Genome-wide association of polycystic ovary syndrome gonadotropin secretion in European ancestry populatio

Nature Communications 6, 7502 DOI: 10.1038/ncomms8502

Citation Report

#	Article	IF	CITATIONS
1	Scientific Statement on the Diagnostic Criteria, Epidemiology, Pathophysiology, and Molecular Genetics of Polycystic Ovary Syndrome. Endocrine Reviews, 2015, 36, 487-525.	8.9	649
2	Lifestyle modifiable reproductive and metabolic disease in women. Medical Journal of Australia, 2016, 205, 348-350.	0.8	3
3	Genetic Rodent Models of Obesity-Associated Ovarian Dysfunction and Subfertility: Insights into Polycystic Ovary Syndrome. Frontiers in Endocrinology, 2016, 7, 53.	1.5	15
4	Delayed diagnosis and a lack of information associated with dissatisfaction in women with polycystic ovary syndrome. Journal of Clinical Endocrinology and Metabolism, 2017, 102, jc.2016-2963.	1.8	188
5	Polycystic Ovary Syndrome in Adolescents. Endocrinology and Metabolism Clinics of North America, 2016, 45, 329-344.	1.2	19
6	Evolutionary determinants of polycystic ovary syndrome: part 1. Fertility and Sterility, 2016, 106, 33-41.	0.5	33
7	Genetic determinants ofÂpolycystic ovary syndrome: progress and future directions. Fertility and Sterility, 2016, 106, 25-32.	0.5	103
8	Ovarian Physiology and GWAS: Biobanks, Biology, and Beyond. Trends in Endocrinology and Metabolism, 2016, 27, 516-528.	3.1	9
9	Genetic Studies on Polycystic Ovary Syndrome. Best Practice and Research in Clinical Obstetrics and Gynaecology, 2016, 37, 56-65.	1.4	43
10	Variants in <i>FSHB</i> Are Associated With Polycystic Ovary Syndrome and Luteinizing Hormone Level in Han Chinese Women. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 2178-2184.	1.8	44
11	Genetics of Common Endocrine Disease: The Present and the Future. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 787-794.	1.8	12
12	Increased antimüllerian hormone levels and other reproductive endocrine changes in adult male relatives of women with polycystic ovary syndrome. Fertility and Sterility, 2016, 106, 50-55.	0.5	33
13	Relationship between polycystic ovary syndrome and ancestry in European Americans. Fertility and Sterility, 2016, 106, 1772-1777.	0.5	9
14	Insulin resistance in polycystic ovary syndrome: a systematic review and meta-analysis of euglycaemic–hyperinsulinaemic clamp studies. Human Reproduction, 2016, 31, 2619-2631.	0.4	252
15	Distribution of HLA DRB1 and DQB1 alleles and DRB1-DQB1 haplotypes among Bahraini women with polycystic ovary syndrome. Journal of Reproductive Immunology, 2016, 117, 76-80.	0.8	2
16	The Pathogenesis of Polycystic Ovary Syndrome (PCOS): The Hypothesis of PCOS as Functional Ovarian Hyperandrogenism Revisited. Endocrine Reviews, 2016, 37, 467-520.	8.9	863
17	Polycystic ovary syndrome and environmental toxins. Fertility and Sterility, 2016, 106, 948-958.	0.5	117
18	Refining diagnostic features in PCOS to optimize health outcomes. Nature Reviews Endocrinology, 2016, 12, 630-631.	4.3	21

#	Article	IF	CITATIONS
19	Polycystic ovary syndrome. Nature Reviews Disease Primers, 2016, 2, 16057.	18.1	1,004
20	Epigenetic and Transcriptional Alterations in Human Adipose Tissue of Polycystic Ovary Syndrome. Scientific Reports, 2016, 6, 22883.	1.6	93
22	Update on Polycystic Ovary Syndrome. Journal of the Dermatology Nurses' Association, 2016, 8, 380-385.	0.1	0
23	Genetic variations in the 3′-untranslated region of <i>SLC18A2</i> are associated with serum FSH concentration in polycystic ovary syndrome patients and regulate gene expression <i>in vitro</i> . Human Reproduction, 2016, 31, 2150-2157.	0.4	10
24	MicroRNA Species in Follicular Fluid Associating With Polycystic Ovary Syndrome and Related Intermediary Phenotypes. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 1579-1589.	1.8	58
25	Genetic evidence that lower circulating FSH levels lengthen menstrual cycle, increase age at menopause and impact female reproductive health. Human Reproduction, 2016, 31, 473-481.	0.4	51
26	Perspectives in Polycystic Ovary Syndrome: From Hair to Eternity. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 759-768.	1.8	71
27	Evidence for Increased 5α-Reductase Activity During Early Childhood in Daughters of Women With Polycystic Ovary Syndrome. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 2069-2075.	1.8	42
28	Is polycystic ovary syndrome a sexual conflict? A review. Reproductive BioMedicine Online, 2016, 32, 350-361.	1.1	22
30	Genetic variations altering FSH action affect circulating hormone levels as well as follicle growth in healthy peripubertal girls. Human Reproduction, 2016, 31, 897-904.	0.4	20
31	Effect of maternal PCOS and PCOS-like phenotype on the offspring's health. Molecular and Cellular Endocrinology, 2016, 435, 29-39.	1.6	67
32	New insights into the genetics of polycystic ovary syndrome. Nature Reviews Endocrinology, 2016, 12, 74-75.	4.3	90
33	Association study of androgen signaling pathway genes in polycystic ovary syndrome. Fertility and Sterility, 2016, 105, 467-473.e4.	0.5	11
34	The neuroendocrine genesis of polycystic ovary syndrome: A role for arcuate nucleus GABA neurons. Journal of Steroid Biochemistry and Molecular Biology, 2016, 160, 106-117.	1.2	37
35	ERBB4 Confers Risk for Polycystic Ovary Syndrome in Han Chinese. Scientific Reports, 2017, 7, 42000.	1.6	20
36	Practical Approach to the PCOS Patient. Current Obstetrics and Gynecology Reports, 2017, 6, 11-20.	0.3	0
37	Pathogenic Anti-Müllerian Hormone Variants in Polycystic Ovary Syndrome. Journal of Clinical Endocrinology and Metabolism, 2017, 102, 2862-2872.	1.8	80
38	The role of stress in PCOS. Expert Review of Endocrinology and Metabolism, 2017, 12, 87-95.	1.2	25

#	Article	IF	CITATIONS
39	Genetic architecture of acne vulgaris. Journal of the European Academy of Dermatology and Venereology, 2017, 31, 1978-1990.	1.3	39
40	Which origin for polycystic ovaries syndrome: Genetic, environmental or both?. Annales D'Endocrinologie, 2017, 78, 176-185.	0.6	34
41	Blocking FSH induces thermogenic adipose tissue and reduces body fat. Nature, 2017, 546, 107-112.	13.7	250
42	Polycystic ovary syndrome: Understanding the role of the brain. Frontiers in Neuroendocrinology, 2017, 46, 1-14.	2.5	63
43	FSH receptor gene p. Thr307Ala and p. Asn680Ser polymorphisms are associated with the risk of polycystic ovary syndrome. Journal of Assisted Reproduction and Genetics, 2017, 34, 1087-1093.	1.2	24
44	Association study of HNF1A in women with polycystic ovary syndrome. Journal of Assisted Reproduction and Genetics, 2017, 34, 677-682.	1.2	5
45	Neuroendocrine androgen action is a key extraovarian mediator in the development of polycystic ovary syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E3334-E3343.	3.3	158
46	Prepubertal Development of Gonadotropin-Releasing Hormone Neuron Activity Is Altered by Sex, Age, and Prenatal Androgen Exposure. Endocrinology, 2017, 158, 3943-3953.	1.4	32
47	Increased insulin resistance in men with unexplained infertility. Reproductive BioMedicine Online, 2017, 35, 571-575.	1.1	12
48	An International Consortium Update: Pathophysiology, Diagnosis, and Treatment of Polycystic Ovarian Syndrome in Adolescence. Hormone Research in Paediatrics, 2017, 88, 371-395.	0.8	282
49	Cardiometabolic Risk in PCOS: More than a Reproductive Disorder. Current Diabetes Reports, 2017, 17, 137.	1.7	43
50	Clustering of PCOS-like traits in naturally hyperandrogenic female rhesus monkeys. Human Reproduction, 2017, 32, 923-936.	0.4	51
51	Female Genomics: Infertility and Overall Health. Seminars in Reproductive Medicine, 2017, 35, 217-224.	0.5	11
52	Normal Pubertal Development in Daughters of Women With PCOS: A Controlled Study. Journal of Clinical Endocrinology and Metabolism, 2017, 102, 122-131.	1.8	26
53	Endocrine and cardiometabolic cord blood characteristics of offspring born to mothers with and without polycystic ovary syndrome. Fertility and Sterility, 2017, 107, 261-268.e3.	0.5	40
54	Differential Effects on Haemostatic Markers by Metformin and the Contraceptive Pill: A Randomized Comparative Trial in PCOS. Thrombosis and Haemostasis, 2017, 117, 2053-2062.	1.8	7
55	Genetic Variation of Follicle-Stimulating Hormone Action Is Associated With Age at Testicular Growth in Boys. Journal of Clinical Endocrinology and Metabolism, 2017, 102, 1740-1749.	1.8	15
56	Genetic basis of eugonadal and hypogonadal female reproductive disorders. Best Practice and Research in Clinical Obstetrics and Gynaecology, 2017, 44, 3-14.	1.4	12

#	Article	IF	CITATIONS
57	Differential DNA methylation patterns of polycystic ovarian syndrome in whole blood of Chinese women. Oncotarget, 2017, 8, 20656-20666.	0.8	32
58	Polycystic ovary syndrome and adverse pregnancy outcomes: Current state of knowledge, challenges and potential implications for practice. Clinical Endocrinology, 2018, 88, 761-769.	1.2	45
59	Evidence from animal models on the pathogenesis of PCOS. Best Practice and Research in Clinical Endocrinology and Metabolism, 2018, 32, 271-281.	2.2	63
60	FSHB â^'211 G>T is a major genetic modulator of reproductive physiology and health in childbearing age women. Human Reproduction, 2018, 33, 954-966.	0.4	28
61	Women-specific risk factors for heart failure: A genetic approach. Maturitas, 2018, 109, 104-111.	1.0	10
62	Pathogenesis and Management of Adiposity and Insulin Resistance in Polycystic Ovary Syndrome (PCOS). Contemporary Endocrinology, 2018, , 629-642.	0.3	1
63	Antiandrogen Treatment Ameliorates Reproductive and Metabolic Phenotypes in the Letrozole-Induced Mouse Model of PCOS. Endocrinology, 2018, 159, 1734-1747.	1.4	56
64	Polycystic ovary syndrome: definition, aetiology, diagnosis and treatment. Nature Reviews Endocrinology, 2018, 14, 270-284.	4.3	1,013
65	Impact of Autoimmune Thyroiditis on Reproductive and Metabolic Parameters in Patients with Polycystic Ovary Syndrome. Experimental and Clinical Endocrinology and Diabetes, 2018, 126, 198-204.	0.6	11
66	Regulation of reproduction via tight control of gonadotropin hormone levels. Molecular and Cellular Endocrinology, 2018, 463, 116-130.	1.6	52
67	Does a male polycystic ovarian syndrome equivalent exist?. Journal of Endocrinological Investigation, 2018, 41, 49-57.	1.8	30
68	Ovarian Follicular Theca Cell Recruitment, Differentiation, and Impact on Fertility: 2017 Update. Endocrine Reviews, 2018, 39, 1-20.	8.9	127
69	Differential Impact of Genetic Loci on Age at Thelarche and Menarche in Healthy Girls. Journal of Clinical Endocrinology and Metabolism, 2018, 103, 228-234.	1.8	12
70	Family-based analysis of GGT1 and HNF1A gene polymorphisms in patients with polycystic ovary syndrome. Reproductive BioMedicine Online, 2018, 36, 115-119.	1.1	6
71	On the origin of obesity: identifying the biological, environmental and cultural drivers of genetic risk among human populations. Obesity Reviews, 2018, 19, 121-149.	3.1	158
72	A decade in female reproduction: an endocrine view of the past and into the future. Hormones, 2018, 17, 497-505.	0.9	2
73	Large-scale genome-wide meta-analysis of polycystic ovary syndrome suggests shared genetic architecture for different diagnosis criteria. PLoS Genetics, 2018, 14, e1007813.	1.5	341
74	Accelerated Episodic Luteinizing Hormone Release Accompanies Blunted Progesterone Regulation in PCOS-like Female Rhesus Monkeys (Macaca Mulatta) Exposed to Testosterone during Early-to-Mid Cestation Neuroendocrinology 2018, 107, 133-146	1.2	14

#	Article	IF	CITATIONS
75	The Genetics of Polycystic Ovary Syndrome: From Genome-Wide Association to Molecular Mechanisms. Reproductive Medicine for Clinicians, 2018, , 25-33.	0.2	2
76	Complex genetics of female fertility. Npj Genomic Medicine, 2018, 3, 29.	1.7	43
77	New Perspectives on the Pathogenesis of PCOS: Neuroendocrine Origins. Trends in Endocrinology and Metabolism, 2018, 29, 841-852.	3.1	101
78	PCOS: update and diagnostic approach. Clinical Biochemistry, 2018, 62, 24-31.	0.8	17
79	Large-scale meta-analysis highlights the hypothalamic–pituitary–gonadal axis in the genetic regulation of menstrual cycle length. Human Molecular Genetics, 2018, 27, 4323-4332.	1.4	20
80	Androgen Action in the Ovary. Frontiers in Endocrinology, 2018, 9, 452.	1.5	69
81	Diabetes mellitus and insulin resistance in mothers, fathers, sisters, and brothers of women with polycystic ovary syndrome: a systematic review and meta-analysis. Fertility and Sterility, 2018, 110, 523-533.e14.	0.5	37
82	Ovarian and extra-ovarian mediators in the development of polycystic ovary syndrome. Journal of Molecular Endocrinology, 2018, 61, R161-R184.	1.1	26
83	Genetic Variants Associated with Hyperandrogenemia in PCOS Pathophysiology. Genetics Research International, 2018, 2018, 1-12.	2.0	38
85	An update of genetic basis of PCOS pathogenesis. Archives of Endocrinology and Metabolism, 2018, 62, 352-361.	0.3	88
86	Regulated nuclear accumulation of a histone methyltransferase times the onset of heterochromatin formation in <i>C. elegans</i> embryos. Science Advances, 2018, 4, eaat6224.	4.7	55
87	Neuroanatomical Framework of the Metabolic Control of Reproduction. Physiological Reviews, 2018, 98, 2349-2380.	13.1	50
88	Polycystic Ovary Syndrome and Hyperandrogenic States. , 2019, , 520-555.e13.		11
89	Female Infertility. , 2019, , 556-581.e7.		32
90	Polycystic Ovary Syndrome: Pathophysiology, Presentation, and Treatment With Emphasis on Adolescent Girls. Journal of the Endocrine Society, 2019, 3, 1545-1573.	0.1	280
91	Family-Based Quantitative Trait Meta-Analysis Implicates Rare Noncoding Variants in DENND1A in Polycystic Ovary Syndrome. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 3835-3850.	1.8	51
92	Dissecting the syndrome of schizophrenia: Associations between symptomatology and hormone levels in women with schizophrenia. Psychiatry Research, 2019, 280, 112510.	1.7	9
93	Emerging Topics in Cardiometabolic and Psychologic Sequelae, Pathogenesis, and Treatment of Polycystic Ovarian Syndrome: A Review. Children, 2019, 6, 89.	0.6	4

#	Article	IF	CITATIONS
94	Hyperactive CREB signaling pathway involved in the pathogenesis of polycystic ovarian syndrome revealed by patient-specific induced pluripotent stem cell modeling. Fertility and Sterility, 2019, 112, 594-607.e12.	0.5	9
95	miRNA Profiling Reveals miRNA-130b-3p Mediates DENND1A Variant 2 Expression and Androgen Biosynthesis. Endocrinology, 2019, 160, 1964-1981.	1.4	29
96	Polycystic Ovary Syndrome and NC-CAH: Distinct Characteristics and Common Findings. A Systematic Review. Frontiers in Endocrinology, 2019, 10, 388.	1.5	36
97	The Genetics of Polycystic Ovary Syndrome: An Overview of Candidate Gene Systematic Reviews and Genome-Wide Association Studies. Journal of Clinical Medicine, 2019, 8, 1606.	1.0	70
99	Gene Expression in Granulosa Cells From Small Antral Follicles From Women With or Without Polycystic Ovaries. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 6182-6192.	1.8	53
100	Using Polygenic Scores in Social Science Research: Unraveling Childlessness. Frontiers in Sociology, 2019, 4, 74.	1.0	4
101	Epigenetic Reprogramming of Immune Cells in Women With PCOS Impact Genes Controlling Reproductive Function. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 6155-6170.	1.8	22
102	Phenotype and genotype of polycystic ovary syndrome in Asia: Ethnic differences. Journal of Obstetrics and Gynaecology Research, 2019, 45, 2330-2337.	0.6	40
103	Imaging and Manipulating Pituitary Function in the Awake Mouse. Endocrinology, 2019, 160, 2271-2281.	1.4	11
104	Effects of a Polymorphism in the Promoter Region of the Follicle-Stimulating Hormone Subunit Beta (<i>FSHB</i>) Gene on Female Reproductive Outcomes. Genetic Testing and Molecular Biomarkers, 2019, 23, 39-44.	0.3	19
105	THADA_rs13429458 Minor Allele Increases the Risk of Polycystic Ovary Syndrome in Asian, but Not in Caucasian Women: A Systematic Review and Meta-Analysis. Hormone and Metabolic Research, 2019, 51, 661-670.	0.7	7
106	Rare variants in FANCA induce premature ovarian insufficiency. Human Genetics, 2019, 138, 1227-1236.	1.8	56
107	Joseph W. Goldzieher on the occasion of his 100th birtday. European Journal of Contraception and Reproductive Health Care, 2019, 24, 413-416.	0.6	0
108	Molecular Mechanisms of Insulin Resistance in Polycystic Ovary Syndrome: Unraveling the Conundrum in Skeletal Muscle?. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 5372-5381.	1.8	54
109	Follicle Stimulating Hormone Receptor (FSHR) Polymorphisms and Polycystic Ovary Syndrome (PCOS). Frontiers in Endocrinology, 2019, 10, 23.	1.5	66
110	Association between genetically predicted polycystic ovary syndrome and ovarian cancer: a Mendelian randomization study. International Journal of Epidemiology, 2019, 48, 822-830.	0.9	22
111	Functional Genetic Variation in the Anti-Müllerian Hormone Pathway in Women With Polycystic Ovary Syndrome. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 2855-2874.	1.8	58
112	Melanocortin 3 receptor gene polymorphism is associated with polycystic ovary syndrome in Turkish population. Gynecological Endocrinology, 2019, 35, 685-690.	0.7	1

#	Article	IF	Citations
113	The genetic susceptibility profile of the South Indian women with polycystic ovary syndrome and the universality of the lack of association of type 2 diabetes genes. Gene, 2019, 701, 113-120.	1.0	5
114	Distinctive Reproductive Phenotypes in Peripubertal Girls at Risk for Polycystic Ovary Syndrome. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 3355-3361.	1.8	30
115	What does acne genetics teach us about disease pathogenesis?. British Journal of Dermatology, 2019, 181, 665-676.	1.4	32
116	Genetics and Epigenetics of Infertility and Treatments on Outcomes. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 1871-1886.	1.8	45
117	Environmental Factors and Female Reproduction. , 2019, , 525-537.		1
118	Expression of genes controlling steroid metabolism and action in granulosa-lutein cells of women with polycystic ovaries. Molecular and Cellular Endocrinology, 2019, 486, 47-54.	1.6	17
119	The HMGA2-IMP2 Pathway Promotes Granulosa Cell Proliferation in Polycystic Ovary Syndrome. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 1049-1059.	1.8	38
120	Hyperandrogenic origins of polycystic ovary syndrome – implications for pathophysiology and therapy. Expert Review of Endocrinology and Metabolism, 2019, 14, 131-143.	1.2	87
121	Colocalization of Polycystic Ovary Syndrome Candidate Gene Products in Theca Cells Suggests Novel Signaling Pathways. Journal of the Endocrine Society, 2019, 3, 2204-2223.	0.1	24
122	Naturally Occurring and Experimentally Induced Rhesus Macaque Models for Polycystic Ovary Syndrome: Translational Gateways to Clinical Application. Medical Sciences (Basel, Switzerland), 2019, 7, 107.	1.3	21
123	Kisspeptin treatment induces gonadotropic responses and rescues ovulation in a subset of preclinical models and women with polycystic ovary syndrome. Human Reproduction, 2019, 34, 2495-2512.	0.4	34
124	Metabolic disturbances in non-obese women with polycystic ovary syndrome: a systematic review and meta-analysis. Fertility and Sterility, 2019, 111, 168-177.	0.5	63
125	Commentary: The New International Guideline for diagnosis and management of PCOS was worth the effort. Clinical Endocrinology, 2019, 90, 265-266.	1.2	0
126	Characteristics of obesity in polycystic ovary syndrome: Etiology, treatment, and genetics. Metabolism: Clinical and Experimental, 2019, 92, 108-120.	1.5	215
127	Metabolic syndrome in polycystic ovary syndrome: a systematic review, metaâ€analysis and metaâ€regression. Obesity Reviews, 2019, 20, 339-352.	3.1	167
129	Genetics of Polycystic Ovary Syndrome. , 2019, , 447-461.		0
130	Genetic and Environmental Factors in the Etiology of Polycystic Ovary Syndrome. , 2019, , 437-459.		4
131	Genome-Wide Association Studies of Ovarian Function Disorders. , 2019, , 311-325.		0

	СПАНО	N REPORT	
#	ARTICLE Genetic variants linked to folliculogenesis and successful pregnancy are not associated with twin	IF	CITATIONS
132	births in a twins' town. Journal of Maternal-Fetal and Neonatal Medicine, 2020, 33, 3431-3438.	0.7	1
133	Genome-wide methylation profiling in granulosa lutein cells of women with polycystic ovary syndrome (PCOS). Molecular and Cellular Endocrinology, 2020, 500, 110611.	1.6	24
134	Curtailing PCOS. Pediatric Research, 2020, 87, 353-361.	1.1	53
135	A Polygenic and Phenotypic Risk Prediction for Polycystic Ovary Syndrome Evaluated by Phenome-Wide Association Studies. Journal of Clinical Endocrinology and Metabolism, 2020, 105, 1918-1936.	1.8	40
136	Hyperandrogenemia is Common in Asymptomatic Women and is Associated with Increased Metabolic Risk. Obesity, 2020, 28, 106-113.	1.5	4
137	Recent advances in mammalian reproductive biology. Science China Life Sciences, 2020, 63, 18-58.	2.3	23
138	Analysis of expression of candidate genes for polycystic ovary syndrome in adult and fetal human and fetal bovine ovariesâ€. Biology of Reproduction, 2020, 103, 840-853.	1.2	14
139	MiRNAs expression profiling of rat ovaries displaying PCOS with insulin resistance. Archives of Gynecology and Obstetrics, 2020, 302, 1205-1213.	0.8	10
140	Verification of a ZBTB16 variant in polycystic ovary syndrome patients. Reproductive BioMedicine Online, 2020, 41, 724-728.	1.1	2
141	Candidate genes for age at menarche are associated with endometrial hyperplasia. Gene, 2020, 757, 144933.	1.0	33
142	Detecting PCOS susceptibility loci from genome-wide association studies via iterative trend correlation based feature screening. BMC Bioinformatics, 2020, 21, 177.	1.2	3
143	Genetics of polycystic ovarian syndrome. , 2020, , 111-121.		0
144	Distinct subtypes of polycystic ovary syndrome with novel genetic associations: An unsupervised, phenotypic clustering analysis. PLoS Medicine, 2020, 17, e1003132.	3.9	134
145	Genetic construction between polycystic ovarian syndrome and type 2 diabetes. Saudi Journal of Biological Sciences, 2020, 27, 2539-2543.	1.8	13
146	Hormonal regulation in male androgenetic alopecia—Sex hormones and beyond: Evidence from recent genetic studies. Experimental Dermatology, 2020, 29, 814-827.	1.4	27
147	Kisspeptin and neurokinin B interactions in modulating gonadotropin secretion in women with polycystic ovary syndrome. Human Reproduction, 2020, 35, 1421-1431.	0.4	32
148	A genomeâ€wide association study identifies <scp><i>FSHR</i></scp> rs2300441 associated with follicleâ€stimulating hormone levels. Clinical Genetics, 2020, 97, 869-877.	1.0	8
149	What causes anovulation in polycystic ovary syndrome?. Current Opinion in Endocrine and Metabolic Research, 2020, 12, 59-65.	0.6	16

#	Article	IF	CITATIONS
150	Adjusting antimüllerian hormone levels for age and body mass index improves detection of polycystic ovary syndrome. Fertility and Sterility, 2020, 113, 876-884.e2.	0.5	7
151	The effect of excess body fat on female and male reproduction. Metabolism: Clinical and Experimental, 2020, 107, 154193.	1.5	52
152	Relationship between the characteristic traits of polycystic ovary syndrome and susceptibility genes. Scientific Reports, 2020, 10, 10479.	1.6	22
153	Computational Systems Analysis on Polycystic Ovarian Syndrome (PCOS). , 2020, , .		2
154	Could perturbed fetal development of the ovary contribute to the development of polycystic ovary syndrome in later life?. PLoS ONE, 2020, 15, e0229351.	1.1	19
155	The contribution of rare genetic variants to the pathogenesis of polycystic ovary syndrome. Current Opinion in Endocrine and Metabolic Research, 2020, 12, 26-32.	0.6	21
156	A genome-wide association study of polycystic ovary syndrome identified from electronic health records. American Journal of Obstetrics and Gynecology, 2020, 223, 559.e1-559.e21.	0.7	49
157	Animal Models to Understand the Etiology and Pathophysiology of Polycystic Ovary Syndrome. Endocrine Reviews, 2020, 41, .	8.9	162
158	Human DENND1A.V2 Drives Cyp17a1 Expression and Androgen Production in Mouse Ovaries and Adrenals. International Journal of Molecular Sciences, 2020, 21, 2545.	1.8	12
159	National and regional trends in the prevalence of polycystic ovary syndrome since 1990 within Europe: the modeled estimates from the Global Burden of Disease Study 2016. Archives of Medical Science, 2021, 17, 343-351.	0.4	19
160	Polycystic Ovary Syndrome and Risk of Type 2 Diabetes, Coronary Heart Disease, and Stroke. Diabetes, 2021, 70, 627-637.	0.3	72
161	Risk of preâ€eclampsia in patients with a maternal genetic predisposition to common medical conditions: a case–control study. BJOG: an International Journal of Obstetrics and Gynaecology, 2021, 128, 55-65.	1.1	19
162	<i>FSHB</i> Transcription is Regulated by a Novel 5′ Distal Enhancer With a Fertility-Associated Single Nucleotide Polymorphism. Endocrinology, 2021, 162, .	1.4	19
163	Differential expression profile of plasma exosomal microRNAs in women with polycystic ovary syndrome. Fertility and Sterility, 2021, 115, 782-792.	0.5	46
164	Variation analysis of anti-Müllerian hormone gene in Chinese women with polycystic ovary syndrome. Endocrine, 2021, 72, 287-293.	1.1	4
165	Hyperandrogenemia alters mitochondrial structure and function in the oocytes of obese mouse with polycystic ovary syndrome. F&S Science, 2021, 2, 101-112.	0.5	12
166	The evolutionary biology of endometriosis. Evolution, Medicine and Public Health, 2021, 9, 174-191.	1.1	29
167	Conceptualization of functional single nucleotide polymorphisms of polycystic ovarian syndrome genes: an in silico approach. Journal of Endocrinological Investigation, 2021, 44, 1783-1793.	1.8	13

#	Article	IF	CITATIONS
168	Genetic Susceptibility to Joint Occurrence of Polycystic Ovary Syndrome and Hashimoto's Thyroiditis: How Far Is Our Understanding?. Frontiers in Immunology, 2021, 12, 606620.	2.2	16
169	Replication study of <i>THADA</i> rs13429458 variant with PCOS susceptibility and its related traits in Indian women. Gynecological Endocrinology, 2021, 37, 716-720.	0.7	8
170	Genetic Regulation of Physiological Reproductive Lifespan and Female Fertility. International Journal of Molecular Sciences, 2021, 22, 2556.	1.8	18
172	Genetics of Polycystic Ovary Syndrome. Endocrinology and Metabolism Clinics of North America, 2021, 50, 71-82.	1.2	11
173	Diagnosis of Polycystic Ovary Syndrome. Endocrinology and Metabolism Clinics of North America, 2021, 50, 11-23.	1.2	35
174	Perceptions and experiences of lifestyle interventions in women with polycystic ovary syndrome (PCOS), as a management strategy for symptoms of PCOS. BMC Women's Health, 2021, 21, 107.	0.8	13
175	Colocalization analysis of polycystic ovary syndrome to identify potential disease-mediating genes and proteins. European Journal of Human Genetics, 2021, 29, 1446-1454.	1.4	12
176	Polycystic Ovary Syndrome: the Epigenetics Behind the Disease. Reproductive Sciences, 2022, 29, 680-694.	1.1	19
177	Distal Enhancer Potentiates Activin- and GnRH-Induced Transcription of FSHB. Endocrinology, 2021, 162, .	1.4	4
178	Intergenerational Influences between Maternal Polycystic Ovary Syndrome and Offspring: An Updated Overview. Journal of Pediatrics, 2021, 232, 272-281.	0.9	7
180	A review: Brief insight into Polycystic Ovarian syndrome. Endocrine and Metabolic Science, 2021, 3, 100085.	0.7	48
181	Androgen production and action in the ovary. Current Opinion in Endocrine and Metabolic Research, 2021, 18, 48-53.	0.6	4
182	Enhancing Gonadotrope Gene Expression Through Regulatory IncRNAs. Endocrinology, 2021, 162, .	1.4	3
183	Polycystic Ovary Syndrome Susceptibility Loci Inform Disease Etiological Heterogeneity. Journal of Clinical Medicine, 2021, 10, 2688.	1.0	10
184	3 CpG Methylation Biomarkers for the Diagnosis of Polycystic Ovary Syndrome (PCOS) in Blood Samples. Combinatorial Chemistry and High Throughput Screening, 2022, 25, 1304-1313.	0.6	3
185	DeepGP: An Integrated Deep Learning Method for Endocrine Disease Gene Prediction Using Omics Data. Frontiers in Cell and Developmental Biology, 2021, 9, 700061.	1.8	1
186	Natural History of Polycystic Ovary Syndrome and New Advances in the Epidemiology. Seminars in Reproductive Medicine, 2021, 39, 094-101.	0.5	3
187	A kaleidoscopic view of ovarian genes associated with polycystic ovary syndrome. F&S Reviews, 2021, , .	0.7	0

#	Article	IF	CITATIONS
188	Effects of FSHR and FSHB Variants on Hormonal Profile and Reproductive Outcomes of Infertile Women With Endometriosis. Frontiers in Endocrinology, 2021, 12, 760616.	1.5	14
189	Suicide Related Phenotypes in a Bipolar Sample: Genetic Underpinnings. Genes, 2021, 12, 1482.	1.0	5
190	Biomediators in Polycystic Ovary Syndrome and Cardiovascular Risk. Biomolecules, 2021, 11, 1350.	1.8	5
191	Genetic Causes of Female Infertility. Experientia Supplementum (2012), 2019, 111, 367-383.	0.5	10
192	Unveiling the association between Vitamin D Receptor and Poly Cystic Ovary Syndrome – a systematic review and meta-analysis. International Journal for Vitamin and Nutrition Research, 2017, 87, 207-218.	0.6	2
194	Is foetal hyperexposure to androgens a cause of PCOS?. Human Reproduction Update, 2017, 23, 421-432.	5.2	116
195	Polycystic ovary syndrome in adolescent girls. Current Opinion in Endocrinology, Diabetes and Obesity, 2017, 24, 56-66.	1.2	12
198	Phenotype and Tissue Expression as a Function of Genetic Risk in Polycystic Ovary Syndrome. PLoS ONE, 2017, 12, e0168870.	1.1	43
199	Prenatal androgen induced lean PCOS impairs mitochondria and mRNA profiles in oocytes. Endocrine Connections, 2020, 9, 261-270.	0.8	25
200	Epigenetic Marks in Polycystic Ovary Syndrome. Current Medicinal Chemistry, 2020, 27, 6727-6743.	1.2	5
201	Translational Insight Into Polycystic Ovary Syndrome (PCOS) From Female Monkeys with PCOS-like Traits. Current Pharmaceutical Design, 2016, 22, 5625-5633.	0.9	34
202	Pathophysiological mechanisms of gonadotropins- and steroid hormones-related genes in etiology of polycystic ovary syndrome. Iranian Journal of Basic Medical Sciences, 2019, 22, 3-16.	1.0	42
203	Epidemiology, pathogenesis, genetics & management of polycystic ovary syndrome in India. Indian Journal of Medical Research, 2019, 150, 333.	0.4	82
204	The Prevalence of Polycystic Ovary Syndrome: A Brief Systematic Review. Journal of Human Reproductive Sciences, 2020, 13, 261.	0.4	209
205	Polycystic ovarian syndrome: Environmental/occupational, lifestyle factors; an overview. Journal of the Turkish German Gynecology Association, 2019, 20, 255-263.	0.2	34
206	Mendelian Randomization Analysis Identified Potential Genes Pleiotropically Associated with Polycystic Ovary Syndrome. Reproductive Sciences, 2022, 29, 1028-1037.	1.1	6
210	Portability of Gwas Results between Ethnic Populations: Genetic Markers for Polycystic Ovary Syndrome (Pcos) in Mediterranean Area. Acta Endocrinologica, 2019, 15, 364-371.	0.1	3
212	Insight into the pathogensis of polycystic ovarian syndrome. Journal of Genetic Medicine, 2020, 17, 1-10.	0.1	ο

#	Article	IF	CITATIONS
214	The Polycystic Ovary Syndrome (PCOS). Endocrinology, 2020, , 39-61.	0.1	0
215	Leveraging Northern European population history: novel low-frequency variants for polycystic ovary syndrome. Human Reproduction, 2022, 37, 352-365.	0.4	25
216	Polycystic Ovary Syndrome and Obstructive Sleep Apnea. Current Clinical Neurology, 2020, , 177-202.	0.1	0
217	The Polycystic Ovary Syndrome (PCOS). Endocrinology, 2020, , 1-23.	0.1	0
220	Association between The Number of Retrieved Mature Oocytes and Insulin Resistance or Sensitivity in Infertile Women with Polycystic Ovary Syndrome. International Journal of Fertility & Sterility, 2019, 12, 310-315.	0.2	6
221	The effects of bortezomib on the ovariectomy applied rat uterus: A histopathological, stereological, and immunohistochemical study. Iranian Journal of Basic Medical Sciences, 2018, 21, 1118-1125.	1.0	0
222	Genetic variants of gonadotrophins and their receptors: Impact on the diagnosis and management of the infertile patient. Best Practice and Research in Clinical Endocrinology and Metabolism, 2022, 36, 101596.	2.2	7
223	Maternal Polycystic Ovary Syndrome and Offspring Birth Weight: A Mendelian Randomization Study. Journal of Clinical Endocrinology and Metabolism, 2022, 107, 1020-1029.	1.8	6
225	Mendelian randomization analyses for PCOS: evidence, opportunities, and challenges. Trends in Genetics, 2022, 38, 468-482.	2.9	21
226	Maternal hyperandrogenism is associated with a higher risk of type 2 diabetes mellitus and overweight in adolescent and adult female offspring: a long-term population-based follow-up study. Journal of Endocrinological Investigation, 2022, 45, 963-972.	1.8	4
227	Polycystic Ovary Syndrome: An Evolutionary Adaptation to Lifestyle and the Environment. International Journal of Environmental Research and Public Health, 2022, 19, 1336.	1.2	30
228	Deconstructing a Syndrome: Genomic Insights Into PCOS Causal Mechanisms and Classification. Endocrine Reviews, 2022, 43, 927-965.	8.9	75
230	Further delineation of familial polycystic ovary syndrome (PCOS) via <scp>wholeâ€exome</scp> sequencing: <scp>PCOS</scp> â€related rare <scp><i>FBN3</i></scp> and <scp><i>FN1</i></scp> gene variants are identified. Journal of Obstetrics and Gynaecology Research, 2022, 48, 1202-1211.	0.6	9
231	Progesterone Actions and Resistance in Gynecological Disorders. Cells, 2022, 11, 647.	1.8	44
232	Polycystic Ovarian Syndrome: A Complex Disease with a Genetics Approach. Biomedicines, 2022, 10, 540.	1.4	19
233	A GWAS in Idiopathic/Unexplained Infertile Men Detects a Genomic Region Determining Follicle-Stimulating Hormone Levels. Journal of Clinical Endocrinology and Metabolism, 2022, 107, 2350-2361.	1.8	4
234	Why are women with polycystic ovary syndrome obese?. British Medical Bulletin, 2022, 143, 4-15.	2.7	9
235	Pathology of hyperandrogenemia in the oocyte of polycystic ovary syndrome. Steroids, 2022, 180, 108989.	0.8	3

		CITATION REPORT	
#	Article	IF	CITATIONS
243	Novel Hub genes co-expression network mediates dysfunction in a model of polycystic ovary syndrome American Journal of Translational Research (discontinued), 2022, 14, 1979-1990.	0.0	0
244	Increased homocysteine regulated by androgen activates autophagy by suppressing the mammalian target of rapamycin pathway in the granulosa cells of polycystic ovary syndrome mice. Bioengineered, 2022, 13, 10875-10888.	1.4	5
245	Effects of N-acetylcysteine and metformin treatment on the stereopathological characteristics of uterus and ovary. European Journal of Translational Myology, 2022, 32, .	0.8	7
246	Polycystic ovary syndrome: a "risk-enhancing―factor for cardiovascular disease. Fertility and Sterility, 2022, 117, 924-935.	0.5	34
247	Polycystic Ovary Syndrome: From Phenotype to Genotype. , 2022, , 8-20.		0
248	The PCOS GWAS Candidate Gene <i>ZNF217</i> Influences Theca Cell Expression of <i>DENND1A.V2<<i>CYP17A1</i>, and Androgen Production. Journal of the Endocrine Society, 2022, 6, .</i>	, 0.1	8
250	Assessment of THADA gene polymorphisms in a sample of Colombian women with polycystic ovary syndrome: A pilot study. Heliyon, 2022, 8, e09673.	1.4	2
251	Transgenerational Transmission of Reproductive and Metabolic Dysfunction in the Male Progeny of Polycystic Ovary Syndrome. SSRN Electronic Journal, 0, , .	0.4	0
252	A genome-wide cross-trait analysis identifies shared loci and causal relationships of type 2 diabetes and glycaemic traits with polycystic ovary syndrome. Diabetologia, 2022, 65, 1483-1494.	2.9	13
253	Causality of anthropometric markers associated with polycystic ovarian syndrome: Findings of a Mendelian randomization study. PLoS ONE, 2022, 17, e0269191.	1.1	4
254	An Ovarian Steroid Metabolomic Pathway Analysis in Basal and Polycystic Ovary Syndrome (PCOS)-like Gonadotropin Conditions Reveals a Hyperandrogenic Phenotype Measured by Mass Spectrometry. Biomedicines, 2022, 10, 1646.	2 1.4	5
255	High-throughput Sequencing to Identify Monogenic Etiologies in a Preselected Polycystic Ovary Syndrome Cohort. Journal of the Endocrine Society, 2022, 6, .	0.1	4
256	Out of step societal and Darwinian adaptation during evolution is the cause of multiple women's health issues. Human Reproduction, 2022, 37, 1959-1969.	0.4	5
257	The PNA mouse may be the best animal model of polycystic ovary syndrome. Frontiers in Endocrinology, 0, 13, .	1.5	4
258	Criteria for Diagnosis of Polycystic Ovary Syndrome during Adolescence: Literature Review. Diagnostics, 2022, 12, 1931.	1.3	9
259	Precision Medicine in Endocrinology Practice. , 2022, , 67-91.		0
260	Identifying novel genetic loci associated with polycystic ovary syndrome based on its shared genetic architecture with type 2 diabetes. Frontiers in Genetics, 0, 13, .	1.1	1
261	Polycystic ovary syndrome in Latin American populations: what is known and what remains unresolved Journal of Steroid Biochemistry and Molecular Biology, 2022, , 106195.	1.2	1

#	Article	IF	CITATIONS
262	Upregulated Ribosomal Pathway Impairs Follicle Development in a Polycystic Ovary Syndrome Mouse Model: Differential Gene Expression Analysis of Oocytes. Reproductive Sciences, 2023, 30, 1306-1315.	1.1	3
263	Evaluation of circulating microRNA profiles in Brazilian women with polycystic ovary syndrome: A preliminary study. PLoS ONE, 2022, 17, e0275031.	1.1	5
264	Pathophysiology of polycystic ovary syndrome revisited: Current understanding and perspectives regarding future research. Reproductive Medicine and Biology, 2022, 21, .	1.0	16
265	Hormonal, genetic, epigenetic and environmental aspects of polycystic ovarian syndrome. Gene Reports, 2022, 29, 101698.	0.4	5
266	Is the "E―being removed from Reproductive Endocrinology to be replaced by a "G―for Genetics?. Fertility and Sterility, 2022, 118, 1036-1043.	0.5	0
267	Sex Hormone Candidate Gene Polymorphisms Are Associated with Endometriosis. International Journal of Molecular Sciences, 2022, 23, 13691.	1.8	11
268	Loci on chromosome 12q13.2 encompassing ERBB3, PA2G4 and RAB5B are associated with polycystic ovary syndrome. Gene, 2023, 852, 147062.	1.0	6
269	Genetic markers of polycystic ovary syndrome: role in the pathogenesis and phenotypic manifestations of the disease. Medical Alphabet, 2022, , 44-47.	0.0	0
270	Translational Bioinformatics for Human Reproductive Biology Research: Examples, Opportunities and Challenges for a Future Reproductive Medicine. International Journal of Molecular Sciences, 2023, 24, 4.	1.8	3
271	Genetic variations in <i>OLR1</i> gene associated with PCOS and atherosclerotic risk factors. Journal of Investigative Medicine, 0, , 108155892211418.	0.7	1
272	Effects of myo-inositol plus folic acid on ovarian morphology and oocyte quality in PCOS mouse model. Zygote, 0, , 1-12.	0.5	3
273	Endocrine Disrupting Chemicals in Polycystic Ovary Syndrome: The Relevant Role of the Theca and Granulosa Cells in the Pathogenesis of the Ovarian Dysfunction. Cells, 2023, 12, 174.	1.8	11
274	Anti-Mullerian Hormone-Based Phenotyping Identifies Subgroups of Women with Polycystic Ovary Syndrome with Differing Clinical and Biochemical Characteristics. Diagnostics, 2023, 13, 500.	1.3	1
275	Insulin Metabolism in Polycystic Ovary Syndrome: Secretion, Signaling, and Clearance. International Journal of Molecular Sciences, 2023, 24, 3140.	1.8	16
277	Exomeâ€based genomeâ€wide screening of rare variants associated with the risk of polycystic ovary syndrome. Reproductive Medicine and Biology, 2023, 22, .	1.0	2
278	Gonadotropins as pharmacological agents in assisted reproductive technology and polycystic ovary syndrome. Trends in Endocrinology and Metabolism, 2023, 34, 194-215.	3.1	9
279	Causal relationship between polycystic ovary syndrome and chronic kidney disease: A Mendelian randomization study. Frontiers in Endocrinology, 0, 14, .	1.5	5
280	Molecular Mechanisms in the Etiology of Polycystic Ovary Syndrome (PCOS): A Multifaceted Hypothesis Towards the Disease with Potential Therapeutics. Indian Journal of Clinical Biochemistry, 2024, 39, 18-36.	0.9	2

				_
#	ARTICLE		IF	CITATIONS
281	Do Pleiotropic Effects of Spironolactone in Women with PCOS make it More Than an A Evidence from a Systematic Review and Meta-Analysis. Current Pharmaceutical Design	Anti-Androgen? 1, 2023, 29, .	0.9	1
282	Male polycystic ovary syndrome equivalent. , 2024, , 100-110.			0
283	Developmental origins and genetic basis of polycystic ovary syndrome. , 2023, , 505-5	30.		0
284	Genetics of polycystic ovary syndrome. , 2023, , 485-504.			0
294	SOPK, une pathologie fréquente, et mal nommée. , 2023, , 97-102.			0
313	Genetic Testing in Polycystic Ovary Syndrome. , 2023, , 81-103.			Ο