Disentangling type 2 diabetes and metformin treatment microbiota

Nature 528, 262-266 DOI: 10.1038/nature15766

Citation Report

ARTICLE

IF CITATIONS

2 Editorial (Thematic Issue : Gut Permeability and the Microbiome: Emerging Roles in CNS Function in) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5

4	Deciphering bacterial community changes in zucker diabetic fatty rats based on 16S rRNA gene sequences analysis. Oncotarget, 2016, 7, 48941-48952.	0.8	19
5	Microflora Disturbance during Progression of Glucose Intolerance and Effect of Sitagliptin: An Animal Study. Journal of Diabetes Research, 2016, 2016, 1-10.	1.0	85
6	Qualitative Parameters of the Colonic Flora in Patients with HNF1A-MODY Are Different from Those Observed in Type 2 Diabetes Mellitus. Journal of Diabetes Research, 2016, 2016, 1-9.	1.0	10
7	Metformin and the Gut Microbiome in Diabetes. Clinical Chemistry, 2016, 62, 1554-1555.	1.5	4
8	Molecular Insight into Gut Microbiota and Rheumatoid Arthritis. International Journal of Molecular Sciences, 2016, 17, 431.	1.8	59
9	Effects of Probiotics and Synbiotics on Obesity, Insulin Resistance Syndrome, Type 2 Diabetes and Non-Alcoholic Fatty Liver Disease: A Review of Human Clinical Trials. International Journal of Molecular Sciences, 2016, 17, 928.	1.8	215
11	Gut Microbiota and Coronary Artery Disease. International Heart Journal, 2016, 57, 663-671.	0.5	55
12	Machine Learning Meta-analysis of Large Metagenomic Datasets: Tools and Biological Insights. PLoS Computational Biology, 2016, 12, e1004977.	1.5	434
13	Colorectal Cancer and the Human Gut Microbiome: Reproducibility with Whole-Genome Shotgun Sequencing. PLoS ONE, 2016, 11, e0155362.	1.1	249
14	Involvement of glucagonâ€like peptideâ€1 in the glucoseâ€lowering effect of metformin. Diabetes, Obesity and Metabolism, 2016, 18, 955-961.	2.2	50
15	Metagenome-wide association studies: fine-mining the microbiome. Nature Reviews Microbiology, 2016, 14, 508-522.	13.6	356
16	Microbiota and Neurological Disorders: A Gut Feeling. BioResearch Open Access, 2016, 5, 137-145.	2.6	108
17	Effect of antibiotics on gut microbiota, glucose metabolism and body weight regulation: a review of the literature. Diabetes, Obesity and Metabolism, 2016, 18, 444-453.	2.2	62
18	Microbiome-wide association studies link dynamic microbial consortia to disease. Nature, 2016, 535, 94-103.	13.7	595
19	Gut microbiome and lipid metabolism. Current Opinion in Lipidology, 2016, 27, 216-224.	1.2	72
20	Evaluation of differential effects of metformin treatment in obese children according to pubertal stage and genetic variations: study protocol for a randomized controlled trial. Trials, 2016, 17, 323.	0.7	6
21	Gut microbiota and type 2 diabetes mellitus. EndocrinologÃa Y Nutrición (English Edition), 2016, 63, 560-568.	0.5	64

#	Article	IF	CITATIONS
23	Comparative Fingerprinting of the Human Microbiota in Diabetes and Cardiovascular Disease. Journal of Medicinal Food, 2016, 19, 1188-1195.	0.8	30
24	Roux-en-Y gastric bypass surgery of morbidly obese patients induces swift and persistent changes of the individual gut microbiota. Genome Medicine, 2016, 8, 67.	3.6	260
25	Gut microbiome and liver diseases. Gut, 2016, 65, 2035-2044.	6.1	443
26	The Human Intestinal Microbiome in Health and Disease. New England Journal of Medicine, 2016, 375, 2369-2379.	13.9	2,383
27	Host–microbiome interactions in human type 2 diabetes following prebiotic fibre (galacto-oligosaccharide) intake. British Journal of Nutrition, 2016, 116, 1869-1877.	1.2	85
29	Antibiotics as deep modulators of gut microbiota: between good and evil. Gut, 2016, 65, 1906-1915.	6.1	463
30	Dietary metabolites and the gut microbiota: an alternative approach to control inflammatory and autoimmune diseases. Clinical and Translational Immunology, 2016, 5, e82.	1.7	196
31	Once-daily delayed-release metformin lowers plasma glucose and enhances fasting and postprandial GLP-1 and PYY: results from two randomised trials. Diabetologia, 2016, 59, 1645-1654.	2.9	95
32	Hypothalamic AMPK: a canonical regulator of whole-body energy balance. Nature Reviews Endocrinology, 2016, 12, 421-432.	4.3	227
33	The Microbiome in Obesity, Diabetes, and NAFLD: What is Your Gut Telling Us?. Current Hepatology Reports, 2016, 15, 96-102.	0.4	4
34	Strain-level dissection of the contribution of the gut microbiome to human metabolic disease. Genome Medicine, 2016, 8, 41.	3.6	86
35	Pharmacogenomics in diabetes mellitus: insights into drug action and drug discovery. Nature Reviews Endocrinology, 2016, 12, 337-346.	4.3	47
36	Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science, 2016, 352, 565-569.	6.0	1,398
37	Population-level analysis of gut microbiome variation. Science, 2016, 352, 560-564.	6.0	1,716
38	Durable coexistence of donor and recipient strains after fecal microbiota transplantation. Science, 2016, 352, 586-589.	6.0	461
39	Antibiotic use and its consequences for the normal microbiome. Science, 2016, 352, 544-545.	6.0	632
40	Microbiome sequencing: challenges and opportunities for molecular medicine. Expert Review of Molecular Diagnostics, 2016, 16, 795-805.	1.5	33
41	Fine-tuning of the mucosal barrier and metabolic systems using the diet-microbial metabolite axis. International Immunopharmacology, 2016, 37, 79-86.	1.7	16

#	Article	IF	CITATIONS
42	Kinetically controlled <i>E</i> -selective catalytic olefin metathesis. Science, 2016, 352, 569-575.	6.0	114
43	Antibiotic-Induced Changes in the Intestinal Microbiota and Disease. Trends in Molecular Medicine, 2016, 22, 458-478.	3.5	630
44	The effects of indoor and outdoor temperature on metabolic rate and adipose tissue – the Mississippi perspective on the obesity epidemic. Reviews in Endocrine and Metabolic Disorders, 2016, 17, 61-71.	2.6	29
45	Alterations in fecal microbiota composition by probiotic supplementation in healthy adults: a systematic review of randomized controlled trials. Genome Medicine, 2016, 8, 52.	3.6	413
46	Linking the Microbiota, Chronic Disease, and the Immune System. Trends in Endocrinology and Metabolism, 2016, 27, 831-843.	3.1	195
47	In Vivo Imaging of Human ¹¹ C-Metformin in Peripheral Organs: Dosimetry, Biodistribution, and Kinetic Analyses. Journal of Nuclear Medicine, 2016, 57, 1920-1926.	2.8	106
48	Microbiota y diabetes mellitus tipo 2. Endocrinologia Y Nutricion: Organo De La Sociedad Espanola De Endocrinologia Y Nutricion, 2016, 63, 560-568.	0.8	111
49	Microbial bioinformatics 2020. Microbial Biotechnology, 2016, 9, 681-686.	2.0	16
50	Exposing the exposures responsible for type 2 diabetes and obesity. Science, 2016, 354, 69-73.	6.0	201
51	Challenges of implementing personalized (precision) medicine: a focus on diabetes. Personalized Medicine, 2016, 13, 485-497.	0.8	5
52	Effect of Serotonin Transporter 5-HTTLPR Polymorphism on Gastrointestinal Intolerance to Metformin: A GoDARTS Study. Diabetes Care, 2016, 39, 1896-1901.	4.3	41
53	Causality of small and large intestinal microbiota in weight regulation and insulin resistance. Molecular Metabolism, 2016, 5, 759-770.	3.0	142
54	An overview of major metagenomic studies on human microbiomes in health and disease. Quantitative Biology, 2016, 4, 192-206.	0.3	10
55	Metabolic Control of Longevity. Cell, 2016, 166, 802-821.	13.5	591
56	Personalized medicine in diabetes: the role of â€~omics' and biomarkers. Diabetic Medicine, 2016, 33, 712-717.	1.2	61
57	The gut microbiota: A treasure for human health. Biotechnology Advances, 2016, 34, 1210-1224.	6.0	158
58	Diet and Gut Microbial Function in Metabolic and Cardiovascular Disease Risk. Current Diabetes Reports, 2016, 16, 93.	1.7	28
60	Toward Accurate and Quantitative Comparative Metagenomics. Cell, 2016, 166, 1103-1116.	13.5	247

#	Article	IF	Citations
61	Targeting Cancer Metabolism: Dietary and Pharmacologic Interventions. Cancer Discovery, 2016, 6, 1315-1333.	7.7	137
62	Altered Transport and Metabolism of Phenolic Compounds in Obesity and Diabetes: Implications for Functional Food Development and Assessment. Advances in Nutrition, 2016, 7, 1090-1104.	2.9	52
63	Leveraging premalignant biology for immune-based cancer prevention. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 10750-10758.	3.3	57
64	Human gut microbes impact host serum metabolome and insulin sensitivity. Nature, 2016, 535, 376-381.	13.7	1,506
65	Metformin Targets Central Carbon Metabolism and Reveals Mitochondrial Requirements in Human Cancers. Cell Metabolism, 2016, 24, 728-739.	7.2	192
66	Species–function relationships shape ecological properties of the human gut microbiome. Nature Microbiology, 2016, 1, 16088.	5.9	279
67	Environmental Change and Human Health: Can Environmental Proxies Inform the Biodiversity Hypothesis for Protective Microbial–Human Contact?. BioScience, 2016, 66, 1023-1034.	2.2	21
68	Akkermansia muciniphila mediates negative effects of IFNÎ ³ on glucose metabolism. Nature Communications, 2016, 7, 13329.	5.8	232
69	Omics Approaches To Probe Microbiota and Drug Metabolism Interactions. Chemical Research in Toxicology, 2016, 29, 1987-1997.	1.7	7
70	Targeting AMPK for the Alleviation of Pathological Pain. Exs, 2016, 107, 257-285.	1.4	29
71	Tiny microbes, enormous impacts: what matters in gut microbiome studies?. Genome Biology, 2016, 17, 217.	3.8	128
72	AMP-activated Protein Kinase. Exs, 2016, , .	1.4	10
74	EDITORIAL: "The Koch's―view on the sense of taste in endocrinology. Reviews in Endocrine and Metabolic Disorders, 2016, 17, 143-147.	2.6	6
75	Host genetics affect microbial ecosystems via host immunity. Current Opinion in Allergy and Clinical Immunology, 2016, 16, 413-420.	1.1	9
76	Akkermansia muciniphila: a novel functional microbe with probiotic properties. Beneficial Microbes, 2016, 7, 571-584.	1.0	104
77	Targeting glucose metabolism for healthy aging. Nutrition and Healthy Aging, 2016, 4, 31-46.	0.5	55
78	Global investigation of composition and interaction networks in gut microbiomes of individuals belonging to diverse geographies and age-groups. Gut Pathogens, 2016, 8, 17.	1.6	38
79	The microbial-mammalian metabolic axis. Current Opinion in Clinical Nutrition and Metabolic Care, 2016, 19, 250-256.	1.3	20

#	Article	IF	CITATIONS
80	The Future of Vascular Biology and Medicine. Circulation, 2016, 133, 2603-2609.	1.6	16
81	Mirror, mirror on the wall: which microbiomes will help heal them all?. BMC Medicine, 2016, 14, 72.	2.3	31
82	Prescription drugs obscure microbiome analyses. Science, 2016, 351, 452-453.	6.0	32
83	Confounding Effects of Metformin on the Human Gut Microbiome in Type 2 Diabetes. Cell Metabolism, 2016, 23, 10-12.	7.2	67
84	Antidiabetic drug treatment confounds gut dysbiosis associated with type 2 diabetes mellitus. Nature Reviews Endocrinology, 2016, 12, 61-61.	4.3	17
85	Metformin and the gastrointestinal tract. Diabetologia, 2016, 59, 426-435.	2.9	472
86	Taking it Personally: Personalized Utilization of the Human Microbiome in Health and Disease. Cell Host and Microbe, 2016, 19, 12-20.	5.1	192
87	Metformin Joins Forces with Microbes. Cell Host and Microbe, 2016, 19, 1-3.	5.1	48
88	Gut microbiota, obesity and diabetes. Postgraduate Medical Journal, 2016, 92, 286-300.	0.9	377
89	Role of the microbiome in the normal and aberrant glycemic response. Clinical Nutrition Experimental, 2016, 6, 59-73.	2.0	29
90	Akkermansia muciniphila and its role in regulating host functions. Microbial Pathogenesis, 2017, 106, 171-181.	1.3	775
91	Effects of plant stanol ester consumption on fasting plasma oxy(phyto)sterol concentrations as related to fecal microbiota characteristics. Journal of Steroid Biochemistry and Molecular Biology, 2017, 169, 46-53.	1.2	27
92	Metformin; a review of its history and future: from lilac to longevity. Pediatric Diabetes, 2017, 18, 10-16.	1.2	109
93	MicroRNAs and the metabolic hallmarks of aging. Molecular and Cellular Endocrinology, 2017, 455, 131-147.	1.6	51
94	Basic Definitions and Concepts: Organization of the Gut Microbiome. Gastroenterology Clinics of North America, 2017, 46, 1-8.	1.0	15
95	Personalized microbiomeâ€based approaches to metabolic syndrome management and prevention. Journal of Diabetes, 2017, 9, 226-236.	0.8	39
96	Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome, 2017, 5, 14.	4.9	1,086
97	Effects of Acarbose on the Gut Microbiota of Prediabetic Patients: A Randomized, Double-blind, Controlled Crossover Trial. Diabetes Therapy, 2017, 8, 293-307.	1.2	128

	СПАПО	IN REPORT	
#	Article	IF	Citations
98	Metformin: New Preparations and Nonglycemic Benefits. Current Diabetes Reports, 2017, 17, 5.	1.7	67
99	The influence of proton pump inhibitors and other commonly used medication on the gut microbiota. Gut Microbes, 2017, 8, 351-358.	4.3	136
101	The human gut microbiome as source of innovation for health: Which physiological and therapeutic outcomes could we expect?. Therapie, 2017, 72, 21-38.	0.6	28
102	Simplified and representative bacterial community of maize roots. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E2450-E2459.	3.3	487
103	Obesity pandemic: causes, consequences, and solutions—but do we have the will?. Fertility and Sterility, 2017, 107, 833-839.	0.5	279
105	Charting the Maternal and Infant Microbiome: What Is the Role of Diabetes and Obesity in Pregnancy?. Current Diabetes Reports, 2017, 17, 11.	1.7	26
106	Role of the Gut Microbiome in the Pathogenesis of Obesity and Obesity-Related Metabolic Dysfunction. Gastroenterology, 2017, 152, 1671-1678.	0.6	334
107	Comparison of Fecal Collection Methods for Microbiota Studies in Bangladesh. Applied and Environmental Microbiology, 2017, 83, .	1.4	50
108	Dysbiosis and the immune system. Nature Reviews Immunology, 2017, 17, 219-232.	10.6	1,102
109	Parkinson's disease and Parkinson's disease medications have distinct signatures of the gut microbiome. Movement Disorders, 2017, 32, 739-749.	2.2	649
110	Functional relevance of microbiome signatures: The correlation era requires tools for consolidation. Journal of Allergy and Clinical Immunology, 2017, 139, 1092-1098.	1.5	20
111	The gut microbiome as a target for prevention and treatment of hyperglycaemia in type 2 diabetes: from current human evidence to future possibilities. Diabetologia, 2017, 60, 943-951.	2.9	266
112	Using systems biology approaches to elucidate cause and effect in host–microbiome interactions. Current Opinion in Systems Biology, 2017, 3, 141-146.	1.3	11
113	Metformin ameliorates core deficits in a mouse model of fragile X syndrome. Nature Medicine, 2017, 23, 674-677.	15.2	164
114	Using genetics to inform new therapeutics for diabetes. Expert Review of Endocrinology and Metabolism, 2017, 12, 159-169.	1.2	0
115	Metforminâ€associated lactic acidosis: <scp>M</scp> oving towards a new paradigm?. Diabetes, Obesity and Metabolism, 2017, 19, 1499-1501.	2.2	11
116	Metformin causes a futile intestinal–hepatic cycle which increases energy expenditure and slows down development of a type 2 diabetes-like state. Molecular Metabolism, 2017, 6, 737-747.	3.0	24
117	Gut Microbiome-Based Metagenomic Signature for Non-invasive Detection of Advanced Fibrosis in Human Nonalcoholic Fatty Liver Disease. Cell Metabolism, 2017, 25, 1054-1062.e5.	7.2	748

#	Article	IF	CITATIONS
119	Functional implications of microbial and viral gut metagenome changes in early stage L-DOPA-naÃ⁻ve Parkinson's disease patients. Genome Medicine, 2017, 9, 39.	3.6	420
121	Dietary Supplementation With Nonfermentable Fiber Alters the Gut Microbiota and Confers Protection in Murine Models of Sepsis. Critical Care Medicine, 2017, 45, e516-e523.	0.4	54
122	Ionic liquid-based reagents improve the stability of midterm fecal sample storage. Journal of Microbiological Methods, 2017, 139, 68-73.	0.7	2
123	The gut microbiome and hypertension. Current Opinion in Nephrology and Hypertension, 2017, 26, 1-8.	1.0	80
124	Attenuated Effects of Bile Acids on Glucose Metabolism and Insulin Sensitivity in a Male Mouse Model of Prenatal Undernutrition. Endocrinology, 2017, 158, 2441-2452.	1.4	19
125	Global metabolic interaction network of the human gut microbiota for context-specific community-scale analysis. Nature Communications, 2017, 8, 15393.	5.8	216
126	Optimizing methods and dodging pitfalls in microbiome research. Microbiome, 2017, 5, 52.	4.9	420
127	Metformin exerts anti-obesity effect via gut microbiome modulation in prediabetics: A hypothesis. Medical Hypotheses, 2017, 104, 117-120.	0.8	16
128	Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nature Medicine, 2017, 23, 850-858.	15.2	1,165
129	Methods and Reporting Studies Assessing Fecal Microbiota Transplantation. Annals of Internal Medicine, 2017, 167, 34.	2.0	88
130	The immune response to <i>Prevotella</i> bacteria in chronic inflammatory disease. Immunology, 2017, 151, 363-374.	2.0	789
131	Gut Microbiota, Endocrine-Disrupting Chemicals, and the Diabetes Epidemic. Trends in Endocrinology and Metabolism, 2017, 28, 612-625.	3.1	118
132	Factors Influencing the Gut Microbiota, Inflammation, and Type 2 Diabetes. Journal of Nutrition, 2017, 147, 1468S-1475S.	1.3	268
133	Precancer Atlas to Drive Precision Prevention Trials. Cancer Research, 2017, 77, 1510-1541.	0.4	116
134	Dynamic profile of the microbiota during coconut water pre-fermentation for nata de coco production. LWT - Food Science and Technology, 2017, 81, 87-93.	2.5	19
135	The Microbiome and Human Biology. Annual Review of Genomics and Human Genetics, 2017, 18, 65-86.	2.5	266
136	The microbiota and HIV. Aids, 2017, 31, 863-865.	1.0	1
137	Colonization by non-pathogenic bacteria alters mRNA expression of cytochromes P450 in originally germ-free mice. Folia Microbiologica, 2017, 62, 463-469.	1.1	19

#	Article	IF	CITATIONS
138	Mechanisms and consequences of intestinal dysbiosis. Cellular and Molecular Life Sciences, 2017, 74, 2959-2977.	2.4	401
139	The Human Microbiota in Health and Disease. Engineering, 2017, 3, 71-82.	3.2	583
140	Gut microbiome as a clinical tool in gastrointestinal disease management: are we there yet?. Nature Reviews Gastroenterology and Hepatology, 2017, 14, 315-320.	8.2	96
141	The Microbiome and Risk for Obesity and Diabetes. JAMA - Journal of the American Medical Association, 2017, 317, 355.	3.8	245
142	Metabolic effects of <i><scp>L</scp>actobacillus reuteri</i> <scp>DSM</scp> 17938 in people with type 2 diabetes: <scp>A</scp> randomized controlled trial. Diabetes, Obesity and Metabolism, 2017, 19, 579-589.	2.2	199
143	A story of metformin-butyrate synergism to control various pathological conditions as a consequence of gut microbiome modification: Genesis of a wonder drug?. Pharmacological Research, 2017, 117, 103-128.	3.1	55
144	Understanding and overcoming metformin gastrointestinal intolerance. Diabetes, Obesity and Metabolism, 2017, 19, 473-481.	2.2	141
145	Identifying and Creating the Next Generation of Community-Based Cancer Prevention Studies: Summary of a National Cancer Institute Think Tank. Cancer Prevention Research, 2017, 10, 99-107.	0.7	11
146	Further analysis reveals new gut microbiome markers of type 2 diabetes mellitus. Antonie Van Leeuwenhoek, 2017, 110, 445-453.	0.7	26
147	New insights into the anti-diabetic actions of metformin: from the liver to the gut. Expert Review of Gastroenterology and Hepatology, 2017, 11, 157-166.	1.4	38
148	Towards standards for human fecal sample processing in metagenomic studies. Nature Biotechnology, 2017, 35, 1069-1076.	9.4	581
149	Galacto-oligosaccharides ameliorate dysbiotic Bifidobacteriaceae decline in Japanese patients with type 2 diabetes. Beneficial Microbes, 2017, 8, 705-716.	1.0	54
150	Improvement of Insulin Sensitivity after Lean Donor Feces in Metabolic Syndrome Is Driven by Baseline Intestinal Microbiota Composition. Cell Metabolism, 2017, 26, 611-619.e6.	7.2	689
151	Attenuation of CD4+CD25+ Regulatory T Cells in the Tumor Microenvironment by Metformin, a Type 2 Diabetes Drug. EBioMedicine, 2017, 25, 154-164.	2.7	108
152	The gut microbiome in atherosclerotic cardiovascular disease. Nature Communications, 2017, 8, 845.	5.8	1,029
153	Microbiota-Brain-Gut Axis and Neurodegenerative Diseases. Current Neurology and Neuroscience Reports, 2017, 17, 94.	2.0	513
154	Probiotic strains and mechanistic insights for the treatment of type 2 diabetes. Endocrine, 2017, 58, 207-227.	1.1	33
155	A Western diet-induced mouse model reveals a possible mechanism by which metformin decreases obesity. European Journal of Clinical Pharmacology, 2017, 73, 1337-1339.	0.8	3

#	Article	IF	CITATIONS
156	Shared Dysregulation of Homeostatic Brain-Body Pathways in Depression and Type 2 Diabetes. Current Diabetes Reports, 2017, 17, 90.	1.7	23
157	Interaction between diet composition and gut microbiota and its impact on gastrointestinal tract health. Food Science and Human Wellness, 2017, 6, 121-130.	2.2	116
158	Gut microbiota composition is associated with polypharmacy in elderly hospitalized patients. Scientific Reports, 2017, 7, 11102.	1.6	146
159	The hundred most-cited publications in microbiota of diabetes research. Medicine (United States), 2017, 96, e7338.	0.4	27
160	Microbiota and neurodegenerative diseases. Current Opinion in Neurology, 2017, 30, 630-638.	1.8	64
161	Possible Long-Term Efficacy of Sitagliptin, a Dipeptidyl Peptidase-4 Inhibitor, for Slowly Progressive Type 1 Diabetes (SPIDDM) in the Stage of Non-Insulin-Dependency: An Open-Label Randomized Controlled Pilot Trial (SPAN-S). Diabetes Therapy, 2017, 8, 1123-1134.	1.2	36
162	Dietary intake of fat and fibre according to reference values relates to higher gut microbiota richness in overweight pregnant women. British Journal of Nutrition, 2017, 118, 343-352.	1.2	93
163	In vitro colonisation of the distal colon by Akkermansia muciniphila is largely mucin and pH dependent. Beneficial Microbes, 2017, 8, 81-96.	1.0	80
164	Lactobacillus casei CCFM419 attenuates type 2 diabetes via a gut microbiota dependent mechanism. Food and Function, 2017, 8, 3155-3164.	2.1	123
166	The aerial parts of Salvia miltiorrhiza Bge. strengthen intestinal barrier and modulate gut microbiota imbalance in streptozocin-induced diabetic mice. Journal of Functional Foods, 2017, 36, 362-374.	1.6	32
167	Results of the HEMO Study suggest that p-cresol sulfate and indoxyl sulfate are not associatedÂwithÂcardiovascular outcomes. Kidney International, 2017, 92, 1484-1492.	2.6	65
168	Anti-diabetic Effects of Clostridium butyricum CGMCC0313.1 through Promoting the Growth of Gut Butyrate-producing Bacteria in Type 2 Diabetic Mice. Scientific Reports, 2017, 7, 7046.	1.6	117
169	Quantitative metagenomics reveals unique gut microbiome biomarkers in ankylosing spondylitis. Genome Biology, 2017, 18, 142.	3.8	268
170	The mechanisms of action of metformin. Diabetologia, 2017, 60, 1577-1585.	2.9	1,421
171	The effects of metformin on gut microbiota and the immune system as research frontiers. Diabetologia, 2017, 60, 1662-1667.	2.9	79
172	Gut cell metabolism shapes the microbiome. Science, 2017, 357, 548-549.	6.0	59
173	A Structural Basis for Biguanide Activity. Biochemistry, 2017, 56, 4786-4798.	1.2	20
175	Colonic Butyrate-Producing Communities in Humans: an Overview Using Omics Data. MSystems, 2017, 2,	1.7	328

#	ARTICLE	IF	CITATIONS
176	Exploring the microbiome in health and disease. Toxicology Research and Application, 2017, 1, 239784731774188.	0.7	36
178	Analyses of gut microbiota and plasma bile acids enable stratification of patients for antidiabetic treatment. Nature Communications, 2017, 8, 1785.	5.8	312
179	"Metformin-resistant―folic acid producing probiotics or folic acid against metformin's adverse effects like diarrhea. Medical Hypotheses, 2017, 106, 33-34.	0.8	14
181	Genomics and metagenomics of trimethylamine-utilizing Archaea in the human gut microbiome. ISME Journal, 2017, 11, 2059-2074.	4.4	112
182	Host Genetics and Gut Microbiome: Challenges and Perspectives. Trends in Immunology, 2017, 38, 633-647.	2.9	219
183	Antibacterial Effects of Antiretrovirals, Potential Implications for Microbiome Studies in HIV. Antiviral Therapy, 2018, 23, 91-94.	0.6	28
184	Mitochondrial control of immunity: beyond ATP. Nature Reviews Immunology, 2017, 17, 608-620.	10.6	306
185	Rapid analysis of bile acids in different biological matrices using LC-ESI-MS/MS for the investigation of bile acid transformation by mammalian gut bacteria. Analytical and Bioanalytical Chemistry, 2017, 409, 1231-1245.	1.9	81
186	Metformin Is Associated With Higher Relative Abundance of Mucin-Degrading <i>Akkermansia muciniphila</i> and Several Short-Chain Fatty Acid–Producing Microbiota in the Gut. Diabetes Care, 2017, 40, 54-62.	4.3	521
187	Cancer, obesity, diabetes, and antidiabetic drugs: is the fog clearing?. Nature Reviews Clinical Oncology, 2017, 14, 85-99.	12.5	163
188	Differential Changes in Gut Microbiota After Gastric Bypass and Sleeve Gastrectomy Bariatric Surgery Vary According to Diabetes Remission. Obesity Surgery, 2017, 27, 917-925.	1.1	230
189	Identification of an Intestinal Microbiota Signature Associated With Severity of Irritable Bowel Syndrome. Gastroenterology, 2017, 152, 111-123.e8.	0.6	470
190	A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nature Medicine, 2017, 23, 107-113.	15.2	1,451
191	Variants in Pharmacokinetic Transporters and Glycemic Response to Metformin: A Metgen Metaâ€Analysis. Clinical Pharmacology and Therapeutics, 2017, 101, 763-772.	2.3	79
193	Infections. Advances in Clinical Chemistry, 2017, 80, 227-251.	1.8	10
194	Gut Microbiota in Obesity and Metabolic Abnormalities: A Matter of Composition or Functionality?. Archives of Medical Research, 2017, 48, 735-753.	1.5	59
195	Systematically investigating the impact of medication on the gut microbiome. Current Opinion in Microbiology, 2017, 39, 128-135.	2.3	65
196	Interindividual variability in gut microbiota and host response to dietary interventions. Nutrition Reviews, 2017, 75, 1059-1080.	2.6	155

#	Article	IF	CITATIONS
198	Intestinal Microbiota Contributes to Energy Balance, Metabolic Inflammation, and Insulin Resistance in Obesity. Journal of Obesity and Metabolic Syndrome, 2017, 26, 161-171.	1.5	12
199	Berberine Attenuates Intestinal Mucosal Barrier Dysfunction in Type 2 Diabetic Rats. Frontiers in Pharmacology, 2017, 8, 42.	1.6	94

The Human Mucosal Mycobiome and Fungal Community Interactions. Journal of Fungi (Basel,) Tj ETQq0 0 0 rgBT /Qverlock 10 Tf 50 662

201	Nutrients in Energy and One-Carbon Metabolism: Learning from Metformin Users. Nutrients, 2017, 9, 121.	1.7	33
202	Retrospective Evaluation of Metformin and/or Metformin Plus a New Polysaccharide Complex in Treating Severe Hyperinsulinism and Insulin Resistance in Obese Children and Adolescents with Metabolic Syndrome. Nutrients, 2017, 9, 524.	1.7	19
203	Metaproteomics as a Complementary Approach to Gut Microbiota in Health and Disease. Frontiers in Chemistry, 2017, 5, 4.	1.8	67
204	Houttuynia cordata Facilitates Metformin on Ameliorating Insulin Resistance Associated with Gut Microbiota Alteration in OLETF Rats. Genes, 2017, 8, 239.	1.0	39
205	Effects of Antidiabetic Drugs on Gut Microbiota Composition. Genes, 2017, 8, 250.	1.0	104
206	Alterations of the Gut Microbiome in Hypertension. Frontiers in Cellular and Infection Microbiology, 2017, 7, 381.	1.8	313
207	Host–Microbiota Mutualism in Metabolic Diseases. Frontiers in Endocrinology, 2017, 8, 267.	1.5	20
208	Advances in Gut Microbiome Research, Opening New Strategies to Cope with a Western Lifestyle. Frontiers in Genetics, 2016, 7, 224.	1.1	23
209	Next-Generation Beneficial Microbes: The Case of Akkermansia muciniphila. Frontiers in Microbiology, 2017, 8, 1765.	1.5	713
210	Flos Lonicera Combined with Metformin Ameliorates Hepatosteatosis and Glucose Intolerance in Association with Gut Microbiota Modulation. Frontiers in Microbiology, 2017, 8, 2271.	1.5	40
211	The Impact of Microbiota-Gut-Brain Axis on Diabetic Cognition Impairment. Frontiers in Aging Neuroscience, 2017, 9, 106.	1.7	39
212	Pleiotropic Effects of Biguanides on Mitochondrial Reactive Oxygen Species Production. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-11.	1.9	17
213	Effects of <i> Achyrocline satureioides</i> Inflorescence Extracts against Pathogenic Intestinal Bacteria: Chemical Characterization, In Vitro Tests, and In Vivo Evaluation. Evidence-based Complementary and Alternative Medicine, 2017, 2017, 1-10.	0.5	4
214	Statin therapy causes gut dysbiosis in mice through a PXR-dependent mechanism. Microbiome, 2017, 5, 95.	4.9	124
215	Lactobacillus gasseri in the Upper Small Intestine Impacts an ACSL3-Dependent Fatty Acid-Sensing Pathway Regulating Whole-Body Glucose Homeostasis. Cell Metabolism, 2018, 27, 572-587.e6.	7.2	54

#	Article	IF	CITATIONS
216	The Impact of Laparoscopic Sleeve Gastrectomy with Duodenojejunal Bypass on Intestinal Microbiota Differs from that of Laparoscopic Sleeve Gastrectomy in Japanese Patients with Obesity. Clinical Drug Investigation, 2018, 38, 545-552.	1.1	18
217	The Human Gut Microbiome: From Association to Modulation. Cell, 2018, 172, 1198-1215.	13.5	558
218	Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science, 2018, 359, 1151-1156.	6.0	1,521
219	Human Gut Microbiota in Health and Alzheimer's Disease. Journal of Alzheimer's Disease, 2018, 62, 549-560.	1.2	63
220	The microbiome and MS: The influence of the microbiota on MS risk and progression—Session chair summary. Multiple Sclerosis Journal, 2018, 24, 587-589.	1.4	3
221	Antidiabetic Mechanism of Dietary Polysaccharides Based on Their Gastrointestinal Functions. Journal of Agricultural and Food Chemistry, 2018, 66, 4781-4786.	2.4	75
222	Gut Microbes and Health: A Focus on the Mechanisms Linking Microbes, Obesity, and Related Disorders. Obesity, 2018, 26, 792-800.	1.5	141
223	A proinflammatory CD4+ T cell phenotype in gestational diabetes mellitus. Diabetologia, 2018, 61, 1633-1643.	2.9	38
224	Put "gender glasses―on the effects of phenolic compounds on cardiovascular function and diseases. European Journal of Nutrition, 2018, 57, 2677-2691.	1.8	38
225	A Systems Approach to Refine Disease Taxonomy by Integrating Phenotypic and Molecular Networks. EBioMedicine, 2018, 31, 79-91.	2.7	60
226	Prevention and Treatment of Type 2 Diabetes: A Pathophysiological-Based Approach. Trends in Endocrinology and Metabolism, 2018, 29, 370-379.	3.1	26
227	A system biology perspective on environment–host–microbe interactions. Human Molecular Genetics, 2018, 27, R187-R194.	1.4	37
228	Comparative analyses of the gut microbiota among three different wild geese species in the genus <i>Anser</i> . Journal of Basic Microbiology, 2018, 58, 543-553.	1.8	10
229	Pathogenesis of Type 2 Diabetes Mellitus. Endocrinology, 2018, , 1-74.	0.1	0
230	The gut microbiota influences anticancer immunosurveillance and general health. Nature Reviews Clinical Oncology, 2018, 15, 382-396.	12.5	389
231	Effect of metformin on plasma metabolite profile in the Copenhagen Insulin and Metformin Therapy (<scp>CIMT</scp>) trial. Diabetic Medicine, 2018, 35, 944-953.	1.2	24
232	Metformin. Current Opinion in Clinical Nutrition and Metabolic Care, 2018, 21, 294-301.	1.3	84
233	Aberrant intestinal microbiota in individuals with prediabetes. Diabetologia, 2018, 61, 810-820.	2.9	313

#	Article	IF	CITATIONS
234	Altered Microbiota and Their Metabolism in Host Metabolic Diseases. , 2018, , 129-165.		1
235	Longitudinal profiling of the lung microbiome in the AERIS study demonstrates repeatability of bacterial and eosinophilic COPD exacerbations. Thorax, 2018, 73, 422-430.	2.7	201
236	Evaluating Causality of Gut Microbiota in Obesity and Diabetes in Humans. Endocrine Reviews, 2018, 39, 133-153.	8.9	207
237	The diversity of gestational diabetes: a therapeutic challenge. European Journal of Endocrinology, 2018, 178, C1-C5.	1.9	2
238	Research Agenda for Microbiome Based Research for Multidrug-resistant Organism Prevention in the Veterans Health Administration System. Infection Control and Hospital Epidemiology, 2018, 39, 202-209.	1.0	2
239	Microbiota and Bone Health: The Gut-Musculoskeletal Axis. Calcified Tissue International, 2018, 102, 385-386.	1.5	8
240	Precision nutrition for prevention and management of type 2 diabetes. Lancet Diabetes and Endocrinology,the, 2018, 6, 416-426.	5.5	159
241	Overview and systematic review of studies of microbiome in schizophrenia and bipolar disorder. Journal of Psychiatric Research, 2018, 99, 50-61.	1.5	151
242	The impact of human activities and lifestyles on the interlinked microbiota and health of humans and of ecosystems. Science of the Total Environment, 2018, 627, 1018-1038.	3.9	244
243	Diet affects gut microbiota and modulates hospitalization risk differentially in an international cirrhosis cohort. Hepatology, 2018, 68, 234-247.	3.6	92
244	1-Day or 5-Day Fecal Samples, Which One is More Beneficial to be Used for DNA-Based Gut Microbiota Study. Current Microbiology, 2018, 75, 288-295.	1.0	2
245	Sieving through gut models of colonization resistance. Nature Microbiology, 2018, 3, 132-140.	5.9	54
246	Is metformin poised for a second career as an antimicrobial?. Diabetes/Metabolism Research and Reviews, 2018, 34, e2975.	1.7	66
247	Gut microbiome differences between metformin―and liraglutideâ€ŧreated T2 <scp>DM</scp> subjects. Endocrinology, Diabetes and Metabolism, 2018, 1, e00009.	1.0	59
248	Enterotypes in the landscape of gut microbial community composition. Nature Microbiology, 2018, 3, 8-16.	5.9	717
249	Aging, inflammation and the environment. Experimental Gerontology, 2018, 105, 10-18.	1.2	267
250	Metabolic Syndrome and Associated Diseases: From the Bench to the Clinic. Toxicological Sciences, 2018, 162, 36-42.	1.4	147
251	MVP: a microbe–phage interaction database. Nucleic Acids Research, 2018, 46, D700-D707.	6.5	82

#	Article	IF	CITATIONS
252	The Role of Microbiota in Retinal Disease. Advances in Experimental Medicine and Biology, 2018, 1074, 429-435.	0.8	54
253	Microbiota and metabolic diseases. Endocrine, 2018, 61, 357-371.	1.1	280
254	Pharmacomicrobiomics: a novel route towards personalized medicine?. Protein and Cell, 2018, 9, 432-445.	4.8	128
255	Impact of HIV and Type 2 diabetes on Gut Microbiota Diversity, Tryptophan Catabolism and Endothelial Dysfunction. Scientific Reports, 2018, 8, 6725.	1.6	35
256	Efficacy and safety of faecal microbiota transplantation in patients with psoriatic arthritis: protocol for a 6-month, double-blind, randomised, placebo-controlled trial. BMJ Open, 2018, 8, e019231.	0.8	51
257	Coffee consumption and reduced risk of developing type 2 diabetes: a systematic review with meta-analysis. Nutrition Reviews, 2018, 76, 395-417.	2.6	144
258	Predictive biomarkers for type 2 of diabetes mellitus: Bridging the gap between systems research and personalized medicine. Journal of Proteomics, 2018, 188, 59-62.	1.2	16
259	Extensive impact of non-antibiotic drugs on human gut bacteria. Nature, 2018, 555, 623-628.	13.7	1,339
261	The metabolism of a natural product mogroside V, in healthy and type 2 diabetic rats. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2018, 1079, 25-33.	1.2	30
262	Improvement in glucose tolerance and insulin sensitivity by probiotic strains of Indian gut origin in high-fat diet-fed C57BL/6J mice. European Journal of Nutrition, 2018, 57, 279-295.	1.8	131
263	Dietary Changes Impact the Gut Microbe Composition in Overweight and Obese MenÂwith Prostate Cancer Undergoing RadicalÂProstatectomy. Journal of the Academy of Nutrition and Dietetics, 2018, 118, 714-723.e1.	0.4	25
264	Food additives, contaminants and other minor components: effects on human gut microbiota—a review. Journal of Physiology and Biochemistry, 2018, 74, 69-83.	1.3	127
265	Human oral microbiome and prospective risk for pancreatic cancer: a population-based nested case-control study. Gut, 2018, 67, 120-127.	6.1	536
266	Understanding the role of the gut ecosystem in diabetes mellitus. Journal of Diabetes Investigation, 2018, 9, 5-12.	1.1	110
267	Fungal dysbiosis in cirrhosis. Gut, 2018, 67, 1146-1154.	6.1	112
268	Microbial Impact on Host Metabolism: Opportunities for Novel Treatments of Nutritional Disorders?. Microbiology Spectrum, 2017, 5, .	1.2	28
269	Lung Microbiota and Its Impact on the Mucosal Immune Phenotype. Microbiology Spectrum, 2017, 5, .	1.2	34
270	Disruptive physiology: olfaction and the microbiome–gut–brain axis. Biological Reviews, 2018, 93, 390-403.	4.7	27

#	Article	IF	CITATIONS
271	Metformin Alters Upper Small Intestinal Microbiota that Impact a Glucose-SGLT1-Sensing Glucoregulatory Pathway. Cell Metabolism, 2018, 27, 101-117.e5.	7.2	187
272	Gut Microbiota and Host Metabolism: What Relationship. Neuroendocrinology, 2018, 106, 352-356.	1.2	47
273	Functional Genomics of Host–Microbiome Interactions in Humans. Trends in Genetics, 2018, 34, 30-40.	2.9	73
274	Gut microbiota and obesity: Concepts relevant to clinical care. European Journal of Internal Medicine, 2018, 48, 18-24.	1.0	95
275	Inflammageing and metaflammation: The yin and yang of type 2 diabetes. Ageing Research Reviews, 2018, 41, 1-17.	5.0	182
276	Biomarkers of adverse drug reactions. Experimental Biology and Medicine, 2018, 243, 291-299.	1.1	25
277	Intestinal Lactobacillus in health and disease, a driver or just along for the ride?. Current Opinion in Biotechnology, 2018, 49, 140-147.	3.3	251
278	Probiotics administration following sleeve gastrectomy surgery: a randomized double-blind trial. International Journal of Obesity, 2018, 42, 147-155.	1.6	51
279	Interdisciplinary approach to compensation of hypoglycemia in diabetic patients with chronic heart failure. Heart Failure Reviews, 2018, 23, 481-497.	1.7	4
280	Beyond gut feelings: how the gut microbiota regulates blood pressure. Nature Reviews Cardiology, 2018, 15, 20-32.	6.1	287
281	Lipoproteins and Cardiovascular Redox Signaling: Role in Atherosclerosis and Coronary Disease. Antioxidants and Redox Signaling, 2018, 29, 337-352.	2.5	8
282	The nasal and gut microbiome in Parkinson's disease and idiopathic rapid eye movement sleep behavior disorder. Movement Disorders, 2018, 33, 88-98.	2.2	428
283	Novel carbohydrate binding modules in the surface anchored αâ€amylase of <i>Eubacterium rectale</i> provide a molecular rationale for the range of starches used by this organism in the human gut. Molecular Microbiology, 2018, 107, 249-264.	1.2	51
284	The Role of the Gut Microbiome in Multiple Sclerosis Risk and Progression: Towards Characterization of the "MS Microbiome― Neurotherapeutics, 2018, 15, 126-134.	2.1	75
285	Metformin protects against intestinal barrier dysfunction <i>via</i> AMPKα1â€dependent inhibition of JNK signalling activation. Journal of Cellular and Molecular Medicine, 2018, 22, 546-557.	1.6	88
286	Modulation of the gut microbiota by metformin improves metabolic profiles in aged obese mice. Gut Microbes, 2018, 9, 155-165.	4.3	142
287	The Gut Microbiome and Mental Health: Implications for Anxiety- and Trauma-Related Disorders. OMICS A Journal of Integrative Biology, 2018, 22, 90-107.	1.0	110
288	Human Microbiome and Resistome Studies. Hanyang Medical Reviews, 2018, 38, 71.	0.4	0

#	Article	IF	CITATIONS
289	Separating "good―from "bad―faecal dysbiosis – evidence from two cross-sectional studies. BMC Obesity, 2018, 5, 30.	3.1	8
290	Dynamics of Gut Microbiome in Giant Panda Cubs Reveal Transitional Microbes and Pathways in Early Life. Frontiers in Microbiology, 2018, 9, 3138.	1.5	30
291	Statins, metformin, proprotein-convertase-subtilisin-kexin type-9 (PCSK9) inhibitors and sex hormones: Immunomodulatory properties?. Reviews in Endocrine and Metabolic Disorders, 2018, 19, 363-395.	2.6	26
292	Viability of microencapsulated <i>Akkermansia muciniphila</i> and <i>Lactobacillus plantarum</i> during freeze-drying, storage and <i>in vitro</i> simulated upper gastrointestinal tract passage. Food and Function, 2018, 9, 5868-5879.	2.1	61
293	Does the antidiabetic drug metformin affect embryo development and the health of brown trout (Salmo trutta f. fario)?. Environmental Sciences Europe, 2018, 30, 48.	2.6	29
294	C. elegans and its bacterial diet: An interspecies model to explore the effects of microbiota on drug response. Drug Discovery Today: Disease Models, 2018, 28, 21-26.	1.2	5
295	Long term but not short term exposure to obesity related microbiota promotes host insulin resistance. Nature Communications, 2018, 9, 4681.	5.8	54
296	The effect of drinking water pH on the human gut microbiota and glucose regulation: results of a randomized controlled cross-over intervention. Scientific Reports, 2018, 8, 16626.	1.6	26
297	Antidiabetic Drugs in NAFLD: The Accomplishment of Two Goals at Once?. Pharmaceuticals, 2018, 11, 121.	1.7	41
298	Taxonomic classification for microbiome analysis, which correlates well with the metabolite milieu of the gut. BMC Microbiology, 2018, 18, 188.	1.3	38
300	Gut microbiota and intestinal FXR mediate the clinical benefits of metformin. Nature Medicine, 2018, 24, 1919-1929.	15.2	632
301	FXR-Dependent Modulation of the Human Small Intestinal Microbiome by the Bile Acid Derivative Obeticholic Acid. Gastroenterology, 2018, 155, 1741-1752.e5.	0.6	82
302	Separation and Analysis of Aspirin and Metformin HCl Using Green Subcritical Water Chromatography. Molecules, 2018, 23, 2258.	1.7	7
303	Gut Microbiome Dysbiosis and Immunometabolism: New Frontiers for Treatment of Metabolic Diseases. Mediators of Inflammation, 2018, 2018, 1-12.	1.4	199
304	A systematic review of enteric dysbiosis in chronic fatigue syndrome/myalgic encephalomyelitis. Systematic Reviews, 2018, 7, 241.	2.5	34
305	An Investigation Into Physical Frailty as a Link Between the Gut Microbiome and Cognitive Health. Frontiers in Aging Neuroscience, 2018, 10, 398.	1.7	51
306	A Metabologenomic Approach Reveals Changes in the Intestinal Environment of Mice Fed on American Diet. International Journal of Molecular Sciences, 2018, 19, 4079.	1.8	41
307	Anti-breast Cancer Enhancement of a Polysaccharide From Spore of Ganoderma lucidum With Paclitaxel: Suppression on Tumor Metabolism With Gut Microbiota Reshaping. Frontiers in Microbiology, 2018, 9, 3099.	1.5	56

	Сітатіо	n Report	
#	Article	IF	CITATIONS
308	Effects of Rich-Polyphenols Extract of Dendrobium loddigesii on Anti-Diabetic, Anti-Inflammatory, Anti-Oxidant, and Gut Microbiota Modulation in db/db Mice. Molecules, 2018, 23, 3245.	1.7	70
310	Reproductive and Behavior Dysfunction Induced by Maternal Androgen Exposure and Obesity Is Likely Not Gut Microbiome-Mediated. Journal of the Endocrine Society, 2018, 2, 1363-1380.	0.1	8
311	Comparison of Microbiota Variation in Korean Healthy Adolescents with Adults Suggests Notable Maturity Differences. OMICS A Journal of Integrative Biology, 2018, 22, 770-778.	1.0	3
312	Improved glycemic control with minimal systemic metformin exposure: Effects of Metformin Delayed-Release (Metformin DR) targeting the lower bowel over 16 weeks in a randomized trial in subjects with type 2 diabetes. PLoS ONE, 2018, 13, e0203946.	1.1	24
313	Pathogenic functions of host microbiota. Microbiome, 2018, 6, 174.	4.9	70
314	Association of metformin administration with gut microbiome dysbiosis in healthy volunteers. PLoS ONE, 2018, 13, e0204317.	1.1	96
315	A Metabolomic-Based Evaluation of the Role of Commensal Microbiota throughout the Gastrointestinal Tract in Mice. Microorganisms, 2018, 6, 101.	1.6	24
316	Obesity in Type 1 Diabetes: Pathophysiology, Clinical Impact, and Mechanisms. Endocrine Reviews, 2018, 39, 629-663.	8.9	154
317	Linking gut microbiota, metabolic syndrome and economic status based on a population-level analysis. Microbiome, 2018, 6, 172.	4.9	131
318	Gut microbiota and plasma metabolites associated with diabetes in women with, or at high risk for, HIV infection. EBioMedicine, 2018, 37, 392-400.	2.7	61
320	Moving on from Metchnikoff: thinking about microbiome therapeutics in cancer. Ecancermedicalscience, 2018, 12, 867.	0.6	5
321	Grape polyphenols reduce gut-localized reactive oxygen species associated with the development of metabolic syndrome in mice. PLoS ONE, 2018, 13, e0198716.	1.1	35
322	Community profiling of the urinary microbiota: considerations for low-biomass samples. Nature Reviews Urology, 2018, 15, 735-749.	1.9	87
323	Pathogenesis of Type 2 Diabetes Mellitus. Endocrinology, 2018, , 181-253.	0.1	7
324	Pathogenesis of Lipid Disorders in Insulin Resistance: a Brief Review. Current Diabetes Reports, 2018, 18, 127.	1.7	99
325	Gut Microbiome in Obesity, Metabolic Syndrome, and Diabetes. Current Diabetes Reports, 2018, 18, 129.	1.7	106
326	Pleiotropic effects of metformin: Shaping the microbiome to manage type 2 diabetes and postpone ageing. Ageing Research Reviews, 2018, 48, 87-98.	5.0	80
327	Role of Gut Microbiota in the Pathogenesis of Cardiovascular Diseases and Metabolic Syndrome. Rational Pharmacotherapy in Cardiology, 2018, 14, 567-574.	0.3	14

#	Article	IF	Citations
328	A computational framework to integrate high-throughput â€~-omics' datasets for the identification of potential mechanistic links. Nature Protocols, 2018, 13, 2781-2800.	5.5	82
329	Metformin transporter pharmacogenomics: insights into drug disposition—where are we now?. Expert Opinion on Drug Metabolism and Toxicology, 2018, 14, 1-11.	1.5	11
330	Recovery of gut microbiota of healthy adults following antibiotic exposure. Nature Microbiology, 2018, 3, 1255-1265.	5.9	483
331	Metformin: Focus on Melanoma. Frontiers in Endocrinology, 2018, 9, 472.	1.5	40
332	The Intricate Relationship between Diabetes, Diet and the Gut Microbiota. , 2018, , .		0
333	Lung Microbiota and Its Impact on the Mucosal Immune Phenotype. , 2018, , 161-186.		0
334	Castrointestinal microbiota contributes to the development of murine transfusion-related acute lung injury. Blood Advances, 2018, 2, 1651-1663.	2.5	44
335	Microbial Impact on Host Metabolism: Opportunities for Novel Treatments of Nutritional Disorders?. , 2018, , 131-148.		0
336	Pharmacology in the age of the holobiont. Current Opinion in Systems Biology, 2018, 10, 34-42.	1.3	6
337	Interaction of antidiabetic αâ€glucosidase inhibitors and gut bacteria αâ€glucosidase. Protein Science, 2018, 27, 1498-1508.	3.1	37
338	Drug–gut microbiota interactions: implications for neuropharmacology. British Journal of Pharmacology, 2018, 175, 4415-4429.	2.7	93
340	Best practices for analysing microbiomes. Nature Reviews Microbiology, 2018, 16, 410-422.	13.6	1,138
341	Network Analysis as a Grand Unifier in Biomedical Data Science. Annual Review of Biomedical Data Science, 2018, 1, 153-180.	2.8	32
342	Structural Alteration of Gut Microbiota during the Amelioration of Human Type 2 Diabetes with Hyperlipidemia by Metformin and a Traditional Chinese Herbal Formula: a Multicenter, Randomized, Open Label Clinical Trial. MBio, 2018, 9, .	1.8	258
343	Fecal <i>Enterobacteriales</i> enrichment is associated with increased inÂvivo intestinal permeability in humans. Physiological Reports, 2018, 6, e13649.	0.7	37
344	Therapeutic Manipulation of Gut Microbiota. , 2018, , 133-158.		0
345	The Association of Gut Microbiota with Nonalcoholic Steatohepatitis in Thais. BioMed Research International, 2018, 2018, 1-8.	0.9	52
346	Molecular phenomics and metagenomics of hepatic steatosis in non-diabetic obese women. Nature Medicine, 2018, 24, 1070-1080.	15.2	465

	Сітаті	ION REPORT	
#	Article	IF	CITATIONS
347	Metabolic Effects of Dietary Nitrate in Health and Disease. Cell Metabolism, 2018, 28, 9-22.	7.2	242
348	Metformin Protects against LPS-Induced Intestinal Barrier Dysfunction by Activating AMPK Pathway. Molecular Pharmaceutics, 2018, 15, 3272-3284.	2.3	63
349	Effects of garlic polysaccharide on alcoholic liver fibrosis and intestinal microflora in mice. Pharmaceutical Biology, 2018, 56, 325-332.	1.3	63
350	The Relationship between Frequently Used Glucose-Lowering Agents and Gut Microbiota in Type 2 Diabetes Mellitus. Journal of Diabetes Research, 2018, 2018, 1-7.	1.0	18
351	The Gut Microbiome as a Target for the Treatment of Type 2 Diabetes. Current Diabetes Reports, 2018, 18, 55.	1.7	85
352	Human gut microbiome: hopes, threats and promises. Gut, 2018, 67, 1716-1725.	6.1	957
355	Shifts in intestinal microbiota after duodenal exclusion favor glycemic control and weight loss: a randomized controlled trial. Surgery for Obesity and Related Diseases, 2018, 14, 1748-1754.	1.0	27
356	Conducting metagenomic studies in microbiology and clinical research. Applied Microbiology and Biotechnology, 2018, 102, 8629-8646.	1.7	26
357	Reply to "Challenges in modeling the human gut microbiome". Nature Biotechnology, 2018, 36, 686-691.	9.4	12
358	Challenges in modeling the human gut microbiome. Nature Biotechnology, 2018, 36, 682-686.	9.4	25
359	Understanding the Representative Gut Microbiota Dysbiosis in Metformin-Treated Type 2 Diabetes Patients Using Genome-Scale Metabolic Modeling. Frontiers in Physiology, 2018, 9, 775.	1.3	58
360	Human gut bacteria as potent class I histone deacetylase inhibitors in vitro through production of butyric acid and valeric acid. PLoS ONE, 2018, 13, e0201073.	1.1	171
361	Metagenomic analysis of gut microbial communities from a Central Asian population. BMJ Open, 2018, 8, e021682.	0.8	31
362	Microbiome and Diseases: Metabolic Disorders. , 2018, , 251-277.		3
363	Microbiome and Early Life. , 2018, , 31-47.		1
364	Combination of Aronia, Red Ginseng, Shiitake Mushroom and Nattokinase Potentiated Insulin Secretion and Reduced Insulin Resistance with Improving Gut Microbiome Dysbiosis in Insulin Deficient Type 2 Diabetic Rats. Nutrients, 2018, 10, 948.	1.7	21
365	Proton Pump Inhibitors: Risks and Rewards and Emerging Consequences to the Gut Microbiome. Nutrition in Clinical Practice, 2018, 33, 614-624.	1.1	46
366	What Has Bariatric Surgery Taught Us About the Role of the Upper Gastrointestinal Tract in the Regulation of Postprandial Glucose Metabolism?. Frontiers in Endocrinology, 2018, 9, 324.	1.5	10

	CITATION	REPORT	
#	Article	IF	CITATIONS
367	Metformin and Autoimmunity: A "New Deal―of an Old Drug. Frontiers in Immunology, 2018, 9, 1236.	2.2	131
368	Metformin Alters Gut Microbiota of Healthy Mice: Implication for Its Potential Role in Gut Microbiota Homeostasis. Frontiers in Microbiology, 2018, 9, 1336.	1.5	57
369	Synthesis, biological activity and toxicity of chromium(III) metformin complex as potential insulin-mimetic agent in C57BL/6 mice. Journal of Coordination Chemistry, 2018, 71, 1526-1541.	0.8	5
370	Genomics and Drug-Metabolizing Enzymes and Its Application in Drug Delivery: Evaluating the Influence of the Microbiome. , 2018, , 177-200.		0
371	National supercomputing in Denmark. , 2018, , .		2
372	Gut microbiota associations with common diseases and prescription medications in a population-based cohort. Nature Communications, 2018, 9, 2655.	5.8	411
373	Gut Microbiota and Type 1 Diabetes. International Journal of Molecular Sciences, 2018, 19, 995.	1.8	148
374	The Role of Gut Microbiota in Obesity and Type 2 and Type 1 Diabetes Mellitus: New Insights into "Old― Diseases. Medical Sciences (Basel, Switzerland), 2018, 6, 32.	1.3	103
375	Actions of metformin and statins on lipid and glucose metabolism and possible benefit of combination therapy. Cardiovascular Diabetology, 2018, 17, 94.	2.7	101
376	A Semi-supervised Approach to Discover Bivariate Causality in Large Biological Data. Lecture Notes in Computer Science, 2018, , 406-420.	1.0	1
377	Gestational diabetes is associated with change in the gut microbiota composition in third trimester of pregnancy and postpartum. Microbiome, 2018, 6, 89.	4.9	286
378	Robust Microbial Markers for Non-Invasive Inflammatory Bowel Disease Identification. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2018, 16, 1-1.	1.9	7
379	The Development of Microbiota and Metabolome in Small Intestine of Sika Deer (Cervus nippon) from Birth to Weaning. Frontiers in Microbiology, 2018, 9, 4.	1.5	41
380	Microbiome–host systems interactions: protective effects of propionate upon the blood–brain barrier. Microbiome, 2018, 6, 55.	4.9	324
381	The gut–liver axis and the intersection with the microbiome. Nature Reviews Gastroenterology and Hepatology, 2018, 15, 397-411.	8.2	905
382	Metformin targets brown adipose tissue in vivo and reduces oxygen consumption in vitro. Diabetes, Obesity and Metabolism, 2018, 20, 2264-2273.	2.2	35
383	The journey of gut microbiome – An introduction and its influence on metabolic disorders. Frontiers in Biology, 2018, 13, 327-341.	0.7	4
384	Regional variation limits applications of healthy gut microbiome reference ranges and disease models. Nature Medicine, 2018, 24, 1532-1535.	15.2	629

#	Article	IF	CITATIONS
385	Implication of gut microbiota metabolites in cardiovascular and metabolic diseases. Cellular and Molecular Life Sciences, 2018, 75, 3977-3990.	2.4	127
386	Inhalational supplementation of metformin butyrate: A strategy for prevention and cure of various pulmonary disorders. Biomedicine and Pharmacotherapy, 2018, 107, 495-506.	2.5	14
387	Comparison of Fecal Collection Methods for Microbiome and Metabolomics Studies. Frontiers in Cellular and Infection Microbiology, 2018, 8, 301.	1.8	114
388	Molecular Mechanisms of Metformin for Diabetes and Cancer Treatment. Frontiers in Physiology, 2018, 9, 1039.	1.3	72
389	Gut nutrient sensing and microbiota function in the control of energy homeostasis. Current Opinion in Clinical Nutrition and Metabolic Care, 2018, 21, 273-276.	1.3	12
390	Cutting the Gordian Knot of the Microbiota. Molecular Cell, 2018, 70, 765-767.	4.5	1
391	Deep sequencing of HBV pre-S region reveals high heterogeneity of HBV genotypes and associations of word pattern frequencies with HCC. PLoS Genetics, 2018, 14, e1007206.	1.5	7
392	Beyond <i>Oxalobacter</i> : the gut microbiota and kidney stone formation. Gut, 2018, 67, 2078-2079.	6.1	5
393	Genetic and Environmental Influences on Gut Microbiota. , 2018, , 91-104.		0
394	Major microbiota dysbiosis in severe obesity: fate after bariatric surgery. Gut, 2019, 68, 70-82.	6.1	297
394 395	Major microbiota dysbiosis in severe obesity: fate after bariatric surgery. Gut, 2019, 68, 70-82. Inflamm-aging microRNAs may integrate signals from food and gut microbiota by modulating common signalling pathways. Mechanisms of Ageing and Development, 2019, 182, 111127.	6.1 2.2	297 19
	Inflamm-aging microRNAs may integrate signals from food and gut microbiota by modulating common		
395	Inflamm-aging microRNAs may integrate signals from food and gut microbiota by modulating common signalling pathways. Mechanisms of Ageing and Development, 2019, 182, 111127. Metformin as Anti-Aging Therapy: Is It for Everyone?. Trends in Endocrinology and Metabolism, 2019, 30,	2.2	19
395 396	Inflamm-aging microRNAs may integrate signals from food and gut microbiota by modulating common signalling pathways. Mechanisms of Ageing and Development, 2019, 182, 111127. Metformin as Anti-Aging Therapy: Is It for Everyone?. Trends in Endocrinology and Metabolism, 2019, 30, 745-755. Gut-associated IgA+ immune cells regulate obesity-related insulin resistance. Nature Communications,	2.2 3.1	19 154
395 396 397	Inflamm-aging microRNAs may integrate signals from food and gut microbiota by modulating common signalling pathways. Mechanisms of Ageing and Development, 2019, 182, 111127. Metformin as Anti-Aging Therapy: Is It for Everyone?. Trends in Endocrinology and Metabolism, 2019, 30, 745-755. Gut-associated IgA+ immune cells regulate obesity-related insulin resistance. Nature Communications, 2019, 10, 3650. Neuroimmunomodulation of tissue injury and disease: an expanding view of the inflammatory reflex	2.2 3.1 5.8	19 154 131
395 396 397 398	Inflamm-aging microRNAs may integrate signals from food and gut microbiota by modulating common signalling pathways. Mechanisms of Ageing and Development, 2019, 182, 111127. Metformin as Anti-Aging Therapy: Is It for Everyone?. Trends in Endocrinology and Metabolism, 2019, 30, 745-755. Gut-associated IgA+ immune cells regulate obesity-related insulin resistance. Nature Communications, 2019, 10, 3650. Neuroimmunomodulation of tissue injury and disease: an expanding view of the inflammatory reflex pathway. Bioelectronic Medicine, 2019, 5, 13. Role and effective therapeutic target of gut microbiota in NAFLD/NASH (Review). Experimental and	2.2 3.1 5.8 1.0	19 154 131 11
 395 396 397 398 399 	Inflamm-aging microRNAs may integrate signals from food and gut microbiota by modulating common signalling pathways. Mechanisms of Ageing and Development, 2019, 182, 111127. Metformin as Anti-Aging Therapy: Is It for Everyone?. Trends in Endocrinology and Metabolism, 2019, 30, 745-755. Gut-associated IgA+ immune cells regulate obesity-related insulin resistance. Nature Communications, 2019, 10, 3650. Neuroimmunomodulation of tissue injury and disease: an expanding view of the inflammatory reflex pathway. Bioelectronic Medicine, 2019, 5, 13. Role and effective therapeutic target of gut microbiota in NAFLD/NASH (Review). Experimental and Therapeutic Medicine, 2019, 18, 1935-1944. Understanding the glucoregulatory mechanisms of metformin in type 2 diabetes mellitus. Nature	2.2 3.1 5.8 1.0 0.8	19 154 131 11 23

#	Article	IF	CITATIONS
403	Obese Individuals with and without Type 2 Diabetes Show Different Gut Microbial Functional Capacity and Composition. Cell Host and Microbe, 2019, 26, 252-264.e10.	5.1	274
404	<p>Psychoactive drug prescription and urine colonization with extended-spectrum β-lactamase-producing Enterobacteriaceae</p> . Infection and Drug Resistance, 2019, Volume 12, 1763-1770.	1.1	3
405	The human gut microbiome – a new and exciting avenue in cardiovascular drug discovery. Expert Opinion on Drug Discovery, 2019, 14, 1037-1052.	2.5	10
407	Durable Long-Term Bacterial Engraftment following Encapsulated Fecal Microbiota Transplantation To Treat Clostridium difficile Infection. MBio, 2019, 10, .	1.8	58
408	Differential Analysis of Hypertension-Associated Intestinal Microbiota. International Journal of Medical Sciences, 2019, 16, 872-881.	1.1	91
409	Mitochondrial targets of metformin—Are they physiologically relevant?. BioFactors, 2019, 45, 703-711.	2.6	23
410	Fecal Microbiota Transplantation: a Future Therapeutic Option for Obesity/Diabetes?. Current Diabetes Reports, 2019, 19, 51.	1.7	91
411	Microbiota-Related Changes in Unconjugated Fecal Bile Acids Are Associated With Naturally Occurring, Insulin-Dependent Diabetes Mellitus in Dogs. Frontiers in Veterinary Science, 2019, 6, 199.	0.9	35
412	Microbiota-gut brain axis involvement in neuropsychiatric disorders. Expert Review of Neurotherapeutics, 2019, 19, 1037-1050.	1.4	116
413	<i>Akkermansia muciniphila</i> abundance is lower in severe obesity, but its increased level after bariatric surgery is not associated with metabolic health improvement. American Journal of Physiology - Endocrinology and Metabolism, 2019, 317, E446-E459.	1.8	67
414	Autoinducer-2 of Fusobacterium nucleatum promotes macrophage M1 polarization via TNFSF9/IL-1β signaling. International Immunopharmacology, 2019, 74, 105724.	1.7	32
415	GUT Microbiome-GUT Dysbiosis-Arterial Hypertension: New Horizons. Current Hypertension Reviews, 2019, 15, 40-46.	0.5	19
416	Effect of polysaccharides from adlay seed on anti-diabetic and gut microbiota. Food and Function, 2019, 10, 4372-4380.	2.1	40
417	Genetic Pathways of Aging and Their Relevance in the Dog as a Natural Model of Human Aging. Frontiers in Genetics, 2019, 10, 948.	1.1	36
418	Metformin alters the duodenal microbiome and decreases the incidence of pancreatic ductal adenocarcinoma promoted by diet-induced obesity. American Journal of Physiology - Renal Physiology, 2019, 317, G763-G772.	1.6	34
419	Comprehensive relationships between gut microbiome and faecal metabolome in individuals with type 2 diabetes and its complications. Endocrine, 2019, 66, 526-537.	1.1	135
420	Characteristics of Gut Microbiota in Patients with Hypertension and/or Hyperlipidemia: A Cross-Sectional Study on Rural Residents in Xinxiang County, Henan Province. Microorganisms, 2019, 7, 399.	1.6	36
421	"Photobiomicsâ€: Can Light, Including Photobiomodulation, Alter the Microbiome?. Photobiomodulation, Photomedicine, and Laser Surgery, 2019, 37, 681-693.	0.7	44

#	Article	IF	CITATIONS
422	Elevated serum ceramides are linked with obesity-associated gut dysbiosis and impaired glucose metabolism. Metabolomics, 2019, 15, 140.	1.4	26
423	The microbiota and infectious diseases. , 2019, , 445-457.		0
424	Are Nonnutritive Sweeteners Obesogenic? Associations between Diet, Faecal Microbiota, and Short-Chain Fatty Acids in Morbidly Obese Subjects. Journal of Obesity, 2019, 2019, 1-8.	1.1	16
425	Distinct Gut Microbiota Induced by Different Fat-to-Sugar-Ratio High-Energy Diets Share Similar Pro-obesity Genetic and Metabolite Profiles in Prediabetic Mice. MSystems, 2019, 4, .	1.7	18
426	Potential Correlation between Dietary Fiber-Suppressed Microbial Conversion of Choline to Trimethylamine and Formation of Methylglyoxal. Journal of Agricultural and Food Chemistry, 2019, 67, 13247-13257.	2.4	13
427	Effect of Metformin on Short-Term High-Fat Diet-Induced Weight Gain and Anxiety-Like Behavior and the Gut Microbiota. Frontiers in Endocrinology, 2019, 10, 704.	1.5	30
428	Host-Microbe-Drug-Nutrient Screen Identifies Bacterial Effectors of Metformin Therapy. Cell, 2019, 178, 1299-1312.e29.	13.5	186
430	Interleukin-36 cytokines alter the intestinal microbiome and can protect against obesity and metabolic dysfunction. Nature Communications, 2019, 10, 4003.	5.8	49
431	The Microbiome and Aging. Annual Review of Genetics, 2019, 53, 239-261.	3.2	127
432	Clinical and genetic predictors of diabetes drug's response. Drug Metabolism Reviews, 2019, 51, 408-427.	1.5	9
433	Evolutionary and Ecological Consequences of Gut Microbial Communities. Annual Review of Ecology, Evolution, and Systematics, 2019, 50, 451-475.	3.8	175
434	Predictors of Obesity among Gut Microbiota Biomarkers in African American Men with and without Diabetes. Microorganisms, 2019, 7, 320.	1.6	27
435	Can intestinal microbiota and circulating microbial products contribute to pulmonary arterial hypertension?. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 317, H1093-H1101.	1.5	26
436	Distinct gut metagenomics and metaproteomics signatures in prediabetics and treatment-naÃ ⁻ ve type 2 diabetics. EBioMedicine, 2019, 47, 373-383.	2.7	101
437	Homeostasis and dysbiosis of the gut microbiome in health and disease. Journal of Biosciences, 2019, 44, 1.	0.5	107
438	A review of the antimicrobial side of antidepressants and its putative implications on the gut microbiome. Australian and New Zealand Journal of Psychiatry, 2019, 53, 1151-1166.	1.3	43
439	Oral selective serotonin reuptake inhibitors activate vagus nerve dependent gut-brain signalling. Scientific Reports, 2019, 9, 14290.	1.6	67
440	Amelioration of metabolic syndrome by metformin associates with reduced indices of low-grade inflammation independently of the gut microbiota. American Journal of Physiology - Endocrinology and Metabolism, 2019, 317, E1121-E1130.	1.8	38

#	Article	IF	Citations
441	Interaction between gut microbiota and ethnomedicine constituents. Natural Product Reports, 2019, 36, 788-809.	5.2	67
442	Microbiome Alteration in Type 2 Diabetes Mellitus Model of Zebrafish. Scientific Reports, 2019, 9, 867.	1.6	30
443	Social dynamics modeling of chrono-nutrition. PLoS Computational Biology, 2019, 15, e1006714.	1.5	9
444	Modulating the microbiome to improve therapeutic response in cancer. Lancet Oncology, The, 2019, 20, e77-e91.	5.1	249
445	Metformin and gut microbiota: their interactions and their impact on diabetes. Hormones, 2019, 18, 141-144.	0.9	83
446	Metformin triggers PYY secretion in human gut mucosa. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 2668-2674.	1.8	14
447	Microbiome and colorectal cancer: Roles in carcinogenesis and clinical potential. Molecular Aspects of Medicine, 2019, 69, 93-106.	2.7	212
448	<p>Astragalus alters gut-microbiota composition in type 2 diabetes mice: clues to its pharmacology</p> . Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 2019, Volume 12, 771-778.	1.1	8
449	Diagnostic and therapeutic potential of the gut microbiota in patients with early hepatocellular carcinoma. Therapeutic Advances in Medical Oncology, 2019, 11, 175883591984818.	1.4	47
450	Glycine Metabolism and Its Alterations in Obesity and Metabolic Diseases. Nutrients, 2019, 11, 1356.	1.7	202
451	Metformin as an archetype immuno-metabolic adjuvant for cancer immunotherapy. OncoImmunology, 2019, 8, e1633235.	2.1	70
452	Intestinal microbiome and fitness in kidney disease. Nature Reviews Nephrology, 2019, 15, 531-545.	4.1	140
453	Understanding the Role of the Gut Microbiome and Microbial Metabolites in Obesity and Obesity-Associated Metabolic Disorders: Current Evidence and Perspectives. Current Obesity Reports, 2019, 8, 317-332.	3.5	182
454	Predicting and Understanding the Human Microbiome's Impact on Pharmacology. Trends in Pharmacological Sciences, 2019, 40, 495-505.	4.0	38
455	The intestinal microbiota and cardiovascular disease. Cardiovascular Research, 2019, 115, 1471-1486.	1.8	33
456	Gut Microbiota and Colonization Resistance against Bacterial Enteric Infection. Microbiology and Molecular Biology Reviews, 2019, 83, .	2.9	272
457	Assessment of Causal Direction Between Gut Microbiota–Dependent Metabolites and Cardiometabolic Health: A Bidirectional Mendelian Randomization Analysis. Diabetes, 2019, 68, 1747-1755.	0.3	114
458	Autoinducer-2 of gut microbiota, a potential novel marker for human colorectal cancer, is associated with the activation of TNFSF9 signaling in macrophages. Oncolmmunology, 2019, 8, e1626192.	2.1	17

#	Article	IF	CITATIONS
459	A Metagenomic Meta-analysis Reveals Functional Signatures of Health and Disease in the Human Gut Microbiome. MSystems, 2019, 4, .	1.7	112
462	Diabetes: Is There a Future for Pharmacogenomics Guided Treatment?. Clinical Pharmacology and Therapeutics, 2019, 106, 329-337.	2.3	29
463	Intestinal Microbiota in Cardiovascular Health and Disease. Journal of the American College of Cardiology, 2019, 73, 2089-2105.	1.2	301
464	<i>Akkermansia muciniphila</i> is a promising probiotic. Microbial Biotechnology, 2019, 12, 1109-1125.	2.0	447
465	Mechanisms of action of metformin with special reference to cardiovascular protection. Diabetes/Metabolism Research and Reviews, 2019, 35, e3173.	1.7	58
466	Impact of bariatric surgery on type 2 diabetes: contribution of inflammation and gut microbiome?. Seminars in Immunopathology, 2019, 41, 461-475.	2.8	27
467	Effect of metformin on the size of the HIV reservoir in non-diabetic ART-treated individuals: single-arm non-randomised Lilac pilot study protocol. BMJ Open, 2019, 9, e028444.	0.8	39
468	Intermittent Hypoxia and Hypercapnia Reproducibly Change the Gut Microbiome and Metabolome across Rodent Model Systems. MSystems, 2019, 4, .	1.7	24
469	A Data Integration Multi-Omics Approach to Study Calorie Restriction-Induced Changes in Insulin Sensitivity. Frontiers in Physiology, 2018, 9, 1958.	1.3	39
470	Effect of Metformin on Antipsychotic-Induced Metabolic Dysfunction: The Potential Role of Gut-Brain Axis. Frontiers in Pharmacology, 2019, 10, 371.	1.6	21
471	Crosstalk between gut microbiota and antidiabetic drug action. World Journal of Diabetes, 2019, 10, 154-168.	1.3	61
472	Gut Microbiota Composition and Blood Pressure. Hypertension, 2019, 73, 998-1006.	1.3	175
473	Understanding the gut–kidney axis among biopsy-proven diabetic nephropathy, type 2 diabetes mellitus and healthy controls: an analysis of the gut microbiota composition. Acta Diabetologica, 2019, 56, 581-592.	1.2	110
474	Diabetic cats have decreased gut microbial diversity and a lack of butyrate producing bacteria. Scientific Reports, 2019, 9, 4822.	1.6	40
475	Gut Reactions: Breaking Down Xenobiotic–Microbiome Interactions. Pharmacological Reviews, 2019, 71, 198-224.	7.1	211
476	Gastrointestinal Barrier Breakdown and Adipose Tissue Inflammation. Current Obesity Reports, 2019, 8, 165-174.	3.5	34
477	Dietary fibers as emerging nutritional factors against diabetes: focus on the involvement of gut microbiota. Critical Reviews in Biotechnology, 2019, 39, 524-540.	5.1	36
478	The human microbiome in health and disease: hype or hope. Acta Clinica Belgica, 2019, 74, 53-64.	0.5	34

#	Article	IF	CITATIONS
479	Inter-kingdom signaling between gut microbiota and their host. Cellular and Molecular Life Sciences, 2019, 76, 2383-2389.	2.4	33
480	Metformin-induced changes of the gut microbiota in healthy young men: results of a non-blinded, one-armed intervention study. Diabetologia, 2019, 62, 1024-1035.	2.9	135
481	Precarious Symbiosis Between Host and Microbiome in Cardiovascular Health. Hypertension, 2019, 73, 926-935.	1.3	10
482	Prebiotic supplementation in frail older people affects specific gut microbiota taxa but not global diversity. Microbiome, 2019, 7, 39.	4.9	72
483	Current Understanding of the Gut Microflora in Subjects with Nutrition-Associated Metabolic Disorder Such as Obesity and/or Diabetes: Is There Any Relevance with Oral Microflora?. Current Oral Health Reports, 2019, 6, 100-109.	0.5	0
484	Characterizing the Personalized Microbiota Dynamics for Disease Classification by Individual-Specific Edge-Network Analysis. Frontiers in Genetics, 2019, 10, 283.	1.1	13
485	Gut <i>Prevotella</i> as a possible biomarker of diet and its eubiotic versus dysbiotic roles: a comprehensive literature review. British Journal of Nutrition, 2019, 122, 131-140.	1.2	204
486	Meta-analysis of fecal metagenomes reveals global microbial signatures that are specific for colorectal cancer. Nature Medicine, 2019, 25, 679-689.	15.2	734
487	Pharmacomicrobiomics: The Holy Grail to Variability in Drug Response?. Clinical Pharmacology and Therapeutics, 2019, 106, 317-328.	2.3	49
488	Pharmacologic and Nonpharmacologic Therapies for the Gut Microbiota in Type 2 Diabetes. Canadian Journal of Diabetes, 2019, 43, 224-231.	0.4	43
489	Gut Microbiome in Health and Disease. Gastroenterology Clinics of North America, 2019, 48, 221-235.	1.0	23
490	Immunity, microbiota and kidney disease. Nature Reviews Nephrology, 2019, 15, 263-274.	4.1	80
491	Gut microbiome and microbial metabolites: a new system affecting metabolic disorders. Journal of Endocrinological Investigation, 2019, 42, 1011-1018.	1.8	31
492	PET-CT reveals increased intestinal glucose uptake after gastric surgery. Surgery for Obesity and Related Diseases, 2019, 15, 643-649.	1.0	10
493	Ablation of gut microbiota alleviates obesity-induced hepatic steatosis and glucose intolerance by modulating bile acid metabolism in hamsters. Acta Pharmaceutica Sinica B, 2019, 9, 702-710.	5.7	121
494	Revisit gut microbiota and its impact on human health and disease. Journal of Food and Drug Analysis, 2019, 27, 623-631.	0.9	169
495	Altered gut microbiome after bariatric surgery and its association with metabolic benefits: A systematic review. Surgery for Obesity and Related Diseases, 2019, 15, 656-665.	1.0	58
496	JinQi Jiangtang Tablet Regulates Gut Microbiota and Improve Insulin Sensitivity in Type 2 Diabetes Mice. Journal of Diabetes Research, 2019, 2019, 1-12.	1.0	38

#	Article	IF	CITATIONS
497	Higher Risk of Stroke Is Correlated With Increased Opportunistic Pathogen Load and Reduced Levels of Butyrate-Producing Bacteria in the Gut. Frontiers in Cellular and Infection Microbiology, 2019, 9, 4.	1.8	134
500	Microbes, Their Metabolites, and Effector Molecules: A Pharmacological Perspective for Host-Microbiota Interaction. Environmental Chemistry for A Sustainable World, 2019, , 155-206.	0.3	4
501	Nuclear Receptors in the Pathogenesis and Management of Inflammatory Bowel Disease. Mediators of Inflammation, 2019, 2019, 1-13.	1.4	18
502	Dynamic Development of Fecal Microbiome During the Progression of Diabetes Mellitus in Zucker Diabetic Fatty Rats. Frontiers in Microbiology, 2019, 10, 232.	1.5	73
503	The Glucoamylase Inhibitor Acarbose Has a Diet-Dependent and Reversible Effect on the Murine Gut Microbiome. MSphere, 2019, 4, .	1.3	68
504	The neuroactive potential of the human gut microbiota in quality of life and depression. Nature Microbiology, 2019, 4, 623-632.	5.9	1,206
505	Additional Effect of Dietary Fiber in Patients with Type 2 Diabetes Mellitus Using Metformin and Sulfonylurea: An Open-Label, Pilot Trial. Diabetes and Metabolism Journal, 2019, 43, 422.	1.8	10
506	Rectal Microbiome Alterations Associated With Oral Human Immunodeficiency Virus Pre-Exposure Prophylaxis. Open Forum Infectious Diseases, 2019, 6, ofz463.	0.4	9
507	The Interplay between Immune System and Microbiota in Diabetes. Mediators of Inflammation, 2019, 2019, 1-10.	1.4	29
508	Microbial evolution and ecological opportunity in the gut environment. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20191964.	1.2	26
509	Efficacy of UB0316, a multi-strain probiotic formulation in patients with type 2 diabetes mellitus: A double blind, randomized, placebo controlled study. PLoS ONE, 2019, 14, e0225168.	1.1	58
510	Whole-Virome Analysis Sheds Light on Viral Dark Matter in Inflammatory Bowel Disease. Cell Host and Microbe, 2019, 26, 764-778.e5.	5.1	287
511	Jatrorrhizine Balances the Gut Microbiota and Reverses Learning and Memory Deficits in APP/PS1 transgenic mice. Scientific Reports, 2019, 9, 19575.	1.6	37
512	Editorial: Metformin: Beyond Diabetes. Frontiers in Endocrinology, 2019, 10, 851.	1.5	12
513	Role of the microbiome in occurrence, development and treatment of pancreatic cancer. Molecular Cancer, 2019, 18, 173.	7.9	67
514	tmap: an integrative framework based on topological data analysis for population-scale microbiome stratification and association studies. Genome Biology, 2019, 20, 293.	3.8	20
515	Metformin-induced increases in GDF15 are important for suppressing appetite and promoting weight loss. Nature Metabolism, 2019, 1, 1202-1208.	5.1	181
516	Use of the microbiome in the management of children with type 2 diabetes mellitus. Current Opinion in Pediatrics, 2019, 31, 524-530.	1.0	7

#	Article	IF	CITATIONS
517	Impact of occupational exposure on human microbiota. Current Opinion in Allergy and Clinical Immunology, 2019, 19, 86-91.	1.1	13
518	Unaccounted risk of cardiovascular disease: the role of the microbiome in lipid metabolism. Current Opinion in Lipidology, 2019, 30, 125-133.	1.2	2
519	Gut microbiome and cardiometabolic risk. Reviews in Endocrine and Metabolic Disorders, 2019, 20, 399-406.	2.6	23
520	Coronary heart disease and intestinal microbiota. Coronary Artery Disease, 2019, 30, 384-389.	0.3	13
521	The Microbiome and Its Potential for Pharmacology. Handbook of Experimental Pharmacology, 2019, 260, 301-326.	0.9	14
522	Differential effects of psychotropic drugs on microbiome composition and gastrointestinal function. Psychopharmacology, 2019, 236, 1671-1685.	1.5	170
523	Fighting Type-2 Diabetes: Present and Future Perspectives. Current Medicinal Chemistry, 2019, 26, 1891-1907.	1.2	13
524	Dysbiosis of the gut microbiome is associated with thyroid cancer and thyroid nodules and correlated with clinical index of thyroid function. Endocrine, 2019, 64, 564-574.	1.1	78
525	Higher Fecal Short-Chain Fatty Acid Levels Are Associated with Gut Microbiome Dysbiosis, Obesity, Hypertension and Cardiometabolic Disease Risk Factors. Nutrients, 2019, 11, 51.	1.7	312
526	Bi-directional drug-microbiome interactions of anti-diabetics. EBioMedicine, 2019, 39, 591-602.	2.7	82
527	Fecal microbiota analysis of polycystic kidney disease patients according to renal function: A pilot study. Experimental Biology and Medicine, 2019, 244, 505-513.	1.1	10
528	Factors predictive of high-output ileostomy: a retrospective single-center comparative study. Surgery Today, 2019, 49, 482-487.	0.7	34
529	The Gut Microbiome in Pancreatic Disease. Clinical Gastroenterology and Hepatology, 2019, 17, 290-295.	2.4	76
530	Nutritional Influences on Bone Health. , 2019, , .		0
531	Differential effects of metformin glycinate and hydrochloride in glucose production, AMPK phosphorylation and insulin sensitivity in hepatocytes from non-diabetic and diabetic mice. Food and Chemical Toxicology, 2019, 123, 470-480.	1.8	9
532	Gut reaction: impact of systemic diseases on gastrointestinal physiology and drug absorption. Drug Discovery Today, 2019, 24, 417-427.	3.2	42
533	The microbiome and ophthalmic disease. Experimental Biology and Medicine, 2019, 244, 419-429.	1.1	62
535	Of mice and men: Is there a future for metformin in the treatment of hepatic steatosis?. Diabetes, Obesity and Metabolism, 2019, 21, 749-760.	2.2	23

#	Article	IF	CITATIONS
536	Microbiome 101: Studying, Analyzing, and Interpreting Gut Microbiome Data for Clinicians. Clinical Gastroenterology and Hepatology, 2019, 17, 218-230.	2.4	187
537	Impact of Gut Microbiota on Host Glycemic Control. Frontiers in Endocrinology, 2019, 10, 29.	1.5	133
538	Urinary Levels of Trimethylamineâ€Nâ€Oxide and Incident Coronary Heart Disease: A Prospective Investigation Among Urban Chinese Adults. Journal of the American Heart Association, 2019, 8, e010606.	1.6	56
539	Dietary Supplementation With High Fiber Alleviates Oxidative Stress and Inflammatory Responses Caused by Severe Sepsis in Mice Without Altering Microbiome Diversity. Frontiers in Physiology, 2018, 9, 1929.	1.3	22
540	Microbiome as a therapeutic target in alcohol-related liver disease. Journal of Hepatology, 2019, 70, 260-272.	1.8	170
541	The Ocular Microbiome: Molecular Characterisation of a Unique and Low Microbial Environment. Current Eye Research, 2019, 44, 685-694.	0.7	93
542	New insights into oxidative stress and inflammation during diabetes mellitus-accelerated atherosclerosis. Redox Biology, 2019, 20, 247-260.	3.9	397
543	Comparative effects of proximal and distal small intestinal administration of metformin on plasma glucose and glucagonâ€like peptideâ€1, and gastric emptying after oral glucose, in type 2 diabetes. Diabetes, Obesity and Metabolism, 2019, 21, 640-647.	2.2	31
544	Remitted affective disorders and high familial risk of affective disorders associate with aberrant intestinal microbiota. Acta Psychiatrica Scandinavica, 2019, 139, 174-184.	2.2	35
545	Influence of the Human Gut Microbiome on the Metabolic Phenotype. , 2019, , 535-560.		13
546	An insight into gut microbiota and its functionalities. Cellular and Molecular Life Sciences, 2019, 76, 473-493.	2.4	552
547	The gut microbiome: Relationships with disease and opportunities for therapy. Journal of Experimental Medicine, 2019, 216, 20-40.	4.2	547
548	The role of gut microbiome and its interaction with arsenic exposure in carotid intima-media thickness in a Bangladesh population. Environment International, 2019, 123, 104-113.	4.8	30
549	The double burden of diabetes and global infection in low and middle-income countries. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2019, 113, 56-64.	0.7	105
550	Diet, Microbiota, and Bone Health. , 2019, , 143-168.		2
551	The alteration of gut microbiota in newly diagnosed type 2 diabetic patients. Nutrition, 2019, 63-64, 51-56.	1.1	41
552	A dietary intervention with functional foods reduces metabolic endotoxaemia and attenuates biochemical abnormalities by modifying faecal microbiota in people with type 2 diabetes. Diabetes and Metabolism, 2019, 45, 122-131.	1.4	121
553	Emerging Role of the Gut Microbiome in Nonalcoholic Fatty Liver Disease: From Composition to Function. Clinical Gastroenterology and Hepatology, 2019, 17, 296-306.	2.4	121

#	Article	IF	CITATIONS
554	Using Unlabeled Data to Discover Bivariate Causality with Deep Restricted Boltzmann Machines. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2020, 17, 358-364.	1.9	0
555	Fecal Akkermansia muciniphila Is Associated with Body Composition and Microbiota Diversity in Overweight and Obese Women with Breast Cancer Participating in a Presurgical Weight Loss Trial. Journal of the Academy of Nutrition and Dietetics, 2020, 120, 650-659.	0.4	62
556	Gluco-Metabolic Effects of Pharmacotherapy-Induced Modulation of Bile Acid Physiology. Journal of Clinical Endocrinology and Metabolism, 2020, 105, 362-373.	1.8	11
557	Inflammatory Bowel Diseases Increase Risk of Type 2 Diabetes in a Nationwide Cohort Study. Clinical Gastroenterology and Hepatology, 2020, 18, 881-888.e1.	2.4	57
558	Metabolomics and microbial composition increase insight into the impact of dietary differences in cirrhosis. Liver International, 2020, 40, 416-427.	1.9	13
559	The Role of the Microbiome in Drug Response. Annual Review of Pharmacology and Toxicology, 2020, 60, 417-435.	4.2	37
560	GMrepo: a database of curated and consistently annotated human gut metagenomes. Nucleic Acids Research, 2020, 48, D545-D553.	6.5	96
561	Microbiota-Gut-Brain Axis: New Therapeutic Opportunities. Annual Review of Pharmacology and Toxicology, 2020, 60, 477-502.	4.2	227
562	Problems with the concept of gut microbiota dysbiosis. Microbial Biotechnology, 2020, 13, 423-434.	2.0	132
563	<i>Faecalibacterium prausnitzii</i> â€derived microbial antiâ€inflammatory molecule regulates intestinal integrity in diabetes mellitus mice via modulating tight junction protein expression. Journal of Diabetes, 2020, 12, 224-236.	0.8	107
564	Abnormal metabolism of gut microbiota reveals the possible molecular mechanism of nephropathy induced by hyperuricemia. Acta Pharmaceutica Sinica B, 2020, 10, 249-261.	5.7	109
565	Mechanism of glucose″owering by metformin in type 2 diabetes: Role of bile acids. Diabetes, Obesity and Metabolism, 2020, 22, 141-148.	2.2	60
566	Combination of Oligofructose and Metformin Alters the Gut Microbiota and Improves Metabolic Profiles, Contributing to the Potentiated Therapeutic Effects on Diet-Induced Obese Animals. Frontiers in Endocrinology, 2019, 10, 939.	1.5	15
567	Ethanol extract of propolis prevents high-fat diet-induced insulin resistance and obesity in association with modulation of gut microbiota in mice. Food Research International, 2020, 130, 108939.	2.9	79
568	Modulation effect of tea consumption on gut microbiota. Applied Microbiology and Biotechnology, 2020, 104, 981-987.	1.7	41
569	Metagenome-wide association study of gut microbiome revealed novel aetiology of rheumatoid arthritis in the Japanese population. Annals of the Rheumatic Diseases, 2020, 79, 103-111.	0.5	145
570	Role of gut microbiota in type 2 diabetes pathophysiology. EBioMedicine, 2020, 51, 102590.	2.7	954
571	Exercise Training Modulates Gut Microbiota Profile and Improves Endotoxemia. Medicine and Science in Sports and Exercise, 2020, 52, 94-104.	0.2	159

#	Article	IF	CITATIONS
572	Gut microbiome associated with APC gene mutation in patients with intestinal adenomatous polyps. International Journal of Biological Sciences, 2020, 16, 135-146.	2.6	42
573	Effects of 12-week treatment with dapagliflozin and gliclazide on faecal microbiome: Results of a double-blind randomized trial in patients with type 2 diabetes. Diabetes and Metabolism, 2020, 46, 164-168.	1.4	43
574	Current nutritional and pharmacological anti-aging interventions. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165612.	1.8	54
575	Oral microbial community composition is associated with pancreatic cancer: A case ontrol study in Iran. Cancer Medicine, 2020, 9, 797-806.	1.3	42
576	Understanding immune–microbiota interactions in the intestine. Immunology, 2020, 159, 4-14.	2.0	62
577	Comparison of gastrointestinal adverse events with different doses of metformin in the treatment of elderly people with type 2 diabetes. Journal of Clinical Pharmacy and Therapeutics, 2020, 45, 470-476.	0.7	5
578	Combined effects of <i>Scutellaria baicalensis</i> with metformin on glucose tolerance of patients with type 2 diabetes via gut microbiota modulation. American Journal of Physiology - Endocrinology and Metabolism, 2020, 318, E52-E61.	1.8	28
579	Metformin and Risk of Alzheimer's Disease Among Community-Dwelling People With Diabetes: A National Case-Control Study. Journal of Clinical Endocrinology and Metabolism, 2020, 105, e963-e972.	1.8	60
580	<i>Phellinus linteus</i> polysaccharide extract improves insulin resistance by regulating gut microbiota composition. FASEB Journal, 2020, 34, 1065-1078.	0.2	74
581	Gut Microbiome Fermentation Determines the Efficacy of Exercise for Diabetes Prevention. Cell Metabolism, 2020, 31, 77-91.e5.	7.2	223
582	Effects of Non-insulin Anti-hyperglycemic Agents on Gut Microbiota: A Systematic Review on Human and Animal Studies. Frontiers in Endocrinology, 2020, 11, 573891.	1.5	21
583	Nutritional Targeting of the Microbiome as Potential Therapy for Malnutrition and Chronic Inflammation. Nutrients, 2020, 12, 3032.	1.7	10
584	Microbiota and Diabetes Mellitus: Role of Lipid Mediators. Nutrients, 2020, 12, 3039.	1.7	52
585	Berberine alleviates type 2 diabetic symptoms by altering gut microbiota and reducing aromatic amino acids. Biomedicine and Pharmacotherapy, 2020, 131, 110669.	2.5	42
586	Gut microbiota and old age: Modulating factors and interventions for healthy longevity. Experimental Gerontology, 2020, 141, 111095.	1.2	61
587	Metformin elicits antitumour effect by modulation of the gut microbiota and rescues Fusobacterium nucleatum-induced colorectal tumourigenesis. EBioMedicine, 2020, 61, 103037.	2.7	34
588	Oral Metformin and Polymetformin Reprogram Immunosuppressive Microenvironment and Boost Immune Checkpoint Inhibitor Therapy in Colorectal Cancer. Advanced Therapeutics, 2020, 3, 2000168.	1.6	4
589	Effects of antidiabetic drugs that cause glucose excretion directly from the body on mortality. Medicine in Drug Discovery, 2020, 8, 100062.	2.3	1

#	Article	IF	CITATIONS
590	Colchicine increases intestinal permeability, suppresses inflammatory responses, and alters gut microbiota in mice. Toxicology Letters, 2020, 334, 66-77.	0.4	30
591	Gut microbiome-related effects of berberine and probiotics on type 2 diabetes (the PREMOTE study). Nature Communications, 2020, 11, 5015.	5.8	184
592	Rationale, design and baseline characteristics of the Microbiome and Insulin Longitudinal Evaluation Study (<scp>MILES</scp>). Diabetes, Obesity and Metabolism, 2020, 22, 1976-1984.	2.2	9
593	The microbiome: An emerging key player in aging and longevity. Translational Medicine of Aging, 2020, 4, 103-116.	0.6	76
594	Assessment of fecal DNA extraction protocols for metagenomic studies. GigaScience, 2020, 9, .	3.3	35
595	Trial of restarting and tolerating metformin (<scp>TreatMet</scp>). Diabetes, Obesity and Metabolism, 2020, 22, 2189-2192.	2.2	4
596	The Mechanism of Metabolic Influences on the Endogenous GLP-1 by Oral Antidiabetic Medications in Type 2 Diabetes Mellitus. Journal of Diabetes Research, 2020, 2020, 1-11.	1.0	5
597	Interactions Between Gut Microbiota, Host, and Herbal Medicines: A Review of New Insights Into the Pathogenesis and Treatment of Type 2 Diabetes. Frontiers in Cellular and Infection Microbiology, 2020, 10, 360.	1.8	25
598	Imidazole propionate is increased in diabetes and associated with dietary patterns and altered microbial ecology. Nature Communications, 2020, 11, 5881.	5.8	122
599	Dietary Ginsenoside T19 Supplementation Regulates Glucose and Lipid Metabolism via AMPK and PI3K Pathways and Its Effect on Intestinal Microbiota. Journal of Agricultural and Food Chemistry, 2020, 68, 14452-14462.	2.4	26
600	Gastrointestinal Mechanisms Underlying the Cardiovascular Effect of Metformin. Pharmaceuticals, 2020, 13, 410.	1.7	4
601	The gut microbiome: an under-recognised contributor to the COVID-19 pandemic?. Therapeutic Advances in Gastroenterology, 2020, 13, 175628482097491.	1.4	50
602	Short-Chain Fatty Acids: A Soldier Fighting Against Inflammation and Protecting From Tumorigenesis in People With Diabetes. Frontiers in Immunology, 2020, 11, 590685.	2.2	41
603	Fermentation of Foods and Beverages as a Tool for Increasing Availability of Bioactive Compounds. Focus on Short-Chain Fatty Acids. Foods, 2020, 9, 999.	1.9	34
604	Reduction of gut microbial diversity and short chain fatty acids in BALB/c mice exposure to microcystin-LR. Ecotoxicology, 2020, 29, 1347-1357.	1.1	14
605	Current Evidence on the Ocular Surface Microbiota and Related Diseases. Microorganisms, 2020, 8, 1033.	1.6	75
606	Anti-Diabetic Effects of Allulose in Diet-Induced Obese Mice via Regulation of mRNA Expression and Alteration of the Microbiome Composition. Nutrients, 2020, 12, 2113.	1.7	14
607	Phenotypic Screening in C. elegans as a Tool for the Discovery of New Geroprotective Drugs. Pharmaceuticals, 2020, 13, 164.	1.7	18

#	Article	IF	CITATIONS
608	Method development for cross-study microbiome data mining: Challenges and opportunities. Computational and Structural Biotechnology Journal, 2020, 18, 2075-2080.	1.9	27
609	Altered Metabolome of Lipids and Amino Acids Species: A Source of Early Signature Biomarkers of T2DM. Journal of Clinical Medicine, 2020, 9, 2257.	1.0	32
610	Strain-level epidemiology of microbial communities and the human microbiome. Genome Medicine, 2020, 12, 71.	3.6	75
611	Metformin decreases bacterial trimethylamine production and trimethylamine N-oxide levels in db/db mice. Scientific Reports, 2020, 10, 14555.	1.6	22
612	Repurposing Metformin in Nondiabetic People With HIV: Influence on Weight and Gut Microbiota. Open Forum Infectious Diseases, 2020, 7, ofaa338.	0.4	33
613	The role of gut microbiota (GM) and GM-related metabolites in diabetes and obesity. A review of analytical methods used to measure GM-related metabolites in fecal samples with a focus on metabolites' derivatization step. Journal of Pharmaceutical and Biomedical Analysis, 2020, 191, 113617.	1.4	16
614	Is metformin a geroprotector? A peek into the current clinical and experimental data. Mechanisms of Ageing and Development, 2020, 191, 111350.	2.2	12
616	Combination of <i>Scutellaria baicalensis</i> and Metformin Ameliorates Diet-Induced Metabolic Dysregulation in Mice via the Gut–Liver–Brain Axis. The American Journal of Chinese Medicine, 2020, 48, 1409-1433.	1.5	8
617	Rebalancing glucolipid metabolism and gut microbiome dysbiosis by nitrate-dependent alleviation of high-fat diet-induced obesity. BMJ Open Diabetes Research and Care, 2020, 8, e001255.	1.2	17
618	Gut microbes from the phylogenetically diverse genus <i>Eubacterium</i> and their various contributions to gut health. Gut Microbes, 2020, 12, 1802866.	4.3	238
619	Disease, Drugs and Dysbiosis: Understanding Microbial Signatures in Metabolic Disease and Medical Interventions. Microorganisms, 2020, 8, 1381.	1.6	9
620	Relevant Features of Polypharmacologic Human-Target Antimicrobials Discovered by Machine-Learning Techniques. Pharmaceuticals, 2020, 13, 204.	1.7	1
621	Metagenomic analysis of the gut microbiome in atherosclerosis patients identify cross ohort microbial signatures and potential therapeutic target. FASEB Journal, 2020, 34, 14166-14181.	0.2	44
622	The gut microbiota in kidney disease. Science, 2020, 369, 1426-1427.	6.0	21
623	The Effects of Metformin on the Gut Microbiota of Patients with Type 2 Diabetes: A Two-Center, Quasi-Experimental Study. Life, 2020, 10, 195.	1.1	20
624	Gut Microbial Changes in Diabetic db/db Mice and Recovery of Microbial Diversity upon Pirfenidone Treatment. Microorganisms, 2020, 8, 1347.	1.6	18
625	S100A8 and S100A9 Are Important for Postnatal Development of Gut Microbiota and Immune System in Mice and Infants. Gastroenterology, 2020, 159, 2130-2145.e5.	0.6	64
626	A Summary of the Fifth Annual Virology Education HIV Microbiome Workshop. AIDS Research and Human Retroviruses, 2020, 36, 886-895.	0.5	2

#	Article	IF	CITATIONS
627	<p>Effects of Metformin on the Gut Microbiota in Obesity and Type 2 Diabetes Mellitus</p> . Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 2020, Volume 13, 5003-5014.	1.1	99
628	A Metagenome-Wide Association Study of Gut Microbiome in Patients With Multiple Sclerosis Revealed Novel Disease Pathology. Frontiers in Cellular and Infection Microbiology, 2020, 10, 585973.	1.8	26
629	The Emerging Role of Microbiota and Microbiome in Pancreatic Ductal Adenocarcinoma. Biomedicines, 2020, 8, 565.	1.4	15
630	Distinct Features of Gut Microbiota in High-Altitude Tibetan and Middle-Altitude Han Hypertensive Patients. Cardiology Research and Practice, 2020, 2020, 1-15.	0.5	6
631	Host variables confound gut microbiota studies of human disease. Nature, 2020, 587, 448-454.	13.7	324
632	Interactions Between Therapeutics for Metabolic Disease, Cardiovascular Risk Factors, and Gut Microbiota. Frontiers in Cellular and Infection Microbiology, 2020, 10, 530160.	1.8	10
633	The Microbiota and Gut-Related Disorders: Insights from Animal Models. Cells, 2020, 9, 2401.	1.8	18
634	Odd-numbered agaro-oligosaccharides alleviate type 2 diabetes mellitus and related colonic microbiota dysbiosis in mice. Carbohydrate Polymers, 2020, 240, 116261.	5.1	41
635	The gut microbiome and frailty. Translational Research, 2020, 221, 23-43.	2.2	22
636	Bioavailability Based on the Gut Microbiota: a New Perspective. Microbiology and Molecular Biology Reviews, 2020, 84, .	2.9	32
637	Hypoglycemic effects and modulation of gut microbiota of diabetic mice by saponin from <i>Polygonatum sibiricum</i> . Food and Function, 2020, 11, 4327-4338.	2.1	39
638	Targeting the microbiota in pharmacology of psychiatric disorders. Pharmacological Research, 2020, 157, 104856.	3.1	35
639	Sphingolipids produced by gut bacteria enter host metabolic pathways impacting ceramide levels. Nature Communications, 2020, 11, 2471.	5.8	172
640	Statin therapy is associated with lower prevalence of gut microbiota dysbiosis. Nature, 2020, 581, 310-315.	13.7	283
641	Longitudinal Analysis of Serum Cytokine Levels and Gut Microbial Abundance Links IL-17/IL-22 With <i>Clostridia</i> and Insulin Sensitivity in Humans. Diabetes, 2020, 69, 1833-1842.	0.3	10
642	Current and Novel Approaches to Mitigate Cardiometabolic Adverse Effects of Second-Generation Antipsychotics. International Journal of Neuropsychopharmacology, 2020, 23, 491-495.	1.0	3
643	A systematic machine learning and data type comparison yields metagenomic predictors of infant age, sex, breastfeeding, antibiotic usage, country of origin, and delivery type. PLoS Computational Biology, 2020, 16, e1007895.	1.5	21
644	Shortâ€term highâ€intensity interval training exercise does not affect gut bacterial community diversity or composition of lean and overweight men. Experimental Physiology, 2020, 105, 1268-1279.	0.9	30

ARTICLE IF CITATIONS Metformin Biodistribution: A Key to Mechanisms of Action?. Journal of Clinical Endocrinology and 1.8 14 645 Metabolism, 2020, 105, . Dendrobium officinale Kimura et Migo and American ginseng mixture: A Chinese herbal formulation 646 for gut microbiota modulation. Chinese Journal of Natural Medicines, 2020, 18, 446-459. 647 Interaction between drugs and the gut microbiome. Gut, 2020, 69, 1510-1519. 451 6.1 The homogenous polysaccharide SY01-23 purified from leaf of Morus alba L. has bioactivity on human gut Bacteroides ovatús and Bacteroides cellulosilyticus. International Journal of Biological 648 Macromolecules, 2020, 158, 698-707. Impact of the Gut Microbiota on Atorvastatin Mediated Effects on Blood Lipids. Journal of Clinical 649 1.0 15 Medicine, 2020, 9, 1596. The quest to slow ageing through drug discovery. Nature Reviews Drug Discovery, 2020, 19, 513-532. 21.5 Transcriptomic landscape profiling of metforminâ€treated healthy mice: Implication for potential 651 hypertension risk when prophylactically used. Journal of Cellular and Molecular Medicine, 2020, 24, 1.6 6 8138-8150. Correlation and association analyses in microbiome study integrating multiomics in health and disease. Progress in Molecular Biology and Translational Science, 2020, 171, 309-491. The impact of metabolites derived from the gut microbiota on immune regulation and diseases. 653 1.8 19 International Immunology, 2020, 32, 629-636. Serum metabolites reflecting gut microbiome alpha diversity predict type 2 diabetes. Gut Microbes, 654 4.3 2020, 11, 1632-1642. A specific gut microbiota and metabolomic profiles shifts related to antidiabetic action: The similar and complementary antidiabetic properties of type 3 resistant starch from Canna edulis and 655 3.133 metformin. Pharmacological Research, 2020, 159, 104985. A common glomerular transcriptomic signature distinguishes diabetic kidney disease from other 1.2 656 kidney diseases in humans and mice. Current Research in Translational Medicine, 2020, 68, 225-236. Microbiota and Lifestyle: A Special Focus on Diet. Nutrients, 2020, 12, 1776. 657 1.7 102 Revealing links between gut microbiome and its fungal community in Type 2 Diabetes Mellitus among 1.6 Emirati subjects: A pilot study. Scientific Reports, 2020, 10, 9624. The food-gut axis: lactic acid bacteria and their link to food, the gut microbiome and human health. 659 3.9 139 FEMS Microbiology Reviews, 2020, 44, 454-489. An Insight into the Changing Scenario of Gut Microbiome during Type 2 Diabetes., 0,,. How gut microbiota relate to the oral antidiabetic treatment of type 2 diabetes. Medicine in 661 0.7 5 Microecology, 2020, 3, 100007. A comparison between whole mung bean and decorticated mung bean: beneficial effects on the regulation of serum glucose and lipid disorders and the gut microbiota in high-fat diet and 2.1 streptozotocin-induced prediabetic mice. Food and Function, 2020, 11, 5525-5537.

#	Article		CITATIONS
663	The critical role of Faecalibacterium prausnitzii in human health: An overview. Microbial Pathogenesis, 2020, 149, 104344.	1.3	102
664	Gut Microbiome Toxicity: Connecting the Environment and Gut Microbiome-Associated Diseases. Toxics, 2020, 8, 19.	1.6	66
665	Regulation of Cancer Immune Checkpoints. Advances in Experimental Medicine and Biology, 2020, , .	0.8	7
666	Investigating the Gut Microbiota Composition of Individuals with Attention-Deficit/Hyperactivity Disorder and Association with Symptoms. Microorganisms, 2020, 8, 406.	1.6	57
667	Comparative study on antidiabetic function of six legume crude polysaccharides. International Journal of Biological Macromolecules, 2020, 154, 25-30.	3.6	40
668	Interpretable and accurate prediction models for metagenomics data. GigaScience, 2020, 9, .	3.3	34
669	Why the endothelium? The endothelium as a target to reduce diabetes-associated vascular disease. Canadian Journal of Physiology and Pharmacology, 2020, 98, 415-430.	0.7	36
670	Metformin effect on gut microbiota: insights for HIV-related inflammation. AIDS Research and Therapy, 2020, 17, 10.	0.7	43
671	Metabolites Linking the Gut Microbiome with Risk for Type 2 Diabetes. Current Nutrition Reports, 2020, 9, 83-93.	2.1	48
672	Immune induction identified by TMT proteomics analysis in <i>Fusobacterium nucleatum</i> autoinducer-2 treated macrophages. Expert Review of Proteomics, 2020, 17, 175-185.	1.3	12
673	Exploring the role of the metabolite-sensing receptor GPR109a in diabetic nephropathy. American Journal of Physiology - Renal Physiology, 2020, 318, F835-F842.	1.3	8
674	Gut microbiota and human NAFLD: disentangling microbial signatures from metabolic disorders. Nature Reviews Gastroenterology and Hepatology, 2020, 17, 279-297.	8.2	539
675	Type 2 diabetes influences bacterial tissue compartmentalisation in human obesity. Nature Metabolism, 2020, 2, 233-242.	5.1	158
676	Novel polysaccharide from Chaenomeles speciosa seeds: Structural characterization, α-amylase and α-glucosidase inhibitory activity evaluation. International Journal of Biological Macromolecules, 2020, 153, 755-766.	3.6	81
677	Adherence to metformin and the onset of rheumatoid arthritis: a population-based cohort study. Scandinavian Journal of Rheumatology, 2020, 49, 173-180.	0.6	20
678	Interactions of commensal and pathogenic microorganisms with the mucus layer in the colon. Gut Microbes, 2020, 11, 680-690.	4.3	45
679	Gut Microbiome Profiles Are Associated With Type 2 Diabetes in Urban Africans. Frontiers in Cellular and Infection Microbiology, 2020, 10, 63.	1.8	95
680	The gut microbiome in Parkinson's disease: A culprit or a bystander?. Progress in Brain Research, 2020, 252, 357-450.	0.9	70

#	Article		CITATIONS
681	Metformin Reduces Aging-Related Leaky Gut and Improves Cognitive Function by Beneficially Modulating Gut Microbiome/Goblet Cell/Mucin Axis. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2020, 75, e9-e21.	1.7	83
682	The Effects of Nutrition on the Gastrointestinal Microbiome of Cats and Dogs: Impact on Health and Disease. Frontiers in Microbiology, 2020, 11, 1266.	1.5	100
683	Arrhythmic Gut Microbiome Signatures Predict Risk of Type 2 Diabetes. Cell Host and Microbe, 2020, 28, 258-272.e6.	5.1	160
684	<p>Metformin and Micronutrient Status in Type 2 Diabetes: Does Polypharmacy Involving Acid-Suppressing Medications Affect Vitamin B12 Levels?</p> . Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 2020, Volume 13, 2093-2108.	1.1	22
685	Gut microbiome, big data and machine learning to promote precision medicine for cancer. Nature Reviews Gastroenterology and Hepatology, 2020, 17, 635-648.	8.2	172
686	The Gut Microbiota in Prediabetes and Diabetes: A Population-Based Cross-Sectional Study. Cell Metabolism, 2020, 32, 379-390.e3.	7.2	233
687	The Noncanonical Pathway for In Vivo Nitric Oxide Generation: The Nitrate-Nitrite-Nitric Oxide Pathway. Pharmacological Reviews, 2020, 72, 692-766.	7.1	133
688	Targeting the Intestinal Microbiota to Prevent Type 2 Diabetes and Enhance the Effect of Metformin on Glycaemia: A Randomised Controlled Pilot Study. Nutrients, 2020, 12, 2041.	1.7	65
689	The Gut–Eye Axis: Lessons Learned from Murine Models. Ophthalmology and Therapy, 2020, 9, 499-513.	1.0	61
690	Cyclocarya paliurus polysaccharides alleviate type 2 diabetic symptoms by modulating gut microbiota and short-chain fatty acids. Phytomedicine, 2020, 77, 153268.	2.3	114
691	Gut microbiota differs a decade after bariatric surgery relative to a nonsurgical comparison group. Surgery for Obesity and Related Diseases, 2020, 16, 1304-1311.	1.0	8
692	Changes in microbiome and metabolomic profiles of fecal samples stored with stabilizing solution at room temperature: a pilot study. Scientific Reports, 2020, 10, 1789.	1.6	22
693	Main gut bacterial composition differs between patients with type 1 and type 2 diabetes and non-diabetic adults. Journal of Diabetes and Metabolic Disorders, 2020, 19, 265-271.	0.8	28
694	Integrated 16S rRNA Sequencing, Metagenomics, and Metabolomics to Characterize Gut Microbial Composition, Function, and Fecal Metabolic Phenotype in Non-obese Type 2 Diabetic Goto-Kakizaki Rats. Frontiers in Microbiology, 2019, 10, 3141.	1.5	57
695	Impact of intestinal dysbiosis-related drugs on the efficacy of immune checkpoint inhibitors in clinical practice. Clinical and Translational Oncology, 2020, 22, 1778-1785.	1.2	10
696	Mechanical properties measured by atomic force microscopy define health biomarkers in ageing C. elegans. Nature Communications, 2020, 11, 1043.	5.8	29
698	Enterotype <i>Bacteroides</i> Is Associated with a High Risk in Patients with Diabetes: A Pilot Study. Journal of Diabetes Research, 2020, 2020, 1-11.	1.0	61
699	The potential role of bacteria in pancreatic cancer: a systematic review. Carcinogenesis, 2020, 41, 397-404.	1.3	17

#	Article		CITATIONS
701	Lessons from bambooâ€eating pandas and their gut microbiome: Gut microbiome flow and applications. Evolutionary Applications, 2020, 13, 615-619.		8
702	Woody Plant Declines. What's Wrong with the Microbiome?. Trends in Plant Science, 2020, 25, 381-394.	4.3	48
703	The role of the microbiota in sedentary lifestyle disorders and ageing: lessons from the animal kingdom. Journal of Internal Medicine, 2020, 287, 271-282.	2.7	44
704	Impact of commonly used drugs on the composition and metabolic function of the gut microbiota. Nature Communications, 2020, 11, 362.	5.8	416
705	Different Effects of Premature Infant Formula and Breast Milk on Intestinal Microecological Development in Premature Infants. Frontiers in Microbiology, 2019, 10, 3020.	1.5	22
706	Le transfert de microbiote fécalÂ: quel potentiel thérapeutique dans le traitement des maladies métaboliques�. Nutrition Clinique Et Metabolisme, 2020, 34, 108-115.	0.2	1
707	The hunt for a healthy microbiome. Nature, 2020, 577, S6-S8.	13.7	59
708	GDF15 mediates the effects of metformin on body weight and energy balance. Nature, 2020, 578, 444-448.	13.7	326
709	The progress of gut microbiome research related to brain disorders. Journal of Neuroinflammation, 2020, 17, 25.	3.1	252
710	Characterization of the Gut Microbiota of Individuals at Different T2D Stages Reveals a Complex Relationship with the Host. Microorganisms, 2020, 8, 94.	1.6	44
711	Considering gut microbiota in treatment of type 2 diabetes mellitus. Gut Microbes, 2020, 11, 253-264.	4.3	87
712	Metformin inhibits the activation of melanocortin receptors 2 and 3 in vitro: A possible mechanism for its anti-androgenic and weight balancing effects in vivo?. Journal of Steroid Biochemistry and Molecular Biology, 2020, 200, 105684.	1.2	5
713	The oral microbiome profile and biomarker in Chinese type 2 diabetes mellitus patients. Endocrine, 2020, 68, 564-572.	1.1	29
714	The Gut Microbial Diversity of Newly Diagnosed Diabetics but Not of Prediabetics Is Significantly Different from That of Healthy Nondiabetics. MSystems, 2020, 5, .	1.7	64
715	Gut microbiota of obese subjects with Prader-Willi syndrome is linked to metabolic health. Gut, 2020, 69, 1229-1238.	6.1	33
716	Aberrant gut microbiota alters host metabolome and impacts renal failure in humans and rodents. Gut, 2020, 69, 2131-2142.	6.1	232
717	Rapid LA-REIMS and comprehensive UHPLC-HRMS for metabolic phenotyping of feces. Talanta, 2020, 217, 121043.	2.9	16
718	Microbiota Metabolites in Health and Disease. Annual Review of Immunology, 2020, 38, 147-170.	9.5	138

#	Article		CITATIONS
719	MICOM: Metagenome-Scale Modeling To Infer Metabolic Interactions in the Gut Microbiota. MSystems, 2020, 5, .	1.7	126
720	Reviews on New Drug Targets in Age-Related Disorders. Advances in Experimental Medicine and Biology, 2020, , .	0.8	5
721	Development of qPCR platform with probes for quantifying prevalent and biomedically relevant human gut microbial taxa. Molecular and Cellular Probes, 2020, 52, 101570.	0.9	14
722	Cultivation of the Next-Generation Probiotic Akkermansia muciniphila, Methods of Its Safe Delivery to the Intestine, and Factors Contributing to Its Growth In Vivo. Current Microbiology, 2020, 77, 1363-1372.	1.0	11
723	Metaproteomics Reveals Growth Phase-Dependent Responses of an <i>In Vitro</i> Gut Microbiota to Metformin. Journal of the American Society for Mass Spectrometry, 2020, 31, 1448-1458.	1.2	7
724	Up-regulation of miR-139-5p protects diabetic mice from liver tissue damage and oxidative stress through inhibiting Notch signaling pathway. Acta Biochimica Et Biophysica Sinica, 2020, 52, 390-400.	0.9	13
725	Quantifying technical confounders in microbiome studies. Cardiovascular Research, 2021, 117, 863-875.	1.8	40
726	Human microbiome and homeostasis: insights into the key role of prebiotics, probiotics, and symbiotics. Critical Reviews in Food Science and Nutrition, 2021, 61, 1415-1428.	5.4	20
727	Metformin, Microbiome and Protection Against Colorectal Cancer. Digestive Diseases and Sciences, 2021, 66, 1409-1414.	1.1	18
728	Novel complementary coloprotective effects of metformin and MCC950 by modulating HSP90/NLRP3 interaction and inducing autophagy in rats. Inflammopharmacology, 2021, 29, 237-251.	1.9	34
729	The alteration of the gut microbiome by immunosuppressive agents used in solid organ transplantation. Transplant Infectious Disease, 2021, 23, e13397.	0.7	26
730	Classical methods and perspectives for manipulating the human gut microbial ecosystem. Critical Reviews in Food Science and Nutrition, 2021, 61, 234-258.	5.4	13
731	Toxicological safety evaluation of pasteurized <i>Akkermansia muciniphila</i> . Journal of Applied Toxicology, 2021, 41, 276-290.	1.4	30
732	Aspirin in the Prevention of Colorectal Neoplasia. Annual Review of Medicine, 2021, 72, 415-430.	5.0	37
733	Colistin and amoxicillin combinatorial exposure alters the human intestinal microbiota and antibiotic resistome in the simulated human intestinal microbiota. Science of the Total Environment, 2021, 750, 141415.	3.9	14
734	Characterization of gut microbiota in polycystic ovary syndrome: Findings from a lean population. European Journal of Clinical Investigation, 2021, 51, e13417.	1.7	30
735	Therapeutic mechanisms of traditional Chinese medicine to improve metabolic diseases via the gut microbiota. Biomedicine and Pharmacotherapy, 2021, 133, 110857.	2.5	67
736	The Healthy Microbiome—What Is the Definition of a Healthy Gut Microbiome?. Gastroenterology, 2021, 160, 483-494.	0.6	174

#	Article		CITATIONS
737	Metabolism and Metabolic Disorders and the Microbiome: The Intestinal Microbiota Associated With Obesity, Lipid Metabolism, and Metabolic Health—Pathophysiology and Therapeutic Strategies. Gastroenterology, 2021, 160, 573-599.	0.6	169
738	Understanding the impact of age-related changes in the gut microbiome on chronic diseases and the prospect of elderly-specific dietary interventions. Current Opinion in Biotechnology, 2021, 70, 48-55.	3.3	22
739	Review of the relationships among polysaccharides, gut microbiota, and human health. Food Research International, 2021, 140, 109858.	2.9	169
740	The Gut Microbiome in Polycystic Ovary Syndrome and Its Association with Metabolic Traits. Journal of Clinical Endocrinology and Metabolism, 2021, 106, 858-871.	1.8	31
741	Metformin treatment and gastrointestinal symptoms in youth: Findings from a large tertiary care referral center. Pediatric Diabetes, 2021, 22, 182-191.	1.2	4
742	The role of the gut microbiome and its metabolites in metabolic diseases. Protein and Cell, 2021, 12, 360-373.	4.8	175
743	Modulating the Gut Microbiota of Humans by Dietary Intervention with Plant Glycans. Applied and Environmental Microbiology, 2021, 87, .	1.4	13
744	Alterations of the Treatment-Naive Gut Microbiome in Newly Diagnosed Hepatitis C Virus Infection. ACS Infectious Diseases, 2021, 7, 1059-1068.	1.8	17
745	Gut microbiome in Schizophrenia: Altered functional pathways related to immune modulation and atherosclerotic risk. Brain, Behavior, and Immunity, 2021, 91, 245-256.	2.0	44
746	Quorum sensing: a new prospect for the management of antimicrobial-resistant infectious diseases. Expert Review of Anti-Infective Therapy, 2021, 19, 571-586.	2.0	24
747	Gut microbiota in human metabolic health and disease. Nature Reviews Microbiology, 2021, 19, 55-71.	13.6	1,960
748	Major Depressive Disorder and gut microbiota – Association not causation. A scoping review. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2021, 106, 110111.	2.5	32
749	Gut microbiome alterations and its link to corticosteroid resistance in immune thrombocytopenia. Science China Life Sciences, 2021, 64, 766-783.	2.3	10
750	Cellular and Molecular Mechanisms of Metformin Action. Endocrine Reviews, 2021, 42, 77-96.	8.9	279
751	A geroscience perspective on immune resilience and infectious diseases: a potential case for metformin. GeroScience, 2021, 43, 1093-1112.	2.1	33
752	A New Understanding of Metformin. , 2021, , .		1
753	Maternal gut microbiota reflecting poor diet quality is associated with spontaneous preterm birth in a prospective cohort study. American Journal of Clinical Nutrition, 2021, 113, 602-611.	2.2	19
754	Ethnicity influences the gut microbiota of individuals sharing a geographical location: a cross-sectional study from a middle-income country. Scientific Reports, 2021, 11, 2618.	1.6	73

#	Article	IF	CITATIONS
755	Characterization of Oral and Gut Microbiota in Patients with Psoriatic Diseases: A Systematic Review. Acta Dermato-Venereologica, 2021, 101, adv00512.	0.6	8
756	Gut Microbiota Dysbiosis in Non-alcoholic Fatty Liver Disease. , 2021, , 475-475.		0
757	Metabolism of Non-Digestible Dietary Carbohydrates. , 2022, , 102-123.		0
758	Metformin acts on the gut-brain axis to ameliorate antipsychotic-induced metabolic dysfunction. BioScience Trends, 2021, 15, 321-329.	1.1	6
759	Medication and Health Risks Associated With Neglected Side Effects on Gut Microbiota. , 2021, , .		0
760	Metagenomic Analysis of the Gut Microbiome Reveals Enrichment of Menaquinones (Vitamin K2) Pathway in Diabetes Mellitus. Diabetes and Metabolism Journal, 2021, 45, 77-85.	1.8	22
761	Efficacy and safety of metformin in the treatment of gestational diabetes. Medicine (United States), 2021, 100, e23954.	0.4	3
762	Progressive Shifts in the Gut Microbiome Reflect Prediabetes and Diabetes Development in a Treatment-Naive Mexican Cohort. Frontiers in Endocrinology, 2020, 11, 602326.	1.5	13
763	From taxonomy to metabolic output: what factors define gut microbiome health?. Gut Microbes, 2021, 13, 1-20.	4.3	19
764	Gut microbiota and hypertension, diabetes, and other cardiovascular risk factors. , 2021, , 375-390.		Ο
765	The Association of Targeted Gut Microbiota with Body Composition in Type 2 Diabetes Mellitus. International Journal of Medical Sciences, 2021, 18, 511-519.	1.1	27
766	Genetic Variation in Holobionts. The Microbiomes of Humans, Animals, Plants, and the Environment, 2021, , 275-315.	0.2	0
767	Multiple bacteria associated with the more dysbiotic genitourinary microbiomes in patients with type 2 diabetes mellitus. Scientific Reports, 2021, 11, 1824.	1.6	6
768	Gut Microbiome Signatures in Health and Diseases. , 2022, , 344-353.		0
769	Comparison of gut microbiota structure and Actinobacteria abundances in healthy young adults and elderly subjects: a pilot study. BMC Microbiology, 2021, 21, 13.	1.3	19
770	Effect of inulin-type fructans on appetite in patients with type 2 diabetes: a randomised controlled crossover trial. Journal of Nutritional Science, 2021, 10, e72.	0.7	5
771	Comprehensive Gut Microbiota and Drug Processing. , 2021, , .		0
772	Altered gut microbial metabolites could mediate the effects of risk factors in Covidâ€19. Reviews in Medical Virology, 2021, 31, 1-13.	3.9	40

#	Article		CITATIONS
773	Effect of <i>Lactobacillus fermentum</i> TKSN041 on improving streptozotocin-induced type 2 diabetes in rats. Food and Function, 2021, 12, 7938-7953.	2.1	16
774	Repurposing of Metformin as a Multifaceted and Multitasking Preventative and Treatment for Cancer. , 0, , .		1
775	Alterations in the gut bacterial microbiome in people with type 2 diabetes mellitus and diabetic retinopathy. Scientific Reports, 2021, 11, 2738.	1.6	91
776	Low Bifidobacterium Abundance in the Lower Gut Microbiota Is Associated With Helicobacter pylori-Related Gastric Ulcer and Gastric Cancer. Frontiers in Microbiology, 2021, 12, 631140.	1.5	32
777	The Fecal Microbiota Is Already Altered in Normoglycemic Individuals Who Go on to Have Type 2 Diabetes. Frontiers in Cellular and Infection Microbiology, 2021, 11, 598672.	1.8	23
778	Alterations of Gut Microbiota by Overnutrition Impact Gluconeogenic Gene Expression and Insulin Signaling. International Journal of Molecular Sciences, 2021, 22, 2121.	1.8	16
779	Congruent microbiome signatures in fibrosis-prone autoimmune diseases: IgG4-related disease and systemic sclerosis. Genome Medicine, 2021, 13, 35.	3.6	26
780	Evaluation of the gut microbiota after metformin intervention in children with obesity: A metagenomic study of a randomized controlled trial. Biomedicine and Pharmacotherapy, 2021, 134, 111117.	2.5	7
781	The gut microbiome modulates the protective association between a Mediterranean diet and cardiometabolic disease risk. Nature Medicine, 2021, 27, 333-343.	15.2	179
782	Microbiome Search Engine 2: a Platform for Taxonomic and Functional Search of Global Microbiomes on the Whole-Microbiome Level. MSystems, 2021, 6, .	1.7	14
783	Modulation effects of <i>Dendrobium officinale</i> on gut microbiota of type 2 diabetes model mice. FEMS Microbiology Letters, 2021, 368, .	0.7	8
784	Microbiota and their Influence in the Human Body. Journal of Pure and Applied Microbiology, 2021, 15, 42-52.	0.3	4
785	Drug Repurposing Opportunities in Pancreatic Ductal Adenocarcinoma. Pharmaceuticals, 2021, 14, 280.	1.7	11
786	<i>Lycium ruthenicum</i> Anthocyanins Attenuate Highâ€Fat Dietâ€Induced Colonic Barrier Dysfunction and Inflammation in Mice by Modulating the Gut Microbiota. Molecular Nutrition and Food Research, 2021, 65, e2000745.	1.5	85
788	History of Diverticulitis and Risk of Incident Cardiovascular Disease in Men: A Cohort Study. Digestive Diseases and Sciences, 2021, , 1.	1.1	7
789	Young at Gut—Turning Back the Clock with the Gut Microbiome. Microorganisms, 2021, 9, 555.	1.6	9
790	Differences in the Microbial Composition of Hemodialysis Patients Treated with and without β-Blockers. Journal of Personalized Medicine, 2021, 11, 198.	1.1	3
791	Towards a mechanistic understanding of reciprocal drug–microbiome interactions. Molecular Systems Biology, 2021, 17, e10116.	3.2	64

#	Article		CITATIONS
793	Treatment regimens may compromise gut-microbiome-derived signatures for liver cirrhosis. Cell Metabolism, 2021, 33, 455-456.		10
794	C. elegans: A biosensor for host–microbe interactions. Lab Animal, 2021, 50, 127-135.	0.2	11
795	Are Faecal Microbiota Analyses on Species-Level Suitable Clinical Biomarkers? A Pilot Study in Subjects with Morbid Obesity. Microorganisms, 2021, 9, 664.	1.6	4
796	Lantibiotics Produced by Oral Inhabitants as a Trigger for Dysbiosis of Human Intestinal Microbiota. International Journal of Molecular Sciences, 2021, 22, 3343.	1.8	5
797	Differential gut microbiota composition between type 2 diabetes mellitus patients and healthy controls: A systematic review. Diabetes Research and Clinical Practice, 2021, 173, 108689.	1.1	24
798	Therapeutic Advances in Diabetes, Autoimmune, and Neurological Diseases. International Journal of Molecular Sciences, 2021, 22, 2805.	1.8	8
799	Mediterranean diet consumption affects the endocannabinoid system in overweight and obese subjects: possible links with gut microbiome, insulin resistance and inflammation. European Journal of Nutrition, 2021, 60, 3703-3716.	1.8	33
800	The Relationship between the Gut Microbiome and Metformin as a Key for Treating Type 2 Diabetes Mellitus. International Journal of Molecular Sciences, 2021, 22, 3566.	1.8	62
801	Fasting alters the gut microbiome reducing blood pressure and body weight in metabolic syndrome patients. Nature Communications, 2021, 12, 1970.		108
802	Metformin Strongly Affects Gut Microbiome Composition in High-Fat Diet-Induced Type 2 Diabetes Mouse Model of Both Sexes. Frontiers in Endocrinology, 2021, 12, 626359.	1.5	30
803	Sex- and Gender-Based Pharmacological Response to Drugs. Pharmacological Reviews, 2021, 73, 730-762.	7.1	80
804	Trans-ethnic gut microbiota signatures of type 2 diabetes in Denmark and India. Genome Medicine, 2021, 13, 37.	3.6	34
805	Effect of Yuzu (Citrus junos) Seed Limonoids and Spermine on Intestinal Microbiota and Hypothalamic Tissue in the Sandhoff Disease Mouse Model. Medical Sciences (Basel, Switzerland), 2021, 9, 17.	1.3	3
806	Characteristics of the gut microbiome in patients with prediabetes and type 2 diabetes. PeerJ, 2021, 9, e10952.	0.9	20
807	Clinical impact of probiotics on the efficacy of <scp>antiâ€PD</scp> â€1 monotherapy in patients with nonsmall cell lung cancer: A multicenter retrospective survival analysis study with inverse probability of treatment weighting. International Journal of Cancer, 2021, 149, 473-482.	2.3	35
808	Role of Bile Acids in the Regulation of Food Intake, and Their Dysregulation in Metabolic Disease. Nutrients, 2021, 13, 1104.	1.7	53
809	Butyrate in Energy Metabolism: There Is Still More to Learn. Trends in Endocrinology and Metabolism, 2021, 32, 159-169.	3.1	136
810	Manipulation of intestinal microbiome as potential treatment for insulin resistance and type 2 diabetes. European Journal of Nutrition, 2021, 60, 2361-2379.	1.8	25

#	Article		CITATIONS
811	Microbiome meta-analysis and cross-disease comparison enabled by the SIAMCAT machine learning toolbox. Genome Biology, 2021, 22, 93.	3.8	122
812	Modulating the Microbiota as a Therapeutic Intervention for Type 2 Diabetes. Frontiers in Endocrinology, 2021, 12, 632335.	1.5	63
813	The Gut Microbiome in Hypertension. Circulation Research, 2021, 128, 934-950.	2.0	86
814	A critical assessment of gene catalogs for metagenomic analysis. Bioinformatics, 2021, 37, 2848-2857.	1.8	15
815	Metabolic syndrome cannot mask the changes of faecal microbiota compositions caused by primary hepatocellular carcinoma. Letters in Applied Microbiology, 2021, 73, 73-80.	1.0	10
816	Potential Roles of Oral Microbiota in the Pathogenesis of Immunoglobin A Nephropathy. Frontiers in Cellular and Infection Microbiology, 2021, 11, 652837.	1.8	6
817	Gut microbiota compositions and metabolic functions in type 2 diabetes differ with glycemic durability to metformin monotherapy. Diabetes Research and Clinical Practice, 2021, 174, 108731.	1.1	8
818	Ge-Gen-Jiao-Tai-Wan Affects Type 2 Diabetic Rats by Regulating Gut Microbiota and Primary Bile Acids. Evidence-based Complementary and Alternative Medicine, 2021, 2021, 1-13.	0.5	8
819	Nutritional Effects of the Enteral Nutritional Formula on Regulation of Gut Microbiota and Metabolic Level in Type 2 Diabetes Mellitus Mice. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 2021, Volume 14, 1855-1869.		5
820	Association of diabetes and microbiota: An update. Saudi Journal of Biological Sciences, 2021, 28, 4446-4454.	1.8	14
821	Diabetes Mellitus'ta Mikrobiyotanın Rolü ve Hedeflenmesi. Turkish Journal of Diabetes and Obesity, 2021, 5, 51-58.	0.0	2
822	Drug Response Diversity: A Hidden Bacterium?. Journal of Personalized Medicine, 2021, 11, 345.	1.1	2
823	A Bibliometrics Analysis of Metformin Development From 1980 to 2019. Frontiers in Pharmacology, 2021, 12, 645810.	1.6	17
824	Metformin Modifies the Gut Microbiota of Mice Infected with Helicobacter pylori. Pharmaceuticals, 2021, 14, 329.	1.7	3
825	Gut Microbiome of Indonesian Adults Associated with Obesity and Type 2 Diabetes: A Cross-Sectional Study in an Asian City, Yogyakarta. Microorganisms, 2021, 9, 897.	1.6	19
826	An altered microbiota pattern precedes Type 2 diabetes mellitus development: From the CORDIOPREV study. Journal of Advanced Research, 2022, 35, 99-108.	4.4	22
827	Human Gut Microbiome and Liver Diseases: From Correlation to Causation. Microorganisms, 2021, 9, 1017.	1.6	16
828	Dietary Fibre Modulates the Gut Microbiota. Nutrients, 2021, 13, 1655.	1.7	225

#	Article		CITATIONS
829	Gene-level metagenomic architectures across diseases yield high-resolution microbiome diagnostic indicators. Nature Communications, 2021, 12, 2907.	5.8	33
830	Advantages of the use of metformin in patients with impaired uric acid metabolism. Terapevticheskii Arkhiv, 2021, 93, .	0.2	2
831	Metformin Affects Gut Microbiome Composition and Function and Circulating Short-Chain Fatty Acids: A Randomized Trial. Diabetes Care, 2021, 44, 1462-1471.	4.3	77
832	Gut microbiome differences among Mexican Americans with and without type 2 diabetes mellitus. PLoS ONE, 2021, 16, e0251245.	1.1	6
833	Effect of metformin on the highâ€density lipoprotein proteome in youth with type 1 diabetes. Endocrinology, Diabetes and Metabolism, 2021, 4, e00261.	1.0	4
834	Characterization of gut microbiome in mice model of depression with divergent response to escitalopram treatment. Translational Psychiatry, 2021, 11, 303.	2.4	48
835	Microbe-based therapies for colorectal cancer: Advantages and limitations. Seminars in Cancer Biology, 2022, 86, 652-665.	4.3	21
836	Human and preclinical studies of the host–gut microbiome co-metabolite hippurate as a marker and mediator of metabolic health. Gut, 2021, 70, 2105-2114.	6.1	58
837	Contribution of the Gut Microbiome to Drug Disposition, Pharmacokinetic and Pharmacodynamic Variability. Clinical Pharmacokinetics, 2021, 60, 971-984.	1.6	32
839	Effects of vancomycinâ€induced gut microbiome alteration on the pharmacodynamics of metformin in healthy male subjects. Clinical and Translational Science, 2021, 14, 1955-1966.	1.5	10
840	Determining Gut Microbial Dysbiosis: a Review of Applied Indexes for Assessment of Intestinal Microbiota Imbalances. Applied and Environmental Microbiology, 2021, 87, .	1.4	51
841	Circulating bacterial signature is linked to metabolic disease and shifts with metabolic alleviation after bariatric surgery. Genome Medicine, 2021, 13, 105.	3.6	14
842	How Comorbidities Shape Cancer Biology and Survival. Trends in Cancer, 2021, 7, 488-495.	3.8	27
843	Nonalcoholic Fatty Liver Disease (NAFLD) as Model of Gut–Liver Axis Interaction: From Pathophysiology to Potential Target of Treatment for Personalized Therapy. International Journal of Molecular Sciences, 2021, 22, 6485.	1.8	40
844	Correlations Between Intestinal Microbial Community and Hematological Profile in Native Tibetans and Han Immigrants. Frontiers in Microbiology, 2021, 12, 615416.	1.5	8
845	Gut Microbiota and Host Metabolism: From Proof of Concept to Therapeutic Intervention. Microorganisms, 2021, 9, 1302.	1.6	46
846	Pharmacogenomics of NSAID-Induced Upper Gastrointestinal Toxicity. Frontiers in Pharmacology, 2021, 12, 684162.	1.6	30
847	Chronic Embryo‣arval Exposure of Fathead Minnows to the Pharmaceutical Drug Metformin: Survival, Growth, and Microbiome Responses. Environmental Toxicology and Chemistry, 2022, 41, 635-647.	2.2	14

		CITATION REPORT		
#	Article		IF	CITATIONS
848	The gut microbiome and type 2 diabetes status in the Multiethnic Cohort. PLoS ONE, 2021,	16, e0250855.	1.1	30
849	A salivary microbiome-based auxiliary diagnostic model for type 2 diabetes mellitus. Archives Biology, 2021, 126, 105118.	of Oral	0.8	14
850	Metformin alleviates choline diet-induced TMAO elevation in C57BL/6J mice by influencing gut-microbiota composition and functionality. Nutrition and Diabetes, 2021, 11, 27.		1.5	9
851	Gut modulation based anti-diabetic effects of carboxymethylated wheat bran dietary fiber in diet/streptozotocin-induced diabetic mice and their potential mechanisms. Food and Chemic Toxicology, 2021, 152, 112235.		1.8	27
852	Dysbiosis of the gut microbiome is a risk factor for osteoarthritis in older female adults: a cas control study. BMC Bioinformatics, 2021, 22, 299.)e	1.2	21
853	Decreased Abundance of <i>Akkermansia muciniphila</i> Leads to the Impairment of Insulin and Glucose Homeostasis in Lean Type 2 Diabetes. Advanced Science, 2021, 8, e2100536.	Secretion	5.6	68
854	Microbiome: Insulin signaling shapes gut community composition. Current Biology, 2021, 31	., R803-R806.	1.8	0
855	Obesity-Related Gut Microbiota Aggravates Alveolar Bone Destruction in Experimental Period through Elevation of Uric Acid. MBio, 2021, 12, e0077121.	lontitis	1.8	39
856	Fecal microbiota transplantation in human metabolic diseases: From a murky past to a bright Cell Metabolism, 2021, 33, 1098-1110.	: future?.	7.2	93
859	Metformin: review of epidemiology and mechanisms of action in pancreatic cancer. Cancer a Metastasis Reviews, 2021, 40, 865-878.	nd	2.7	20
860	Mining microbes for mental health: Determining the role of microbial metabolic pathways in brain health and disease. Neuroscience and Biobehavioral Reviews, 2021, 125, 698-761.	human	2.9	80
861	Gut Microbiota in NSAID Enteropathy: New Insights From Inside. Frontiers in Cellular and Infe Microbiology, 2021, 11, 679396.	ection	1.8	23
862	Subfractional Spectrum of Serum Lipoproteins and Gut Microbiota Composition in Healthy Individuals. Microorganisms, 2021, 9, 1461.		1.6	3
863	Impact of non-antibiotic drugs on the human intestinal microbiome. Expert Review of Molecu Diagnostics, 2021, 21, 911-924.	ılar	1.5	13
864	Blueberry as an Attractive Functional Fruit to Prevent (Pre)Diabetes Progression. Antioxidant 10, 1162.	s, 2021,	2.2	19
865	Identification of Microbiota Biomarkers With Orthologous Gene Annotation for Type 2 Diabe Frontiers in Microbiology, 2021, 12, 711244.	rtes.	1.5	7
866	Gut Microbiome Signatures of Risk and Prodromal Markers of Parkinson Disease. Annals of Neurology, 2021, 90, E1-E12.		2.8	41
867	Metformin and Covid-19: Focused Review of Mechanisms and Current Literature Suggesting Frontiers in Endocrinology, 2021, 12, 587801.	Benefit.	1.5	35

#	ARTICLE		CITATIONS
868	Potential antidiabetic molecule involving a new chromium(III) complex of dipicolinic and metformin as a counter ion: Synthesis, structure, spectroscopy, and bioactivity in mice. Arabian Journal of Chemistry, 2021, 14, 103236.		1
869	Metformin as a Treatment Strategy for Sjögren's Syndrome. International Journal of Molecular Sciences, 2021, 22, 7231.	1.8	8
870	Gut microbiome and amyotrophic lateral sclerosis: A systematic review of current evidence. Journal of Internal Medicine, 2021, 290, 758-788.	2.7	17
871	Dietary fiberâ€derived shortâ€chain fatty acids: A potential therapeutic target to alleviate obesityâ€related nonalcoholic fatty liver disease. Obesity Reviews, 2021, 22, e13316.	3.1	97
872	Association of Insulin Resistance and Type 2 Diabetes With Gut Microbial Diversity. JAMA Network Open, 2021, 4, e2118811.	2.8	119
873	Discovering Potential Taxonomic Biomarkers of Type 2 Diabetes From Human Gut Microbiota via Different Feature Selection Methods. Frontiers in Microbiology, 2021, 12, 628426.	1.5	12
874	Helicobacter pylori in Human Stomach: The Inconsistencies in Clinical Outcomes and the Probable Causes. Frontiers in Microbiology, 2021, 12, 713955.	1.5	47
875	Molecular and Pathophysiological Links between Metabolic Disorders and Inflammatory Bowel Diseases. International Journal of Molecular Sciences, 2021, 22, 9139.	1.8	18
876	Predisposing factors for high output stoma in patients with a diverting loop ileostomy after colorectal surgeries. Annals of Coloproctology, 2023, 39, 168-174.		5
877	Prospective evaluation of probiotic and prebiotic supplementation on diabetic health associated with gut microbiota. Food Bioscience, 2021, 42, 101149.	2.0	6
878	Gut microbiota in psychiatric disorders: Better understanding or more complexity to be resolved?. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2021, 110, 110302.	2.5	0
879	Metformin Reduces Blood Glucose in Treatment-Naive Type 2 Diabetes by Altering the Gut Microbiome. Canadian Journal of Diabetes, 2022, 46, 150-156.	0.4	8
880	The promise of the gut microbiome as part of individualized treatment strategies. Nature Reviews Gastroenterology and Hepatology, 2022, 19, 7-25.	8.2	60
881	Molecular Aspects of Lifestyle and Environmental Effects in Patients WithÂDiabetes. Journal of the American College of Cardiology, 2021, 78, 481-495.	1.2	2
882	Metagenomics-Based Analysis of the Age-Related Cumulative Effect of Antibiotic Resistance Genes in Gut Microbiota. Antibiotics, 2021, 10, 1006.	1.5	12
883	Gut Microbiota and Type 2 Diabetes Mellitus: Association, Mechanism, and Translational Applications. Mediators of Inflammation, 2021, 2021, 1-12.	1.4	41
884	Changes in the gut microbiome influence the hypoglycemic effect of metformin through the altered metabolism of branched-chain and nonessential amino acids. Diabetes Research and Clinical Practice, 2021, 178, 108985.	1.1	20
885	Metformin treatment for 8Âdays impacts multiple intestinal parameters in high-fat high-sucrose fed mice. Scientific Reports, 2021, 11, 16684.	1.6	9

#	Article	IF	CITATIONS
886	Metformin has no impact on nitric oxide production in patients with pre-diabetes. Biomedicine and Pharmacotherapy, 2021, 140, 111773.	2.5	3
887	The Gut Microbiome, Metformin, and Aging. Annual Review of Pharmacology and Toxicology, 2022, 62, 85-108.	4.2	28
888	Gut microbiota influence in type 2 diabetes mellitus (T2DM). Gut Pathogens, 2021, 13, 50.	1.6	89
889	Gut micobiota alteration by Lactobacillus rhamnosus reduces pro-inflammatory cytokines and glucose level in the adult model of Zebrafish. BMC Research Notes, 2021, 14, 302.	0.6	9
890	Gut Bacterial Characteristics of Patients With Type 2 Diabetes Mellitus and the Application Potential. Frontiers in Immunology, 2021, 12, 722206.	2.2	38
892	Dysbiosis in the Gut Microbiome in Streptozotocin-Induced Diabetes Rats and Follow-Up During Retinal Changes. , 2021, 62, 31.		7
893	Harness the functions of gut microbiome in tumorigenesis for cancer treatment. Cancer Communications, 2021, 41, 937-967.	3.7	18
894	Effects of prebiotics on postprandial GLPâ€1, GLPâ€2 and glucose regulation in patients with type 2 diabetes: A randomised, doubleâ€blind, placeboâ€controlled crossover trial. Diabetic Medicine, 2021, 38, e14657.	1.2	8
895	High doses of butyrate induce a reversible body temperature drop through transient proton leak in mitochondria of brain neurons. Life Sciences, 2021, 278, 119614.	2.0	8
896	A Critical Review of the Evidence That Metformin Is a Putative Anti-Aging Drug That Enhances Healthspan and Extends Lifespan. Frontiers in Endocrinology, 2021, 12, 718942.	1.5	107
897	Geographical separation and ethnic origin influence the human gut microbial composition: a meta-analysis from a Malaysian perspective. Microbial Genomics, 2021, 7, .	1.0	11
898	Gut Microbiota in Adipose Tissue Dysfunction Induced Cardiovascular Disease: Role as a Metabolic Organ. Frontiers in Endocrinology, 2021, 12, 749125.	1.5	12
899	A statistical model for describing and simulating microbial community profiles. PLoS Computational Biology, 2021, 17, e1008913.	1.5	21
900	MetaGeneBank: a standardized database to study deep sequenced metagenomic data from human fecal specimen. BMC Microbiology, 2021, 21, 263.	1.3	5
901	Gut Microbiome Alteration after Reboxetine Administration in Type-1 Diabetic Rats. Microorganisms, 2021, 9, 1948.	1.6	2
902	Alcohol's Impact on the Gut and Liver. Nutrients, 2021, 13, 3170.	1.7	46
903	Microbiota and Colorectal Cancer: From Gut to Bedside. Frontiers in Pharmacology, 2021, 12, 760280.	1.6	22
904	Genomic editing of metformin efficacy-associated genetic variants in SLC47A1 does not alter SLC47A1 expression. Human Molecular Genetics, 2021, , .	1.4	2

ARTICLE IF CITATIONS Perilla Seed Oil Alleviates Gut Dysbiosis, Intestinal Inflammation and Metabolic Disturbance in 905 1.7 10 Obese-Insulin-Resistant Rats. Nutrients, 2021, 13, 3141. The microbiome and systemic sclerosis: A review of current evidence. Best Practice and Research in 1.4 Clinical Rheumatology, 2021, 35, 101687. Microbiota and viral hepatitis: State of the art of a complex matter. World Journal of 907 1.4 9 Gastroenterology, 2021, 27, 5488-5501. Liraglutide and sitagliptin have no effect on intestinal microbiota composition: A 12-week randomized 908 1.4 placebo-controlled trial in adults with type 2 diabetes. Diabetes and Metabolism, 2021, 47, 101223. Compositional and functional alterations of gut microbiota in patients with stroke. Nutrition, 909 1.1 18 Metabolism and Cardiovascular Diseases, 2021, 31, 3434-3448. Analyzing Type 2 Diabetes Associations with the Gut Microbiome in Individuals from Two Ethnic 1.7 Backgrounds Living in the Same Geographic Area. Nutrients, 2021, 13, 3289. 911 Reversible insulin resistance helps Bactrian camels survive fasting. Scientific Reports, 2021, 11, 18815. 1.6 0 Metformin action in the gut―insight provided by [18F]FDG PET imaging. Diabetology International, 2022, 13, 35-40. Disease trends in a young Chinese cohort according to fecal metagenome and plasma metabolites. 913 0.7 2 Medicine in Microecology, 2021, , 100037. Prophylactic Treatment of Probiotic and Metformin Mitigates Ethanol-Induced Intestinal Barrier 914 1.4 Injury: In Vitro, In Vivo, and In Silico Approaches. Mediators of Inflammation, 2021, 2021, 1-32. Gut microbiome in liver pathophysiology and cholestatic liver disease. Liver Research, 2021, 5, 151-163. 915 0.5 6 Bioaccumulation of therapeutic drugs by human gut bacteria. Nature, 2021, 597, 533-538. 916 159 Leveraging vibration of effects analysis for robust discovery in observational biomedical data 917 2.6 12 science. PLoS Biology, 2021, 19, e3001398. Restoration of mRNA Expression of Solute Carrier Proteins in Liver of Diet-Induced Obese Mice by 918 1.5 Metformin. Frontiers in Endocrinology, 2021, 12, 720784. Autologous fecal microbiota transplantation can retain the metabolic achievements of dietary 919 1.0 11 interventions. European Journal of Internal Medicine, 2021, 92, 17-23. Characterization of the gut microbiota among Veterans with unique military-related exposures and high prevalence of chronic health conditions: A United States-Veteran Microbiome Project (US-VMP) study. Brain, Behavior, & Immunity - Health, 2021, 18, 100346. Perturbations associated with hungry gut microbiome and postbiotic perspectives to strengthen the 921 2.4 12 microbiome health. Future Foods, ŽÓ2Ĭ, 4, 100043. Microbiota-Brain-Gut Axis and Neurodegenerative Disorders., 2022, , 412-422.

#	Article	IF	CITATIONS
923	Anti-diabetic effect of aloin via JNK-IRS1/PI3K pathways and regulation of gut microbiota. Food Science and Human Wellness, 2022, 11, 189-198.	2.2	14
924	Effect of diet, pharmaceuticals, and environmental toxicants on gut microbiota imbalance and increased intestinal membrane permeability. , 2021, , 403-413.		0
925	Microbiota Changes Throughout Life - An Overview. , 2022, , 1-12.		1
926	The Microbiome as an Endocrine Organ. , 2021, , .		0
927	ROS-responsive organosilica nanocarrier for the targeted delivery of metformin against cancer with the synergistic effect of hypoglycemia. Journal of Materials Chemistry B, 2021, 9, 6044-6055.	2.9	11
928	The gut microbiome in neurodegenerative disorders. , 2021, , 101-121.		0
929	Microbiota-Gut-Brain Axis. , 2021, , 423-423.		0
930	Identification of drug combinations on the basis of machine learning to maximize anti-aging effects. PLoS ONE, 2021, 16, e0246106.	1.1	3
931	Lifelong sex-dependent trajectories of the human gut microbiota. Nature Aging, 2021, 1, 22-23.	5.3	3
932	New insights into the links between anti-diabetes drugs and gut microbiota. Endocrine Connections, 2021, 10, R36-R42.	0.8	4
933	Prevention and treatment strategies for type 2 diabetes based on regulating intestinal flora. BioScience Trends, 2021, 15, 313-320.	1.1	5
935	The Use of Metformin to Increase the Human Healthspan. Advances in Experimental Medicine and Biology, 2020, 1260, 319-332.	0.8	39
936	Variability and Stability of the Human Gut Microbiome. Fascinating Life Sciences, 2020, , 63-79.	0.5	4
937	Checkpoints Under Traffic Control: From and to Organelles. Advances in Experimental Medicine and Biology, 2020, 1248, 431-453.	0.8	8
938	Prebiotic effect of inulin-type fructans on faecal microbiota and short-chain fatty acids in type 2 diabetes: a randomised controlled trial. European Journal of Nutrition, 2020, 59, 3325-3338.	1.8	94
939	Gut Microbial Predictors of Type 2 Diabetes Remission Following Bariatric Surgery. Obesity Surgery, 2020, 30, 3536-3548.	1.1	25
940	Antidiabetic Effects of Gegen Qinlian Decoction via the Gut Microbiota Are Attributable to Its Key Ingredient Berberine. Genomics, Proteomics and Bioinformatics, 2020, 18, 721-736.	3.0	70
941	Small intestinal physiology relevant to bariatric and metabolic endoscopic therapies: Incretins, bile acid signaling, and gut microbiome. Techniques and Innovations in Gastrointestinal Endoscopy, 2020, 22, 109-119.	0.4	8

#	ARTICLE	IF	CITATIONS
942	Context-Dependent Pharmacological Effects of Metformin on the Immune System. Trends in Pharmacological Sciences, 2020, 41, 162-171.	4.0	34
943	Metformin and Systemic Metabolism. Trends in Pharmacological Sciences, 2020, 41, 868-881.	4.0	105
944	From correlation to causality: the case of <i>Subdoligranulum</i> . Gut Microbes, 2020, 12, 1849998.	4.3	192
945	Method Validation for Extraction of DNA from Human Stool Samples for Downstream Microbiome Analysis. Biopreservation and Biobanking, 2020, 18, 102-116.	0.5	17
946	An overview of cancer health disparities: new approaches and insights and why they matter. Carcinogenesis, 2021, 42, 2-13.	1.3	39
947	Metabolic networks of the human gut microbiota. Microbiology (United Kingdom), 2020, 166, 96-119.	0.7	22
956	Systematic review: human gut dysbiosis induced by nonâ€antibiotic prescription medications. Alimentary Pharmacology and Therapeutics, 2018, 47, 332-345.	1.9	172
957	Immunologic impact of the intestine in metabolic disease. Journal of Clinical Investigation, 2017, 127, 33-42.	3.9	64
958	The impact of the anti-diabetic drug metformin on the intestinal microbiome of larval brown trout (Salmo trutta f. fario). Environmental Sciences Europe, 2020, 32, .	2.6	13
959	Complex influences of gut microbiome metabolism on various drug responses. Translational and Clinical Pharmacology, 2020, 28, 7.	0.3	4
960	Role of gut microbiome in regulating the effectiveness of metformin in reducing colorectal cancer in type 2 diabetes. World Journal of Clinical Cases, 2020, 8, 6213-6228.	0.3	11
961	Neuropeptide Y Overexpressing Female and Male Mice Show Divergent Metabolic but Not Gut Microbial Responses to Prenatal Metformin Exposure. PLoS ONE, 2016, 11, e0163805.	1.1	35
962	Alterations in Gut Microbiome Composition and Barrier Function Are Associated with Reproductive and Metabolic Defects in Women with Polycystic Ovary Syndrome (PCOS): A Pilot Study. PLoS ONE, 2017, 12, e0168390.	1.1	253
963	18F-FDG uptake in the colon is modulated by metformin but not associated with core body temperature and energy expenditure. PLoS ONE, 2017, 12, e0176242.	1.1	14
964	In vivo therapeutic effect of combination treatment with metformin and Scutellaria baicalensis on maintaining bile acid homeostasis. PLoS ONE, 2017, 12, e0182467.	1.1	46
965	Gut microbiota varies by opioid use, circulating leptin and oxytocin in African American men with diabetes and high burden of chronic disease. PLoS ONE, 2018, 13, e0194171.	1.1	82
966	Serum indoxyl sulfate concentrations associate with progression of chronic kidney disease in children. PLoS ONE, 2020, 15, e0240446.	1.1	19
967	Baseline gut microbiome composition predicts metformin therapy short-term efficacy in newly diagnosed type 2 diabetes patients. PLoS ONE, 2020, 15, e0241338.	1.1	30

#	Article	IF	CITATIONS
968	Perturbation of the human gastrointestinal tract microbial ecosystem by oral drugs to treat chronic disease results in a spectrum of individual specific patterns of extinction and persistence of dominant microbial strains. PLoS ONE, 2020, 15, e0242021.	1.1	7
969	The new views on the state of the gut microbiota in obesity and diabetes mellitus type 2. Diabetes Mellitus, 2019, 22, 253-262.	0.5	4
970	Metformin induces weight loss associated with gut microbiota alteration in non-diabetic obese women: a randomized double-blind clinical trial. European Journal of Endocrinology, 2019, 180, 165-176.	1.9	53
971	Gut carbohydrate inhibits GIP secretion via a microbiota/SCFA/FFAR3 pathway. Journal of Endocrinology, 2018, 239, 267-276.	1.2	29
972	Metformin induces a fasting- and antifolate-mimicking modification of systemic host metabolism in breast cancer patients. Aging, 2019, 11, 2874-2888.	1.4	25
973	Changes of saliva microbiota in the onset and after the treatment of diabetes in patients with periodontitis. Aging, 2020, 12, 13090-13114.	1.4	29
974	Fecal microbiota transplantation alters the susceptibility of obese rats to type 2 diabetes mellitus. Aging, 2020, 12, 17480-17502.	1.4	19
975	Dysregulation of the Gut-Brain Axis, Dysbiosis and Influence of Numerous Factors on Gut Microbiota Associated Parkinson's Disease. Current Neuropharmacology, 2020, 19, 233-247.	1.4	33
976	Metabolic Effects of Metformin in Humans. Current Diabetes Reviews, 2019, 15, 328-339.	0.6	8
977	Metformin: Up to Date. Endocrine, Metabolic and Immune Disorders - Drug Targets, 2020, 20, 172-181.	0.6	15
978	Microbiota signatures in type-2 diabetic patients with chronic kidney disease - A Pilot Study. Journal of Mind and Medical Sciences, 0, , 130-136.	0.1	15
979	A P4 medicine perspective of gut microbiota and prediabetes: Systems analysis and personalized intervention. Journal of Translational Internal Medicine, 2020, 8, 119-130.	1.0	9
980	Harnessing the microbiota to treat neurological diseases. Dialogues in Clinical Neuroscience, 2019, 21, 159-165.	1.8	4
981	Efficacy and safety of autoprobiotic therapy in patients with type 2 diabetes mellitus. Medical Alphabet, 2020, 1, 48-53.	0.0	4
982	Does Gut-Microbiome Interaction Protect against Obesity and Obesity-Associated Metabolic Disorders?. Microorganisms, 2021, 9, 18.	1.6	15
983	Sodium glucose co-transporter 2 inhibition reduces succinate levels in diabetic mice. World Journal of Gastroenterology, 2020, 26, 3225-3235.	1.4	17
984	Drug-microbiota interactions and treatment response: Relevance to rheumatoid arthritis. AIMS Microbiology, 2018, 4, 642-654.	1.0	26
985	Comparison of the Gut Microbiota of Centenarians in Longevity Villages of South Korea with Those of Other Age Groups. Journal of Microbiology and Biotechnology, 2019, 29, 429-440.	0.9	87

#	Article	IF	Citations
986	Gut microbiota and diabetes: From correlation to causality and mechanism. World Journal of Diabetes, 2020, 11, 293-308.	1.3	86
987	Assessing the evidence for weight loss strategies in people with and without type 2 diabetes. World Journal of Diabetes, 2017, 8, 440-454.	1.3	10
988	Human gut microbiota plays a role in the metabolism of drugs. Biomedical Papers of the Medical Faculty of the University Palacký, Olomouc, Czechoslovakia, 2016, 160, 317-326.	0.2	58
989	Type 2 diabetes mellitus-related environmental factors and the gut microbiota: emerging evidence and challenges. Clinics, 2020, 75, e1277.	0.6	25
990	Increase in clinically recorded type 2 diabetes after colectomy. ELife, 2018, 7, .	2.8	23
991	Adjusting for age improves identification of gut microbiome alterations in multiple diseases. ELife, 2020, 9, .	2.8	113
992	Evolved bacterial resistance against fluoropyrimidines can lower chemotherapy impact in the Caenorhabditis elegans host. ELife, 2020, 9, .	2.8	19
993	Metage2Metabo, microbiota-scale metabolic complementarity for the identification of key species. ELife, 2020, 9, .	2.8	44
994	Partial restoration of normal intestinal microbiota in morbidly obese women six months after bariatric surgery. PeerJ, 2020, 8, e10442.	0.9	4
995	Flos Lonicera Combined with Metformin Ameliorates Hepatosteatosis and Glucose Intolerance in Association with Gut Microbiota Modulation. Frontiers in Microbiology, 0, 8, .	1.5	1
996	Microbiome Diagnostics and Interventions in Health and Disease. , 2021, , 157-215.		1
997	mBodyMap: a curated database for microbes across human body and their associations with health and diseases. Nucleic Acids Research, 2022, 50, D808-D816.	6.5	26
998	The East Asian gut microbiome is distinct from colocalized White subjects and connected to metabolic health. ELife, 2021, 10, .	2.8	25
999	Adverse Effects of Metformin From Diabetes to COVID-19, Cancer, Neurodegenerative Diseases, and Aging: Is VDAC1 a Common Target?. Frontiers in Physiology, 2021, 12, 730048.	1.3	22
1000	Toward a postbiotic era of microbiome science: opportunities to advance immunotherapies for hepatocellular carcinoma. Journal of Gastroenterology and Hepatology (Australia), 2021, , .	1.4	3
1001	Alleviation Effects of GQD, a Traditional Chinese Medicine Formula, on Diabetes Rats Linked to Modulation of the Gut Microbiome. Frontiers in Cellular and Infection Microbiology, 2021, 11, 740236.	1.8	14
1002	Emerging Evidence on the Effects of Dietary Factors on the Gut Microbiome in Colorectal Cancer. Frontiers in Nutrition, 2021, 8, 718389.	1.6	19
1003	Microbiota and Ocular Diseases. Frontiers in Cellular and Infection Microbiology, 2021, 11, 759333.	1.8	23

щ		IF	CITATIONS
#	ARTICLE Gut Microbiota Composition and Fecal Metabolic Profiling in Patients With Diabetic Retinopathy.	IF	CITATIONS
1004	Frontiers in Cell and Developmental Biology, 2021, 9, 732204.	1.8	26
1005	Associations of imbalance of intestinal flora with severity of disease, inflammatory factors, adiponectin, and vascular endothelial function of hypertension patients. Kaohsiung Journal of Medical Sciences, 2022, 38, 165-173.	0.8	4
1007	The Depletion of Carbohydrate Metabolic Genes in the Gut Microbiome Contributes to the Transition From Central Obesity to Type 2 Diabetes. Frontiers in Endocrinology, 2021, 12, 747646.	1.5	6
1008	Diabetes and gut microbiota. World Journal of Diabetes, 2021, 12, 1693-1703.	1.3	20
1009	Microbiome Changes after Type 2 Diabetes Treatment: A Systematic Review. Medicina (Lithuania), 2021, 57, 1084.	0.8	4
1011	The role of Akkermansia muciniphila in obesity, diabetes and atherosclerosis. Journal of Medical Microbiology, 2021, 70, .	0.7	56
1012	Metformin to decrease COVID-19 severity and mortality: Molecular mechanisms and therapeutic potential. Biomedicine and Pharmacotherapy, 2021, 144, 112230.	2.5	33
1013	Gut Microbiota-Induced 5-HT Synthesis and Obesity. Journal of Endocrinology and Diabetes, 2015, 2, 01-01.	0.2	0
1014	MicroRNAs: Decoders of Dysbiosis into Metabolic Diseases?. Journal of Diabetes & Metabolism, 2016, 7, .	0.2	1
1015	Surgical management of diabetes mellitus: future outlook (part 3). Endoscopic Surgery, 2017, 23, 54.	0.0	0
1020	「è,å†ãƒ‡ã,¶ã,╋ƒ³ã€ãŒå^‡ã,Šæ‹"ãç—æ°—ã,¼ãƒç¾ä¼š. Kagaku To Seibutsu, 2018, 56, 692-696.	0.0	0
1023	Relationship of clinical efficacy of glucose lowering agents, gut microbiota, diet, and patient's genotype in diabetes mellitus type 2. Reviews on Clinical Pharmacology and Drug Therapy, 2018, 16, 11-18.	0.2	0
1024	Practical guidelines for gut microbiome analysis in microbiota-gut-brain axis research. Behavioral and Brain Sciences, 2019, 42, .	0.4	1
1025	Metformin alters signaling induced crosstalk and homeostasis in the carcinogenesis paradigm "Epistemology of the origin of cancer― 40pen, 2019, 2, 12.	0.1	0
1026	S100-Alarmins are Crucial Host Factors for the Postnatal Development of Gut Homeostasis. SSRN Electronic Journal, 0, , .	0.4	0
1030	Modern aspects for preventive therapy of type 2 diabetes mellitus. Meditsinskiy Sovet, 2019, , 6-13.	0.1	3
1031	MICROBIOMA INTESTINAL: SEU POTENCIAL COMO UM NOVO ALVO TERAPÊUTICO. Ensaios USF, 2019, 2, 14-31	.0.1	0
1035	Intestinal microbiome and 2 type diabetes mellitus. Ukrainian Therapeutical Journal, 2019, .	0.0	0

ARTICLE

1

1036 Diabetes mellitus and osteoarthritis. , 2020, , 285-315.

1040	ÄÄNH GIÄ•CÃC CÔNG CỤHá»— TRỢ CHẠN ÄOÃN BỆNH VỚI CÃCH Tláº3⁄4P CẬN Y HỌC CÕTHá», HÑ Dalat University Journal of Science, 0, , 117-144.	'A TRÊN 0.0	Dá҉»® LlỆ
1041	Sodium glucose co-transporter 2 inhibition reduces succinate levels in diabetic mice. World Journal of Gastroenterology, 2020, 26, 3225-3235.	1.4	0
1042	Alteration of Gut Microbiota in EDCs-Induced Metabolic Disorders. Emerging Contaminants and Associated Treatment Technologies, 2021, , 135-145.	0.4	0
1043	Gut microbiome signatures distinguish type 2 diabetes mellitus from non-alcoholic fatty liver disease. Computational and Structural Biotechnology Journal, 2021, 19, 5920-5930.	1.9	17
1044	The Microbiota-Gut-Liver Axis: Implications for the Pathophysiology of Liver Disease. , 2020, , 125-137.		0
1048	<i>Bifidobacterium bifidum</i> G9-1 ameliorates soft feces induced by metformin without affecting its antihyperglycemic action. Bioscience of Microbiota, Food and Health, 2020, 39, 145-151.	0.8	7
1049	Quantification of Duloxetine in the Bacterial Culture and Medium to Study Drug-gut Microbiome Interactions. Bio-protocol, 2021, 11, e4214.	0.2	2
1050	Gut Microbiota and Health. , 2020, , 31-79.		0
1051	Presence or absence of microbiome modulates the response of mice organism to administered drug nabumetone. Physiological Research, 2020, 69, 583-594.	0.4	5
1052	Investigation on the Application of Metformin in Elderly Diabetic Patients. Advances in Clinical Medicine, 2020, 10, 1017-1023.	0.0	0
1053	Do My Microbes Make Me Fat? Potential for the Gut Microbiota to Influence Energy Balance, Obesity and Metabolic Health in Humans. Fascinating Life Sciences, 2020, , 97-108.	0.5	0
1054	Effects of anti-aging interventions on intestinal microbiota. Gut Microbes, 2021, 13, 1994835.	4.3	32
1055	Assessment of Ecosystem Services and Capabilities of Communities from different Scales and Niches - Implications on Sustainability Goals. European Journal of Sustainable Development Research, 2020, 4, .	0.4	0
1056	Metformin as a drug modifyinggut microbiota. Clinical Endocrinology and Endocrine Surgery, 2020, .	0.1	0
1057	Therapeutic Potential of Butyrate for Treatment of Type 2 Diabetes. Frontiers in Endocrinology, 2021, 12, 761834.	1.5	40
1058	Effects of probiotic <i>Bifidobacterium bifidum</i> G9â€1 on the gastrointestinal symptoms of patients with type 2 diabetes mellitus treated with metformin: An openâ€label, singleâ€arm, exploratory research trial. Journal of Diabetes Investigation, 2022, 13, 489-500.	1.1	8
1059	The Potential Utility of Prebiotics to Modulate Alzheimer's Disease: A Review of the Evidence. Microorganisms, 2021, 9, 2310.	1.6	15

#	Article	IF	CITATIONS
1060	Metformin administration during pregnancy attenuated the long-term maternal metabolic and cognitive impairments in a mouse model of gestational diabetes. Aging, 2020, 12, 14019-14036.	1.4	4
1061	Considerations for Gut Microbiota and Probiotics in Patients with Diabetes Amidst the Covid-19 Pandemic: A Narrative Review. Endocrine Practice, 2020, 26, 1186-1195.	1.1	2
1064	Probiotics for Prosperity: Is There a Role for Probiotics in the Fight Against Obesity? Review of Meta-Analyses of Randomized Controlled Trials. Nutrition and Dietary Supplements, 0, Volume 12, 255-265.	0.7	2
1066	The microbiome: an emerging key player in aging and longevity. Translational Medicine of Aging, 2020, 4, 103-116.	0.6	23
1067	Engineered : A promising agent against diseases (Review). Experimental and Therapeutic Medicine, 2020, 20, 285.	0.8	4
1068	The clinical application of metformin in children and adolescents: A short update. Acta Biomedica, 2020, 91, e2020086.	0.2	3
1069	Gut microbiota of patients with type 2 diabetes and gastrointestinal intolerance to metformin differs in composition and functionality from tolerant patients. Biomedicine and Pharmacotherapy, 2022, 145, 112448.	2.5	21
1070	Novel prebiotics and next-generation probiotics: opportunities and challenges. , 2022, , 431-457.		3
1071	Probiotics in fermented products and supplements. , 2022, , 73-107.		1
1072	Metformin action over gut microbiota is related to weight and glycemic control in gestational diabetes mellitus: A randomized trial. Biomedicine and Pharmacotherapy, 2022, 145, 112465.	2.5	12
1073	Omnifarious fruit polyphenols: an omnipotent strategy to prevent and intervene diabetes and related complication?. Critical Reviews in Food Science and Nutrition, 2023, 63, 4288-4324.	5.4	5
1074	Tangnaikang Alleviates Hyperglycemia and Improves Gut Microbiota in Diabetic Mice. Evidence-based Complementary and Alternative Medicine, 2021, 2021, 1-11.	0.5	2
1075	Gut microbiota and vitamin status in persons with obesity: A key interplay. Obesity Reviews, 2022, 23, e13377.	3.1	15
1076	Bifidobacterium adolescentis regulates catalase activity and host metabolism and improves healthspan and lifespan in multiple species. Nature Aging, 2021, 1, 991-1001.	5.3	18
1077	Reconstruction of intestinal microecology of Type 2 diabetes by Fecal Microbiota Transplantation: Why and How. Bosnian Journal of Basic Medical Sciences, 2021, , .	0.6	11
1079	Current Knowledge About the Implication of Bacterial Microbiota in Human Health and Disease. Acta Medica Bulgarica, 2021, 48, 43-49.	0.0	0
1080	Role of the gut microbiome in cardiovascular drug response: The potential for clinical application. Pharmacotherapy, 2022, 42, 165-176.	1.2	5
1081	Urolithins: Diet-Derived Bioavailable Metabolites to Tackle Diabetes. Nutrients, 2021, 13, 4285.	1.7	14

		UKI	
#	Article	IF	CITATIONS
1082	Gut Microbiota Parameters Potentially Useful in Clinical Perspective. Microorganisms, 2021, 9, 2402.	1.6	25
1083	New Insights of Anti-Hyperglycemic Agents and Traditional Chinese Medicine on Gut Microbiota in Type 2 Diabetes. Drug Design, Development and Therapy, 2021, Volume 15, 4849-4863.	2.0	8
1084	Mikrobiota jelitowa a leki. Interakcje wpÅ,ywajÄce na skuteczność i bezpieczeÅ,,stwo farmakoterapii. Postepy Higieny I Medycyny Doswiadczalnej, 2021, 75, 762-772.	0.1	0
1085	Metformin Alters the Chemotaxis and Flagellar Motility of Escherichia coli. Frontiers in Microbiology, 2021, 12, 792406.	1.5	4
1086	Role of Biological Sex in the Cardiovascular-Gut Microbiome Axis. Frontiers in Cardiovascular Medicine, 2021, 8, 759735.	1.1	14
1087	Diet dependent impact of benzoate on diabetes and obesity in mice. Biochimie, 2022, 194, 35-42.	1.3	2
1088	Engineered Akkermansia muciniphila : A promising agent against diseases (Review). Experimental and Therapeutic Medicine, 2020, 20, 1-1.	0.8	18
1089	Bidirectional interactions of gut microbiome and medicinal products. Modern Gastroenterology, 2020, .	0.1	0
1091	Akkermansia mucinifila and the part that it plays in metabolic disturbance. Ukrainian Therapeutical Journal, 2020, .	0.0	0
1092	The Metabolic Role and Therapeutic Potential of the Microbiome. Endocrine Reviews, 2022, 43, 907-926.	8.9	26
1093	Dyspepsia and Gut Microbiota in Female Patients with Postcholecystectomy Syndrome. International Journal of Women's Health, 2022, Volume 14, 41-56.	1.1	8
1094	A behavioral weight-loss intervention, but not metformin, decreases a marker of gut barrier permeability: results from the SPIRIT randomized trial. International Journal of Obesity, 2022, 46, 655-660.	1.6	6
1095	Fusobacterium nucleatum and Bacteroides fragilis detection in colorectal tumours: Optimal target site and correlation with total bacterial load. PLoS ONE, 2022, 17, e0262416.	1.1	7
1096	Effects of novel SGLT2 inhibitors on cancer incidence in hyperglycemic patients: a meta-analysis of randomized clinical trials. Pharmacological Research, 2022, 175, 106039.	3.1	26
1097	Comparative Evaluation of the Effect of Metformin and Insulin on Gut Microbiota and Metabolome Profiles of Type 2 Diabetic Rats Induced by the Combination of Streptozotocin and High-Fat Diet. Frontiers in Pharmacology, 2021, 12, 794103.	1.6	11
1098	The Role of the Gut Microbiota in the Pathogenesis of Diabetes. International Journal of Molecular Sciences, 2022, 23, 480.	1.8	55
1099	Pharmacomicrobiomics: Exploiting the Drug-Microbiota Interactions in Antihypertensive Treatment. Frontiers in Medicine, 2021, 8, 742394.	1.2	21
1100	Metagenomic analysis reveals wide distribution of phototrophic bacteria in hydrothermal vents on the ultraslow-spreading Southwest Indian Ridge. Marine Life Science and Technology, 2022, 4, 255-267.	1.8	4

#	Article	IF	CITATIONS
1101	First Report of Fecal Microflora of Wild Bar-Headed Goose in Tibet Plateau. Frontiers in Veterinary Science, 2021, 8, 791461.	0.9	6
1102	Multimodal interactions of drugs, natural compounds and pollutants with the gut microbiota. Nature Reviews Microbiology, 2022, 20, 431-443.	13.6	77
1103	Interactions entre les traitements du diabÃ [.] te et le microbiote intestinalÂ: état des connaissances et perspectives. Medecine Des Maladies Metaboliques, 2022, 16, 148-159.	0.1	1
1104	Alterations of the Gut Microbiota in Response to Total Sleep Deprivation and Recovery Sleep in Rats. Nature and Science of Sleep, 2022, Volume 14, 121-133.	1.4	18
1106	Gut Microbiome Composition Is Predictive of Incident Type 2 Diabetes in a Population Cohort of 5,572 Finnish Adults. Diabetes Care, 2022, 45, 811-818.	4.3	47
1107	Successful treatment of psoriasis with adalimumab induced no changes in the gut microbiota. Journal of the European Academy of Dermatology and Venereology, 2022, 36, .	1.3	2
1108	The Relationships between Gut Microbiota and Diabetes Mellitus, and Treatments for Diabetes Mellitus. Biomedicines, 2022, 10, 308.	1.4	18
1109	Insights on β-glucan as a prebiotic coadjuvant in the treatment of diabetes mellitus: A review. Food Hydrocolloids for Health, 2022, 2, 100056.	1.6	17
1110	Genetically Predicted Causality of 28 Gut Microbiome Families and Type 2 Diabetes Mellitus Risk. Frontiers in Endocrinology, 2022, 13, 780133.	1.5	10
1111	Yoghurt consumption is associated with changes in the composition of the human gut microbiome and metabolome. BMC Microbiology, 2022, 22, 39.	1.3	31
1112	Human Gut Antibiotic Resistome and Progression of Diabetes. Advanced Science, 2022, 9, e2104965.	5.6	17
1113	Long-term diosmectite use does not alter the gut microbiota in adults with chronic diarrhea. BMC Microbiology, 2022, 22, 54.	1.3	1
1114	The microbiome of the buffalo digestive tract. Nature Communications, 2022, 13, 823.	5.8	30
1115	Implication des bactéries orales et intestinales dans le décours des maladies cardio-métaboliques et du diabÔte de type 2. Medecine Des Maladies Metaboliques, 2022, , .	0.1	2
1116	"Greedy Organs Hypothesis―for sugar and salt in the pathophysiology of non-communicable diseases in relation to sodium-glucose co-transporters in the intestines and the kidney. Metabolism Open, 2022, 13, 100169.	1.4	6
1117	Effects of acylated and nonacylated anthocyanins extracts on gut metabolites and microbiota in diabetic Zucker rats: A metabolomic and metagenomic study. Food Research International, 2022, 153, 110978.	2.9	22
1118	Combinatorial, additive and dose-dependent drug–microbiome associations. Nature, 2021, 600, 500-505.	13.7	102
1121	Homeostasis and dysbiosis of the gut microbiome in health and disease. Journal of Biosciences, 2019, 44, .	0.5	29

ARTICLE IF CITATIONS The Gut Microbiota and Host Metabolism., 2022, , 141-175. 2 1122 Interplays between drugs and the gut microbiome. Gastroenterology Report, 2022, 10, goac009. Oligosaccharides derived from <i>Lycium barbarum</i> ameliorate glycolipid metabolism and 1124 modulate the gut microbiota community and the faecal metabolites in a type 2 diabetes mouse model: 2.1 11 metabolomic bioinformatic analysis. Food and Function, 2022, 13, 5416-5429. Microbiome, Mycobiome and Related Metabolites Alterations in Patients with Metabolic Syndromeâ€"A Pilot Study. Metabolites, 2022, 12, 218. Immunoregulatory Intestinal Microbiota and COVID-19 in Patients with Type Two Diabetes: A 1126 1.518 Double-Edged Sword. Viruses, 2022, 14, 477. Canagliflozin Prevents Lipid Accumulation, Mitochondrial Dysfunction, and Gut Microbiota Dysbiosis in Mice With Diabetic Cardiovascular Disease. Frontiers in Pharmacology, 2022, 13, 839640. 1.6 Gut Microbiota Modulation for Therapeutic Management of Various Diseases: A New Perspective Using 1128 0.7 1 Stem Cell Therapy. Current Molecular Pharmacology, 2022, 15, . Sarecycline Demonstrated Reduced Activity Compared to Minocycline against Microbial Species 1.5 Representing Human Gastrointestinal Microbiota. Antibiotics, 2022, 11, 324. Metformin: Expanding the Scope of Applicationâ€"Starting Earlier than Yesterday, Canceling Later. 1130 1.8 5 International Journal of Molecular Sciences, 2022, 23, 2363. Short- and long-read metagenomics of urban and rural South African gut microbiomes reveal a 5.8 transitional composition and undescribed taxa. Nature Communications, 2022, 13, 926. The role of lipopolysaccharides in diabetic retinopathy. BMC Ophthalmology, 2022, 22, 86. 1132 0.6 10 Diabetes and Its Cardiovascular Complications: Comprehensive Network and Systematic Analyses. 1.1 Frontiers in Cardiovascular Medicine, 2022, 9, 841928. Microbiome risk profiles as biomarkers for inflammatory and metabolic disorders. Nature Reviews 1134 8.2 87 Gastroenterology and Hepatology, 2022, 19, 383-397. Old and Novel Therapeutic Approaches in the Management of Hyperglycemia, an Important Risk Factor 1.8 for Atherosclerosis. International Journal of Molecular Sciences, 2022, 23, 2336. Microbiome and metabolome features of the cardiometabolic disease spectrum. Nature Medicine, 2022, 1136 15.2 102 28, 303-314. Anti-Diabetic Effects of Ethanol Extract from Sanghuangporous vaninii in High-Fat/Sucrose Diet and Streptozotocin-Induced Diabetic Mice by Modulating Gut Microbiota. Foods, 2022, 11, 974. Metformin attenuated sepsis-related liver injury by modulating gut microbiota. Emerging Microbes 1138 3.058 and Infections, 2022, 11, 815-828. Systematically assessing microbiome–disease associations identifies drivers of inconsistency in 1139 metagenomic research. PLoS Biology, 2022, 20, e3001556.

#	Article	IF	CITATIONS
1140	Intestinal AMPK modulation of microbiota mediates crosstalk with brown fat to control thermogenesis. Nature Communications, 2022, 13, 1135.	5.8	28
1141	Diabetes medications and risk of HCC. Hepatology, 2022, 76, 1880-1897.	3.6	39
1142	Association between lifestyle factors and metabolic syndrome in general populations with depressive symptoms in cross-setional based cohort study of Ansung-Ansan. PLoS ONE, 2022, 17, e0262526.	1.1	2
1143	Gut microbiome and diabetic retinopathy. European Journal of Ophthalmology, 2022, 32, 2494-2497.	0.7	6
1144	Effects of Capsaicin on the Hypoglycemic Regulation of Metformin and Gut Microbiota Profiles in Type 2 Diabetic Rats. The American Journal of Chinese Medicine, 2022, 50, 839-861.	1.5	4
1145	A faecal microbiota signature with high specificity for pancreatic cancer. Gut, 2022, 71, 1359-1372.	6.1	104
1146	Alternations in the gut microbiota and metabolome with newly diagnosed unstable angina. Journal of Genetics and Genomics, 2022, 49, 240-248.	1.7	3
1147	The next generation beneficial actions of novel probiotics as potential therapeutic targets and prediction tool for metabolic diseases. Journal of Food and Drug Analysis, 2022, 30, 1-10.	0.9	6
1148	Association of gut microbiota with glycaemic traits and incident type 2 diabetes, and modulation by habitual diet: a population-based longitudinal cohort study in Chinese adults. Diabetologia, 2022, 65, 1145-1156.	2.9	19
1149	Dietary recommendations for persons with type 2 diabetes mellitus. Experimental and Clinical Endocrinology and Diabetes, 2022, 130, S151-S184.	0.6	7
1150	Associations between adherence to the dietary approaches to stop hypertension (DASH) diet and six glucose homeostasis traits in the Microbiome and Insulin Longitudinal Evaluation Study (MILES). Nutrition, Metabolism and Cardiovascular Diseases, 2022, 32, 1418-1426.	1.1	3
1151	New Paradigms for Familiar Diseases: Lessons Learned on Circulatory Bacterial Signatures in Cardiometabolic Diseases. Experimental and Clinical Endocrinology and Diabetes, 2022, , .	0.6	1
1153	Urolithin A Attenuates Diabetesâ€Associated Cognitive Impairment by Ameliorating Intestinal Barrier Dysfunction via Nâ€glycan Biosynthesis Pathway. Molecular Nutrition and Food Research, 2022, 66, e2100863.	1.5	14
1154	Does the Microbiota Composition Influence the Efficacy of Colorectal Cancer Immunotherapy?. Frontiers in Oncology, 2022, 12, 852194.	1.3	5
1155	Generalized matrix factorization based on weighted hypergraph learning for microbe-drug association prediction. Computers in Biology and Medicine, 2022, 145, 105503.	3.9	14
1156	Shenqi compound ameliorates type-2 diabetes mellitus by modulating the gut microbiota and metabolites. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2022, 1194, 123189.	1.2	14
1157	Modulation of the intestinal microbiota during the use of antihyperglycemic therapy. Clinical Endocrinology and Endocrine Surgery, 2022, , 68-79.	0.1	0
1158	Metformin to treat Huntington disease: A pleiotropic drug against a multi-system disorder. Mechanisms of Ageing and Development, 2022, 204, 111670.	2.2	8

#	Article	IF	CITATIONS
1160	Human Gut Microbiota in Health and Selected Cancers. International Journal of Molecular Sciences, 2021, 22, 13440.	1.8	23
1161	A Meta-Analysis of Microbial Therapy Against Metabolic Syndrome: Evidence From Randomized Controlled Trials. Frontiers in Nutrition, 2021, 8, 775216.	1.6	6
1162	Ageing and rejuvenation models reveal changes in key microbial communities associated with healthy ageing. Microbiome, 2021, 9, 240.	4.9	49
1163	Gut Microbial Dysbiosis Associated with Type 2 Diabetes Aggravates Acute Ischemic Stroke. MSystems, 2021, 6, e0130421.	1.7	9
1164	Discovering microbe functionality in human disease with a gene-ontology-aware model. , 2021, , .		0
1165	Population study of the gut microbiome: associations with diet, lifestyle, and cardiometabolic disease. Genome Medicine, 2021, 13, 188.	3.6	27
1166	Impact of intensive lifestyle intervention on gut microbiota composition in type 2 diabetes: a <i>post-hoc</i> analysis of a randomized clinical trial. Gut Microbes, 2022, 14, 2005407.	4.3	10
1167	Alterations of human skin microbiome and expansion of antimicrobial resistance after systemic antibiotics. Science Translational Medicine, 2021, 13, eabd8077.	5.8	38
1168	The antidepressants effects on microbiota: unobvious possibilities Research article. V M Bekhterev Review of Psychiatry and Medical Psychology, 2021, 57, 8-14.	0.1	0
1169	Gut Microbes and Eye Disease. Ophthalmic Research, 2022, 65, 245-253.	1.0	8
1170	Investigation of the impact of commonly used medications on the oral microbiome of individuals living without major chronic conditions. PLoS ONE, 2021, 16, e0261032.	1.1	8
1172	Metformin-induced reductions in tumor growth involves modulation of the gut microbiome. Molecular Metabolism, 2022, 61, 101498.	3.0	21
1173	Prolonged Use of Proton Pump Inhibitors and Risk of Type 2 Diabetes: Results From a Large Population-Based Nested Case-Control Study. Journal of Clinical Endocrinology and Metabolism, 2022, 107, e2671-e2679.	1.8	12
1174	Understanding the Role of the Microbiome in Cancer Diagnostics and Therapeutics by Creating and Utilizing ML Models. Applied Sciences (Switzerland), 2022, 12, 4094.	1.3	2
1175	The human gut microbiota contributes to type-2 diabetes non-resolution 5-years after Roux-en-Y gastric bypass. Gut Microbes, 2022, 14, 2050635.	4.3	15
	Mechanisms, therapeutic implications, and methodological challenges of gut microbiota and		
1176	cardiovascular diseases: a position paper by the ESC Working Group on Coronary Pathophysiology and Microcirculation. Cardiovascular Research, 2022, 118, 3171-3182.	1.8	21
1176	cardiovascular diseases: a position paper by the ESC Working Group on Coronary Pathophysiology and	1.8	21

#	Article	IF	CITATIONS
1242	Metformin Mitigates Sepsis-Related Neuroinflammation via Modulating Gut Microbiota and Metabolites. Frontiers in Immunology, 2022, 13, 797312.	2.2	14
1243	Metformin Attenuates Inflammatory Responses and Enhances Antibody Production in an Acute Pneumonia Model of Streptococcus pneumoniae. Frontiers in Aging, 2022, 3, .	1.2	3
1244	Considerations Regarding Public Use of Longevity Interventions. Frontiers in Aging, 2022, 3, .	1.2	0
1245	Domestic Environment and Gut Microbiota: Lessons from Pet Dogs. Microorganisms, 2022, 10, 949.	1.6	7
1246	Gut Microbiome Alterations Associated with Diabetes in Mexican Americans in South Texas. MSystems, 2022, 7, e0003322.	1.7	14
1247	Individuality of the Extremely Premature Infant Gut Microbiota Is Driven by Ecological Drift. MSystems, 2022, 7, e0016322.	1.7	4
1248	Antiâ€Diabetic Intestinal Mechanisms: Foods, Herbs, and Western Medicines. Molecular Nutrition and Food Research, 2022, 66, e2200106.	1.5	2
1249	Butyrate, a typical product of gut microbiome, affects function of the AhR gene, being a possible agent of crosstalk between gut microbiome, and hepatic drug metabolism. Journal of Nutritional Biochemistry, 2022, 107, 109042.	1.9	14
1250	Host—microbial interactions in metabolic diseases: from diet to immunity. Journal of Microbiology, 2022, , 1.	1.3	3
1251	Pathophysiology, phenotypes and management of type 2 diabetes mellitus in Indian and Chinese populations. Nature Reviews Endocrinology, 2022, 18, 413-432.	4.3	62
1252	Fermented milk of cheese-derived Lactobacillus subsp. bulgaricus displays potentials in alleviating alcohol-induced hepatic injury and gut dysbiosis in mice. Food Research International, 2022, 157, 111283.	2.9	6
1253	Association of the gut microbiome with cancer immunotherapy. International Journal of Clinical Oncology, 2022, , 1.	1.0	0
1254	Pharmacomicrobiomics: Influence of gut microbiota on drug and xenobiotic metabolism. FASEB Journal, 2022, 36, e22350.	0.2	23
1255	Dietary Vitamin B1 Intake Influences Gut Microbial Community and the Consequent Production of Short-Chain Fatty Acids. Nutrients, 2022, 14, 2078.	1.7	14
1256	Precision Nutrition for Type 2 Diabetes. , 2022, , 233-249.		1
1258	Review of Literature on Akkermansia muciniphila and its Possible Role in the Etiopathogenesis and Therapy of Type 2 Diabetes Mellitus. Journal of the ASEAN Federation of Endocrine Societies, 2022, 37, 69-74.	0.1	4
1260	Overall Structural Alteration of Gut Microbiota and Relationships with Risk Factors in Patients with Metabolic Syndrome Treated with Inulin Alone and with Other Agents: An Open-Label Pilot Study. Mediators of Inflammation, 2022, 2022, 1-9.	1.4	3
1261	<i>Akkermansia muciniphila</i> plays critical roles in host health. Critical Reviews in Microbiology, 2023, 49, 82-100.	2.7	28

#	Article	IF	CITATIONS
1262	Protective roles of inorganic nitrate in health and diseases. , 2022, 1, .		7
1263	Stool microbiota show greater linkages with plasma metabolites compared to salivary microbiota in a multinational cirrhosis cohort. Liver International, 2022, 42, 2274-2282.	1.9	4
1264	Of Mice and MAVS–Diabetic Kidney Disease and the Leaky Gut. Journal of the American Society of Nephrology: JASN, 2022, 33, 1053-1055.	3.0	1
1265	Gut Microbiota and Antidiabetic Drugs: Perspectives of Personalized Treatment in Type 2 Diabetes Mellitus. Frontiers in Cellular and Infection Microbiology, 2022, 12, .	1.8	11
1267	Translating Microbiome Research From and To the Clinic. Annual Review of Microbiology, 2022, 76, 435-460.	2.9	12
1268	Modulation of Gut Microbiota and Metabolites by Berberine in Treating Mice With Disturbances in Glucose and Lipid Metabolism. Frontiers in Pharmacology, 0, 13, .	1.6	5
1270	Precision Medicine in Diabetes. Handbook of Experimental Pharmacology, 2022, , .	0.9	1
1272	Intriguing Role of Gut-Brain Axis on Cognition with an Emphasis on Interaction with Papez Circuit. CNS and Neurological Disorders - Drug Targets, 2023, 22, 1146-1163.	0.8	3
1273	Metformin in prediabetes: key mechanisms for the prevention of diabetes and cardiometabolic risks. Meditsinskiy Sovet, 2022, , 96-103.	0.1	0
1274	Metformin Influence on the Intestinal Microbiota and Organism of Rats with Metabolic Syndrome. International Journal of Molecular Sciences, 2022, 23, 6837.	1.8	7
1275	Bone Perspectives in Functional Hypothalamic Amenorrhoea: An Update and Future Avenues. Frontiers in Endocrinology, 0, 13, .	1.5	3
1276	Ameliorative Effects of Gut Microbial Metabolite Urolithin A on Pancreatic Diseases. Nutrients, 2022, 14, 2549.	1.7	8
1277	Role of the Gut Microbiome in Diabetes and Cardiovascular Diseases Including Restoration and Targeting Approaches- A Review. , 2022, 15, 133-149.		1
1278	Molecular Study of Lactobacilli Species in Patients with Type 2 Diabetes Mellitus. Open Microbiology Journal, 2022, 16, .	0.2	0
1279	The emerging role of microbiota-derived short-chain fatty acids in immunometabolism. International Immunopharmacology, 2022, 110, 108983.	1.7	19
1280	Postbiotics as potential new therapeutic agents for metabolic disorders management. Biomedicine and Pharmacotherapy, 2022, 153, 113138.	2.5	44
1281	Microbial Drug Interactions and Human Health. Food Chemistry, Function and Analysis, 2022, , 120-149.	0.1	0
1282	Influence of Gut Microbiota and Trimethylamine <i>N</i> -Oxide in Patients with Coronary Heart Disease. International Heart Journal, 2022, 63, 683-691.	0.5	3

#	Article	IF	CITATIONS
1283	Probiotics, Prebiotics, and Synbiotics in Human Health. Food Chemistry, Function and Analysis, 2022, , 86-119.	0.1	0
1285	Antiâ€diabetic effect of banana peel dietary fibers on type 2 diabetic mellitus mice induced by streptozotocin and highâ€sugar and highâ€fat diet. Journal of Food Biochemistry, 2022, 46, .	1.2	4
1286	The Mechanism of Action of Biguanides: New Answers to a Complex Question. Cancers, 2022, 14, 3220.	1.7	14
1287	Metabolic Action of Metformin. Pharmaceuticals, 2022, 15, 810.	1.7	23
1288	Effects of the Lipid Profile, Type 2 Diabetes and Medication on the Metabolic Syndrome—Associated Gut Microbiome. International Journal of Molecular Sciences, 2022, 23, 7509.	1.8	11
1289	Gut microbiota interactions with anti-diabetic medications and pathogenesis of type 2 diabetes mellitus. World Journal of Methodology, 2022, 12, 246-257.	1.1	6
1290	Population-level Metagenomics Uncovers Distinct Effects of Multiple Medications on the Human Gut Microbiome. Gastroenterology, 2022, 163, 1038-1052.	0.6	49
1291	Pathogenic or Therapeutic: The Mediating Role of Gut Microbiota in Non-Communicable Diseases. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	3
1292	High Levels of <i>Akkermansia muciniphilia</i> Growth Associated With Spring Water Ingestion Prevents Obesity and Hyperglycemia in a High-fat Diet-Induced Mouse Model. Natural Product Communications, 2022, 17, 1934578X2211110.	0.2	0
1293	Metformin use is not associated with reduced risk of older onset inflammatory bowel disease: a Danish nationwide population-based study. Journal of Gastroenterology, 2022, 57, 761-769.	2.3	1
1295	Effect of Tanshinone IIA on Gut Microbiome in Diabetes-Induced Cognitive Impairment. Frontiers in Pharmacology, 0, 13, .	1.6	3
1296	Role of butyrogenic Firmicutes in type-2 diabetes. Journal of Diabetes and Metabolic Disorders, 2022, 21, 1873-1882.	0.8	5
1297	Alterations of the Gut Microbiota in Patients with Diabetic Nephropathy. Microbiology Spectrum, 2022, 10, .	1.2	27
1298	Effects of Oral Glucose-Lowering Agents on Gut Microbiota and Microbial Metabolites. Frontiers in Endocrinology, 0, 13, .	1.5	9
1299	Neurobiological and neuropharmacological aspects of food addiction. Neuroscience and Biobehavioral Reviews, 2022, 139, 104760.	2.9	6
1300	Age-related diseases, therapies and gut microbiome: A new frontier for healthy aging. Mechanisms of Ageing and Development, 2022, 206, 111711.	2.2	14
1301	The potential mechanism of Liu–Wei–Di–Huang Pills in treatment of type 2 diabetic mellitus: from gut microbiota to short-chain fatty acids metabolism. Acta Diabetologica, 2022, 59, 1295-1308.	1.2	6
1302	Compound dietary fiber and high-grade protein diet improves glycemic control and ameliorates diabetes and its comorbidities through remodeling the gut microbiota in mice. Frontiers in Nutrition, 0, 9, .	1.6	6

#	Article	IF	CITATIONS
1303	Asthma and Wheeze Severity and the Oropharyngeal Microbiota in Children and Adolescents. Annals of the American Thoracic Society, 0, , .	1.5	7
1304	A multi-centered trial investigating gestational treatment with ursodeoxycholic acid compared to metformin to reduce effects of diabetes mellitus (GUARD): a randomized controlled trial protocol. Trials, 2022, 23, .	0.7	3
1305	Plant-derived tormentic acid alters the gut microbiota of the silkworm (Bombyx mori). Scientific Reports, 2022, 12, .	1.6	1
1306	Interactive Relationships between Intestinal Flora and Bile Acids. International Journal of Molecular Sciences, 2022, 23, 8343.	1.8	29
1307	Gut Microbiota Correlates With Clinical Responsiveness to Erythropoietin in Hemodialysis Patients With Anemia. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	2
1308	Butyrate-Producing Bacteria and Insulin Homeostasis: The Microbiome and Insulin Longitudinal Evaluation Study (MILES). Diabetes, 2022, 71, 2438-2446.	0.3	18
1309	Trimethylamine N-oxide promotes demyelination in spontaneous hypertension rats through enhancing pyroptosis of oligodendrocytes. Frontiers in Aging Neuroscience, 0, 14, .	1.7	7
1310	An urban diet differentially alters the gut microbiome and metabolomic profiles compared with a seed diet in mourning doves. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2022, 323, R385-R396.	0.9	0
1311	Quorum sensing-based interactions among drugs, microbes, and diseases. Science China Life Sciences, 2023, 66, 137-151.	2.3	9
1312	The role of iron in host–microbiota crosstalk and its effects on systemic glucose metabolism. Nature Reviews Endocrinology, 2022, 18, 683-698.	4.3	35
1313	A new predictive model for the concurrent risk of diabetic retinopathy in type 2 diabetes patients and the effect of metformin on amino acids. Frontiers in Endocrinology, 0, 13, .	1.5	0
1314	Dendrobium officinale polysaccharide ameliorates polycystic ovary syndrome via regulating butyrate dependent gut–brain–ovary axis mechanism. Frontiers in Endocrinology, 0, 13, .	1.5	8
1315	Acetate reprograms gut microbiota during alcohol consumption. Nature Communications, 2022, 13, .	5.8	34
1316	Composition and diversity of gut microbiota in diabetic retinopathy. Frontiers in Microbiology, 0, 13, .	1.5	21
1317	Alterations in Microbiota and Metabolites Related to Spontaneous Diabetes and Pre-Diabetes in Rhesus Macaques. Genes, 2022, 13, 1513.	1.0	3
1318	A diet high in FODMAPs as a novel dietary strategy in diabetes?. Clinical Nutrition, 2022, 41, 2103-2112.	2.3	4
1319	Gut Microbiota Modulation as a Novel Therapeutic Strategy in Cardiometabolic Diseases. Foods, 2022, 11, 2575.	1.9	14
1320	Gut microbiota: A new target for T2DM prevention and treatment. Frontiers in Endocrinology, 0, 13, .	1.5	29

ARTICLE IF CITATIONS Oral administration of Blautia wexlerae ameliorates obesity and type 2 diabetes via metabolic 1322 5.8 84 remodeling of the gut microbiota. Nature Communications, 2022, 13, . Inflammation in Children with CKD Linked to Gut Dysbiosis and Metabolite Imbalance. Journal of the American Society of Nephrology: JASN, 2022, 33, 2259-2275. Gut Microbiota Composition in Prediabetes and Newly Diagnosed Type 2 Diabetes: A Systematic Review 1324 1.8 27 of Observational Studies. Frontiers in Cellular and Infection Microbiology, 0, 12, . $L2\hat{i}$ "13, a splicing isoform of lysyl oxidase-like 2, causes adipose tissue loss via the gut microbiota and 1.9 lipid metabolism. IScience, 2022, 25, 104894. The diversity and abundance of gut microbiota are associated with the pain sensation threshold in the 1326 2.1 2 Japanese population. Neurobiology of Disease, 2022, 173, 105839. Characterization of antidiabetic effects of Dendrobium officinale derivatives in a mouse model of type 2 diabetes mellitus. Food Chemistry, 2023, 399, 133974. 4.2 Modulatory role of gut microbiota in cholesterol and glucose metabolism: Potential implications for 1328 0.4 8 atherosclerotic cardiovascular disease. Atherosclerosis, 2022, 359, 1-12. Tauroursodeoxycholic acid functions as a critical effector mediating insulin sensitization of 1329 3.9 metformin in obese mice. Redox Biology, 2022, 57, 102481. Repurposing metformin as a potential treatment for inflammatory bowel disease: Evidence from cell 1330 1.7 4 to the clinic. International Immunopharmacology, 2022, 112, 109230. A machine learning framework for discovery and enrichment of metagenomics metadata from open 3.3 access publications. GigaScience, 2022, 11, An introduction to human microbiome. Progress in Molecular Biology and Translational Science, 1332 0.9 0 2022,,. Structure, functions, and diversity of the healthy human microbiome. Progress in Molecular Biology 0.9 and Translational Science, 2022, , 53-82. Pathophysiologie: Mikrobiom., 2022, , 93-106. 1334 0 The effect of resveratrol-mediated gut microbiota remodeling on metabolic disorders., 2022, 193-202. Treatment of inflammatory bowel disease: Potential effect of NMN on intestinal barrier and gut 1336 2.7 13 microbiota. Current Research in Food Science, 2022, 5, 1403-1411. The role of intestinal stem cell within gut homeostasis: Focusing on its interplay with gut microbiota 2.6 and the regulating pathways. International Journal of Biological Sciences, 2022, 18, 5185-5206. High-throughput sequencing technologies in metagenomics., 2023, , 685-708. 1338 1 The correlation between probiotic use and outcomes of cancer patients treated with immune 1339 checkpoint inhibitors. Frontiers in Pharmacology, 0, 13, .

#	Article	IF	CITATIONS
1340	On the Verge of Precision Medicine in Diabetes. Drugs, 2022, 82, 1389-1401.	4.9	0
1341	Advances in metformin for the treatment of non-alcoholic fatty liver disease in children. Expert Review of Gastroenterology and Hepatology, 0, , 1-15.	1.4	1
1342	Probiotics Treatment Can Improve Cognition in Patients with Mild Cognitive Impairment: A Systematic Review. Journal of Alzheimer's Disease, 2022, 89, 1173-1191.	1.2	4
1343	Global research trends on the links between the gut microbiota and diabetes between 2001 and 2021: A bibliometrics and visualized study. Frontiers in Microbiology, 0, 13, .	1.5	5
1344	Metformin modulates the gut microbiome in broiler breeder hens. Frontiers in Physiology, 0, 13, .	1.3	1
1346	Association between Microbiome-Related Human Genetic Variants and Fasting Plasma Glucose in a High-Cardiovascular-Risk Mediterranean Population. Medicina (Lithuania), 2022, 58, 1238.	0.8	1
1347	The effect of Chinese herbal formulas combined with metformin on modulating the gut microbiota in the amelioration of type 2 diabetes mellitus: A systematic review and meta-analysis. Frontiers in Endocrinology, 0, 13, .	1.5	0
1348	Reduced gut microbiota diversity in patients with congenital generalized lipodystrophy. Diabetology and Metabolic Syndrome, 2022, 14, .	1.2	2
1349	Effect of metformin on the epigenetic age of peripheral blood in patients with diabetes mellitus. Frontiers in Genetics, 0, 13, .	1.1	4
1350	Advancing human gut microbiota research by considering gut transit time. Gut, 2023, 72, 180-191.	6.1	66
1351	An online atlas of human plasma metabolite signatures of gut microbiome composition. Nature Communications, 2022, 13, .	5.8	74
1352	The Use of Gut Microbial Modulation Strategies as Interventional Strategies for Ageing. Microorganisms, 2022, 10, 1869.	1.6	5
1353	Biofilm-based delivery approaches and specific enrichment strategies of probiotics in the human gut. Gut Microbes, 2022, 14, .	4.3	6
1354	Dynamics Changes of the Fecal Bacterial Community Fed Diets with Different Concentrate-to-Forage Ratios in Qinghai Yaks. Animals, 2022, 12, 2334.	1.0	1
1355	Multi-omic phenotyping reveals host-microbe responses to bariatric surgery, glycaemic control and obesity. Communications Medicine, 2022, 2, .	1.9	2
1356	Microbiome epidemiology and association studies in human health. Nature Reviews Genetics, 2023, 24, 109-124.	7.7	17
1357	Yeast βâ€Glucan Improves Insulin Sensitivity and Hepatic Lipid Metabolism in Mice Humanized with Obese Type 2 Diabetic Gut Microbiota. Molecular Nutrition and Food Research, 2022, 66, .	1.5	6
1358	Visual Atlas Analysis on Literature of Intestinal Flora Based on CiteSpace Bibliometrics. Advances in Clinical Medicine, 2022, 12, 9352-9362.	0.0	0

#	Article	IF	CITATIONS
1359	Targeting the Gut Microbiome in Cirrhosis. , 2022, , 311-319.		1
1360	Research Progress of Gut Microbiota's Function in Metabolic and Immunological Diseases. Open Journal of Natural Science, 2022, 10, 949-959.	0.1	0
1361	Characterization, High-Density Fermentation, and the Production of a Directed Vat Set Starter of Lactobacilli Used in the Food Industry: A Review. Foods, 2022, 11, 3063.	1.9	10
1362	Genetically engineered bacterium: Principles, practices, and prospects. Frontiers in Microbiology, 0, 13,	1.5	14
1363	Nanocarrier-Assisted Delivery of Metformin Boosts Remodeling of Diabetic Periodontal Tissue via Cellular Exocytosis-Mediated Regulation of Endoplasmic Reticulum Homeostasis. ACS Nano, 2022, 16, 19096-19113.	7.3	10
1364	Role of gut microbiota in the pathogenesis and treatment of diabetes mullites: Advanced research-based review. Frontiers in Microbiology, 0, 13, .	1.5	14
1365	The hallmarks of dietary intervention-resilient gut microbiome. Npj Biofilms and Microbiomes, 2022, 8,	2.9	18
1366	Fufang Fanshiliu Decoction Revealed the Antidiabetic Effect through Modulating Inflammatory Response and Gut Microbiota Composition. Evidence-based Complementary and Alternative Medicine, 2022, 2022, 1-10.	0.5	3
1367	The potential of tailoring the gut microbiome to prevent and treat cardiometabolic disease. Nature Reviews Cardiology, 2023, 20, 217-235.	6.1	31
1369	The role of the gut microbiota in health and cardiovascular diseases. Molecular Biomedicine, 2022, 3, .	1.7	22
1370	Interactions between Medications and the Gut Microbiome in Inflammatory Bowel Disease. Microorganisms, 2022, 10, 1963.	1.6	4
1372	Precise strategies for selecting probiotic bacteria in treatment of intestinal bacterial dysfunctional diseases. Frontiers in Immunology, 0, 13, .	2.2	4
1373	Renal Nutrition—Where It Has Been and Where It Is Going. Kidney and Dialysis, 2022, 2, 512-533.	0.5	0
1374	A narrative review of the moderating effects and repercussion of exercise intervention on osteoporosis: ingenious involvement of gut microbiota and its metabolites. Journal of Translational Medicine, 2022, 20, .	1.8	7
1376	Unique Pakistani gut microbiota highlights population-specific microbiota signatures of type 2 diabetes mellitus. Gut Microbes, 2022, 14, .	4.3	4
1377	The effect of microbiome-modulating probiotics, prebiotics and synbiotics on glucose homeostasis in type 2 diabetes: A systematic review, meta-analysis, and meta-regression of clinical trials. Pharmacological Research, 2022, 185, 106520.	3.1	9
1378	Advances in multi-omics study of biomarkers of glycolipid metabolism disorder. Computational and Structural Biotechnology Journal, 2022, 20, 5935-5951.	1.9	22
1379	Drugging the microbiome: targeting small microbiome molecules. Current Opinion in Microbiology, 2023, 71, 102234.	2.3	0

#	Article	IF	CITATIONS
1380	Mechanism Underlying Metformin Action and Its Potential to Reduce Gastric Cancer Risk. International Journal of Molecular Sciences, 2022, 23, 14163.	1.8	6
1381	Buyang Huanwu decoction affects gut microbiota and lipid metabolism in a ZDF rat model of co-morbid type 2 diabetes mellitus and obesity: An integrated metabolomics analysis. Frontiers in Chemistry, 0, 10, .	1.8	12
1382	Metformin: A Promising Antidiabetic Medication for Cancer Treatment. Current Drug Targets, 2023, 24, 41-54.	1.0	6
1383	Tryptophan was metabolized into beneficial metabolites against coronary heart disease or prevented from producing harmful metabolites by the in vitro drug screening model based on Clostridium sporogenes. Frontiers in Microbiology, 0, 13, .	1.5	0
1384	Gut microbiota is correlated with gastrointestinal adverse events of metformin in patients with type 2 diabetes. Frontiers in Endocrinology, 0, 13, .	1.5	5
1385	Interactions between NSAIDs, opioids and the gut microbiota - Future perspectives in the management of inflammation and pain. , 2023, 241, 108327.		16
1386	Prevalence of Rounded Shoulder in Computer Users. A cross-sectional survey. Pak-Euro Journal of Medical and LifeÂSciences, 2022, 5, 423-428.	0.0	0
1387	Dysbiosis of gut microbiome contributes to glaucoma pathogenesis. , 2022, 1, .		5
1388	Application Potential of Probiotics in Acute Myocardial Infarction. Cardiovascular Innovations and Applications, 2022, 7, .	0.1	1
1389	Snapshot into the Type-2-Diabetes-Associated Microbiome of a Romanian Cohort. International Journal of Molecular Sciences, 2022, 23, 15023.	1.8	6
1390	Type 2 Diabetes and the Microbiome. Journal of the Endocrine Society, 2022, 7, .	0.1	3
1391	Biotransformation of 18β-Glycyrrhetinic Acid by Human Intestinal Fungus <i>Aspergillus niger</i> RG13B1 and the Potential Anti-Inflammatory Mechanism of Its Metabolites. Journal of Agricultural and Food Chemistry, 2022, 70, 15104-15115.	2.4	3
1392	Flavonoids' Dual Benefits in Gastrointestinal Cancer and Diabetes: A Potential Treatment on the Horizon?. Cancers, 2022, 14, 6073.	1.7	3
1393	Bacteroides fragilis participates in the therapeutic effect of methotrexate on arthritis through metabolite regulation. Frontiers in Microbiology, 0, 13, .	1.5	7
1394	Synbiotic Intervention Ameliorates Oxidative Stress and Gut Permeability in an In Vitro and In Vivo Model of Ethanol-Induced Intestinal Dysbiosis. Biomedicines, 2022, 10, 3285.	1.4	3
1395	Deducing the Interplay Between Gut Flora and Respiratory Diseases: A New Therapeutic Strategy?. Indian Journal of Microbiology, 2023, 63, 1-17.	1.5	2
1397	Anthocyanins as Promising Molecules Affecting Energy Homeostasis, Inflammation, and Gut Microbiota in Type 2 Diabetes with Special Reference to Impact of Acylation. Journal of Agricultural and Food Chemistry, 2023, 71, 1002-1017.	2.4	10
1398	Metformin modulates the gut microbiome in a mice model of high-fat diet-induced glycolipid metabolism disorder. BMJ Open Diabetes Research and Care, 2022, 10, e003149.	1.2	2

#	Article	IF	CITATIONS
1400	Diabetes Mellitus and Microbiota: Knowledge and Perspectives. Healthy Ageing and Longevity, 2023, , 131-151.	0.2	0
1401	New insights into the mechanisms of highâ€fat diet mediated gut microbiota in chronic diseases. , 2023, 2, .		16
1402	Gut microbiome and stages of diabetes in middle-aged adults: CARDIA microbiome study. Nutrition and Metabolism, 2023, 20, .	1.3	5
1403	Lacticaseibacillus rhamnosus Hao9 exerts antidiabetic effects by regulating gut microbiome, glucagon metabolism, and insulin levels in type 2 diabetic mice. Frontiers in Nutrition, 0, 9, .	1.6	2
1404	Discovery of drug–omics associations in type 2 diabetes with generative deep-learning models. Nature Biotechnology, 2023, 41, 399-408.	9.4	18
1405	Methanol extract of Inonotus obliquus improves type 2 diabetes mellitus through modifying intestinal flora. Frontiers in Endocrinology, 0, 13, .	1.5	3
1406	Fatty acid overproduction by gut commensal microbiota exacerbates obesity. Cell Metabolism, 2023, 35, 361-375.e9.	7.2	28
1407	Microbiome Features Differentiating Unsupervised-Stratification-Based Clusters of Patients with Abnormal Clycometabolism. MBio, 2023, 14, .	1.8	4
1408	Gold Nanoclusters Enhance the Efficacy of the Polymer-Based Chaperone in Restoring and Maintaining the Native Conformation of Human Islet Amyloid Polypeptide. ACS Applied Materials & Interfaces, 2023, 15, 3409-3419.	4.0	1
1409	Current Progress of Bioinformatics for Human Health. Translational Bioinformatics, 2023, , 145-162.	0.0	0
1410	Effects of Initial Combinations of Gemigliptin Plus Metformin Compared with Glimepiride Plus Metformin on Gut Microbiota and Glucose Regulation in Obese Patients with Type 2 Diabetes: The INTESTINE Study. Nutrients, 2023, 15, 248.	1.7	4
1411	Association between inflammation, lipopolysaccharide binding protein, and gut microbiota composition in a New Hampshire Bhutanese refugee population with a high burden of type 2 diabetes. Frontiers in Nutrition, 0, 9, .	1.6	0
1412	Obesidade e Microbiota Intestinal: o que sabemos até agora?. Brazilian Journal of Health Review, 2022, 5, 21218-21243.	0.0	0
1413	Relationships between Diabetes and the Intestinal Microbial Population. International Journal of Molecular Sciences, 2023, 24, 566.	1.8	0
1414	Modern approaches to the essence and assessment of gut dysbiosis. Review. Modern Gastroenterology, 2022, , 58-64.	0.1	0
1415	Gut microbe Lactiplantibacillus plantarum undergoes different evolutionary trajectories between insects and mammals. BMC Biology, 2022, 20, .	1.7	2
1416	Metabolism of gut microbiota and its role in state of diabetes mellitus. Meditsinskiy Sovet, 2023, , 192-198.	0.1	0
1417	Metabolic modelling of the human gut microbiome in type 2 diabetes patients in response to metformin treatment. Npj Systems Biology and Applications, 2023, 9, .	1.4	8

#	Article	IF	Citations
1418	Kynurenine Pathway in Diabetes Mellitus—Novel Pharmacological Target?. Cells, 2023, 12, 460.	1.8	23
1420	Fecal transplant. , 2023, , 391-398.		0
1421	Metformin acts in the gut and induces gut-liver crosstalk. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	15
1422	Oral metformin transiently lowers post-prandial glucose response by reducing the apical expression of sodium-glucose co-transporter 1 in enterocytes. IScience, 2023, 26, 106057.	1.9	4
1423	Medicinal-microbial interactions and ways of correcting iatrogenic intestinal dysbiosis. Eksperimental'naya I Klinicheskaya Gastroenterologiya, 2023, , 26-35.	0.1	0
1424	Melatonin improved glucose homeostasis is associated with the reprogrammed gut microbiota and reduced fecal levels of shortâ€chain fatty acids in db/db mice. Food Science and Nutrition, 0, , .	1.5	1
1425	Predictors of High-output Stoma in Diverting Ileostomy for Rectal Cancer Surgery. Nihon Daicho Komonbyo Gakkai Zasshi, 2023, 76, 286-291.	0.1	0
1426	Pharmacomicrobiomics and type 2 diabetes mellitus: A novel perspective towards possible treatment. Frontiers in Endocrinology, 0, 14, .	1.5	3
1427	Meta-Analysis Reveals Compositional and Functional Microbial Changes Associated with Osteoporosis. Microbiology Spectrum, 2023, 11, .	1.2	5
1428	Role of microbial dysbiosis in the pathogenesis of Alzheimer's disease. Neuropharmacology, 2023, 229, 109478.	2.0	10
1429	Future foods, dietary factors and healthspan. Journal of Future Foods, 2023, 3, 75-98.	2.0	2
1430	Zuogui-Jiangtang-Yishen decoction prevents diabetic kidney disease: Intervene pyroptosis induced by trimethylamine n-oxide through the mROS-NLRP3 axis. Phytomedicine, 2023, 114, 154775.	2.3	3
1431	Polysaccharides from small black soybean alleviating type 2 diabetes via modulation of gut microbiota and serum metabolism. Food Hydrocolloids, 2023, 141, 108670.	5.6	11
1432	A review on Impact of dietary interventions, drugs, and traditional herbal supplements on the gut microbiome. Microbiological Research, 2023, 271, 127346.	2.5	3
1433	Future Therapeutic Prospects in Dealing with Autoimmune Diseases: Treatment Based on the Microbiome Model. , 2022, , 489-520.		1
1434	Intestinal microbiome diversity of diabetic and non-diabetic kidney disease: Current status and future perspective. Life Sciences, 2023, 316, 121414.	2.0	3
1435	Microbiota: A potential orchestrator of antidiabetic therapy. Frontiers in Endocrinology, 0, 14, .	1.5	3
1436	Possibilities of Autologous Fecal Microbiota Transplantation in patients with obesity and diabetes mellitus. Obesity and Metabolism, 2023, 19, 300-305.	0.4	0

#	Article	IF	CITATIONS
1437	Gut microbiota in patients with COVID-19 and type 2 diabetes: A culture-based method. Frontiers in Cellular and Infection Microbiology, 0, 13, .	1.8	10
1438	Akkermansia muciniphila as a Next-Generation Probiotic in Modulating Human Metabolic Homeostasis and Disease Progression: A Role Mediated by Gut–Liver–Brain Axes?. International Journal of Molecular Sciences, 2023, 24, 3900.	1.8	22
1439	The effects of prebiotics on gastrointestinal side effects of metformin in youth: A pilot randomized control trial in youth-onset type 2 diabetes. Frontiers in Endocrinology, 0, 14, .	1.5	4
1440	Comparing the gut microbiome of obese, African American, older adults with and without mild cognitive impairment. PLoS ONE, 2023, 18, e0280211.	1.1	6
1441	A bibliometric perspective to the most cited diabetes articles. Journal of Diabetes and Metabolic Disorders, 0, , .	0.8	0
1442	Clinical significance of microbiota changes under the influence of psychotropic drugs. An updated narrative review. Frontiers in Microbiology, 0, 14, .	1.5	8
1443	Gut Microbiota: A Future Clinical Magic Bullet to Manifest Pathogenic Disease in the Current Future. Journal of Pure and Applied Microbiology, 2023, 17, 51-68.	0.3	0
1444	Integrated Gut Microbiota and Urine Metabolite Analyses of T2DM with NAFLD Rat Model. Applied Biochemistry and Biotechnology, 2023, 195, 6478-6494.	1.4	2
1445	Interactions Between Antidepressants and Intestinal Microbiota. Neurotherapeutics, 2023, 20, 359-371.	2.1	1
1446	Dietary administration with hydrolyzed silk sericin improves the intestinal health of diabetic rats. Frontiers in Microbiology, 0, 14, .	1.5	1
1447	The effect of heart failure on gut microbial richness and diversity. Revista Portuguesa De Cardiologia, 2023, , .	0.2	1
1448	Short-chain fatty acids as a link between diet and cardiometabolic risk: a narrative review. Lipids in Health and Disease, 2023, 22, .	1.2	3
1449	High-Resolution Taxonomic Characterization Reveals Novel Human Microbial Strains with Potential as Risk Factors and Probiotics for Prediabetes and Type 2 Diabetes. Microorganisms, 2023, 11, 758.	1.6	4
1450	Spatial variation of the gut microbiome in response to long-term metformin treatment in high-fat diet-induced type 2 diabetes mouse model of both sexes. Gut Microbes, 2023, 15, .	4.3	4
1451	Nonalcoholic steatohepatitis-related hepatocellular carcinoma: pathogenesis and treatment. Nature Reviews Gastroenterology and Hepatology, 2023, 20, 487-503.	8.2	55
1452	Toxin-linked mobile genetic elements in major enteric bacterial pathogens. Gut Microbiome, 2023, 4, .	0.8	0
1453	Cardiometabolic health, diet and the gut microbiome: a meta-omics perspective. Nature Medicine, 2023, 29, 551-561.	15.2	17
1454	Clinical Relevance of Gut Microbiota Alterations under the Influence of Selected Drugs—Updated Review. Biomedicines, 2023, 11, 952.	1.4	1

#	Article	IF	CITATIONS
1455	Fucosylated Human Milk Oligosaccharides Drive Structureâ€ £ pecific Syntrophy between <i>Bifidobacterium infantis</i> and <i>Eubacterium hallii</i> within a Modeled Infant Gut Microbiome. Molecular Nutrition and Food Research, 2023, 67, .	1.5	2
1456	Pharmacogenetics of Metformin in Type 2 Diabetes: Perspectives for Latin America. , 0, , .		0
1457	Mixed-donor faecal microbiota transplantation was associated with increased butyrate-producing bacteria for obesity. Gut, 0, , gutjnl-2022-328993.	6.1	2
1458	Forging the microbiome to help us live long and prosper. PLoS Biology, 2023, 21, e3002087.	2.6	1
1459	Role of Akkermansia in Human Diseases: From Causation to Therapeutic Properties. Nutrients, 2023, 15, 1815.	1.7	9
1460	Pediococcus acidilactici pA1c® Improves the Beneficial Effects of Metformin Treatment in Type 2 Diabetes by Controlling Glycaemia and Modulating Intestinal Microbiota. Pharmaceutics, 2023, 15, 1203.	2.0	3
1461	Microbiome-based enrichment pattern mining has enabled a deeper understanding of the biome–species–function relationship. Communications Biology, 2023, 6, .	2.0	0
1462	Exploring the Role of Mentha in Gut Microbiota: A Modern Perspective of an Ancient Herb. , 2023, 14, .		0
1463	Targeting the human gut microbiome with small-molecule inhibitors. Nature Reviews Chemistry, 2023, 7, 319-339.	13.8	4
1464	Interaction of Intestinal Microbiota with Medications. Current Drug Metabolism, 2023, 24, .	0.7	0
1465	Multi-omics signatures in new-onset diabetes predict metabolic response to dietary inulin: findings from an observational study followed by an interventional trial. Nutrition and Diabetes, 2023, 13, .	1.5	6
1466	Translating the Microbiome: Whatâ \in ^M s the Target?. Gastroenterology, 2023, 165, 317-319.	0.6	1
1468	Roles of the gut microbiome in weight management. Nature Reviews Microbiology, 2023, 21, 535-550.	13.6	11
1473	Role of the gut microbiota in anticancer therapy: from molecular mechanisms to clinical applications. Signal Transduction and Targeted Therapy, 2023, 8, .	7.1	27
1479	Dietary Modulation of the Nervous and Immune System: Role of Probiotics/Prebiotics/Synbiotics/Postbiotics. , 2023, , 307-328.		0
1489	Metformin: update on mechanisms of action and repurposing potential. Nature Reviews Endocrinology, 2023, 19, 460-476.	4.3	55
1499	Calorie restriction mimetic drugs could favorably influence gut microbiota leading to lifespan extension. GeroScience, 0, , .	2.1	2
1502	Host, Genetic, and Environmental Influences on the Gut Microbiota. , 2023, , 83-104.		0

IF ARTICLE CITATIONS # Human Gut Microbiome Researches Over the Last Decade: Current Challenges and Future Directions. 1548 0.9 1 Phenomics, 0, , . Machine learning for microbiologists. Nature Reviews Microbiology, 2024, 22, 191-205. 13.6 Gut microbiota in relationship to diabetes mellitus and its late complications with a focus on diabetic 1565 1.1 1 foot syndrome: A review. Folia Microbiologica, 0, , . Quorum Sensing: A New Target for Anti-infective Drug Therapy., 2023, , 250-281. 1571 Gut Microbiome Composition in Polycystic Ovary Syndrome Adult Women: A Systematic Review and 1582 1.1 0 Meta-analysis of Observational Studies. Reproductive Sciences, 0, , . Gut Microbiota and Metabolism., 2024, , 145-159. Correlating the Gut Microbiome to Health and Disease., 2024, , 1-36. 1590 0 Use Cases and Future Aspects of Intelligent Techniques in Microbial Data Analysis. Microorganisms for Sustainability, 2024, , 259-280.