, and Rad52 in DNA Damage Tolerance. Gene 1550.	es, 2021, 12, 1.	0	5
268	Homologous recombination within repetitive DNA. Current Opinion in Genetics and Developm 2021, 71, 143-153.	ent, 1.	5	17
269	Break-induced replication mechanisms in yeast and mammals. Current Opinion in Genetics and Development, 2021, 71, 163-170.	d 1.	5	25
270	Mechanisms of genome stability maintenance during cell division. DNA Repair, 2021, 108, 103	3215. 1.	3	9
271	Recombination-dependent replication: new perspectives from site-specific fork barriers. Currer Opinion in Genetics and Development, 2021, 71, 129-135.	nt 1.	5	6
272	Chromatin, nuclear organization and genome stability in mammals. , 2021, , 415-434.			0
273	Cell cycle control and DNA-damage signaling in mammals. , 2021, , 237-255.			0
274	PIF1 helicase promotes breakâ€induced replication in mammalian cells. EMBO Journal, 2021, 4	40, e104509. 3.	.5	55
275	Mechanisms of eukaryotic replisome disassembly. Biochemical Society Transactions, 2020, 48	, 823-836. 1.	6	11
276	Repair pathway choice for double-strand breaks. Essays in Biochemistry, 2020, 64, 765-777.	2.	.1	41
277	SLX4–XPF mediates DNA damage responses to replication stress induced by DNA–proteir Journal of Cell Biology, 2021, 220, .	n interactions. 2.	.3	12
278	Interstitial telomere sequences disrupt break-induced replication and drive formation of ectop telomeres. Nucleic Acids Research, 2020, 48, 12697-12710.	ic 6.	.5	12

#	Article	IF	CITATIONS
293	Polymerase δ deficiency causes syndromic immunodeficiency with replicative stress. Journal of Clinical Investigation, 2019, 129, 4194-4206.	3.9	41
294	Inherited GINS1 deficiency underlies growth retardation along with neutropenia and NK cell deficiency. Journal of Clinical Investigation, 2017, 127, 1991-2006.	3.9	115
295	ATR inhibition controls aggressive prostate tumors deficient in Y-linked histone demethylase KDM5D. Journal of Clinical Investigation, 2018, 128, 2979-2995.	3.9	53
296	The "enemies within": regions of the genome that are inherently difficult to replicate. F1000Research, 2017, 6, 666.	0.8	28
297	Role of NF-E2 related factor 2 (Nrf2) on chemotherapy resistance in acute myeloid leukemia (AML) and the effect of pharmacological inhibition of Nrf2. PLoS ONE, 2017, 12, e0177227.	1.1	61
298	Identification and prognostic value of metabolism-related genes in gastric cancer. Aging, 2020, 12, 17647-17661.	1.4	30
299	Potential biomarkers of DNA replication stress in cancer. Oncotarget, 2017, 8, 36996-37008.	0.8	15
300	Inhibition of colorectal cancer genomic copy number alterations and chromosomal fragile site tumor suppressor FHIT and WWOX deletions by DNA mismatch repair. Oncotarget, 2017, 8, 71574-71586.	0.8	6
301	Clioblastoma and glioblastoma stem cells are dependent on functional MTH1. Oncotarget, 2017, 8, 84671-84684.	0.8	29
302	Mitotic replisome disassembly depends on TRAIP ubiquitin ligase activity. Life Science Alliance, 2019, 2, e201900390.	1.3	39
303	Cyclin Kinase-independent role of p21CDKN1A in the promotion of nascent DNA elongation in unstressed cells. ELife, 2016, 5, .	2.8	31
304	TRAIP drives replisome disassembly and mitotic DNA repair synthesis at sites of incomplete DNA replication. ELife, 2019, 8, .	2.8	57
305	TRF1 averts chromatin remodelling, recombination and replication dependent-break induced replication at mouse telomeres. ELife, 2020, 9, .	2.8	27
306	An advanced cell cycle tag toolbox reveals principles underlying temporal control of structure-selective nucleases. ELife, 2020, 9, .	2.8	9
307	Genome duplication in Leishmania major relies on persistent subtelomeric DNA replication. ELife, 2020, 9, .	2.8	17
308	SMC5/6 is required for replication fork stability and faithful chromosome segregation during neurogenesis. ELife, 2020, 9, .	2.8	16
310	The emergence of a unified mechanism in the Fanconi anemia pathway. Genome Instability & Disease, 2021, 2, 281-291.	0.5	2
312	SMX makes the cut in genome stability. Oncotarget, 2017, 8, 102765-102766.	0.8	0

#	Article	IF	CITATIONS
317	Sequence and Nuclease Requirements for Breakage and Healing of a Structure-Forming (AT)n Sequence within Fragile Site FRA16D. SSRN Electronic Journal, 0, , .	0.4	0
328	Detection of PKD1 and PKD2 Somatic Variants in Autosomal Dominant Polycystic Kidney Cyst Epithelial Cells by Whole-Genome Sequencing. Journal of the American Society of Nephrology: JASN, 2021, 32, 3114-3129.	3.0	13
329	Alternative Lengthening of Telomeres: Lessons to Be Learned from Telomeric DNA Double-Strand Break Repair. Genes, 2021, 12, 1734.	1.0	7
330	Essential meiotic structure-specific endonuclease1 (EME1) promotes malignant features in gastric cancer cells via the Akt/GSK3B/CCND1 pathway. Bioengineered, 2021, , .	1.4	4
333	Autophagy Protects Integrity of Tumor Suppressors From Replication Stress. SSRN Electronic Journal, 0, , .	0.4	0
335	Exploring the Structures and Functions of Macromolecular SLX4-Nuclease Complexes in Genome Stability. Frontiers in Genetics, 2021, 12, 784167.	1.1	12
336	3 tera-basepairs as a fundamental limit for robust DNA replication. Physical Biology, 2020, 17, 046002.	0.8	1
340	Carcinogenesis: Mechanisms and Evaluation. , 2022, , 205-254.		3
341	DNA Damage Responses during the Cell Cycle: Insights from Model Organisms and Beyond. Genes, 2021, 12, 1882.	1.0	18
342	The H3.3K27M oncohistone affects replication stress outcome and provokes genomic instability in pediatric glioma. PLoS Genetics, 2021, 17, e1009868.	1.5	14
343	Phosphorothioate-DNA bacterial diet reduces the ROS levels in C. elegans while improving locomotion and longevity. Communications Biology, 2021, 4, 1335.	2.0	6
344	Delayed DNA replication in haploid human embryonic stem cells. Genome Research, 2021, 31, 2155-2169.	2.4	5
345	Stimulation of adaptive gene amplification by origin firing under replication fork constraint. Nucleic Acids Research, 2022, 50, 915-936.	6.5	10
346	A method to sequence genomic sites of mitotic DNA synthesis in mammalian cells. Methods in Enzymology, 2021, 661, 283-304.	0.4	1
347	CDK4/6 inhibitors induce replication stress to cause longâ€ŧerm cell cycle withdrawal. EMBO Journal, 2022, 41, e108599.	3.5	48
348	Cancer Genomic Rearrangements and Copy Number Alterations from Errors in Cell Division. Annual Review of Cancer Biology, 2022, 6, 245-268.	2.3	10
349	Transcription–Replication Coordination. Life, 2022, 12, 108.	1.1	2
352	Measuring S-Phase Duration from Asynchronous Cells Using Dual EdU-BrdU Pulse-Chase Labeling Flow Cytometry. Genes, 2022, 13, 408.	1.0	8

#	Article	IF	CITATIONS
353	Role and Regulation of Pif1 Family Helicases at the Replication Fork. International Journal of Molecular Sciences, 2022, 23, 3736.	1.8	2
354	Chk1 dynamics in G2 phase upon replication stress predict daughter cell outcome. Developmental Cell, 2022, 57, 638-653.e5.	3.1	13
357	Transcription-Replication Collisions and Chromosome Fragility. Frontiers in Genetics, 2021, 12, 804547.	1.1	5
358	Targeting DNA repair pathway in cancer: Mechanisms and clinical application. MedComm, 2021, 2, 654-691.	3.1	34
359	Cockayne syndrome group B protein regulates fork restart, fork progressionÂand MRE11-dependent fork degradation in BRCA1/2-deficient cells. Nucleic Acids Research, 2021, 49, 12836-12854.	6.5	5
360	Break-induced replication: unraveling each step. Trends in Genetics, 2022, 38, 752-765.	2.9	21
361	Consequences of telomere replication failure: the other end-replication problem. Trends in Biochemical Sciences, 2022, 47, 506-517.	3.7	16
362	DNA replication is highly resilient and persistent under the challenge of mild replication stress. Cell Reports, 2022, 39, 110701.	2.9	20
372	Pathogenic BRCA1 variants disrupt PLK1-regulation of mitotic spindle orientation. Nature Communications, 2022, 13, 2200.	5.8	3
373	MicroRNA-449a Inhibits Triple Negative Breast Cancer by Disturbing DNA Repair and Chromatid Separation. International Journal of Molecular Sciences, 2022, 23, 5131.	1.8	1
374	New Era of Mapping and Understanding Common Fragile Sites: An Updated Review on Origin of Chromosome Fragility. Frontiers in Genetics, 0, 13, .	1.1	7
376	Comprehensive analysis of cis- and trans-acting factors affecting ectopic Break-Induced Replication. PLoS Genetics, 2022, 18, e1010124.	1.5	0
377	Cockayne syndrome group B protein uses its DNA translocase activity to promote mitotic DNA synthesis. DNA Repair, 2022, 116, 103354.	1.3	5
378	Telomeric 8-oxo-guanine drives rapid premature senescence in the absence of telomere shortening. Nature Structural and Molecular Biology, 2022, 29, 639-652.	3.6	35
379	BLM Sumoylation Is Required for Replication Stability and Normal Fork Velocity During DNA Replication. Frontiers in Molecular Biosciences, 0, 9, .	1.6	3
380	RAD51 protects human cells from transcription-replication conflicts. Molecular Cell, 2022, 82, 3366-3381.e9.	4.5	19
381	Mitotic DNA synthesis is caused by transcription-replication conflicts in BRCA2-deficient cells. Molecular Cell, 2022, 82, 3382-3397.e7.	4.5	17
382	Unpaved roads: How the DNA damage response navigates endogenous genotoxins. DNA Repair, 2022, 118, 103383.	1.3	2

#	Article	IF	CITATIONS
383	Microscopic Detection of DNA Synthesis in Early Mitosis at Repetitive lacO Sequences in Human Cells. Bio-protocol, 2022, 12, .	0.2	0
384	Processing DNA lesions during mitosis to prevent genomic instability. Biochemical Society Transactions, 2022, 50, 1105-1118.	1.6	3
385	Role of Cockayne Syndrome Group B Protein in Replication Stress: Implications for Cancer Therapy. International Journal of Molecular Sciences, 2022, 23, 10212.	1.8	4
386	Repair of mismatched templates during Rad51-dependent Break-Induced Replication. PLoS Genetics, 2022, 18, e1010056.	1.5	4
387	Microarray and in silico analysis of DNA repair genes between human testis of patients with nonobstructive azoospermia and normal cells. Cell Biochemistry and Function, 2022, 40, 865-879.	1.4	11
389	Safeguarding DNA Replication: A Golden Touch of MiDAS and Other Mechanisms. International Journal of Molecular Sciences, 2022, 23, 11331.	1.8	0
390	The TRESLIN-MTBP complex couples completion of DNA replication with S/G2 transition. Molecular Cell, 2022, 82, 3350-3365.e7.	4.5	11
392	Conflicts with transcription make early replication late. Molecular Cell, 2022, 82, 3315-3317.	4.5	1
393	The structure-selective endonucleases GEN1 and MUS81 mediate complementary functions in safeguarding the genome of proliferating B lymphocytes. ELife, 0, 11, .	2.8	0
395	Replication stress generates distinctive landscapes of DNA copy number alterations and chromosome scale losses. Genome Biology, 2022, 23, .	3.8	16
397	TRF1 uses a noncanonical function of TFIIH to promote telomere replication. Genes and Development, O, , .	2.7	2
398	Contribution of Microhomology to Genome Instability: Connection between DNA Repair and Replication Stress. International Journal of Molecular Sciences, 2022, 23, 12937.	1.8	3
400	A moving target for drug discovery: Structure activity relationship and many genome (de)stabilizing functions of the RAD52 protein. DNA Repair, 2022, 120, 103421.	1.3	5
401	Sister chromatid exchanges induced by perturbed replication can form independently of BRCA1, BRCA2 and RAD51. Nature Communications, 2022, 13, .	5.8	18
403	Fragile sites, chromosomal lesions, tandem repeats, and disease. Frontiers in Genetics, 0, 13, .	1.1	7
404	Enrichment of DNA replication intermediates by EdU pull down. Methods in Cell Biology, 2024, , 83-94.	0.5	0
405	Rad52's DNA annealing activity drives template switching associated with restarted DNA replication. Nature Communications, 2022, 13, .	5.8	3
406	Overexpressed c-Myc Sensitizes Cells to TH1579, a Mitotic Arrest and Oxidative DNA Damage Inducer. Biomolecules, 2022, 12, 1777.	1.8	1

#	Article	IF	CITATIONS
407	FANCD2 promotes mitotic rescue from transcription-mediated replication stress in SETX-deficient cancer cells. Communications Biology, 2022, 5, .	2.0	5
408	Nascent DNA sequencing and its diverse applications in genome integrity research. Methods in Cell Biology, 2024, , 67-81.	0.5	0
410	High-resolution mapping of mitotic DNA synthesis under conditions of replication stress in cultured cells. STAR Protocols, 2023, 4, 101970.	0.5	0
411	Telomere Fragility and MiDAS: Managing the Gaps at the End of the Road. Genes, 2023, 14, 348.	1.0	2
412	Intra-tumor heterogeneity, turnover rate and karyotype space shape susceptibility to missegregation-induced extinction. PLoS Computational Biology, 2023, 19, e1010815.	1.5	5
413	Compartmentalization of the SUMO/RNF4 pathway by SLX4 drives DNA repair. Molecular Cell, 2023, 83, 1640-1658.e9.	4.5	12
414	GEN1 promotes common fragile site expression. Cell Reports, 2023, 42, 112062.	2.9	2
415	Mitotic DNA synthesis in response to replication stress requires the sequential action of DNA polymerases zeta and delta in human cells. Nature Communications, 2023, 14, .	5.8	9
416	Potential Role of the Fragile Histidine Triad in Cancer Evo-Dev. Cancers, 2023, 15, 1144.	1.7	2
417	Short-term molecular consequences of chromosome mis-segregation for genome stability. Nature Communications, 2023, 14, .	5.8	16
418	Oocytes can repair DNA damage during meiosis viaÂaÂmicrotubule-dependent recruitment of CIP2A–MDC1–TOPBP1 complex from spindle pole to chromosomes. Nucleic Acids Research, 2023, 51, 4899-4913.	6.5	3
421	The Molecular Mechanisms and Therapeutic Prospects of Alternative Lengthening of Telomeres (ALT). Cancers, 2023, 15, 1945.	1.7	3
422	UBE2T resolves transcription-replication conflicts and protects common fragile sites in primordial germ cells. Cellular and Molecular Life Sciences, 2023, 80, .	2.4	2
423	Excessive reactive oxygen species induce transcription-dependent replication stress. Nature Communications, 2023, 14, .	5.8	14
424	The Influence of Edaphic Factors on DNA Damage and Repair in Wild Wheat Triticum dicoccoides Körn. (Poaceae, Triticeae). International Journal of Molecular Sciences, 2023, 24, 6847.	1.8	0
425	Polymerase iota (Pol \hat{I}^1) prevents PrimPol-mediated nascent DNA synthesis and chromosome instability. Science Advances, 2023, 9, .	4.7	8
456	Quantity and quality of minichromosome maintenance protein complexes couple replication licensing to genome integrity. Communications Biology, 2024, 7, .	2.0	0