Environmental Implications of Hydroxyl Radicals (<sup

Chemical Reviews

115, 13051-13092

DOI: 10.1021/cr500310b

Citation Report

#	Article	IF	CITATIONS
3	Reviews and Syntheses: Ocean acidification and its potential impacts on marine ecosystems. Biogeosciences, 2016, 13, 1767-1786.	1.3	82
4	Reaction rates and kinetic isotope effects of H2 + OH → H2O + H. Journal of Chemical Physics, 2016, 144, 174303.	1.2	29
5	Gas-Phase Photolysis of Pyruvic Acid: The Effect of Pressure on Reaction Rates and Products. Journal of Physical Chemistry A, 2016, 120, 10123-10133.	1.1	41
6	The persistence of pesticides in atmospheric particulate phase: An emerging air quality issue. Scientific Reports, 2016, 6, 33456.	1.6	71
7	Applications of Continuous-Flow Photochemistry in Organic Synthesis, Material Science, and Water Treatment. Chemical Reviews, 2016, 116, 10276-10341.	23.0	1,166
8	A DFT Study Toward the Reaction Mechanisms of TNT With Hydroxyl Radicals for Advanced Oxidation Processes. Journal of Physical Chemistry A, 2016, 120, 3747-3753.	1.1	26
9	Sunlight as an energetic driver in the synthesis of molecules necessary for life. Physical Chemistry Chemical Physics, 2016, 18, 20067-20084.	1.3	85
10	Fenton-like Inactivation of Tobacco Peroxidase Electrocatalysis at Negative Potentials. ACS Catalysis, 2016, 6, 7452-7457.	5.5	14
11	Tolfenamic acid degradation by direct photolysis and the UV-ABC/H2O2 process: factorial design, kinetics, identification of intermediates, and toxicity evaluation. Science of the Total Environment, 2016, 573, 518-531.	3.9	36
12	A novel catalytic process for degradation of bisphenol A from aqueous solutions: A synergistic effect of nano-Fe 3 O 4 @Alg-Fe on O 3 /H 2 O 2. Chemical Engineering Research and Design, 2016, 104, 413-421.	2.7	46
13	The 40 m 3 Innovative experimental Room for INdoor Air studies (IRINA): Development and validations. Chemical Engineering Journal, 2016, 306, 568-578.	6.6	14
14	Atmospheric chemistry of bioaerosols: heterogeneous and multiphase reactions with atmospheric oxidants and other trace gases. Chemical Science, 2016, 7, 6604-6616.	3.7	109
15	Introducing saccharic acid as an efficient iron chelate to enhance photo-Fenton degradation of organic contaminants. Water Research, 2016, 104, 168-177.	5.3	70
16	A model assessment of the ability of lake water in Terra Nova Bay, Antarctica, to induce the photochemical degradation of emerging contaminants. Chemosphere, 2016, 162, 91-98.	4.2	5
17	Involvement of Fenton chemistry in rice straw degradation by the lignocellulolytic bacterium Pantoea ananatis Sd-1. Biotechnology for Biofuels, 2016, 9, 211.	6.2	33
18	The contribution of indirect photolysis to the degradation of graphene oxide in sunlight. Carbon, 2016, 110, 426-437.	5.4	35
19	Considerable Fenton and photo-Fenton reactivity of passivated zero-valent iron. RSC Advances, 2016, 6, 86752-86761.	1.7	30
20	Air activation by a metal-free photocatalyst for "totally-green―hydrocarbon selective oxidation. Catalysis Science and Technology, 2016, 6, 7252-7258.	2.1	32

#	Article	IF	CITATIONS
21	Confinement Effect in Layered Double Hydroxide Nanoreactor: Improved Optical Sensing Selectivity. Analytical Chemistry, 2016, 88, 8188-8193.	3.2	31
22	Chlorination Revisited: Does Cl [–] Serve as a Catalyst in the Chlorination of Phenols?. Environmental Science & Does Cl ^{Environmental Science & Does Cl^{Environmental Science & Does Cl^{En}}}</sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup>	4.6	55
23	Mechanistic Studies of TiO ₂ Photocatalysis and Fenton Degradation of Hydrophobic Aromatic Pollutants in Water. Chemistry - an Asian Journal, 2016, 11, 3568-3574.	1.7	14
24	Enhancement in Rate of Photocatalysis Upon Catalyst Recycling. Scientific Reports, 2016, 6, 35075.	1.6	41
25	How do Enzymes Utilize Reactive OH Radicals? Lessons from Nonheme HppE and Fenton Systems. Journal of the American Chemical Society, 2016, 138, 8489-8496.	6.6	47
26	Generation of Hydroxyl Radicals in the Reaction of Dihydrogen with AuNbO ₄ ⁺ Cluster Cations. Chemistry - an Asian Journal, 2016, 11, 2730-2734.	1.7	7
27	Synthesize and characterize of Ag3VO4/TiO2 nanorods photocatalysts and its photocatalytic activity under visible light irradiation. Applied Surface Science, 2016, 366, 173-180.	3.1	81
28	Instantaneous impedance monitoring of synergistic effect between cavitation erosion and corrosion processes. Electrochimica Acta, 2016, 203, 388-395.	2.6	39
29	The highly enhanced visible light photocatalytic degradation of gaseous o -dichlorobenzene through fabricating like-flowers BiPO 4 /BiOBr p-n heterojunction composites. Applied Surface Science, 2017, 391, 525-534.	3.1	105
30	On the summertime air quality and related photochemical processes in the megacity Shanghai, China. Science of the Total Environment, 2017, 580, 974-983.	3.9	47
31	Effect of organic co-solvents in the evaluation of the hydroxyl radical scavenging activity by the 2-deoxyribose degradation assay: The paradigmatic case of \hat{l}_{\pm} -lipoic acid. Biophysical Chemistry, 2017, 220, 1-6.	1.5	15
32	Modelling the photochemical attenuation pathways of the fibrate drug gemfibrozil in surface waters. Chemosphere, 2017, 170, 124-133.	4.2	12
33	Hydroxyl Radicals via Collision-Induced Dissociation of Trimethylammonium Benzyl Alcohols. Australian Journal of Chemistry, 2017, 70, 397.	0.5	5
34	Fluorescence completely separated ratiometric probe for HClO in lysosomes. Sensors and Actuators B: Chemical, 2017, 246, 293-299.	4.0	60
35	Reaction of SO ₂ with OH in the atmosphere. Physical Chemistry Chemical Physics, 2017, 19, 8091-8100.	1.3	63
36	Cytarabine degradation by simulated solar assisted photocatalysis using TiO 2. Chemical Engineering Journal, 2017, 316, 823-831.	6.6	33
37	Does a Nitrogen Lone Pair Lead to Two Centered–Three Electron (2c–3e) Interactions in Pyridyl Radical Isomers?. Journal of Physical Chemistry A, 2017, 121, 3781-3791.	1.1	9
38	Addition of Hydrogen Peroxide to Groundwater with Natural Iron Induces Water Disinfection by Photoâ€Fenton at Circumneutral pH and other Photochemical Events. Photochemistry and Photobiology, 2017, 93, 1224-1231.	1.3	12

#	ARTICLE	IF	CITATIONS
39	Microbial response to environmental stresses: from fundamental mechanisms to practical applications. Applied Microbiology and Biotechnology, 2017, 101, 3991-4008.	1.7	117
40	A Review of Direct Zâ€Scheme Photocatalysts. Small Methods, 2017, 1, 1700080.	4.6	955
41	Addition of hydrogen peroxide enhances abiotic sunlight-induced processes to simultaneous emerging pollutants and bacteria abatement in simulated groundwater using CPC solar reactors. Solar Energy, 2017, 148, 110-116.	2.9	13
42	Oxygen Vacancy Associated Surface Fenton Chemistry: Surface Structure Dependent Hydroxyl Radicals Generation and Substrate Dependent Reactivity. Environmental Science & Echnology, 2017, 51, 5685-5694.	4.6	387
43	Fe(III)-Modified BiOBr Hierarchitectures for Improved Photocatalytic Benzyl Alcohol Oxidation and Organic Pollutants Degradation. Industrial & Engineering Chemistry Research, 2017, 56, 5935-5943.	1.8	73
44	Electrochemical Advanced Oxidation Processes (EAOP) to degrade per- and polyfluoroalkyl substances (PFASs). Journal of Advanced Oxidation Technologies, 2017, 20, .	0.5	21
45	Kinetics of gas phase OH radical reaction with thiophene in the 272–353 K temperature range: A laser induced fluorescence study. Chemical Physics Letters, 2017, 682, 154-159.	1.2	8
46	Priority pesticides abatement by advanced water technologies: The case of acetamiprid removal by ozonation. Science of the Total Environment, 2017, 599-600, 1454-1461.	3.9	69
47	Enhancing reactive oxygen species generation and photocatalytic performance via adding oxygen reduction reaction catalysts into the photocatalysts. Applied Catalysis B: Environmental, 2017, 218, 174-185.	10.8	82
48	Enhanced Phototherapy by Nanoparticle-Enzyme via Generation and Photolysis of Hydrogen Peroxide. Nano Letters, 2017, 17, 4323-4329.	4.5	188
49	Photochemical reaction between triclosan and nitrous acid in the atmospheric aqueous environment. Atmospheric Environment, 2017, 157, 38-48.	1.9	14
50	Reaction mechanisms of DNT with hydroxyl radicals for advanced oxidation processesâ€"a DFT study. Journal of Molecular Modeling, 2017, 23, 139.	0.8	10
51	Hydrogen peroxide (H2O2) irreversibly inactivates creatine kinase from Pelodiscus sinensis by targeting the active site cysteine. International Journal of Biological Macromolecules, 2017, 105, 1595-1601.	3.6	5
52	Au-decorated sodium titanate nanotubes as high-performance selective photocatalysts for pollutant degradation. Journal Physics D: Applied Physics, 2017, 50, 144002.	1.3	20
53	UV-based technologies for marine water disinfection and the application to ballast water: Does salinity interfere with disinfection processes?. Science of the Total Environment, 2017, 581-582, 144-152.	3.9	36
54	Remarkable enhancement of Fenton degradation at a wide pH range promoted by thioglycolic acid. Chemical Communications, 2017, 53, 1136-1139.	2.2	47
55	Cosmetic wastewater treatment by the ZVI/H ₂ O ₂ process. Environmental Technology (United Kingdom), 2017, 38, 2589-2600.	1.2	15
56	Secondary organic aerosol formation from photo-oxidation of toluene with NO x and SO 2 : Chamber simulation with purified air versus urban ambient air as matrix. Atmospheric Environment, 2017, 150, 67-76.	1.9	36

#	Article	IF	Citations
57	High-energy oxidation process: an efficient alternative for wastewater organic contaminants removal. Clean Technologies and Environmental Policy, 2017, 19, 1995-2006.	2.1	35
58	A comparison of photodegradation kinetics, mechanisms, and products between chlorinated and brominated/iodinated haloacetic acids in water. Chemical Engineering Journal, 2017, 330, 1326-1333.	6.6	43
59	Exploring ozonation as treatment alternative for methiocarb and formed transformation products abatement. Chemosphere, 2017, 186, 725-732.	4.2	16
60	Modeling the pH and temperature dependence of aqueousphase hydroxyl radical reaction rate constants of organic micropollutants using QSPR approach. Environmental Science and Pollution Research, 2017, 24, 24936-24946.	2.7	17
61	Theoretical investigation on the mechanism of the OH-initiated degradation process of reactive red 2 azo dye. RSC Advances, 2017, 7, 41799-41811.	1.7	14
62	Photoinduced degradation of sulfonamides, kinetic, and structural characterization of transformation products and assessment of environmental toxicity. Toxicological and Environmental Chemistry, 2017, 99, 1304-1327.	0.6	23
63	Contaminants of emerging concern: a review of new approach in AOP technologies. Environmental Monitoring and Assessment, 2017, 189, 414.	1.3	194
64	Modeling the aqueous phase reactivity of hydroxyl radical towards diverse organic micropollutants: An aid to water decontamination processes. Chemosphere, 2017, 185, 1164-1172.	4.2	15
65	Phototransformation of Acesulfame K in surface waters: Comparison of two techniques for the measurement of the second-order rate constants of indirect photodegradation, and modelling of photoreaction kinetics. Chemosphere, 2017, 186, 185-192.	4.2	23
66	Photochemical Water-Splitting with Organomanganese Complexes. Inorganic Chemistry, 2017, 56, 9954-9965.	1.9	18
67	Can radiation chemistry supply a highly efficient AO(R)P process for organics removal from drinking and waste water? A review. Environmental Science and Pollution Research, 2017, 24, 20187-20208.	2.7	46
68	Enhanced antibacterial activity of silica nanorattles with ZnO combination nanoparticles against methicillin-resistant Staphylococcus aureus. Science Bulletin, 2017, 62, 1207-1215.	4.3	10
69	Can Carbamates Undergo Radical Oxidation in the Soil Environment? A Case Study on Carbaryl and Carbofuran. Environmental Science & Environmental Scien	4.6	15
70	Boron Doped ZIFâ€67@Graphene Derived Carbon Electrocatalyst for Highly Efficient Enzymeâ€Free Hydrogen Peroxide Biosensor. Advanced Materials Technologies, 2017, 2, 1700224.	3.0	22
71	Raman Spectroscopy of Single Light-Absorbing Carbonaceous Particles Levitated in Air Using an Annular Laser Beam. Analytical Chemistry, 2017, 89, 12866-12871.	3.2	16
72	A new 3D-printed photoelectrocatalytic reactor combining the benefits of a transparent electrode and the Fenton reaction for advanced wastewater treatment. Journal of Materials Chemistry A, 2017, 5, 24951-24964.	5.2	40
73	Biowaste-derived substances as a tool for obtaining magnet-sensitive materials for environmental applications in wastewater treatments. Chemical Engineering Journal, 2017, 310, 307-316.	6.6	42
74	Photo-Fenton degradation of organic pollutants using a zinc oxide decorated iron oxide/reduced graphene oxide nanocomposite. Ceramics International, 2017, 43, 1290-1297.	2.3	59

#	ARTICLE	IF	CITATIONS
75	Photosensitized degradation of acetaminophen in natural organic matter solutions: The role of triplet states and oxygen. Water Research, 2017, 109, 266-273.	5.3	112
76	2,4-D abatement from groundwater samples by photo-Fenton processes at circumneutral pH using naturally iron present. Effect of inorganic ions. Environmental Science and Pollution Research, 2017, 24, 6213-6221.	2.7	24
77	Mixing state of oxalic acid containing particles in the rural area of Pearl River Delta, China: implications for the formation mechanism of oxalic acid. Atmospheric Chemistry and Physics, 2017, 17, 9519-9533.	1.9	36
78	Degradation of Methyl 2-Aminobenzoate (Methyl Anthranilate) by H2O2/UV: Effect of Inorganic Anions and Derived Radicals. Molecules, 2017, 22, 619.	1.7	22
79	The TOMCAT global chemical transport model v1.6: description of chemical mechanism and model evaluation. Geoscientific Model Development, 2017, 10, 3025-3057.	1.3	35
80	Magnetite and Green Rust: Synthesis, Properties, and Environmental Applications of Mixed-Valent Iron Minerals. Chemical Reviews, 2018, 118, 3251-3304.	23.0	319
81	Hot electron-induced electrochemiluminescence of calcein and calcein-Tb(III) complex at disposable oxide-covered aluminum and polyvinyl butyral-carbon black/metal composite electrodes in aqueous solutions. Electrochimica Acta, 2018, 266, 212-219.	2.6	6
82	Reinventing Fenton Chemistry: Iron Oxychloride Nanosheet for pH-Insensitive H ₂ O ₂ Activation. Environmental Science and Technology Letters, 2018, 5, 186-191.	3.9	202
83	Enhance low temperature oxidization of shale gas recovery using hydrogen peroxide. Journal of Petroleum Science and Engineering, 2018, 164, 523-530.	2.1	17
84	Kinetics and mechanism of OH-initiated atmospheric oxidation of organophosphorus plasticizers: A computational study on tri-p-cresyl phosphate. Chemosphere, 2018, 201, 557-563.	4.2	29
85	Effect of initial pH on the tetracycline (TC) removal by zero-valent iron: Adsorption, oxidation and reduction. Chemical Engineering Journal, 2018, 343, 492-499.	6.6	226
86	The synergistic effect of nickel-iron-foam and tripolyphosphate for enhancing the electro-Fenton process at circum-neutral pH. Chemosphere, 2018, 201, 687-696.	4.2	41
87	Synthesis of ZnO/Bi-doped porous LaFeO3 nanocomposites as highly efficient nano-photocatalysts dependent on the enhanced utilization of visible-light-excited electrons. Applied Catalysis B: Environmental, 2018, 231, 23-33.	10.8	113
88	A model assessment of the potential of river water to induce the photochemical attenuation of pharmaceuticals downstream of a wastewater treatment plant (Guadiana River, Badajoz, Spain). Chemosphere, 2018, 198, 473-481.	4.2	20
89	Treatment of organic pollutants by homogeneous and heterogeneous Fenton reaction processes. Environmental Chemistry Letters, 2018, 16, 947-967.	8.3	254
90	Environmental Processing of Lipids Driven by Aqueous Photochemistry of α-Keto Acids. ACS Central Science, 2018, 4, 624-630.	5.3	32
91	Treatment of oilfield production wastewater by an integrated process. Petroleum Science and Technology, 2018, 36, 1007-1013.	0.7	1
92	Insights into the degradation of (CF3)2CHOCH3 and its oxidative product (CF3)2CHOCHO & amp; the formation and catalytic degradation of organic nitrates. Atmospheric Environment, 2018, 183, 135-143.	1.9	13

#	Article	IF	CITATIONS
93	Effects of typical water components on the UV 254 photodegradation kinetics of haloacetic acids in water. Separation and Purification Technology, 2018, 200, 255-265.	3.9	18
94	Photocatalytic Hybrid Semiconductor–Metal Nanoparticles; from Synergistic Properties to Emerging Applications. Advanced Materials, 2018, 30, e1706697.	11.1	111
95	Secondary battery inspired \hat{l}_{\pm} -nickel hydroxide as an efficient Ni-based heterogeneous catalyst for sulfate radical activation. Science Bulletin, 2018, 63, 278-281.	4. 3	25
96	Falseâ€positive result when a diphenylcarbazide spot test is used on trivalent chromiumâ€passivated zinc surfaces. Contact Dermatitis, 2018, 78, 315-320.	0.8	4
97	Exquisite Enzyme-Fenton Biomimetic Catalysts for Hydroxyl Radical Production by Mimicking an Enzyme Cascade. ACS Applied Materials & Samp; Interfaces, 2018, 10, 8666-8675.	4.0	24
98	Aquatic photochemistry of sulfamethazine: multivariate effects of main water constituents and mechanisms. Environmental Sciences: Processes and Impacts, 2018, 20, 513-522.	1.7	29
99	Atmospherically Relevant Radicals Derived from the Oxidation of Dimethyl Sulfide. Accounts of Chemical Research, 2018, 51, 475-483.	7.6	40
100	Photochemical transformation of dimethyl phthalate (DMP) with N(iii)(H2ONO+/HONO/NO2â^) in the atmospheric aqueous environment. Photochemical and Photobiological Sciences, 2018, 17, 332-341.	1.6	8
101	Catalytic oxidation of trichloroethylene from gas streams by perovskite-type catalysts. Environmental Science and Pollution Research, 2018, 25, 11584-11594.	2.7	21
102	Towards reliable quantification of hydroxyl radicals in the Fenton reaction using chemical probes. RSC Advances, 2018, 8, 5321-5330.	1.7	46
103	Electrochemical oxidizing digestion using PbO ₂ electrode for total phosphorus determination in a water sample. RSC Advances, 2018, 8, 6206-6211.	1.7	8
104	A metal-free visible light active photo-electro-Fenton-like cell for organic pollutants degradation. Applied Catalysis B: Environmental, 2018, 229, 211-217.	10.8	58
105	Theoretical insight into reaction mechanisms of 2,4-dinitroanisole with hydroxyl radicals for advanced oxidation processes. Journal of Molecular Modeling, 2018, 24, 44.	0.8	14
106	Photolysis mechanism of sulfonamide moiety in five-membered sulfonamides: A DFT study. Chemosphere, 2018, 197, 569-575.	4.2	46
107	A cyclic signal amplification strategy to fluorescence and colorimetric dual-readout assay for the detection of H2O2-related analytes and application to colorimetric logic gate. Sensors and Actuators B: Chemical, 2018, 260, 908-917.	4.0	43
108	Interface Mechanisms of Catalytic Ozonation with Amorphous Iron Silicate for Removal of 4-Chloronitrobenzene in Aqueous Solution. Environmental Science & Environmental Science & 2018, 52, 1429-1434.	4.6	56
109	pH-dependence of production of oxidants (Cu(III) and/or HO•) by copper-catalyzed decomposition of hydrogen peroxide under conditions typical of natural saline waters. Geochimica Et Cosmochimica Acta, 2018, 232, 30-47.	1.6	41
110	Microwave-enhanced advanced oxidation processes for the degradation of dyes in water. Environmental Chemistry Letters, 2018, 16, 969-1007.	8.3	113

#	ARTICLE	IF	CITATIONS
111	Modelling the physical multiphase interactions of HNO ₃ between snow and air on the Antarctic Plateau (DomeÂC) and coast (Halley). Atmospheric Chemistry and Physics, 2018, 18, 1507-1534.	1.9	8
112	Ozone initiated inactivation of Escherichia coli and Staphylococcus aureus in water: Influence of selected organic solvents prevalent in wastewaters. Chemosphere, 2018, 206, 43-50.	4.2	14
113	Sugarcane juice mediated eco-friendly synthesis of visible light active zinc ferrite nanoparticles: Application to degradation of mixed dyes and antibacterial activities. Materials Chemistry and Physics, 2018, 212, 351-362.	2.0	84
114	Earthquake chemical precursors in groundwater: a review. Journal of Seismology, 2018, 22, 1293-1314.	0.6	33
115	Degradation of 4-aminoantipyrine by electro-oxidation with a boron-doped diamond anode: Optimization by central composite design, oxidation products and toxicity. Science of the Total Environment, 2018, 631-632, 1079-1088.	3.9	29
116	Instrument-Free and Autonomous Generation of H2O2 from Mg–ZnO/Au Hybrids for Disinfection and Organic Pollutant Degradations. Metals and Materials International, 2018, 24, 657-663.	1.8	6
117	TiO2-MgO mixed oxide nanomaterials for solar energy conversion. Catalysis Today, 2018, 300, 39-49.	2.2	16
118	Changes in the brain antioxidant profile after chronic vanadium administration in mice. Metabolic Brain Disease, 2018, 33, 377-385.	1.4	17
119	Effects of pulsed and continuous wave discharges of underwater plasma on Escherichia coli. Separation and Purification Technology, 2018, 193, 351-357.	3.9	31
120	Photochemical degradation of the carbapenem antibiotics imipenem and meropenem in aqueous solutions under solar radiation. Water Research, 2018, 128, 61-70.	5.3	39
121	Small-Molecule Fluorescent Probes for Imaging and Detection of Reactive Oxygen, Nitrogen, and Sulfur Species in Biological Systems. Analytical Chemistry, 2018, 90, 533-555.	3.2	412
122	Bio-Fenton and Bio-electro-Fenton as sustainable methods for degrading organic pollutants in wastewater. Process Biochemistry, 2018, 64, 237-247.	1.8	71
123	Priority pesticide dichlorvos removal from water by ozonation process: Reactivity, transformation products and associated toxicity. Separation and Purification Technology, 2018, 192, 123-129.	3.9	41
124	Simultaneous removal of benzene, toluene, ethylbenzene and xylene (BTEX) by CaO2 based Fenton system: Enhanced degradation by chelating agents. Chemical Engineering Journal, 2018, 331, 255-264.	6.6	97
125	Structures and thermochemistry of methyl ethyl sulfide and its hydroperoxides: HOOCH ₂ SCH ₂ CH ₃ , CH ₃ SCH(OOH)CH ₃ , CH ₃ SCH ₂ CH ₂ OOH, and radicals. Journal of Physical Organic Chemistry, 2018, 31, e3751.	0.9	4
126	Inactivation of a wild isolated Klebsiella pneumoniae by photo-chemical processes: UV-C, UV-C/H2O2 and UV-C/H2O2/Fe3+. Catalysis Today, 2018, 313, 94-99.	2.2	22
127	Soybean peroxidase immobilized onto silica-coated superparamagnetic iron oxide nanoparticles: Effect of silica layer on the enzymatic activity. Colloids and Surfaces B: Biointerfaces, 2018, 161, 654-661.	2.5	34
128	An unprecedented route of OH radical reactivity evidenced by an electrocatalytical process: lpso-substitution with perhalogenocarbon compounds. Applied Catalysis B: Environmental, 2018, 226, 135-146.	10.8	83

#	Article	IF	CITATIONS
129	Alkenyl and Aryl Peroxides. Chemistry - A European Journal, 2018, 24, 4480-4496.	1.7	31
130	Antituberculosis drugs degradation by UV-based advanced oxidation processes. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 353, 26-33.	2.0	39
131	Constructing magnetic catalysts with in-situ solid-liquid interfacial photo-Fenton-like reaction over Ag3PO4@NiFe2O4 composites. Applied Catalysis B: Environmental, 2018, 225, 40-50.	10.8	175
132	Advanced Oxidation/Reduction Processes treatment for aqueous perfluorooctanoate (PFOA) and perfluorooctanesulfonate (PFOS) – A review of recent advances. Chemical Engineering Journal, 2018, 336, 170-199.	6.6	390
133	Low levels of iron enhance UV/H2O2 efficiency at neutral pH. Water Research, 2018, 130, 234-242.	5.3	36
134	Synthesis, thermal behaviour and some properties of Cull complexes with N,O-donor Schiff bases. Journal of Thermal Analysis and Calorimetry, 2018, 131, 1221-1236.	2.0	19
135	Dual-components modified TiO2 with Pt and fluoride as deactivation-resistant photocatalyst for the degradation of volatile organic compound. Applied Catalysis B: Environmental, 2018, 220, 1-8.	10.8	125
136	Oligomerization Reactions of Criegee Intermediates with Hydroxyalkyl Hydroperoxides: Mechanism, Kinetics, and Structure-Reactivity Relationship. Atmospheric Chemistry and Physics Discussions, 0, , 1-35.	1.0	3
137	A new source of ammonia and carboxylic acids in cloud water: The first evidence of photochemical process involving an iron-amino acid complex. Atmospheric Environment, 2018, 195, 179-186.	1.9	15
138	Oxidoreductases and Reactive Oxygen Species in Conversion of Lignocellulosic Biomass. Microbiology and Molecular Biology Reviews, 2018, 82, .	2.9	204
139	Reactivity of Hydroxyl Radical in Nonaqueous Phases: Addition Reactions. Journal of Physical Chemistry A, 2018, 122, 8326-8335.	1.1	5
140	Dual-Functional Photocatalytic and Photoelectrocatalytic Systems for Energy- and Resource-Recovering Water Treatment. ACS Catalysis, 2018, 8, 11542-11563.	5.5	138
141	Probing the Migration of Free Radicals in Solid and Liquid Media via Cr(VI) Reduction by High-Energy Electron Beam Irradiation. Scientific Reports, 2018, 8, 15196.	1.6	3
142	A New Graphitic Carbon Nitride/Horseradish Peroxidase Hybrid Nano–Bio Artificial Catalytic System for Unselective Degradation of Persistent Phenolic Pollutants. Advanced Materials Interfaces, 2018, 5, 1801297.	1.9	30
143	An integrated drinking water production system to remove chemical and microbiological pollution from natural groundwater by a coupled prototype helio-photochemical/H2O2/rapid sand filtration/chlorination powered by photovoltaic cell. Solar Energy, 2018, 176, 581-588.	2.9	14
144	Photocatalytic properties of TiO2-SiO2-coated concrete on toluene gas. Materials Research Express, 2018, 5, 125006.	0.8	8
145	An Overview of Dynamic Heterogeneous Oxidations in the Troposphere. Environments - MDPI, 2018, 5, 104.	1.5	34
146	Photochemical oxidation of di-n-butyl phthalate in atmospheric hydrometeors by hydroxyl radicals from nitrous acid. Environmental Science and Pollution Research, 2018, 25, 31091-31100.	2.7	8

#	Article	IF	CITATIONS
147	Effect of Titanium Dioxide on Secondary Organic Aerosol Formation. Environmental Science & Emp; Technology, 2018, 52, 11612-11620.	4.6	14
148	Photochemical reaction kinetics and mechanisms of diethyl phthalate with N (III) in the atmospheric aqueous environment. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 362, 21-30.	2.0	12
149	Deciphering Stability of Five-Membered Heterocyclic Radicals: Balancing Act Between Delocalization and Ring Strain. Journal of Physical Chemistry A, 2018, 122, 5464-5476.	1.1	9
150	Cu2O@ \hat{l}^2 -cyclodextrin as a synergistic catalyst for hydroxyl radical generation and molecular recognitive destruction of aromatic pollutants at neutral pH. Journal of Hazardous Materials, 2018, 357, 109-118.	6.5	30
151	Rigorous close-coupling quantum dynamics calculation of thermal rate constants for the water formation reaction of H2 + OH on a high-level PES. Journal of Chemical Physics, 2018, 148, 204304.	1.2	11
152	The effects of Fe-bearing smectite clays on OH formation and diethyl phthalate degradation with polyphenols and H2O2. Journal of Hazardous Materials, 2018, 357, 483-490.	6.5	41
153	Electrochemical oxidation of volatile organic compounds in all-solid cell at ambient temperature. Chemical Engineering Journal, 2018, 354, 93-104.	6.6	13
154	Modelled phototransformation kinetics of the antibiotic sulfadiazine in organic matter-rich lakes. Science of the Total Environment, 2018, 645, 1465-1473.	3.9	8
155	Atmospheric fate of methyl pivalate: OH/Cl-initiated degradation and the roles of water and formic acid. Environmental Chemistry, 2018, 15, 246.	0.7	0
156	Design of Experiments Applied to Antibiotics Degradation by Fenton's Reagent. , 2018, , .		2
157	Transcriptome Changes of Escherichia coli, Enterococcus faecalis, and Escherichia coli O157:H7 Laboratory Strains in Response to Photo-Degraded DOM. Frontiers in Microbiology, 2018, 9, 882.	1.5	6
158	Persulfate oxidizing system for biomass pretreatment and process optimization. Biomass and Bioenergy, 2018, 116, 249-258.	2.9	30
159	Generation of hydroxyl radicals from reactions between a dimethoxyhydroquinone and iron oxide nanoparticles. Scientific Reports, 2018, 8, 10834.	1.6	94
160	S, N Codoped Graphene Quantum Dots Embedded in (BiO) < sub>2 < /sub>CO < sub>3 < /sub>: Incorporating Enzymatic-like Catalysis in Photocatalysis. ACS Sustainable Chemistry and Engineering, 2018, 6, 10229-10240.	3.2	55
161	Lowâ€Temperature Thermal Rate Constants for the Water Formation Reaction H ₂ +OH from Rigorous Quantum Dynamics Calculations. Angewandte Chemie, 2018, 130, 13334-13337.	1.6	2
162	Simultaneous abatement of organics (2,4-dichlorophenoxyacetic acid) and inactivation of resistant wild and laboratory bacteria strains by photo-induced processes in natural groundwater samples. Solar Energy, 2018, 171, 761-768.	2.9	10
163	Sources and Secondary Production of Organic Aerosols in the Northeastern United States during WINTER. Journal of Geophysical Research D: Atmospheres, 2018, 123, 7771-7796.	1.2	71
164	Steering reduction and decomposition of peroxide compounds by interface interactions between MgO thin film and transition-metal support. Applied Surface Science, 2018, 459, 812-821.	3.1	8

#	Article	IF	CITATIONS
165	Exceptional co-catalyst free photocatalytic activities of B and Fe co-doped SrTiO3 for CO2 conversion and H2 evolution. Nano Research, 2018, 11, 6391-6404.	5.8	56
166	Photocatalytic degradation of pollutants in petroleum refinery wastewater by TiO2- and ZnO-based photocatalysts: Recent development. Journal of Cleaner Production, 2018, 205, 930-954.	4.6	287
167	Irradiation effects of MeV protons on dry and hydrated Brassica rapa seeds. Life Sciences in Space Research, 2018, 19, 24-30.	1.2	10
168	Rationally Designed Fluorescence [.] OH Probe with High Sensitivity and Selectivity for Monitoring the Generation of [.] OH in Iron Autoxidation without Addition of H ₂ O ₂ . Angewandte Chemie, 2018, 130, 13012-13016.	1.6	31
169	Rationally Designed Fluorescence [.] OH Probe with High Sensitivity and Selectivity for Monitoring the Generation of [.] OH in Iron Autoxidation without Addition of H ₂ O ₂ . Angewandte Chemie - International Edition, 2018, 57, 12830-12834.	7.2	81
170	Lowâ€Temperature Thermal Rate Constants for the Water Formation Reaction H ₂ +OH from Rigorous Quantum Dynamics Calculations. Angewandte Chemie - International Edition, 2018, 57, 13150-13153.	7.2	5
171	Bio-electro-Fenton processes for wastewater treatment: Advances and prospects. Chemical Engineering Journal, 2018, 354, 492-506.	6.6	133
172	A surface plasmon-enhanced nanozyme-based fenton process for visible-light-driven aqueous ammonia oxidation. Green Chemistry, 2018, 20, 4067-4074.	4.6	16
173	Extracellular hydrogen peroxide measurements using a flow injection system in combination with microdialysis probes – Potential and challenges. Free Radical Biology and Medicine, 2018, 128, 111-123.	1.3	10
174	Gas Phase OH Radical Reaction with 2â€Chloroethyl Vinyl Ether in the 256–333 K Temperature Range: A Combined LPâ€LIF and Computational Study. ChemistrySelect, 2018, 3, 5910-5919.	0.7	3
175	Simple and sensitive determination of hydroxyl radical in atmosphere based on an electrochemically activated glassy carbon electrode. International Journal of Environmental Analytical Chemistry, 2018, 98, 477-491.	1.8	7
176	A model assessment of the role played by the carbonate (CO3â^') and dibromide (Br2â^') radicals in the photodegradation of glutathione in sunlit fresh- and salt-waters. Chemosphere, 2018, 209, 401-410.	4.2	10
177	The degradation of diethyl phthalate by reduced smectite clays and dissolved oxygen. Chemical Engineering Journal, 2019, 355, 247-254.	6.6	56
178	Degradation of methylene blue and congo-red dyes using Fenton, photo-Fenton, sono-Fenton, and sonophoto-Fenton methods in the presence of iron(II,III) oxide/zinc oxide/graphene (Fe3O4/ZnO/graphene) composites. Separation and Purification Technology, 2019, 210, 563-573.	3.9	159
179	Impacts of potential HONO sources on the concentrations of oxidants and secondary organic aerosols in the Beijing-Tianjin-Hebei region of China. Science of the Total Environment, 2019, 647, 836-852.	3.9	66
180	Oxidative stability of plant hydroalcoholic extracts assessed by EPR spin trapping under forced ageing conditions: A myrtle case study. Food Chemistry, 2019, 271, 753-761.	4.2	16
181	Comparison of UV/Persulfate and UV/H2O2 for the removal of naphthenic acids and acute toxicity towards Vibrio fischeri from petroleum production process water. Science of the Total Environment, 2019, 694, 133686.	3.9	38
182	Facet-Specific Photocatalytic Degradation of Organics by Heterogeneous Fenton Chemistry on Hematite Nanoparticles. Environmental Science & Environment	4.6	101

#	Article	IF	CITATIONS
183	Heterogeneous Electro-Fenton Process by MWCNT-Ce/WO3 Nanocomposite Modified GF Cathode for Catalytic Degradation of BTEX: Process Optimization Using Response Surface Methodology. Electrocatalysis, 2019, 10, 628-642.	1.5	9
184	Organotin Release from Polyvinyl Chloride Microplastics and Concurrent Photodegradation in Water: Impacts from Salinity, Dissolved Organic Matter, and Light Exposure. Environmental Science & Environmental &	4.6	118
185	Number of Reactive Charge Carriersâ€"A Hidden Linker between Band Structure and Catalytic Performance in Photocatalysts. ACS Catalysis, 2019, 9, 8852-8861.	5.5	31
186	Detection and quantification of nitric oxide–derived oxidants in biological systems. Journal of Biological Chemistry, 2019, 294, 14776-14802.	1.6	110
187	Chemistry and Photochemistry of Pyruvic Acid Adsorbed on Oxide Surfaces. Journal of Physical Chemistry A, 2019, 123, 7661-7671.	1.1	12
188	Synthetic Mn(III) porphyrins as biomimetic catalysts of CYP450: Degradation of antibiotic norfloxacin in aqueous medium. Environmental Research, 2019, 177, 108615.	3.7	15
189	Strong photochemical reactions in greenhouses after fertilization and their implications. Atmospheric Environment, 2019, 214, 116821.	1.9	1
190	Fluoro-electrochemical microscopy reveals group specific differential susceptibility of phytoplankton towards oxidative damage. Chemical Science, 2019, 10, 7988-7993.	3.7	11
191	Oxidation reactivity of As(III)-containing pyrites: Differences between structurally-incorporated and adsorbed As(III). Chemical Geology, 2019, 522, 223-239.	1.4	13
192	Comparative Analysis of Photocatalytic and Electrochemical Degradation of 4-Ethylphenol in Saline Conditions. Environmental Science & Environmental Sc	4.6	39
193	Assessing indoor gas phase oxidation capacity through real-time measurements of HONO and NO _x in Guangzhou, China. Environmental Sciences: Processes and Impacts, 2019, 21, 1393-1402.	1.7	33
194	Efficient degradation of pharmaceutical micropollutants in water and wastewater by FellI-NTA-catalyzed neutral photo-Fenton process. Science of the Total Environment, 2019, 688, 513-520.	3.9	47
195	Nanocatalytic Medicine. Advanced Materials, 2019, 31, e1901778.	11.1	396
196	Impact of ROS Generated by Chemical, Physical, and Plasma Techniques on Cancer Attenuation. Cancers, 2019, 11, 1030.	1.7	112
197	Mild template removal of SAPO-34 zeolite membranes in wet ozone environment. Separation and Purification Technology, 2019, 228, 115758.	3.9	27
198	Origin of hydroxyl radicals in a weakly ionized plasma-facing liquid. Chemical Engineering Journal, 2019, 378, 122163.	6.6	13
199	Single-Atom Mn–N ₄ Site-Catalyzed Peroxone Reaction for the Efficient Production of Hydroxyl Radicals in an Acidic Solution. Journal of the American Chemical Society, 2019, 141, 12005-12010.	6.6	203
200	A Statistical Model and DFT Study of the Fragmentation Mechanisms of Metronidazole by Advanced Oxidation Processes. Journal of Physical Chemistry A, 2019, 123, 933-942.	1.1	31

#	Article	IF	Citations
201	Carbamazepine Degradation Mediated by Light in the Presence of Humic Substances-Coated Magnetite Nanoparticles. Nanomaterials, 2019, 9, 1379.	1.9	15
202	Statistical optimization of the photo-Fenton operational parameters with in situ ferrioxalate induction in the treatment of textile effluent. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 385, 112095.	2.0	12
203	Rate constants of hydroxyl radicals reaction with different dissociation species of fluoroquinolones and sulfonamides: Combined experimental and QSAR studies. Water Research, 2019, 166, 115083.	5.3	53
204	Wastewater treatment by dielectric barrier discharge plasma. Journal of Physics: Conference Series, 2019, 1285, 012015.	0.3	5
205	Applicability of advanced oxidation processes in removing anthropogenically influenced chlorination disinfection byproduct precursors in a developing country. Ecotoxicology and Environmental Safety, 2019, 186, 109768.	2.9	28
206	Formation of highly oxygenated multifunctional compounds from cross-reactions of carbonyl compounds in the atmospheric aqueous phase. Atmospheric Environment, 2019, 219, 117046.	1.9	16
207	Combination of adsorption and heterogeneous photo-Fenton processes for the treatment of winery wastewater. Environmental Science and Pollution Research, 2019, 26, 31000-31013.	2.7	15
208	The role of irradiation source setups and indirect phototransformation: Kinetic aspects and the formation of transformation products of weakly sunlight-absorbing pesticides. Science of the Total Environment, 2019, 695, 133808.	3.9	18
209	Glyphosate and AMPA removal from water by solar induced processes using low Fe(<scp>iii</scp>) or Fe(<scp>ii</scp>) concentrations. Environmental Science: Water Research and Technology, 2019, 5, 1932-1942.	1.2	13
210	Radical Formation by Fine Particulate Matter Associated with Highly Oxygenated Molecules. Environmental Science & Environmenta	4.6	45
211	Molecularly imprinted polymer functionalized reduced graphene oxide: a new platform for the detection of hydroxyl radicals in the atmosphere. Analytical Methods, 2019, 11, 5126-5133.	1.3	8
212	Degradation of ibuprofen and phenol with a Fenton-like process triggered by zero-valent iron (ZVI-Fenton). Environmental Research, 2019, 179, 108750.	3.7	52
213	Atmospheric leaching of chalcopyrite in the presence of some polar organic reagents: A comparative study and optimization. Hydrometallurgy, 2019, 189, 105120.	1.8	13
214	Development and reactive oxygen-species scavenging activity of a new chemical hydrogen-generating system, CaMg ₂ -hydroxypropyl cellulose-citric acid, prepared using Laves-phase CaMg ₂ and its relationship to chemical hardness. Materials Chemistry Frontiers, 2019, 3, 420-428.	3.2	1
215	Photolysis of graphene oxide in the presence of nitrate: implications for graphene oxide integrity in water and wastewater treatment. Environmental Science: Nano, 2019, 6, 136-145.	2.2	11
216	Overlooked Role of Peroxides as Free Radical Precursors in Advanced Oxidation Processes. Environmental Science & Environmental	4.6	48
217	A green and robust method to measure nanomolar dissolved organic nitrogen (DON) by vacuum ultraviolet. Chemical Engineering Journal, 2019, 363, 57-63.	6.6	9
218	UV-induced transformation of 2,3-dibromo-5,6-dimethyl-1,4-benzoquinone in water and treated wastewater. Environmental Research, 2019, 175, 343-350.	3.7	4

#	Article	IF	CITATIONS
219	A novel porous-carbon-based hollow fiber membrane with electrochemical reduction mediated by in-situ hydroxyl radical generation for fouling control and water treatment. Applied Catalysis B: Environmental, 2019, 255, 117772.	10.8	46
220	A computational study on the characteristics of open-shell H-bonding interaction between carbamic acid (NH2COOH) and HO2, HOS or HSO radicals. Journal of Molecular Modeling, 2019, 25, 189.	0.8	6
221	Dual metal-free polymer reactive sites for the efficient degradation of diclofenac by visible light-driven oxygen reduction to superoxide radical and hydrogen peroxide. Environmental Science: Nano, 2019, 6, 2577-2590.	2.2	30
222	One-pot synthesis of atomically dispersed Pt on MnO2 for efficient catalytic decomposition of toluene at low temperatures. Applied Catalysis B: Environmental, 2019, 257, 117878.	10.8	149
223	Kinetic isotope effects in the water forming reaction H2/D2 + OH from rigorous close-coupling quantum dynamics simulations. Physical Chemistry Chemical Physics, 2019, 21, 17054-17062.	1.3	3
224	Identification of transformation products of denatonium – Occurrence in wastewater treatment plants and surface waters. Science of the Total Environment, 2019, 686, 140-150.	3.9	6
225	TiO2 and ZnO photocatalytic treatment of palm oil mill effluent (POME) and feasibility of renewable energy generation: A short review. Journal of Cleaner Production, 2019, 233, 209-225.	4.6	60
226	Photochemistry of Surface Fresh Waters in the Framework of Climate Change. Environmental Science & Environmental & Environment	4.6	70
227	Heterogeneous atmospheric degradation of current-use pesticides by nitrate radicals. Atmospheric Environment, 2019, 211, 170-180.	1.9	9
228	Sunlight Photolysis of Safener Benoxacor and Herbicide Metolachlor as Mixtures on Simulated Soil Surfaces. Environmental Science & Environmental Scien	4.6	23
229	Experimental and theoretical investigation of cyclometalated phenylpyridine iridium(<scp>iii</scp>) complex based on flavonol and ibuprofen ligands as potent antioxidant. RSC Advances, 2019, 9, 17220-17237.	1.7	16
230	Removal of methyl violet 2B by FePO4 as photocatalyst. Reaction Kinetics, Mechanisms and Catalysis, 2019, 127, 1087-1099.	0.8	12
231	Insight into the fenton-induced degradation process of extracellular polymeric substances (EPS) extracted from activated sludge. Chemosphere, 2019, 234, 318-327.	4.2	28
232	Application of electro-Fenton process for treatment of water contaminated with benzene, toluene, and p-xylene (BTX) using affordable electrodes. Journal of Water Process Engineering, 2019, 31, 100837.	2.6	26
233	Tartaric acid enhanced CuFe2O4-catalyzed heterogeneous photo-Fenton-like degradation of methylene blue. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2019, 245, 75-84.	1.7	56
234	Impacts of six potential HONO sources on HOx budgets and SOA formation during a wintertime heavy haze period in the North China Plain. Science of the Total Environment, 2019, 681, 110-123.	3.9	40
235	Decolorization of Orange-G Aqueous Solutions over C60/MCM-41 Photocatalysts. Applied Sciences (Switzerland), 2019, 9, 1958.	1.3	12
236	Promoting Oxidative Stress in Cancer Starvation Therapy by Site-Specific Startup of Hyaluronic Acid-Enveloped Dual-Catalytic Nanoreactors. ACS Applied Materials & Interfaces, 2019, 11, 18995-19005.	4.0	80

#	Article	IF	CITATIONS
237	Mechanistic and kinetics investigations of oligomer formation from Criegee intermediate reactions with hydroxyalkyl hydroperoxides. Atmospheric Chemistry and Physics, 2019, 19, 4075-4091.	1.9	23
238	Kinetics and mechanism of the reaction of cyanocobalamin with potassium hydroxide in non-aqueous media. New Journal of Chemistry, 2019, 43, 7708-7715.	1.4	2
239	Ultrafast degradation of common organic dyes in presence of gadolinium oxide/graphene oxide in water. Fullerenes Nanotubes and Carbon Nanostructures, 2019, 27, 478-481.	1.0	10
240	Extensive dark production of hydroxyl radicals from oxygenation of polluted river sediments. Chemical Engineering Journal, 2019, 368, 700-709.	6.6	60
241	Effect of metal ions adsorption on the efficiency of methylene blue degradation onto MgFe2O4 as Fenton-like catalysts. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 571, 17-26.	2.3	106
242	Effect-based methods in combination with state-of-the-art chemical analysis for assessment of water quality as integrated approach. International Journal of Hygiene and Environmental Health, 2019, 222, 607-614.	2.1	19
243	Symposium review: Technologies for improving fiber utilization. Journal of Dairy Science, 2019, 102, 5726-5755.	1.4	73
244	Reactive Oxygen Species (ROS)-Based Nanomedicine. Chemical Reviews, 2019, 119, 4881-4985.	23.0	1,519
245	Redox-Triggered Disassembly of Nanosized Liposomes Containing Ferrocene-Appended Amphiphiles. Langmuir, 2019, 35, 5608-5616.	1.6	9
246	Multivariate optimization of ciprofloxacin removal by polyvinylpyrrolidone stabilized NZVI/Cu bimetallic particles. Chemical Engineering Journal, 2019, 365, 183-192.	6.6	51
247	Transformation Products of Organic Contaminants and Residues—Overview of Current Simulation Methods. Molecules, 2019, 24, 753.	1.7	22
248	Efficient degradation of organic pollutants by low-level Co2+ catalyzed homogeneous activation of peroxymonosulfate. Journal of Hazardous Materials, 2019, 371, 456-462.	6.5	91
249	Regioselectivity of Hydroxyl Radical Reactions with Arenes in Nonaqueous Solutions. Journal of Organic Chemistry, 2019, 84, 3260-3269.	1.7	7
250	Investigation of Matrix Effects in Laboratory Studies of Catalytic Ozonation Processes. Industrial & Laboratory Research, 2019, 58, 3468-3477.	1.8	23
251	Salicylic acid impregnated activated carbon fiber paper: An effective platform for the simple and sensitive detection of hydroxyl radicals in the atmosphere. Electrochemistry Communications, 2019, 100, 113-116.	2.3	13
252	Nitrite-Mediated Photooxidation of Vanillin in the Atmospheric Aqueous Phase. Environmental Science &	4.6	55
253	Real Time Detection of Hazardous Hydroxyl Radical Using an Electrochemical Approach. ChemistrySelect, 2019, 4, 12507-12511.	0.7	14
254	Environmentally persistent free radicals in PM2.5: a review. Waste Disposal & Sustainable Energy, 2019, 1, 177-197.	1.1	26

#	Article	IF	CITATIONS
255	Catalytic ozonation of 4-chloronitrobenzene by goethite and Fe2+-modified goethite with low defects: A comparative study. Journal of Hazardous Materials, 2019, 365, 744-750.	6.5	41
256	Enhancing Electrochemical Efficiency of Hydroxyl Radical Formation on Diamond Electrodes by Functionalization with Hydrophobic Monolayers. Langmuir, 2019, 35, 2153-2163.	1.6	42
257	Partially etched Bi2O2CO3 by metal chloride for enhanced reactive oxygen species generation: A tale of two strategies. Applied Catalysis B: Environmental, 2019, 245, 325-333.	10.8	45
258	Fabricated nanoplatform of Cu(II)-functionalized mimetic-peroxidase with catalytic property toward sensitive monitoring of hydrogen peroxide. Sensors and Actuators B: Chemical, 2019, 284, 684-694.	4.0	8
259	Promising Techniques for Depolymerization of Lignin into Valueâ€added Chemicals. ChemCatChem, 2019, 11, 639-654.	1.8	65
260	Redox mediators and irradiation improve fenton degradation of acesulfame. Chemosphere, 2019, 217, 374-382.	4.2	10
261	Enhanced mineralization of atrazine by surface induced hydroxyl radicals over light-weight granular mixed-quartz sands with ozone. Water Research, 2019, 149, 136-148.	5.3	70
262	Imatinib: Major photocatalytic degradation pathways in aqueous media and the relative toxicity of its transformation products. Science of the Total Environment, 2019, 655, 547-556.	3.9	21
263	Secondary battery inspired NiO nanosheets with rich Ni(III) defects for enhancing persulfates activation in phenolic waste water degradation. Chemical Engineering Journal, 2019, 360, 97-103.	6.6	46
264	Photodegradation of polychlorinated diphenyl sulfides mediated by reactive oxygen species on silica gel. Chemical Engineering Journal, 2019, 359, 1056-1064.	6.6	27
265	Photolysis of chloral hydrate in water with 254†nm ultraviolet: Kinetics, influencing factors, mechanisms, and products. Chemosphere, 2019, 218, 104-109.	4.2	12
266	A novel strategy for colorimetric detection of hydroxyl radicals based on a modified Griess test. Talanta, 2019, 195, 152-157.	2.9	29
267	Computational investigations on the HO2 + CHBr2O2 reaction: mechanisms, products, and atmospheric implications. Environmental Science and Pollution Research, 2019, 26, 2345-2352.	2.7	6
268	Particularities of trichloroethylene photocatalytic degradation over crystalline RbLaTa2O7 nanowire bundles grown by solid-state synthesis route. Journal of Environmental Chemical Engineering, 2019, 7, 102789.	3.3	10
269	Indoor Lighting Releases Gas Phase Nitrogen Oxides from Indoor Painted Surfaces. Environmental Science and Technology Letters, 2019, 6, 92-97.	3.9	35
270	Assessment of 4â€Aminoantipyrine Degradation and Mineralization by Photoelectroâ€Fenton with a Boronâ€Doped Diamond Anode: Optimization, Treatment in Municipal Secondary Effluent, and Toxicity. ChemElectroChem, 2019, 6, 865-875.	1.7	6
271	Deciphering the Fenton-reaction-aid lignocellulose degradation pattern by Phanerochaete chrysosporium with ferroferric oxide nanomaterials: Enzyme secretion, straw humification and structural alteration. Bioresource Technology, 2019, 276, 335-342.	4.8	41
272	A systematic ab initio optimization of monohydrates of HCl•HNO3•H2SO4 aggregates. Journal of Molecular Graphics and Modelling, 2019, 86, 256-263.	1.3	0

#	Article	IF	Citations
273	Efficient detoxication of heterocyclics by layered double hydroxides contained different cobalt components as photocatalysts based on controllable application of active free radicals. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 371, 33-43.	2.0	12
274	Advanced and green ozonation process for removal of clofibric acid in water system: Preparation and mechanism analysis of efficient copper-substituted MCM-48. Separation and Purification Technology, 2019, 211, 684-696.	3.9	32
275	Photochemical Aging of Guaiacol by Fe(III)–Oxalate Complexes in Atmospheric Aqueous Phase. Environmental Science & Environm	4.6	50
276	Identification of intermediates, acute toxicity removal, and kinetics investigation to the Ametryn treatment by direct photolysis (UV254), UV254/H2O2, Fenton, and photo-Fenton processes. Environmental Science and Pollution Research, 2019, 26, 4348-4366.	2.7	19
277	Formation of reactive oxygen species upon interaction of Au/ZnO with H2O2 and their activity in methylene blue degradation. Catalysis Today, 2019, 333, 54-62.	2.2	79
278	Computational kinetic study on atmospheric oxidation reaction mechanism of 1-fluoro-2-methoxypropane with OH and ClO radicals. Journal of King Saud University - Science, 2020, 32, 587-594.	1.6	2
279	Simultaneous NO and SO2 removal by aqueous persulfate activated by combined heat and Fe2+: experimental and kinetic mass transfer model studies. Environmental Science and Pollution Research, 2020, 27, 1186-1201.	2.7	29
280	Ciprofloxacin transformation in aqueous environments: Mechanism, kinetics, and toxicity assessment during •OH-mediated oxidation. Science of the Total Environment, 2020, 699, 134190.	3.9	17
281	Photocatalytic, antibacterial, and deodorization activity of recycled triacetate cellulose nanocomposites. Materials Chemistry and Physics, 2020, 240, 122260.	2.0	27
282	Degradation of recalcitrant organics in nanofiltration concentrate from biologically pretreated landfill leachate by ultraviolet-Fenton method. Separation and Purification Technology, 2020, 235, 116076.	3.9	39
283	Non-negligible risk of chloropicrin formation during chlorination with the UV/persulfate pretreatment process in the presence of low concentrations of nitrite. Water Research, 2020, 168, 115194.	5.3	50
284	Advanced Nanomaterials for Degrading Persistent Organic Pollutants. , 2020, , 249-305.		9
285	Catalytic degradation of anthraquinones-containing H2O2 production effluent over layered Co-Cu hydroxides: Defects facilitating hydroxyl radicals generation. Applied Catalysis B: Environmental, 2020, 260, 118157.	10.8	73
286	Application of ionizing radiation in decomposition of perfluorooctane sulfonate (PFOS) in aqueous solutions. Chemical Engineering Journal, 2020, 379, 122303.	6.6	37
287	Effects of chloride on electrochemical degradation of perfluorooctanesulfonate by Magnéli phase Ti4O7 and boron doped diamond anodes. Water Research, 2020, 170, 115254.	5.3	83
288	In-situ self-assembly of robust Fe (III)-carboxyl functionalized polyacrylonitrile polymeric bead catalyst for efficient photo-Fenton oxidation of p-nitrophenol. Science of the Total Environment, 2020, 702, 134910.	3.9	23
289	The kinetic study of excited singlet oxygen atom $O(1D)$ reactions with acetylene. Combustion and Flame, 2020, 212, 135-141.	2.8	12
290	Assessing the human risk and the environmental fate of pharmaceutical Tramadol. Science of the Total Environment, 2020, 710, 135396.	3.9	12

#	Article	IF	CITATIONS
291	Ultrasound-Enhanced Generation of Reactive Oxygen Species for MRI-Guided Tumor Therapy by the Fe@Fe ₃ O ₄ -Based Peroxidase-Mimicking Nanozyme. ACS Applied Bio Materials, 2020, 3, 639-647.	2.3	23
292	Structural features of contaminants of emerging concern behind empirical parameters of mechanistic models describing their photooxidative degradation. Journal of Water Process Engineering, 2020, 33, 101053.	2.6	7
293	Pharmaceuticals residues and xenobiotics contaminants: Occurrence, analytical techniques and sustainable alternatives for wastewater treatment. Science of the Total Environment, 2020, 705, 135568.	3.9	160
294	Plasma-assisted advanced oxidation process by a multi-hole dielectric barrier discharge in water and its application to wastewater treatment. Chemosphere, 2020, 243, 125377.	4.2	41
295	Susceptibility of atrazine photo-degradation in the presence of nitrate: Impact of wavelengths and significant role of reactive nitrogen species. Journal of Hazardous Materials, 2020, 388, 121760.	6.5	23
296	Photo-Fenton process at natural conditions of pH, iron, ions, and humic acids for degradation of diuron and amoxicillin. Environmental Science and Pollution Research, 2020, 27, 1608-1624.	2.7	22
297	Nanocatalyst-induced hydroxyl radical (Â-OH) slurry for tungsten CMP for next-generation semiconductor processing. Journal of Materials Science, 2020, 55, 3450-3461.	1.7	14
298	A Critical View of the Application of the APEX Software (Aqueous Photochemistry of) Tj ETQq1 1 0.784314 rgBT / Molecules, 2020, 25, 9.	Overlock 1.7	10 Tf 50 46 35
299	Biomedical Application of Reactive Oxygen Species–Responsive Nanocarriers in Cancer, Inflammation, and Neurodegenerative Diseases. Frontiers in Chemistry, 2020, 8, 838.	1.8	34
300	Photo enhanced degradation of contaminants of emerging concern in waste water. Emerging Contaminants, 2020, 6, 283-302.	2.2	46
301	Mutual Interactions between Reduced Fe-Bearing Clay Minerals and Humic Acids under Dark, Oxygenated Conditions: Hydroxyl Radical Generation and Humic Acid Transformation. Environmental Science & Env	4.6	79
302	Nanostructured iron oxides stabilized by chitosan: using copper to enhance degradation by a combined mechanism. Catalysis Science and Technology, 2020, 10, 5013-5026.	2.1	3
303	Highly efficient photocatalytic activity of Ag3VO4/WO2.72 nanocomposites for the degradation of organic dyes from the ultraviolet to near-infrared regions. Applied Surface Science, 2020, 512, 145618.	3.1	41
304	Atmospheric OH Oxidation Chemistry of Particulate Liquid Crystal Monomers: An Emerging Persistent Organic Pollutant in Air. Environmental Science and Technology Letters, 2020, 7, 646-652.	3.9	43
305	Impact of oxygen vacancy occupancy on piezo-catalytic activity of BaTiO3 nanobelt. Applied Catalysis B: Environmental, 2020, 279, 119340.	10.8	226
306	Mini review on the roles of nitrate/nitrite in advanced oxidation processes: Radicals transformation and products formation. Journal of Cleaner Production, 2020, 273, 123065.	4.6	66
307	Benchmarking of photocatalytic coatings performance and their activation towards pollutants degradation. Progress in Organic Coatings, 2020, 147, 105856.	1.9	5
308	Enhanced Photodegradation of Synthetic Dyes Mediated by Ag3PO4-Based Semiconductors under Visible Light Irradiation. Catalysts, 2020, 10, 774.	1.6	21

#	Article	IF	CITATIONS
309	Photocatalytic hydrogen evolution over surface-modified titanate nanotubes by 5-aminosalicylic acid decorated with silver nanoparticles. Advanced Powder Technology, 2020, 31, 4683-4690.	2.0	7
310	Reaction mechanism of chloramphenicol with hydroxyl radicals for advanced oxidation processes using DFT calculations. Journal of Molecular Modeling, 2020, 26, 352.	0.8	4
311	Role of hemibonding in the structure and ultraviolet spectroscopy of the aqueous hydroxyl radical. Physical Chemistry Chemical Physics, 2020, 22, 27829-27844.	1.3	11
312	Supramolecular Porphyrin Nanostructures Based on Coordination-Driven Self-Assembly and Their Visible Light Catalytic Degradation of Methylene Blue Dye. Nanomaterials, 2020, 10, 2314.	1.9	27
313	Janus electrocatalytic flow-through membrane enables highly selective singlet oxygen production. Nature Communications, 2020, 11, 6228.	5.8	142
314	Vibrational Spectra of the OH Radical in Water: Ab Initio Molecular Dynamics Simulations and Quantum Chemical Calculations Using Hybrid Functionals. Advanced Theory and Simulations, 2020, 3, 2000174.	1.3	5
315	Significant influence of the intensive agricultural activities on atmospheric PM2.5 during autumn harvest seasons in a rural area of the North China Plain. Atmospheric Environment, 2020, 241, 117844.	1.9	13
316	Kinetics of hydrogen abstraction from CH3SH by OH radicals: An ab initio RRKM-based master equation study. Atmospheric Environment, 2020, 242, 117833.	1.9	12
317	Zn-Al layered double hydroxide-based nanocomposite functionalized with an octahedral molybdenum cluster exhibiting prominent photoactive and oxidation properties. Applied Clay Science, 2020, 196, 105765.	2.6	16
318	Study of the Formation Dynamics of OH from the Photolysis of O ₃ by Ultrashort Laser Pulses. Journal of Physical Chemistry Letters, 2020, 11, 6482-6486.	2.1	0
319	Efficient Coupling of Reaction Pathways of Criegee Intermediates and Free Radicals in the Heterogeneous Ozonolysis of Alkenes. Journal of Physical Chemistry Letters, 2020, 11, 6580-6585.	2.1	10
321	Mechanisms of the Regulation and Dysregulation of Glucagon Secretion. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-9.	1.9	11
322	Investigating electrode arrangement and anode role on dye removal efficiency of electro-peroxone as an environmental friendly technology. Separation and Purification Technology, 2020, 251, 117350.	3.9	21
323	Detailed kinetics of hydrogen abstraction from <i>trans</i> -decalin by OH radicals: the role of hindered internal rotation treatment. Physical Chemistry Chemical Physics, 2020, 22, 25740-25746.	1.3	12
324	Simultaneous treatment of toluene-containing gas waste and industrial wastewater by the Fenton process. Science of the Total Environment, 2020, 749, 141497.	3.9	13
325	Recent advances in ultrathin two-dimensional materials and biomedical applications for reactive oxygen species generation and scavenging. Nanoscale, 2020, 12, 19516-19535.	2.8	65
326	Efficient Conversion of NO to NO ₂ on SO ₂ -Aged MgO under Atmospheric Conditions. Environmental Science &	4.6	15
327	Impacts of microplastics on organotins' photodegradation in aquatic environments. Environmental Pollution, 2020, 267, 115686.	3.7	38

#	Article	IF	CITATIONS
328	Effect of nanobubble water on anaerobic methane production from lignin. Research on Chemical Intermediates, 2020, 46, 4767-4780.	1.3	6
329	Photoinduced Oxidation Reactions at the Air–Water Interface. Journal of the American Chemical Society, 2020, 142, 16140-16155.	6.6	38
330	Enhancement of Photocatalytic Activities with Nanosized Polystyrene Spheres Patterned Titanium Dioxide Films for Water Purification. Catalysts, 2020, 10, 886.	1.6	6
331	Mesoporous Silica Platforms with Potential Applications in Release and Adsorption of Active Agents. Molecules, 2020, 25, 3814.	1.7	62
332	Cold Plasma Treatment of Sunflower Seeds Modulates Plant-Associated Microbiome and Stimulates Root and Lateral Organ Growth. Frontiers in Plant Science, 2020, 11, 568924.	1.7	20
333	Ozonation in advanced treatment of secondary municipal wastewater effluents for the removal of micropollutants. Environmental Science and Pollution Research, 2020, 27, 45460-45475.	2.7	15
334	Photochemistry of the Organoselenium Compound Ebselen: Direct Photolysis and Reaction with Active Intermediates of Conventional Reactive Species Sensitizers and Quenchers. Environmental Science & En	4.6	10
335	Removal of As(III) from Water Using the Adsorptive and Photocatalytic Properties of Humic Acid-Coated Magnetite Nanoparticles. Nanomaterials, 2020, 10, 1604.	1.9	8
336	Kinetic Studies on the Photo-oxidation Reactions of Methyl-2-methyl Butanoate and Methyl-3-methyl Butanoate with OH Radicals. Journal of Physical Chemistry A, 2020, 124, 10923-10936.	1.1	1
337	Hydroxyl Radical Generation by Recyclable Photocatalytic Fe3O4/ZnO Nanoparticles for Water Disinfection. Air, Soil and Water Research, 2020, 13, 117862212097095.	1.2	5
338	Oxidative Stress and Antioxidant Metabolism under Adverse Environmental Conditions: a Review. Botanical Review, The, 2021, 87, 421-466.	1.7	142
339	Ecotoxicological Evaluation of Methiocarb Electrochemical Oxidation. Applied Sciences (Switzerland), 2020, 10, 7435.	1.3	2
340	Oxidation energy efficiency in water treatment with gas-phase pulsed corona discharge as a function of spray density. Journal of Electrostatics, 2020, 106, 103466.	1.0	8
341	Ultra-efficient and stable heterogeneous iron-based Fenton nanocatalysts for degrading organic dyes at neutral pH <i>via</i> a chelating effect under nanoconfinement. Chemical Communications, 2020, 56, 6571-6574.	2.2	29
342	UV–Vis quantification of hydroxyl radical concentration and dose using principal component analysis. Talanta, 2020, 218, 121148.	2.9	31
343	The effect of DMPO on the formation of hydroxyl radicals on the rutile TiO ₂ (110) surface. Physical Chemistry Chemical Physics, 2020, 22, 13129-13135.	1.3	12
344	Photoelectrochemical reactors for treatment of water and wastewater: a review. Environmental Chemistry Letters, 2020, 18, 1301-1318.	8.3	66
345	Photochemical emissions of HONO, NO2 and NO from the soil surface under simulated sunlight. Atmospheric Environment, 2020, 234, 117596.	1.9	13

#	Article	IF	CITATIONS
346	Thermal unimolecular decomposition of ethyl 2â€furoate and its reactivity toward OH radicals: A theoretical study. International Journal of Chemical Kinetics, 2020, 52, 580-588.	1.0	1
347	Anomalies detected during hydrodynamic cavitation when using salicylic acid dosimetry to measure radical production. Chemical Engineering Journal, 2020, 396, 125389.	6.6	21
348	Molecular transformation of dissolved organic matter in process water from oil and gas operation during UV/H2O2, UV/chlorine, and UV/persulfate processes. Science of the Total Environment, 2020, 730, 139072.	3.9	27
349	Kinetics and mechanism of syringic acid degradation initiated by hydroxyl radical and sulphate radical in the aqueous phase. Chemosphere, 2020, 256, 126997.	4.2	14
351	Metal-free generation of hydroxyl radicals by benzoate-mediated decomposition of peroxides. Chemical Communications, 2020, 56, 7443-7446.	2.2	7
352	Ultrasonic degradation of nitrosodipropylamine (NDPA) and nitrosodibutylamine (NDBA) in water. Environmental Science and Pollution Research, 2020, 27, 29143-29155.	2.7	2
353	Effect of potential HONO sources on peroxyacetyl nitrate (PAN) formation in eastern China in winter. Journal of Environmental Sciences, 2020, 94, 81-87.	3.2	18
354	Ring-Cleavage Products Produced during the Initial Phase of Oxidative Treatment of Alkyl-Substituted Aromatic Compounds. Environmental Science & Envir	4.6	21
355	Degradation of nanoplastics in the environment: Reactivity and impact on atmospheric and surface waters. Science of the Total Environment, 2020, 742, 140413.	3.9	51
356	Ultrafine SnO ₂ /010 Facet-Exposed BiVO ₄ Nanocomposites as Efficient Photoanodes for Controllable Conversion of 2,4-Dichlorophenol via a Preferential Dechlorination Path. ACS Applied Materials & Dechlorination 28264-28272.	4.0	19
357	Nanostructured semiconductor supported iron catalysts for heterogeneous photo-Fenton oxidation: a review. Journal of Materials Chemistry A, 2020, 8, 15513-15546.	5.2	132
358	Low-pressure OH radicals reactor generated by dielectric barrier discharge from water vapor. Physics of Plasmas, 2020, 27, 060701.	0.7	3
359	Seasonal variation characteristics of hydroxyl radical pollution and its potential formation mechanism during the daytime in Lanzhou. Journal of Environmental Sciences, 2020, 95, 58-64.	3.2	42
360	Comparative Study for Interactions of Sulfate Radical and Hydroxyl Radical with Phenol in the Presence of Nitrite. Environmental Science & Environment	4.6	88
361	A bibliometric study of the Fenton oxidation for soil and water remediation. Journal of Environmental Management, 2020, 270, 110886.	3.8	76
362	Origin of the enhanced photocatalytic activity of graphitic carbon nitride nanocomposites and the effects of water constituents. Carbon, 2020, 167, 852-862.	5.4	15
363	Comparison of two different nickel oxide films for electrochemical reduction of imidacloprid. RSC Advances, 2020, 10, 3040-3047.	1.7	12
364	Photochemical Transformations of Carbon Dots in Aqueous Environments. Environmental Science & Environm	4.6	24

#	Article	IF	CITATIONS
365	Recovery of phosphorus and metallic nickel along with HCl production from electroless nickel plating effluents: The key role of three-compartment photoelectrocatalytic cell system. Journal of Hazardous Materials, 2020, 394, 122559.	6.5	16
366	A new FRET probe for ratiometric fluorescence detecting mitochondria-localized drug activation and imaging endogenous hydroxyl radicals in zebrafish. Chemical Communications, 2020, 56, 4432-4435.	2.2	36
367	Hydrogen plasma treated nanodiamonds lead to an overproduction of hydroxyl radicals and solvated electrons in solution under ionizing radiation. Carbon, 2020, 162, 510-518.	5.4	21
368	Visible-Light Photocatalytic Ozonation Using Graphitic C ₃ N ₄ Catalysts: A Hydroxyl Radical Manufacturer for Wastewater Treatment. Accounts of Chemical Research, 2020, 53, 1024-1033.	7.6	81
369	Fe ²⁺ /HClO Reaction Produces Fe ^{IV} O ²⁺ : An Enhanced Advanced Oxidation Process. Environmental Science & Environmental Sc	4.6	121
370	Photosensitized Production of Singlet Oxygen via C60 Fullerene Covalently Attached to Functionalized Silica-coated Stainless-Steel Mesh: Remote Bacterial and Viral Inactivation. Applied Catalysis B: Environmental, 2020, 270, 118862.	10.8	41
371	Deciphering co-catalytic mechanisms of potassium doped g-C3N4 in Fenton process. Journal of Hazardous Materials, 2020, 392, 122472.	6.5	45
372	Plasma-activated water: generation, origin of reactive species and biological applications. Journal Physics D: Applied Physics, 2020, 53, 303001.	1.3	314
373	Photooxidation Reactions of Ethyl 2-Methylpropionate (E2MP) and Ethyl 2,2-Dimethylpropionate (E22DMP) Initiated by OH Radicals: An Experimental and Computational Study. Journal of Physical Chemistry A, 2020, 124, 2768-2784.	1,1	1
374	Use of scavenger agents in heterogeneous photocatalysis: truths, half-truths, and misinterpretations. Physical Chemistry Chemical Physics, 2020, 22, 15723-15733.	1.3	213
375	The effect of hybrid zinc oxide/graphene oxide (ZnO/GO) nano-catalysts on the photocatalytic degradation of simazine. Chemosphere, 2020, 259, 127414.	4.2	49
376	Possible Effect of Climate Change on Surface-Water Photochemistry: A Model Assessment of the Impact of Browning on the Photodegradation of Pollutants in Lakes during Summer Stratification. Epilimnion vs. Whole-Lake Phototransformation. Molecules, 2020, 25, 2795.	1.7	14
377	Olive mill wastewater reuse to enable solar photo-Fenton-like processes for the elimination of priority substances in municipal wastewater treatment plant effluents. Environmental Science and Pollution Research, 2020, 27, 38148-38154.	2.7	6
378	Efficient degradation of chloroquine drug by electro-Fenton oxidation: Effects of operating conditions and degradation mechanism. Chemosphere, 2020, 260, 127558.	4.2	92
379	Adsorption, degradation, and mineralization of emerging pollutants (pharmaceuticals and) Tj ETQq0 0 0 rgBT /Ov Research, 2020, 27, 34862-34905.	erlock 10 2.7	Tf 50 187 Td 27
380	Role of Reactive Halogen Species in Disinfection Byproduct Formation during Chlorine Photolysis. Environmental Science & Discourse (2020, 54, 9629-9639).	4.6	67
381	Homogeneous photocatalytic degradation of sulfamethazine induced by Fe(III)-carboxylate complexes: Kinetics, mechanism and products. Chemical Engineering Journal, 2020, 402, 126122.	6.6	35
382	Multitargeting Antibacterial Activity of a Synthesized Mn ²⁺ Complex of Curcumin on Gram-Positive and Gram-Negative Bacterial Strains. ACS Omega, 2020, 5, 16342-16357.	1.6	25

#	Article	IF	Citations
383	Intriguing peroxidase-mimic for H2O2 and glucose sensing: A synergistic Ce2(MoO4)3/rGO nanocomposites. Journal of Alloys and Compounds, 2020, 825, 154134.	2.8	34
384	Sequential gas-liquid treatment for gaseous toluene degradation by Fenton's oxidation in bubble reactors. Journal of Environmental Chemical Engineering, 2020, 8, 103796.	3.3	15
385	In Vitro Antioxidant Properties of Berry Leaves and Their Inhibitory Effect on Lipid Peroxidation of Thigh Meat from Broiler Chickens. European Journal of Lipid Science and Technology, 2020, 122, 1900384.	1.0	15
386	Evidence that Criegee intermediates drive autoxidation in unsaturated lipids. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 4486-4490.	3.3	36
387	Emerging Nonvalence Anion States of [Isoprene-H·]·H ₂ O Accessed via Detachment of OH [–] ·Isoprene. Journal of Physical Chemistry A, 2020, 124, 2279-2287.	1.1	7
388	The role of soil organic matters and minerals on hydrogen peroxide decomposition in the soil. Chemosphere, 2020, 249, 126146.	4.2	19
389	Some issues limiting photo(cata)lysis application in water pollutant control: A critical review from chemistry perspectives. Water Research, 2020, 174, 115605.	5.3	91
390	Zâ€Scheme Photocatalytic Systems for Solar Water Splitting. Advanced Science, 2020, 7, 1903171.	5.6	295
391	Capture of the Sulfur Monoxide–Hydroxyl Radical Complex. Journal of the American Chemical Society, 2020, 142, 2175-2179.	6.6	23
392	Oxygen and ROS in Photosynthesis. Plants, 2020, 9, 91.	1.6	148
393	NiFe Layered Double Hydroxide (LDH) Nanosheet Catalysts with Fe as Electron Transfer Mediator for Enhanced Persulfate Activation. Journal of Physical Chemistry Letters, 2020, 11, 968-973.	2.1	59
394	Determination of Hydroxyl Radical Production from Sulfide Oxidation Relevant to Sulfidic Porewaters. ACS Earth and Space Chemistry, 2020, 4, 261-271.	1.2	12
395	Kinetics and thermodynamics of the hydroxylation products in the photodegradation of the herbicide Metolachlor. Pure and Applied Chemistry, 2020, 92, 473-484.	0.9	0
396	Photocatalytic degradation of 2,4-dichlorophenol on ZrO2–TiO2: influence of crystal size, surface area, and energetic states. Journal of Materials Science: Materials in Electronics, 2020, 31, 3332-3341.	1.1	9
397	Electrospun Polystyrene/PANI-Ag fibers for organic dye removal and antibacterial application. Journal of Environmental Chemical Engineering, 2020, 8, 103746.	3.3	11
398	Photolysis and photocatalysis of haloacetic acids in water: A review of kinetics, influencing factors, products, pathways, and mechanisms. Journal of Hazardous Materials, 2020, 391, 122143.	6.5	39
399	Degradation of contaminants of emerging concern by UV/H2O2 for water reuse: Kinetics, mechanisms, and cytotoxicity analysis. Water Research, 2020, 174, 115587.	5.3	66
400	UV365 induced elimination of contaminants of emerging concern in the presence of residual nitrite: Roles of reactive nitrogen species. Water Research, 2020, 178, 115829.	5.3	42

#	Article	IF	Citations
401	Zinc–iron silicate for heterogeneous catalytic ozonation of acrylic acid: efficiency and mechanism. RSC Advances, 2020, 10, 9146-9154.	1.7	6
402	Adsorptive and photocatalytic removal of carcinogenic methylene blue dye by SnO2 nanorods: an equilibrium, kinetic and thermodynamics exploration. SN Applied Sciences, 2020, 2, 1.	1.5	10
403	Advanced oxidation process of coumarins by hydroxyl radical: Towards the new mechanism leading to less toxic products. Chemical Engineering Journal, 2020, 395, 124971.	6.6	61
404	Formation of chloronitrophenols upon sulfate radical-based oxidation of 2-chlorophenol in the presence of nitrite. Environmental Pollution, 2020, 261, 114242.	3.7	23
405	Mechanism of Cr(VI) reduction by humin: Role of environmentally persistent free radicals and reactive oxygen species. Science of the Total Environment, 2020, 725, 138413.	3.9	42
406	Tripeptide-dopamine fluorescent hybrids: a coassembly-inspired antioxidative strategy. Chemical Communications, 2020, 56, 6301-6304.	2.2	8
407	Design and fabrication of direct Z-scheme photocatalysts. Interface Science and Technology, 2020, 31, 193-229.	1.6	12
408	Abiotic and biotic transformation of torasemide - Occurrence of degradation products in the aquatic environment. Water Research, 2020, 177, 115753.	5. 3	7
409	TiO2- \hat{l}^2 -Bi2O3 junction as a leverage for the visible-light activity of TiO2 based catalyst used for environmental applications. Catalysis Today, 2021, 361, 165-175.	2.2	23
410	Sonolytic, sonocatalytic and sonophotocatalytic degradation of a methyl violet 2B using iron-based catalyst. Reaction Kinetics, Mechanisms and Catalysis, 2021, 132, 513-528.	0.8	9
411	Effect of acidic conditions on decomposition of methylene blue in aqueous solution by air microbubbles. Chemosphere, 2021, 263, 128141.	4.2	32
412	New insights into mechanisms of sunlight- and dark-mediated high-temperature accelerated diurnal production-degradation of fluorescent DOM in lake waters. Science of the Total Environment, 2021, 760, 143377.	3.9	19
413	Degradation of cyclohexanecarboxylic acid as a model naphthenic acid by the UV/chlorine process: Kinetics and by-products identification. Journal of Hazardous Materials, 2021, 402, 123476.	6.5	19
414	Ozone treatment pak choi for the removal of malathion and carbosulfan pesticide residues. Food Chemistry, 2021, 337, 127755.	4.2	23
415	Hydroxyl, hydroperoxyl free radicals determination methods in atmosphere and troposphere. Journal of Environmental Sciences, 2021, 99, 324-335.	3.2	15
416	Performance indicators for a holistic evaluation of catalyst-based degradationâ€"A case study of selected pharmaceuticals and personal care products (PPCPs). Journal of Hazardous Materials, 2021, 402, 123460.	6.5	26
417	Generation of hydroxyl radicals during photodegradation of chloroacetic acids by 254‬nm ultraviolet: A special degradation process revealed by a holistic radical determination methodology. Journal of Hazardous Materials, 2021, 404, 124040.	6.5	20
418	Underwater microplasma bubbles for efficient and simultaneous degradation of mixed dye pollutants. Science of the Total Environment, 2021, 750, 142295.	3.9	62

#	Article	IF	CITATIONS
419	Biogenic Fenton process $\hat{a}\in$ A possible mechanism for the mineralization of organic carbon in fresh waters. Water Research, 2021, 188, 116483.	5. 3	9
420	Reaction Behavior and Cost-Effectiveness of Halogen Radicals in Hg ⁰ Removal: Performance, Kinetics, and Mechanism. ACS ES&T Engineering, 2021, 1, 66-75.	3.7	6
421	Two-channel responsive luminescent chemosensors for dioxygen species: Molecular oxygen, singlet oxygen and superoxide anion. Coordination Chemistry Reviews, 2021, 427, 213575.	9.5	36
422	Different inactivation behaviors and mechanisms of representative pathogens (Escherichia coli) Tj ETQq1 1 0.7843 visible-light-enabled photocatalytic disinfection. Science of the Total Environment, 2021, 755, 142588.	3.9	Overlock 10 38
423	Atmospheric oxidation of 1-butene initiated by OH radical: Implications for ozone and nitrous acid formations. Atmospheric Environment, 2021, 244, 118010.	1.9	3
424	Shedding light on "Black Box―machine learning models for predicting the reactivity of HO radicals toward organic compounds. Chemical Engineering Journal, 2021, 405, 126627.	6.6	61
425	Treatment of ammonia-embodied wastewater by a transition-metal-based photochemical catalysis strategy. Chemosphere, 2021, 270, 128614.	4.2	2
426	Ultrathin mesoporous g-C3N4/NH2-MIL-101(Fe) octahedron heterojunctions as efficient photo-Fenton-like system for enhanced photo-thermal effect and promoted visible-light-driven photocatalytic performance. Applied Surface Science, 2021, 537, 147890.	3.1	84
427	Thermal-Fenton mechanism with sonoprocessing for rapid non-catalytic transesterification of microalgal to biofuel production. Chemical Engineering Journal, 2021, 408, 127264.	6.6	17
428	Effects of gas sparging and mechanical mixing on sonochemical oxidation activity. Ultrasonics Sonochemistry, 2021, 70, 105334.	3.8	23
429	An effective CdS/Ti-Fe2O3 heterojunction photoanode: Analyzing Z-scheme charge-transfer mechanism for enhanced photoelectrochemical water-oxidation activity. Chinese Journal of Catalysis, 2021, 42, 762-771.	6.9	24
430	Synthesis strategies and emerging mechanisms of metal-organic frameworks for sulfate radical-based advanced oxidation process: A review. Chemical Engineering Journal, 2021, 421, 127863.	6.6	129
431	Synthesis of Dihydroquinolines as Scaffolds for Fluorescence Sensing of Hydroxyl Radical. Organic Letters, 2021, 23, 135-139.	2.4	17
432	A potential route for photolytic reduction of HgCl2 and HgBr2 in dry air and analysis about the impacts from Ozone. Atmospheric Research, 2021, 249, 105310.	1.8	4
433	Cobalt Single Atoms on Tetrapyridomacrocyclic Support for Efficient Peroxymonosulfate Activation. Environmental Science & Envi	4.6	185
434	Diurnal and seasonal variations in water-soluble inorganic ions and nitrate dual isotopes of PM2.5: Implications for source apportionment and formation processes of urban aerosol nitrate. Atmospheric Research, 2021, 248, 105197.	1.8	13
435	Heterogeneous photochemical uptake of NO2 on the soil surface as an important ground-level HONO source. Environmental Pollution, 2021, 271, 116289.	3.7	9
436	Photocatalytic generation of gas phase reactive oxygen species from adsorbed water: Remote action and electrochemical detection. Journal of Environmental Chemical Engineering, 2021, 9, 104809.	3.3	10

#	Article	IF	CITATIONS
437	Determination and Environmental Implications of Aqueous-Phase Rate Constants in Radical Reactions. Water Research, 2021, 190, 116746.	5.3	65
438	Treating disinfection byproducts with UV or solar irradiation and in UV advanced oxidation processes: A review. Journal of Hazardous Materials, 2021, 408, 124435.	6.5	38
439	Reduction of silver ions to form silver nanoparticles by redox-active organic molecules: coupled impact of the redox state and environmental factors. Environmental Science: Nano, 2021, 8, 269-281.	2.2	13
440	Theoretical study on the atmospheric degradation mechanism and subsequent products of E,Eâ€2,4â€hexadienal with hydroxyl radical. International Journal of Quantum Chemistry, 2021, 121, e26563.	1.0	7
441	Kinetics of chain reaction driven by proton-coupled electron transfer: \hat{l}_{\pm} -hydroxyethyl radical and bromoacetate in buffered aqueous solutions. Physical Chemistry Chemical Physics, 2021, 23, 10429-10439.	1.3	5
442	Real-Time Probing of an Atmospheric Photochemical Reaction by Ultrashort Extreme Ultraviolet Pulses: Nitrous Acid Release from o-Nitrophenol. Journal of Physical Chemistry Letters, 2021, 12, 674-679.	2.1	7
443	Facile synthesis of a mesoporous TiO ₂ film templated by a block copolymer for photocatalytic applications. New Journal of Chemistry, 2021, 45, 15761-15766.	1.4	5
444	Microbe-driven generation of reactive oxygen species for contaminant degradation., 2021,, 293-324.		3
445	Fenton chemistry enables the catalytic oxidative rearrangement of indoles using hydrogen peroxide. Green Chemistry, 2021, 23, 2300-2307.	4.6	35
446	Kinetic studies of excited singlet oxygen atom O($1\mathrm{D}$) reactions with ethanol. International Journal of Chemical Kinetics, 2021, 53, 688-701.	1.0	1
447	Photocatalytic radical species: An overview of how they are generated, detected, and measured. , 2021, , 85-118.		3
448	Recent advances on TiO2 photocatalysis for wastewater degradation: fundamentals, commercial TiO2 materials, and photocatalytic reactors., 2021,, 25-65.		2
449	Comparison of Advanced Oxidation Processes for the Degradation of Maprotiline in Waterâ€"Kinetics, Degradation Products and Potential Ecotoxicity. Catalysts, 2021, 11, 240.	1.6	8
450	New Insights into Micropollutant Abatement in Ammonia-Containing Water by the UV/Breakpoint Chlorination Process. ACS ES&T Water, 2021, 1, 1025-1034.	2.3	10
451	Optimized Photo-Fenton degradation of psychoactive pharmaceuticals alprazolam and diazepam using a chemometric approachâ€"Structure and toxicity of transformation products. Journal of Hazardous Materials, 2021, 403, 123819.	6.5	21
452	Cryogenic Vibrationally Resolved Photoelectron Spectroscopy of OH ^{â€"} (H ₂ O): Confirmation of Multidimensional Franckâ€"Condon Simulation Results for the Transition State of the OH + H ₂ O Reaction. Journal of Physical Chemistry A, 2021, 125, 2154-2162.	1.1	3
453	Fenton Chemistry for Achmatowicz Rearrangement. ACS Catalysis, 2021, 11, 3740-3748.	5.5	29
454	Fe/Fe ₃ C Boosts H ₂ O ₂ Utilization for Methane Conversion Overwhelming O ₂ Generation. Angewandte Chemie, 2021, 133, 8971-8977.	1.6	26

#	Article	IF	CITATIONS
455	Treatment of perfluoroalkyl acids in concentrated wastes from regeneration of spent ion exchange resin by electrochemical oxidation using Magn $ ilde{\mathbb{A}}$ ©li phase Ti4O7 anode. Chemical Engineering Journal Advances, 2021, 5, 100078.	2.4	29
456	Fenton chemistry and reactive oxygen species in soil: Abiotic mechanisms of biotic processes, controls and consequences for carbon and nutrient cycling. Earth-Science Reviews, 2021, 214, 103525.	4.0	99
457	Electrified Membranes for Water Treatment Applications. ACS ES&T Engineering, 2021, 1, 725-752.	3.7	139
458	Metal Organic Frameworks (MOFs) as Photocatalysts for the Degradation of Agricultural Pollutants in Water. ACS ES&T Engineering, 2021, 1, 804-826.	3.7	82
459	Emerging polymeric carbon nitride Z-scheme systems for photocatalysis. Cell Reports Physical Science, 2021, 2, 100355.	2.8	99
460	Enhancement of Iron-Based Photo-Driven Processes by the Presence of Catechol Moieties. Catalysts, 2021, 11, 372.	1.6	13
461	Atmospheric oxidation of 4â€(<scp>2â€methoxyethyl</scp>) phenol initiated by <scp>OH</scp> radical in the presence of <scp>O₂</scp> and <scp>NO_x</scp> : A mechanistic and kinetic study. International Journal of Quantum Chemistry, 2021, 121, e26650.	1.0	4
462	Fe/Fe ₃ C Boosts H ₂ O ₂ Utilization for Methane Conversion Overwhelming O ₂ Generation. Angewandte Chemie - International Edition, 2021, 60, 8889-8895.	7.2	66
463	Reactive Oxygen Species Responsive Polymers for Drug Delivery Systems. Frontiers in Chemistry, 2021, 9, 649048.	1.8	43
464	Production of Formate via Oxidation of Glyoxal Promoted by Particulate Nitrate Photolysis. Environmental Science & Environmental Science & Environment	4.6	23
465	Fenton-biostimulation sequential treatment of a petroleum-contaminated soil amended with oil palm bagasse ($\langle i \rangle$ Elaeis guineensis $\langle i \rangle$). Chemistry and Ecology, 0, , 1-16.	0.6	6
466	Photoinduced Simultaneous Thermal and Photocatalytic Activities of MnO ₂ Revealed by Femtosecond Transient Absorption Spectroscopy. ACS Applied Materials & Samp; Interfaces, 2021, 13, 18944-18953.	4.0	21
467	From Reactive Oxygen Species to Reactive Brominating Species: Fenton Chemistry for Oxidative Bromination. ACS Sustainable Chemistry and Engineering, 2021, 9, 6118-6125.	3.2	22
468	UV/H2O2 oxidation of chloronitrobenzenes in waters revisited: Hydroxyl radical induced self-nitration. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 410, 113162.	2.0	7
469	Recent advances of redox-responsive nanoplatforms for tumor theranostics. Journal of Controlled Release, 2021, 332, 269-284.	4.8	79
470	Atomically Dispersed Y or La on Birnessite-Type MnO ₂ for the Catalytic Decomposition of Low-Concentration Toluene at Room Temperature. ACS Applied Materials & Samp; Interfaces, 2021, 13, 17532-17542.	4.0	31
471	Secondary Formation of Aromatic Nitroderivatives of Environmental Concern: Photonitration Processes Triggered by the Photolysis of Nitrate and Nitrite Ions in Aqueous Solution. Molecules, 2021, 26, 2550.	1.7	18
472	Reactive Oxygen Species-Based Nanomaterials for Cancer Therapy. Frontiers in Chemistry, 2021, 9, 650587.	1.8	30

#	Article	IF	CITATIONS
473	New Mechanistic Insights into Atmospheric Oxidation of Aniline Initiated by OH Radicals. Environmental Science & Environmental	4.6	20
474	The Formation of C ₃ O ₃ H ₆ Structural Isomers in the Gas Phase through Barrierless Pathways: Formation and Spectroscopic Characterization of Methoxy Acetic Acid. Astrophysical Journal, 2021, 913, 21.	1.6	3
475	Development and Characterization of a Non-Thermal Plasma Source for Therapeutic Treatments. IEEE Transactions on Biomedical Engineering, 2021, 68, 1467-1476.	2.5	5
476	Degradation of BTEX in groundwater by nano-CaO2 particles activated with L-cysteine chelated Fe(III): enhancing or inhibiting hydroxyl radical generation. Water Science and Technology: Water Supply, 2021, 21, 4429-4441.	1.0	1
477	Crystal phase-dependent generation of mobile OH radicals on TiO2: Revisiting the photocatalytic oxidation mechanism of anatase and rutile. Applied Catalysis B: Environmental, 2021, 286, 119905.	10.8	61
478	Insights into the effects of bromide at fresh water levels on the radical chemistry in the UV/peroxydisulfate process. Water Research, 2021, 197, 117042.	5.3	34
479	Hyaluronan as a Prominent Biomolecule with Numerous Applications in Medicine. International Journal of Molecular Sciences, 2021, 22, 7077.	1.8	33
480	Atmospheric chemistry of CF3CHFCF2OCH2CF2CF3: Kinetics and mechanism on the OH-initiated degradation and subsequent reactions in the presence of O2 and NO. Chemical Physics Letters, 2021, 773, 138556.	1.2	0
481	Secondary Organic Aerosol Formation from Isoprene: Selected Research, Historic Account and State of the Art. Atmosphere, 2021, 12, 728.	1.0	7
482	Sulfide induces physical damages and chemical transformation of microplastics via radical oxidation and sulfide addition. Water Research, 2021, 197, 117100.	5.3	40
483	Burst of hydroxyl radicals in sediments derived by flooding/drought transformation process in Lake Poyang, China. Science of the Total Environment, 2021, 772, 145059.	3.9	13
484	Concentrations and sources of methylxanthines in a Northern German river system. Science of the Total Environment, 2021, 775, 145898.	3.9	1
485	Self-Assembled Nanomaterials Based on Complementary Sn(IV) and Zn(II)-Porphyrins, and Their Photocatalytic Degradation for Rhodamine B Dye. Molecules, 2021, 26, 3598.	1.7	20
486	Modulating the Stacking Model of Covalent Organic Framework Isomers with Different Generation Efficiencies of Reactive Oxygen Species. ACS Applied Materials & Samp; Interfaces, 2021, 13, 29471-29481.	4.0	43
487	Broad-Spectrum Reactive Oxygen Species Scavenging and Activated Macrophage-Targeting Microparticles Ameliorate Inflammatory Bowel Disease. Biomacromolecules, 2021, 22, 3107-3118.	2.6	17
488	Formation and evolution of brown carbon during aqueous-phase nitrate-mediated photooxidation of guaiacol and 5-nitroguaiacol. Atmospheric Environment, 2021, 254, 118401.	1.9	24
489	Photocatalytic mechanisms of 2,4-dinitroanisole degradation in water deciphered by C and N dual-element isotope fractionation. Journal of Hazardous Materials, 2021, 411, 125109.	6.5	4
490	Microheterogeneous Distribution of Hydroxyl Radicals in Illuminated Dissolved Organic Matter Solutions. Environmental Science & Environmental Science	4.6	31

#	Article	IF	CITATIONS
491	A free electron laser-based $1+1\hat{a}\in^2$ Resonance-Enhanced Multiphoton Ionization scheme for rotationally resolved detection of OH radicals with correct relative intensities. Journal of Molecular Spectroscopy, 2021, 380, 111509.	0.4	3
492	A Review on the Degradation of Pollutants by Fenton-Like Systems Based on Zero-Valent Iron and Persulfate: Effects of Reduction Potentials, pH, and Anions Occurring in Waste Waters. Molecules, 2021, 26, 4584.	1.7	43
493	Enhanced degradation of ciprofloxacin by cerium oxide/graphene oxide nanocomposite under ultrasound irradiation. Fullerenes Nanotubes and Carbon Nanostructures, 2022, 30, 404-408.	1.0	2
494	Does <i>Tert</i> -Butyl Alcohol Really Terminate the Oxidative Activity of [•] OH in Inorganic Redox Chemistry?. Environmental Science & Technology, 2021, 55, 10442-10450.	4.6	27
495	Synthesis of magnetic CuFe ₂ O ₄ /Fe ₂ O ₃ core-shell materials and their application in photo-Fenton-like process with oxalic acid as a radical-producing source. Journal of Asian Ceramic Societies, 2021, 9, 1091-1102.	1.0	5
496	Upcycling to Sustainably Reuse Plastics. Advanced Materials, 2022, 34, e2100843.	11.1	91
497	Major influence of hydroxyl and nitrate radicals on air pollution by environmentally persistent free radicals. Environmental Chemistry Letters, 2021, 19, 4455-4461.	8.3	4
498	Trace level nitrite sensitized photolysis of the antimicrobial agents parachlormetaxylenol and chlorophene in water. Water Research, 2021, 200, 117275.	5.3	20
499	Bromate and brominated oxidation byproducts formation in the UVA/TiO2/peroxydisulfate system: Mechanism, kinetic model and control methods. Science of the Total Environment, 2021, 777, 146179.	3.9	3
500	Unravelling molecular transformation of dissolved effluent organic matter in UV/H2O2, UV/persulfate, and UV/chlorine processes based on FT-ICR-MS analysis. Water Research, 2021, 199, 117158.	5.3	84
501	Aqueous-phase reactive species formed by fine particulate matter from remote forests and polluted urban air. Atmospheric Chemistry and Physics, 2021, 21, 10439-10455.	1.9	6
502	Occurrence of unknown reactive species in UV/H2O2 system leading to false interpretation of hydroxyl radical probe reactions. Water Research, 2021, 201, 117338.	5.3	18
503	Interfacial reaction between organic acids and iron-containing clay minerals: Hydroxyl radical generation and phenolic compounds degradation. Science of the Total Environment, 2021, 783, 147025.	3.9	17
504	Reactive oxygen species-sensitive polymeric nanocarriers for synergistic cancer therapy. Acta Biomaterialia, 2021, 130, 17-31.	4.1	52
505	Advanced treatment of secondary effluent organic matters (EfOM) from an industrial park wastewater treatment plant by Fenton oxidation combining with biological aerated filter. Science of the Total Environment, 2021, 784, 147204.	3.9	24
506	Photolysis of nitrate by solar light in agricultural runoffs: Degradation of emerging contaminant vs. formation of unintended products. Separation and Purification Technology, 2021, 269, 118751.	3.9	6
507	Unintended Consequences of Air Cleaning Chemistry. Environmental Science & Env	4.6	35
508	Evolution of humic substances and the forms of heavy metals during co-composting of rice straw and sediment with the aid of Fenton-like process. Bioresource Technology, 2021, 333, 125170.	4.8	39

#	ARTICLE	IF	Citations
509	CaO2/Fe3O4 nanocomposites for oxygen-independent generation of radicals and cancer therapy. Colloids and Surfaces B: Biointerfaces, 2021, 204, 111803.	2.5	10
510	The enhanced mixing states of oxalate with metals in single particles in Guangzhou, China. Science of the Total Environment, 2021, 783, 146962.	3.9	10
511	Effects of exogenic chloride on oxidative degradation of chlorinated azo dye by UV-activated peroxodisulfate. Chinese Chemical Letters, 2021, 32, 2544-2550.	4.8	18
512	Reaction of hydroxyl radical with arenes in solution—On the importance of benzylic hydrogen abstraction. Journal of Physical Organic Chemistry, 2021, 34, e4278.	0.9	3
513	Latest advanced oxidative processes applied for the removal of endocrine disruptors from aqueous media – A critical report. Journal of Environmental Chemical Engineering, 2021, 9, 105748.	3.3	26
514	Photochemical transformation of decachlorobiphenyl (PCB-209) on the surface of microplastics in aqueous solution. Chemical Engineering Journal, 2021, 420, 129813.	6.6	25
515	Photocatalysis: Introduction, Mechanism, and Effective Parameters. Green Chemistry and Sustainable Technology, 2022, , 3-31.	0.4	1
516	Application of the Magnetic Fraction of Fly Ash as a Low-Cost Heterogeneous Fenton Catalyst for Degrading Ethidium Bromide. Analytical Letters, 2022, 55, 965-979.	1.0	2
517	Gas phase hydroxyl radical reaction with 3,4-Dichloro-1,2,5-thiadiazole in the temperature range of 265–353ÅK: A kinetic and theoretical study. Chemical Physics Letters, 2021, 779, 138828.	1.2	1
518	Photocatalytic degradation of ibuprofen on S-doped BiOBr. Chemosphere, 2021, 278, 130376.	4.2	60
519	Modeling degradation kinetics of gemfibrozil and naproxen in the UV/chlorine system: Roles of reactive species and effects of water matrix. Water Research, 2021, 202, 117445.	5.3	24
520	Rate coefficients of hydroxyl radical reaction with 1-chlorocyclopentene over a temperature range of 262–335ÂK. Chemical Physics Letters, 2021, 778, 138816.	1.2	0
521	Aqueous phase oxidation of bisulfite influenced by nitrate and its photolysis. Science of the Total Environment, 2021, 785, 147345.	3.9	3
522	Self-Immolative Dye-Doped Polymeric Probe for Precisely Imaging Hydroxyl Radicals by Avoiding Leakage. Analytical Chemistry, 2021, 93, 12944-12953.	3.2	5
523	Accelerated degradation of pharmaceuticals by ferrous ion/chlorine process: Roles of Fe(IV) and reactive chlorine species. Science of the Total Environment, 2021, 787, 147584.	3.9	15
524	Oxidation of Dipropyl Thiosulfinate Initiated by Cl Radicals in the Gas Phase: Implications for Atmospheric Chemistry. ACS Earth and Space Chemistry, 2021, 5, 2878-2890.	1.2	11
525	Hydroxyl radical-involved cancer therapy via Fenton reactions. Frontiers of Chemical Science and Engineering, 2022, 16, 345-363.	2.3	4
526	A Combined Experimental and Theoretical Study to Determine the Kinetics of 2-Ethoxy Ethanol with OH Radical in the Gas Phase. Journal of Physical Chemistry A, 2021, 125, 8869-8881.	1.1	4

#	Article	IF	CITATIONS
527	Formation and mechanisms of hydroxyl radicals during the oxygenation of sediments in Lake Poyang, China. Water Research, 2021, 202, 117442.	5.3	29
528	The upsurge of photocatalysts in antibiotic micropollutants treatment: Materials design, recovery, toxicity and bioanalysis. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2021, 48, 100437.	5.6	26
529	Integration of oxalic acid chelation and Fenton process for synergistic relaxation-oxidation of persistent gel-like fouling of ceramic nanofiltration membranes. Journal of Membrane Science, 2021, 636, 119553.	4.1	12
530	Experimental and theoretical studies into the hydroxyl radical mediated transformation of propylparaben to methylparaben in the presence of dissolved organic matter surrogate. Water Research, 2021, 204, 117623.	5.3	6
531	Chemical Morphology Controls Reactivity of OH Radicals at the Air–Ice Interface. Journal of Physical Chemistry A, 2021, 125, 8925-8932.	1.1	2
532	Z-scheme photocatalysts for visible-light-driven pollutants degradation: A review on recent advancements. Current Opinion in Solid State and Materials Science, 2021, 25, 100941.	5.6	145
533	Application of titanium dioxide for the photocatalytic degradation of macro- and micro-plastics: A review. Journal of Environmental Chemical Engineering, 2021, 9, 105964.	3.3	65
534	Comparative physicochemical properties and toxicity of organic UV filters and their photocatalytic transformation products. Environmental Pollution, 2021, 286, 117551.	3.7	6
535	Preparation of TiO2–based hollow microspheres by spray drying and their use as novel active pigments for photocatalytic coatings. Progress in Organic Coatings, 2021, 160, 106518.	1.9	4
536	Efficient removal of estrogenic compounds in water by MnIII-activated peroxymonosulfate: Mechanisms and application in sewage treatment plant water. Environmental Pollution, 2021, 288, 117728.	3.7	18
537	Humic acids promote hydroxyl radical production during transformation of biogenic and abiogenic goethite under redox fluctuation. Chemical Engineering Journal, 2021, 424, 130359.	6.6	22
538	DFT insights into the migration of effective electrons towards O2 for OH formation over electron-rich sites on BiOBr (0 0 1) surface. Applied Surface Science, 2021, 567, 150828.	3.1	8
539	Wet-chemical synthesis of solution-processible porous graphene via defect-driven etching. Carbon, 2021, 185, 568-577.	5.4	9
540	Degradation of sulfamethoxazole by the heterogeneous Fenton-like reaction between gallic acid and ferrihydrite. Ecotoxicology and Environmental Safety, 2021, 226, 112847.	2.9	11
541	3D-printed highly ordered Ti networks-based boron-doped diamond: An unprecedented robust electrochemical oxidation anode for decomposition of refractory organics. Chemical Engineering Journal, 2021, 426, 131479.	6.6	21
542	Improved NH3-N conversion efficiency to N2 activated by BDD substrate on NiCu electrocatalysis process. Separation and Purification Technology, 2021, 276, 119350.	3.9	12
543	High crop yield losses induced by potential HONO sources â€" A modelling study in the North China Plain. Science of the Total Environment, 2022, 803, 149929.	3.9	2
544	Reactive oxygen species-based nanomaterials for the treatment of myocardial ischemia reperfusion injuries. Bioactive Materials, 2022, 7, 47-72.	8.6	136

#	Article	IF	CITATIONS
545	Utter degradation of toluene with inhibiting the generation of benzene by self-supporting Bi2MoO6 nanoflakes featuring OV-enriched interface. Chemical Engineering Journal, 2022, 427, 131550.	6.6	50
546	Extensive production of hydroxyl radicals during oxygenation of anoxic paddy soils: Implications to imidacloprid degradation. Chemosphere, 2022, 286, 131565.	4.2	10
547	Degradation of chloroaniline in chemical wastewater by ionizing radiation technology: Degradation mechanism and toxicity evaluation. Chemosphere, 2022, 287, 132365.	4.2	6
548	Kinetics and mechanism of OH-mediated degradation of three pentanols in the atmosphere. New Journal of Chemistry, 2021, 45, 16543-16556.	1.4	3
549	Hydrodynamic Cavitation for Micropollutant Degradation in Water - Correlation of Bisphenol a Degradation with Fluid Mechanical Properties. SSRN Electronic Journal, 0, , .	0.4	0
550	A ROS scavenging protein nanocage for <i>in vitro</i> and <i>in vivo</i> antioxidant treatment. Nanoscale, 2021, 13, 4634-4643.	2.8	7
551	A modelling study of OH, NO ₃ and H ₂ SO ₄ in 2007–2018 at SMEAR II, Finland: analysis of long-term trends. Environmental Science Atmospheres, 2021, 1, 449-472.	0.9	1
552	Experimental and Computational Investigations of the Tropospheric Photooxidation Reactions of $1,1,1,3,3,3$ -Hexafluoro-2-Methyl-2-Propanol Initiated by OH Radicals and Cl Atoms. Journal of Physical Chemistry A, 2021, 125, 523-535.	1.1	4
553	Interactions of plasma-activated water with biofilms: inactivation, dispersal effects and mechanisms of action. Npj Biofilms and Microbiomes, 2021, 7, 11.	2.9	88
554	Nanostructured composites based on Bi and Ti mixed oxides for visible-light assisted heterogeneous photocatalysis., 2021,, 397-407.		0
555	Hydroxyl radical-mediated oxidative cleavage of C bonds and further esterification reaction by heterogeneous semiconductor photocatalysis. Green Chemistry, 2021, 23, 6591-6597.	4.6	18
556	Dihalogenated Methylperoxy Radicals: Spectroscopic Characterization and Photodecomposition by Release of HO Chemistry - A European Journal, 2020, 26, 2817-2820.	1.7	4
557	Tropospheric Ozone Budget: Formation, Depletion and Climate Change. , 2018, , 31-64.		5
558	Radio-Protective Effects of Loliolus beka Gray Meat Consisted of a Plentiful Taurine Against Damages Caused by Gamma Ray Irradiation. Advances in Experimental Medicine and Biology, 2019, 1155, 729-738.	0.8	3
559	Field evaluation of a pressurized ozone treatment system to degrade sulfolane in contaminated groundwaters. Journal of Environmental Chemical Engineering, 2020, 8, 104037.	3.3	11
560	Photochemical Formation of Nitrite and Nitrous Acid (HONO) upon Irradiation of Nitrophenols in Aqueous Solution and in Viscous Secondary Organic Aerosol Proxy. Environmental Science & Eamp; Technology, 2017, 51, 7486-7495.	4.6	42
561	Selective Synthesis of \hat{l}_{\pm} -, \hat{l}^2 -, and \hat{l}^3 -Ag ₂ WO ₄ Polymorphs: Promising Platforms for Photocatalytic and Antibacterial Materials. Inorganic Chemistry, 2021, 60, 1062-1079.	1.9	18
562	Development of coinage metal nanoclusters as antimicrobials to combat bacterial infections. Journal of Materials Chemistry B, 2020, 8, 9466-9480.	2.9	17

#	Article	IF	CITATIONS
563	Free radical scavenging activity of zinc oxide nanoparticles biosynthesised using <i>Aspergillus carneus</i> . Micro and Nano Letters, 2019, 14, 1157-1162.	0.6	8
565	Poor optical stability of molecular dyes when used as absorbers in water-based tissue-simulating phantoms. , 2019, , .		1
567	Complete benzothiazole elimination by the solar photo-Fenton process in aqueous and \hat{l}^2 -cyclodextrin solutions. New Journal of Chemistry, 2021, 45, 20214-20218.	1.4	2
568	Dynamic Visualization of Free Radicals at Single Oxygen Bubbles using Chemiluminescence. Chemistry - an Asian Journal, 2021, 16, 4049-4052.	1.7	2
569	Degradation of Naproxen by UV-irradiation in the presence of nitrate: Efficiency, mechanism, products, and toxicity change. Chemical Engineering Journal, 2022, 430, 133016.	6.6	15
570	Photocatalytic Zâ€Scheme Overall Water Splitting: Recent Advances in Theory and Experiments. Advanced Materials, 2021, 33, e2105195.	11.1	123
571	Cu embedded Co oxides and its fenton-like activity for metronidazole degradation over a wide pH range: Active sites of Cu doped Co3O4 with $\{1\ 1\ 2\}$ exposed facet. Chemical Engineering Journal, 2022, 435, 132910.	6.6	16
572	Toward Selective Oxidation of Contaminants in Aqueous Systems. Environmental Science & Emp; Technology, 2021, 55, 14494-14514.	4.6	145
573	Theoretical investigation on the mechanisms and kinetics of OH/NO3-initiated atmospheric oxidation of vanillin and vanillic acid. Chemosphere, 2022, 288, 132544.	4.2	3
574	Evaluating the Impacts of Ground-Level O3 on Crops in China. Current Pollution Reports, 2021, 7, 565-578.	3.1	6
575	Enhancement of the electro-Fenton degradation of organic contaminant by accelerating Fe3+/Fe2+ cycle using hydroxylamine. Journal of Industrial and Engineering Chemistry, 2022, 105, 405-413.	2.9	17
576	Green synthesis, characterization, and application of copper nanoparticles obtained from printed circuit boards to degrade mining surfactant by Fenton process. Journal of Environmental Chemical Engineering, 2021, 9, 106576.	3.3	24
578	Preparation of Electrostatic Spinning Composite Film Loaded with Polyvinylpyrrolidone for the Detection of Free Radicals in Polluted Air. International Journal of Electrochemical Science, 0, , 11466-11479.	0.5	1
579	Effect of ultraviolet and visible lights on degradation of congo red dye using Fe2+/H2O2. Journal of Physics: Conference Series, 2020, 1494, 012029.	0.3	1
580	Computer-aided estimation of kinetic rate constant for degradation of volatile organic compounds by hydroxyl radical: An improved model using quantum chemical and norm descriptors. Chemical Engineering Science, 2022, 248, 117244.	1.9	13
581	Zinc-bearing dust derived non-toxic mixed iron oxides as magnetically recyclable photo-Fenton catalyst for degradation of dye. Water Science and Technology, 2021, 83, 425-434.	1.2	1
582	Factors affecting wavelengthâ€resolved ultraviolet irradiance indoors and their impacts on indoor photochemistry. Indoor Air, 2021, 31, 1187-1198.	2.0	10
583	Recyclable and Photocatalytic Properties of ZnFe 2 O 4 /ZnO for Wastewater Treatment and Disinfection. ChemistrySelect, 2020, 5, 15167-15174.	0.7	5

#	Article	IF	Citations
584	Kinetics of the oxidation of ammonia and amines with hydroxyl radicals in the aqueous phase. Environmental Sciences: Processes and Impacts, 2021, 23, 1906-1913.	1.7	7
585	Vanadium Oxides in Photocatalysis, Including Bare Oxides and VOx-based Organic–Inorganic Nanocomposites. RSC Catalysis Series, 2020, , 340-373.	0.1	0
586	Enhanced Activity and Stability of PbO2 Electrodes by Modification with Octadecyl Phosphonic Acid. Journal of the Electrochemical Society, 2021, 168, 116503.	1.3	4
587	Enhanced degradation of micropollutants over iron-based electro-Fenton catalyst: Cobalt as an electron modulator in mesochannels and mechanism insight. Journal of Hazardous Materials, 2022, 427, 127896.	6.5	18
588	Dihydroxyacetone valorization with high atom efficiency via controlling radical oxidation pathways over natural mineral-inspired catalyst. Nature Communications, 2021, 12, 6840.	5.8	13
589	Thermal and Vibrationally Activated Decomposition of the syn-CH ₃ CHOO Criegee Intermediate. ACS Earth and Space Chemistry, 2021, 5, 3396-3406.	1.2	8
590	Formation of Nitrophenolic Byproducts during UV-Activated Peroxydisulfate Oxidation in the Presence of Nitrate. ACS ES&T Engineering, 2022, 2, 222-231.	3.7	7
591	Transformation of gemfibrozil by the interaction of chloride with sulfate radicals: Radical chemistry, transient intermediates and pathways. Water Research, 2022, 209, 117944.	5.3	19
592	Investigating the sources of atmospheric nitrous acid (HONO) in the megacity of Beijing, China. Science of the Total Environment, 2022, 812, 152270.	3.9	14
593	Overlooked environmental risks deriving from aqueous transformation of bisphenol alternatives: Integration of chemical and toxicological insights. Journal of Hazardous Materials, 2022, 427, 128208.	6.5	13
594	Opportunities for interfacing organometallic catalysts with cellular metabolism. , 2021, , .		0
595	Exploration of the atmospheric chemistry of nitrous acid in a coastal city of southeastern China: results from measurements across four seasons. Atmospheric Chemistry and Physics, 2022, 22, 371-393.	1.9	18
596	The Mechanism and Kinetics Model of Degradation of Dicarboxylic Acids by Hydroxyl Radicals under Atmospheric Conditions. Journal of Physical Chemistry A, 2022, 126, 787-799.	1.1	1
597	Aqueous ozone: Chemistry, physiochemical properties, microbial inactivation, factors influencing antimicrobial effectiveness, and application in food. Comprehensive Reviews in Food Science and Food Safety, 2022, 21, 1054-1085.	5.9	23
598	Modeling the Conformer-Dependent Electronic Absorption Spectra and Photolysis Rates of Methyl Vinyl Ketone Oxide and Methacrolein Oxide. Journal of Physical Chemistry A, 2022, 126, 485-496.	1.1	10
599	Palladium nanoparticles decorated MXene for plasmon-enhanced photocatalysis. Journal of Industrial and Engineering Chemistry, 2022, 108, 501-507.	2.9	10
600	Supervised Machine Learning Algorithms for Predicting Rate Constants of Ozone Reaction with Micropollutants. Industrial & Engineering Chemistry Research, 2022, 61, 8359-8367.	1.8	12
601	Detection of singlet oxygen by EPR: The instability of the nitroxyl radicals. Free Radical Biology and Medicine, 2022, 180, 143-152.	1.3	13

#	Article	IF	CITATIONS
602	Remediation of PNP-contaminated groundwater using a modified CaO2/Fe(II) Fenton system: Reactive principles, degradation performance and potential pathways. Journal of Environmental Chemical Engineering, 2022, 10, 107305.	3.3	8
603	Photoinduced release of odorous volatile organic compounds from aqueous pollutants: The role of reactive oxygen species in increasing risk during cross-media transformation. Science of the Total Environment, 2022, 822, 153397.	3.9	4
604	Abatement of chlorobenzenes in aqueous phase by persulfate activated by alkali enhanced by surfactant addition. Journal of Environmental Management, 2022, 306, 114475.	3.8	18
605	Zero valent boron activated ozonation for ultra-fast degradation of organic pollutants: Atomic orbital matching, oxygen spillover and intra-electron transfer. Chemical Engineering Journal, 2022, 434, 134674.	6.6	13
606	Free radicals accelerate in situ ageing of microplastics during sludge composting. Journal of Hazardous Materials, 2022, 429, 128405.	6.5	44
607	Immobilization using Cu(II) and Zr(IV): Persistent and highly efficient activation of galactose oxidase by in-situ generation of hydroxyl radicals in concert with in-situ generation of O2. Chemical Engineering Journal, 2022, 435, 134819.	6.6	7
608	Photosensitization mechanisms at the air–water interface of aqueous aerosols. Chemical Science, 2022, 13, 2624-2631.	3.7	17
609	Coordination framework materials fabricated by the self-assembly of Sn(<scp>iv</scp>) porphyrins with Ag(<scp>i</scp>) ions for the photocatalytic degradation of organic dyes in wastewater. Inorganic Chemistry Frontiers, 2022, 9, 1270-1280.	3.0	21
610	Analysis of degradation and pathways of three common antihistamine drugs by NaClO, UV, and UV-NaClO methods. Environmental Science and Pollution Research, 2022, 29, 43984-44002.	2.7	7
611	Surfactant-Assisted Ozonolysis of Alkenes in Water: Mitigation of Frothing Using Coolade as a Low-Foaming Surfactant. Journal of Organic Chemistry, 2022, 87, 6525-6540.	1.7	11
612	Chemical Modification of Hyaluronan and Their Biomedical Applications. Frontiers in Chemistry, 2022, 10, 830671.	1.8	30
613	Hydrodynamic cavitation for micropollutant degradation in water – Correlation of bisphenol A degradation with fluid mechanical properties. Ultrasonics Sonochemistry, 2022, 83, 105950.	3.8	14
614	Photoinduced evolution of optical properties and compositions of methoxyphenols by Fe(III)-Carboxylates complexes in atmospheric aqueous phase. Chemosphere, 2022, , 133860.	4.2	2
615	Titanium dioxide (TiOâ,,)-based photocatalyst materials activity enhancement for contaminants of emerging concern (CECs) degradation: In the light of modification strategies. Chemical Engineering Journal Advances, 2022, 10, 100262.	2.4	102
616	pH affects the aqueous-phase nitrate-mediated photooxidation of phenolic compounds: implications for brown carbon formation and evolution. Environmental Sciences: Processes and Impacts, 2023, 25, 176-189.	1.7	5
618	Micromachines for Microplastics Treatment. ACS Nanoscience Au, 2022, 2, 225-232.	2.0	18
619	Single-walled silicon nanotube as an exceptional candidate to eliminate SARS-CoV-2: a theoretical study. Journal of Biomolecular Structure and Dynamics, 2023, 41, 3042-3051.	2.0	1
620	Photodegradation of organic micropollutants in aquatic environment: Importance, factors and processes. Water Research, 2023, 231, 118236.	5.3	29

#	Article	IF	CITATIONS
621	Feâ€"Znâ€"Ti combined systems as photocatalysts for hydroxyl radicals production in sunlight. International Journal of Hydrogen Energy, 2022, 47, 31888-31902.	3.8	4
622	Singleâ€Atom Fe Catalysts for Fentonâ€Like Reactions: Roles of Different N Species. Advanced Materials, 2022, 34, e2110653.	11.1	158
623	Iron Speciation in Respirable Particulate Matter and Implications for Human Health. Environmental Science & Environmental Scie	4.6	9
624	Three Isomeric Zn(II)–Sn(IV)–Zn(II) Porphyrin-Triad-Based Supramolecular Nanoarchitectures for the Morphology-Dependent Photocatalytic Degradation of Methyl Orange. ACS Omega, 2022, 7, 9775-9784.	1.6	16
625	Amplified role of potential HONO sources in O ₃ formation in North China Plain during autumn haze aggravating processes. Atmospheric Chemistry and Physics, 2022, 22, 3275-3302.	1.9	23
626	Photoreductive Dissolution of Iron (Hydr)oxides and Its Geochemical Significance. ACS Earth and Space Chemistry, 2022, 6, 811-829.	1.2	14
627	Overlooked Formation of H ₂ O ₂ during the Hydroxyl Radical-Scavenging Process When Using Alcohols as Scavengers. Environmental Science & Environmental Sci	4.6	83
628	OH-initiated atmospheric degradation of hydroxyalkyl hydroperoxides: mechanism, kinetics, and structure–activity relationship. Atmospheric Chemistry and Physics, 2022, 22, 3693-3711.	1.9	3
629	Dynamic changes of reactive oxygen species in paddy overlying water: mechanisms and implications. Journal of Soils and Sediments, 2022, 22, 1746-1760.	1.5	4
630	A study to understand the role of ethylene glycol in the oxidative acid dissolution of chalcopyrite. Minerals Engineering, 2022, 180, 107502.	1.8	6
631	The impact of engineered nanomaterials on the environment: Release mechanism, toxicity, transformation, and remediation. Environmental Research, 2022, 212, 113202.	3.7	28
632	Peroxyl radicals from diketones enhanced the indirect photochemical transformation of carbamazepine: Kinetics, mechanisms, and products. Water Research, 2022, 217, 118424.	5.3	14
633	Characterization of dielectric barrier discharge reactor with nanobubble application for industrial water treatment and depollution. South African Journal of Chemical Engineering, 2022, 40, 246-257.	1.2	4
634	Nitrous acid in the polluted coastal atmosphere of the South China Sea: Ship emissions, budgets, and impacts. Science of the Total Environment, 2022, 826, 153692.	3.9	5
635	Radiolytic degradation of carbaryl in aqueous solution by gamma-irradiation/H2O2 process. Applied Radiation and Isotopes, 2022, 184, 110210.	0.7	2
636	Mechanistic study on photochemical generation of l•/l2•â^' radicals in coastal atmospheric aqueous aerosol. Science of the Total Environment, 2022, 825, 154080.	3.9	3
637	Dithionite extractable iron responsible for the production of hydroxyl radicals in soils under fluctuating redox conditions. Geoderma, 2022, 415, 115784.	2.3	4
638	Hydroxyl radical formation during oxygen-mediated oxidation of ferrous iron on mineral surface: Dependence on mineral identity. Journal of Hazardous Materials, 2022, 434, 128861.	6.5	14

#	Article	IF	CITATIONS
639	Monitoring the different changing behaviors of •OH and cysteine in two ferroptosis pathways by a dual-functional fluorescence probe. Sensors and Actuators B: Chemical, 2022, 362, 131742.	4.0	17
640	Influence of nitrate/nitrite on the degradation and transformation of triclosan in the UV based disinfection. Chemosphere, 2022, 298, 134258.	4.2	11
641	Ultrathin Î-MnO2 nanoribbons for highly efficient removal of a human-related low threshold odorant - acetic acid. Applied Catalysis B: Environmental, 2022, 309, 121273.	10.8	18
642	Adsorption of persistent organic pollutants (POPs) from the aqueous environment by nano-adsorbents: A review. Environmental Research, 2022, 212, 113123.	3.7	62
643	Highlighted multi-modifications of enzymes: a novel succinylation mediated by histone acetyltransferase 1 in tumors. Cancer Biology and Medicine, 2021, 19, .	1.4	1
644	Healing Diabetic Ulcers with MoO _{3â^'} <i>_X</i> Nanodots Possessing Intrinsic ROSâ€6cavenging and Bacteriaâ€Killing Capacities. Small, 2022, 18, e2107137.	5.2	30
645	Mechanism of Antiradical Activity of Newly Synthesized 4,7-Dihydroxycoumarin Derivatives-Experimental and Kinetic DFT Study. International Journal of Molecular Sciences, 2021, 22, 13273.	1.8	8
646	Insights into the generation of hydroxyl radicals from H2O2 decomposition by the combination of Fe2+ and chloranilic acid. International Journal of Environmental Science and Technology, 0, , 1.	1.8	1
647	Electrified carbon nanotube membrane technology for water treatment., 2022, , 111-140.		3
648	A comparison of soot emitted from school buses and shared auto-rickshaws in Indian tier-II city. Environmental Forensics, 0 , , 1 -8.	1.3	1
649	Effect of Plasma Activated Water in Caries Prevention: The Caries Related Biofilm Inhibition Effects and Mechanisms. Plasma Chemistry and Plasma Processing, 2022, 42, 801-814.	1.1	4
650	Sulfoneâ€Decorated Conjugated Organic Polymers Activate Oxygen for Photocatalytic Methane Conversion. Angewandte Chemie, 0, , .	1.6	1
651	Degradation pathways and kinetics of chloroacetonitriles by UV/persulfate in the presence of bromide. Science of the Total Environment, 2022, 834, 155373.	3.9	4
652	Tertiary amines convert 102 to H2O2 with enhanced photodynamic antibacterial efficiency. Journal of Hazardous Materials, 2022, 435, 128948.	6.5	8
653	Competitive Uptake of Dimethylamine and Trimethylamine against Ammonia on Acidic Particles in Marine Atmospheres. Environmental Science & Environmenta	4.6	10
654	Sulfoneâ€Decorated Conjugated Organic Polymers Activate Oxygen for Photocatalytic Methane Conversion. Angewandte Chemie - International Edition, 2022, 61, .	7.2	30
655	Theoretical investigation on the mechanism and kinetics of the OH•â€'initiated atmospheric degradation of p-chloroaniline via OH•â€'addition and hydrogen abstraction pathways. Journal of Molecular Graphics and Modelling, 2022, 114, 108198.	1.3	1
663	NIR-II responsive PEGylated nickel nanoclusters for photothermal enhanced chemodynamic synergistic oncotherapy. Theranostics, 2022, 12, 3690-3702.	4.6	13

#	Article	IF	Citations
664	Temperature-dependent kinetics of the atmospheric reaction between CH ₂ OO and acetone. Physical Chemistry Chemical Physics, 2022, 24, 13066-13073.	1.3	14
665	Experimental Study on Photo-Reaction Mechanisms of Graphene Oxide Derivatives in Water. SSRN Electronic Journal, 0, , .	0.4	0
666	Synthesis of Amino Acids from Aldehydes and Ammonia: Implications for Organic Reactions in Carbonaceous Chondrite Parent Bodies. ACS Earth and Space Chemistry, 2022, 6, 1311-1320.	1.2	11
667	Effects of Acidity on Reactive Oxygen Species Formation from Secondary Organic Aerosols. ACS Environmental Au, 2022, 2, 336-345.	3.3	12
668	Phototransformation of the fungicide tebuconazole, and its predicted fate in sunlit surface freshwaters. Chemosphere, 2022, 303, 134895.	4.2	11
669	Antibiofilm activity of phytochemicals against <i>Enterococcus faecalis</i> Phytotherapy Research, 2022, 36, 2824-2838.	2.8	10
670	Kinetic and Mechanistic Investigations of OH-Initiated Atmospheric Degradation of Methyl Butyl Ketone. Journal of Physical Chemistry A, 2022, 126, 2976-2988.	1.1	2
671	Polyaniline derived carbon membrane and its in-situ membrane fouling mitigation performance in MBR based on metal-free electro-Fenton. Water Research, 2022, 219, 118564.	5.3	12
672	Molecular and spectroscopic changes of peat-derived organic matter following photo-exposure: Effects on heteroatom composition of DOM. Science of the Total Environment, 2022, 838, 155790.	3.9	12
673	Bi2WO6â€based Z-scheme photocatalysts: Principles, mechanisms and photocatalytic applications. Journal of Environmental Chemical Engineering, 2022, 10, 107838.	3.3	24
674	Amorphous iron oxides anchored on BiOCl nanoplates as robust catalysts for high-performance photo-Fenton oxidation. Journal of Colloid and Interface Science, 2022, 622, 62-74.	5.0	12
675	Physical and chemical characterization of urban grime: An impact on the NO2 uptake coefficients and N-containing product compounds. Science of the Total Environment, 2022, 838, 155973.	3.9	10
676	Diel Fluctuation of Extracellular Reactive Oxygen Species Production in the Rhizosphere of Rice. Environmental Science & Envir	4.6	25
677	Reactive oxygen species on transition metal-based catalysts for sustainable environmental applications. Journal of Materials Chemistry A, 2022, 10, 19184-19210.	5.2	16
678	Enhanced photoelectrocatalytic decomplexation of Ni-EDTA and simultaneous recovery of metallic nickel via TiO2/Ni-Sb-SnO2 bifunctional photoanode and activated carbon fiber cathode. Journal of Environmental Sciences, 2023, 126, 198-210.	3.2	8
679	Unveiling the pH-Dependent Yields of H ₂ O ₂ and OH by Aqueous-Phase Ozonolysis of <i>m</i> -Cresol in the Atmosphere. Environmental Science & Environmental	4.6	1
680	Study of Oxidation of Ciprofloxacin and Pefloxacin by ACVA: Identification of Degradation Products by Mass Spectrometry and Bioautographic Evaluation of Antibacterial Activity. Processes, 2022, 10, 1022.	1.3	1
681	Prussian Blue Scavenger Ameliorates Hepatic Ischemia-Reperfusion Injury by Inhibiting Inflammation and Reducing Oxidative Stress. Frontiers in Immunology, $0,13,.$	2.2	15

#	Article	IF	CITATIONS
682	Probing the reactive intermediate species generated during electrocatalysis by scanning electrochemical microscopy. Current Opinion in Electrochemistry, 2022, 35, 101071.	2.5	6
683	Simultaneous determination of dissolved organic nitrogen, nitrite, nitrate and ammonia using size exclusion chromatography coupled with nitrogen detector. Journal of Environmental Sciences, 2023, 125, 309-318.	3.2	18
684	Rapid synthesis of zeolites through g-C ₃ N ₄ -based photocatalysis. Green Chemistry, 2022, 24, 5792-5799.	4.6	2
685	Emerging investigator series: surfactants, films, and coatings on atmospheric aerosol particles: a review. Environmental Science Atmospheres, 2022, 2, 775-828.	0.9	11
686	Recent progress in treatment of dyes wastewater using microbial-electro-Fenton technology. RSC Advances, 2022, 12, 17104-17137.	1.7	45
688	Degradation of malathion and carbosulfan by ozone water and analysis of their byâ€products. Journal of the Science of Food and Agriculture, 0, , .	1.7	0
689	Exploring Pathways and Mechanisms for Dichloroacetonitrile Formation from Typical Amino Compounds during UV/Chlorine Treatment. Environmental Science & Explored Scie	4.6	18
690	Optical and chemical properties and oxidative potential of aqueous-phase products from OH and & amp;lt;sup>3c ^{a^—} -initiated photooxidation of eugenol. Atmospheric Chemistry and Physics, 2022, 22, 7793-7814.	1.9	6
691	Application of Metal-Based Nanozymes in Inflammatory Disease: A Review. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	10
692	Study of degrading a tributyl phosphate solution via a plasma-based advanced oxidation process using a submerged multi-hole dielectric barrier discharge. Journal of the Korean Physical Society, 0, , .	0.3	0
693	Recent Advances of Fluorescence Probes for Imaging of Ferroptosis Process. Chemosensors, 2022, 10, 233.	1.8	14
694	Challenges in radical/nonradical-based advanced oxidation processes for carbon recycling. Chem Catalysis, 2022, 2, 1858-1869.	2.9	16
695	A holistic modeling framework for estimating the influence of climate change on indoor air quality. Indoor Air, 2022, 32, .	2.0	6
696	Degradation of microplastics by hydroxyl radicals generated during microbially driven humus redox transformation. Water Research, 2022, 221, 118731.	5.3	14
697	Degradation of Organic Contaminants by Reactive Iron/Manganese Species: Progress and Challenges. Water Research, 2022, 221, 118765.	5.3	45
698	Electrochemical oxidation of pharmaceuticals in synthetic fresh human urine: Using selective radical quenchers to reveal the dominant degradation pathways and the scavenging effects of individual urine constituents. Water Research, 2022, 221, 118722.	5.3	16
699	Photocatalytic Reactor as a Bridge to Link the Commercialization of Photocatalyst in Water and Air Purification. Catalysts, 2022, 12, 724.	1.6	6
700	Type I photosensitizer based on AIE chromophore tricyano-methylene-pyridine for photodynamic therapy. Green Chemical Engineering, 2023, 4, 324-330.	3.3	2

#	ARTICLE	IF	CITATIONS
701	Unraveling the Origin of Enhanced Activity of the Nb ₂ 0 ₅ 5667898989999999999999999 Ciprofloxacin: Insights into the Role of Reactive Oxygen Species in Interface Processes. ACS Applied Materials & Acceptable 14, 31824-31837.	4.0	9
702	Fluorogenic toolbox for facile detecting of hydroxyl radicals: From designing principles to diagnostics applications. TrAC - Trends in Analytical Chemistry, 2022, 157, 116734.	5.8	15
703	Tide-Triggered Production of Reactive Oxygen Species in Coastal Soils. Environmental Science & Emp; Technology, 2022, 56, 11888-11896.	4.6	25
704	Multiple Roles of Dissolved Organic Matter in Advanced Oxidation Processes. Environmental Science & Emp; Technology, 2022, 56, 11111-11131.	4.6	112
705	Ultrathin MnO ₂ -Coated FeOOH Catalyst for Indoor Formaldehyde Oxidation at Ambient Temperature: New Insight into Surface Reactive Oxygen Species and In-Field Testing in an Air Cleaner. Environmental Science & December 2022, 56, 10963-10976.	4.6	16
706	Wastewater treatment plants act as essential sources of microplastic formation in aquatic environments: A critical review. Water Research, 2022, 221, 118825.	5.3	59
707	New insights on the effects of SO2 on NO oxidation from flue gas with H2O2 vapor over Fe2O3/SiO2. Chemical Engineering Research and Design, 2022, 165, 138-150.	2.7	9
708	Efficient degradation of organic compounds in landfill leachate via developing bio-electro-Fenton process. Journal of Environmental Management, 2022, 319, 115719.	3.8	12
709	Production of O Radicals from Cavitation Bubbles under Ultrasound. Molecules, 2022, 27, 4788.	1.7	10
710	Sn(IV) Porphyrin-Based Ionic Self-Assembled Nanostructures and Their Application in Visible Light Photo-Degradation of Malachite Green. Catalysts, 2022, 12, 799.	1.6	11
711	Electron delocalization triggers nonradical Fenton-like catalysis over spinel oxides. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119 , .	3.3	99
712	Superoxide radical mediates the transformation of tetrabromobisphenol A by manganese oxides. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 651, 129807.	2.3	0
713	Insights into phenanthrene attenuation by hydroxyl radicals from reduced iron-bearing mineral oxygenation. Journal of Hazardous Materials, 2022, 439, 129658.	6.5	5
714	High-performance visible-light active Sr-doped porous LaFeO ₃ semiconductor prepared via sol–gel method. Green Chemistry Letters and Reviews, 2022, 15, 546-556.	2.1	27
715	2,4â€dinitroanisole transformation during advanced oxidation with ultraviolet light emitting diodes and hydrogen peroxide. Water and Environment Journal, 2023, 37, 142-153.	1.0	2
716	Treatment of wood by sulfate and hydroxyl radical oxidation produced from thermally-activated persulfate: VOC emission and wood property evaluation. Wood Material Science and Engineering, 0, , 1-11.	1.1	1
717	Outstanding performance of electro-Fenton/ultra-violet/ultra-sound assisted-persulfate process for the complete degradation of hazardous pollutants in contaminated water. Chemical Engineering Research and Design, 2022, 165, 739-753.	2.7	9
718	Effect of organic film on magnetite deposition behavior of alloy 690 steam generator tubes in simulated PWR secondary system. Journal of Materials Research and Technology, 2022, 20, 2527-2541.	2.6	1

#	Article	IF	CITATIONS
719	Composition and transformation chemistry of tire-wear derived organic chemicals and implications for air pollution. Atmospheric Pollution Research, 2022, 13, 101533.	1.8	17
720	Decomposition of organic additives in the oxidative chalcopyrite leaching with hydrogen peroxide. Minerals Engineering, 2022, 187, 107783.	1.8	4
721	Exploring influence of organics on the photodegradation of nitroaromatic compounds: Focus on HONO/NO formations and kinetics. Atmospheric Environment, 2022, 289, 119306.	1.9	2
722	Reevaluation of radical-induced differentiation in UV-based advanced oxidation processes (UV/hydrogen peroxide, UV/peroxydisulfate, and UV/chlorine) for metronidazole removal: Kinetics, mechanism, toxicity variation, and DFT studies. Separation and Purification Technology, 2022, 301, 121905.	3.9	14
723	Stress response to trace elements mixture of different embryo-larval stages of Paracentrotus lividus. Marine Pollution Bulletin, 2022, 183, 114092.	2.3	2
724	Inactivation of vancomycin-resistant Enterococcus faecalis and degradation of intracellular vanB gene under exposure to UV and UV/H2O2. Journal of Water Process Engineering, 2022, 49, 103004.	2.6	5
725	Investigation of the atomistic behavior in nanofinishing single-crystal aluminium nitride with hydroxyl radical â^™OH environment. Computational Materials Science, 2022, 214, 111770.	1.4	4
726	Cooperation of multiple active species generated in hydrogen peroxide activation by iron porphyrin for phenolic pollutants degradation. Environmental Pollution, 2022, 313, 120097.	3.7	11
727	Water disinfection by the UVA/electro-Fenton process under near neutral conditions: Performance and mechanisms. Chemosphere, 2022, 308, 136488.	4.2	3
728	Roles of nitrogen dioxide radical (•NO2) in the transformation of aniline by sulfate radical and hydroxyl radical systems with the presence of nitrite. Chemical Engineering Journal, 2023, 451, 138755.	6.6	6
729	Promoting selective water decontamination via boosting activation of periodate by nanostructured Ru-supported Co3O4 catalysts. Journal of Hazardous Materials, 2023, 442, 130058.	6.5	26
730	Morphology-controlled self-assembled nanostructures of complementary metalloporphyrin triads obtained through tuning their intermolecular coordination and their photocatalytic degradation of Orange II dye. Inorganic Chemistry Frontiers, 2022, 9, 5538-5548.	3.0	10
731	Effect of (H $<$ sub $>$ 2 $<$ /sub $>$ 0) $<$ sub $><$ i $>n<$ ii $><$ /sub $>$ 0($<$ ii $>n<$ ii $>=$ 0â \in "3, 13) on the NH $<$ sub $>$ 3 $<$ /sub $>+$ OH reaction in the gas and liquid phases. RSC Advances, 2022, 12, 28010-28019.	1.7	0
732	Photocatalyzed electron exchange between organic chromophores and hematite nanoparticles and the role of solid-state charge transport. Environmental Science: Nano, 0, , .	2.2	1
733	Analysis of measured high-resolution doublet rovibronic spectra and related line lists of ¹² CH and ¹⁶ OH. Physical Chemistry Chemical Physics, 2022, 24, 19287-19301.	1.3	4
734	Revealing *OOH key intermediates and regulating H $<$ sub $>$ 2 $<$ /sub $>$ 0 $<$ sub $>$ 2 $<$ /sub $>$ photoactivation by surface relaxation of Fenton-like catalysts. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	33
735	Starch-Stabilized Iron Oxide Nanoparticles for the Photocatalytic Degradation of Methylene Blue. Polysaccharides, 2022, 3, 655-670.	2.1	1
736	Photochemical Production of Carbon Monoxide from Dissolved Organic Matter: Role of Lignin Methoxyarene Functional Groups. Environmental Science & Envi	4.6	10

#	Article	IF	CITATIONS
737	Enhancing the therapeutic efficacy of nanoparticles for cancer treatment using versatile targeted strategies. Journal of Hematology and Oncology, 2022, 15 , .	6.9	93
738	Cytochrome P450 1B1: A Key Regulator of Ocular Iron Homeostasis and Oxidative Stress. Cells, 2022, 11, 2930.	1.8	9
739	Sunlight-Induced Interfacial Electron Transfer of Ferrihydrite under Oxic Conditions: Mineral Transformation and Redox Active Species Production. Environmental Science & Echnology, 2022, 56, 14188-14197.	4.6	12
740	Effect of C/Fe Molar Ratio on H ₂ O ₂ and [•] OH Production during Oxygenation of Fe(II)-Humic Acid Coexisting Systems. Environmental Science & Technology, 2022, 56, 13408-13418.	4.6	18
741	Global model of plasmaâ€activated water over long time scale: Pulsed discharge and afterglow. High Voltage, 2023, 8, 326-339.	2.7	5
742	Enhanced production of hydroxyl radicals in plasma-treated water via a negative DC bias coupling. Journal Physics D: Applied Physics, 2022, 55, 455201.	1.3	1
743	Stoichiometric excesses of H2O2 as dosimetry strategy: proof of concept for UVC-H2O2, dark-Fenton, and UVC-Fenton. Environmental Science and Pollution Research, 0, , .	2.7	1
744	Synthesis of Zinc-Titanium Oxide Nanocomposites by Plasma Jet and Its Application to Photocatalyst. Catalysts, 2022, 12, 1020.	1.6	1
745	The destruction of trichloroethylene by zinc dioxide using a modified Fenton reaction: Performance and a preliminary mechanism. Research on Chemical Intermediates, 0, , .	1.3	1
746	Photosensitized Transformation of Hydrogen Peroxide in Dissolved Organic Matter Solutions under Simulated Solar Irradiation. Environmental Science & Eamp; Technology, 2022, 56, 14080-14090.	4.6	13
747	Urea-Bond Scission Induced by Therapeutic Ultrasound for Biofunctional Molecule Release. Journal of the American Chemical Society, 2022, 144, 16799-16807.	6.6	20
748	Persistent organic pollutants in Chinese waterways: Occurrence, remediation, and epidemiological perspectives. Regional Studies in Marine Science, 2022, 56, 102688.	0.4	4
749	Photosynthesis of hydrogen peroxide in water: a promising on-site strategy for water remediation. Environmental Science: Water Research and Technology, 2022, 8, 2819-2842.	1.2	2
750	Stabilizing Ti ₃ C ₂ T _{<i>x</i>} in a Water Medium under Multiple Environmental Conditions by Scavenging Oxidative Free Radicals. Chemistry of Materials, 2022, 34, 9517-9526.	3.2	7
751	Wavelength-Dependent Photoreactivity of Root Exudates from Aquatic Plants under UV-LED Irradiation. ACS ES&T Water, 2022, 2, 2613-2622.	2.3	6
752	Real-Time Detection of Hydroxyl Radical Generated at Operating Electrodes via Redox-Active Adduct Formation Using Scanning Electrochemical Microscopy. Journal of the American Chemical Society, 2022, 144, 18896-18907.	6.6	28
753	The Effect of Human Occupancy on Indoor Air Quality through Real-Time Measurements of Key Pollutants. Environmental Science &	4.6	10
754	Multiple Effects of Humic Components on Microbially Mediated Iron Redox Processes and Production of Hydroxyl Radicals. Environmental Science & Environ	4.6	21

#	Article	IF	CITATIONS
755	A Review of High-Efficient Synthetic Methods for Zeolite Membranes and Challenges of Their Directional Growth Control. Comments on Inorganic Chemistry, 2023, 43, 305-356.	3.0	3
756	Simultaneous removal of organic micropollutants and inorganic heavy metals by nano-calcium peroxide induced Fenton-like treatment. Separation and Purification Technology, 2023, 305, 122474.	3.9	6
757	Novel activated system of ferrate oxidation on organic substances degradation: Fe(VI) regeneration or Fe(VI) reduction. Separation and Purification Technology, 2023, 304, 122322.	3.9	8
758	Issues and Emerging Trends. , 2022, , 699-718.		0
759	Supramolecular squares of Sn(<scp>iv</scp>)porphyrins with Re(<scp>i</scp>)-corners for the fabrication of self-assembled nanostructures performing photocatalytic degradation of Eriochrome Black T dye. Inorganic Chemistry Frontiers, 2022, 10, 174-183.	3.0	9
760	Removal of Pharmaceuticals and Personal Care Products (PPCPs) by Free Radicals in Advanced Oxidation Processes. Materials, 2022, 15, 8152.	1.3	11
761	Scaling-Up an Aqueous Self-Degassing Electrochemically Mediated ATRP in Dispersion for the Preparation of Cellulose–Polymer Composites and Films. Polymers, 2022, 14, 4981.	2.0	0
762	Structural Characterization of Polycrystalline Titania Nanoparticles on <i>C. striata</i> Biosilica for Photocatalytic POME Degradation. ACS Omega, 2022, 7, 44047-44056.	1.6	1
763	Carbonaceous materials applied for cathode electro-Fenton technology on the emerging contaminants degradation. Chemical Engineering Research and Design, 2023, 169, 186-198.	2.7	4
764	Broad spectrum antibacterial zinc oxide-reduced graphene oxide nanocomposite for water depollution. Materials Today Chemistry, 2023, 27, 101242.	1.7	9
765	Ultrasound-enhanced cascade chemodynamic tumor nanotherapy with lactic acid-enabled hydrogen peroxide self-production. Biomaterials Science, 2023, 11, 1486-1498.	2.6	2
766	Development of a quantitative structure–activity relationship model for predicting quantum yield of hydroxyl radical generation from organic compounds. Environmental Sciences: Processes and Impacts, 2023, 25, 66-74.	1.7	1
767	Integration of physical and advanced oxidation processes for treatment and reuse of textile dye-bath effluents with minimum area footprint. Journal of Cleaner Production, 2023, 383, 135366.	4.6	25
768	Intercommunication between metal ions and amyloidogenic peptides or proteins in protein misfolding disorders. Coordination Chemistry Reviews, 2023, 478, 214978.	9.5	7
769	Real-time measurements of product compounds formed through the reaction of ozone with breath exhaled VOCs. Environmental Sciences: Processes and Impacts, 2022, 24, 2237-2248.	1.7	1
770	Oxidative degradation of micropollutants by a pilot-scale UV/H ₂ 0 ₂ process: Translating experimental results into multiphysics simulations. Environmental Engineering Research, 2023, 28, 220658-0.	1.5	3
771	Mo-Based Heterogeneous Interface and Sulfur Vacancy Synergistic Effect Enhances the Fenton-like Catalytic Performance for Organic Pollutant Degradation. ACS Applied Materials & Interfaces, 2023, 15, 1326-1338.	4.0	11
772	One-Electron Oxidant-Induced Transformations of Aromatic Alcohol to Ketone Moieties in Dissolved Organic Matter Increase Trichloromethane Formation. Environmental Science & Emp; Technology, 2023, 57, 18597-18606.	4.6	1

#	ARTICLE	IF	CITATIONS
773	DFT study of oxidation mechanism of secnidazole as an emerging contaminant; Application as STIs control Journal of Physical Organic Chemistry, 0 , , .	0.9	0
774	High efficiency toluene electrooxidation at gas-solid interface on Nafion-modified SnO2-Sb/Ti anode. Applied Catalysis B: Environmental, 2023, 325, 122322.	10.8	6
775	Generation and delivery of free hydroxyl radicals using a remote plasma. Plasma Sources Science and Technology, 2023, 32, 015005.	1.3	2
776	Light-nutrition coupling effect of degradable fluorescent carbon dots on lettuce. Environmental Science: Nano, 2023, 10, 539-551.	2.2	2
777	Ultrafast Spectroscopies of Nitrophenols and Nitrophenolates in Solution: From Electronic Dynamics and Vibrational Structures to Photochemical and Environmental Implications. Molecules, 2023, 28, 601.	1.7	4
778	Hydroxyl radicals in natural waters: Light/dark mechanisms, changes and scavenging effects. Science of the Total Environment, 2023, 868, 161533.	3.9	7
779	A Forward Vision for Chemodynamic Therapy: Issues and Opportunities. Angewandte Chemie, 2023, 135, .	1.6	2
780	A Forward Vision for Chemodynamic Therapy: Issues and Opportunities. Angewandte Chemie - International Edition, 2023, 62, .	7.2	68
781	Antioxidant activity of environmental lactic acid bacteria strains isolated from organic raw fermented meat products. LWT - Food Science and Technology, 2023, 174, 114440.	2.5	14
782	Using the end-member mixing model to evaluate biogeochemical reactivities of dissolved organic matter (DOM): autochthonous versus allochthonous origins. Water Research, 2023, 232, 119644.	5.3	9
783	Architecture of Nanoantioxidant Based on Mesoporous Organosilica Trp-Met-PMO with Dipeptide Skeleton. Materials, 2023, 16, 638.	1.3	1
784	Ultraviolet Light-Driven gaining of hydroxyl and nitrogen oxide radicals in Plasma–Treated water. Chemical Engineering Journal, 2023, 458, 141425.	6.6	3
785	A novel lignocellulose pretreatment technology by combining KOH, urea peroxide and organosilane to improve glucose yield. Chemical Engineering Journal, 2023, 457, 141296.	6.6	4
786	Dark transformation from $17\hat{l}^2$ -estradiol to estrone initiated by hydroxyl radical in dissolved organic matter. Water Research, 2023, 230, 119570.	5.3	1
787	Photo-oxidation of nitrite anions in aqueous solution for the benchmarking of nano-TiO2 photocatalytic coatings. Progress in Organic Coatings, 2023, 175, 107380.	1.9	1
788	Experimental study on mechanisms of reactions of radicals with graphene oxide particles in wastewater. Journal of Molecular Liquids, 2023, 373, 121231.	2.3	2
789	Photogeneration of Hydroxyl Radicals Based on Aggregation-Induced Emission Luminogen-Assembled Copper Cysteamine Nanoparticles for Photodynamic Therapy. ACS Applied Nano Materials, 2023, 6, 533-543.	2.4	1
790	Fate, ecotoxicity, and remediation of phthalic acid ester in soils. Current Opinion in Environmental Science and Health, 2023, 32, 100440.	2.1	0

#	Article	IF	CITATIONS
791	Flexible polymeric films containing nanoparticles of visible-light absorbing TiO2 and their applications as photo-induced self-cleaning and antimicrobial surfaces., 2023,, 413-433.		0
792	Thermodynamic and Kinetic Investigation on Electrogeneration of Hydroxyl Radicals for Water Purification. ACS ES&T Engineering, 2023, 3, 2161-2170.	3.7	3
793	Kinetics of the nitrate-mediated photooxidation of monocarboxylic acids in the aqueous phase. Environmental Sciences: Processes and Impacts, 0 , , .	1.7	0
794	Reactive oxygen species-responsive polymer drug delivery systems. Frontiers in Bioengineering and Biotechnology, 0, 11 , .	2.0	10
795	Novel isoreticular UiO-66-NH2 frameworks by N-cycloalkyl functionalization of the 2-aminoterephtalate linker with enhanced solar photocatalytic degradation of acetaminophen. Chemical Engineering Journal, 2023, 461, 141889.	6.6	8
796	Assessing the photodegradation potential of compounds derived from the photoinduced weathering of polystyrene in water. Science of the Total Environment, 2023, 876, 162729.	3.9	2
797	Recent trends in non-thermal plasma and plasma activated water: Effect on quality attributes, mechanism of interaction and potential application in food & amp; agriculture., 2023, 2, 100249.		14
798	Xanthate degradation at neutral and basics pH by Cu-Fenton-like process. Journal of Photochemistry and Photobiology A: Chemistry, 2023, 441, 114678.	2.0	2
799	A convenient and environment-friendly method of photo-degradation of graphene oxide in water. Materials Today Communications, 2023, 35, 105951.	0.9	0
800	Flavins enhance the hydroxyl radical production from FeCO3 oxygenation for organic pollutant degradation. Chemical Geology, 2023, 626, 121443.	1.4	2
801	The mechanism of p-nitrophenol degradation by dissolved organic matter derived from biochar. Science of the Total Environment, 2023, 868, 161693.	3.9	2
802	Application of amino acids for gold leaching: Effective parameters and the role of amino acid structure. Journal of Cleaner Production, 2023, 391, 136123.	4.6	4
803	Transformation of dissolved organic matter during UV/peracetic acid treatment. Water Research, 2023, 232, 119676.	5. 3	12
804	Photolysis of 3-Nitro-1,2,4-triazol-5-one: Mechanisms and Products. ACS ES&T Water, 2023, 3, 783-792.	2.3	3
805	Blocking Spatiotemporal Crosstalk between Subcellular Organelles for Enhancing Anticancer Therapy with Nanointercepters. Advanced Materials, 2023, 35, .	11.1	6
806	Delineating the Effects of Molecular and Colloidal Interactions of Dissolved Organic Matter on Titania Photocatalysis. Langmuir, 2023, 39, 3752-3761.	1.6	3
807	Decomposition mechanisms of nuclear-grade cationic exchange resin by advanced oxidation processes: Statistical molecular fragmentation model and DFT calculations. Journal of Environmental Sciences, 2024, 135, 433-448.	3.2	3
808	The progress of research on the application of redox nanomaterials in disease therapy. Frontiers in Chemistry, 0, 11 , .	1.8	6

#	Article	IF	CITATIONS
809	Interfacial geochemistry of iron applied to atmospheric and oceanic environments. Applied Geochemistry, 2023, 150, 105595.	1.4	3
810	3D Characterization of the Molecular Neighborhood of •OH Radical in High Temperature Water by MD Simulation and Voronoi Polyhedra. International Journal of Molecular Sciences, 2023, 24, 3294.	1.8	0
811	Theoretical Study of the Hydroxylâ€Radicalâ€Initiated Degradation Mechanism, Kinetics, and Subsequent Evolution of Methyl and Ethyl lodides in the Atmosphere. ChemPhysChem, 0, , .	1.0	0
812	A Mechanistic Study of Goethite-Based Fenton-Like Reactions for Imidacloprid Degradation. Bulletin of Environmental Contamination and Toxicology, 2023, 110, .	1.3	0
813	Piezotronic and piezoâ€phototronic effects on sonodynamic disease therapy. , 2023, 1, .		38
814	Theoretical study on the gas phase hydroxyl radical reaction with tetrahydrothiophene, tetrahydrofuran, thiophene and furan. Chemical Physics Letters, 2023, 816, 140385.	1.2	1
815	CuS nanoenzyme against bacterial infection by in situ hydroxyl radical generation on bacteria surface. Rare Metals, 2023, 42, 1899-1911.	3.6	7
816	Semiclassical Dynamics on Machine-Learned Coupled Multireference Potential Energy Surfaces: Application to the Photodissociation of the Simplest Criegee Intermediate. Journal of Physical Chemistry A, 2023, 127, 2376-2387.	1.1	2
817	Removal of pesticides from wastewater by Fenton systems: Enhanced degradation by chelating agents and solar irradiation. , 2023, , 459-486.		0
818	Enhanced photocatalytic performance of mesoporous TiO2 by incorporating Ag3VO4 nanoparticles for degradation of tetracycline under visible light. Journal of Materials Science: Materials in Electronics, 2023, 34, .	1.1	2
819	Mechanism of Fenton Oxidation of Levoglucosan in Water. Journal of Physical Chemistry A, 2023, 127, 2975-2985.	1.1	1
820	Fate of Naturally Dissolved Organic Matter and Synthetic Organic Compounds Subjected to Drinking Water Treatment Using Membrane, Activated Carbon, and UV/H ₂ O ₂ Technologies. Environmental Science & Env	4.6	2
821	Decoupling Optical Response and Photochemical Formation of Singlet Oxygen in Size Isolated Fractions of Ozonated Dissolved Organic Matter. Environmental Science & Environment	4.6	3
822	Aerobic epoxidation of \hat{l}^2 -ionone in water under mild conditions using aldehydes as catalyst precursors. Reaction Chemistry and Engineering, 0, , .	1.9	0
823	Nanoparticles Containing Biocompatible Radicals Based on 1,2,4-Benzotriazinyl for Reactive Oxygen Species Scavenging in Living Cells. ACS Applied Nano Materials, 2023, 6, 5781-5788.	2.4	2
824	Synergistic effect of hydrogen bonds and Ï∈Ï∈ interactions of B(C6F5)3·H2O/amides complex: Application in photoredox catalysis. IScience, 2023, 26, 106528.	1.9	2
825	From Fenton and ORR 2eâ^'-Type Catalysts to Bifunctional Electrodes for Environmental Remediation Using the Electro-Fenton Process. Catalysts, 2023, 13, 674.	1.6	4
826	Spontaneous dark formation of OH radicals at the interface of aqueous atmospheric droplets. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	18

#	Article	IF	CITATIONS
827	Multifunctional nanomedicines-enabled chemodynamic-synergized multimodal tumor therapy via Fenton and Fenton-like reactions. Theranostics, 2023, 13, 1974-2014.	4.6	16
828	Kinetic and mechanistic study of the atmospheric degradation of C3F7OCHFCF2SCH2CH2OH with OH radical. Chemical Physics Letters, 2023, , 140516.	1.2	O
829	Peracetic acid-based UVA photo-Fenton reaction: Dominant role of high-valent iron species toward efficient selective degradation of emerging micropollutants. Journal of Hazardous Materials, 2023, 454, 131448.	6.5	8
830	Bidimensional SnSe2—Mesoporous Ordered Titania Heterostructures for Photocatalytically Activated Anti-Fingerprint Optically Transparent Layers. Nanomaterials, 2023, 13, 1406.	1.9	3
831	2D Cobalt Oxyhydroxide Nanozymes Inhibit Inflammation by Targeting the NLRP3 Inflammasome. Advanced Functional Materials, 2023, 33, .	7.8	8
832	Selective aerobic photocatalytic glycerol oxidation on Au/TiO2 with borate additives. Applied Catalysis A: General, 2023, 660, 119216.	2.2	2
833	Tellurium-containing polymers: Recent developments and trends. Progress in Polymer Science, 2023, 141, 101678.	11.8	5
834	ROS production upon groundwater oxygenation: Implications of oxidative capacity during groundwater abstraction and discharging. Journal of Hydrology, 2023, 620, 129551.	2.3	3
847	Advanced oxidation processes for wastewater treatment. , 2023, , 341-357.		0
873	Advanced redox processes for sustainable water treatment. , 2023, 1, 666-681.		13
895	Reactive oxygen nanobiocatalysts: activity-mechanism disclosures, catalytic center evolutions, and changing states. Chemical Society Reviews, 2023, 52, 6838-6881.	18.7	3
903	Life Cycle Considerations forÂPer- And Polyfluoroalkyl Substances (PFASs) andÂtheÂEvolution ofÂSociety's Perspective onÂTheir Usage. Challenges and Advances in Computational Chemistry and Physics, 2024, , 285-319.	0.6	0
911	Strategies to engineer various nanocarrier-based hybrid catalysts for enhanced chemodynamic cancer therapy. Chemical Society Reviews, 2023, 52, 7707-7736.	18.7	2
980	A survey of the iron ligand-to-metal charge transfer chemistry in water. Green Chemistry, 2024, 26, 3058-3071.	4.6	O