Memory Engram Cells Have Come of Age

Neuron

87, 918-931

DOI: 10.1016/j.neuron.2015.08.002

Citation Report

#	Article	IF	CITATIONS
1	Nanoparticle-Based and Bioengineered Probes and Sensors to Detect Physiological and Pathological Biomarkers in Neural Cells. Frontiers in Neuroscience, 2015, 9, 480.	2.8	30
2	Memory engram storage and retrieval. Current Opinion in Neurobiology, 2015, 35, 101-109.	4.2	332
3	Distinct memory engrams in the infralimbic cortex of rats control opposing environmental actions on a learned behavior. ELife, $2016, 5, .$	6.0	46
4	Mass Spectrometry-Based Approaches to Understand the Molecular Basis of Memory. Frontiers in Chemistry, 2016, 4, 40.	3.6	7
5	The Use of DREADDs to Deconstruct Behavior. Frontiers in Genetics, 2016, 7, 70.	2.3	95
6	Theory of Connectivity: Nature and Nurture of Cell Assemblies and Cognitive Computation. Frontiers in Neural Circuits, 2016, 10, 34.	2.8	25
7	How Does the Sparse Memory "Engram―Neurons Encode the Memory of a Spatial–Temporal Event?. Frontiers in Neural Circuits, 2016, 10, 61.	2.8	12
8	Genetic Feedback Regulation of Frontal Cortical Neuronal Ensembles Through Activity-Dependent Arc Expression and Dopaminergic Input. Frontiers in Neural Circuits, 2016, 10, 100.	2.8	7
9	Which Neurons Will Be the Engram - Activated Neurons and/or More Excitable Neurons?. Experimental Neurobiology, 2016, 25, 55-63.	1.6	11
10	Overview on Research and Clinical Applications of Optogenetics. Current Protocols in Pharmacology, 2016, 75, 11.19.1-11.19.21.	4.0	19
10		4.0 5.4	19
	Pharmacology, 2016, 75, 11.19.1-11.19.21.		
11	Pharmacology, 2016, 75, 11.19.1-11.19.21. Neuronal Allocation to a Hippocampal Engram. Neuropsychopharmacology, 2016, 41, 2987-2993.	5.4	133
11	Pharmacology, 2016, 75, 11.19.1-11.19.21. Neuronal Allocation to a Hippocampal Engram. Neuropsychopharmacology, 2016, 41, 2987-2993. Ventral CA1 neurons store social memory. Science, 2016, 353, 1536-1541. Deleting both PHLPP1 and CANP1 rescues impairments in long-term potentiation and learning in both	5.4 12.6	133 467
11 12 13	Pharmacology, 2016, 75, 11.19.1-11.19.21. Neuronal Allocation to a Hippocampal Engram. Neuropsychopharmacology, 2016, 41, 2987-2993. Ventral CA1 neurons store social memory. Science, 2016, 353, 1536-1541. Deleting both PHLPP1 and CANP1 rescues impairments in long-term potentiation and learning in both single knockout mice. Learning and Memory, 2016, 23, 399-404. Bridging the Cap: Towards a cell-type specific understanding of neural circuits underlying fear	5.4 12.6 1.3	133 467 15
11 12 13	Pharmacology, 2016, 75, 11.19.1-11.19.21. Neuronal Allocation to a Hippocampal Engram. Neuropsychopharmacology, 2016, 41, 2987-2993. Ventral CA1 neurons store social memory. Science, 2016, 353, 1536-1541. Deleting both PHLPP1 and CANP1 rescues impairments in long-term potentiation and learning in both single knockout mice. Learning and Memory, 2016, 23, 399-404. Bridging the Gap: Towards a cell-type specific understanding of neural circuits underlying fear behaviors. Neurobiology of Learning and Memory, 2016, 135, 27-39. Retrosplenial Cortical Neurons Encode Navigational Cues, Trajectories and Reward Locations During	5.4 12.6 1.3	133 467 15 41
11 12 13 14	Pharmacology, 2016, 75, 11.19.1-11.19.21. Neuronal Allocation to a Hippocampal Engram. Neuropsychopharmacology, 2016, 41, 2987-2993. Ventral CA1 neurons store social memory. Science, 2016, 353, 1536-1541. Deleting both PHLPP1 and CANP1 rescues impairments in long-term potentiation and learning in both single knockout mice. Learning and Memory, 2016, 23, 399-404. Bridging the Gap: Towards a cell-type specific understanding of neural circuits underlying fear behaviors. Neurobiology of Learning and Memory, 2016, 135, 27-39. Retrosplenial Cortical Neurons Encode Navigational Cues, Trajectories and Reward Locations During Goal Directed Navigation. Cerebral Cortex, 2017, 27, 3713-3723.	5.4 12.6 1.3 1.9	133 467 15 41 72

#	Article	IF	CITATIONS
19	Functional and structural underpinnings of neuronal assembly formation in learning. Nature Neuroscience, 2016, 19, 1553-1562.	14.8	193
20	Spotlight on pain: optogenetic approaches for interrogating somatosensory circuits. Pain, 2016, 157, 2424-2433.	4.2	31
21	Rehebbilitating Memory. Neuropsychopharmacology, 2016, 41, 370-371.	5.4	8
22	Memory retrieval by activating engram cells in mouse models of early Alzheimer's disease. Nature, 2016, 531, 508-512.	27.8	417
23	Lost memories found. Nature, 2016, 531, 450-451.	27.8	15
24	Dispersion explains declines. Nature, 2016, 531, 451-452.	27.8	5
25	Still searching for the engram. Learning and Behavior, 2016, 44, 209-222.	1.0	60
26	Paradox of pattern separation and adult neurogenesis: A dual role for new neurons balancing memory resolution and robustness. Neurobiology of Learning and Memory, 2016, 129, 60-68.	1.9	78
27	Overlapping memory trace indispensable for linking, but not recalling, individual memories. Science, 2017, 355, 398-403.	12.6	95
28	Cortical and amygdalar neuronal ensembles in alcohol seeking, drinking and withdrawal. Neuropharmacology, 2017, 122, 107-114.	4.1	29
29	Heroes of the Engram. Journal of Neuroscience, 2017, 37, 4647-4657.	3.6	79
30	Synaptic Plasticity, Engrams, and Network Oscillations in Amygdala Circuits for Storage and Retrieval of Emotional Memories. Neuron, 2017, 94, 731-743.	8.1	201
31	The Persistence and Transience of Memory. Neuron, 2017, 94, 1071-1084.	8.1	195
32	Manipulating memory in space and time. Current Opinion in Behavioral Sciences, 2017, 17, 1-6.	3.9	3
33	On the research of time past: the hunt for the substrate of memory. Annals of the New York Academy of Sciences, 2017, 1396, 108-125.	3.8	39
34	Deciphering Neural Codes of Memory during Sleep. Trends in Neurosciences, 2017, 40, 260-275.	8.6	57
35	Engrams and circuits crucial for systems consolidation of a memory. Science, 2017, 356, 73-78.	12.6	732
36	Tackling maladaptive memories through reconsolidation: From neural to clinical science. Neurobiology of Learning and Memory, 2017, 142, 108-117.	1.9	54

#	Article	IF	CITATIONS
37	Cross-talk between the epigenome and neural circuits in drug addiction. Progress in Brain Research, 2017, 235, 19-63.	1.4	18
38	Silent memory engrams as the basis for retrograde amnesia. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E9972-E9979.	7.1	87
39	A proteomic analysis of contextual fear conditioned rats reveals dynamic modifications in neuron and oligodendrocyte protein expression in the dentate gyrus. European Journal of Neuroscience, 2017, 46, 2177-2189.	2.6	7
40	Early Tool-Making and the Evolution of Human Systems in the Brain. , 2017, , 61-120.		0
42	Early Evolution of Human Memory. , 2017, , .		7
43	Potential avenues for exercise to activate episodic memoryâ€related pathways: a narrative review. European Journal of Neuroscience, 2017, 46, 2067-2077.	2.6	118
44	Long-term memory requires sequential protein synthesis in three subsets of mushroom body output neurons in Drosophila. Scientific Reports, 2017, 7, 7112.	3.3	38
45	The Biology of Forgetting—A Perspective. Neuron, 2017, 95, 490-503.	8.1	211
46	Memory allocation and integration in rodents and humans. Current Opinion in Behavioral Sciences, 2017, 17, 90-98.	3.9	23
47	Bidirectional Modulation of Intrinsic Excitability in Rat Prelimbic Cortex Neuronal Ensembles and Non-Ensembles after Operant Learning. Journal of Neuroscience, 2017, 37, 8845-8856.	3.6	41
48	Distinct Neural Circuits for the Formation and Retrieval of Episodic Memories. Cell, 2017, 170, 1000-1012.e19.	28.9	221
49	Dynamic Reorganization of Neuronal Activity Patterns in Parietal Cortex. Cell, 2017, 170, 986-999.e16.	28.9	308
50	Discrepancy Between Cerebral Structure and Cognitive Functioning. Journal of Nervous and Mental Disease, 2017, 205, 967-972.	1.0	6
51	Engrampigenetics: Epigenetics of engram memory cells. Behavioural Brain Research, 2017, 325, 297-302.	2.2	7
52	Pharmacogenetic reactivation of the original engram evokes an extinguished fear memory. Neuropharmacology, 2017, 113, 1-9.	4.1	14
53	Neuronal topology as set of braids: Information processing, transformation and dynamics. Optical Memory and Neural Networks (Information Optics), 2017, 26, 172-181.	1.0	4
54	A Historical Review of Diachrony and Semantic Dimensions of Trace in Neurosciences and Lacanian Psychoanalysis. Frontiers in Psychology, 2017, 8, 734.	2.1	2
55	Learning and Memory in Addiction. , 2017, , 523-538.		7

#	Article	IF	Citations
56	From Engrams to Pathologies of the Brain. Frontiers in Neural Circuits, 2017, 11, 23.	2.8	32
57	The Roles of Cortical Slow Waves in Synaptic Plasticity and Memory Consolidation. Frontiers in Neural Circuits, 2017, 11, 92.	2.8	44
58	Integrating Spatial Working Memory and Remote Memory: Interactions between the Medial Prefrontal Cortex and Hippocampus. Brain Sciences, 2017, 7, 43.	2.3	70
59	Altered phosphorylation, electrophysiology, and behavior on attenuation of PDE4B action in hippocampus. BMC Neuroscience, 2017, 18, 77.	1.9	25
60	Allocating, Tagging, and Linking Memories. , 2017, , 621-636.		1
61	In Search of Engram Cells., 2017,, 637-658.		3
62	A Systems Neuroscience Approach to Migraine. Neuron, 2018, 97, 1004-1021.	8.1	134
63	Social memory engram in the hippocampus. Neuroscience Research, 2018, 129, 17-23.	1.9	57
64	Elevation of Hippocampal Neurogenesis Induces a Temporally Graded Pattern of Forgetting of Contextual Fear Memories. Journal of Neuroscience, 2018, 38, 3190-3198.	3.6	70
65	The promise and perils of causal circuit manipulations. Current Opinion in Neurobiology, 2018, 49, 84-94.	4.2	77
66	Homeostatic Plasticity in the Hippocampus Facilitates Memory Extinction. Cell Reports, 2018, 22, 1451-1461.	6.4	46
67	The dynamic nature of fear engrams in the basolateral amygdala. Brain Research Bulletin, 2018, 141, 44-49.	3.0	24
68	Locus coeruleus input to hippocampal CA3 drives single-trial learning of a novel context. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E310-E316.	7.1	189
69	Learning: Plasticity without Stabilization in Olfactory Cortex. Current Biology, 2018, 28, R23-R25.	3.9	0
70	Calcium/calmodulinâ€dependent kinase <scp>II</scp> and memory destabilization: a new role in memory maintenance. Journal of Neurochemistry, 2018, 147, 12-23.	3.9	16
71	Memory Allocation: Mechanisms and Function. Annual Review of Neuroscience, 2018, 41, 389-413.	10.7	130
72	CA1 pyramidal cell diversity enabling parallel information processing in the hippocampus. Nature Neuroscience, 2018, 21, 484-493.	14.8	221
73	When and Where Learning is Taking Place: Multisynaptic Changes in Strength During Different Behaviors Related to the Acquisition of an Operant Conditioning Task by Behaving Rats. Cerebral Cortex, 2018, 28, 1011-1023.	2.9	7

#	Article	IF	CITATIONS
74	Blocking c-Fos Expression Reveals the Role of Auditory Cortex Plasticity in Sound Frequency Discrimination Learning. Cerebral Cortex, 2018, 28, 1645-1655.	2.9	29
75	Investigating the transition from recent to remote memory using advanced tools. Brain Research Bulletin, 2018, 141, 35-43.	3.0	18
76	Neurotrophin and FGF Signaling Adapter Proteins, FRS2 and FRS3, Regulate Dentate Granule Cell Maturation and Excitatory Synaptogenesis. Neuroscience, 2018, 369, 192-201.	2.3	9
77	Lesions of retrosplenial cortex spare immediate-early gene activity in related limbic regions in the rat. Brain and Neuroscience Advances, 2018, 2, 239821281881123.	3.4	4
78	Do Brain Oscillations Orchestrate Memory?. Brain Science Advances, 2018, 4, 16-33.	0.9	14
79	Recording Identified Neurons in Awake and Anesthetized Rodents. Springer Series in Computational Neuroscience, 2018, , 365-409.	0.3	1
80	Association, prediction, and engram cells in creative thinking. Cogent Psychology, 2018, 5, 1493806.	1.3	5
81	A Novel Method for Training Mice in Visuo-Tactile 3-D Object Discrimination and Recognition. Frontiers in Behavioral Neuroscience, 2018, 12, 274.	2.0	3
82	Langzeitpotenzierung im Hippokampus: Entdeckung, Mechanismen und Funktion. Neuroforum, 2018, 24, 163-185.	0.3	0
83	Tracking Human Engrams Using Multivariate Analysis Techniques. Handbook of Behavioral Neuroscience, 2018, , 481-508.	0.7	4
84	Spatial Instability: The Paradox of Place Cell Remapping. Current Biology, 2018, 28, R1306-R1307.	3.9	4
85	Neurociências e formação de professores: reflexos na educação e economia. Ensaio, 2018, 26, 231-247.	0.4	2
86	Long-Term Memory Engram Cells Are Established by c-Fos/CREB Transcriptional Cycling. Cell Reports, 2018, 25, 2716-2728.e3.	6.4	66
87	Fast track to the neocortex: A memory engram in the posterior parietal cortex. Science, 2018, 362, 1045-1048.	12.6	145
88	The Role of the Locus Coeruleus in Cellular and Systems Memory Consolidation. Handbook of Behavioral Neuroscience, 2018, , 327-347.	0.7	3
89	The neural mechanisms and circuitry of the pair bond. Nature Reviews Neuroscience, 2018, 19, 643-654.	10.2	243
90	A hippocampal circuit linking dorsal CA2 to ventral CA1 critical for social memory dynamics. Nature Communications, 2018, 9, 4163.	12.8	189
91	The hippocampal sharp wave–ripple in memory retrieval for immediate use and consolidation. Nature Reviews Neuroscience, 2018, 19, 744-757.	10.2	262

#	Article	IF	CITATIONS
92	Electro-Convulsive Therapy., 2018, , 1279-1281.		0
93	How Does a Memory Find Its Neurons?. BioEssays, 2018, 40, e1800189.	2.5	0
94	The importance of forgetting: Limiting memory improves recovery of topological characteristics from neural data. PLoS ONE, 2018, 13, e0202561.	2.5	9
95	The Emergent Engram: A Historical Legacy and Contemporary Discovery. Frontiers in Behavioral Neuroscience, 2018, 12, 168.	2.0	6
96	A novel environment-evoked transcriptional signature predicts reactivity in single dentate granule neurons. Nature Communications, 2018, 9, 3084.	12.8	72
97	How the Hippocampus Represents Memories: Making Sense of Memory Allocation Studies. BioEssays, 2018, 40, e800068.	2.5	3
98	United states of amnesia: rescuing memory loss from diverse conditions. DMM Disease Models and Mechanisms, 2018, 11 , .	2.4	3
99	The role of engram cells in the systems consolidation of memory. Nature Reviews Neuroscience, 2018, 19, 485-498.	10.2	284
100	The hippocampal engram maps experience but not place. Science, 2018, 361, 392-397.	12.6	158
101	Multiple Approaches to the Investigation of Cell Assembly in Memory Researchâ€"Present and Future. Frontiers in Systems Neuroscience, 2018, 12, 21.	2.5	13
102	A translational perspective on neural circuits of fear extinction: Current promises and challenges. Neurobiology of Learning and Memory, 2018, 155, 113-126.	1.9	38
103	Long-term potentiation in the hippocampus: discovery, mechanisms and function. Neuroforum, 2018, 24, A103-A120.	0.3	72
104	Chasing the addicted engram: identifying functional alterations in Fos-expressing neuronal ensembles that mediate drug-related learned behavior. Learning and Memory, 2018, 25, 455-460.	1.3	30
105	The mysteries of remote memory. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170029.	4.0	37
106	Memory: Looking back and looking forward. Brain and Neuroscience Advances, 2018, 2, 239821281879483.	3.4	11
107	Targeting Kruppel-like Factor 9 in Excitatory Neurons Protects against Chronic Stress-Induced Impairments in Dendritic Spines and Fear Responses. Cell Reports, 2018, 23, 3183-3196.	6.4	28
108	Synapse-specific representation of the identity of overlapping memory engrams. Science, 2018, 360, 1227-1231.	12.6	141
109	Facing your fears. Science, 2018, 360, 1186-1187.	12.6	4

#	Article	IF	CITATIONS
110	Translational Control in the Brain in Health and Disease. Cold Spring Harbor Perspectives in Biology, 2019, 11, a032912.	5.5	85
111	Intrusive memories of trauma: A target for research bridging cognitive science and its clinical application. Clinical Psychology Review, 2019, 69, 67-82.	11.4	118
112	Persistent memories of long-term potentiation and the $\langle i \rangle N \langle i \rangle$ -methyl-d-aspartate receptor. Brain and Neuroscience Advances, 2019, 3, 239821281984821.	3.4	31
113	Negative Memory Engrams in the Hippocampus Enhance the Susceptibility to Chronic Social Defeat Stress. Journal of Neuroscience, 2019, 39, 7576-7590.	3.6	32
114	Prefrontal cortex neuronal ensembles encoding fear drive fear expression during long-term memory retrieval. Scientific Reports, 2019, 9, 10709.	3.3	22
115	Parallel pathways of seizure generalization. Brain, 2019, 142, 2336-2351.	7.6	25
116	Effects of a Nutritional Supplement on Cognitive Function in Aged Dogs and on Synaptic Function of Primary Cultured Neurons. Animals, 2019, 9, 393.	2.3	5
117	Unfolding the Effects of Acute Cardiovascular Exercise on Neural Correlates of Motor Learning Using Convolutional Neural Networks. Frontiers in Neuroscience, 2019, 13, 1215.	2.8	3
118	Differential activation of the medial temporal lobe during item and associative memory across time. Neuropsychologia, 2019, 135, 107252.	1.6	12
119	Rapid Cortical Plasticity Supports Long-Term Memory Formation. Trends in Cognitive Sciences, 2019, 23, 989-1002.	7.8	65
120	Medial prefrontal and ventral hippocampal contributions to incidental context learning and memory in adolescent rats. Neurobiology of Learning and Memory, 2019, 166, 107091.	1.9	13
121	A Neural Chronometry of Memory Recall. Trends in Cognitive Sciences, 2019, 23, 1071-1085.	7.8	95
122	Aversive Training Induces Both Presynaptic and Postsynaptic Suppression in <i>Drosophila</i> . Journal of Neuroscience, 2019, 39, 9164-9172.	3.6	20
123	Space and Memory (Far) Beyond the Hippocampus: Many Subcortical Structures Also Support Cognitive Mapping and Mnemonic Processing. Frontiers in Neural Circuits, 2019, 13, 52.	2.8	37
124	Regulation of intrinsic excitability: Roles for learning and memory, aging and Alzheimer's disease, and genetic diversity. Neurobiology of Learning and Memory, 2019, 164, 107069.	1.9	34
125	Anti-relapse neurons in the infralimbic cortex of rats drive relapse-suppression by drug omission cues. Nature Communications, 2019, 10, 3934.	12.8	25
126	Selective suppression and recall of long-term memories in Drosophila. PLoS Biology, 2019, 17, e3000400.	5.6	9
127	Associative Memory Cells: Basic Units of Memory Trace. , 2019, , .		8

#	Article	IF	CITATIONS
128	Is coding a relevant metaphor for the brain?. Behavioral and Brain Sciences, 2019, 42, e215.	0.7	76
129	Memory strength gates the involvement of a CREB-dependent cortical fear engram in remote memory. Nature Communications, 2019, 10, 2315.	12.8	64
130	Regulation of signaling proteins in the brain by light. Progress in Neurobiology, 2019, 180, 101638.	5.7	7
131	Adult hippocampal neurogenesis for systems consolidation of memory. Behavioural Brain Research, 2019, 372, 112035.	2.2	45
132	Learning and Memory: Mind over Matter in C.Âelegans. Current Biology, 2019, 29, R365-R367.	3.9	6
133	Actin: Post-translational Modification of Actin Linked to Formin Inhibition. Current Biology, 2019, 29, R367-R370.	3.9	3
134	A Memory Circuit for Coping with Impending Adversity. Current Biology, 2019, 29, 1573-1583.e4.	3.9	19
135	The Secret of Fear Memory Attenuation: Facing Fears. Neuroscience Bulletin, 2019, 35, 775-777.	2.9	3
136	Memory formation in the absence of experience. Nature Neuroscience, 2019, 22, 933-940.	14.8	77
137	How rhythms of the sleeping brain tune memory and synaptic plasticity. Sleep, 2019, 42, .	1.1	70
138	Recurrent loops: Incorporating prediction error and semantic/episodic theories into <i>Drosophila</i> associative memory models. Genes, Brain and Behavior, 2019, 18, e12567.	2.2	11
139	Hippocampal Subgranular Zone FosB Expression Is Critical for Neurogenesis and Learning. Neuroscience, 2019, 406, 225-233.	2.3	18
140	Temporal Flexibility of Systems Consolidation and the Synaptic Occupancy/Reset Theory (SORT): Cues About the Nature of the Engram. Frontiers in Synaptic Neuroscience, 2019, 11, 1.	2.5	7
141	Optogenetic reactivation of memory ensembles in the retrosplenial cortex induces systems consolidation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 8576-8581.	7.1	105
142	Hippocampal Neurogenesis Reduces the Dimensionality of Sparsely Coded Representations to Enhance Memory Encoding. Frontiers in Computational Neuroscience, 2018, 12, 99.	2.1	8
143	An identified ensemble within a neocortical circuit encodes essential information for geneticallyâ€enhanced visual shape learning. Hippocampus, 2019, 29, 710-725.	1.9	9
144	Coordinating what we've learned about memory consolidation: Revisiting a unified theory. Neuroscience and Biobehavioral Reviews, 2019, 100, 77-84.	6.1	16
145	Holographic two-photon activation for synthetic optogenetics. Nature Protocols, 2019, 14, 864-900.	12.0	27

#	Article	IF	Citations
146	Synaptic retinoic acid receptor signaling mediates mTOR-dependent metaplasticity that controls hippocampal learning. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 7113-7122.	7.1	40
147	Introductory Chapter: Eat, Learn, Remember. , 2019, , .		O
148	Synaptic Clustering and Memory Formation. Frontiers in Molecular Neuroscience, 2019, 12, 300.	2.9	56
149	A ventral CA1 to nucleus accumbens core engram circuit mediates conditioned place preference for cocaine. Nature Neuroscience, 2019, 22, 1986-1999.	14.8	91
150	The neurobiological foundation of memory retrieval. Nature Neuroscience, 2019, 22, 1576-1585.	14.8	116
151	Spatiotemporal pattern of calcium activity in astrocytic network. Cell Calcium, 2019, 78, 15-25.	2.4	62
152	Neuronal competition: microcircuit mechanisms define the sparsity of the engram. Current Opinion in Neurobiology, 2019, 54, 163-170.	4.2	52
153	Engram Excitement. Neuron, 2019, 101, 198-200.	8.1	3
154	Encoding of Odor Fear Memories in the Mouse Olfactory Cortex. Current Biology, 2019, 29, 367-380.e4.	3.9	52
155	Central Histamine Boosts Perirhinal Cortex Activity and Restores Forgotten Object Memories. Biological Psychiatry, 2019, 86, 230-239.	1.3	18
156	Molecular Mechanisms of the Memory Trace. Trends in Neurosciences, 2019, 42, 14-22.	8.6	148
157	Engram Cell Excitability State Determines the Efficacy of Memory Retrieval. Neuron, 2019, 101, 274-284.e5.	8.1	157
158	Locus Coeruleus Phasic, But Not Tonic, Activation Initiates Global Remapping in a Familiar Environment. Journal of Neuroscience, 2019, 39, 445-455.	3.6	36
159	Parabrachial-to-amygdala control of aversive learning. Current Opinion in Behavioral Sciences, 2019, 26, 18-24.	3.9	11
160	Impaired cerebellar plasticity and eye-blink conditioning in calpain-1 knock-out mice. Neurobiology of Learning and Memory, 2020, 170, 106995.	1.9	10
161	The role of the genome in experience-dependent plasticity: Extending the analogy of the genomic action potential. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 23252-23260.	7.1	44
162	Dynamics of memory engrams. Neuroscience Research, 2020, 153, 22-26.	1.9	11
163	Within-animal comparisons of novelty and cocaine neuronal ensemble overlap in the nucleus accumbens and prefrontal cortex. Behavioural Brain Research, 2020, 379, 112275.	2.2	5

#	Article	IF	Citations
164	From Conditioning to Emotion: Translating Animal Models of Learning to Human Psychopathology. Neuroscientist, 2020, 26, 43-56.	3.5	5
165	Helios modulates the maturation of a CA1 neuronal subpopulation required for spatial memory formation. Experimental Neurology, 2020, 323, 113095.	4.1	4
166	A time-dependent role for the transcription factor CREB in neuronal allocation to an engram underlying a fear memory revealed using a novel in vivo optogenetic tool to modulate CREB function. Neuropsychopharmacology, 2020, 45, 916-924.	5.4	25
167	Memory engrams: Recalling the past and imagining the future. Science, 2020, 367, .	12.6	530
168	Sleep Spindles: Mechanisms and Functions. Physiological Reviews, 2020, 100, 805-868.	28.8	347
170	An historical perspective on Endel Tulving's episodic-semantic distinction. Neuropsychologia, 2020, 139, 107366.	1.6	30
171	A modeling study of generation mechanism of cell assembly to store information about hand recognition. Heliyon, 2020, 6, e05347.	3.2	0
172	Memory Engrams in the Neocortex. Neuroscientist, 2021, 27, 107385842094152.	3.5	12
173	Sensing Happiness in Senseless Information. Applied Research in Quality of Life, 2020, , 1.	2.4	1
174	Engrams of Fast Learning. Frontiers in Cellular Neuroscience, 2020, 14, 575915.	3.7	9
175	Neuronal Activity at Synapse Resolution: Reporters and Effectors for Synaptic Neuroscience. Frontiers in Molecular Neuroscience, 2020, 13, 572312.	2.9	10
176	Experience-dependent resonance in amygdalo-cortical circuits supports fear memory retrieval following extinction. Nature Communications, 2020, 11, 4358.	12.8	47
177	Differential Emergence and Stability of Sensory and Temporal Representations in Context-Specific Hippocampal Sequences. Neuron, 2020, 108, 984-998.e9.	8.1	73
178	The role of intrinsic excitability in the evolution of memory: Significance in memory allocation, consolidation, and updating. Neurobiology of Learning and Memory, 2020, 173, 107266.	1.9	35
179	Odor modulates the temporal dynamics of fear memory consolidation. Learning and Memory, 2020, 27, 150-163.	1.3	12
180	Functionally Distinct Neuronal Ensembles within the Memory Engram. Cell, 2020, 181, 410-423.e17.	28.9	153
181	Encoding of contextual fear memory in hippocampal–amygdala circuit. Nature Communications, 2020, 11, 1382.	12.8	142
182	Olfactory memory representations are stored in the anterior olfactory nucleus. Nature Communications, 2020, 11 , 1246 .	12.8	41

#	ARTICLE	IF	CITATIONS
183	Alzheimer's Disease: From Amyloid to Autoimmune Hypothesis. Neuroscientist, 2020, 26, 455-470.	3.5	17
184	Single-Session Training to Conditioned Reflex Freezing to Odor in Mice: A New Behavioral Model for Studies of the Cellular Mechanisms of the Formation and Extraction of Olfactory Memory. Neuroscience and Behavioral Physiology, 2020, 50, 581-584.	0.4	0
185	Multi-level analyses of associative recognition memory: the whole is greater than the sum of its parts. Current Opinion in Behavioral Sciences, 2020, 32, 80-87.	3.9	13
186	Optogenetic reactivation of prefrontal social neural ensembles mimics social buffering of fear. Neuropsychopharmacology, 2020, 45, 1068-1077.	5.4	28
187	Synaptic Plasticity Forms and Functions. Annual Review of Neuroscience, 2020, 43, 95-117.	10.7	316
188	Amygdala Reward Neurons Form and Store Fear Extinction Memory. Neuron, 2020, 105, 1077-1093.e7.	8.1	139
189	Induction of activity synchronization among primed hippocampal neurons out of random dynamics is key for trace memory formation and retrieval. FASEB Journal, 2020, 34, 3658-3676.	0.5	11
190	What came out of visual memory: Inferences from decay of difference-thresholds. Attention, Perception, and Psychophysics, 2020, 82, 2963-2984.	1.3	6
191	Episodic memory consolidation during sleep in healthy aging. Sleep Medicine Reviews, 2020, 52, 101304.	8.5	28
192	Neurophotonics Approaches for the Study of Pattern Separation. Frontiers in Neural Circuits, 2020, 14, 26.	2.8	0
193	An update on memory formation and retrieval: An engramâ€centric approach. Alzheimer's and Dementia, 2020, 16, 926-937.	0.8	10
194	The memory toolbox: how genetic manipulations and cellular imaging are transforming our understanding of learned information. Current Opinion in Behavioral Sciences, 2020, 32, 136-147.	3.9	4
195	Donald O. Hebb and the Organization of Behavior: 17 years in the writing. Molecular Brain, 2020, 13, 55.	2.6	26
196	Astrocytic Ephrin-B1 Controls Synapse Formation in the Hippocampus During Learning and Memory. Frontiers in Synaptic Neuroscience, 2020, 12, 10.	2.5	23
197	A Multilevel View of the Development of Alzheimer's Disease. Neuroscience, 2021, 457, 283-293.	2.3	43
198	Longâ€lasting tagging of neurons activated by seizures or cocaine administration in Egr1â€CreER ^{T2} transgenic mice. European Journal of Neuroscience, 2021, 53, 1450-1472.	2.6	4
199	Encouraging an excitable brain state: mechanisms of brain repair in stroke. Nature Reviews Neuroscience, 2021, 22, 38-53.	10.2	108
200	Cholinergic modulation of Up–Down states in the mouse medial entorhinal cortex in vitro. European Journal of Neuroscience, 2021, 53, 1378-1393.	2.6	3

#	Article	IF	CITATIONS
201	Photographs Beyond Concepts: Access to Actions and Sensations. Review of General Psychology, 2021, 25, 44-59.	3.2	2
202	Dorsal hippocampus plays a causal role in context-induced reinstatement of alcohol-seeking in rats. Behavioural Brain Research, 2021, 398, 112978.	2.2	10
203	Memory as Triage: Facing Up to the Hard Question of Memory. Review of Philosophy and Psychology, 2021, 12, 227-256.	1.8	7
204	Learning-dependent neuronal activity across the larval zebrafish brain. Current Opinion in Neurobiology, 2021, 67, 42-49.	4.2	11
205	Contextual Fear Memory Retrieval Is Vulnerable to Hippocampal Noise. Cerebral Cortex, 2021, 31, 785-794.	2.9	13
206	Brain plasticity. , 2021, , 77-98.		0
207	Cell-Type-Specific Optogenetic Techniques Reveal Neural Circuits Crucial for Episodic Memories. Advances in Experimental Medicine and Biology, 2021, 1293, 429-447.	1.6	3
208	Memory-specific correlated neuronal activity in higher-order auditory regions of a parrot. Scientific Reports, 2021, 11, 1618.	3.3	1
209	Dentate Granule Cells Recruited in the Home Environment Display Distinctive Properties. Frontiers in Cellular Neuroscience, 2020, 14, 609123.	3.7	1
210	Dopamine-based mechanism for transient forgetting. Nature, 2021, 591, 426-430.	27.8	29
211	The Quest for the Hippocampal Memory Engram: From Theories to Experimental Evidence. Frontiers in Behavioral Neuroscience, 2020, 14, 632019.	2.0	16
212	lon-channel regulation of response decorrelation in a heterogeneous multi-scale model of the dentate gyrus. Current Research in Neurobiology, 2021, 2, 100007.	2.3	17
213	Working and Reference Memory Tasks Trigger Opposed Long-Term Synaptic Changes in the Rat Dentate Gyrus. Cerebral Cortex, 2021, 31, 2980-2992.	2.9	2
214	Long-Term Memory. , 2021, , 4636-4640.		0
215	Infinite Storage., 2021,, 4115-4117.		0
217	Crafting Molecular Geometries: Implications of Neuro-Pedagogy for Teaching Chemical Content. Journal of Chemical Education, 2021, 98, 1321-1327.	2.3	5
218	Adult-born neurons immature during learning are necessary for remote memory reconsolidation in rats. Nature Communications, 2021, 12, 1778.	12.8	26
219	A Synaptic Framework for the Persistence of Memory Engrams. Frontiers in Synaptic Neuroscience, 2021, 13, 661476.	2.5	26

#	ARTICLE	IF	CITATIONS
220	Heterogeneous representations in the hippocampus. Neuroscience Research, 2021, 165, 1-5.	1.9	11
221	Engram cell connectivity: an evolving substrate for information storage. Current Opinion in Neurobiology, 2021, 67, 215-225.	4.2	17
222	Dynamic and heterogeneous neural ensembles contribute to a memory engram. Current Opinion in Neurobiology, 2021, 67, 199-206.	4.2	25
223	What have we learned about the engram?. SynthÃ'se, 2021, 199, 9581-9601.	1.1	5
225	Mechanism of seizure-induced retrograde amnesia. Progress in Neurobiology, 2021, 200, 101984.	5.7	15
226	A biochemical mechanism for time-encoding memory formation within individual synapses of Purkinje cells. PLoS ONE, 2021, 16, e0251172.	2.5	2
229	Distinct functions of ventral CA1 and dorsal CA2 in social memory. Current Opinion in Neurobiology, 2021, 68, 29-35.	4.2	22
230	Synaptic plasticity-dependent competition rule influences memory formation. Nature Communications, 2021, 12, 3915.	12.8	29
231	Propranolol Decreases Fear Expression by Modulating Fear Memory Traces. Biological Psychiatry, 2021, 89, 1150-1161.	1.3	25
232	Hunters and Gatherers of Pictures: Why Photography Has Become a Human Universal. Frontiers in Psychology, 2021, 12, 654474.	2.1	8
233	Clinical applicability of optogenetic gene regulation. Biotechnology and Bioengineering, 2021, 118, 4168-4185.	3.3	3
234	Attractin Gene Deficiency in Rats Leads to Impairments in Both Activity and Spatial Learning and Memory. Neuroscience, 2021, 466, 101-108.	2.3	3
235	Mapping reward mechanisms by intracerebral selfâ€stimulation in the rhesus monkey (<scp><i>Macaca) Tj ETQq</i></scp>	0 0 0 rgBT 1.6	/8verlock 10
237	Norepinephrine as a spatial memory reset signal. Behavioural Pharmacology, 2021, 32, 531-548.	1.7	10
240	Fear conditioning potentiates the hippocampal <scp>CA1</scp> commissural pathway in vivo and increases awake phase sleep. Hippocampus, 2021, 31, 1154-1175.	1.9	9
242	Miniature microscopes for manipulating and recording <i>in vivo</i> brain activity. Microscopy (Oxford, England), 2021, 70, 399-414.	1.5	22
243	Synaptic correlates of associative fear memory in the lateral amygdala. Neuron, 2021, 109, 2717-2726.e3.	8.1	51
244	Neurogenesis-dependent transformation of hippocampal engrams. Neuroscience Letters, 2021, 762, 136176.	2.1	11

#	Article	IF	CITATIONS
245	Pyk2 suppresses contextual fear memory in an autophosphorylation-independent manner. Journal of Molecular Cell Biology, 2021, , .	3.3	1
246	GABAergic microcircuitry of fear memory encoding. Neurobiology of Learning and Memory, 2021, 184, 107504.	1.9	7
247	Egr1-EGFP transgenic mouse allows in vivo recording of Egr1 expression and neural activity. Journal of Neuroscience Methods, 2021, 363, 109350.	2.5	5
248	Connected neurons in multiple neocortical areas, comprising parallel circuits, encode essential information for visual shape learning. Journal of Chemical Neuroanatomy, 2021, 118, 102024.	2.1	1
249	Drug-activated cells: From immediate early genes to neuronal ensembles in addiction. Advances in Pharmacology, 2021, 90, 173-216.	2.0	25
250	A nanoimprinted artificial engram device. Nanoscale Horizons, 2021, 6, 718-728.	8.0	1
251	Memory, Authenticity, and Optogenethics. AJOB Neuroscience, 2021, 12, 30-32.	1.1	3
252	Brain mechanisms controlling Pavlovian fear conditioning Journal of Experimental Psychology Animal Learning and Cognition, 2018, 44, 341-357.	0.5	20
257	The Nucleus Accumbens: Mechanisms of Addiction across Drug Classes Reflect the Importance of Glutamate Homeostasis. Pharmacological Reviews, 2016, 68, 816-871.	16.0	442
258	On the Value of Reptilian Brains to Map the Evolution of the Hippocampal Formation. Brain, Behavior and Evolution, 2017, 90, 41-52.	1.7	27
259	Searching basic units in memory traces: associative memory cells. F1000Research, 2019, 8, 457.	1.6	9
260	Hippocampal neurons with stable excitatory connectivity become part of neuronal representations. PLoS Biology, 2020, 18, e3000928.	5.6	19
261	Reward Devaluation Attenuates Cue-Evoked Sucrose Seeking and Is Associated with the Elimination of Excitability Differences between Ensemble and Non-ensemble Neurons in the Nucleus Accumbens. ENeuro, 2019, 6, ENEURO.0338-19.2019.	1.9	6
262	Linking Social Cognition to Learning and Memory. Journal of Neuroscience, 2020, 40, 8782-8798.	3.6	24
263	c-Fos and neuronal plasticity: the aftermath of Kaczmarek's theory. Acta Neurobiologiae Experimentalis, 2018, 78, 287-296.	0.7	40
264	Dopaminergic neurons write and update memories with cell-type-specific rules. ELife, 2016, 5, .	6.0	235
265	Defective memory engram reactivation underlies impaired fear memory recall in Fragile X syndrome. ELife, 2020, 9, .	6.0	14
266	The brain in motion: How ensemble fluidity drives memory-updating and flexibility. ELife, 2020, 9, .	6.0	71

#	Article	IF	Citations
267	Photographs of Actions: What Makes Them Special Cues to Social Perception. Brain Sciences, 2021, 11, 1382.	2.3	6
271	Long-Term Memory. , 2018, , 1-5.		O
272	Episodic Memory. , 2018, , 1323-1326.		0
273	Infinite Storage., 2018, , 1-3.		o
274	Homeostatic Plasticity in the Hippocampus Facilitates Memory Extinction. SSRN Electronic Journal, 0, ,	0.4	0
276	Patterns of Learning and Memory. , 2019, , 37-77.		0
277	Human Cultural Evolution Is Completely Immersed in Natural Evolution. Advances in Psychology, Mental Health, and Behavioral Studies, 2019, , 110-118.	0.1	0
278	History in the Study of Learning and Memory. , 2019, , 1-35.		1
279	Experimental Models and Strategies for Studying Associative Learning and Memory., 2019,, 79-120.		0
280	A Memory Circuit for Coping with Impending Adversity. SSRN Electronic Journal, 0, , .	0.4	1
283	Subthreshold Fear Conditioning Produces a Rapidly Developing Neural Mechanism that Primes Subsequent Learning. ENeuro, 2019, 6, ENEURO.0113-19.2019.	1.9	2
295	Turnover of fear engram cells by repeated experience. Current Biology, 2021, 31, 5450-5461.e4.	3.9	9
296	Imaging human engrams using 7 Tesla magnetic resonance imaging. Hippocampus, 2021, 31, 1257-1270.	1.9	7
298	The limbic memory circuit and the neural basis of contextual memory. Neurobiology of Learning and Memory, 2022, 187, 107557.	1.9	8
299	Memory: Axioms and Facts. Neuroscience and Behavioral Physiology, 2021, 51, 1111-1123.	0.4	0
300	Silent Synapses in Cocaine-Associated Memory and Beyond. Journal of Neuroscience, 2021, 41, 9275-9285.	3.6	7
301	The Medial Prefrontal Cortex and Fear Memory: Dynamics, Connectivity, and Engrams. International Journal of Molecular Sciences, 2021, 22, 12113.	4.1	20
302	Neuronal Circuits Associated with Fear Memory: Potential Therapeutic Targets for Posttraumatic Stress Disorder. Neuroscientist, 2022, , 107385842110699.	3.5	1

#	Article	IF	CITATIONS
303	The use of rodent models to better characterize the relationship among epilepsy, sleep, and memory. Epilepsia, 2022, 63, 525-536.	5.1	2
304	Forgetting as a form of adaptive engram cell plasticity. Nature Reviews Neuroscience, 2022, 23, 173-186.	10.2	70
305	Hippocampal-amygdala memory circuits govern experience-dependent observational fear. Neuron, 2022, 110, 1416-1431.e13.	8.1	42
306	Coordinated hippocampal-thalamic-cortical communication crucial for engram dynamics underneath systems consolidation. Nature Communications, 2022, 13, 840.	12.8	15
307	Engram-Driven Videography. Engineering, 2022, , .	6.7	0
308	Acquiring new memories in neocortex of hippocampal-lesioned mice. Nature Communications, 2022, 13, 1601.	12.8	12
309	Brain-wide projection reconstruction of single functionally defined neurons. Nature Communications, 2022, 13, 1531.	12.8	10
312	Understanding the physical basis of memory: Molecular mechanisms of the engram. Journal of Biological Chemistry, 2022, 298, 101866.	3.4	25
313	De novo inter-regional coactivations of preconfigured local ensembles support memory. Nature Communications, 2022, 13, 1272.	12.8	14
314	Spatiotemporally resolved protein synthesis as a molecular framework for memory consolidation. Trends in Neurosciences, 2022, 45, 297-311.	8.6	13
315	Brain-wide mapping reveals that engrams for a single memory are distributed across multiple brain regions. Nature Communications, 2022, 13, 1799.	12.8	88
316	Social experiences switch states of memory engrams through regulating hippocampal Rac1 activity. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2116844119.	7.1	7
317	Conceptual Design of a Creative Artificial Intelligence System Based on the Neurocognitive Bases of Human Creativity in the Brain. Creativity Research Journal, 2022, 34, 273-294.	2.6	3
318	Back to the Future: Can Counterhistory AccelerateÂTheoretical Advancement inÂManagement?. Academy of Management Perspectives, 2022, 36, 801-819.	6.8	7
319	Learning and memory: Shuffling memory traces byÂrelearning. Current Biology, 2021, 31, R1588-R1591.	3.9	0
320	PKMζ Maintains Remote Contextual Fear Memory by Inhibiting GluA2-Dependent AMPA Receptor Endocytosis in the Prelimbic Cortex. Neuroscience, 2021, , .	2.3	3
321	Resonant neuronal groups. Physics Open, 2022, 13, 100104.	1.5	1
322	Neuronal metabolism in learning and memory: the anticipatory activity perspective. Neuroscience and Biobehavioral Reviews, 2022, , 104664.	6.1	1

#	Article	IF	CITATIONS
330	Spectral characteristics of visual working memory in the monkey frontoparietal network. Psychology of Learning and Motivation - Advances in Research and Theory, 2022, , .	1.1	0
331	Excitability-Independent Memory Allocation for Repeated Event. Frontiers in Behavioral Neuroscience, 2022, 16, 860027.	2.0	2
334	Development of Memory Circuits under Epigenetic Regulation. , 2022, , 438-453.		0
336	What does engram encode?: Heterogeneous memory engrams for different aspects of experience. Current Opinion in Neurobiology, 2022, 75, 102568.	4.2	7
337	Technologies for large-scale mapping of functional neural circuits active during a user-defined time window. Progress in Neurobiology, 2022, 216, 102290.	5.7	9
338	Memory: Synaptic or Cellular, That Is the Question. Neuroscientist, 2023, 29, 538-553.	3.5	3
340	Differences in action potential propagation speed and axon initial segment plasticity between neurons from Sprague-Dawley rats and C57BL/6 mice. Zoological Research, 2022, 43, 615-633.	2.1	2
341	Propranolol Administration Modulates Neural Activity in the Hippocampal Hilus During Fear Retrieval. Frontiers in Behavioral Neuroscience, 0, 16, .	2.0	2
342	Brain-wide screen of prelimbic cortex inputs reveals a functional shift during early fear memory consolidation. ELife, $0,11,.$	6.0	13
343	Dynamic tripartite construct of interregional engram circuits underlies forgetting of extinction memory. Molecular Psychiatry, 2022, 27, 4077-4091.	7.9	8
344	Long-term transverse imaging of the hippocampus with glass microperiscopes. ELife, 0, 11, .	6.0	8
345	The hippocampus in stress susceptibility and resilience: Reviewing molecular and functional markers. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2022, 119, 110601.	4.8	10
346	Extrahippocampal Seizure and Memory Circuits Overlap. ENeuro, 2022, 9, ENEURO.0179-22.2022.	1.9	10
347	A missense mutation in $\langle i \rangle$ Kcnc3 $\langle i \rangle$ causes hippocampal learning deficits in mice. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	0
349	Control of fear by discrete prefrontal GABAergic populations encoding valence-specific information. Neuron, 2022, 110, 3036-3052.e5.	8.1	20
351	Fos ensembles encode and shape stable spatial maps in the hippocampus. Nature, 2022, 609, 327-334.	27.8	37
352	Dose-dependent suppression of hippocampal contextual memory formation, place cells, and spatial engrams by the NMDAR antagonist (R)-CPP. Neuropharmacology, 2022, 218, 109215.	4.1	2
354	Functionally distinct NPAS4-expressing somatostatin interneuron ensembles critical for motor skill learning. Neuron, 2022, 110, 3339-3355.e8.	8.1	9

#	Article	IF	CITATIONS
355	Amygdala-cortical collaboration in reward learning and decision making. ELife, 0, 11, .	6.0	11
356	Denoised Internal Models: A Brain-inspired Autoencoder Against Adversarial Attacks., 2022, 19, 456-471.		2
357	Longitudinal monitoring of prefrontal cortical ensemble dynamics reveals new insights into stress habituation. Neurobiology of Stress, 2022, 20, 100481.	4.0	7
358	PDE2A Inhibition Enhances Axonal Sprouting, Functional Connectivity, and Recovery after Stroke. Journal of Neuroscience, 2022, 42, 8225-8236.	3.6	7
359	Personal factors and the role of memory in faculty refinding of stored information. Library Hi Tech, 2022, ahead-of-print, .	5.1	1
362	Formation and fate of an engram in the lateral amygdala supporting a rewarding memory in mice. Neuropsychopharmacology, 2023, 48, 724-733.	5.4	1
363	Exploiting the molecular diversity of the synapse to investigate neuronal communication: A guide through the current toolkit. European Journal of Neuroscience, 2022, 56, 6141-6161.	2.6	2
365	A short-term memory trace persists for days in the mouse hippocampus. Communications Biology, 2022, 5, .	4.4	5
366	Opto-extinction of a threat memory in mice. Brain Research Bulletin, 2022, 191, 61-68.	3.0	3
367	The two tales of hippocampal sharp-wave ripple content: The rigid and the plastic. Progress in Neurobiology, 2023, 221, 102396.	5.7	5
368	Has the concept of systems consolidation outlived its usefulness? Identification and evaluation of premises underlying systems consolidation. Faculty Reviews, $0,11,.$	3.9	3
370	Noradrenergic signaling mediates cortical early tagging and storage of remote memory. Nature Communications, 2022, 13, .	12.8	6
371	Neocortical synaptic engrams for remote contextual memories. Nature Neuroscience, 2023, 26, 259-273.	14.8	16
372	Art Value Creation and Destruction. Integrative Psychological and Behavioral Science, 2023, 57, 796-839.	0.9	2
374	Changes in the Electrical Characteristics of Premotor Interneurons and Serotonin-Containing Modulator Snail Neurons upon Developing a Contextual Conditioned Reflex and Its Reconsolidation. BioNanoScience, 0, , .	3.5	0
376	Persistent representation of the environment in the hippocampus. Cell Reports, 2023, 42, 111989.	6.4	2
377	Painting memory engram by biologically active messengers $\hat{a} \in ``The molecular time travel for the search of memory. IP Indian Journal of Neurosciences, 2023, 8, 260-273.$	0.1	0
379	Inflammatory Factors Predicted the Resilient Phenotype in Social Defeat-induced Depression of Male Mouse. Neuroscience, 2023, 519, 38-46.	2.3	0

#	Article	IF	CITATIONS
380	Insights into the encoding of memories through the circuitry of fear. Current Opinion in Neurobiology, 2023, 80, 102712.	4.2	2
381	How engram mediates learning, extinction, and relapse. Current Opinion in Neurobiology, 2023, 81, 102723.	4.2	7
382	Efficiency analysis by training sequence of high-fidelity simulation-based neonatal resuscitation program (NRP). PLoS ONE, 2023, 18, e0281515.	2.5	0
383	Face your fears: attenuating remote fear memories by reconsolidation-updating. Trends in Cognitive Sciences, 2023, 27, 404-416.	7.8	3
385	Memory: in my brain and beyond. , 2023, 2, 144-148.		0
386	MON CERVEAU MAIS NOS SOUVENIRS?. , 2023, 2, 155-159.		0
388	Alteration of hippocampal <scp>CA2</scp> plasticity and social memory in adult rats impacted by juvenile stress. Hippocampus, 2023, 33, 745-758.	1.9	1
389	Examining the engram encoding specificity hypothesis in mice. Neuron, 2023, 111, 1830-1845.e5.	8.1	8
390	Control of contextual memory through interneuronal $\hat{l}\pm 5$ -GABAA receptors. , 2023, 2, .		4
392	PPy/SWCNTs-Modified Microelectrode Array for Learning and Memory Model Construction through Electrical Stimulation and Detection of In Vitro Hippocampal Neuronal Network. ACS Applied Bio Materials, 2023, 6, 3414-3422.	4.6	2
393	Cross-stage neural pattern similarity in the hippocampus predicts false memory derived from post-event inaccurate information. Nature Communications, 2023, 14, .	12.8	4
394	When neurons split the load. ELife, 0, 12, .	6.0	0
396	Flow Cytometry of Synaptoneurosomes (FCS) Reveals Increased Ribosomal S6 and Calcineurin Proteins in Activated Medial Prefrontal Cortex to Nucleus Accumbens Synapses. Journal of Neuroscience, 2023, 43, 4217-4233.	3.6	2
398	Fear memory recall involves hippocampal somatostatin interneurons. PLoS Biology, 2023, 21, e3002154.	5.6	2
399	Engram neurons: Encoding, consolidation, retrieval, and forgetting of memory. Molecular Psychiatry, 2023, 28, 3207-3219.	7.9	5
400	Cytoelectric coupling: Electric fields sculpt neural activity and "tune―the brain's infrastructure. Progress in Neurobiology, 2023, 226, 102465.	5.7	10
402	Npas4-mediated dopaminergic regulation of safety memory consolidation. Cell Reports, 2023, 42, 112678.	6.4	0
403	Theta-phase-specific modulation of dentate gyrus memory neurons. ELife, 0, 12, .	6.0	2

#	Article	IF	CITATIONS
404	In vivo ephaptic coupling allows memory network formation. Cerebral Cortex, 2023, 33, 9877-9895.	2.9	10
405	Reactivation of Early-Life Stress-Sensitive Neuronal Ensembles Contributes to Lifelong Stress Hypersensitivity. Journal of Neuroscience, 2023, 43, 5996-6009.	3.6	8
407	The computational power of the human brain. Frontiers in Cellular Neuroscience, 0, 17, .	3.7	0
408	Brain mitochondrial diversity and network organization predict anxiety-like behavior in male mice. Nature Communications, 2023, 14, .	12.8	10
409	Engram stability and maturation during systems consolidation. Current Biology, 2023, 33, 3942-3950.e3.	3.9	5
410	Forgetting Is Not the Mere Opposite of Learning. Molecules and Cells, 2023, 46, 470-472.	2.6	0
412	Consolidation, reconsolidation, and extinction of contextual fear memory depend on de novo protein synthesis in the locus coeruleus. Brain Research Bulletin, 2023, 202, 110746.	3.0	1
413	Tissue clearing applications in memory engram research. Frontiers in Behavioral Neuroscience, 0, 17, .	2.0	O
414	Berberine improves inhibitory avoidance memory impairment of Toxoplasma gondii-infected rat model of ketamine-induced schizophrenia. BMC Complementary Medicine and Therapies, 2023, 23, .	2.7	3
415	A common neuronal ensemble in nucleus accumbens regulates pain-like behaviour and sleep. Nature Communications, 2023, 14, .	12.8	1
416	Mapping the spatial transcriptomic signature of the hippocampus during memory consolidation. Nature Communications, 2023, 14, .	12.8	2
417	Tomography of memory engrams in self-organizing nanowire connectomes. Nature Communications, 2023, 14, .	12.8	3
418	Diverse processing of pharmacological and natural rewards by the central amygdala. Cell Reports, 2023, 42, 113036.	6.4	0
419	Memory Trace for Fear Extinction: Fragile yet Reinforceable. Neuroscience Bulletin, 0, , .	2.9	0
420	On-demand low-frequency stimulation for seizure control: efficacy and behavioural implications. Brain, 0 , $,$.	7.6	5
422	Memory: Meet the new engram, same as the old engram. Current Biology, 2023, 33, R955-R957.	3.9	0
426	Cellular and molecular basis of drug addiction: The role of neuronal ensembles in addiction. Current Opinion in Neurobiology, 2023, 83, 102813.	4.2	0
427	Engram cell connectivity as a mechanism for information encoding and memory function. Current Biology, 2023, 33, 5368-5380.e5.	3.9	2

#	Article	IF	Citations
428	Activated somatostatin interneurons orchestrate memory microcircuits. Neuron, 2024, 112, 201-208.e4.	8.1	0
430	Holistic bursting cells store long-term memory in auditory cortex. Nature Communications, 2023, 14, .	12.8	0
432	Encoding without perceiving: Can memories be implanted?. Philosophical Psychology, 0, , 1-28.	0.9	0
433	Neurobehavioral Testing as Cognitive Function Evaluation tool in Experimentally Induced Neurodegeneration in Mice. Annals of Clinical and Experimental Neurology, 2024, 17, 72-81.	0.4	0
435	Exploring the memory: existing activity-dependent tools to tag and manipulate engram cells. Frontiers in Cellular Neuroscience, $0,17,10$	3.7	0
437	Memory Systems. , 2024, , 279-313.		0
438	Hippocampal Trauma Memory Processing Conveying Susceptibility to Traumatic Stress. Neuroscience, 2024, 540, 87-102.	2.3	0
439	Divergent Learning-Related Transcriptional States of Cortical Glutamatergic Neurons. Journal of Neuroscience, 2024, 44, e0302232023.	3.6	0
440	Neuronal ensembles: Building blocks of neural circuits. Neuron, 2024, 112, 875-892.	8.1	2
442	Contextual memory engrams, and the neuromodulatory influence of the locus coeruleus. Frontiers in Molecular Neuroscience, 0, 17 , .	2.9	1
443	Functionally refined encoding of threat memory by distinct populations of basal forebrain cholinergic projection neurons. ELife, 0, 13, .	6.0	0
444	Neuromorphic Optical Data Storage Enabled by Nanophotonics: A Perspective. ACS Photonics, 2024, 11, 874-891.	6.6	0
445	Excitability mediates allocation of pre-configured ensembles to a hippocampal engram supporting contextual conditioned threat in mice. Neuron, 2024, 112, 1487-1497.e6.	8.1	0
446	Termination of convulsion seizures by destabilizing and perturbing seizure memory engrams. Science Advances, 2024, 10, .	10.3	0