Metal–Sulfur Battery Cathodes Based on PAN–Sulf

Journal of the American Chemical Society 137, 12143-12152 DOI: 10.1021/jacs.5b08113

Citation Report

#	ARTICLE	IF	CITATIONS
6	Interconnected core–shell pyrolyzed polyacrylonitrile@sulfur/carbon nanocomposites for rechargeable lithium–sulfur batteries. New Journal of Chemistry, 2016, 40, 7680-7686.	1.4	17
7	Elementalâ€Sulfurâ€Mediated Facile Synthesis of a Covalent Triazine Framework for Highâ€Performance Lithium–Sulfur Batteries. Angewandte Chemie, 2016, 128, 3158-3163.	1.6	96
8	Elementalâ€Sulfurâ€Mediated Facile Synthesis of a Covalent Triazine Framework for Highâ€Performance Lithium–Sulfur Batteries. Angewandte Chemie - International Edition, 2016, 55, 3106-3111.	7.2	308
9	Enhancing the safety and electrochemical performance of ether based lithium sulfur batteries by introducing an efficient flame retarding additive. RSC Advances, 2016, 6, 53560-53565.	1.7	19
10	Nano-hydroxyapatite as an Efficient Polysulfide Absorbent for High-performance Li-S Batteries. Electrochimica Acta, 2016, 215, 162-170.	2.6	12
11	A review of recent developments in rechargeable lithium–sulfur batteries. Nanoscale, 2016, 8, 16541-16588.	2.8	326
12	A Flexible Nanostructured Paper of a Reduced Graphene Oxide–Sulfur Composite for Highâ€Performance Lithium–Sulfur Batteries with Unconventional Configurations. Advanced Materials, 2016, 28, 9629-9636.	11.1	308
13	Chlorideâ€Reinforced Carbon Nanofiber Host as Effective Polysulfide Traps in Lithium–Sulfur Batteries. Advanced Science, 2016, 3, 1600175.	5.6	68
14	High Sulfur Loading in Hierarchical Porous Carbon Rods Constructed by Vertically Oriented Porous Graphene‣ike Nanosheets for Liâ€& Batteries. Advanced Functional Materials, 2016, 26, 8952-8959.	7.8	159
15	Mitigating Voltage Decay of Li-Rich Cathode Material via Increasing Ni Content for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 20138-20146.	4.0	197
16	Cyclized-polyacrylonitrile modified carbon nanofiber interlayers enabling strong trapping of polysulfides in lithium–sulfur batteries. Journal of Materials Chemistry A, 2016, 4, 12973-12980.	5.2	64
17	Electrospun Nitrogenâ€Doped Carbon Nanofibers Encapsulating Cobalt Nanoparticles as Efficient Oxygen Reduction Reaction Catalysts. ChemElectroChem, 2016, 3, 1437-1445.	1.7	35
18	A stable room-temperature sodium–sulfur battery. Nature Communications, 2016, 7, 11722.	5.8	459
19	Molybdenum Polysulfide Chalcogels as High-Capacity, Anion-Redox-Driven Electrode Materials for Li-Ion Batteries. Chemistry of Materials, 2016, 28, 8357-8365.	3.2	69
20	Adsorption and diffusion of Li with S on pristine and defected graphene. Physical Chemistry Chemical Physics, 2016, 18, 31268-31276.	1.3	9
21	Effect of vapor pressure on performance of sulfurized polyacrylonitrile cathodes for Li/S batteries. RSC Advances, 2016, 6, 106625-106630.	1.7	29
22	A sulfur host based on titanium monoxide@carbon hollow spheres for advanced lithium–sulfur batteries. Nature Communications, 2016, 7, 13065.	5.8	590
23	Electrochemical Lithiation of Covalently Bonded Sulfur in Vulcanized Polyisoprene. ACS Energy Letters, 2016, 1, 115-120.	8.8	46

#	Article	IF	Citations
24	Enhanced Li–S Batteries Using Amine-Functionalized Carbon Nanotubes in the Cathode. ACS Nano, 2016, 10, 1050-1059.	7.3	289
25	Novel 3-D network SeS /NCPAN composites prepared by one-pot in-situ solid-state method and its electrochemical performance as cathode material for lithium-ion battery. Journal of Alloys and Compounds, 2016, 664, 92-98.	2.8	28
26	Highly Stable Sodium Batteries Enabled by Functional Ionic Polymer Membranes. Advanced Materials, 2017, 29, 1605512.	11.1	214
27	Inkjetâ€Printed Lithium–Sulfur Microcathodes for Allâ€Printed, Integrated Nanomanufacturing. Small, 2017, 13, 1603786.	5.2	62
28	Persulfurated Coronene: A New Generation of "Sulflower― Journal of the American Chemical Society, 2017, 139, 2168-2171.	6.6	89
29	Carbon nano-composites for lithium–sulfur batteries. Current Opinion in Green and Sustainable Chemistry, 2017, 4, 64-71.	3.2	22
30	Improving the capacity of lithium–sulfur batteries by tailoring the polysulfide adsorption efficiency of hierarchical oxygen/nitrogen-functionalized carbon host materials. Physical Chemistry Chemical Physics, 2017, 19, 8349-8355.	1.3	24
31	Freestanding reduced graphene oxide–sulfur composite films for highly stable lithium–sulfur batteries. Nanoscale, 2017, 9, 4646-4651.	2.8	53
32	Explore the influence of coverage percentage of sulfur electrode on the cycle performance of lithium-sulfur batteries. Journal of Power Sources, 2017, 347, 238-246.	4.0	17
33	Easily Accessible, Textile Fiber-Based Sulfurized Poly(acrylonitrile) as Li/S Cathode Material: Correlating Electrochemical Performance with Morphology and Structure. ACS Energy Letters, 2017, 2, 595-604.	8.8	116
34	Sulfurâ€Rich Phosphorus Sulfide Molecules for Use in Rechargeable Lithium Batteries. Angewandte Chemie - International Edition, 2017, 56, 2937-2941.	7.2	50
35	Sulfurâ€Rich Phosphorus Sulfide Molecules for Use in Rechargeable Lithium Batteries. Angewandte Chemie, 2017, 129, 2983-2987.	1.6	6
36	Decoration of Silica Nanoparticles on Polypropylene Separator for Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2017, 9, 7499-7504.	4.0	129
37	Carboxymethyl cellulose binders enable high-rate capability of sulfurized polyacrylonitrile cathodes for Li–S batteries. Journal of Materials Chemistry A, 2017, 5, 5460-5465.	5.2	62
38	A novel strategy for high-stability lithium sulfur batteries by in situ formation of polysulfide adsorptive-blocking layer. Journal of Power Sources, 2017, 355, 147-153.	4.0	30
39	Effect of carbon-sulphur bond in a sulphur/dehydrogenated polyacrylonitrile/reduced graphene oxide composite cathode for lithium-sulphur batteries. Journal of Power Sources, 2017, 355, 140-146.	4.0	29
40	Oxygenâ€Deficient Titanium Dioxide Nanosheets as More Effective Polysulfide Reservoirs for Lithium‣ulfur Batteries. Chemistry - A European Journal, 2017, 23, 9666-9673.	1.7	60
41	Facile Assembly of 3D Porous Reduced Graphene Oxide/Ultrathin MnO ₂ Nanosheets Aerogels as Efficient Polysulfide Adsorption Sites for Highâ€Performance Lithium–Sulfur Batteries. Chemistry - A European Journal, 2017, 23, 7037-7045.	1.7	47

#	Article	IF	CITATIONS
42	An Improved Li–SeS ₂ Battery with High Energy Density and Long Cycle Life. Advanced Energy Materials, 2017, 7, 1700281.	10.2	111
43	Advances and challenges of nanostructured electrodes for Li–Se batteries. Journal of Materials Chemistry A, 2017, 5, 10110-10126.	5.2	96
44	Lithium Batteries with Nearly Maximum Metal Storage. ACS Nano, 2017, 11, 6362-6369.	7.3	180
45	Roomâ€Temperature Sodiumâ€Sulfur Batteries: A Comprehensive Review on Research Progress and Cell Chemistry. Advanced Energy Materials, 2017, 7, 1602829.	10.2	270
46	Nanosized Li2S-based cathodes derived from MoS2 for high-energy density Li–S cells and Si–Li2S full cells in carbonate-based electrolyte. Energy Storage Materials, 2017, 8, 209-216.	9.5	47
47	More Reliable Lithiumâ€Sulfur Batteries: Status, Solutions and Prospects. Advanced Materials, 2017, 29, 1606823.	11.1	1,414
48	Influence of cations in lithium and magnesium polysulphide solutions: dependence of the solvent chemistry. Physical Chemistry Chemical Physics, 2017, 19, 11152-11162.	1.3	85
49	Integrated Design of MnO ₂ @Carbon Hollow Nanoboxes to Synergistically Encapsulate Polysulfides for Empowering Lithium Sulfur Batteries. Small, 2017, 13, 1700087.	5.2	178
50	Microporous Carbon Polyhedrons Encapsulated Polyacrylonitrile Nanofibers as Sulfur Immobilizer for Lithium–Sulfur Battery. ACS Applied Materials & Interfaces, 2017, 9, 12436-12444.	4.0	57
51	Ultra-long cycle life, low-cost room temperature sodium-sulfur batteries enabled by highly doped (N,S) nanoporous carbons. Nano Energy, 2017, 32, 59-66.	8.2	178
52	Dual onfined Sulfur in Hybrid Nanostructured Materials for Enhancement of Lithium‧ulfur Battery Cathode Capacity Retention. ChemElectroChem, 2017, 4, 636-647.	1.7	31
53	Nanostructured cathode materials for lithium–sulfur batteries: progress, challenges and perspectives. Journal of Materials Chemistry A, 2017, 5, 3014-3038.	5.2	165
54	Greatly Suppressed Shuttle Effect for Improved Lithium Sulfur Battery Performance through Short Chain Intermediates. Nano Letters, 2017, 17, 538-543.	4.5	271
55	Harvesting polysulfides by sealing the sulfur electrode in a composite ion-selective net. Journal of Power Sources, 2017, 368, 38-45.	4.0	5
56	Corallineâ€Like Nâ€Đoped Hierarchically Porous Carbon Derived from Enteromorpha as a Host Matrix for Lithiumâ€Sulfur Battery. Chemistry - A European Journal, 2017, 23, 18208-18215.	1.7	35
57	Stabilized Lithium–Sulfur Batteries by Covalently Binding Sulfur onto the Thiolâ€Terminated Polymeric Matrices. Small, 2017, 13, 1702104.	5.2	34
58	Designing solid-liquid interphases for sodium batteries. Nature Communications, 2017, 8, 898.	5.8	303
59	Electrochemical Properties of Sulfurized-Polyacrylonitrile Cathode for Lithium–Sulfur Batteries: Effect of Polyacrylic Acid Binder and Fluoroethylene Carbonate Additive. Journal of Physical Chemistry Latters, 2017, 8, 5331-5337	2.1	101

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
60	A Freestanding Selenium Disulfide Cathode Based on Cobalt Disulfideâ€Decorated Multichannel Carbon Fibers with Enhanced Lithium Storage Performance. Angewandte Chemie, 2017, 129, 14295-14300.	1.6	21
61	A Freestanding Selenium Disulfide Cathode Based on Cobalt Disulfideâ€Decorated Multichannel Carbon Fibers with Enhanced Lithium Storage Performance. Angewandte Chemie - International Edition, 2017, 56, 14107-14112.	7.2	113
62	Sulfur Cathode. , 2017, , 31-103.		0
63	Constructing hierarchical sulfur-doped nitrogenous carbon nanosheets for sodium-ion storage. Nanotechnology, 2017, 28, 445604.	1.3	13
64	Electrostatic Polysulfides Confinement to Inhibit Redox Shuttle Process in the Lithium Sulfur Batteries. ACS Applied Materials & Interfaces, 2017, 9, 31741-31745.	4.0	45
65	Atomic Sulfur Anchored on Silicene, Phosphorene, and Borophene for Excellent Cycle Performance of Li–S Batteries. ACS Applied Materials & Interfaces, 2017, 9, 42836-42844.	4.0	53
66	Highly Ordered Mesoporous Sulfurized Polyacrylonitrile Cathode Material for High-Rate Lithium Sulfur Batteries. Journal of Physical Chemistry C, 2017, 121, 26172-26179.	1.5	52
67	Molecularly Imprinted Polymer Enables High-Efficiency Recognition and Trapping Lithium Polysulfides for Stable Lithium Sulfur Battery. Nano Letters, 2017, 17, 5064-5070.	4.5	112
68	<i>In Situ</i> Observation and Electrochemical Study of Encapsulated Sulfur Nanoparticles by MoS ₂ Flakes. Journal of the American Chemical Society, 2017, 139, 10133-10141.	6.6	126
69	High-safety lithium-ion sulfur battery with sulfurized polyacrylonitrile cathode, prelithiated SiOx/C anode and carbonate-based electrolyte. Journal of Alloys and Compounds, 2017, 723, 974-982.	2.8	26
70	A new approach for recycling waste rubber products in Li–S batteries. Energy and Environmental Science, 2017, 10, 86-90.	15.6	85
71	A Comprehensive Approach toward Stable Lithium–Sulfur Batteries with High Volumetric Energy Density. Advanced Energy Materials, 2017, 7, 1601630.	10.2	277
72	Conversion cathodes for rechargeable lithium and lithium-ion batteries. Energy and Environmental Science, 2017, 10, 435-459.	15.6	545
73	Synergistic Effect between Poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonate) Coated Sulfur Nano-Composites and Poly(vinylidene difluoride) on Lithium-Sulfur Battery. Journal of the Electrochemical Society, 2018, 165, A557-A564.	1.3	7
74	Nano-SiO ₂ -embedded poly(propylene carbonate)-based composite gel polymer electrolyte for lithium–sulfur batteries. Journal of Materials Chemistry A, 2018, 6, 9539-9549.	5.2	66
75	A new insight into the lithium storage mechanism of sulfurized polyacrylonitrile with no soluble intermediates. Energy Storage Materials, 2018, 14, 272-278.	9.5	140
76	Lithium–Sulfur Batteries: State of the Art and Future Directions. ACS Applied Energy Materials, 2018, 1, 1783-1814.	2.5	108
77	A Li-ion sulfur full cell with ambient resistant Al-Li alloy anode. Energy Storage Materials, 2018, 15, 209-217.	9.5	44

#	Article	IF	CITATIONS
78	A facile Schiff base chemical approach: towards molecular-scale engineering of N-C interface for high performance lithium-sulfur batteries. Nano Energy, 2018, 46, 365-371.	8.2	32
79	Recent Progress of the Solidâ€State Electrolytes for Highâ€Energy Metalâ€Based Batteries. Advanced Energy Materials, 2018, 8, 1702657.	10.2	851
80	Sulfur nanocomposite as a positive electrode material for rechargeable potassium–sulfur batteries. Chemical Communications, 2018, 54, 2288-2291.	2.2	86
81	Differences in Electrochemistry between Fibrous SPAN and Fibrous S/C Cathodes Relevant to Cycle Stability and Capacity. Journal of the Electrochemical Society, 2018, 165, A6017-A6020.	1.3	32
82	Designing Safe Electrolyte Systems for a High‣tability Lithium–Sulfur Battery. Advanced Energy Materials, 2018, 8, 1702348.	10.2	266
83	Biomimetic Bipolar Microcapsules Derived from <i>Staphylococcus aureus</i> for Enhanced Properties of Lithium–Sulfur Battery Cathodes. Advanced Energy Materials, 2018, 8, 1702373.	10.2	106
84	Sulfur Immobilization by "Chemical Anchor―to Suppress the Diffusion of Polysulfides in Lithium–Sulfur Batteries. Advanced Materials Interfaces, 2018, 5, 1701274.	1.9	87
85	Sulfurâ€Containing Molecules Grafted on Carbon Nanotubes as Highly Cyclable Cathodes for Lithium/Organic Batteries. ChemElectroChem, 2018, 5, 1732-1737.	1.7	5
86	A new ether-based electrolyte for lithium sulfur batteries using a S@pPAN cathode. Chemical Communications, 2018, 54, 5478-5481.	2.2	44
87	Progress and perspective of organosulfur polymers as cathode materials for advanced lithium-sulfur batteries. Energy Storage Materials, 2018, 15, 53-64.	9.5	131
88	Cationic polymer binder inhibit shuttle effects through electrostatic confinement in lithium sulfur batteries. Journal of Materials Chemistry A, 2018, 6, 6959-6966.	5.2	68
89	CeO2-webbed carbon nanotubes as a highly efficient sulfur host for lithium-sulfur batteries. Energy Storage Materials, 2018, 10, 216-222.	9.5	92
90	Enhanced sulfide chemisorption by conductive Al-doped ZnO decorated carbon nanoflakes for advanced Li–S batteries. Nano Research, 2018, 11, 477-489.	5.8	36
91	In situ carbon nanotube clusters grown from three-dimensional porous graphene networks as efficient sulfur hosts for high-rate ultra-stable Li–S batteries. Nano Research, 2018, 11, 1731-1743.	5.8	45
92	Advanced chemical strategies for lithium–sulfur batteries: A review. Green Energy and Environment, 2018, 3, 2-19.	4.7	164
93	Self-assembled N-graphene nanohollows enabling ultrahigh energy density cathode for Li–S batteries. Nanoscale, 2018, 10, 386-395.	2.8	55
94	Recent Advances in Applying Vulcanization/Inverse Vulcanization Methods to Achieve Highâ€Performance Sulfurâ€Containing Polymer Cathode Materials for Li–S Batteries. Small Methods, 2018, 2, 1800156.	4.6	73
95	An <i>in situ</i> chemically and physically confined sulfur–polymer composite for lithium–sulfur batteries with carbonate-based electrolytes. Chemical Communications, 2018, 54, 14093-14096.	2.2	20

#	Article	IF	CITATIONS
96	An Intrinsic Flameâ€Retardant Organic Electrolyte for Safe Lithium‣ulfur Batteries. Angewandte Chemie, 2019, 131, 801-805.	1.6	23
97	Recognizing the Mechanism of Sulfurized Polyacrylonitrile Cathode Materials for Li–S Batteries and beyond in Al–S Batteries. ACS Energy Letters, 2018, 3, 2899-2907.	8.8	224
98	Synthesis of oxidized acetylene black/sulfur@Nd2O3 composite as cathode materials for lithium-sulfur batteries. Journal of Nanoparticle Research, 2018, 20, 1.	0.8	7
99	Constructing Universal Ionic Sieves via Alignment of Twoâ€Dimensional Covalent Organic Frameworks (COFs). Angewandte Chemie - International Edition, 2018, 57, 16072-16076.	7.2	115
100	Constructing Universal Ionic Sieves via Alignment of Twoâ€Đimensional Covalent Organic Frameworks (COFs). Angewandte Chemie, 2018, 130, 16304-16308.	1.6	16
101	Electron bridging structure glued yolk-shell hierarchical porous carbon/sulfur composite for high performance Li-S batteries. Electrochimica Acta, 2018, 292, 199-207.	2.6	27
102	A Review of Functional Binders in Lithium–Sulfur Batteries. Advanced Energy Materials, 2018, 8, 1802107.	10.2	324
103	Atomic cobalt as an efficient electrocatalyst in sulfur cathodes for superior room-temperature sodium-sulfur batteries. Nature Communications, 2018, 9, 4082.	5.8	305
104	A high performance lithium-ion–sulfur battery with a free-standing carbon matrix supported Li-rich alloy anode. Chemical Science, 2018, 9, 8829-8835.	3.7	36
105	Tailoring π-Conjugated Systems: From π-π Stacking to High-Rate-Performance Organic Cathodes. CheM, 2018, 4, 2600-2614.	5.8	248
106	Boosting the Electrochemical Performance of Li–S Batteries with a Dual Polysulfides Confinement Strategy. Small, 2018, 14, e1802516.	5.2	58
107	First-principles explorations of the electrochemical lithiation dynamics of a multilayer graphene nanosheet-based sulfur–carbon composite. Journal of Materials Chemistry A, 2018, 6, 18084-18094.	5.2	11
108	A Perspective on Energy Densities of Rechargeable Liâ€S Batteries and Alternative Sulfurâ€Based Cathode Materials. Energy and Environmental Materials, 2018, 1, 20-27.	7.3	104
109	Use of Tween Polymer To Enhance the Compatibility of the Li/Electrolyte Interface for the High-Performance and High-Safety Quasi-Solid-State Lithium–Sulfur Battery. Nano Letters, 2018, 18, 4598-4605.	4.5	81
110	Lithium sulfur batteries with compatible electrolyte both for stable cathode and dendrite-free anode. Energy Storage Materials, 2018, 15, 299-307.	9.5	92
111	Structural Design of Lithium–Sulfur Batteries: From Fundamental Research to Practical Application. Electrochemical Energy Reviews, 2018, 1, 239-293.	13.1	298
112	Single ion conducting lithium sulfur polymer batteries with improved safety and stability. Journal of Materials Chemistry A, 2018, 6, 14330-14338.	5.2	49
113	Sulfur Diffusion within Nitrogen-Doped Ordered Mesoporous Carbons Determined by in Situ X-ray Scattering. Langmuir, 2018, 34, 8767-8776.	1.6	13

#	Article	IF	Citations
114	High performance potassium–sulfur batteries based on a sulfurized polyacrylonitrile cathode and polyacrylic acid binder. Journal of Materials Chemistry A, 2018, 6, 14587-14593.	5.2	89
115	All-in-one lithium-sulfur battery enabled by a porous-dense-porous garnet architecture. Energy Storage Materials, 2018, 15, 458-464.	9.5	108
116	Tuning the electrolyte network structure to invoke quasi-solid state sulfur conversion and suppress lithium dendrite formation in Li–S batteries. Nature Energy, 2018, 3, 783-791.	19.8	421
117	Multifunctionality of Carbon-based Frameworks in Lithium Sulfur Batteries. Electrochemical Energy Reviews, 2018, 1, 403-432.	13.1	42
118	Advances in Cathode Materials for High-Performance Lithium-Sulfur Batteries. IScience, 2018, 6, 151-198.	1.9	85
119	Exploring Chemical, Mechanical, and Electrical Functionalities of Binders for Advanced Energy-Storage Devices. Chemical Reviews, 2018, 118, 8936-8982.	23.0	575
120	Recent research trends in Liâ \in "S batteries. Journal of Materials Chemistry A, 2018, 6, 11582-11605.	5.2	199
121	S0.87Se0.13/CPAN composites as high capacity and stable cycling performance cathode for lithium sulfur battery. Electrochimica Acta, 2018, 281, 789-795.	2.6	26
122	A pyrolyzed polyacrylonitrile/selenium disulfide composite cathode with remarkable lithium and sodium storage performances. Science Advances, 2018, 4, eaat1687.	4.7	225
123	High-rate lithium cycling in a scalable trilayer Li-garnet-electrolyte architecture. Materials Today, 2019, 22, 50-57.	8.3	233
124	Highly conductive copolymer/sulfur composites with covalently grafted polyaniline for stable and durable lithium-sulfur batteries. Electrochimica Acta, 2019, 321, 134678.	2.6	36
125	Synergy of Sulfur/Polyacrylonitrile Composite and Gel Polymer Electrolyte Promises Heat-Resistant Lithium-Sulfur Batteries. IScience, 2019, 19, 316-325.	1.9	34
126	Ni(OH)2@hollow carbon spheres/sulfur composites as cathode materials for high-performance Li–S batteries. Journal of Materials Science: Materials in Electronics, 2019, 30, 17155-17163.	1.1	4
127	Building high performance silicon–oxygen and silicon–sulfur battery by in-situ lithiation of fibrous Si/C anode. Journal of Alloys and Compounds, 2019, 806, 335-342.	2.8	7
128	Sulfurized Polyacrylonitrile Cathodes with High Compatibility in Both Ether and Carbonate Electrolytes for Ultrastable Lithium–Sulfur Batteries. Advanced Functional Materials, 2019, 29, 1902929.	7.8	161
129	Boosting High Energy Density Lithium-Ion Storage via the Rational Design of an FeS-Incorporated Sulfurized Polyacrylonitrile Fiber Hybrid Cathode. ACS Applied Materials & Interfaces, 2019, 11, 29924-29933.	4.0	44
130	A Large Scalable and Low ost Sulfur/Nitrogen Dualâ€Doped Hard Carbon as the Negative Electrode Material for Highâ€Performance Potassiumâ€ion Batteries. Advanced Energy Materials, 2019, 9, 1901379.	10.2	195
131	One-Step In Situ Preparation of Polymeric Selenium Sulfide Composite as a Cathode Material for Enhanced Sodium/Potassium Storage. ACS Applied Materials & Interfaces, 2019, 11, 29807-29813.	4.0	36

#	ARTICLE	IF	CITATIONS
132	An All-Solid-State Sodium–Sulfur Battery Using a Sulfur/Carbonized Polyacrylonitrile Composite Cathode. ACS Applied Energy Materials, 2019, 2, 5263-5271.	2.5	42
133	Sulfur-anchored azulene as a cathode material for Li–S batteries. Chemical Communications, 2019, 55, 9047-9050.	2.2	31
134	ZnS coating of cathode facilitates leanâ \in electrolyte Liâ \in S batteries. , 2019, 1, 165-172.		87
135	Metal Coated Polypropylene Separator with Enhanced Surface Wettability for High Capacity Lithium Metal Batteries. Scientific Reports, 2019, 9, 16795.	1.6	30
136	Recent Advances in Cathode Materials for Roomâ€Temperature Sodiumâ^'Sulfur Batteries. ChemPhysChem, 2019, 20, 3164-3176.	1.0	26
137	On the Reversibility and Fragility of Sodium Metal Electrodes. Advanced Energy Materials, 2019, 9, 1901651.	10.2	48
138	Fluorinated Covalent Organic Polymers for High Performance Sulfur Cathodes in Lithium–Sulfur Batteries. Chemistry of Materials, 2019, 31, 7910-7921.	3.2	66
139	Redox-active polymers (redoxmers) for electrochemical energy storage. MRS Communications, 2019, 9, 1151-1167.	0.8	9
140	Rational Design of Nanostructured Polymer Electrolytes and Solid–Liquid Interphases for Lithium Batteries. Springer Theses, 2019, , .	0.0	4
141	Sulfur Redox Reactions at Working Interfaces in Lithium–Sulfur Batteries: A Perspective. Advanced Materials Interfaces, 2019, 6, 1802046.	1.9	128
142	Cathode electrolyte interface enabling stable Li–S batteries. Energy Storage Materials, 2019, 21, 474-480.	9.5	59
143	A new class of lithium-ion battery using sulfurized carbon anode from polyacrylonitrile and lithium manganese oxide cathode. Journal of Power Sources, 2019, 434, 126641.	4.0	13
144	Mountain-like nanostructured 3D Ni3S2 on Ni foam for rechargeable aluminum battery and its theoretical analysis on charge/discharge mechanism. Journal of Alloys and Compounds, 2019, 798, 500-506.	2.8	22
145	Non-flammable electrolyte for dendrite-free sodium-sulfur battery. Energy Storage Materials, 2019, 23, 8-16.	9.5	92
146	Sulfurâ€Grafted Hollow Carbon Spheres for Potassiumâ€ion Battery Anodes. Advanced Materials, 2019, 31, e1900429.	11.1	235
147	Recent Progress on Organic Electrodes Materials for Rechargeable Batteries and Supercapacitors. Materials, 2019, 12, 1770.	1.3	97
148	Immobilized Single Molecular Molybdenum Disulfide on Carbonized Polyacrylonitrile for Hydrogen Evolution Reaction. ACS Nano, 2019, 13, 6720-6729.	7.3	40
149	Effective Chemical Prelithiation Strategy for Building a Silicon/Sulfur Li-Ion Battery. ACS Energy Letters, 2019, 4, 1717-1724.	8.8	151

	CI	CITATION REPORT	
# 150	ARTICLE Current Status and Future Prospects of Metal–Sulfur Batteries. Advanced Materials, 2019, 31, e190	IF 01125. 11.1	CITATIONS
150	Interlayers for lithium-based batteries. Energy Storage Materials, 2019, 23, 112-136.	9.5	37
152	Selenium-sulfur (SeS) fast charging cathode for sodium and lithium metal batteries. Energy Storage Materials, 2019, 20, 71-79.	9.5	50
153	Well-Defined N/S Co-Doped Nanocarbons from Sulfurized PAN- <i>b</i> -PBA Block Copolymers: Structure and Supercapacitor Performance. ACS Applied Nano Materials, 2019, 2, 2467-2474.	2.4	31
154	Synergistic suppression of the shuttle effect and absorption of electrolytes using a functional rich amine porous organic polymer/acetylene black-polypropylene separator in Li-S batteries. Electrochimica Acta, 2019, 306, 229-237.	2.6	23
155	Manipulating kinetics of sulfurized polyacrylonitrile with tellurium as eutectic accelerator to prevent polysulfide dissolution in lithium-sulfur battery under dissolution-deposition mechanism. Nano Energy, 2019, 60, 153-161.	8.2	103
156	Ether-compatible sulfurized polyacrylonitrile cathode with excellent performance enabled by fast kinetics via selenium doping. Nature Communications, 2019, 10, 1021.	5.8	211
157	A stable polypyridinopyridine–red phosphorus composite as a superior anode material for long-cycle lifetime lithium-ion batteries. New Journal of Chemistry, 2019, 43, 6197-6204.	e 1.4	8
158	Te0.045S0.955PAN composite with high average discharge voltage for Li–S battery. Journal of Ener Chemistry, 2019, 39, 249-255.	rgy 7.1	24
159	Untying thioether bond structures enabled by "voltage-scissors―for stable room temperature sodium–sulfur batteries. Nanoscale, 2019, 11, 5967-5973.	2.8	66
160	Sodium-based batteries: from critical materials to battery systems. Journal of Materials Chemistry A, 2019, 7, 9406-9431.	5.2	199
161	Iodine-doped sulfurized polyacrylonitrile with enhanced electrochemical performance for room-temperature sodium/potassium sulfur batteries. Chemical Communications, 2019, 55, 5267-52	70. ^{2.2}	83
162	Influence of morphology of monolithic sulfur–poly(acrylonitrile) composites used as cathode materials in lithium–sulfur batteries on electrochemical performance. RSC Advances, 2019, 9, 7181	-7188. 1.7	24
163	High Performance Room Temperature Sodium–Sulfur Battery by Eutectic Acceleration in Tellurium-Doped Sulfurized Polyacrylonitrile. ACS Applied Energy Materials, 2019, 2, 2956-2964.	2.5	73
164 165	Nonlithium Metal–Sulfur Batteries: Steps Toward a Leap. Advanced Materials, 2019, 31, e1802822. Enhanced electrochemical performance of lithium–sulphur battery by negating polysulphide shuttling and interfacial resistance through aluminium nanolayer deposition on a polypropylene	. 11.1	168
165	 Separator. Ionics, 2019, 25, 1645-1657. Polyacrylonitrile-derived nanostructured carbon materials. Progress in Polymer Science, 2019, 92, 89-134. 	1.2	11 92
167	Deposition of Cross-Linked Dopamine and Polyethylenimine on Polypropylene Separators via One-Ste Soaking Method for Li-S Batteries. Journal of the Electrochemical Society, 2019, 166, A546-A550.	p 1.3	5

#	Article	IF	CITATIONS
168	Sodium polyacrylate-derived porous carbon nanosheets for high-performance lithium–sulfur batteries. Sustainable Energy and Fuels, 2019, 3, 942-947.	2.5	10
169	Stabilizing Sulfur Cathode in Carbonate and Ether Electrolytes: Excluding Long-Chain Lithium Polysulfide Formation and Switching Lithiation/Delithiation Route. Chemistry of Materials, 2019, 31, 2002-2009.	3.2	32
170	Selenium as Extra Binding Site for Sulfur Species in Sulfurized Polyacrylonitrile Cathodes for High Capacity Lithiumâ€ S ulfur Batteries. ChemElectroChem, 2019, 6, 1365-1370.	1.7	22
171	Synthesis of a Macroporous Conjugated Polymer Framework: Iron Doping for Highly Stable, Highly Efficient Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2019, 11, 3087-3097.	4.0	52
172	Sulfurizedâ^'poly(acrylonitrile) wrapped carbon sulfur composite cathode material for high performance rechargeable lithium sulfur batteries. Journal of Power Sources, 2019, 412, 670-676.	4.0	38
173	Promoting polysulfide conversion by V2O3 hollow sphere for enhanced lithium-sulfur battery. Applied Surface Science, 2019, 473, 1002-1008.	3.1	47
174	Recent progress in polymer materials for advanced lithium-sulfur batteries. Progress in Polymer Science, 2019, 90, 118-163.	11.8	130
175	An Intrinsic Flameâ€Retardant Organic Electrolyte for Safe Lithiumâ€Sulfur Batteries. Angewandte Chemie - International Edition, 2019, 58, 791-795.	7.2	152
176	Rationally Designed High-Sulfur-Content Polymeric Cathode Material for Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2019, 11, 6136-6142.	4.0	57
177	Cyclic Voltammetry in Lithium–Sulfur Batteries—Challenges and Opportunities. Energy Technology, 2019, 7, 1801001.	1.8	138
178	Covalent bonding of sulfur nanoparticles to unzipped multiwalled carbon nanotubes for high-performance lithium–sulfur batteries. Nanotechnology, 2019, 30, 024001.	1.3	22
179	Longâ€Life Roomâ€Temperature Sodium–Sulfur Batteries by Virtue of Transitionâ€Metalâ€Nanocluster–Sulfu Interactions. Angewandte Chemie, 2019, 131, 1498-1502.	^{۱۲} 1.6	63
180	Longâ€Life Roomâ€Temperature Sodium–Sulfur Batteries by Virtue of Transitionâ€Metalâ€Nanocluster–Sulfu Interactions. Angewandte Chemie - International Edition, 2019, 58, 1484-1488.	^{Jr} 7.2	165
181	Confined and covalent sulfur for stable room temperature potassium-sulfur battery. Electrochimica Acta, 2019, 293, 191-198.	2.6	68
182	Polymers for high performance Li-S batteries: Material selection and structure design. Progress in Polymer Science, 2019, 89, 19-60.	11.8	103
183	A novel modified PP separator by grafting PAN for high-performance lithium–sulfur batteries. Journal of Materials Science, 2019, 54, 1566-1579.	1.7	26
184	Freestanding porous sulfurized polyacrylonitrile fiber as a cathode material for advanced lithium sulfur batteries. Applied Surface Science, 2019, 472, 135-142.	3.1	48
185	High-performance lithium sulfur batteries enabled by a synergy between sulfur and carbon nanotubes. Energy Storage Materials, 2019, 16, 194-202.	9.5	264

#	Article	IF	CITATIONS
186	Remedies for Polysulfide Dissolution in Roomâ€Temperature Sodium–Sulfur Batteries. Advanced Materials, 2020, 32, e1903952.	11.1	96
187	Lithium‧chwefelâ€Batterien mit Magerelektrolyt: Herausforderungen und Perspektiven. Angewandte Chemie, 2020, 132, 12736-12753.	1.6	33
188	Ultrasensitive Fieldâ€Effect Biosensors Enabled by the Unique Electronic Properties of Graphene. Small, 2020, 16, e1902820.	5.2	75
189	Dendrite–free and Ultra–High energy lithium sulfur battery enabled by dimethyl polysulfide intermediates. Energy Storage Materials, 2020, 24, 265-271.	9.5	26
190	Rational construction of rGO/VO2 nanoflowers as sulfur multifunctional hosts for room temperature Na-S batteries. Chemical Engineering Journal, 2020, 379, 122359.	6.6	59
191	Prospect of Sulfurized Pyrolyzed Poly(acrylonitrile) (S@pPAN) Cathode Materials for Rechargeable Lithium Batteries. Angewandte Chemie - International Edition, 2020, 59, 7306-7318.	7.2	113
192	Vertically Aligned Carbon Nanofibers on Cu Foil as a 3D Current Collector for Reversible Li Plating/Stripping toward Highâ€Performance Li–S Batteries. Advanced Functional Materials, 2020, 30, 1906444.	7.8	66
193	Lithium–Sulfur Batteries under Lean Electrolyte Conditions: Challenges and Opportunities. Angewandte Chemie - International Edition, 2020, 59, 12636-12652.	7.2	425
194	High-performance room-temperature sodium–sulfur battery enabled by electrocatalytic sodium polysulfides full conversion. Energy and Environmental Science, 2020, 13, 562-570.	15.6	163
195	Accurate Control Multiple Active Sites of Carbonaceous Anode for High Performance Sodium Storage: Insights into Capacitive Contribution Mechanism. Advanced Energy Materials, 2020, 10, 1903312.	10.2	85
196	Flexible free-standing sulfurized polyacrylonitrile electrode for stable Li/Na storage. Electrochimica Acta, 2020, 333, 135493.	2.6	29
197	Prospect of Sulfurized Pyrolyzed Poly(acrylonitrile) (S@pPAN) Cathode Materials for Rechargeable Lithium Batteries. Angewandte Chemie, 2020, 132, 7374-7386.	1.6	30
198	Mechanistic understanding of the Sulfurized-Poly(acrylonitrile) cathode for lithium-sulfur batteries. Energy Storage Materials, 2020, 26, 483-493.	9.5	99
199	Electrolyte Regulation towards Stable Lithiumâ€Metal Anodes in Lithium–Sulfur Batteries with Sulfurized Polyacrylonitrile Cathodes. Angewandte Chemie - International Edition, 2020, 59, 10732-10745.	7.2	108
200	Sulfur covalently bonded to porous graphitic carbon as an anode material for lithium-ion capacitors with high energy storage performance. Journal of Materials Chemistry A, 2020, 8, 62-68.	5.2	31
201	Constructing mesoporous hollow polysulfane spheres bonded with short-chain sulfurs (Sx, xâ‰ 9) as high-performance sulfur cathodes in both ether and ester electrolytes. Energy Storage Materials, 2020, 27, 426-434.	9.5	33
202	Electrolyte Regulation towards Stable Lithiumâ€Metal Anodes in Lithium–Sulfur Batteries with Sulfurized Polyacrylonitrile Cathodes. Angewandte Chemie, 2020, 132, 10821-10834.	1.6	80
203	MXeneâ€Based Dendriteâ€Free Potassium Metal Batteries. Advanced Materials, 2020, 32, e1906739.	11.1	244

#	Article	IF	CITATIONS
204	Transition metals doped borophene-graphene heterostructure for robust polysulfide anchoring: A first principle study. Applied Surface Science, 2020, 534, 147575.	3.1	18
205	Tailoring binder–cathode interactions for long-life room-temperature sodium–sulfur batteries. Journal of Materials Chemistry A, 2020, 8, 22983-22997.	5.2	47
206	Metal–organic framework based bifunctional oxygen electrocatalysts for rechargeable zinc–air batteries: current progress and prospects. Chemical Science, 2020, 11, 11646-11671.	3.7	60
207	Multiregion Janus-Featured Cobalt Phosphide-Cobalt Composite for Highly Reversible Room-Temperature Sodium-Sulfur Batteries. ACS Nano, 2020, 14, 10284-10293.	7.3	81
208	Fluorinated co-solvent promises Li-S batteries under lean-electrolyte conditions. Materials Today, 2020, 40, 63-71.	8.3	61
209	Artificial Lithium Isopropyl-Sulfide Macromolecules as an Ion-Selective Interface for Long-Life Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2020, 12, 54537-54544.	4.0	49
210	Controllable Substitution of S Radicals on Triazine Covalent Framework to Expedite Degradation of Polysulfides. Small, 2020, 16, e2004631.	5.2	19
211	Sodium Polyacrylate as a Promising Aqueous Binder of S@pPAN Cathodes for Magnesium–Sulfur Batteries. Journal of Physical Chemistry C, 2020, 124, 20712-20721.	1.5	14
212	Reconfiguring Organosulfur Cathode by Over-Lithiation to Enable Ultrathick Lithium Metal Anode toward Practical Lithium–Sulfur Batteries. ACS Nano, 2020, 14, 13784-13793.	7.3	62
213	Black phosphorus-modified sulfurized polyacrylonitrile with high C-rate and cycling performance in ether-based electrolyte for lithium sulfur batteries. Chemical Communications, 2020, 56, 12797-12800.	2.2	15
214	Advanced Postâ€Potassiumâ€ion Batteries as Emerging Potassiumâ€Based Alternatives for Energy Storage. Advanced Functional Materials, 2020, 30, 2005209.	7.8	62
215	Synergistic Effect of Salinized Quinone for Entrapment of Polysulfides for High-Performance Li–S Batteries. ACS Applied Materials & Interfaces, 2020, 12, 23867-23873.	4.0	11
216	High performance potassium–sulfur batteries and their reaction mechanism. Journal of Materials Chemistry A, 2020, 8, 10875-10884.	5.2	40
217	Lowâ€Temperature Synthesis of a Sulfurâ€Polyacrylonitrile Composite Cathode for Lithiumâ€Sulfur Batteries. ChemistrySelect, 2020, 5, 5465-5472.	0.7	8
218	Insight into sulfur-rich selenium sulfide/pyrolyzed polyacrylonitrile cathodes for Li–S batteries. Sustainable Energy and Fuels, 2020, 4, 3588-3596.	2.5	12
219	Nitrogen-doped carbon nanotubes intertwined with porous carbon with enhanced cathode performance in lithium–sulfur batteries. Sustainable Energy and Fuels, 2020, 4, 3926-3933.	2.5	10
220	Recent Progress in High Donor Electrolytes for Lithium–Sulfur Batteries. Advanced Energy Materials, 2020, 10, 2001456.	10.2	112
221	Engineering of polymeric disulfide nanosheet cathode for highly durable lithium-sulfur battery. Applied Surface Science, 2020, 526, 146754.	3.1	8

#	Article	IF	CITATIONS
222	Solid Electrolytes for Li–S Batteries: Solid Solutions of Poly(ethylene oxide) with LixPON- and LixSiPON-Based Polymers. ACS Applied Materials & Interfaces, 2020, 12, 30353-30364.	4.0	19
223	Template method for fabricating Co and Ni nanoparticles/porous channels carbon for solid-state sodium-sulfur battery. Journal of Colloid and Interface Science, 2020, 578, 710-716.	5.0	19
224	An ester electrolyte for lithium–sulfur batteries capable of ultra-low temperature cycling. Chemical Communications, 2020, 56, 9114-9117.	2.2	44
225	Carbonization of single polyacrylonitrile chains in coordination nanospaces. Chemical Science, 2020, 11, 10844-10849.	3.7	22
226	A chemically stabilized sulfur cathode for lean electrolyte lithium sulfur batteries. Proceedings of the United States of America, 2020, 117, 14712-14720.	3.3	102
227	Lithiation of Sulfur-Graphene Compounds Using Reactive Force-Field Molecular Dynamics Simulations. Journal of the Electrochemical Society, 2020, 167, 100555.	1.3	10
228	Redox polymers for rechargeable metal-ion batteries. EnergyChem, 2020, 2, 100030.	10.1	120
229	An <i>in situ</i> encapsulation approach for polysulfide retention in lithium–sulfur batteries. Journal of Materials Chemistry A, 2020, 8, 6902-6907.	5.2	9
230	Opportunities and Challenges for Organic Electrodes in Electrochemical Energy Storage. Chemical Reviews, 2020, 120, 6490-6557.	23.0	517
231	Kombucha SCOBY-based carbon and graphene oxide wrapped sulfur/polyacrylonitrile as a high-capacity cathode in lithium-sulfur batteries. Frontiers of Chemical Science and Engineering, 2020, 14, 976-987.	2.3	11
232	Elevating reactivity and cyclability of all-solid-state lithium-sulfur batteries by the combination of tellurium-doping and surface coating. Nano Energy, 2020, 76, 105083.	8.2	52
233	A <scp>thermoâ€stable</scp> poly(propylene carbonate)â€based composite separator for <scp>lithiumâ€sulfur</scp> batteries under elevated temperatures. International Journal of Energy Research, 2020, 44, 10295-10306.	2.2	3
234	Engineering Bifunctional Host Materials of Sulfur and Lithiumâ€Metal Based on Nitrogenâ€Enriched Polyacrylonitrile for Li–S Batteries. Chemistry - A European Journal, 2020, 26, 8784-8793.	1.7	9
235	Garnet–PVDF composite film modified lithium manganese oxide cathode and sulfurized carbon anode from polyacrylonitrile for lithium-ion batteries. Journal of Materials Chemistry A, 2020, 8, 14043-14053.	5.2	12
236	Conductive Sulfur-Rich Copolymer Composites as Lithium–Sulfur Battery Electrodes with Fast Kinetics and a High Cycle Stability. ACS Sustainable Chemistry and Engineering, 2020, 8, 10389-10401.	3.2	27
237	Selenium or Tellurium as Eutectic Accelerators for High-Performance Lithium/Sodium–Sulfur Batteries. Electrochemical Energy Reviews, 2020, 3, 613-642.	13.1	75
238	Recent progress in developing Li2S cathodes for Li–S batteries. Energy Storage Materials, 2020, 27, 279-296.	9.5	114
239	Cathode materials for lithium–sulfur batteries based on sulfur covalently bound to a polymeric backbone. Journal of Materials Chemistry A, 2020, 8, 5379-5394.	5.2	39

#	Article	IF	CITATIONS
240	A freestanding hierarchically structured cathode enables high sulfur loading and energy density of flexible Li–S batteries. Journal of Materials Chemistry A, 2020, 8, 6303-6310.	5.2	25
241	Solidâ€State Lithium–Sulfur Battery Enabled by Thioâ€LiSICON/Polymer Composite Electrolyte and Sulfurized Polyacrylonitrile Cathode. Advanced Functional Materials, 2020, 30, 1910123.	7.8	77
242	A Mixed Ether Electrolyte for Lithium Metal Anode Protection in Working Lithium–Sulfur Batteries. Energy and Environmental Materials, 2020, 3, 160-165.	7.3	85
243	Facile synthesis of sulfurized polyacrylonitrile composite as cathode for high-rate lithium-sulfur batteries. Journal of Energy Chemistry, 2020, 49, 161-165.	7.1	37
244	Aminomethylâ€Functionalized Carbon Nanotubes as a Host of Small Sulfur Clusters for Highâ€Performance Lithium–Sulfur Batteries. ChemSusChem, 2020, 13, 2761-2768.	3.6	9
245	PIM-1-based carbon–sulfur composites for sodium–sulfur batteries that operate without the shuttle effect. Journal of Materials Chemistry A, 2020, 8, 3580-3585.	5.2	31
246	A Highâ€Kinetics Sulfur Cathode with a Highly Efficient Mechanism for Superior Roomâ€Temperature Na–S Batteries. Advanced Materials, 2020, 32, e1906700.	11.1	126
247	Synthesis of sulfur-co-polymer/porous long carbon nanotubes composite cathode by chemical and physical binding for high performance lithium-sulfur batteries. Energy, 2020, 195, 117034.	4.5	27
248	Polysulfide Regulation by the Zwitterionic Barrier toward Durable Lithium–Sulfur Batteries. Journal of the American Chemical Society, 2020, 142, 3583-3592.	6.6	174
249	Understanding the Inhibition of the Shuttle Effect of Sulfides (S â‰\$) in Lithium–Sulfur Batteries by Heteroatom-Doped Graphene: First-Principles Study. Journal of Physical Chemistry C, 2020, 124, 3644-3649.	1.5	19
250	Toward heat-tolerant potassium batteries based on pyrolyzed selenium disulfide/polyacrylonitrile positive electrode and gel polymer electrolyte. Journal of Materials Chemistry A, 2020, 8, 4544-4551.	5.2	19
251	Carbon-wrapped cobalt nanoparticles on graphene aerogel for solid-state room-temperature sodium-sulfur batteries. Chemical Engineering Journal, 2020, 388, 124210.	6.6	32
252	A Highly Crosslinked and Conductive Sulfur-Rich Copolymer with Grafted Polyaniline for Stable Cycling Lithium–Sulfur Batteries. Journal of the Electrochemical Society, 2020, 167, 020530.	1.3	10
253	Sulfur-nitrogen rich carbon as stable high capacity potassium ion battery anode: Performance and storage mechanisms. Energy Storage Materials, 2020, 27, 212-225.	9.5	235
254	Mechanistic Insights into the Role of Covalent Triazine Frameworks as Cathodes in Lithiumâ€ S ulfur Batteries. Batteries and Supercaps, 2020, 3, 1069-1079.	2.4	14
255	Rational design of MoNi sulfide yolk-shell heterostructure nanospheres as the efficient sulfur hosts for high-performance lithium-sulfur batteries. Chemical Engineering Journal, 2020, 394, 124983.	6.6	31
256	Siloxane based copolymer sulfur as binder-free cathode for advances lithium-sulfur batteries. Journal of Colloid and Interface Science, 2020, 574, 190-196.	5.0	11
257	High-performance red phosphorus-sulfurized polyacrylonitrile composite by electrostatic spray deposition for lithium-ion batteries. Electrochimica Acta, 2020, 345, 136227.	2.6	21

#	Article	IF	CITATIONS
258	Stable Lithium Metal Anode Enabled by a Lithiophilic and Electron/Ion Conductive Framework. ACS Nano, 2020, 14, 5618-5627.	7.3	81
259	Inorganic Mediator toward Organosulfide Active Material: Anchoring and Electrocatalysis. Advanced Functional Materials, 2021, 31, 2001493.	7.8	21
260	3D S@MoS2@reduced graphene oxide aerogels cathode for high-rate lithium-sulfur batteries. Journal of Alloys and Compounds, 2021, 852, 157011.	2.8	17
261	Ultrahigh coulombic efficiency electrolyte enables Li SPAN batteries with superior cycling performance. Materials Today, 2021, 42, 17-28.	8.3	50
262	Hollow carbon nanospheres for capacitive-dominated potassium-ion storage. Chemical Engineering Journal, 2021, 409, 127383.	6.6	29
263	Theoretical investigation on lithium polysulfide adsorption and conversion for high-performance Li–S batteries. Nanoscale, 2021, 13, 15-35.	2.8	37
264	Material design strategies to improve the performance of rechargeable magnesium–sulfur batteries. Materials Horizons, 2021, 8, 830-853.	6.4	55
265	Sustainable S cathodes with synergic electrocatalysis for room-temperature Na–S batteries. Journal of Materials Chemistry A, 2021, 9, 566-574.	5.2	39
266	The host hollow carbon nanospheres as cathode material for nonaqueous room-temperature Al–S batteries. International Journal of Hydrogen Energy, 2021, 46, 4936-4946.	3.8	20
267	Redox mediator assists electron transfer in lithium–sulfur batteries with sulfurized polyacrylonitrile cathodes. EcoMat, 2021, 3, e12066.	6.8	69
268	Sulfur encapsulated in nitrogen-doped graphene aerogel as a cathode material for high performance lithium-sulfur batteries. International Journal of Hydrogen Energy, 2021, 46, 7642-7652.	3.8	29
269	Advances in Electrolytes for High Capacity Rechargeable Lithium-Sulphur Batteries. Current Smart Materials, 2021, 5, 3-37.	0.5	7
270	Cationic polymer-grafted graphene oxide/CNT cathode-coating material for lithium–sulfur batteries. RSC Advances, 2021, 11, 25305-25313.	1.7	2
271	A new strategy for achieving high K ⁺ storage capacity with fast kinetics: realizing covalent sulfur-rich carbon by phosphorous doping. Nanoscale, 2021, 13, 4911-4920.	2.8	17
272	Sulfurized polyacrylonitrile for high-performance lithium sulfur batteries: advances and prospects. Journal of Materials Chemistry A, 2021, 9, 19282-19297.	5.2	73
273	A solid electrolyte interphase to protect the sulfurized polyacrylonitrile (SPAN) composite for Li–S batteries: computational approach addressing the electrolyte/SPAN interfacial reactivity. Journal of Materials Chemistry A, 2021, 9, 7888-7902.	5.2	9
274	Hybrid TiO-TiO2 nanoparticle/B-N co-doped CNFs interlayer for advanced Li S batteries. Journal of Electroanalytical Chemistry, 2021, 881, 114950.	1.9	12
275	An organodiselenide containing electrolyte enables sulfurized polyacrylonitrile cathodes with fast redox kinetics in Li–S batteries. Chemical Communications, 2021, 57, 9688-9691.	2.2	8

ARTICLE IF CITATIONS # Isotropous Sulfurized Polyacrylonitrile Interlayer with Homogeneous Na⁺ Flux Dynamics 276 10.2 31 for Solidâ€State Na Metal Batteries. Advanced Energy Materials, 2021, 11, 2003469. A new insight into capacity fading of sulfurized polyacrylonitrile composite in carbonate electrolyte. Journal of Electroanalytical Chemistry, 2021, 882, 114964. Highâ€Capacity and Stable Sodiumâ€Sulfur Battery Enabled by Confined Electrocatalytic Polysulfides Full 278 7.8 35 Conversion. Advanced Functional Materials, 2021, 31, 2100666. Tailoring electrolyte solvation for Li metal batteries cycled at ultra-low temperature. Nature Energy, 279 386 2021, <u>6, 303-313.</u> Density Functional Theory Studies on Sulfur–Polyacrylonitrile as a Cathode Host Material for 280 1.6 11 Lithium–Sulfur Batteries. ACS Omega, 2021, 6, 9700-9708. Sulfur in Amorphous Silica for an Advanced Roomâ€Temperature Sodium–Sulfur Battery. Angewandte Chemie, 2021, 133, 10217-10224. 1.6 3D Holey Graphene/Polyacrylonitrile Sulfur Composite Architecture for High Loading Lithium Sulfur 282 10.2 131 Batteries. Advanced Energy Materials, 2021, 11, 2100448. New Insights into the Nâ€"S Bond Formation of a Sulfurized-Polyacrylonitrile Cathode Material for 4.0 Lithiumã̃€"Sulfur Batteries. ACS Applied Materials & amp; Interfaces, 2021, 13, 14230-14238. A Scalable Cathode Chemical Prelithiation Strategy for Advanced Silicon-Based Lithium Ion Full Batteries. ACS Applied Materials & amp; Interfaces, 2021, 13, 11985-11994. 284 4.0 38 Sulfur in Amorphous Silica for an Advanced Roomâ€Temperature Sodium–Sulfur Battery. Angewandte 7.2 Chemie - International Edition, 2021, 60, 10129-10136. Carbonaceous Hosts for Sulfur Cathode in Alkaliâ€Metal/S (Alkali Metal = Lithium, Sodium, Potassium) 286 5.2 17 Batteries. Small, 2021, 17, e2006504. Origin of shuttle-free sulfurized polyacrylonitrile in lithium-sulfur batteries. Journal of Power 4.0 Sources, 2021, 492, 229508. Composite Electrolytes Based on Poly(Ethylene Oxide) and Lithium Borohydrides for All-Solid-State 288 3.2 33 Lithium–Sulfur Batteries. ACS Sustainable Chemistry and Engineering, 2021, 9, 5396-5404. Controllable synthesis of sulfurized polyacrylonitrile nanofibers for high performance 3.3 lithium–sulfur batteries. Composites Communications, 2021, 24, 100675. Porous sulfurized poly(acrylonitrile) nanofiber as a long-life and high-capacity cathode for 290 17 2.8 lithium–sulfur batteries. Journal of Alloys and Compounds, 2021, 860, 158445. Realizing high-performance lithium-sulfur batteries via rational design and engineering strategies. Nano Energy, 2021, 82, 105761. Two Competing Reactions of Sulfurized Polyacrylonitrile Produce High-Performance Lithium–Sulfur 292 4.0 16 Batteries. ACS Applied Materials & amp; Interfaces, 2021, 13, 25002-25009. Recent Advances in Emerging Nonâ€Lithium Metal–Sulfur Batteries: A Review. Advanced Energy 293 34 Materials, 2021, 11, 2100770.

#	Article	IF	CITATIONS
294	An in-situ solidification strategy to block polysulfides in Lithium-Sulfur batteries. Energy Storage Materials, 2021, 37, 224-232.	9.5	55
295	Sulfurized Polyacrylonitrile Cathode Derived from Intermolecular Cross-Linked Polyacrylonitrile for a Rechargeable Lithium Battery. ACS Applied Energy Materials, 2021, 4, 5706-5712.	2.5	11
296	Understanding Sulfur Redox Mechanisms in Different Electrolytes for Room-Temperature Na–S Batteries. Nano-Micro Letters, 2021, 13, 121.	14.4	31
297	Porous carbon/Co ₃ S ₄ hollow polyhedron as sulfur carrier to enhance cyclic stability for lithium-sulfur batteries. Fullerenes Nanotubes and Carbon Nanostructures, 2022, 30, 392-403.	1.0	1
298	Strategies for Polysulfide Immobilization in Sulfur Cathodes for Roomâ€Temperature Sodium–Sulfur Batteries. Small, 2021, 17, e2100057.	5.2	24
299	Advances in Lithium–Sulfur Batteries: From Academic Research to Commercial Viability. Advanced Materials, 2021, 33, e2003666.	11.1	357
300	Realizing Solidâ€Phase Reaction in Li–S Batteries via Localized Highâ€Concentration Carbonate Electrolyte. Advanced Energy Materials, 2021, 11, 2101004.	10.2	46
301	Sulfurized-Pyrolyzed Polyacrylonitrile Cathode for Magnesium-Sulfur Batteries Containing Mg2+/Li+ Hybrid Electrolytes. Chemical Engineering Journal, 2022, 427, 130902.	6.6	17
302	Electrolyte Issues in Lithium–Sulfur Batteries: Development, Prospect, and Challenges. Energy & Fuels, 2021, 35, 10405-10427.	2.5	64
303	Sulfurized Polyacrylonitrile (SPAN): Changes in Mechanical Properties during Electrochemical Lithiation. Journal of Physical Chemistry C, 2021, 125, 13185-13194.	1.5	5
304	Understanding the Roles of the Electrode/Electrolyte Interface for Enabling Stable Liâ^¥Sulfurized Polyacrylonitrile Batteries. ACS Applied Materials & Interfaces, 2021, 13, 31733-31740.	4.0	25
305	Ru single atoms induce surface-mediated discharge in Na-O2 batteries. Chinese Chemical Letters, 2022, 33, 491-496.	4.8	6
306	Functional Gel Poly-m-phenyleneisophthalamide Nanofiber Separator Modified by Starch to Suppress Lithium Polysulfides and Facilitate Transportation of Lithium Ions for High-Performance Lithium-Sulfur Battery. Journal of the Electrochemical Society, 2021, 168, 070505.	1.3	3
307	Low-Cost Li SPAN Batteries Enabled by Sustained Additive Release. ACS Applied Energy Materials, 2021, 4, 6422-6429.	2.5	2
308	Tailored Electrolytes Enabling Practical Lithium–Sulfur Full Batteries via Interfacial Protection. ACS Energy Letters, 2021, 6, 2673-2681.	8.8	52
309	Enhanced Cyclic Stability of Sulfur Electrode by a Liâ€Nafionâ€Supported Encapsulated Configuration. Energy Technology, 2021, 9, 2100418.	1.8	5
310	Multiscale Understanding of Covalently Fixed Sulfur–Polyacrylonitrile Composite as Advanced Cathode for Metal–Sulfur Batteries. Advanced Science, 2021, 8, e2101123.	5.6	27
311	Tuning the Linkers in Polymer-Based Cathodes to Realize High Sulfur Content and High-Performance Potassium–Sulfur Batteries. Journal of Physical Chemistry C, 2021, 125, 18604-18613.	1.5	10

#	Article	IF	CITATIONS
312	Atomically dispersed S-Fe-N4 for fast kinetics sodium-sulfur batteries via a dual function mechanism. Cell Reports Physical Science, 2021, 2, 100531.	2.8	31
313	Reusable Polyacrylonitrile‧ulfur Extractor of Heavy Metal Ions from Wastewater. Advanced Functional Materials, 2021, 31, 2105845.	7.8	20
314	Iodine-doped sulfurized polyacrylonitrile with enhanced electrochemical performance for lithium sulfur batteries in carbonate electrolyte. Chemical Engineering Journal, 2021, 418, 129410.	6.6	31
315	Manipulating the Electronic Structure of Nickel <i>via</i> Alloying with Iron: Toward High-Kinetics Sulfur Cathode for Na–S Batteries. ACS Nano, 2021, 15, 15218-15228.	7.3	64
316	Mesoporous Yolk‧hell Structured Organosulfur Nanotubes with Abundant Internal Joints for Highâ€Performance Lithium–Sulfur Batteries by Kinetics Acceleration. Small, 2021, 17, e2101857.	5.2	20
317	Materials design and fundamental understanding of tellurium-based electrochemistry for rechargeable batteries. Energy Storage Materials, 2021, 40, 166-188.	9.5	39
318	Graphene-Based Materials for Flexible Lithium–Sulfur Batteries. ACS Nano, 2021, 15, 13901-13923.	7.3	94
319	Multi-channel sulfurized polyacrylonitrile with hollow structure as cathode for room temperature sodium–sulfur batteries. Journal of Solid State Chemistry, 2021, 301, 122359.	1.4	8
320	Diphenyl guanidine vulcanization accelerators enable sulfurized polyacrylonitrile cathode for high capacity and ether-compatible by fast kinetic. Energy, 2021, 233, 121160.	4.5	3
321	Cobalt coordination with pyridines in sulfurized polyacrylonitrile cathodes to form conductive pathways and catalytic M-N4S sites for accelerated Li-S kinetics. Journal of Energy Chemistry, 2021, 61, 170-178.	7.1	28
322	The importance of the dissolution of polysulfides in lithium-sulfur batteries and a perspective on high-energy electrolyte/cathode design. Electrochimica Acta, 2021, 392, 139013.	2.6	9
323	Functional polymers for lithium metal batteries. Progress in Polymer Science, 2021, 122, 101453.	11.8	39
324	Fluorinated quinone derived organosulfur copolymer cathodes for long-cycling, thermostable and flexible lithium–sulfur batteries. Chemical Engineering Journal, 2021, 424, 130316.	6.6	21
325	Enhanced reversible capacity of sulfurized polyacrylonitrile cathode for room-temperature Na/S batteries by electrochemical activation. Chemical Engineering Journal, 2021, 426, 130787.	6.6	22
326	A model cathode for mechanistic study of organosulfide electrochemistry in Li-organosulfide batteries. Journal of Energy Chemistry, 2022, 66, 440-447.	7.1	15
327	Sulfurized-polyacrylonitrile in lithium-sulfur batteries: Interactions between undercoordinated carbons and polymer structure under low lithiation. Journal of Energy Chemistry, 2022, 66, 587-596.	7.1	13
328	Unveiling the physiochemical aspects of the matrix in improving sulfur-loading for room-temperature sodium–sulfur batteries. Materials Advances, 2021, 2, 4165-4189.	2.6	22
329	Hybrid nanostructures for electrochemical potassium storage. Nanoscale Advances, 2021, 3, 5442-5464.	2.2	2

#	Article	IF	CITATIONS
330	Advanced Highâ€Performance Potassium–Chalcogen (S, Se, Te) Batteries. Small, 2021, 17, e2004369.	5.2	45
331	High-performance lithium–sulfur batteries enabled by regulating Li ₂ S deposition. Physical Chemistry Chemical Physics, 2021, 23, 21385-21398.	1.3	12
332	Research Progress of Organic Sulfur Polymer Cathode Materials for Lithium-Sulfur Batteries. Journal of Advances in Physical Chemistry, 2021, 10, 41-50.	0.1	0
333	Sulfurized Polyacrylonitrile for High-Performance Lithium–Sulfur Batteries: In-Depth Computational Approach Revealing Multiple Sulfur's Reduction Pathways and Hidden Li ⁺ Storage Mechanisms for Extra Discharge Capacity. ACS Applied Materials & Interfaces, 2021, 13, 491-502.	4.0	16
334	A high-performance lithiated silicon–sulfur battery enabled by fluorinated ether electrolytes. Journal of Materials Chemistry A, 2021, 9, 25426-25434.	5.2	7
335	Sulfurized polyacrylonitrile cathodes with electrochemical and structural tuning for high capacity all-solid-state lithium–sulfur batteries. Sustainable Energy and Fuels, 2021, 5, 5603-5614.	2.5	8
336	On the crystallography and reversibility of lithium electrodeposits at ultrahigh capacity. Nature Communications, 2021, 12, 6034.	5.8	70
337	Influence of microstructure and crystalline phases on impedance spectra of sodium conducting glass ceramics produced from glass powder. Journal of Solid State Electrochemistry, 2022, 26, 375-388.	1.2	5
338	Communication—Binder Effects on Cycling Performance of High Areal Capacity SPAN Electrodes. Journal of the Electrochemical Society, 2021, 168, 110504.	1.3	4
339	Capturing polysulfides by sulfurizedâ€polyacrylonitrile in lithiumâ€sulfur batteries and the sulfurâ€chain effects through Density Functional Theory. Electrochemical Science Advances, 2022, 2, .	1.2	2
340	Designing Solid-Liquid Interphases for Sodium Batteries. Springer Theses, 2019, , 95-116.	0.0	0
341	Sulfurized Polyacrylonitrile as a High-Performance and Low-Volume Change Anode for Robust Potassium Storage. ACS Nano, 2021, 15, 18419-18428.	7.3	17
342	Preparation of three-dimensional graphene foam with controllable defects by closed-environment chemical vapor deposition method and composite electrode electrochemical performance. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 148101.	0.2	0
343	Feasible Catalytic-Insoluble Strategy Enabled by Sulfurized Polyacrylonitrile with <i>In Situ</i> Built Electrocatalysts for Ultrastable Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2021, 13, 50936-50947.	4.0	10
344	Polymers in Lithium–Sulfur Batteries. Advanced Science, 2022, 9, e2103798.	5.6	56
345	Stable Dendrite-Free Sodium–Sulfur Batteries Enabled by a Localized High-Concentration Electrolyte. Journal of the American Chemical Society, 2021, 143, 20241-20248.	6.6	71
346	Atomistic discharge studies of sulfurized-polyacrylonitrile through ab initio molecular dynamics. Electrochimica Acta, 2022, 403, 139538.	2.6	4
347	Catalytic materials for lithium-sulfur batteries: mechanisms, design strategies and future perspective. Materials Today, 2022, 52, 364-388.	8.3	78

#	Article	IF	Citations
348	An interface-free integrative graphitic carbon network film with defective and S/O-Codoped hollow units for voltage-stable, Ultra-fast and long-life potassium ion storage. Chemical Engineering Journal, 2022, 431, 133736.	6.6	6
349	Inverse Vulcanization of a Natural Monoene with Sulfur as Sustainable Electrochemically Active Materials for Lithium-Sulfur Batteries. Molecules, 2021, 26, 7039.	1.7	11
350	Exploration of the Unique Structural Chemistry of Sulfur Cathode for Highâ€Energy Rechargeable Beyondâ€Li Batteries. Advanced Energy and Sustainability Research, 2022, 3, 2100157.	2.8	15
351	Binderâ€Free and Highâ€Loading Cathode Realized by Hierarchical Structure for Potassium–Sulfur Batteries. Small Methods, 2022, 6, e2100899.	4.6	12
352	Sulfur-Containing Polymer Cathode Materials for Li–S Batteries. Modern Aspects of Electrochemistry, 2022, , 295-330.	0.2	1
353	Stable Room-Temperature Sodium–Sulfur Batteries in Ether-Based Electrolytes Enabled by the Fluoroethylene Carbonate Additive. ACS Applied Materials & Interfaces, 2022, 14, 6658-6666.	4.0	11
355	Carbon materials for Na-S and K-S batteries. Matter, 2022, 5, 808-836.	5.0	27
356	High sulfur-doped hard carbon anode from polystyrene with enhanced capacity and stability for potassium-ion storage. Journal of Energy Chemistry, 2022, 68, 688-698.	7.1	22
357	Sulfur incorporation modulated absorption kinetics and electron transfer behavior for nitrogen rich porous carbon nanotubes endow superior aqueous zinc ion storage capability. Journal of Materials Chemistry A, 2022, 10, 9355-9362.	5.2	31
358	High-Performance Dual-Salt Electrolyte Based on Tetrahydrofuran and Dipropyl Ether for Lithium-Sulfur Battery. SSRN Electronic Journal, 0, , .	0.4	0
359	Toward Unveiling Structure and Property Relationships from Ionic Ordering in Li/S Battery Electrolytes: Neutron Total Scattering and Molecular Dynamics Simulations. SSRN Electronic Journal, 0, , .	0.4	0
360	Understanding the interactions between lithium polysulfides and anchoring materials in advanced lithium–sulfur batteries using density functional theory. Physical Chemistry Chemical Physics, 2022, 24, 8604-8623.	1.3	10
361	Solid/Quasi olid Phase Conversion of Sulfur in Lithium–Sulfur Battery. Small, 2022, 18, e2106970.	5.2	21
362	A review on the use of carbonate-based electrolytes in Li-S batteries: A comprehensive approach enabling solid-solid direct conversion reaction. Energy Storage Materials, 2022, 50, 197-224.	9.5	33
363	Tailoring Mesopores and Nitrogen Groups of Carbon Nanofibers for Polysulfide Entrapment in Lithium–Sulfur Batteries. Polymers, 2022, 14, 1342.	2.0	2
364	A Sustainable Multipurpose Separator Directed Against the Shuttle Effect of Polysulfides for Highâ€Performance Lithium–Sulfur Batteries. Advanced Energy Materials, 2022, 12, .	10.2	53

#	Article	IF	CITATIONS
367	Synergistic Combination of TiO ₂ and S-PAN for Li-S Batteries with Long-Term Cyclability at High C-Rates. Journal of the Electrochemical Society, 2021, 168, 120536.	1.3	2
368	Sulfurized Carbon Composite with Unprecedentedly High Tap Density for Sodium Storage. Advanced Energy Materials, 2022, 12, .	10.2	2
369	Sulfurized Cyclopentadienyl Nanocomposites for Shuttle-Free Room-Temperature Sodium–Sulfur Batteries. Nano Letters, 2021, 21, 10538-10546.	4.5	11
370	Design Principles of Bifunctional Electrocatalysts for Engineered Interfaces in Na–S Batteries. ACS Catalysis, 2021, 11, 15149-15161.	5.5	24
371	Graphdiyne-like Porous Organic Framework as a Solid-Phase Sulfur Conversion Cathodic Host for Stable Li–S Batteries. ACS Applied Materials & Interfaces, 2021, 13, 59983-59992.	4.0	14
372	A review of the rational interfacial designs and characterizations for solidâ€state lithium/sulfur cells. Electrochemical Science Advances, 2022, 2, .	1.2	1
373	Geometrical engineering of a SPAN–graphene composite cathode for practical Li–S batteries. Journal of Materials Chemistry A, 2022, 10, 10844-10853.	5.2	15
374	Polyurethane latent catalysts obtained by emulsion solvent evaporation. Polymer Bulletin, 2023, 80, 3377-3393.	1.7	1
375	Advances in nanomaterials for sulfurized carbon cathodes. , 2022, , 241-270.		0
376	Recent developments in lithium–sulfur batteries. , 2022, , 11-36.		0
376 377	Recent developments in lithium–sulfur batteries. , 2022, , 11-36. A Highâ€Energy and Safe Lithium Battery Enabled by Solid tate Redox Chemistry in a Fireproof Gel Electrolyte. Advanced Materials, 2022, 34, e2201981.	11.1	0 27
	A Highâ€Energy and Safe Lithium Battery Enabled by Solidâ€State Redox Chemistry in a Fireproof Gel	11.1 2.4	
377	A Highâ€Energy and Safe Lithium Battery Enabled by Solid‣tate Redox Chemistry in a Fireproof Gel Electrolyte. Advanced Materials, 2022, 34, e2201981.		27
377 378	 A Highâ€Energy and Safe Lithium Battery Enabled by Solid tate Redox Chemistry in a Fireproof Gel Electrolyte. Advanced Materials, 2022, 34, e2201981. Strategies towards High Performance Lithium ulfur Batteries. Batteries and Supercaps, 2022, 5, . Regulating liquid and solid-state electrolytes for solid-phase conversion in Li–S batteries. CheM, 	2.4	27 30
377 378 379	A Highâ€Energy and Safe Lithium Battery Enabled by Solidâ€&tate Redox Chemistry in a Fireproof Gel Electrolyte. Advanced Materials, 2022, 34, e2201981. Strategies towards High Performance Lithiumâ€&ulfur Batteries. Batteries and Supercaps, 2022, 5, . Regulating liquid and solid-state electrolytes for solid-phase conversion in Li–S batteries. CheM, 2022, 8, 1201-1230. Investigation for Charge-Discharge Operations of Li ₄ 50 ₁₂ -Sulfur Batteries by	2.4 5.8	27 30 59
377 378 379 380	A Highâ€Energy and Safe Lithium Battery Enabled by Solidâ€State Redox Chemistry in a Fireproof Gel Electrolyte. Advanced Materials, 2022, 34, e2201981. Strategies towards High Performance Lithiumâ€Sulfur Batteries. Batteries and Supercaps, 2022, 5, . Regulating liquid and solid-state electrolytes for solid-phase conversion in Li–S batteries. CheM, 2022, 8, 1201-1230. Investigation for Charge-Discharge Operations of Li ₄ 50 ₁₂ -Sulfur Batteries by Suitable Choice of Materials and Cell Preparation Processes. Electrochemistry, 2022, ,. Multispecies Lithiation/Delithiation of Amorphous FeS _{<i>x</i>}	2.4 5.8 0.6	27 30 59 0
377 378 379 380 381	A Highâ€Energy and Safe Lithium Battery Enabled by Solid tate Redox Chemistry in a Fireproof Gel Electrolyte. Advanced Materials, 2022, 34, e2201981. Strategies towards High Performance Lithiumâ€6ulfur Batteries. Batteries and Supercaps, 2022, 5, . Regulating liquid and solid-state electrolytes for solid-phase conversion in Li–S batteries. CheM, 2022, 8, 1201-1230. Investigation for Charge-Discharge Operations of Li ₅ 0 ₁₂ Sulfur Batteries by Suitable Choice of Materials and Cell Preparation Processes. Electrochemistry, 2022, Multispecies Lithiation/Delithiation of Amorphous FeS _{<i>x</i>> Fibrous organosulfur cathode materials with high bonded sulfur for high-performance}	2.4 5.8 0.6 1.5	27 30 59 0 5

#	Article	IF	CITATIONS
385	Polydopamine as an interfacial layer to enhance mechanical and adhesive properties of the active materials in a sulfur cathode of sodium-sulfur batteries. Chemical Engineering Journal Advances, 2022, 11, 100352.	2.4	4
386	Construction of high-performance sulfurized poly(acrylonitrile) cathodes for lithium-sulfur batteries via catalytic and conductive regulation. Journal of Alloys and Compounds, 2022, 919, 165838.	2.8	10
387	A novel mixed ether-based electrolyte for lithium–sulfur batteries with Li anode protection by dual salts. Sustainable Energy and Fuels, 2022, 6, 3658-3668.	2.5	5
388	Solid electrolytes for lithium-sulfur batteries. , 2022, , 17-47.		0
389	Sulfureted Polyacrylonitrile Derived Carbon Encapsulated Silicon as High-Performance Anode Material for Lithium-Ion Batteries. SSRN Electronic Journal, 0, , .	0.4	0
390	Structure and Evolution of Quasiâ€Solidâ€State Hybrid Electrolytes Formed Inside Electrochemical Cells. Advanced Materials, 2022, 34, .	11.1	30
391	Solvent selection criteria for temperature-resilient lithium–sulfur batteries. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	17
392	Recent progress of sulfur cathodes and other components for flexible lithium–sulfur batteries. Materials Today Sustainability, 2022, 19, 100181.	1.9	8
393	Toward unveiling structure and property relationships from ionic ordering in Li/S battery electrolytes: Neutron total scattering and molecular dynamics simulations. Energy Storage Materials, 2022, 52, 85-93.	9.5	2
394	Nickel nanoparticles embedded N-doped mesoporous graphitized carbon nanoflake as multifunctional sulfur host for high-performance lithium-sulfur batteries. Journal of Alloys and Compounds, 2022, 921, 166144.	2.8	3
395	<i>In Operando</i> FTIR Study on the Effect of Sulfur Chain Length in Sulfur Copolymer-Based Li–S Batteries. Journal of Physical Chemistry C, 2022, 126, 12327-12338.	1.5	14
396	Highly Reversible Sodium Metal Battery Anodes via Alloying Heterointerfaces. Small, 2022, 18, .	5.2	14
397	Metalized Polyacrylates as Efficient Binder for a Sulfurized Polyacrylonitrile/Polydopamine Active Material in Sulfur Cathodes for Room Temperature Sodium–Sulfur Batteries. ACS Applied Energy Materials, 2022, 5, 11304-11316.	2.5	4
398	Dual Passivation of Cathode and Anode through Electrode–Electrolyte Interface Engineering Enables Long-Lifespan Li Metal–SPAN Batteries. ACS Energy Letters, 2022, 7, 2866-2875.	8.8	30
399	Molecular engineering of sulfurâ€providing materials for optimized sulfur conversion in Liâ€S chemistry. EcoMat, 2022, 4, .	6.8	7
400	Fast-charging aluminium–chalcogen batteries resistant to dendritic shorting. Nature, 2022, 608, 704-711.	13.7	77
401	All-cellulose gel electrolyte with black phosphorus based lithium ion conductors toward advanced lithium-sulfurized polyacrylonitrile batteries. Carbohydrate Polymers, 2022, 296, 119950.	5.1	11
402	A Perspective on Sulfur-Equivalent Cathode Materials for Lithium-Sulfur Batteries. , 0, 1, .		1

#	Article	IF	CITATIONS
403	A quasi-intercalation reaction for fast sulfur redox kinetics in solid-state lithium–sulfur batteries. Energy and Environmental Science, 2022, 15, 4289-4300.	15.6	66
404	Polyphenylene Sulfite Based Solid-State Separator for Blocking Polysulfide in Sodium-Ion Battery with Cheap Fes Anode. SSRN Electronic Journal, 0, , .	0.4	0
405	Highâ€Energy and Longâ€Lifespan Potassium–Sulfur Batteries Enabled by Concentrated Electrolyte. Advanced Functional Materials, 2022, 32, .	7.8	16
406	Formation Mechanism of Flower-like Polyacrylonitrile Particles. Journal of the American Chemical Society, 2022, 144, 17576-17587.	6.6	11
407	Sulfureted polyacrylonitrile derived carbon encapsulated silicon as high-performance anode material for lithium-ion batteries. Journal of Alloys and Compounds, 2022, 929, 167355.	2.8	3
408	Progress and Prospects of Emerging Potassium–Sulfur Batteries. Advanced Energy Materials, 2022, 12,	10.2	11
409	Constructing sulfur and nitrogen codoped porous carbon with optimized defect-sites and electronic structure promises high performance potassium-ion storage. Chemical Engineering Journal, 2023, 454, 140116.	6.6	8
410	A new ether-based medium-concentrated electrolyte for lithium–sulfur battery with lean Li anode. Journal of Power Sources, 2022, 551, 232211.	4.0	8
411	Pinned Electrode/Electrolyte Interphase and Its Formation Origin for Sulfurized Polyacrylonitrile Cathode in Stable Lithium Batteries. ACS Applied Materials & Interfaces, 2022, 14, 52046-52057.	4.0	4
412	Bidirectional Tandem Electrocatalysis Manipulated Sulfur Speciation Pathway for Highâ€Capacity and Stable Naâ€S Battery. Angewandte Chemie - International Edition, 2023, 62, .	7.2	9
413	Bidirectional Tandem Electrocatalysis Manipulated Sulfur Speciation Pathway for High apacity and Stable Na‧ Battery. Angewandte Chemie, 2023, 135, .	1.6	1
414	A Polysulfide-Repulsive, In Situ Solidified Cathode–Electrolyte Interface for High-Performance Lithium–Sulfur Batteries. Journal of Physical Chemistry C, 2023, 127, 1355-1362.	1.5	4
415	Polyphenylene sulfite based solid-state separator for blocking polysulfide in sodium-ion battery with cheap FeS anode. Journal of Alloys and Compounds, 2023, 941, 168886.	2.8	2
416	Sulfur omposites Derived from Poly(acrylonitrile) and Poly(vinylacetylene) – A Comparative Study on the Role of Pyridinic and Thioamidic Nitrogen. Batteries and Supercaps, 2023, 6, .	2.4	3
417	Sulfydryl-modified MXene as a sulfur host for highly stable Li-S batteries. Electrochimica Acta, 2023, 441, 141877.	2.6	3
418	Progress and Prospect of Practical Lithium-Sulfur Batteries Based on Solid-Phase Conversion. Batteries, 2023, 9, 27.	2.1	5
419	Polymer electrolytes reinforced by 2D fluorinated filler for all-solid-state Li-Fe-F conversion-type lithium metal batteries. Nano Research, 2023, 16, 8469-8477.	5.8	15
421	Surface-dominated potassium storage enabled by single-atomic sulfur for high-performance K-ion battery anodes. Energy and Environmental Science, 2023, 16, 1540-1547.	15.6	19

#	Article	IF	CITATIONS
422	Structure and reactions mechanism of sulfurized polyacrylonitrile as cathodes for rechargeable Li-S batteries. Nano Research, 2023, 16, 8159-8172.	5.8	3
423	Sulfideâ€Bridged Covalent Quinoxaline Frameworks for Lithium–Organosulfide Batteries. Advanced Materials, 2023, 35, .	11.1	12
424	Organosulfur Materials for Rechargeable Batteries: Structure, Mechanism, and Application. Chemical Reviews, 2023, 123, 1262-1326.	23.0	45
425	Rough Endoplasmic Reticulum Inspired Polystyreneâ€Brushâ€Based Superhigh Sulfur Content Cathodes Enable Lithium–Sulfur Cells with High Mass and Capacity Loading. Advanced Materials, 2023, 35, .	11.1	10
426	Construction of highly stable Lil/LiBr-based nanocomposite cathode via triple confinement mechanisms for lithium-halogen batteries. Chinese Chemical Letters, 2023, 34, 108248.	4.8	0
427	Polysulfide cluster formation, surface reaction, and role of fluorinated additive on solid electrolyte interphase formation at sodium-metal anode for sodium–sulfur batteries. Journal of Chemical Physics, 2023, 158, .	1.2	3
428	Extended Conjugation Acceptors Increase Specific Energy Densities in π-Conjugated Redox Polymers. Journal of Physical Chemistry C, 2023, 127, 5238-5245.	1.5	0
429	All-Solid-State Garnet Type Sulfurized Polyacrylonitrile/Lithium-Metal Battery Enabled by an Inorganic Lithium Conductive Salt and a Bilayer Electrolyte Architecture. ACS Energy Letters, 2023, 8, 1803-1810.	8.8	16
430	Insights into the Pseudocapacitive Behavior of Sulfurized Polymer Electrodes for Li–S Batteries. Advanced Science, 2023, 10, .	5.6	7
431	Selenium-Doped Sulfurized Poly(acrylonitrile) Composites as Ultrastable and High-Volumetric-Capacity Cathodes for Lithium–Sulfur Batteries. ACS Applied Energy Materials, 2023, 6, 3903-3914.	2.5	3
432	Uncovering the Binder Interactions with S-PAN and MXene for Room Temperature Na–S Batteries. Nano Letters, 2023, 23, 3592-3598.	4.5	3
433	A Multifunctional Coating on Sulfur-Containing Carbon-Based Anode for High-Performance Sodium-Ion Batteries. Molecules, 2023, 28, 3335.	1.7	1
434	Recent Advances of Metal Groups and Their Heterostructures as Catalytic Materials for Lithium-Sulfur Battery Cathodes. Journal of Electronic Materials, 2023, 52, 3526-3548.	1.0	1
435	Structural Transformation in a Sulfurized Polymer Cathode to Enable Long-Life Rechargeable Lithium–Sulfur Batteries. Journal of the American Chemical Society, 2023, 145, 9624-9633.	6.6	25
445	Scalable SPAN Membrane Cathode with High Conductivity and Hierarchically Porous Framework for Enhanced Ion Transfer and Cycling Stability in Li–S Batteries. , 2023, 5, 2047-2057.		3
461	Li-S Batteries: Challenges, Achievements and Opportunities. Electrochemical Energy Reviews, 2023, 6, .	13.1	22
472	Engineering Strategies for Suppressing the Shuttle Effect in Lithium–Sulfur Batteries. Nano-Micro Letters, 2024, 16, .	14.4	7