Matters of Size: Genetic Bottlenecks in Virus Infection a Evolution

Annual Review of Virology

2, 161-179

DOI: 10.1146/annurev-virology-100114-055135

Citation Report

#	Article	IF	CITATIONS
1	The Strange Lifestyle of Multipartite Viruses. PLoS Pathogens, 2016, 12, e1005819.	2.1	85
2	Pathogen population bottlenecks and adaptive landscapes: overcoming the barriers to disease emergence. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20160727.	1.2	46
3	Genetic variation in fitness within a clonal population of a plant RNA virus. Virus Evolution, 2016, 2, vew006.	2.2	10
4	Collective Infectious Units in Viruses. Trends in Microbiology, 2017, 25, 402-412.	3.5	101
5	Time-Sampled Population Sequencing Reveals the Interplay of Selection and Genetic Drift in Experimental Evolution of <i>Potato Virus Y</i> . Journal of Virology, 2017, 91, .	1.5	24
7	Molecular variation of tomato yellow leaf curl virus in the insect vector Bemisia tabaci. Scientific Reports, 2017, 7, 16427.	1.6	11
8	Evolution of drift robustness in small populations. Nature Communications, 2017, 8, 1012.	5.8	33
9	Predicting virus emergence amid evolutionary noise. Open Biology, 2017, 7, 170189.	1.5	149
10	Diminishing returns of inoculum size on the rate of a plant RNA virus evolution. Europhysics Letters, 2017, 120, 38001.	0.7	2
11	The Operophtera brumata Nucleopolyhedrovirus (OpbuNPV) Represents an Early, Divergent Lineage within Genus Alphabaculovirus. Viruses, 2017, 9, 307.	1.5	20
12	Some properties of the conditioned reconstructed process with Bernoulli sampling. Theoretical Population Biology, 2018, 122, 36-45.	0.5	4
13	Emergency Services of Viral RNAs: Repair and Remodeling. Microbiology and Molecular Biology Reviews, 2018, 82, .	2.9	26
14	Genetic bottlenecks in intraspecies virus transmission. Current Opinion in Virology, 2018, 28, 20-25.	2.6	118
15	A novel framework for inferring parameters of transmission from viral sequence data. PLoS Genetics, 2018, 14, e1007718.	1.5	17
16	Beneficial coinfection can promote within-host viral diversity. Virus Evolution, 2018, 4, vey028.	2.2	29
17	Population bottlenecks in multicomponent viruses: first forays into the uncharted territory of genome-formula drift. Current Opinion in Virology, 2018, 33, 184-190.	2.6	18
18	Influenza Virus—Host Co-evolution. A Predator-Prey Relationship?. Frontiers in Immunology, 2018, 9, 2017.	2.2	18
19	Attenuation of replication by a 29 nucleotide deletion in SARS-coronavirus acquired during the early stages of human-to-human transmission. Scientific Reports, 2018, 8, 15177.	1.6	181

CITATION REPORT

#	Article	IF	CITATIONS
20	Vector-transmission of plant viruses and constraints imposed by virus–vector interactions. Current Opinion in Virology, 2018, 33, 144-150.	2.6	36
21	Small Bottleneck Size in a Highly Multipartite Virus during a Complete Infection Cycle. Journal of Virology, 2018, 92, .	1.5	26
22	A speed–fidelity trade-off determines the mutation rate and virulence of an RNA virus. PLoS Biology, 2018, 16, e2006459.	2.6	88
23	Impact of genetic drift, selection and accumulation level on virus adaptation to its host plants. Molecular Plant Pathology, 2018, 19, 2575-2589.	2.0	11
24	Stochastic processes constrain the within and between host evolution of influenza virus. ELife, 2018, 7, .	2.8	179
25	Collective properties of viral infectivity. Current Opinion in Virology, 2018, 33, 1-6.	2.6	44
26	Quantitative analysis of the dose–response of white spot syndrome virus in shrimp. Journal of Fish Diseases, 2018, 41, 1733-1744.	0.9	3
27	Discovery of Culex pipiens associated tunisia virus: a new ssRNA(+) virus representing a new insect associated virus family. Virus Evolution, 2018, 4, vex040.	2.2	17
28	Genetic Variation and Biological Activity of Two Closely Related Alphabaculoviruses during Serial Passage in Permissive and Semi-Permissive Heterologous Hosts. Viruses, 2019, 11, 660.	1.5	6
29	Membrane-Associated Enteroviruses Undergo Intercellular Transmission as Pools of Sibling Viral Genomes. Cell Reports, 2019, 29, 714-723.e4.	2.9	28
30	Mutational load causes stochastic evolutionary outcomes in acute RNA viral infection. Virus Evolution, 2019, 5, vez008.	2.2	14
31	Characterization of Mutational Tolerance of a Viral RNA–Protein Interaction. Viruses, 2019, 11, 479.	1.5	1
32	The effect of genetic complementation on the fitness and diversity of viruses spreading as collective infectious units. Virus Research, 2019, 267, 41-48.	1.1	15
33	Virus epidemics, plant-controlled population bottlenecks and the durability of plant resistance. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180263.	1.8	16
34	Social evolution of innate immunity evasion in a virus. Nature Microbiology, 2019, 4, 1006-1013.	5.9	52
35	Detection of Multiple Variants of Grapevine Fanleaf Virus in Single Xiphinema index Nematodes. Viruses, 2019, 11, 1139.	1.5	12
36	On the stability of sequences inserted into viral genomes. Virus Evolution, 2019, 5, vez045.	2.2	41
37	Virus–Host Coevolution with a Focus on Animal and Human DNA Viruses. Journal of Molecular Evolution, 2020, 88, 41-56.	0.8	77

CITATION REPORT

#	Article	IF	CITATIONS
38	Influenza B Viruses Exhibit Lower Within-Host Diversity than Influenza A Viruses in Human Hosts. Journal of Virology, 2020, 94, .	1.5	46
39	Rapid Dissemination and Monopolization of Viral Populations in Mice Revealed Using a Panel of Barcoded Viruses. Journal of Virology, 2020, 94, .	1.5	14
40	Estimating viral bottleneck sizes for FMDV transmission within and between hosts and implications for the rate of viral evolution. Interface Focus, 2020, 10, 20190066.	1.5	16
41	The Curious Strategy of Multipartite Viruses. Annual Review of Virology, 2020, 7, 203-218.	3.0	34
42	Virions and respiratory droplets in air: Diffusion, drift, and contact with the epithelium. BioSystems, 2020, 198, 104241.	0.9	7
43	Genomic epidemiology of superspreading events in Austria reveals mutational dynamics and transmission properties of SARS-CoV-2. Science Translational Medicine, 2020, 12, .	5.8	203
44	Cooperative nature of viral replication. Science Advances, 2020, 6, .	4.7	19
45	Contribution of Viral Genomic Diversity to Oyster Susceptibility in the Pacific Oyster Mortality Syndrome. Frontiers in Microbiology, 2020, 11, 1579.	1.5	14
46	A new cypovirus from the Japanese peppered moth, Biston robustus. Journal of Invertebrate Pathology, 2020, 174, 107417.	1.5	5
47	SARS-CoV-2 ORF8 and SARS-CoV ORF8ab: Genomic Divergence and Functional Convergence. Pathogens, 2020, 9, 677.	1.2	44
48	Modeling multipartite virus evolution: the genome formula facilitates rapid adaptation to heterogeneous environmentsâ€. Virus Evolution, 2020, 6, veaa022.	2.2	22
49	Transmission modes affect the population structure of potato virus Y in potato. PLoS Pathogens, 2020, 16, e1008608.	2.1	31
53	Population Bottlenecks and Intra-host Evolution During Human-to-Human Transmission of SARS-CoV-2. Frontiers in Medicine, 2021, 8, 585358.	1.2	28
54	SARS-CoV-2 genomic diversity and the implications for qRT-PCR diagnostics and transmission. Genome Research, 2021, 31, 635-644.	2.4	39
55	Transmission of SARS-CoV-2 in domestic cats imposes a narrow bottleneck. PLoS Pathogens, 2021, 17, e1009373.	2.1	84
56	Quantification of <i>Brucella abortus</i> population structure in a natural host. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	10
58	SARS-CoV-2 within-host diversity and transmission. Science, 2021, 372, .	6.0	278
59	Temporal dynamics of SARS-CoV-2 mutation accumulation within and across infected hosts. PLoS Pathogens, 2021, 17, e1009499.	2.1	86

#	Article	IF	CITATIONS
60	Virus Prevalence and Genetic Diversity Across a Wild Bumblebee Community. Frontiers in Microbiology, 2021, 12, 650747.	1.5	10
62	Retrospective Characterization of the 2006–2007 Swine Vesicular Disease Epidemic in Northern Italy by Whole Genome Sequence Analysis. Viruses, 2021, 13, 1186.	1.5	0
64	Why are viral genomes so fragile? The bottleneck hypothesis. PLoS Computational Biology, 2021, 17, e1009128.	1.5	8
65	SARS-CoV-2: Cross-scale Insights from Ecology and Evolution. Trends in Microbiology, 2021, 29, 593-605.	3.5	12
66	The Social Life of Viruses. Annual Review of Virology, 2021, 8, 183-199.	3.0	25
67	Coalescent models derived from birth–death processes. Theoretical Population Biology, 2021, 142, 1-11.	0.5	3
68	From one to many: The within-host rise of viral variants. PLoS Pathogens, 2021, 17, e1009811.	2.1	9
69	Cross-scale dynamics and the evolutionary emergence of infectious diseases. Virus Evolution, 2021, 7, .	2.2	13
70	Bottleneck, Isolate, Amplify, Select (BIAS) as a mechanistic framework for intracellular population dynamics of positive-sense RNA viruses. Virus Evolution, 2020, 6, veaa086.	2.2	7
71	Quantitative trait loci in pepper control the effective population size of two RNA viruses at inoculation. Journal of General Virology, 2017, 98, 1923-1931.	1.3	10
81	Inferring Transmission Bottleneck Size from Viral Sequence Data Using a Novel Haplotype Reconstruction Method. Journal of Virology, 2020, 94, .	1.5	18
82	The role of spatial structure in the evolution of viral innate immunity evasion: AÂdiffusion-reaction cellular automaton model. PLoS Computational Biology, 2020, 16, e1007656.	1.5	8
83	Opposite Outcomes of the Within-Host Competition between High- and Low-Pathogenic H5N8 Avian Influenza Viruses in Chickens Compared to Ducks. Journal of Virology, 2022, 96, JVI0136621.	1.5	6
90	The evolution of cheating in viruses. Nature Communications, 2021, 12, 6928.	5.8	14
91	Nucleopolyhedrovirus Coocclusion Technology: A New Concept in the Development of Biological Insecticides. Frontiers in Microbiology, 2021, 12, 810026.	1.5	15
93	Limited genomic reconstruction of SARS-CoV-2 transmission history within local epidemiological clusters. Virus Evolution, 2022, 8, veac008.	2.2	10
95	Coocclusion of Helicoverpa armigera Single Nucleopolyhedrovirus (HearSNPV) and Helicoverpa armigera Multiple Nucleopolyhedrovirus (HearMNPV): Pathogenicity and Stability in Homologous and Heterologous Hosts. Viruses, 2022, 14, 687.	1.5	2
96	Natural rodent model of viral transmission reveals biological features of virus population dynamics. Journal of Experimental Medicine, 2022, 219, .	4.2	18

CITATION REPORT

#	Article	IF	CITATIONS
109	Narrow transmission bottlenecks and limited within-host viral diversity during a SARS-CoV-2 outbreak on a fishing boat. Virus Evolution, 2022, 8, .	2.2	7
110	Empirical estimates of the mutation rate for an alphabaculovirus. PLoS Genetics, 2022, 18, e1009806.	1.5	2
111	Multiple Levels of Triggered Factors and the Obligated Requirement of Cell-to-Cell Movement in the Mutation Repair of Cucumber Mosaic Virus with Defects in the tRNA-like Structure. Biology, 2022, 11, 1051.	1.3	1
112	Deciphering the Tissue Tropism of the RNA Viromes Harbored by Field-Collected Anopheles sinensis and Culex quinquefasciatus. Microbiology Spectrum, 2022, 10, .	1.2	1
113	Challenges and opportunities for plant viruses under a climate change scenario. Advances in Virus Research, 2022, , .	0.9	4
114	Is the Increased Transmissibility of SARS-CoV-2 Variants Driven by within or Outside-Host Processes?. Mathematics, 2022, 10, 3422.	1.1	2
115	A brief view of factors that affect plant virus evolution. Frontiers in Virology, 0, 2, .	0.7	7
116	PrĂĦistorische Reflexion 1: Höhlenzeit. , 2022, , 175-216.		0
118	Influenza A virus reassortment in mammals gives rise to genetically distinct within-host subpopulations. Nature Communications, 2022, 13, .	5.8	18
119	Evaluating the potential of whole-genome sequencing for tracing transmission routes in experimental infections and natural outbreaks of bovine respiratory syncytial virus. Veterinary Research, 2022, 53, .	1.1	2
120	Rapid transmission and tight bottlenecks constrain the evolution of highly transmissible SARS-CoV-2 variants. Nature Communications, 2023, 14, .	5.8	17
121	Plant Virus Adaptation to New Hosts: A Multi-scale Approach. Current Topics in Microbiology and Immunology, 2023, , 167-196.	0.7	1
122	A Screening for Virus Infections among Wild Eurasian Tundra Reindeer (Rangifer tarandus tarandus) in Iceland, 2017–2019. Viruses, 2023, 15, 317.	1.5	0
123	Detecting punctuated evolution in SARS-CoV-2 over the first year of the pandemic. Frontiers in Virology, 0, 3, .	0.7	0
124	Developing an appropriate evolutionary baseline model for the study of SARS-CoV-2 patient samples. PLoS Pathogens, 2023, 19, e1011265.	2.1	8
125	The evolution of SARS-CoV-2. Nature Reviews Microbiology, 2023, 21, 361-379.	13.6	239
126	Developing an Appropriate Evolutionary Baseline Model for the Study of Human Cytomegalovirus. Genome Biology and Evolution, 2023, 15, .	1.1	4