Flavivirus sfRNA suppresses antiviral RNA interference and directly interacts with the RNAi machinery

Virology 485, 322-329

DOI: 10.1016/j.virol.2015.08.009

Citation Report

#	Article	IF	CITATIONS
1	Ebola VP40 in Exosomes Can Cause Immune Cell Dysfunction. Frontiers in Microbiology, 2016, 7, 1765.	1.5	62
2	PIWIs Go Viral: Arbovirus-Derived piRNAs in Vector Mosquitoes. PLoS Pathogens, 2016, 12, e1006017.	2.1	151
3	The evolving world of small <scp>RNAs</scp> from <scp>RNA</scp> viruses. Wiley Interdisciplinary Reviews RNA, 2016, 7, 575-588.	3.2	28
4	A glance at subgenomic flavivirus RNAs and microRNAs in flavivirus infections. Virology Journal, 2016, 13, 84.	1.4	39
5	Noncoding Subgenomic Flavivirus RNA Is Processed by the Mosquito RNA Interference Machinery and Determines West Nile Virus Transmission by Culex pipiens Mosquitoes. Journal of Virology, 2016, 90, 10145-10159.	1.5	99
6	Functions of Small RNAs in Mosquitoes. Advances in Insect Physiology, 2016, 51, 189-222.	1.1	18
7	Zika virus produces noncoding RNAs using a multi-pseudoknot structure that confounds a cellular exonuclease. Science, 2016, 354, 1148-1152.	6.0	212
8	The roles of the exoribonucleases DIS3L2 and XRN1 in human disease. Biochemical Society Transactions, 2016, 44, 1377-1384.	1.6	32
9	Human MicroRNA miR-532-5p Exhibits Antiviral Activity against West Nile Virus via Suppression of Host Genes SESTD1 and TAB3 Required for Virus Replication. Journal of Virology, 2016, 90, 2388-2402.	1.5	60
10	Arthropod Innate Immune Systems and Vector-Borne Diseases. Biochemistry, 2017, 56, 907-918.	1.2	79
11	Host Range Restriction of Insect-Specific Flaviviruses Occurs at Several Levels of the Viral Life Cycle. MSphere, 2017, 2, .	1.3	62
12	Inhibition of type I interferon induction and signalling by mosquito-borne flaviviruses. Cellular Microbiology, 2017, 19, e12737.	1.1	27
13	Zika virus: An emerging flavivirus. Journal of Microbiology, 2017, 55, 204-219.	1.3	86
14	Gene silencing in nonâ€model insects: Overcoming hurdles using symbiotic bacteria for traumaâ€free sustainable delivery of RNA interference. BioEssays, 2017, 39, 1600247.	1.2	43
15	Molecular mechanisms of Dicer: endonuclease and enzymatic activity. Biochemical Journal, 2017, 474, 1603-1618.	1.7	180
16	Impact of simultaneous exposure to arboviruses on infection and transmission by Aedes aegypti mosquitoes. Nature Communications, 2017, 8, 15412.	5 . 8	164
17	Arbovirus Adaptation: Roles in Transmission and Emergence. Current Clinical Microbiology Reports, 2017, 4, 159-166.	1.8	2
18	The Clinical Application of MicroRNAs in Infectious Disease. Frontiers in Immunology, 2017, 8, 1182.	2,2	134

#	Article	IF	CITATIONS
19	Viruses and miRNAs: More Friends than Foes. Frontiers in Microbiology, 2017, 8, 824.	1.5	181
20	The 5′ and 3′ Untranslated Regions of the Flaviviral Genome. Viruses, 2017, 9, 137.	1.5	126
21	Dengue virus genomic variation associated with mosquito adaptation defines the pattern of viral non-coding RNAs and fitness in human cells. PLoS Pathogens, 2017, 13, e1006265.	2.1	95
22	Dengue subgenomic flaviviral RNA disrupts immunity in mosquito salivary glands to increase virus transmission. PLoS Pathogens, 2017, 13, e1006535.	2.1	101
23	Targeting Dengue Virus Replication in Mosquitoes., 2017,, 201-217.		5
24	Viral manipulation of host mRNA decay. Future Virology, 2018, 13, 211-223.	0.9	12
25	Biochemistry and Molecular Biology of Flaviviruses. Chemical Reviews, 2018, 118, 4448-4482.	23.0	211
26	Antiviral Immunity and Virus-Mediated Antagonism in Disease Vector Mosquitoes. Trends in Microbiology, 2018, 26, 447-461.	3.5	58
27	Flaviviruses Produce a Subgenomic Flaviviral RNA That Enhances Mosquito Transmission. DNA and Cell Biology, 2018, 37, 154-159.	0.9	21
28	Mechanism and structural diversity of exoribonuclease-resistant RNA structures in flaviviral RNAs. Nature Communications, $2018, 9, 119$.	5.8	95
29	Antiviral systems in vector mosquitoes. Developmental and Comparative Immunology, 2018, 83, 34-43.	1.0	13
30	How Do Virus–Mosquito Interactions Lead to Viral Emergence?. Trends in Parasitology, 2018, 34, 310-321.	1.5	80
31	Functional RNA during Zika virus infection. Virus Research, 2018, 254, 41-53.	1.1	69
32	Identification of phlebovirus and arenavirus RNA sequences that stall and repress the exoribonuclease XRN1. Journal of Biological Chemistry, 2018, 293, 285-295.	1.6	28
33	Mosquitoes as Arbovirus Vectors: From Species Identification to Vector Competence. Parasitology Research Monographs, 2018, , 163-212.	0.4	9
34	RNAi-mediated antiviral immunity in insects and their possible application. Current Opinion in Virology, 2018, 32, 108-114.	2.6	34
35	The Multiples Fates of the Flavivirus RNA Genome During Pathogenesis. Frontiers in Genetics, 2018, 9, 595.	1.1	81
36	Sequential Infection of Aedes aegypti Mosquitoes with Chikungunya Virus and Zika Virus Enhances Early Zika Virus Transmission. Insects, 2018, 9, 177.	1.0	34

#	Article	IF	Citations
37	Subgenomic flaviviral RNAs: What do we know after the first decade of research. Antiviral Research, 2018, 159, 13-25.	1.9	82
38	Homologous RNA secondary structure duplications in $3\hat{a}\in^2$ untranslated region influence subgenomic RNA production and replication of dengue virus. Virology, 2018, 524, 114-126.	1.1	12
39	Diverse Host and Restriction Factors Regulate Mosquito–Pathogen Interactions. Trends in Parasitology, 2018, 34, 603-616.	1.5	44
40	Flaviviral RNA Structures and Their Role in Replication and Immunity. Advances in Experimental Medicine and Biology, 2018, 1062, 45-62.	0.8	7
41	The conserved stem-loop II structure at the 3' untranslated region of Japanese encephalitis virus genome is required for the formation of subgenomic flaviviral RNA. PLoS ONE, 2018, 13, e0201250.	1.1	17
42	The Immune Responses of the Animal Hosts of West Nile Virus: A Comparison of Insects, Birds, and Mammals. Frontiers in Cellular and Infection Microbiology, 2018, 8, 96.	1.8	32
43	The small non-coding RNA response to virus infection in the Leishmania vector Lutzomyia longipalpis. PLoS Neglected Tropical Diseases, 2018, 12, e0006569.	1.3	10
44	Beet Necrotic Yellow Vein Virus Noncoding RNA Production Depends on a 5′→3′ Xrn Exoribonuclease Activity. Viruses, 2018, 10, 137.	1.5	26
45	To accelerate the Zika beat: Candidate design for RNA interference-based therapy. Virus Research, 2018, 255, 133-140.	1.1	14
46	Regulation of cytoplasmic RNA stability: Lessons from <i>Drosophila</i> . Wiley Interdisciplinary Reviews RNA, 2018, 9, e1499.	3.2	11
47	A folded viral noncoding RNA blocks host cell exoribonucleases through a conformationally dynamic RNA structure. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 6404-6409.	3.3	82
48	Structural features of an Xrn1-resistant plant virus RNA. RNA Biology, 2019, 16, 838-845.	1.5	21
49	MicroRNAs 145 and 148a Are Upregulated During Congenital Zika Virus Infection. ASN Neuro, 2019, 11, 175909141985098.	1.5	24
50	The microRNA pathway is involved in Spodoptera frugiperda (Sf9) cells antiviral immune defense against Autographa californica multiple nucleopolyhedrovirus infection. Insect Biochemistry and Molecular Biology, 2019, 112, 103202.	1.2	17
51	Arboviruses and the Challenge to Establish Systemic and Persistent Infections in Competent Mosquito Vectors: The Interaction With the RNAi Mechanism. Frontiers in Physiology, 2019, 10, 890.	1.3	20
52	The Interplay between Dengue Virus and the Human Innate Immune System: A Game of Hide and Seek. Vaccines, 2019, 7, 145.	2.1	20
53	Insulin Potentiates JAK/STAT Signaling to Broadly Inhibit Flavivirus Replication in Insect Vectors. Cell Reports, 2019, 29, 1946-1960.e5.	2.9	49
54	A novel method for the capture-based purification of whole viral native RNA genomes. AMB Express, 2019, 9, 45.	1.4	11

#	Article	IF	Citations
55	Zika virus noncoding sfRNAs sequester multiple host-derived RNA-binding proteins and modulate mRNA decay and splicing during infection. Journal of Biological Chemistry, 2019, 294, 16282-16296.	1.6	53
56	Subgenomic flavivirus RNA binds the mosquito DEAD/H-box helicase ME31B and determines Zika virus transmission by <i>Aedes aegypti</i> Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 19136-19144.	3.3	60
57	Long noncoding RNAs: Novel regulators of virusâ€host interactions. Reviews in Medical Virology, 2019, 29, e2046.	3.9	38
58	RNA regulatory processes in RNA virus biology. Wiley Interdisciplinary Reviews RNA, 2019, 10, e1536.	3.2	31
59	Idiosyncrasies of Viral Noncoding RNAs Provide Insights into Host Cell Biology. Annual Review of Virology, 2019, 6, 297-317.	3.0	20
60	Arbovirus lifecycle in mosquito: acquisition, propagation and transmission. Expert Reviews in Molecular Medicine, 2019, 21, e1.	1.6	38
61	Arbovirus-Mosquito Vector-Host Interactions and the Impact on Transmission and Disease Pathogenesis of Arboviruses. Frontiers in Microbiology, 2019, 10, 22.	1.5	74
62	Integrated MicroRNA and mRNA Profiling in Zika Virus-Infected Neurons. Viruses, 2019, 11, 162.	1.5	37
63	Hit two birds with one stone: the multiple properties of (viral) RNA silencing suppressors. Virologie, 2019, 23, 38-60.	0.1	0
64	RNA Structure Duplication in the Dengue Virus 3′ UTR: Redundancy or Host Specificity?. MBio, 2019, 10, .	1.8	51
65	Engineered viral RNA decay intermediates to assess XRN1-mediated decay. Methods, 2019, 155, 116-123.	1.9	3
66	Immune Evasion Strategies Used by Zika Virus to Infect the Fetal Eye and Brain. Viral Immunology, 2020, 33, 22-37.	0.6	16
67	Structure and function of <i>cis</i> â€acting RNA elements of flavivirus. Reviews in Medical Virology, 2020, 30, e2092.	3.9	21
68	A New Subclass of Exoribonuclease-Resistant RNA Found in Multiple Genera of <i>Flaviviridae</i> MBio, 2020, 11, .	1.8	12
69	Evaluation in Swine of a Recombinant African Swine Fever Virus Lacking the MGF-360-1L Gene. Viruses, 2020, 12, 1193.	1.5	19
70	Experimental adaptation of dengue virus 1 to Aedes albopictus mosquitoes by in vivo selection. Scientific Reports, 2020, 10, 18404.	1.6	10
71	Zika Virus Replication in Myeloid Cells during Acute Infection Is Vital to Viral Dissemination and Pathogenesis in a Mouse Model. Journal of Virology, 2020, 94, .	1.5	14
72	Disruption of Zika Virus xrRNA1-Dependent sfRNA1 Production Results in Tissue-Specific Attenuated Viral Replication. Viruses, 2020, 12, 1177.	1.5	4

#	ARTICLE	IF	Citations
73	Degradation of MicroRNA miR-466d-3p by Japanese Encephalitis Virus NS3 Facilitates Viral Replication and Interleukin- $1\hat{l}^2$ Expression. Journal of Virology, 2020, 94, .	1.5	11
74	West Nile Virus Restriction in Mosquito and Human Cells: A Virus under Confinement. Vaccines, 2020, 8, 256.	2.1	13
75	Differential Small RNA Responses against Co-Infecting Insect-Specific Viruses in Aedes albopictus Mosquitoes. Viruses, 2020, 12, 468.	1.5	16
76	A rapid and simple quantitative method for specific detection of smaller coterminal RNA by PCR (DeSCo-PCR): application to the detection of viral subgenomic RNAs. Rna, 2020, 26, 888-901.	1.6	5
77	Impact of alphavirus 3'UTR plasticity on mosquito transmission. Seminars in Cell and Developmental Biology, 2021, 111, 148-155.	2.3	8
78	The tale of two flaviviruses: subversion of host pathways by RNA shapes in dengue and hepatitis C viral RNA genomes. Current Opinion in Microbiology, 2021, 59, 79-85.	2.3	8
79	Zika virus pathogenesis and current therapeutic advances. Pathogens and Global Health, 2021, 115, 21-39.	1.0	23
80	Mosquitoâ€infecting virus Espirito Santo virus inhibits replication and spread of dengue virus. Journal of Medical Virology, 2021, 93, 3362-3373.	2.5	13
81	Different tertiary interactions create the same important 3D features in a distinct flavivirus xrRNA. Rna, 2021, 27, 54-65.	1.6	27
82	Xrn1-resistant RNA structures are well-conserved within the genus flavivirus. RNA Biology, 2021, 18, 709-717.	1.5	5
83	A database of flavivirus RNA structures with a search algorithm for pseudoknots and triple base interactions. Bioinformatics, 2021, 37, 956-962.	1.8	3
84	A mosquito small RNA genomics resource reveals dynamic evolution and host responses to viruses and transposons. Genome Research, 2021, 31, 512-528.	2.4	29
85	Dengue Virus Serotype 2 Intrahost Diversity in Patients with Different Clinical Outcomes. Viruses, 2021, 13, 349.	1.5	11
86	All genera of Flaviviridae host a conserved Xrn1-resistant RNA motif. RNA Biology, 2021, 18, 1-9.	1.5	4
87	Information Encoded by the Flavivirus Genomes beyond the Nucleotide Sequence. International Journal of Molecular Sciences, 2021, 22, 3738.	1.8	10
88	Tetraspanins as Potential Therapeutic Candidates for Targeting Flaviviruses. Frontiers in Immunology, 2021, 12, 630571.	2.2	7
89	A Comprehensive Analysis of Northern versus Liquid Hybridization Assays for mRNAs, Small RNAs, and miRNAs Using a Non-Radiolabeled Approach. Current Issues in Molecular Biology, 2021, 43, 457-484.	1.0	12
90	Cell death pathways and viruses: Role of microRNAs. Molecular Therapy - Nucleic Acids, 2021, 24, 487-511.	2.3	39

#	ARTICLE	IF	CITATIONS
91	Genome-wide analyses of XRN1-sensitive targets in osteosarcoma cells identify disease-relevant transcripts containing G-rich motifs. Rna, 2021, 27, 1265-1280.	1.6	4
92	Cotranslational prolyl hydroxylation is essential for flavivirus biogenesis. Nature, 2021, 596, 558-564.	13.7	18
93	Promiscuous virusesâ€"how do viruses survive multiple unrelated hosts?. Current Opinion in Virology, 2017, 23, 125-129.	2.6	5
99	Full Genome Sequence and sfRNA Interferon Antagonist Activity of Zika Virus from Recife, Brazil. PLoS Neglected Tropical Diseases, 2016, 10, e0005048.	1.3	193
100	Innate Immune Antagonism of Mosquito-Borne Flaviviruses in Humans and Mosquitoes. Viruses, 2021, 13, 2116.	1.5	10
108	Effects of the noncoding subgenomic RNA of red clover necrotic mosaic virus in virus infection. Journal of Virology, 2021, , JVI0181521.	1.5	5
109	Mutational analysis of Aedes aegypti Dicer 2 provides insights into the biogenesis of antiviral exogenous small interfering RNAs. PLoS Pathogens, 2022, 18, e1010202.	2.1	6
110	Cellular <i>Lnc_209997</i> suppresses <i>Bombyx mori</i> nucleopolyhedrovirus replication by targeting <scp>miR</scp> â€275â€5p in <i>B. mori</i> lnsect Molecular Biology, 2022, 31, 308-316.	1.0	8
111	Loquacious modulates flaviviral RNA replication in mosquito cells. PLoS Pathogens, 2022, 18, e1010163.	2.1	3
112	Host and viral nonâ€coding RNAs in dengue pathogenesis. Reviews in Medical Virology, 2022, 32, e2360.	3.9	6
113	The Interaction of Influenza A NS1 and Cellular TRBP Protein Modulates the Function of RNA Interference Machinery. Frontiers in Microbiology, 2022, 13, 859420.	1.5	2
115	Analysis of the Function of LncRNA-MSTRG.16919.1 in BHV-1-infected Bovine Kidney Subculture Cells by Transcriptome Sequencing. Viruses, 2022, 14, 2104.	1.5	0
116	miRNAs: The Key Regulator of COVID-19 Disease. International Journal of Cell Biology, 2022, 2022, 1-19.	1.0	7
117	Interactions of host miRNAs in the flavivirus $3\hat{A}$ UTR genome: From bioinformatics predictions to practical approaches. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	3
118	A Brief History of the Discovery of RNA-Mediated Antiviral Immune Defenses in Vector Mosquitos. Microbiology and Molecular Biology Reviews, 2023, 87, .	2.9	4
120	Simultaneous Coinfections with West Nile Virus and Usutu Virus in Culex pipiens and Aedes vexans Mosquitoes. Transboundary and Emerging Diseases, 2023, 2023, 1-13.	1.3	1
123	RNAi: The Mosquito Defense System Against Damage Due to Arbovirus Infection. , 2023, , 3-14.		0