Transient assembly of active materials fueled by a chem

Science 349, 1075-1079 DOI: 10.1126/science.aac6103

Citation Report

#	Article	IF	CITATIONS
1	Supramolecular Hydrogelators and Hydrogels: From Soft Matter to Molecular Biomaterials. Chemical Reviews, 2015, 115, 13165-13307.	47.7	1,497
2	Self-healing microtubules. Nature Materials, 2015, 14, 1080-1081.	27.5	9
3	Stability and its manifestation in the chemical and biological worlds. Chemical Communications, 2015, 51, 16160-16165.	4.1	51
4	Fueling connections between chemistry and biology. Science, 2015, 349, 1056-1057.	12.6	16
5	Synergistic Assembly of Covalent and Supramolecular Polymers. Macromolecular Rapid Communications, 2016, 37, 920-923.	3.9	4
6	The nanotechnology of life-inspired systems. Nature Nanotechnology, 2016, 11, 585-592.	31.5	348
7	Synthetic Selfâ€Assembled Materials in Biological Environments. Advanced Materials, 2016, 28, 4576-4592.	21.0	68
8	Temporal Control of Gelation and Polymerization Fronts Driven by an Autocatalytic Enzyme Reaction. Angewandte Chemie, 2016, 128, 2167-2171.	2.0	33
9	Reaction–diffusion processes at the nano- and microscales. Nature Nanotechnology, 2016, 11, 312-319.	31.5	192
10	Enzymatic induction of supramolecular order and bioactivity. Nanoscale, 2016, 8, 10768-10773.	5.6	16
11	Temporal Control of Gelation and Polymerization Fronts Driven by an Autocatalytic Enzyme Reaction. Angewandte Chemie - International Edition, 2016, 55, 2127-2131.	13.8	112
12	Dissipative self-assembly of vesicular nanoreactors. Nature Chemistry, 2016, 8, 725-731.	13.6	355
13	In command of non-equilibrium. Chemical Society Reviews, 2016, 45, 2768-2784.	38.1	20
14	The Logic of Life. Origins of Life and Evolution of Biospheres, 2016, 46, 507-513.	1.9	12
15	Emergent Behaviors in Kinetically Controlled Dynamic Self-Assembly of Synthetic Molecular Systems. ACS Omega, 2016, 1, 378-387.	3.5	19
16	Physical Organic Chemistry and the Origin of Life Problem: A Personal Perspective. Israel Journal of Chemistry, 2016, 56, 83-88.	2.3	3
17	Controlling the width of nanosheets by peptide length in peptoid–peptide biohybrid hydrogels. RSC Advances, 2016, 6, 67025-67028.	3.6	7
18	Engineering responsive supramolecular biomaterials: Toward smart therapeutics. Bioengineering and Translational Medicine, 2016, 1, 252-266.	7.1	48

#	Article	IF	CITATIONS
19	Kinetic trapping – a strategy for directing the self-assembly of unique functional nanostructures. Chemical Communications, 2016, 52, 11870-11884.	4.1	100
20	A Compartmentalized Out-of-Equilibrium Enzymatic Reaction Network for Sustained Autonomous Movement. ACS Central Science, 2016, 2, 843-849.	11.3	133
21	Mimosa Origami: A nanostructure-enabled directional self-organization regime of materials. Science Advances, 2016, 2, e1600417.	10.3	108
22	Hydrazone Switch-Based Negative Feedback Loop. Journal of the American Chemical Society, 2016, 138, 15142-15145.	13.7	77
23	Ligand–Receptor Interaction Modulates the Energy Landscape of Enzyme-Instructed Self-Assembly of Small Molecules. Journal of the American Chemical Society, 2016, 138, 15397-15404.	13.7	42
24	Catalysis of Supramolecular Hydrogelation. Accounts of Chemical Research, 2016, 49, 1440-1447.	15.6	64
25	In situ real-time imaging of self-sorted supramolecular nanofibres. Nature Chemistry, 2016, 8, 743-752.	13.6	191
26	Emergent behavior in active colloids. Journal of Physics Condensed Matter, 2016, 28, 253001.	1.8	327
27	Polymer Interfaces: Synthetic Strategies Enabling Functionality, Adaptivity, and Spatial Control. Macromolecules, 2016, 49, 5001-5016.	4.8	25
28	Energy landscapes and functions of supramolecular systems. Nature Materials, 2016, 15, 469-476.	27.5	348
29	Sucrose-fueled, energy dissipative, transient formation of molecular hydrogels mediated by yeast activity. Chemical Communications, 2016, 52, 5398-5401.	4.1	56
30	In situ enzymatic formation of supramolecular nanofibers for efficiently killing cancer cells. RSC Advances, 2016, 6, 32519-32522.	3.6	19
31	Nanomanufacturing: A Perspective. ACS Nano, 2016, 10, 2995-3014.	14.6	176
32	Supramolecular pathway selection of perylenediimides mediated by chemical fuels. Chemical Communications, 2016, 52, 9009-9012.	4.1	97
33	D-amino acid-containing supramolecular nanofibers for potential cancer therapeutics. Advanced Drug Delivery Reviews, 2017, 110-111, 102-111.	13.7	74
34	Opinion: Studies on the origin of life \hat{a} €" the end of the beginning. Nature Reviews Chemistry, 2017, 1, .	30.2	148
35	Transient Catalytic Activity of a Triazoleâ€based Gelator Regulated by Molecular Gel Assembly/Disassembly. ChemistrySelect, 2017, 2, 854-862.	1.5	10
36	A novel H2O2responsive supramolecular hydrogel for controllable drug release. RSC Advances, 2017, 7, 1313-1317.	3.6	25

#	Article	IF	CITATIONS
37	Preprogramming Complex Hydrogel Responses using Enzymatic Reaction Networks. Angewandte Chemie - International Edition, 2017, 56, 1794-1798.	13.8	54
38	Materials learning from life: concepts for active, adaptive and autonomous molecular systems. Chemical Society Reviews, 2017, 46, 5588-5619.	38.1	375
39	Transient self-assembly of molecular nanostructures driven by chemical fuels. Current Opinion in Biotechnology, 2017, 46, 27-33.	6.6	94
40	Spatiotemporal Control of Supramolecular Self-Assembly and Function. ACS Applied Materials & amp; Interfaces, 2017, 9, 10012-10018.	8.0	51
41	Cooperative polymerization of $\hat{I}\pm$ -helices induced by macromolecular architecture. Nature Chemistry, 2017, 9, 614-622.	13.6	125
42	Preprogramming Complex Hydrogel Responses using Enzymatic Reaction Networks. Angewandte Chemie, 2017, 129, 1820-1824.	2.0	13
43	Self-Assembly Can Direct Dynamic Covalent Bond Formation toward Diversity or Specificity. Journal of the American Chemical Society, 2017, 139, 6234-6241.	13.7	57
44	Systems chemistry. Chemical Society Reviews, 2017, 46, 2543-2554.	38.1	415
45	Supramolecular Hydrogels of Indole apped Short Peptides as Vaccine Adjuvants. Chinese Journal of Chemistry, 2017, 35, 1057-1062.	4.9	11
46	Crossâ€Regulation of an Artificial Metalloenzyme. Angewandte Chemie - International Edition, 2017, 56, 10156-10160.	13.8	23
47	Biocatalytic Selfâ€Assembly Cascades. Angewandte Chemie - International Edition, 2017, 56, 6828-6832.	13.8	65
48	Nonâ€Enzymatic RNA Backbone Proofreading through Energyâ€Dissipative Recycling. Angewandte Chemie - International Edition, 2017, 56, 6563-6566.	13.8	28
49	Supramolecular materials. Chemical Society Reviews, 2017, 46, 2404-2420.	38.1	530
50	Crossâ€Regulation of an Artificial Metalloenzyme. Angewandte Chemie, 2017, 129, 10290-10294.	2.0	3
51	Non-equilibrium steady states in supramolecular polymerization. Nature Communications, 2017, 8, 15899.	12.8	228
52	Temporal Control over Transient Chemical Systems using Structurally Diverse Chemical Fuels. Chemistry - A European Journal, 2017, 23, 11549-11559.	3.3	33
53	Dynamic Selfâ€Assembly of Magnetic/Polymer Composites in Rotating Frames of Reference. Advanced Materials, 2017, 29, 1700614.	21.0	14
54	Chirality and energy transfer amplified circularly polarized luminescence in composite nanohelix. Nature Communications, 2017, 8, 15727.	12.8	357

	CITATION R	CITATION REPORT	
# 55	ARTICLE Polymeric peptide pigments with sequence-encoded properties. Science, 2017, 356, 1064-1068.	IF 12.6	Citations 244
56	Solventâ€Regulated Selfâ€Assembly of an Achiral Donor–Acceptor Complex in Confined Chiral Nanotubes: Chirality Transfer, Inversion and Amplification. Chemistry - A European Journal, 2017, 23, 8225-8231.	3.3	32
57	Non-equilibrium supramolecular polymerization. Chemical Society Reviews, 2017, 46, 5476-5490.	38.1	429
58	Supramolecular biofunctional materials. Biomaterials, 2017, 129, 1-27.	11.4	196
59	Amino acid-based amphiphilic hydrogels: metal ion induced tuning of mechanical and thermal stability. RSC Advances, 2017, 7, 14461-14465.	3.6	30
60	Dual-light control of nanomachines that integrate motor and modulator subunits. Nature Nanotechnology, 2017, 12, 540-545.	31.5	190
61	A Multiscale Description of Biomolecular Active Matter: The Chemistry Underlying Many Life Processes. Accounts of Chemical Research, 2017, 50, 594-598.	15.6	18
62	PolyWhips: Directional Particle Transport by Gradientâ€Directed Growth and Stiffening of Supramolecular Assemblies. Advanced Materials, 2017, 29, 1604430.	21.0	5
63	Transient Helicity: Fuelâ€Driven Temporal Control over Conformational Switching in a Supramolecular Polymer. Angewandte Chemie - International Edition, 2017, 56, 1329-1333.	13.8	132
64	Transient Helicity: Fuelâ€Driven Temporal Control over Conformational Switching in a Supramolecular Polymer. Angewandte Chemie, 2017, 129, 1349-1353.	2.0	69
65	Control over differentiation of a metastable supramolecular assembly in one and two dimensions. Nature Chemistry, 2017, 9, 493-499.	13.6	408
66	An Experimental Framework for Generating Evolvable Chemical Systems in the Laboratory. Origins of Life and Evolution of Biospheres, 2017, 47, 481-497.	1.9	21
67	A thermo-responsive supramolecular gel and its luminescence enhancement induced by rare earth Y ³⁺ . Soft Matter, 2017, 13, 8027-8030.	2.7	30
68	Self-Assembly of Cellulose Oligomers into Nanoribbon Network Structures Based on Kinetic Control of Enzymatic Oligomerization. Langmuir, 2017, 33, 13415-13422.	3.5	35
69	Hydrogels that listen to cells: a review of cell-responsive strategies in biomaterial design for tissue regeneration. Materials Horizons, 2017, 4, 1020-1040.	12.2	144
70	Pulsating Polymer Micelles via ATP-Fueled Dissipative Self-Assembly. ACS Macro Letters, 2017, 6, 1151-1155.	4.8	46
71	Programmierbare transiente Thermogele vermittelt durch eine pH―und Redoxâ€regulierte supramolekulare Polymerisation. Angewandte Chemie, 2017, 129, 15664-15669.	2.0	30
72	Molecular photoswitches mediating the strain-driven disassembly of supramolecular tubules. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 11850-11855.	7.1	70

#	Article	IF	CITATIONS
73	Tuneable Transient Thermogels Mediated by a pH―and Redoxâ€Regulated Supramolecular Polymerization. Angewandte Chemie - International Edition, 2017, 56, 15461-15465.	13.8	101
74	Photochemical Control over Oscillations in Chemical Reaction Networks. Journal of the American Chemical Society, 2017, 139, 15296-15299.	13.7	35
75	Direct visualization and real-time monitoring of dissipative self-assembly by synchronously coupled aggregation-induced emission. Materials Chemistry Frontiers, 2017, 1, 2651-2655.	5.9	23
76	Force percolation of contractile active gels. Soft Matter, 2017, 13, 5624-5644.	2.7	51
77	Supramolecular catalysis and dynamic assemblies for medicine. Chemical Society Reviews, 2017, 46, 6470-6479.	38.1	137
78	Dynamic Light Scattering Investigation of the Kinetics and Fidelity of Supramolecular Copolymerizations in Water. Macromolecules, 2017, 50, 7712-7720.	4.8	22
79	Non-equilibrium dissipative supramolecular materials with a tunable lifetime. Nature Communications, 2017, 8, 15895.	12.8	251
80	Sequential dynamic structuralisation by in situ production of supramolecular building blocks. Chemical Communications, 2017, 53, 8553-8556.	4.1	4
81	Autocatalytic Time-Dependent Evolution of Metastable Two-Component Supramolecular Assemblies to Self-Sorted or Coassembled State. Scientific Reports, 2017, 7, 2425.	3.3	27
82	Potentiating the immune response of MUC1-based antitumor vaccines using a peptide-based nanovector as a promising vaccine adjuvant. Chemical Communications, 2017, 53, 9486-9489.	4.1	27
83	Nonâ€Enzymatic RNA Backbone Proofreading through Energyâ€Đissipative Recycling. Angewandte Chemie, 2017, 129, 6663-6666.	2.0	4
84	Effect of substrate concentrations on the aggregation behavior and dynamic oscillatory properties of self-oscillating block copolymers. Physical Chemistry Chemical Physics, 2017, 19, 20627-20634.	2.8	4
85	Selfâ€Regulated and Temporal Control of a "Breathing―Microgel Mediated by Enzymatic Reaction. Angewandte Chemie - International Edition, 2017, 56, 12581-12585.	13.8	66
86	Dissipative Assembly of Aqueous Carboxylic Acid Anhydrides Fueled by Carbodiimides. Journal of the American Chemical Society, 2017, 139, 11949-11955.	13.7	137
87	Selfâ€Regulated and Temporal Control of a "Breathing―Microgel Mediated by Enzymatic Reaction. Angewandte Chemie, 2017, 129, 12755-12759.	2.0	22
88	A review of mass and energy flow through a lava flow system: insights provided from a non-equilibrium perspective. Bulletin of Volcanology, 2017, 79, 1.	3.0	9
89	Enzyme-assisted peptide folding, assembly and anti-cancer properties. Nanoscale, 2017, 9, 11987-11993.	5.6	56
90	Supramolecular Assembly of Comb-like Macromolecules Induced by Chemical Reactions that Modulate the Macromolecular Interactions In Situ. Journal of the American Chemical Society, 2017, 139, 11106-11116.	13.7	21

#		IF	Citations
91	Out-of-Equilibrium Aggregates and Coatings during Seeded Growth of Metallic Nanoparticles. Journal of the American Chemical Society, 2017, 139, 17973-17978.	13.7	62
92	Expanding the informational chemistries of life: peptide/RNA networks. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2017, 375, 20160356.	3.4	11
93	A novel thermo-responsive supramolecular organogel based on dual acylhydrazone: fluorescent detection for Al ³⁺ ions. Soft Matter, 2017, 13, 8882-8885.	2.7	50
94	Thermally bisignate supramolecular polymerization. Nature Chemistry, 2017, 9, 1133-1139.	13.6	129
95	Biocatalytic Selfâ€Assembly Cascades. Angewandte Chemie, 2017, 129, 6932-6936.	2.0	26
96	Temporal switching of an amphiphilic self-assembly by a chemical fuel-driven conformational response. Chemical Science, 2017, 8, 6030-6036.	7.4	69
97	From dynamic self-assembly to networked chemical systems. Chemical Society Reviews, 2017, 46, 5647-5678.	38.1	241
98	Dissipative out-of-equilibrium assembly of man-made supramolecular materials. Chemical Society Reviews, 2017, 46, 5519-5535.	38.1	391
99	Amoeba-like self-oscillating polymeric fluids with autonomous sol-gel transition. Nature Communications, 2017, 8, 15862.	12.8	58
100	The non-equilibrium self-assembly of amphiphilic block copolymers driven by a pH oscillator. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 529, 808-814.	4.7	19
101	Fuel-Mediated Transient Clustering of Colloidal Building Blocks. Journal of the American Chemical Society, 2017, 139, 9763-9766.	13.7	100
102	Designing dynamic functional molecular systems. Tetrahedron, 2017, 73, 4837-4848.	1.9	43
103	Controlling supramolecular polymerization through multicomponent selfâ€assembly. Journal of Polymer Science Part A, 2017, 55, 34-78.	2.3	117
104	A Powerful CD8 ⁺ T ell Stimulating Dâ€Tetraâ€Peptide Hydrogel as a Very Promising Vaccine Adjuvant. Advanced Materials, 2017, 29, 1601776.	21.0	198
105	Peptideâ€Based Molecular Hydrogels as Supramolecular Protein Mimics. Chemistry - A European Journal, 2017, 23, 981-993.	3.3	147
106	Adenosine-Phosphate-Fueled, Temporally Programmed Supramolecular Polymers with Multiple Transient States. Journal of the American Chemical Society, 2017, 139, 16568-16575.	13.7	139
107	Grip on complexity in chemical reaction networks. Beilstein Journal of Organic Chemistry, 2017, 13, 1486-1497.	2.2	23
108	How and why kinetics, thermodynamics, and chemistry induce the logic of biological evolution. Beilstein Journal of Organic Chemistry, 2017, 13, 665-674.	2.2	29

#	Article	IF	CITATIONS
109	Self-Templated Generation of Triggerable and Restorable Nonequilibrium Micelles. ACS Macro Letters, 2018, 7, 341-346.	4.8	14
110	In situ formation of injectable chitosan-gelatin hydrogels through double crosslinking for sustained intraocular drug delivery. Materials Science and Engineering C, 2018, 88, 1-12.	7.3	103
111	Programming Cells for Dynamic Assembly of Inorganic Nanoâ€Objects with Spatiotemporal Control. Advanced Materials, 2018, 30, e1705968.	21.0	40
112	Dissipative Selfâ€Assembly Driven by the Consumption of Chemical Fuels. Advanced Materials, 2018, 30, e1706750.	21.0	176
113	Native iron reduces CO2 to intermediates and end-products of the acetyl-CoA pathway. Nature Ecology and Evolution, 2018, 2, 1019-1024.	7.8	154
114	Understanding Gelation as a Nonequilibrium Self-Assembly Process. Journal of Physical Chemistry B, 2018, 122, 4937-4945.	2.6	14
115	In Vivo Self-Assembly Nanotechnology for Biomedical Applications. Nanomedicine and Nanotoxicology, 2018, , .	0.2	1
116	Biomimetic temporal self-assembly via fuel-driven controlled supramolecular polymerization. Nature Communications, 2018, 9, 1295.	12.8	148
117	Feedback-Induced Temporal Control of "Breathing―Polymersomes To Create Self-Adaptive Nanoreactors. Journal of the American Chemical Society, 2018, 140, 5356-5359.	13.7	176
118	pH-Triggered self-assembly and hydrogelation of cyclic peptide nanotubes confined in water micro-droplets. Nanoscale Horizons, 2018, 3, 391-396.	8.0	60
119	Energy landscaping in supramolecular materials. Current Opinion in Structural Biology, 2018, 51, 9-18.	5.7	23
120	Kinetically Controlled Lifetimes in Redox-Responsive Transient Supramolecular Hydrogels. Journal of the American Chemical Society, 2018, 140, 2869-2874.	13.7	117
121	Temporally Controlled Supramolecular Polymerization. Bulletin of the Chemical Society of Japan, 2018, 91, 687-699.	3.2	106
122	Dissipative disassembly of colloidal microgel crystals driven by a coupled cyclic reaction network. Soft Matter, 2018, 14, 910-915.	2.7	27
123	Architectonics: Design of Molecular Architecture for Functional Applications. Accounts of Chemical Research, 2018, 51, 414-426.	15.6	92
124	Nucleobases, nucleosides, and nucleotides: versatile biomolecules for generating functional nanomaterials. Chemical Society Reviews, 2018, 47, 1285-1306.	38.1	159
125	Kinetically Controlled Stepwise Self-Assembly of Au ^I -Metallopeptides in Water. Journal of the American Chemical Society, 2018, 140, 534-537.	13.7	107
126	Kinetic control over supramolecular hydrogelation and anticancer properties of taxol. Chemical Communications, 2018, 54, 755-758.	4.1	14

#	Article	IF	CITATIONS
127	Periodically Selfâ€Pulsating Microcapsule as Programmed Microseparator via ATPâ€Regulated Energy Dissipation. Advanced Science, 2018, 5, 1700591.	11.2	31
128	Multicomponent self-assembly as a tool to harness new properties from peptides and proteins in material design. Chemical Society Reviews, 2018, 47, 3721-3736.	38.1	205
129	Enzyme-Instructed Self-assembly of Small Peptides In Vivo for Biomedical Application. Nanomedicine and Nanotoxicology, 2018, , 89-114.	0.2	1
130	Amino-acid-encoded biocatalytic self-assembly enables the formation of transient conducting nanostructures. Nature Chemistry, 2018, 10, 696-703.	13.6	189
131	Fuel-Driven Dissipative Self-Assembly of a Supra-Amphiphile in Batch Reactor. Biomacromolecules, 2018, 19, 2542-2548.	5.4	19
132	Block Copolymer Selfâ€Assembly in Solution—Quo Vadis?. Chemistry - an Asian Journal, 2018, 13, 230-239.	3.3	55
133	Construction of Porous Organic Nanostructures Using Cooperative Self-Assembly for Lipase-Catalyzed Inclusion of Gastrodigenin. ACS Applied Nano Materials, 2018, 1, 175-182.	5.0	7
134	Stochastic pumping of non-equilibrium steady-states: how molecules adapt to a fluctuating environment. Chemical Communications, 2018, 54, 427-444.	4.1	39
135	Responsive peptide-based supramolecular hydrogels constructed by self-immolative chemistry. Nanoscale, 2018, 10, 21459-21465.	5.6	37
136	Substrateâ€Induced Selfâ€Assembly of Cooperative Catalysts. Angewandte Chemie - International Edition, 2018, 57, 16469-16474.	13.8	76
137	Substrateâ€Induced Selfâ€Assembly of Cooperative Catalysts. Angewandte Chemie, 2018, 130, 16707-16712.	2.0	33
138	Unique properties of supramolecular biomaterials through nonequilibrium self-assembly. , 2018, , 235-250.		10
139	Oscillations, travelling fronts and patterns in a supramolecular system. Nature Nanotechnology, 2018, 13, 1021-1027.	31.5	180
140	Complexity from small molecules. Nature Nanotechnology, 2018, 13, 979-980.	31.5	0
141	Gel Formed by Selfâ€Assembly of a Ureaâ€Modified Monopyrrolotetrathiafulvalene Derivative Displays Multiâ€Stimuli Responsiveness and Absorption of Rhodamine B. ChemPlusChem, 2018, 83, 1109-1118.	2.8	7
142	Structural Remodeling of Polymeric Material via Diffusion Controlled Polymerization and Chain Scission. Chemistry of Materials, 2018, 30, 8126-8133.	6.7	3
143	Fabrication of In Situ Nanofiber-Reinforced Molecular Composites by Nonequilibrium Self-Assembly. ACS Applied Materials & Interfaces, 2018, 10, 39293-39306.	8.0	21
144	Energy consumption in chemical fuel-driven self-assembly. Nature Nanotechnology, 2018, 13, 882-889.	31.5	306

#	Article	IF	CITATIONS
145	Active regeneration unites high- and low-temperature features in cooperative self-assembly. Physical Review E, 2018, 98, 022411.	2.1	3
146	Bioinspired temporal supramolecular polymerization. RSC Advances, 2018, 8, 18913-18925.	3.6	45
147	Self-selection of dissipative assemblies driven by primitive chemical reaction networks. Nature Communications, 2018, 9, 2044.	12.8	147
148	Dissipative assemblies that inhibit their deactivation. Soft Matter, 2018, 14, 4852-4859.	2.7	53
149	Diffusion across a gel–gel interface – molecular-scale mobility of self-assembled â€ ⁻ solid-like' gel nanofibres in multi-component supramolecular organogels. Chemical Science, 2018, 9, 5541-5550.	7.4	17
150	Time programmable hydrogels: regulating the onset time of network dissociation by a reaction relay. Chemical Communications, 2018, 54, 5899-5902.	4.1	14
151	Under Diffusion Control: from Structuring Matter to Directional Motion. Advanced Materials, 2018, 30, e1707029.	21.0	39
152	Dissipative Selfâ€Assembly of Photoluminescent Silicon Nanocrystals. Angewandte Chemie - International Edition, 2018, 57, 14608-14612.	13.8	80
153	Energy Landscape in Supramolecular Coassembly of Platinum(II) Complexes and Polymers: Morphological Diversity, Transformation, and Dilution Stability of Nanostructures. Journal of the American Chemical Society, 2018, 140, 9594-9605.	13.7	48
154	Living Supramolecular Polymerisation of Perylene Diimide Amphiphiles by Seeded Growth under Kinetic Control. Chemistry - A European Journal, 2018, 24, 15556-15565.	3.3	42
155	Dissipative adaptation in driven self-assembly leading to self-dividing fibrils. Nature Nanotechnology, 2018, 13, 849-855.	31.5	160
156	Dissipative Selbstassemblierung photolumineszierender Siliciumnanokristalle. Angewandte Chemie, 2018, 130, 14817-14822.	2.0	18
157	The hallmarks of living systems: towards creating artificial cells. Interface Focus, 2018, 8, 20180023.	3.0	111
158	Applications of Dissipative Supramolecular Materials with a Tunable Lifetime. ChemNanoMat, 2018, 4, 710-719.	2.8	53
159	A transient self-assembling self-replicator. Nature Communications, 2018, 9, 2239.	12.8	70
160	The Photodynamic Covalent Bond: Sensitized Alkoxyamines as a Tool To Shift Reaction Networks Out-of-Equilibrium Using Light Energy. Journal of the American Chemical Society, 2018, 140, 7647-7657.	13.7	51
161	Negative differential response in chemical reactions. New Journal of Physics, 2019, 21, 073005.	2.9	20
162	Gel to gel transitions by dynamic self-assembly. Chemical Communications, 2019, 55, 10154-10157.	4.1	47

#	Article	IF	CITATIONS
163	Light-induced reversible hydrophobization of cationic gold nanoparticles via electrostatic adsorption of a photoacid. Nanoscale, 2019, 11, 14118-14122.	5.6	25
164	Self-Assembling Peptides for Vaccine Development and Antibody Production. , 2019, , 1-21.		0
165	Revision komplexer supramolekularer Polymerisation unter kinetischer und thermodynamischer Kontrolle. Angewandte Chemie, 2019, 131, 16884-16895.	2.0	68
166	Phase Separation in Supramolecular Hydrogels Based on Peptide Self-Assembly from Enzyme-Coated Nanoparticles. Langmuir, 2019, 35, 10838-10845.	3.5	20
167	Programmable responsive hydrogels inspired by classical conditioning algorithm. Nature Communications, 2019, 10, 3267.	12.8	47
168	Assembling a Natural Small Molecule into a Supramolecular Network with High Structural Order and Dynamic Functions. Journal of the American Chemical Society, 2019, 141, 12804-12814.	13.7	190
169	Fatty acid based transient nanostructures for temporal regulation of artificial peroxidase activity. Chemical Science, 2019, 10, 7574-7578.	7.4	27
170	ATPâ€Mediated Transient Behavior of Stomatocyte Nanosystems. Angewandte Chemie - International Edition, 2019, 58, 13113-13118.	13.8	50
171	Self-assembling outside equilibrium: emergence of structures mediated by dissipation. Physical Chemistry Chemical Physics, 2019, 21, 17475-17493.	2.8	30
172	Revising Complex Supramolecular Polymerization under Kinetic and Thermodynamic Control. Angewandte Chemie - International Edition, 2019, 58, 16730-16740.	13.8	275
173	ATPâ€Mediated Transient Behavior of Stomatocyte Nanosystems. Angewandte Chemie, 2019, 131, 13247-13252.	2.0	23
174	Measurement Challenges in Dynamic and Nonequilibrium Nanoscale Systems. Analytical Chemistry, 2019, 91, 13324-13336.	6.5	6
175	Adaptive Polymeric Assemblies for Applications in Biomimicry and Nanomedicine. Biomacromolecules, 2019, 20, 4053-4064.	5.4	21
176	Fuelâ€Driven Transient Crystallization of a Cucurbit[8]urilâ€Based Host–Guest Complex. Angewandte Chemie, 2019, 131, 17006-17009.	2.0	20
177	Fuelâ€Driven Transient Crystallization of a Cucurbit[8]urilâ€Based Host–Guest Complex. Angewandte Chemie - International Edition, 2019, 58, 16850-16853.	13.8	45
178	A chemically fueled non-enzymatic bistable network. Nature Communications, 2019, 10, 4636.	12.8	58
180	Stretchable and Reactive Membranes of Metal–Organic Framework Nanosurfactants on Liquid Droplets Enable Dynamic Control of Selfâ€Propulsion, Cargo Pickâ€Up, and Dropâ€Off. Advanced Intelligent Systems, 2019, 1, 1900065.	6.1	5
181	Designed Negative Feedback from Transiently Formed Catalytic Nanostructures. Angewandte Chemie, 2019, 131, 15930-15934.	2.0	15

#	Article	IF	CITATIONS
182	Designed Negative Feedback from Transiently Formed Catalytic Nanostructures. Angewandte Chemie - International Edition, 2019, 58, 15783-15787.	13.8	53
183	Diversiform and Transformable Glyco-Nanostructures Constructed from Amphiphilic Supramolecular Metallocarbohydrates through Hierarchical Self-Assembly: The Balance between Metallacycles and Saccharides. ACS Nano, 2019, 13, 13474-13485.	14.6	32
184	Turn-On Selectivity in Inherently Nonselective Gold Nanoparticles for Pb ²⁺ Detection by Preferential Breaking of Interparticle Interactions. ACS Applied Nano Materials, 2019, 2, 5625-5633.	5.0	12
185	Programmable dynamic steady states in ATP-driven nonequilibrium DNA systems. Science Advances, 2019, 5, eaaw0590.	10.3	134
186	Thermodynamic efficiency in dissipative chemistry. Nature Communications, 2019, 10, 3865.	12.8	41
187	Dynamic self-assembly of block copolymers regulated by time-varying building block composition via reversible chemical reaction. Science China Chemistry, 2019, 62, 1666-1674.	8.2	3
188	Chemically fueled covalent crosslinking of polymer materials. Chemical Communications, 2019, 55, 2086-2089.	4.1	59
189	Chemical Nanomotors at the Gram Scale Form a Dense Active Optorheological Medium. Advanced Materials, 2019, 31, e1807382.	21.0	27
190	Light-Driven Chiral Switching of Supramolecular Metallacycles with Photoreversibility. CheM, 2019, 5, 634-648.	11.7	91
191	Chemical fuel-driven living and transient supramolecular polymerization. Nature Communications, 2019, 10, 450.	12.8	116
192	Fuelâ€Responsive Allosteric DNAâ€Based Aptamers for the Transient Release of ATP and Cocaine. Angewandte Chemie - International Edition, 2019, 58, 5582-5586.	13.8	86
193	Transient self-organisation of DNA coated colloids directed by enzymatic reactions. Scientific Reports, 2019, 9, 7350.	3.3	16
194	Entropy-Driven Heterocomplexation of Conjugated Polymers in Highly Diluted Solutions. Journal of Physical Chemistry C, 2019, 123, 16596-16601.	3.1	2
195	Equilibrium Model for Supramolecular Copolymerizations. Journal of Physical Chemistry B, 2019, 123, 6627-6642.	2.6	36
196	Paclitaxel-Promoted Supramolecular Polymerization of Peptide Conjugates. Journal of the American Chemical Society, 2019, 141, 11997-12004.	13.7	61
198	Supramolecular Polymerization in Liquid Crystalline Media: Toward Modular Synthesis of Multifunctional Core–Shell Columnar Liquid Crystals. Journal of the American Chemical Society, 2019, 141, 10033-10038.	13.7	9
199	How non-bonding domains affect the active assembly of microtubule spools. Nanoscale, 2019, 11, 11562-11568.	5.6	5
200	Adaptive Polymersome Nanoreactors. ChemNanoMat, 2019, 5, 1092-1109.	2.8	70

#	Article	IF	CITATIONS
201	Pathway Dependence in the Fuel-Driven Dissipative Self-Assembly of Nanoparticles. Journal of the American Chemical Society, 2019, 141, 9872-9878.	13.7	114
202	Temporallyâ€Programmed Transient Supramolecular Gels. Macromolecular Rapid Communications, 2019, 40, e1900251.	3.9	50
203	Cages Driven Away from Equilibrium Binding by Electric Fields. CheM, 2019, 5, 1017-1019.	11.7	5
204	Dissipative Catalysis with a Molecular Machine. Angewandte Chemie - International Edition, 2019, 58, 9876-9880.	13.8	116
205	Dissipative Catalysis with a Molecular Machine. Angewandte Chemie, 2019, 131, 9981-9985.	2.0	37
206	Typical Stochastic Paths in the Transient Assembly of Fibrous Materials. Journal of Physical Chemistry B, 2019, 123, 4792-4802.	2.6	5
207	Unbiased Discovery of Dynamic Peptideâ€ATP Complexes. ChemSystemsChem, 2019, 1, 7-11.	2.6	12
208	Scaling behavior of nonequilibrium measures in internally driven elastic assemblies. Physical Review E, 2019, 99, 052406.	2.1	6
209	Reactions Coupled Self―and Coâ€Assembly: A Highly Dynamic Process and the Resultant Spatially Inhomogeneous Structure. Chemistry - an Asian Journal, 2019, 14, 2155-2161.	3.3	6
210	Post-assembly Modification of Phosphine Cages Controls Host–Guest Behavior. Journal of the American Chemical Society, 2019, 141, 6837-6842.	13.7	45
211	Buckling of Two-Dimensional Colloidal Nanoplatelets in Confined Space To Design Heterogeneous Catalysts. Chemistry of Materials, 2019, 31, 3812-3817.	6.7	8
212	DNA-Functionalized Supramolecular Polymers: Dynamic Multicomponent Assemblies with Emergent Properties. Bioconjugate Chemistry, 2019, 30, 1905-1914.	3.6	31
213	From mechanical resilience to active material properties in biopolymer networks. Nature Reviews Physics, 2019, 1, 249-263.	26.6	111
214	Supramolecular Polymorphism in One-Dimensional Self-Assembly by Kinetic Pathway Control. Journal of the American Chemical Society, 2019, 141, 6092-6107.	13.7	194
215	Autonomous helical propagation of active toroids with mechanical action. Nature Communications, 2019, 10, 1080.	12.8	35
216	A chemically fuelled self-replicator. Nature Communications, 2019, 10, 1011.	12.8	102
217	Bio-inspired temporal regulation of ion-transport in nanochannels. Nanoscale Advances, 2019, 1, 1847-1852.	4.6	12
218	Dissipative Selfâ€Assembly of Peptides. Israel Journal of Chemistry, 2019, 59, 898-905.	2.3	20

#	Article	IF	CITATIONS
219	Chiral Metamolecules with Active Plasmonic Transition. ACS Nano, 2019, 13, 4826-4833.	14.6	51
220	Dynamic DNA material with emergent locomotion behavior powered by artificial metabolism. Science Robotics, 2019, 4, .	17.6	52
221	Temperature-controlled repeatable scrambling and induced-sorting of building blocks between cubic assemblies. Nature Communications, 2019, 10, 1440.	12.8	11
222	Shear-induced assembly of a transient yet highly stretchable hydrogel based on pseudopolyrotaxanes. Nature Chemistry, 2019, 11, 470-477.	13.6	161
223	Substrate-Driven Transient Self-Assembly and Spontaneous Disassembly Directed by Chemical Reaction with Product Release. Journal of the American Chemical Society, 2019, 141, 4182-4185.	13.7	48
224	Physics of active emulsions. Reports on Progress in Physics, 2019, 82, 064601.	20.1	176
225	Fuelâ€Responsive Allosteric DNAâ€Based Aptamers for the Transient Release of ATP and Cocaine. Angewandte Chemie, 2019, 131, 5638-5642.	2.0	31
226	Diverse balances of tubulin interactions and shape change drive and interrupt microtubule depolymerization. Soft Matter, 2019, 15, 8137-8146.	2.7	5
227	DNA-based long-lived reaction–diffusion patterning in a host hydrogel. Soft Matter, 2019, 15, 9343-9351.	2.7	13
228	pH clock instructed transient supramolecular peptide amphiphile and its vesicular assembly. Chemical Communications, 2019, 55, 14119-14122.	4.1	30
229	Propagation of Oscillating Chemical Signals through Reaction Networks. Angewandte Chemie, 2019, 131, 4568-4573.	2.0	2
230	Propagation of Oscillating Chemical Signals through Reaction Networks. Angewandte Chemie - International Edition, 2019, 58, 4520-4525.	13.8	5
231	Tuning the life-time of supramolecular hydrogels using ROS-responsive telechelic peptide-polymer conjugates. European Polymer Journal, 2019, 110, 90-96.	5.4	20
232	Chemically Fueled Dissipative Selfâ€Assembly that Exploits Cooperative Catalysis. Angewandte Chemie, 2019, 131, 250-253.	2.0	45
233	Chemically Fueled Dissipative Selfâ€Assembly that Exploits Cooperative Catalysis. Angewandte Chemie - International Edition, 2019, 58, 244-247.	13.8	138
234	Thermodynamic costs of dynamic function in active soft matter. Current Opinion in Solid State and Materials Science, 2019, 23, 28-40.	11.5	13
235	Molecular Self-Assembly Under Kinetic Control. , 2019, , 205-229.		6
236	Polymerizationâ€Induced Selfâ€Assembly for Artificial Biology: Opportunities and Challenges. Macromolecular Rapid Communications, 2019, 40, e1800513.	3.9	60

#	Article	IF	CITATIONS
237	Stimuli-responsive supramolecular systems guided by chemical reactions. Polymer Journal, 2019, 51, 371-380.	2.7	39
238	Supramolecular polymer chemistry: From structural control to functional assembly. Progress in Polymer Science, 2020, 100, 101167.	24.7	135
239	Deconvolution of Transient Species in a Multivalent Fuelâ€Đriven Multistep Assembly under Dissipative Conditions. ChemSystemsChem, 2020, 2, e1900040.	2.6	10
240	Dynamic Vesicles Formed By Dissipative Selfâ€Assembly. ChemSystemsChem, 2020, 2, e1900044.	2.6	53
241	Schrödinger's What is Life? —The 75th Anniversary of a Book that Inspired Biology. Angewandte Chemie, 2020, 132, 2570-2573.	2.0	3
242	A Fuelâ€Driven Chemical Reaction Network Based on Conjugate Addition and Elimination Chemistry. ChemSystemsChem, 2020, 2, e1900028.	2.6	15
243	Hydrogels with Preprogrammable Lifetime via UVâ€Induced Polymerization and Degradation. Advanced Functional Materials, 2020, 30, 1909800.	14.9	18
244	Viewpoint: Homeostasis as Inspiration—Toward Interactive Materials. Advanced Materials, 2020, 32, e1905554.	21.0	35
245	Selection from a pool of self-assembling lipid replicators. Nature Communications, 2020, 11, 176.	12.8	39
246	Transient supramolecular assembly of a functional perylene diimide controlled by a programmable pH cycle. Soft Matter, 2020, 16, 591-594.	2.7	23
247	Abiotic Chemical Fuels for the Operation of Molecular Machines. Angewandte Chemie, 2020, 132, 8420-8430.	2.0	22
248	A guide to supramolecular polymerizations. Polymer Chemistry, 2020, 11, 1083-1110.	3.9	99
249	Chemical stimulus-responsive supramolecular hydrogel formation and shrinkage of a hydrazone-containing short peptide derivative. Soft Matter, 2020, 16, 899-906.	2.7	21
250	Supramolecular polymerization through kinetic pathway control and living chain growth. Nature Reviews Chemistry, 2020, 4, 38-53.	30.2	351
251	Schrödinger's <i>What is Life?</i> —The 75th Anniversary of a Book that Inspired Biology. Angewandte Chemie - International Edition, 2020, 59, 2550-2553.	13.8	9
252	Redoxâ€Mediated Transient Reconfiguration of a Supramolecular Assembly. ChemSystemsChem, 2020, 2, e1900042	2.6	20
253	Structure–Property Effects in the Generation of Transient Aqueous Benzoic Acid Anhydrides by Carbodiimide Fuels. Journal of Organic Chemistry, 2020, 85, 682-690.	3.2	22
254	The Design of Dissipative Molecular Assemblies Driven by Chemical Reaction Cycles. CheM, 2020, 6, 552-578.	11.7	157

#	Article	IF	CITATIONS
255	Periodic Nucleation of Calcium Phosphate in a Stirred Biocatalytic Reaction. Angewandte Chemie - International Edition, 2020, 59, 2823-2828.	13.8	11
256	Redox-Mediated, Transient Supramolecular Charge-Transfer Gel and Ink. ACS Applied Materials & Interfaces, 2020, 12, 5259-5264.	8.0	35
257	Dynamic Environments as a Tool to Preserve Desired Output in a Chemical Reaction Network. Chemistry - A European Journal, 2020, 26, 1676-1682.	3.3	8
258	Associative Learning by Classical Conditioning in Liquid Crystal Network Actuators. Matter, 2020, 2, 194-206.	10.0	51
259	Alkyl Bridge Length to Bias the Kinetics and Stability of Consecutive Supramolecular Polymerizations. Small Methods, 2020, 4, 1900715.	8.6	35
260	Viewpoint: From Responsive to Adaptive and Interactive Materials and Materials Systems: A Roadmap. Advanced Materials, 2020, 32, e1905111.	21.0	177
261	Redox Chemicalâ€Fueled Dissipative Selfâ€Assembly of Active Materials. ChemSystemsChem, 2020, 2, e1900030.	2.6	45
262	Abiotic Chemical Fuels for the Operation of Molecular Machines. Angewandte Chemie - International Edition, 2020, 59, 8344-8354.	13.8	76
263	Synthesis of Complex Molecular Systems—The Foreseen Role of Organic Chemists. ACS Central Science, 2020, 6, 2060-2070.	11.3	21
264	Autonomous mesoscale positioning emerging from myelin filament self-organization and Marangoni flows. Nature Communications, 2020, 11, 4800.	12.8	25
265	Active coacervate droplets as a model for membraneless organelles and protocells. Nature Communications, 2020, 11, 5167.	12.8	135
266	Time-gated fluorescence signalling under dissipative conditions. Chemical Communications, 2020, 56, 13979-13982.	4.1	12
267	ATP-powered molecular recognition to engineer transient multivalency and self-sorting 4D hierarchical systems. Nature Communications, 2020, 11, 3658.	12.8	47
268	Acid-responsive fibrillation and urease-assisted defibrillation of phenylalanine: a transient supramolecular hydrogel. Soft Matter, 2020, 16, 10115-10121.	2.7	19
269	Force generation by a propagating wave of supramolecular nanofibers. Nature Communications, 2020, 11, 3541.	12.8	24
270	Multiple Light Control Mechanisms in ATPâ€Fueled Nonâ€equilibrium DNA Systems. Angewandte Chemie, 2020, 132, 12182-12190.	2.0	15
271	Twoâ \in Stage Polyelectrolyte Assembly Orchestrated by a Clock Reaction. ChemSystemsChem, 2020, 2, e2000005.	2.6	11
272	Reciprocal Coupling in Chemically Fueled Assembly: A Reaction Cycle Regulates Self-Assembly and Vice Versa. Journal of the American Chemical Society, 2020, 142, 20837-20844.	13.7	42

#	Article	IF	CITATIONS
273	In Situ, Noncovalent Labeling and Stimulated Emission Depletion-Based Super-Resolution Imaging of Supramolecular Peptide Nanostructures. ACS Nano, 2020, 14, 15056-15063.	14.6	13
274	Disulfideâ€Linked Allosteric Modulators for Multiâ€cycle Kinetic Control of DNAâ€Based Nanodevices. Angewandte Chemie - International Edition, 2020, 59, 21058-21063.	13.8	22
275	Disulfideâ€Linked Allosteric Modulators for Multi ycle Kinetic Control of DNAâ€Based Nanodevices. Angewandte Chemie, 2020, 132, 21244-21249.	2.0	9
276	Audible sound-controlled spatiotemporal patterns in out-of-equilibrium systems. Nature Chemistry, 2020, 12, 808-813.	13.6	36
277	Out-of-Equilibrium Colloidal Assembly Driven by Chemical Reaction Networks. Langmuir, 2020, 36, 10639-10656.	3.5	43
278	Coupled Metabolic Cycles Allow Outâ€ofâ€Equilibrium Autopoietic Vesicle Replication. Angewandte Chemie, 2020, 132, 20541-20546.	2.0	7
279	Coupled Metabolic Cycles Allow Outâ€ofâ€Equilibrium Autopoietic Vesicle Replication. Angewandte Chemie - International Edition, 2020, 59, 20361-20366.	13.8	21
280	Organocatalytic Control over a Fuelâ€Driven Transientâ€Esterification Network**. Angewandte Chemie - International Edition, 2020, 59, 20604-20611.	13.8	30
281	Enzyme-Regulated Healable Polymeric Hydrogels. ACS Central Science, 2020, 6, 1507-1522.	11.3	48
282	Regulating Chemically Fueled Peptide Assemblies by Molecular Design. Journal of the American Chemical Society, 2020, 142, 14142-14149.	13.7	50
283	Transient Selfâ€assembly Processes Operated by Gaseous Fuels under Outâ€ofâ€Equilibrium Conditions. Chemistry - an Asian Journal, 2020, 15, 4118-4123.	3.3	4
284	Control of self-assembly pathways toward conglomerate and racemic supramolecular polymers. Nature Communications, 2020, 11, 5460.	12.8	41
285	Chemically Fueled Transient Geometry Changes in Diphenic Acids. Organic Letters, 2020, 22, 7567-7571.	4.6	14
286	Tubulin islands containing slowly hydrolyzable GTP analogs regulate the mechanism and kinetics of microtubule depolymerization. Scientific Reports, 2020, 10, 13661.	3.3	7
287	Dissipative Constitutional Dynamic Networks for Tunable Transient Responses and Catalytic Functions. Journal of the American Chemical Society, 2020, 142, 17480-17488.	13.7	36
288	Nucleotideâ€Selective Templated Selfâ€Assembly of Nanoreactors under Dissipative Conditions. Angewandte Chemie - International Edition, 2020, 59, 22223-22229.	13.8	21
289	Enzyme-Triggered Nanomaterials and Their Applications. ACS Symposium Series, 2020, , 95-107.	0.5	3
290	Organocatalytic Control over a Fuelâ€Driven Transientâ€Esterification Network**. Angewandte Chemie, 2020, 132, 20785-20792.	2.0	10

#	Article	IF	CITATIONS
291	Dissipative self-assembly, competition and inhibition in a self-reproducing protocell model. Chemical Science, 2020, 11, 9434-9442.	7.4	38
292	Nucleotideâ€Selective Templated Selfâ€Assembly of Nanoreactors under Dissipative Conditions. Angewandte Chemie, 2020, 132, 22407-22413.	2.0	7
293	Enzymatic Noncovalent Synthesis. Chemical Reviews, 2020, 120, 9994-10078.	47.7	143
294	Kinetics of actin networks formation measured by time resolved particle-tracking microrheology. Soft Matter, 2020, 16, 7869-7876.	2.7	11
295	Transient DNAâ€Based Nanostructures Controlled by Redox Inputs. Angewandte Chemie, 2020, 132, 13340-13347.	2.0	15
296	Lightâ€Fuelled Selfâ€Assembly of Cyclic Peptides into Supramolecular Tubules. ChemSystemsChem, 2020, 2, e2000012.	2.6	19
297	Chemothermally Driven Outâ€ofâ€Equilibrium Materials for Macroscopic Motion. ChemSystemsChem, 2020, 2, e2000024.	2.6	6
298	Nonâ€Equilibrium Polymerization of Crossâ€Î² Amyloid Peptides for Temporal Control of Electronic Properties. Angewandte Chemie, 2020, 132, 13608-13612.	2.0	8
299	Chemicalâ€Fuelâ€Driven Assembly in Macromolecular Science: Recent Advances and Challenges. ChemPlusChem, 2020, 85, 1190-1199.	2.8	13
300	Dissipative Assembly of Macrocycles Comprising Multiple Transient Bonds. Angewandte Chemie - International Edition, 2020, 59, 13807-13813.	13.8	47
301	Microtubule Cytoskeleton Remodeling by Nanosecond Pulsed Electric Fields. Advanced Biology, 2020, 4, e2000070.	3.0	13
302	Autonomous Growth of a Spatially Localized Supramolecular Hydrogel with Autocatalytic Ability. Angewandte Chemie, 2020, 132, 14666-14671.	2.0	4
303	Autonomous Growth of a Spatially Localized Supramolecular Hydrogel with Autocatalytic Ability. Angewandte Chemie - International Edition, 2020, 59, 14558-14563.	13.8	21
304	<i>N</i> â€Annulated Perylene Bisimides to Bias the Differentiation of Metastable Supramolecular Assemblies into J―and Hâ€Aggregates. Angewandte Chemie - International Edition, 2020, 59, 17517-17524.	13.8	72
305	Interfaces and surfaces. , 2020, , 51-87.		11
306	<i>N</i> â€Annulated Perylene Bisimides to Bias the Differentiation of Metastable Supramolecular Assemblies into J―and Hâ€Aggregates. Angewandte Chemie, 2020, 132, 17670-17677.	2.0	32
307	How Water in Aliphatic Solvents Directs the Interference of Chemical Reactivity in a Supramolecular System. Journal of the American Chemical Society, 2020, 142, 12400-12408.	13.7	17
308	Injectable Electrical Conductive and Phosphate Releasing Gel with Two-Dimensional Black Phosphorus and Carbon Nanotubes for Bone Tissue Engineering. ACS Biomaterials Science and Engineering, 2020, 6, 4653-4665.	5.2	46

#	Article	IF	CITATIONS
309	Dissipative Assembly of Macrocycles Comprising Multiple Transient Bonds. Angewandte Chemie, 2020, 132, 13911-13917.	2.0	11
310	Fourâ€Dimensional Deoxyribonucleic Acid–Gold Nanoparticle Assemblies. Angewandte Chemie - International Edition, 2020, 59, 17250-17255.	13.8	37
311	Fourâ€Dimensional Deoxyribonucleic Acid–Gold Nanoparticle Assemblies. Angewandte Chemie, 2020, 132, 17403-17408.	2.0	2
312	Writable and Self-Erasable Hydrogel Based on Dissipative Assembly Process from Multiple Carboxyl Tetraphenylethylene Derivative. , 2020, 2, 425-429.		34
313	Lightâ€Driven Flipping of Azobenzene Assemblies—Sparse Crystal Structures and Responsive Behaviour to Polarised Light. Chemistry - A European Journal, 2020, 26, 10759-10768.	3.3	27
314	Non-reversible heat-induced gelation of a biocompatible Fmoc-hexapeptide in water. Nanoscale, 2020, 12, 8262-8267.	5.6	10
315	Spontaneous Aminolytic Cyclization and Selfâ€Assembly of Dipeptide Methyl Esters in Water. ChemSystemsChem, 2020, 2, e2000013.	2.6	9
316	Probing Reversible Guest Binding with Hyperpolarized 129Xe-NMR: Characteristics and Applications for Cucurbit[n]urils. Molecules, 2020, 25, 957.	3.8	9
317	Disordered protein-graphene oxide co-assembly and supramolecular biofabrication of functional fluidic devices. Nature Communications, 2020, 11, 1182.	12.8	42
318	Platinum(<scp>ii</scp>) non-covalent crosslinkers for supramolecular DNA hydrogels. Chemical Science, 2020, 11, 3241-3249.	7.4	22
319	Synthetic Supramolecular Systems in Life-like Materials and Protocell Models. CheM, 2020, 6, 1652-1682.	11.7	35
320	Polymer Transformers: Interdigitating Reaction Networks of Fueled Monomer Species to Reconfigure Functional Polymer States. Angewandte Chemie - International Edition, 2020, 59, 18161-18165.	13.8	16
321	Polymer Transformers: Interdigitating Reaction Networks of Fueled Monomer Species to Reconfigure Functional Polymer States. Angewandte Chemie, 2020, 132, 18318-18322.	2.0	7
322	Repairing Creep-Resistant and Kinetically Inert Hydrogels via Yeast Activity-Regulated Energy Dissipation. ACS Applied Bio Materials, 2020, 3, 4507-4513.	4.6	8
323	Supramolecular Polymers – we've Come Full Circle. Israel Journal of Chemistry, 2020, 60, 33-47.	2.3	145
324	Strategies to Construct a Chemicalâ€Fuelâ€Driven Selfâ€Assembly. ChemSystemsChem, 2020, 2, e1900046.	2.6	50
325	Periodic Nucleation of Calcium Phosphate in a Stirred Biocatalytic Reaction. Angewandte Chemie, 2020, 132, 2845-2850.	2.0	4
326	Templateâ€Dependent (Ir)reversibility of Noncovalent Synthesis Pathways. ChemSystemsChem, 2020, 2, e1900063.	2.6	2

#	Article	IF	CITATIONS
327	Devising Synthetic Reaction Cycles for Dissipative Nonequilibrium Selfâ€Assembly. Advanced Materials, 2020, 32, e1906834.	21.0	98
328	Multiresponsive Microgels with Phase-Separated Nanodomains and Self-Regulating Properties via Incorporation of Anthraquinone Moieties. Langmuir, 2020, 36, 2427-2438.	3.5	4
329	Re-programming Hydrogel Properties Using a Fuel-Driven Reaction Cycle. Journal of the American Chemical Society, 2020, 142, 4083-4087.	13.7	102
330	The Power of Confocal Laser Scanning Microscopy in Supramolecular Chemistry: In situ Realâ€ŧime Imaging of Stimuliâ€Responsive Multicomponent Supramolecular Hydrogels. ChemistryOpen, 2020, 9, 67-79.	1.9	39
331	Photocontrolled Hierarchical Selfâ€Assembly of Anisotropic Micropatterns of Nanofibers onto Isotropic Surfaces. Small, 2020, 16, 1906723.	10.0	5
332	Bioinspired Self-Healing of Kinetically Inert Hydrogels Mediated by Chemical Nutrient Supply. ACS Applied Materials & Interfaces, 2020, 12, 6471-6478.	8.0	42
333	Supramolecular materials based on AIE luminogens (AIEgens): construction and applications. Chemical Society Reviews, 2020, 49, 1144-1172.	38.1	498
334	Vision Statement: Interactive Materials—Drivers of Future Robotic Systems. Advanced Materials, 2020, 32, e1905953.	21.0	10
335	Nonâ€Equilibrium Polymerization of Crossâ€Î² Amyloid Peptides for Temporal Control of Electronic Properties. Angewandte Chemie - International Edition, 2020, 59, 13506-13510.	13.8	38
336	Modelling non-equilibrium self-assembly from dissipation. Molecular Physics, 2020, 118, e1761036.	1.7	0
337	Multiple Light Control Mechanisms in ATPâ€Fueled Nonâ€equilibrium DNA Systems. Angewandte Chemie - International Edition, 2020, 59, 12084-12092.	13.8	62
338	Transient Healability of Metallosupramolecular Polymer Networks Mediated by Kinetic Control of Competing Chemical Reactions. Macromolecules, 2020, 53, 2856-2863.	4.8	30
339	Microbial lag phase can be indicative of, or independent from, cellular stress. Scientific Reports, 2020, 10, 5948.	3.3	59
340	Supramolecular Polymerization: A Conceptual Expansion for Innovative Materials. Progress in Polymer Science, 2020, 105, 101250.	24.7	164
341	Transient DNAâ€Based Nanostructures Controlled by Redox Inputs. Angewandte Chemie - International Edition, 2020, 59, 13238-13245.	13.8	60
342	Oxidation promoted self-assembly of π-conjugated polymers. Chemical Science, 2020, 11, 6383-6392.	7.4	24
343	How to Determine the Role of an Additive on the Length of Supramolecular Polymers?. Organic Materials, 2020, 02, 129-142.	2.0	33
344	A Method to Quench Carbodiimideâ€Fueled Selfâ€Assembly. ChemSystemsChem, 2021, 3, e2000037.	2.6	19

#	Article	IF	CITATIONS
345	Active Bicomponent Nanoparticle Assembly with Temporal, Microstructural, and Functional Control. Chemistry - A European Journal, 2021, 27, 705-711.	3.3	7
346	Multiscale Molecular Modelling of ATPâ€Fueled Supramolecular Polymerisation and Depolymerisation**. ChemSystemsChem, 2021, 3, e2000038.	2.6	8
347	The Transient Covalent Bond in Abiotic Nonequilibrium Systems. Angewandte Chemie - International Edition, 2021, 60, 12648-12658.	13.8	52
348	Engineering of stimuli-responsive lipid-bilayer membranes using supramolecular systems. Nature Reviews Chemistry, 2021, 5, 46-61.	30.2	74
349	The Transient Covalent Bond in Abiotic Nonequilibrium Systems. Angewandte Chemie, 2021, 133, 12756-12766.	2.0	13
350	Light-fueled dynamic covalent crosslinking of single polymer chains in non-equilibrium states. Chemical Science, 2021, 12, 1302-1310.	7.4	20
351	Autonomous Transient pH Flips Shaped by Layered Compartmentalization of Antagonistic Enzymatic Reactions. Angewandte Chemie - International Edition, 2021, 60, 3619-3624.	13.8	37
352	Realâ€Time Visual Monitoring of Kinetically Controlled Selfâ€Assembly. Angewandte Chemie - International Edition, 2021, 60, 2855-2860.	13.8	76
353	Accelerated Ripening in Chemically Fueled Emulsions**. ChemSystemsChem, 2021, 3, e2000034.	2.6	18
354	Autonomous Transient pH Flips Shaped by Layered Compartmentalization of Antagonistic Enzymatic Reactions. Angewandte Chemie, 2021, 133, 3663-3668.	2.0	17
355	Realâ€Time Visual Monitoring of Kinetically Controlled Selfâ€Assembly. Angewandte Chemie, 2021, 133, 2891-2896.	2.0	27
356	Temporal Changes in Interparticle Interactions Drive the Formation of Transiently Stable Nanoparticle Precipitates. Langmuir, 2021, 37, 1843-1849.	3.5	16
357	A transient non-covalent hydrogel by a supramolecular gelator with dynamic covalent bonds. New Journal of Chemistry, 2021, 45, 4773-4779.	2.8	8
358	Direct realization of an Operando Systems Chemistry Algorithm (OSCAL) for powering nanomotors. Nanoscale, 2021, 13, 3543-3551.	5.6	3
359	A transient high-energy surface powered by a chemical fuel. Materials Chemistry Frontiers, 2021, 5, 5390-5399.	5.9	0
360	Spatial and temporal diffusion-control of dynamic multi-domain self-assembled gels. Chemical Science, 2021, 12, 4162-4172.	7.4	26
361	Depolymerization of supramolecular polymers by a covalent reaction; transforming an intercalator into a sequestrator. Chemical Science, 2021, 12, 13572-13579.	7.4	11
362	DNAzyme- and light-induced dissipative and gated DNA networks. Chemical Science, 2021, 12, 11204-11212.	7.4	32

#	ARTICLE	IF	CITATIONS
363	Cross Î ² amyloid assemblies as complex catalytic machinery. Chemical Communications, 2021, 57, 7597-7609.	4.1	17
364	Recent Advances on Supramolecular Gels: From Stimuli-Responsive Gels to Co-Assembled and Self-Sorted Systems. Organic Materials, 2021, 03, 025-040.	2.0	34
365	Triggering a transient organo-gelation system in a chemically active solvent. Chemical Communications, 2021, 57, 10375-10378.	4.1	6
366	Amoeba-inspired reengineering of polymer networks. Green Chemistry, 2021, 23, 2496-2506.	9.0	9
367	Chemically fueled materials with a self-immolative mechanism: transient materials with a fast on/off response. Chemical Science, 2021, 12, 9969-9976.	7.4	13
368	An acylhydrazone-based AIE organogel for the selective sensing of submicromolar level Al ³⁺ and Al(<scp>iii</scp>)-based metallogel formation to detect oxalic acid. New Journal of Chemistry, 2021, 45, 1899-1903.	2.8	5
369	Parasitic behavior in competing chemically fueled reaction cycles. Chemical Science, 2021, 12, 7554-7560.	7.4	17
370	Regulating the Supramolecular Polymerization of Fibrous Crystalline Structures in Aqueous Solution. Macromolecular Rapid Communications, 2021, 42, 2000677.	3.9	0
371	Coupled liquid crystalline oscillators in Huygens' synchrony. Nature Materials, 2021, 20, 1702-1706.	27.5	44
373	Molecular Design of Chemically Fueled Peptide–Polyelectrolyte Coacervate-Based Assemblies. Journal of the American Chemical Society, 2021, 143, 4782-4789.	13.7	59
374	Multitasking with Chemical Fuel: Dissipative Formation of a Pseudorotaxane Rotor from Five Distinct Components. Journal of the American Chemical Society, 2021, 143, 5319-5323.	13.7	44
375	Controllable Release Mode Based on ATP Hydrolysis-Fueled Supra-Amphiphile Assembly. ACS Applied Bio Materials, 2021, 4, 3532-3538.	4.6	2
376	Dissipative Gated and Cascaded DNA Networks. Journal of the American Chemical Society, 2021, 143, 5071-5079.	13.7	55
377	Supramolecular Selfâ€Assemblyâ€Facilitated Aggregation of Tumorâ€5pecific Transmembrane Receptors for Signaling Activation and Converting Immunologically Cold to Hot Tumors. Advanced Materials, 2021, 33, e2008518.	21.0	66
379	Chemically Fueled Selfâ€Assembly in Biology and Chemistry. Angewandte Chemie, 2021, 133, 20280-20303.	2.0	24
382	Chemically Fueled Block Copolymer Selfâ€Assembly into Transient Nanoreactors**. ChemSystemsChem, 2021, 3, e2100015.	2.6	40
383	Smart Nanocages as a Tool for Controlling Supramolecular Aggregation. Journal of the American Chemical Society, 2021, 143, 7681-7687.	13.7	24
385	Mechanism of periodic field driven self-assembly process. Journal of Chemical Physics, 2021, 154, 144904.	3.0	4

#	Article	IF	CITATIONS
387	Chemically Fueled Selfâ€Assembly in Biology and Chemistry. Angewandte Chemie - International Edition, 2021, 60, 20120-20143.	13.8	160
388	Autocatalytic and oscillatory reaction networks that form guanidines and products of their cyclization. Nature Communications, 2021, 12, 2994.	12.8	13
389	Microscopic Imaging Techniques for Molecular Assemblies: Electron, Atomic Force, and Confocal Microscopies. Chemical Reviews, 2021, 121, 14281-14347.	47.7	34
390	Systems Chemistry in Selfâ€Healing Materials. ChemSystemsChem, 2021, 3, e2100016.	2.6	6
391	Selfâ€Organizing Microdroplet Protocells Displaying Lightâ€Driven Oscillatory and Morphological Evolution. Small, 2021, 17, e2101162.	10.0	6
392	Ureaâ€Urease Reaction in Controlling Properties of Supramolecular Hydrogels: Pros and Cons. Chemistry - A European Journal, 2021, 27, 8928-8939.	3.3	24
393	Fuel-Driven Dynamic Combinatorial Libraries. Journal of the American Chemical Society, 2021, 143, 7719-7725.	13.7	27
394	Synthesis and characterization of chemically fueled supramolecular materials driven by carbodiimide-based fuels. Nature Protocols, 2021, 16, 3901-3932.	12.0	21
395	Chemical reaction powered transient polymer hydrogels for controlled formation and free release of pharmaceutical crystals. Chemical Engineering Journal, 2021, 414, 128877.	12.7	12
396	Self‣ustained Marangoni Flows Driven by Chemical Reactions**. ChemSystemsChem, 2021, 3, .	2.6	4
397	Switchable Aromatic Nanopore Structures: Functions and Applications. Accounts of Chemical Research, 2021, 54, 2959-2968.	15.6	30
398	Gelation Kineticsâ€5tructure Analysis of pHâ€triggered Low Molecular Weight Hydrogelators. ChemPhysChem, 2021, 22, 2256-2261.	2.1	4
399	How Was Nature Able to Discover Its Own Laws—Twice?. Life, 2021, 11, 679.	2.4	3
400	Autonomous DNA nanostructures instructed by hierarchically concatenated chemical reaction networks. Nature Communications, 2021, 12, 5132.	12.8	40
401	Gated Dissipative Dynamic Artificial Photosynthetic Model Systems. Journal of the American Chemical Society, 2021, 143, 12120-12128.	13.7	13
402	Chemically Fueled Three-State Chiroptical Switching Supramolecular Gel with Temporal Control. Journal of the American Chemical Society, 2021, 143, 12650-12657.	13.7	42
403	Selection between Competing Self-Reproducing Lipids: Succession and Dynamic Activation. Jacs Au, 2021, 1, 1355-1361.	7.9	8
404	Outâ€ofâ€equilibrium supramolecular selfâ€assembling systems driven by chemical fuel. Aggregate, 2021, 2, e110.	9.9	31

#	Article	IF	CITATIONS
405	Fuelâ€Driven and Enzymeâ€Regulated Redoxâ€Responsive Supramolecular Hydrogels. Angewandte Chemie - International Edition, 2021, 60, 21062-21068.	13.8	46
406	"Minimal metabolismâ€: A key concept to investigate the origins and nature of biological systems. BioEssays, 2021, 43, e2100103.	2.5	11
407	Light-fueled transient supramolecular assemblies in water as fluorescence modulators. Nature Communications, 2021, 12, 4993.	12.8	56
408	Brennstoffbetriebene und enzymregulierte redoxresponsive supramolekulare Hydrogele. Angewandte Chemie, 2021, 133, 21231-21238.	2.0	5
409	Diversity of non-equilibrium patterns and emergence of activity in confined electrohydrodynamically driven liquids. Science Advances, 2021, 7, eabh1642.	10.3	13
410	Pathwayâ€Dependent Phase Transitions of Supramolecular Selfâ€assemblies Containing Cationic Amphiphiles with Azobenzene and Disulfide Groups. Chemistry - A European Journal, 2021, 27, 13840-13845.	3.3	2
412	Accumulated Lattice Strain as an Internal Trigger for Spontaneous Pathway Selection. Journal of the American Chemical Society, 2021, 143, 15319-15325.	13.7	5
413	Peptide-Based Supramolecular Systems Chemistry. Chemical Reviews, 2021, 121, 13869-13914.	47.7	171
414	Scum of the Earth: A Hypothesis for Prebiotic Multi-Compartmentalised Environments. Life, 2021, 11, 976.	2.4	4
415	Double diffusion for the programmable spatiotemporal patterning of multi-domain supramolecular gels. Chemical Science, 2021, 12, 12156-12164.	7.4	22
416	Chemical fuel-driven transient polymeric micelle nanoreactors toward reversible trapping and reaction acceleration. Chemical Communications, 2021, 57, 5786-5789.	4.1	11
417	Dissipative Self-Assembly: Fueling with Chemicals versus Light. CheM, 2021, 7, 23-37.	11.7	112
418	Viewpoint: Pavlovian Materials—Functional Biomimetics Inspired by Classical Conditioning. Advanced Materials, 2020, 32, e1906619.	21.0	21
419	Transient Supramolecular Hydrogels Formed by Agingâ€Induced Seeded Selfâ€Assembly of Molecular Hydrogelators. Advanced Science, 2020, 7, 1902487.	11.2	30
420	Selfâ€Assembly Propensity Dictates Lifetimes in Transient Naphthalimide–Dipeptide Nanofibers. Chemistry - A European Journal, 2020, 26, 8372-8376.	3.3	25
421	Molecular Engineering of Robustness and Resilience in Enzymatic Reaction Networks. Journal of the American Chemical Society, 2017, 139, 8146-8151.	13.7	20
422	Active droplets in a hydrogel release drugs with a constant and tunable rate. Materials Horizons, 2020, 7, 1397-1403.	12.2	37
423	Exploiting complexity to implement function in chemical systems. Chemical Communications, 2020, 56, 13273-13286.	4.1	13

#	Article	IF	CITATIONS
424	Seeking to uncover biology's chemical roots. Emerging Topics in Life Sciences, 2019, 3, 435-443.	2.6	10
425	On the importance of reaction networks for synthetic living systems. Emerging Topics in Life Sciences, 2019, 3, 517-527.	2.6	10
426	<i>In Situ</i> Real-time Confocal Imaging of a Self-assembling Peptide-grafted Polymer Showing pH-responsive Hydrogelation. Chemistry Letters, 2020, 49, 1319-1323.	1.3	12
427	Serotyping, antibiotic susceptibility, and virulence genes screening of Escherichia coli isolates obtained from diarrheic buffalo calves in Egyptian farms. Veterinary World, 2017, 10, 769-773.	1.7	12
428	Enzyme-Instructed Self-assembly in Biological Milieu for Theranostics Purpose. Current Medicinal Chemistry, 2019, 26, 1351-1365.	2.4	6
429	Dissipative Supramolecular Polymerization Powered by Light. CCS Chemistry, 2019, 1, 335-342.	7.8	93
430	A guide-tag system controlling client enrichment into Y15 peptide-based granules for an in-cell protein recruitment assay. Chemical Communications, 2021, 57, 11338-11341.	4.1	4
431	Self‣ustained Marangoni Flows Driven by Chemical Reactions. ChemSystemsChem, 0, , .	2.6	1
432	Targeted Enrichment of Enzymeâ€Instructed Assemblies in Cancer Cell Lysosomes Turns Immunologically Cold Tumors Hot. Angewandte Chemie, 0, , .	2.0	2
433	Chemical engines: driving systems away from equilibrium through catalyst reaction cycles. Nature Nanotechnology, 2021, 16, 1057-1067.	31.5	70
434	Manipulation of Organic Afterglow by Thermodynamic and Kinetic Control. Chemistry - A European Journal, 2021, 27, 16735-16743.	3.3	6
435	Intracellular Condensates of Oligopeptide for Targeting Lysosome and Addressing Multiple Drug Resistance of Cancer. Advanced Materials, 2022, 34, e2104704.	21.0	47
436	Targeted Enrichment of Enzymeâ€Instructed Assemblies in Cancer Cell Lysosomes Turns Immunologically Cold Tumors Hot. Angewandte Chemie - International Edition, 2021, 60, 26994-27004.	13.8	47
437	Transient Dissipative Optical Properties of Aggregated Au Nanoparticles, CdSe/ZnS Quantum Dots, and Supramolecular Nucleic Acid-Stabilized Ag Nanoclusters. Journal of the American Chemical Society, 2021, 143, 17622-17632.	13.7	34
438	Tailoring Lifetimes and Properties of Carbodiimide-Fueled Covalently Cross-linked Polymer Networks. Macromolecules, 2021, 54, 9860-9867.	4.8	13
439	Dissipative morphological characteristics of photo-responsive block copolymers driven by time-oscillatory irradiations: An in silico study. Polymer, 2021, 235, 124234.	3.8	2
441	Über den Trend vom Molekül zum System. Nachrichten Aus Der Chemie, 2019, 67, 62-65.	0.0	0
445	Self-Assembling Peptides for Vaccine Development and Antibody Production. , 2020, , 1497-1517.		1

	CITATION	CITATION REPORT	
#	ARTICLE	IF	CITATIONS
447	Hierarchical self-assembly into chiral nanostructures. Chemical Science, 2022, 13, 633-656.	7.4	63
448	Morphological transitions in chemically fueled self-assembly. Nanoscale, 2021, 13, 19864-19869.	5.6	4
449	Self-evolving materials based on metastable-to-stable crystal transition of a polymorphic polyolefin. Materials Horizons, 2022, 9, 756-763.	12.2	6
450	Exploiting the fundamentals of biological organization for the advancement of biofabrication. Current Opinion in Biotechnology, 2022, 74, 42-54.	6.6	7
451	Reversible and spatiotemporal control of colloidal structure formation. Nature Communications, 2021, 12, 6811.	12.8	8
452	Phototriggered Spatially Controlled Out-of-Equilibrium Patterns of Peptide Nanofibers in a Self-Sorting Double Network Hydrogel. Journal of the American Chemical Society, 2021, 143, 19532-19541.	13.7	26
453	Emergence of a Promiscuous Peroxidase Under Nonâ€Equilibrium Conditions**. Angewandte Chemie - International Edition, 2022, 61, .	13.8	12
454	Emergence of a Promiscuous Peroxidase Under Nonâ€Equilibrium Conditions**. Angewandte Chemie, 0, , .	2.0	4
455	Droplet Formation by Chemically Fueled Self-Assembly: The Role of Precursor Hydrophobicity. Journal of Physical Chemistry B, 2021, 125, 13542-13551.	2.6	4
456	Light-driven dissipative self-assembly of a peptide hydrogel. Chemical Communications, 2021, 57, 13776-13779.	4.1	21
457	Carbodiimide-fueled catalytic reaction cycles to regulate supramolecular processes. Chemical Communications, 2022, 58, 1284-1297.	4.1	25
458	Supramolecular systems chemistry through advanced analytical techniques. Analytical and Bioanalytical Chemistry, 2022, 414, 5105-5119.	3.7	4
459	Nonequilibrium Catalytic Supramolecular Assemblies of Melamine- and Imidazole-Based Dynamic Building Blocks. Journal of the American Chemical Society, 2022, 144, 673-678.	13.7	14
460	Programmable Transient Supramolecular Chiral Gâ€quadruplex Hydrogels by a Chemically Fueled Nonâ€equilibrium Selfâ€Assembly Strategy. Angewandte Chemie, 2022, 134, .	2.0	3
461	Bottom-up supramolecular assembly in two dimensions. Chemical Science, 2022, 13, 3057-3068.	7.4	30
462	Chemical Fuel Mediated Selfâ€Regulatory Polymer Brushes for Autonomous Fluorescence Modulator and Wettability Switcher. Macromolecular Rapid Communications, 2022, 43, e2100878.	3.9	4
463	Programmable Transient Supramolecular Chiral Gâ€quadruplex Hydrogels by a Chemically Fueled Nonâ€equilibrium Selfâ€Assembly Strategy. Angewandte Chemie - International Edition, 2022, 61, .	13.8	18
464	Controlling the lifetime of cucurbit[8]uril based self-abolishing nanozymes. Chemical Science, 2022, 13, 4050-4057.	7.4	10

#	Article	IF	CITATIONS
465	Recent advances in high-strength and high-toughness polyurethanes based on supramolecular interactions. Polymer Chemistry, 2022, 13, 2420-2441.	3.9	23
466	Systems chemistry of peptide-assemblies for biochemical transformations. Chemical Society Reviews, 2022, 51, 3047-3070.	38.1	34
467	Using Rheology to Understand Transient and Dynamic Gels. Gels, 2022, 8, 132.	4.5	10
468	Gated Transient Dissipative Dimerization of DNA Tetrahedra Nanostructures for Programmed DNAzymes Catalysis. ACS Nano, 2022, 16, 3625-3636.	14.6	13
469	Selfâ€Regulating Colloidal Coâ€Assemblies That Accelerate Their Own Destruction via Chemoâ€&tructural Feedback. Angewandte Chemie, 0, , .	2.0	0
470	Temporal Control of Gelation and Mechanical Properties by Electrolyte Gelators Applicable to Heterogeneous Reservoirs. ACS Applied Polymer Materials, 2022, 4, 2724-2733.	4.4	0
471	History Dependence in a Chemical Reaction Network Enables Dynamic Switching. Small, 2022, 18, e2107523.	10.0	1
472	Transient chirality inversion during racemization of a helical cobalt(III) complex. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2113237119.	7.1	11
473	Hostâ€Fueled Transient Supramolecular Hydrogels. ChemSystemsChem, 2022, 4, .	2.6	11
474	Selfâ€Regulating Colloidal Coâ€Assemblies That Accelerate Their Own Destruction via Chemoâ€Structural Feedback. Angewandte Chemie - International Edition, 2022, 61, .	13.8	14
475	Designing bioresponsive nanomaterials for intracellular self-assembly. Nature Reviews Chemistry, 2022, 6, 320-338.	30.2	83
476	Pumping between phases with a pulsed-fuel molecular ratchet. Nature Nanotechnology, 2022, 17, 701-707.	31.5	41
477	Dynamic Kinetic Stability. , 2022, , 1-2.		0
478	Electroferrofluids with nonequilibrium voltage-controlled magnetism, diffuse interfaces, and patterns. Science Advances, 2021, 7, eabi8990.	10.3	6
479	Modeling and Designing Particle-Regulated Amyloid-like Assembly of Synthetic Polypeptides in Aqueous Solution. Biomacromolecules, 2022, 23, 196-209.	5.4	4
480	Chemically Fueled Self-Sorted Hydrogels. Journal of the American Chemical Society, 2022, 144, 410-415.	13.7	34
481	Biomacromoleculeâ€Fueled Transient Volume Phase Transition of a Hydrogel. Angewandte Chemie - International Edition, 2022, 61, .	13.8	8
482	Reversible Transformations of Polymer Topologies through Visible Light and Darkness. Journal of the American Chemical Society, 2022, 144, 6954-6963.	13.7	6

	Сітатіс	CITATION REPORT	
#	Article	IF	CITATIONS
483	Biomacromolecule $\hat{a} {\in} {f f}$ ueled Transient Volume Phase Transition of a Hydrogel. Angewandte Chemie, 0, , .	2.0	1
484	Electrically Fueled Active Supramolecular Materials. Journal of the American Chemical Society, 2022, 144, 7844-7851.	13.7	30
485	Feedback-controlled topological reconfiguration of molecular assemblies for programming supramolecular structures. Soft Matter, 2022, 18, 3856-3866.	2.7	4
486	Transient Outâ€ofâ€Equilibrium Nucleic Acidâ€Based Dissipative Networks and Their Applications. Advance Functional Materials, 2022, 32, .	d 14.9	31
487	DNAâ \in Based Dissipative Assembly toward Nanoarchitectonics. Advanced Functional Materials, 2022, 32, .	14.9	26
488	Dissipative biocatalytic cascades and gated transient biocatalytic cascades driven by nucleic acid networks. Science Advances, 2022, 8, eabn3534.	10.3	23
489	Nonequilibrium regulation of interfacial chemistry for transient macroscopic supramolecular assembly. Journal of Colloid and Interface Science, 2022, 623, 674-684.	9.4	13
490	Dissipative Acid-Fueled Reprogrammable Supramolecular Materials. ACS Applied Materials & Interfaces, 2022, 14, 24720-24728.	8.0	16
491	Transient Host–Guest Complexation To Control Catalytic Activity. Journal of the American Chemical Society, 2022, 144, 9465-9471.	13.7	14
492	Protometabolism as out-of-equilibrium chemistry. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2022, 380, .	3.4	3
493	Nanostructured Catalytic Reactors Produced by Supramolecular Materials Based on Aromatic Amphiphiles. , 0, , 1214-1226.		1
494	Supramolecular copolymerization through self-correction of non-polymerizable transient intermediates. Chemical Science, 2022, 13, 7796-7804.	7.4	1
495	Nanoparticle Self-Assembly: From Design Principles to Complex Matter to Functional Materials. ACS Applied Materials & Interfaces, 2023, 15, 25248-25274.	8.0	33
496	Secondary Nucleation-Triggered Physical Cross-Links and Tunable Stiffness in Seeded Supramolecular Hydrogels. Journal of the American Chemical Society, 2022, 144, 11306-11315.	13.7	31
497	Self-assembled sonogels formed from 1,4-naphthalenedicarbonyldinicotinic acid hydrazide. RSC Advances, 2022, 12, 20218-20226.	3.6	1
498	Insights into Chemically Fueled Supramolecular Polymers. Chemical Reviews, 2022, 122, 11759-11777.	47.7	52
499	Light-fueled dissipative self-assembly at molecular and macro-scale enabled by a visible-light-responsive transient hetero-complementary quadruple hydrogen bond. Chinese Chemical Letters, 2023, 34, 107639.	9.0	6
500	Chemical fuels for molecular machinery. Nature Chemistry, 2022, 14, 728-738.	13.6	53

#		IF	CITATIONS
501	In Situ Reala€Time Nanoscale Resolution of Structural Evolution and Dynamics of Fluorescent Selfâ€Assemblies by Superâ€Resolution Imaging. Angewandte Chemie, 0, , .	2.0	0
502	In Situ Realâ€Time Nanoscale Resolution of Structural Evolution and Dynamics of Fluorescent Selfâ€Assemblies by Superâ€Resolution Imaging. Angewandte Chemie - International Edition, 2022, 61, .	13.8	5
503	In situ Synthesis of Supramolecular Polymers: Finding the Right Conditions when Combining Covalent and Nonâ€Covalent Synthesis. Angewandte Chemie, 2022, 134, .	2.0	4
504	In situ Synthesis of Supramolecular Polymers: Finding the Right Conditions when Combining Covalent and Nonâ€Covalent Synthesis. Angewandte Chemie - International Edition, 2022, 61, .	13.8	13
505	Observing Nano-Scale Dynamics of Active Soft Materials by <i>In Situ</i> Electrochemistry and Liquid Cell Transmission Electron Microscopy. Microscopy and Microanalysis, 2022, 28, 96-99.	0.4	1
506	Carbodiimideâ€Induced Formation of Transient Polyether Cages**. ChemSystemsChem, 2022, 4, .	2.6	6
507	Information thermodynamics for deterministic chemical reaction networks. Journal of Chemical Physics, 2022, 157, .	3.0	18
508	A Chemically Fuelled Molecular Automaton Displaying Programmed Migration of Zn ²⁺ Between Alternative Binding Sites. Chemistry - A European Journal, 2022, 28, .	3.3	8
509	Temporal Stimulus Patterns Drive Differentiation of a Synthetic Dipeptide-Based Coacervate. Journal of the American Chemical Society, 2022, 144, 15155-15164.	13.7	12
510	A Ribonucleotide ↔ Phosphoramidate Reaction Network Optimized by Computer-Aided Design. Journal of the American Chemical Society, 2022, 144, 15266-15274.	13.7	3
511	Theoretical study of macrocyclic host molecules: from supramolecular recognition to self-assembly. Physical Chemistry Chemical Physics, 2022, 24, 19011-19028.	2.8	8
512	A chemically fueled supramolecular glue for self-healing gels. Chemical Science, 2022, 13, 11411-11421.	7.4	13
513	Spatial programming of self-organizing chemical systems using sustained physicochemical gradients from reaction, diffusion and hydrodynamics. Physical Chemistry Chemical Physics, 2022, 24, 23980-24001.	2.8	11
514	Dissipative self-assembly of a proline catalyst for temporal regulation of the aldol reaction. Nanoscale, 2022, 14, 14711-14716.	5.6	3
515	Switchable aqueous catalytic systems for organic transformations. Communications Chemistry, 2022, 5, .	4.5	7
516	Bioinspired Self-Resettable Hydrogel Actuators Powered by a Chemical Fuel. ACS Applied Materials & Interfaces, 2022, 14, 43825-43832.	8.0	10
517	Transient Polymer Hydrogels Based on Dynamic Covalent Borate Ester Bonds. Chinese Journal of Chemistry, 2022, 40, 2794-2800.	4.9	13
518	Temporally Controlled Multienzyme Catalysis Using a Dissipative Supramolecular Nanozyme. ACS Applied Materials & amp; Interfaces, 2022, 14, 45096-45109.	8.0	14

#	Article	IF	CITATIONS
519	Tuning the Kinetic Trapping in Chemically Fueled Selfâ€Assembly**. ChemSystemsChem, 2023, 5, .	2.6	7
520	A Timeâ€Dependent Fluorescent Hydrogel for "Time‣ock―Information Encryption. Advanced Functional Materials, 2022, 32, .	14.9	53
521	Evolution of Transient Luminescent Assemblies Regulated by Trace Water in Organic Solvents. Journal of the American Chemical Society, 2022, 144, 19410-19416.	13.7	5
522	Nonequilibrium Amyloid Polymers Exploit Dynamic Covalent Linkage to Temporally Control Charge-Selective Catalysis. Journal of the American Chemical Society, 2022, 144, 19248-19252.	13.7	8
523	Catalytic reversible (de)â€hydrogenation to rotate a chemically fueled molecular switch. Angewandte Chemie - International Edition, 0, , .	13.8	2
524	Temporally programmed polymer – solvent interactions using a chemical reaction network. Nature Communications, 2022, 13, .	12.8	18
525	Orthogonal Enzyme-Driven Timers for DNA Strand Displacement Reactions. Journal of the American Chemical Society, 2022, 144, 19791-19798.	13.7	20
526	Catalytic Reversible (De)hydrogenation To Rotate a Chemically Fueled Molecular Switch. Angewandte Chemie, 2022, 134, .	2.0	1
527	Designed Complex Peptideâ€Based Adaptive Systems: A Bottomâ€Up Approach. ChemSystemsChem, 2023, 5, .	2.6	3
528	Construction of Transient Supramolecular Polymers Controlled by Mass Transfer in Biphasic System. Chemical Science, 0, , .	7.4	0
529	Out of Equilibrium Chemical Systems Fueled by Trichloroacetic Acid. ACS Organic & Inorganic Au, 2023, 3, 4-12.	4.0	6
530	Photoswitchable gating of non-equilibrium enzymatic feedback in chemically communicating polymersome nanoreactors. Nature Chemistry, 2023, 15, 110-118.	13.6	26
531	Controlled Supramolecular Selfâ€Assembly Pathways by Intramolecular Rotation of D–A Molecular System toward the Signal Differentiation Detection of Toxic Vapors. Small, 0, , 2205044.	10.0	1
532	Self-healing cyclic peptide hydrogels. Journal of Materials Chemistry B, 2023, 11, 606-617.	5.8	2
533	Regulating DNA-Hybridization Using a Chemically Fueled Reaction Cycle. Journal of the American Chemical Society, 2022, 144, 21939-21947.	13.7	12
534	Non-equilibrium Nanoassemblies Constructed by Confined Coordination on a Polymer Chain. Journal of the American Chemical Society, 2022, 144, 22651-22661.	13.7	3
535	Stochastic paths controlling speed and dissipation. Physical Review E, 2022, 106, .	2.1	3
536	Controlled Annealing in Adaptive Multicomponent Gels. Angewandte Chemie - International Edition, 0,	13.8	3

#	Article	IF	CITATIONS
537	Unusual shape-preserved pathway of a core-shell phase transition triggered by orientational disorder. IUCrJ, 2023, 10, 38-51.	2.2	3
538	Optimizing dynamical functions for speed with stochastic paths. Journal of Chemical Physics, 2022, 157, .	3.0	1
539	Caught in Action: Visualizing Dynamic Nanostructures Within Supramolecular Systems Chemistry. Angewandte Chemie - International Edition, 0, , .	13.8	3
540	Coupling Reversible Clustering of DNA oated Gold Nanoparticles with Chemothermal Cycloaddition Reaction. ChemSystemsChem, 2023, 5, .	2.6	0
541	On the Chemical Origin of Biological Cognition. Life, 2022, 12, 2016.	2.4	6
542	Controlled Annealing in Adaptive Multicomponent Gels. Angewandte Chemie, 0, , .	2.0	0
543	Caught in Action: Visualizing Dynamic Nanostructures Within Supramolecular Systems Chemistry. Angewandte Chemie, 0, , .	2.0	0
544	Smart Hydrogels Bearing Transient Gel–Sol–Gel Transition Behavior Driven by a Biocompatible Chemical Fuel. ACS Applied Polymer Materials, 2023, 5, 1067-1074.	4.4	4
545	Dissipative crystallization of ion-pair receptors. CheM, 2023, 9, 709-720.	11.7	7
546	Sugar-Fueled Dissipative Living Materials. Journal of the American Chemical Society, 2023, 145, 1811-1817.	13.7	6
547	Transient and Dissipative Host–Guest Hydrogels Regulated by Consumption of a Reactive Chemical Fuel. Angewandte Chemie - International Edition, 2023, 62, .	13.8	8
548	Transient and Dissipative Host–Guest Hydrogels Regulated by Consumption of a Reactive Chemical Fuel. Angewandte Chemie, 0, , .	2.0	0
549	Formation of Catalytic Hotspots in ATP-Templated Assemblies. Journal of the American Chemical Society, 2023, 145, 898-904.	13.7	10
550	Chemical fuel-driven gelation with dissipative assembly-induced emission. Organic Chemistry Frontiers, 2023, 10, 1380-1385.	4.5	8
551	Chemical signal regulated injectable coacervate hydrogels. Chemical Science, 2023, 14, 1512-1523.	7.4	11
552	CO ₂ â€Fueled Transient Breathing Nanogels that Couple Nonequilibrium Catalytic Polymerization. Angewandte Chemie - International Edition, 2023, 62, .	13.8	4
553	CO2â€Fueled Transient Breathing Nanogels that Couple Nonequilibrium Catalytic Polymerization. Angewandte Chemie, 0, , .	2.0	0
554	Autonomic self-regulating systems based on polyelectrolyte microcapsules and microgel particles. Journal of Colloid and Interface Science, 2023, 638, 403-411.	9.4	1

#	Article	IF	CITATIONS
555	Nucleophile responsive charge-reversing polycations for pDNA transfection. Polymer Chemistry, 2023, 14, 1591-1601.	3.9	1
557	Design of Turing Systems with Physics-Informed Neural Networks. , 2022, , .		0
558	Transient Biomacromolecular Nanoparticles for Labels with Selfâ€Erasable and Rewritable Ability. ChemSystemsChem, 2023, 5, .	2.6	3
559	Precise Control of Dissipative Selfâ€assembly by Light and Electricity. Chemistry - A European Journal, 2023, 29, .	3.3	3
560	Waste-Free Fully Electrically Fueled Dissipative Self-Assembly System. Journal of the American Chemical Society, 2023, 145, 3727-3735.	13.7	8
561	Cumulative Effect of pH and Redox Triggers on Highly Adaptive Transient Coacervates. Chemistry - A European Journal, 2023, 29, .	3.3	3
562	Chemically Fueled Dissipative Cross-Linking of Protein Hydrogels Mediated by Protein Unfolding. Biomacromolecules, 2023, 24, 1131-1140.	5.4	4
563	Orbiting Selfâ€Organization of Filamentâ€Tethered Surfaceâ€Active Droplets. Small, 2023, 19, .	10.0	2
564	Carbodiimideâ€Fueled Assembly of Ï€â€Conjugated Peptides Regulated by Electrostatic Interactions**. ChemSystemsChem, 2023, 5, .	2.6	4
565	Chemically Fueled Reinforcement of Polymer Hydrogels. Journal of the American Chemical Society, 2023, 145, 5553-5560.	13.7	9
566	A subwoofer separates chiral fibers. CheM, 2023, 9, 551-554.	11.7	0
567	Triggered Polymersome Fusion. Journal of the American Chemical Society, 2023, 145, 5824-5833.	13.7	7
568	Darwinian evolution as a dynamical principle. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	6
569	A Facile and Versatile Approach to Construct Photoactivated Peptide Hydrogels by Regulating Electrostatic Repulsion. ACS Nano, 2023, 17, 5536-5547.	14.6	12
570	A Carbodiimide-Fueled Reaction Cycle That Forms Transient 5(4 <i>H</i>)-Oxazolones. Journal of the American Chemical Society, 2023, 145, 6880-6887.	13.7	15
571	Temporally programmed switching of functional states in polyaniline film. APL Materials, 2023, 11, .	5.1	1
572	Four distinct network patterns of supramolecular/polymer composite hydrogels controlled by formation kinetics and interfiber interactions. Nature Communications, 2023, 14, .	12.8	6
573	Nonlinear Transient Permeability in pH-Responsive Bicontinuous Nanospheres. Journal of the American Chemical Society, 0, , .	13.7	1

	CITATION R	CITATION REPORT	
#	Article	IF	Citations
574	Recent Progress on Cyclic Peptidesâ \in MAssembly and Biomedical Applications. ChemBioChem, 2023, 24, .	2.6	3
575	Chemically Fueled Supramolecular Materials. Accounts of Materials Research, 2023, 4, 416-426.	11.7	12
576	A light-fueled dissipative aggregation-induced emission system for time-dependent information encryption. Chemical Communications, 2023, 59, 5910-5913.	4.1	8
577	Autonomous and Programmable Reorganization of DNAâ€Based Polymers Using Redox Chemistry**. Chemistry - A European Journal, 2023, 29, .	3.3	1
578	Dynamical Behaviors of Oscillating Metallosurfactant Coacervate Microdroplets under Redox Stress. Advanced Materials, 2023, 35, .	21.0	3
581	Programmable active matter across scales. , 2023, 1, .		1
582	Mind from Matter: the Chemical Connection. Israel Journal of Chemistry, 0, , .	2.3	1
583	Light-Fueled Primitive Replication and Selection in Biomimetic Chemical Systems. Journal of the American Chemical Society, 2023, 145, 13371-13383.	13.7	2
584	Prevalence of multistability and nonstationarity in driven chemical networks. Journal of Chemical Physics, 2023, 158, .	3.0	1
585	Non-equilibrium Steady States in Catalysis, Molecular Motors, and Supramolecular Materials: Why Networks and Language Matter. Journal of the American Chemical Society, 2023, 145, 14169-14183.	13.7	29
586	Controlling Helical Asymmetry in Supramolecular Copolymers by <i>In Situ</i> Chemical Modification. Journal of the American Chemical Society, 2023, 145, 14379-14386.	13.7	3
587	Elucidation of the key role of isomerization in the self-assembly and luminescence properties of AlEgens. Physical Chemistry Chemical Physics, 2023, 25, 14387-14399.	2.8	2
588	ATP Drives the Formation of a Catalytic Hydrazone through an Energy Ratchet Mechanism. Angewandte Chemie - International Edition, 2023, 62, .	13.8	3
589	ATP Drives the Formation of a Catalytic Hydrazone through an Energy Ratchet Mechanism. Angewandte Chemie, 0, , .	2.0	1
590	Accelerating the prediction and discovery of peptide hydrogels with human-in-the-loop. Nature Communications, 2023, 14, .	12.8	18
591	Recent Progress of <scp> Fuelâ€Driven </scp> Temporary Materials. Chinese Journal of Chemistry, 2023, 41, 3358-3372.	4.9	1
592	Dynamic surface chemistry and interparticle interactions mediating chemically fueled dissipative assembly of colloids. Journal of Colloid and Interface Science, 2023, 650, 972-982.	9.4	2
593	Cyclic Macroscopic Assembly and Disassembly Driven by Ionic Strength Fuel: A Waste-Free Approach. ACS Applied Materials & Interfaces, 2023, 15, 33169-33179.	8.0	3

#	Article	IF	CITATIONS
594	Transient regulation of gel properties by chemical reaction networks. Chemical Communications, 2023, 59, 9818-9831.	4.1	4
595	Chemical Reaction Networks based on Conjugate Additions on β'-substituted Michael Acceptors. Chemical Communications, 0, , .	4.1	Ο
596	A Transient Vesicular Glue for Amplification and Temporal Regulation of Biocatalytic Reaction Networks. Chemical Science, 0, , .	7.4	1
597	Dynamic Kinetic Stability. , 2023, , 849-850.		0
598	Transient Assembly of Macroscopically Structured Supramolecular Hydrogels Driven by Shaped Chemical Fuels. , 2023, 5, 2377-2383.		2
599	DNA-Based Signaling Networks for Transient Colloidal Co-Assemblies. Journal of the American Chemical Society, 2023, 145, 17819-17830.	13.7	5
600	Mechanoaktivierte Selbstauflösung von Hydrogelen mittels eines Signalverstäkungsmechanismus. Angewandte Chemie, 2023, 135, .	2.0	0
601	Mechanoâ€Activated Selfâ€Immolation of Hydrogels via Signal Amplification. Angewandte Chemie - International Edition, 2023, 62, .	13.8	0
602	Controlling molecular assembly on time scale: Time-dependent multicolor fluorescence for information encryption. Chinese Chemical Letters, 2023, , 108972.	9.0	1
603	Design rules for reciprocal coupling in chemically fueled assembly. Chemical Science, 2023, 14, 10176-10183.	7.4	1
604	Structural evolution from disordered to fibrous assembly <i>via</i> a dual visual dissipative pathway. Materials Chemistry Frontiers, 2023, 7, 5406-5412.	5.9	0
605	Engineering metabolic cycle-inspired hydrogels with enzyme-fueled programmable transient volume changes. Journal of Materials Chemistry B, 2023, 11, 8136-8141.	5.8	0
606	Programmable supramolecular chirality in non-equilibrium systems affording a multistate chiroptical switch. Nature Communications, 2023, 14, .	12.8	3
607	Supramolecular–Polymer Composite Hydrogels: From <i>In Situ</i> Network Observation to Functional Properties. Bulletin of the Chemical Society of Japan, 2023, 96, 802-812.	3.2	3
608	Bioâ€Inspired Farâ€Fromâ€Equilibrium Hydrogels: Design Principles and Applications. ChemPlusChem, 2023, 88, .	2.8	0
609	The entropy-controlled strategy in self-assembling systems. Chemical Society Reviews, 2023, 52, 6806-6837.	38.1	9
610	Transient and directional growth of supramolecular hydrogels through reaction–diffusion-mediated self-assembly for dynamic wet gluing. Chemical Engineering Journal, 2023, 475, 146125.	12.7	2
611	Liquid spherical shells are a non-equilibrium steady state of active droplets. Nature Communications, 2023, 14, .	12.8	7

#	Article	IF	CITATIONS
612	Controllable and Reversible Assembly of Nanofiber from Natural Macromolecules via Protonation and Deprotonation. Small, 2024, 20, .	10.0	0
613	Dynamic Growth of Macroscopically Structured Supramolecular Hydrogels through Orchestrated Reactionâ€Diffusion. Angewandte Chemie, 2023, 135, .	2.0	0
614	Dynamic Growth of Macroscopically Structured Supramolecular Hydrogels through Orchestrated Reactionâ€Ðiffusion. Angewandte Chemie - International Edition, 2023, 62, .	13.8	2
615	What Triggers the Dynamic Self-Assembly of Molecules and Materials?. Langmuir, 2023, 39, 12967-12974.	3.5	0
616	Dual olor Realâ€Time Chemosensing of A Compartmentalized Reaction Network Involving Enzymeâ€Induced Membrane Permeation of Peptides. Advanced Materials, 0, , .	21.0	1
617	Mean-field models for the chemical fueling of transient soft matter states. Soft Matter, 2023, 19, 7804-7814.	2.7	0
618	Temporal Self-Regulation of Mechanical Properties via Catalytic Amyloid Polymers of a Short Peptide. Nano Letters, 0, , .	9.1	0
619	Transient co-assemblies of micron-scale colloids regulated by ATP-fueled reaction networks. Chemical Science, 0, , .	7.4	0
620	Suppressing catalyst poisoning in the carbodiimide-fueled reaction cycle. Chemical Science, 2023, 14, 12653-12660.	7.4	4
621	Supramolecular dissipative selfâ \in assembly systems: Approaches and applications. , 2023, 1, .		2
622	Polylysine oated Surfaces Drive Competition in Chemical Reaction Networks to Enable Molecular Information Processing. ChemSystemsChem, 2024, 6, .	2.6	0
623	Soft matter roadmap [*] . JPhys Materials, 2024, 7, 012501.	4.2	1
624	On the Emergence of Autonomous Chemical Systems through Dissipation Kinetics. Life, 2023, 13, 2171.	2.4	2
625	Dynamic supramolecular hydrogels mediated by chemical reactions. Chemical Communications, 2023, 59, 14236-14248.	4.1	1
626	Light-Driven Membrane Assembly, Shape-Shifting, and Tissue Formation in Chemically Responsive Synthetic Cells. Journal of the American Chemical Society, 2023, 145, 25815-25823.	13.7	2
627	Cellâ€Like Synthetic Supramolecular Soft Materials Realized in Multicomponent, Nonâ€/Outâ€ofâ€Equilibrium Dynamic Systems. Advanced Science, 2024, 11, .	11.2	1
628	Controlling Supramolecular Fiber Formation of Nucleopeptide by Guanosine Triphosphate. Biomacromolecules, 2023, 24, 5678-5686.	5.4	0
629	Dissipative Cyclic Reaction Networks: Mechanistic Insights into a Minor Enantiomer Recycling Process. ChemSystemsChem, 0, , .	2.6	0

#	Article	IF	CITATIONS
630	Light-Dissipative and Reprogrammable DNA Hydrogels Enabled by Merocyanine Photoacids. Chemistry of Materials, 2023, 35, 9978-9987.	6.7	0
631	Switched "On―Transient Fluorescence Output from a Pulsed-Fuel Molecular Ratchet. Journal of the American Chemical Society, 0, , .	13.7	0
632	CryoEM reveals the complex self-assembly of a chemically driven disulfide hydrogel. Chemical Science, 2024, 15, 1106-1116.	7.4	0
633	Selective amide bond formation in redox-active coacervate protocells. Nature Communications, 2023, 14, .	12.8	0
634	Solvent-Induced Transient Self-Assembly of Peptide Gels: Gelator–Solvent Reactions and Material Properties Correlation. Chemistry of Materials, 0, , .	6.7	0
635	Organelle-Mediated Dissipative Self-Assembly of Peptides in Living Cells. Journal of the American Chemical Society, 0, , .	13.7	0
636	Observing the Transient Assembly and Disassembly of Carboxylic Anhydrides in the Organic Chemistry Laboratory. Journal of Chemical Education, 2024, 101, 145-150.	2.3	0
637	Acylphosphates as versatile transient species in reaction networks and optical catalyst screenings. CheM, 2024, 10, 910-923.	11.7	0
638	Tunable cyclic operation of dissipative molecular switches based on anion recognition. Chemical Communications, 0, , .	4.1	0
639	Transient structuring of liquids using dissipative interfacial assemblies. Matter, 2024, 7, 1092-1105.	10.0	0
641	Artificial Homeostasis Systems Based on Feedback Reaction Networks: Design Principles and Future Promises. Angewandte Chemie, 2024, 136, .	2.0	0
642	Artificial Homeostasis Systems Based on Feedback Reaction Networks: Design Principles and Future Promises. Angewandte Chemie - International Edition, 2024, 63, .	13.8	0
643	New Insights on the Chemical Origin of Life: The Role of Aqueous Polymerization of <i>N</i> arboxyanhydrides (NCA). ChemPlusChem, 0, , .	2.8	0
644	Pumping Small Molecules Selectively through an Energy-Assisted Assembling Process at Nonequilibrium States. Journal of the American Chemical Society, 2024, 146, 3323-3330.	13.7	0
645	Atomic structures of naphthalene dipeptide micelles unravel mechanisms of assembly and gelation. Cell Reports Physical Science, 2024, 5, 101812.	5.6	1
646	Global advances and smart innovations in supramolecular polymers. Journal of Molecular Structure, 2024, 1304, 137665.	3.6	0
647	Transient Metalloâ€Lipidoid Assemblies Amplify Covalent Catalysis of Aqueous and Nonâ€Aqueous Reactions. Angewandte Chemie - International Edition, 2024, 63, .	13.8	0
648	Transient Metallo‣ipidoid Assemblies Amplify Covalent Catalysis of Aqueous and Nonâ€Aqueous Reactions. Angewandte Chemie, 2024, 136, .	2.0	0

#	Article	IF	CITATIONS
649	Temporal (Dis)Assembly of Peptide Nanostructures Dictated by Native Multistep Catalytic Transformations. Nano Letters, 2024, 24, 2250-2256.	9.1	0
650	Oxidationâ€Responsive Supramolecular Hydrogel Based on a Simple Fmocâ€Cysteine Derivative Capable of Showing Autonomous Gel–Sol–Gel Transitions. Advanced Functional Materials, 0, , .	14.9	0
651	Sustainable Supramolecular Polymers. ChemPlusChem, 0, , .	2.8	0
652	Emergence of Dynamic Instability by Hybridizing Synthetic Self-Assembled Dipeptide Fibers with Surfactant Micelles. Journal of the American Chemical Society, 2024, 146, 5799-5805.	13.7	0
653	Dynamic Circularly Polarized Luminescence Switching of Metal–Organic Supramolecular Polymers Directed by the Competition of Solvent-Assisted Nucleation and Thermal Nucleation. Chemistry of Materials, 2024, 36, 2508-2519.	6.7	0
654	Spatiotemporal control over self-assembly of supramolecular hydrogels through reaction–diffusion. Journal of Colloid and Interface Science, 2024, 664, 938-945.	9.4	0
655	Endergonic synthesis driven by chemical fuelling. , 0, , .		0
656	Materials Inspired by Living Functions. Advanced Functional Materials, 0, , .	14.9	0