Efficient hydrogen evolution catalysis using ternary py

Nature Materials 14, 1245-1251

DOI: 10.1038/nmat4410

Citation Report

#	Article	IF	CITATIONS
14	Metallic CoS ₂ nanowire electrodes for high cycling performance supercapacitors. Nanotechnology, 2015, 26, 494001.	1.3	52
15	Recent advances in transition-metal dichalcogenide based nanomaterials for water splitting. Nanoscale, 2015, 7, 19764-19788.	2.8	327
16	Phaseâ€Transformation Engineering in Cobalt Diselenide Realizing Enhanced Catalytic Activity for Hydrogen Evolution in an Alkaline Medium. Advanced Materials, 2016, 28, 7527-7532.	11.1	307
17	Silver nanoparticles-sensitized cobalt complex for highly-efficient photocatalytic activity. Applied Catalysis B: Environmental, 2016, 199, 342-349.	10.8	19
18	Engineering Cobalt Phosphide (CoP) Thin Film Catalysts for Enhanced Hydrogen Evolution Activity on Silicon Photocathodes. Advanced Energy Materials, 2016, 6, 1501758.	10.2	134
19	Hierarchical NiCo ₂ O ₄ Hollow Microcuboids as Bifunctional Electrocatalysts for Overall Waterâ€6plitting. Angewandte Chemie - International Edition, 2016, 55, 6290-6294.	7.2	722
20	Two-Dimensional, Few-Layer Phosphochalcogenide, FePS ₃ : A New Catalyst for Electrochemical Hydrogen Evolution over Wide pH Range. ACS Energy Letters, 2016, 1, 367-372.	8.8	178
21	Amorphous transitional metal borides as substitutes for Pt cocatalysts for photocatalytic water splitting. Nano Energy, 2016, 27, 103-113.	8.2	142
22	Chalcogenide and Phosphide Solid‣tate Electrocatalysts for Hydrogen Generation. ChemPlusChem, 2016, 81, 1045-1055.	1.3	74
23	3D Nanoporous Metal Phosphides toward Highâ€Efficiency Electrochemical Hydrogen Production. Advanced Materials, 2016, 28, 2951-2955.	11.1	163
24	Seleniumâ€Enriched Nickel Selenide Nanosheets as a Robust Electrocatalyst for Hydrogen Generation. Angewandte Chemie, 2016, 128, 7033-7038.	1.6	65
25	Surface Roughening of Nickel Cobalt Phosphide Nanowire Arrays/Ni Foam for Enhanced Hydrogen Evolution Activity. ACS Applied Materials & Interfaces, 2016, 8, 34270-34279.	4.0	116
26	Developing a scalable artificial photosynthesis technology through nanomaterials by design. Nature Nanotechnology, 2016, 11, 1010-1019.	15.6	162
27	Dual-valence nickel nanosheets covered with thin carbon as bifunctional electrocatalysts for full water splitting. Journal of Materials Chemistry A, 2016, 4, 7297-7304.	5.2	73
28	Ni0.85Se as an efficient non-noble bifunctional electrocatalyst for full water splitting. International Journal of Hydrogen Energy, 2016, 41, 10688-10694.	3.8	92
29	A wafer-scale antireflective protection layer of solution-processed TiO ₂ nanorods for high performance silicon-based water splitting photocathodes. Journal of Materials Chemistry A, 2016, 4, 9477-9485.	5.2	47
30	Synergistic WO ₃ ·2H ₂ O Nanoplates/WS ₂ Hybrid Catalysts for High-Efficiency Hydrogen Evolution. ACS Applied Materials & Interfaces, 2016, 8, 13966-13972.	4.0	120
31	CoP ₂ nanoparticles on reduced graphene oxide sheets as a super-efficient bifunctional electrocatalyst for full water splitting. Journal of Materials Chemistry A, 2016, 4, 4686-4690.	5.2	242

#	Article	IF	CITATIONS
32	Metal-free carbonaceous electrocatalysts and photocatalysts for water splitting. Chemical Society Reviews, 2016, 45, 3039-3052.	18.7	499
33	Hierarchical MoS ₂ @MoP core–shell heterojunction electrocatalysts for efficient hydrogen evolution reaction over a broad pH range. Nanoscale, 2016, 8, 11052-11059.	2.8	160
34	Oxidation Induced Doping of Nanoparticles Revealed by <i>in Situ</i> X-ray Absorption Studies. Nano Letters, 2016, 16, 3738-3747.	4.5	25
35	A p-Si/NiCoSe _x core/shell nanopillar array photocathode for enhanced photoelectrochemical hydrogen production. Energy and Environmental Science, 2016, 9, 3113-3119.	15.6	162
36	Aligned MoO _{<i>x</i>} /MoS ₂ Core–Shell Nanotubular Structures with a High Density of Reactive Sites Based on Selfâ€Ordered Anodic Molybdenum Oxide Nanotubes. Angewandte Chemie - International Edition, 2016, 55, 12252-12256.	7.2	100
37	Activating earth-abundant electrocatalysts for efficient, low-cost hydrogen evolution/oxidation: sub-monolayer platinum coatings on titanium tungsten carbide nanoparticles. Energy and Environmental Science, 2016, 9, 3290-3301.	15.6	138
38	Bifunctional CoP and CoN porous nanocatalysts derived from ZIF-67 in situ grown on nanowire photoelectrodes for efficient photoelectrochemical water splitting and CO ₂ reduction. Journal of Materials Chemistry A, 2016, 4, 15353-15360.	5.2	90
39	Aligned MoO _{<i>x</i>} /MoS ₂ Core–Shell Nanotubular Structures with a High Density of Reactive Sites Based on Selfâ€Ordered Anodic Molybdenum Oxide Nanotubes. Angewandte Chemie, 2016, 128, 12440-12444.	1.6	14
40	Kohlenstoffbasierte Metallfreie Katalysatoren für die Elektrokatalyse jenseits der ORR. Angewandte Chemie, 2016, 128, 11910-11933.	1.6	58
41	Ternary Fe _{<i>x</i>} Co _{1–<i>x</i>} P Nanowire Array as a Robust Hydrogen Evolution Reaction Electrocatalyst with Pt-like Activity: Experimental and Theoretical Insight. Nano Letters, 2016, 16, 6617-6621.	4.5	618
42	Intercalation of Cobalt into the Interlayer of Birnessite Improves Oxygen Evolution Catalysis. ACS Catalysis, 2016, 6, 7739-7743.	5.5	79
43	Metallic Ni ₃ N nanosheets with exposed active surface sites for efficient hydrogen evolution. Journal of Materials Chemistry A, 2016, 4, 17363-17369.	5.2	233
44	Synthesis, Characterization, and Properties of Metal Phosphide Catalysts for the Hydrogen-Evolution Reaction. Chemistry of Materials, 2016, 28, 6017-6044.	3.2	519
45	Two-Dimensional Molybdenum Carbide (MXene) as an Efficient Electrocatalyst for Hydrogen Evolution. ACS Energy Letters, 2016, 1, 589-594.	8.8	1,100
46	Solution Growth of Vertical VS ₂ Nanoplate Arrays for Electrocatalytic Hydrogen Evolution. Chemistry of Materials, 2016, 28, 5587-5591.	3.2	173
47	Anchoring CoO Domains on CoSe ₂ Nanobelts as Bifunctional Electrocatalysts for Overall Water Splitting in Neutral Media. Advanced Science, 2016, 3, 1500426.	5.6	236
48	Cobalt and nickel selenide nanowalls anchored on graphene as bifunctional electrocatalysts for overall water splitting. Journal of Materials Chemistry A, 2016, 4, 14789-14795.	5.2	150
49	MOF-derived Co-doped nickel selenide/C electrocatalysts supported on Ni foam for overall water splitting. Journal of Materials Chemistry A, 2016, 4, 15148-15155.	5.2	291

#	Article	IF	CITATIONS
50	CoSe2 nanoparticles embedded defective carbon nanotubes derived from MOFs as efficient electrocatalyst for hydrogen evolution reaction. Nano Energy, 2016, 28, 143-150.	8.2	278
51	Anion and Cation Modulation in Metal Compounds for Bifunctional Overall Water Splitting. ACS Nano, 2016, 10, 8738-8745.	7.3	376
52	Facile synthesis of CoNi 2 S 4 and CuCo 2 S 4 with different morphologies as prominent catalysts for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2016, 41, 19847-19854.	3.8	73
53	From water reduction to oxidation: Janus Co-Ni-P nanowires as high-efficiency and ultrastable electrocatalysts for over 3000Âh water splitting. Journal of Power Sources, 2016, 330, 156-166.	4.0	190
54	Ternary Metal Phosphide with Tripleâ€Layered Structure as a Lowâ€Cost and Efficient Electrocatalyst for Bifunctional Water Splitting. Advanced Functional Materials, 2016, 26, 7644-7651.	7.8	389
55	Integrated Photoelectrochemical Solar Energy Conversion and Organic Redox Flow Battery Devices. Angewandte Chemie, 2016, 128, 13298-13302.	1.6	15
56	Integrated Photoelectrochemical Solar Energy Conversion and Organic Redox Flow Battery Devices. Angewandte Chemie - International Edition, 2016, 55, 13104-13108.	7.2	98
57	Electrochemical Dealloying of PdCu ₃ Nanoparticles to Achieve Ptâ€like Activity for the Hydrogen Evolution Reaction. ChemSusChem, 2016, 9, 2922-2927.	3.6	79
58	Two-dimensional molybdenum disulfide and tungsten disulfide interleaved nanowalls constructed on silk cocoon-derived N-doped carbon fibers for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2016, 41, 21870-21882.	3.8	38
59	Carbonâ€Based Metalâ€Free Catalysts for Electrocatalysis beyond the ORR. Angewandte Chemie - International Edition, 2016, 55, 11736-11758.	7.2	598
60	Porous nickel disulfide/reduced graphene oxide nanohybrids with improved electrocatalytic performance for hydrogen evolution. Catalysis Communications, 2016, 85, 26-29.	1.6	36
61	Highly active nonprecious metal hydrogen evolution electrocatalyst: ultrafine molybdenum carbide nanoparticles embedded into a 3D nitrogen-implanted carbon matrix. NPG Asia Materials, 2016, 8, e293-e293.	3.8	100
62	Alternate to Molybdenum Disulfide: A 2D, Few‣ayer Transitionâ€Metal Thiophosphate and Its Hydrogen Evolution Reaction Activity over a Wide pH Range. ChemElectroChem, 2016, 3, 1392-1399.	1.7	44
63	Mo Doping Induced More Active Sites in Urchinâ€Like W ₁₈ O ₄₉ Nanostructure with Remarkably Enhanced Performance for Hydrogen Evolution Reaction. Advanced Functional Materials, 2016, 26, 5778-5786.	7.8	177
64	Molybdenum Carbide Anchored on Graphene Nanoribbons as Highly Efficient All-pH Hydrogen Evolution Reaction Electrocatalyst. ACS Sustainable Chemistry and Engineering, 2016, 4, 6313-6321.	3.2	112
65	Efficient Electrocatalytic and Photoelectrochemical Hydrogen Generation Using MoS2 and Related Compounds. CheM, 2016, 1, 699-726.	5.8	462
66	Plasma-Assisted Synthesis of NiCoP for Efficient Overall Water Splitting. Nano Letters, 2016, 16, 7718-7725.	4.5	1,079
67	Efficient Photoelectrochemical Hydrogen Evolution on Silicon Photocathodes Interfaced with Nanostructured NiP ₂ Cocatalyst Films. ACS Applied Materials & Interfaces, 2016, 8, 31025-31031.	4.0	46

#	Article	IF	Citations
68	Efficient hydrogen evolution by ternary molybdenum sulfoselenide particles on self-standing porous nickel diselenide foam. Nature Communications, 2016, 7, 12765.	5.8	312
69	Synthesis of Co-doped MoS ₂ /graphene hybrids as enhanced electrocatalysts for the hydrogen evolution reaction. RSC Advances, 2016, 6, 104925-104932.	1.7	42
70	Evident Enhancement of Photoelectrochemical Hydrogen Production by Electroless Deposition of M-B (M = Ni, Co) Catalysts on Silicon Nanowire Arrays. ACS Applied Materials & Interfaces, 2016, 8, 30143-30151.	4.0	40
71	Highly Efficient Hydrogen Evolution from Edge-Oriented WS _{2(1–<i>x</i>)} Se _{2<i>x</i>} Particles on Three-Dimensional Porous NiSe ₂ Foam. Nano Letters, 2016, 16, 7604-7609.	4.5	121
72	Shape effects of nickel phosphide nanocrystals on hydrogen evolution reaction. CrystEngComm, 2016, 18, 6083-6089.	1.3	96
73	Hierarchical NiCo ₂ O ₄ Hollow Microcuboids as Bifunctional Electrocatalysts for Overall Waterâ€splitting. Angewandte Chemie, 2016, 128, 6398-6402.	1.6	536
74	Highâ€Performance Hydrogen Evolution from MoS _{2(1–<i>x</i>)} P <i>_x</i> Solid Solution. Advanced Materials, 2016, 28, 1427-1432.	11.1	309
75	Seleniumâ€Enriched Nickel Selenide Nanosheets as a Robust Electrocatalyst for Hydrogen Generation. Angewandte Chemie - International Edition, 2016, 55, 6919-6924.	7.2	307
76	Polymer-Embedded Fabrication of Co ₂ P Nanoparticles Encapsulated in N,P-Doped Graphene for Hydrogen Generation. Nano Letters, 2016, 16, 4691-4698.	4.5	306
77	Contributions of Phase, Sulfur Vacancies, and Edges to the Hydrogen Evolution Reaction Catalytic Activity of Porous Molybdenum Disulfide Nanosheets. Journal of the American Chemical Society, 2016, 138, 7965-7972.	6.6	1,055
78	Mechanism of Hydrogen Evolution Reaction on 1T-MoS ₂ from First Principles. ACS Catalysis, 2016, 6, 4953-4961.	5.5	678
79	Morphology-Controllable Synthesis of Cobalt Telluride Branched Nanostructures on Carbon Fiber Paper as Electrocatalysts for Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2016, 8, 2910-2916.	4.0	126
80	A highly active and stable hydrogen evolution catalyst based on pyrite-structured cobalt phosphosulfide. Nature Communications, 2016, 7, 10771.	5.8	418
81	Well-dispersed CoS ₂ nano-octahedra grown on a carbon fibre network as efficient electrocatalysts for hydrogen evolution reaction. Catalysis Science and Technology, 2016, 6, 4545-4553.	2.1	62
82	Coordination polymer structure and revisited hydrogen evolution catalytic mechanism for amorphous molybdenumÂsulfide. Nature Materials, 2016, 15, 640-646.	13.3	490
83	Increased activity in hydrogen evolution electrocatalysis for partial anionic substitution in cobalt oxysulfide nanoparticles. Journal of Materials Chemistry A, 2016, 4, 2842-2848.	5.2	32
84	General Synthesis of Multishell Mixedâ€Metal Oxyphosphide Particles with Enhanced Electrocatalytic Activity in the Oxygen Evolution Reaction. Angewandte Chemie, 2017, 129, 2426-2429.	1.6	37
85	General Synthesis of Multishell Mixedâ€Metal Oxyphosphide Particles with Enhanced Electrocatalytic Activity in the Oxygen Evolution Reaction. Angewandte Chemie - International Edition, 2017, 56, 2386-2389.	7.2	257

#	Article	IF	CITATIONS
86	Symmetrical synergy of hybrid Co9S8-MoSx electrocatalysts for hydrogen evolution reaction. Nano Energy, 2017, 32, 470-478.	8.2	116
87	Active Edge Sites Engineering in Nickel Cobalt Selenide Solid Solutions for Highly Efficient Hydrogen Evolution. Advanced Energy Materials, 2017, 7, 1602089.	10.2	171
88	In Situ Coupling of CoP Polyhedrons and Carbon Nanotubes as Highly Efficient Hydrogen Evolution Reaction Electrocatalyst. Small, 2017, 13, 1602873.	5.2	212
89	Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nature Reviews Chemistry, 2017, 1, .	13.8	2,578
90	Emerging nanostructured electrode materials for water electrolysis and rechargeable beyond Li-ion batteries. Advances in Physics: X, 2017, 2, 211-253.	1.5	25
91	Pristine Graphene Electrode in Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2017, 9, 4643-4648.	4.0	47
92	Metal–Organic Frameworks Derived Cobalt Phosphide Architecture Encapsulated into B/N Coâ€Đoped Graphene Nanotubes for All pH Value Electrochemical Hydrogen Evolution. Advanced Energy Materials, 2017, 7, 1601671.	10.2	336
93	Sub-1.1 nm ultrathin porous CoP nanosheets with dominant reactive {200} facets: a high mass activity and efficient electrocatalyst for the hydrogen evolution reaction. Chemical Science, 2017, 8, 2769-2775.	3.7	243
94	In Situ Construction of Nickel Phosphosulfide (Ni ₅ P ₄ S) Active Species on 3D Ni Foam through Chemical Vapor Deposition for Electrochemical Hydrogen Evolution. ChemElectroChem, 2017, 4, 1108-1116.	1.7	24
95	Interface confined hydrogen evolution reaction in zero valent metal nanoparticles-intercalated molybdenum disulfide. Nature Communications, 2017, 8, 14548.	5.8	174
96	Hydrogen evolution electrocatalysis with binary-nonmetal transition metal compounds. Journal of Materials Chemistry A, 2017, 5, 5995-6012.	5.2	142
97	Cobalt-Doped Iron Sulfide as an Electrocatalyst for Hydrogen Evolution. Journal of the Electrochemical Society, 2017, 164, F276-F282.	1.3	46
98	An efficient ternary CoP _{2x} Se _{2(1â^'x)} nanowire array for overall water splitting. Nanoscale, 2017, 9, 3995-4001.	2.8	72
99	The Central Role of Bicarbonate in the Electrochemical Reduction of Carbon Dioxide on Gold. Journal of the American Chemical Society, 2017, 139, 3774-3783.	6.6	479
100	PdCu@Pd Nanocube with Pt-like Activity for Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2017, 9, 8151-8160.	4.0	114
101	Theoretical designing and experimental fabricating unique quadruple multimetallic phosphides with remarkable hydrogen evolution performance. Nano Energy, 2017, 34, 421-427.	8.2	31
102	Efficient Electrocatalytic Hydrogen Evolution from MoS ₂ -Functionalized Mo ₂ N Nanostructures. ACS Applied Materials & Interfaces, 2017, 9, 19455-19461.	4.0	81
103	Efficient Catalysis of Hydrogen Evolution Reaction from WS _{2(1â²} <i>_x</i> ₎ P ₂ <i>_x</i> Small, 2017, 13, 1603706.	5.2	60

#	Article	IF	CITATIONS
104	P Dopants Triggered New Basal Plane Active Sites and Enlarged Interlayer Spacing in MoS ₂ Nanosheets toward Electrocatalytic Hydrogen Evolution. ACS Energy Letters, 2017, 2, 745-752.	8.8	304
105	Amorphous Cobalt–Iron Hydroxide Nanosheet Electrocatalyst for Efficient Electrochemical and Photoâ€Electrochemical Oxygen Evolution. Advanced Functional Materials, 2017, 27, 1603904.	7.8	260
106	Strong Metal–Phosphide Interactions in Core–Shell Geometry for Enhanced Electrocatalysis. Nano Letters, 2017, 17, 2057-2063.	4.5	145
107	Recent Advances in Earth-Abundant Heterogeneous Electrocatalysts for Photoelectrochemical Water Splitting. Small Methods, 2017, 1, 1700090.	4.6	106
108	Activating and Optimizing Activity of CoS ₂ for Hydrogen Evolution Reaction through the Synergic Effect of N Dopants and S Vacancies. ACS Energy Letters, 2017, 2, 1022-1028.	8.8	229
109	Evaluation of flow schemes for near-neutral pH electrolytes in solar-fuel generators. Sustainable Energy and Fuels, 2017, 1, 458-466.	2.5	36
110	RhMoS ₂ Nanocomposite Catalysts with Pt‣ike Activity for Hydrogen Evolution Reaction. Advanced Functional Materials, 2017, 27, 1700359.	7.8	185
111	Large-Scale Synthesis of Carbon-Shell-Coated FeP Nanoparticles for Robust Hydrogen Evolution Reaction Electrocatalyst. Journal of the American Chemical Society, 2017, 139, 6669-6674.	6.6	451
112	Design and synthesis of integrally structured Ni ₃ N nanosheets/carbon microfibers/Ni ₃ N nanosheets for efficient full water splitting catalysis. Journal of Materials Chemistry A, 2017, 5, 9377-9390.	5.2	123
113	Ironâ€Doped Cobalt Monophosphide Nanosheet/Carbon Nanotube Hybrids as Active and Stable Electrocatalysts for Water Splitting. Advanced Functional Materials, 2017, 27, 1606635.	7.8	206
114	Direct deposition of MoSe ₂ nanocrystals onto conducting substrates: towards ultra-efficient electrocatalysts for hydrogen evolution. Journal of Materials Chemistry A, 2017, 5, 13364-13372.	5.2	64
115	Colloidal synthesis of urchin-like Fe doped NiSe ₂ for efficient oxygen evolution. Nanoscale, 2017, 9, 6821-6825.	2.8	127
116	Cobalt-Borate Nanoarray: An Efficient and Durable Electrocatalyst for Water Oxidation under Benign Conditions. ACS Applied Materials & Interfaces, 2017, 9, 15383-15387.	4.0	30
117	Advanced oxygen evolution catalysis by bimetallic Ni–Fe phosphide nanoparticles encapsulated in nitrogen, phosphorus, and sulphur tri-doped porous carbon. Chemical Communications, 2017, 53, 6025-6028.	2.2	54
118	Tuning Unique Peapod‣ike Co(S <i>_x</i> Se _{1–} <i>_x</i>) ₂ Nanoparticles for Efficient Overall Water Splitting. Advanced Functional Materials, 2017, 27, 1701008.	7.8	192
119	Anionic Regulated NiFe (Oxy)Sulfide Electrocatalysts for Water Oxidation. Small, 2017, 13, 1700610.	5.2	150
120	Highly active catalyst derived from a 3D foam of Fe(PO ₃) ₂ /Ni ₂ P for extremely efficient water oxidation. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 5607-5611.	3.3	302
121	Materials Chemistry of Iron Phosphosulfide Nanoparticles: Synthesis, Solid State Chemistry, Surface Structure, and Electrocatalysis for the Hydrogen Evolution Reaction, ACS Catalysis, 2017, 7, 4026-4032.	5.5	89

#	Article	IF	CITATIONS
122	Component-Controlled Synthesis of Necklace-Like Hollow Ni _{<i>X</i>} Ru _{<i>y</i>} Nanoalloys as Electrocatalysts for Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2017, 9, 17326-17336.	4.0	60
123	Self-Assembled Molecular Hybrids of CoS-DNA for Enhanced Water Oxidation with Low Cobalt Content. Inorganic Chemistry, 2017, 56, 6734-6745.	1.9	93
124	Metal–organic framework – derived Co ₉ S ₈ @CoS@CoO@C nanoparticles as efficient electro- and photo-catalysts for the oxygen evolution reaction. Journal of Materials Chemistry A, 2017, 5, 10495-10509.	5.2	103
125	Photorechargeable High Voltage Redox Battery Enabled by Ta ₃ N ₅ and GaN/Si Dualâ€Photoelectrode. Advanced Materials, 2017, 29, 1700312.	11.1	60
126	Enhanced Electrocatalysis for Energy‣fficient Hydrogen Production over CoP Catalyst with Nonelectroactive Zn as a Promoter. Advanced Energy Materials, 2017, 7, 1700020.	10.2	519
127	Ultrathin CoS 2 shells anchored on Co 3 O 4 nanoneedles for efficient hydrogen evolution electrocatalysis. Journal of Power Sources, 2017, 356, 89-96.	4.0	56
128	Solution Processed NixSy Films: Composition, Morphology and Crystallinity Tuning via Ni/S-Ratio-Control and Application in Dye-Sensitized Solar Cells. Electrochimica Acta, 2017, 246, 285-293.	2.6	14
129	Regulating Waterâ€Reduction Kinetics in Cobalt Phosphide for Enhancing HER Catalytic Activity in Alkaline Solution. Advanced Materials, 2017, 29, 1606980.	11.1	220
130	Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics. Nature Communications, 2017, 8, 15437.	5.8	813
131	Outstanding hydrogen evolution reaction catalyzed by porous nickel diselenide electrocatalysts. Energy and Environmental Science, 2017, 10, 1487-1492.	15.6	176
132	Synergistic Phase and Disorder Engineering in 1Tâ€MoSe ₂ Nanosheets for Enhanced Hydrogenâ€Evolution Reaction. Advanced Materials, 2017, 29, 1700311.	11.1	411
133	Enhancing electrocatalytic total water splitting at few layer Pt-NiFe layered double hydroxide interfaces. Nano Energy, 2017, 39, 30-43.	8.2	236
134	3D Nitrogenâ€Anionâ€Decorated Nickel Sulfides for Highly Efficient Overall Water Splitting. Advanced Materials, 2017, 29, 1701584.	11.1	478
135	Integrated 3D MoSe2@Ni0.85Se Nanowire Network with Synergistic Cooperation as Highly Efficient Electrocatalysts for Hydrogen Evolution Reaction in Alkaline Medium. Electrochimica Acta, 2017, 246, 712-719.	2.6	69
136	Integrated Hierarchical Cobalt Sulfide/Nickel Selenide Hybrid Nanosheets as an Efficient Three-dimensional Electrode for Electrochemical and Photoelectrochemical Water Splitting. Nano Letters, 2017, 17, 4202-4209.	4.5	263
137	Drastically enhanced hydrogen evolution activity by 2D to 3D structural transition in anion-engineered molybdenum disulfide thin films for efficient Si-based water splitting photocathodes. Journal of Materials Chemistry A, 2017, 5, 15534-15542.	5.2	69
138	In-situ potentiostatic activation to optimize electrodeposited cobalt-phosphide electrocatalyst for highly efficient hydrogen evolution in alkaline media. Chemical Physics Letters, 2017, 681, 90-94.	1.2	22
139	IrO ₂ –TiO ₂ electrocatalysts for the hydrogen evolution reaction in acidic water electrolysis without activation. New Journal of Chemistry, 2017, 41, 6152-6159.	1.4	34

#	Αρτιςι ε	IF	CITATIONS
"	Self-supported nickel phosphosulphide nanosheets for highly efficient and stable overall water	5.2	74
140	splitting. Journal of Materials Chemistry A, 2017, 5, 14865-14872.	0.2	74
141	Double quantum dots decorated 3D graphene flowers for highly efficient photoelectrocatalytic hydrogen production. Applied Surface Science, 2017, 422, 528-535.	3.1	25
142	Nickel phosphide nanoparticles decorated nitrogen and phosphorus co-doped porous carbon as efficient hybrid catalyst for hydrogen evolution. Applied Surface Science, 2017, 422, 828-837.	3.1	37
143	Nitrogen-Doped Nanoporous Carbon Membranes with Co/CoP Janus-Type Nanocrystals as Hydrogen Evolution Electrode in Both Acidic and Alkaline Environments. ACS Nano, 2017, 11, 4358-4364.	7.3	199
144	Insight into the hydrogen evolution reaction of nickel dichalcogenide nanosheets: activities related to non-metal ligands. Nanoscale, 2017, 9, 5538-5544.	2.8	97
145	Gas-templating of hierarchically structured Ni–Co–P for efficient electrocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2017, 5, 7564-7570.	5.2	47
146	Phase-controlled synthesis of polymorphic tungsten diphosphide with hybridization of monoclinic and orthorhombic phases as a novel electrocatalyst for efficient hydrogen evolution. Journal of Power Sources, 2017, 349, 138-143.	4.0	27
147	Enhanced photoelectrochemical efficiency and stability using a conformal TiO2 film on a black silicon photoanode. Nature Energy, 2017, 2, .	19.8	217
148	Integrated hydrogen evolution and water-cleaning via a robust graphene supported noble-metal-free Fe _{1â^'x} Co _x S ₂ system. Nanoscale, 2017, 9, 5887-5895.	2.8	15
149	Synthesis and characterization of an IrO ₂ –Fe ₂ O ₃ electrocatalyst for the hydrogen evolution reaction in acidic water electrolysis. RSC Advances, 2017, 7, 20252-20258.	1.7	26
150	Experimental and theoretical insights into sustained water splitting with an electrodeposited nanoporous nickel hydroxide@nickel film as an electrocatalyst. Journal of Materials Chemistry A, 2017, 5, 7744-7748.	5.2	90
151	Co ₉ S ₈ @N,P-doped porous carbon electrocatalyst using biomass-derived carbon nanodots as a precursor for overall water splitting in alkaline media. RSC Advances, 2017, 7, 19181-19188.	1.7	69
152	Co-vacancy-rich Co1–x S nanosheets anchored on rGO for high-efficiency oxygen evolution. Nano Research, 2017, 10, 1819-1831.	5.8	78
153	Recent Advances in Ultrathin Two-Dimensional Nanomaterials. Chemical Reviews, 2017, 117, 6225-6331.	23.0	3,940
154	Ultrastable hydrogen evolution electrocatalyst derived from phosphide postmodified metal-organic frameworks. Nano Energy, 2017, 35, 115-120.	8.2	69
155	A layered Na _{1â^'x} Ni _y Fe _{1â^'y} O ₂ double oxide oxygen evolution reaction electrocatalyst for highly efficient water-splitting. Energy and Environmental Science, 2017, 10, 121-128.	15.6	201
156	Multifunctional Carbonâ€Based Metalâ€Free Electrocatalysts for Simultaneous Oxygen Reduction, Oxygen Evolution, and Hydrogen Evolution. Advanced Materials, 2017, 29, 1604942.	11.1	606
157	A Cake‣tyle CoS ₂ @MoS ₂ /RGO Hybrid Catalyst for Efficient Hydrogen Evolution. Advanced Functional Materials, 2017, 27, 1602699.	7.8	231

#	Article	IF	CITATIONS
158	A new method for developing defect-rich graphene nanoribbons/onion-like carbon@Co nanoparticles hybrid materials as an excellent catalyst for oxygen reactions. Nanoscale, 2017, 9, 1738-1744.	2.8	56
159	Oneâ€Dimensional Earthâ€Abundant Nanomaterials for Waterâ€&plitting Electrocatalysts. Advanced Science, 2017, 4, 1600380.	5.6	253
160	Ternary NiCo ₂ P <i>_x</i> Nanowires as pHâ€Universal Electrocatalysts for Highly Efficient Hydrogen Evolution Reaction. Advanced Materials, 2017, 29, 1605502.	11.1	544
161	An efficient CoS ₂ /CoSe ₂ hybrid catalyst for electrocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2017, 5, 2504-2507.	5.2	91
162	Developments of Metal Phosphides as Efficient OER Precatalysts. Journal of Physical Chemistry Letters, 2017, 8, 144-152.	2.1	290
163	Quaternary pyrite-structured nickel/cobalt phosphosulfide nanowires on carbon cloth as efficient and robust electrodes for water electrolysis. Nano Research, 2017, 10, 814-825.	5.8	71
164	Self-supported ternary Co0.5Mn0.5P/carbon cloth (CC) as a high-performance hydrogen evolution electrocatalyst. Nano Research, 2017, 10, 1001-1009.	5.8	39
165	Enhancing Oxygen Evolution Reaction at High Current Densities on Amorphousâ€Like Ni–Fe–S Ultrathin Nanosheets via Oxygen Incorporation and Electrochemical Tuning. Advanced Science, 2017, 4, 1600343.	5.6	121
166	Energy and fuels from electrochemical interfaces. Nature Materials, 2017, 16, 57-69.	13.3	1,484
167	Improving Hydrogen Evolution Activity of Earthâ€Abundant Cobaltâ€Doped Iron Pyrite Catalysts by Surface Modification with Phosphide. Small, 2017, 13, 1603356.	5.2	68
168	Understanding the role of co-catalysts on silicon photocathodes using intensity modulated photocurrent spectroscopy. Physical Chemistry Chemical Physics, 2017, 19, 29653-29659.	1.3	40
169	Hexagonal-Phase Cobalt Monophosphosulfide for Highly Efficient Overall Water Splitting. ACS Nano, 2017, 11, 11031-11040.	7.3	297
170	Improved Electrocatalytic Performance of Core-shell NiCo/NiCoO with amorphous FeOOH for Oxygen-evolution Reaction. Electrochimica Acta, 2017, 257, 1-8.	2.6	50
171	One-step synthesis of well-structured NiS–Ni ₂ P ₂ S ₆ nanosheets on nickel foam for efficient overall water splitting. Journal of Materials Chemistry A, 2017, 5, 22131-22136.	5.2	72
172	Advances in efficient electrocatalysts based on layered double hydroxides and their derivatives. Journal of Energy Chemistry, 2017, 26, 1094-1106.	7.1	93
173	Mo ₂ C-Ni-modified nitrogen-doped carbon nanofiber toward efficient hydrogen evolution reaction. New Journal of Chemistry, 2017, 41, 12956-12961.	1.4	24
174	Recent Advances in Photoelectrochemical Applications of Silicon Materials for Solarâ€toâ€Chemicals Conversion. ChemSusChem, 2017, 10, 4324-4341.	3.6	77
175	Revealing Cation-Exchange-Induced Phase Transformations in Multielemental Chalcogenide Nanoparticles. Chemistry of Materials, 2017, 29, 9192-9199.	3.2	19

#	Article	IF	CITATIONS
176	Highly efficient hydrogen evolution electrocatalysts based on coupled molybdenum phosphide and reduced graphene oxide derived from MOFs. Chemical Communications, 2017, 53, 12576-12579.	2.2	64
177	A Ni(OH) ₂ –CoS ₂ hybrid nanowire array: a superior non-noble-metal catalyst toward the hydrogen evolution reaction in alkaline media. Nanoscale, 2017, 9, 16632-16637.	2.8	95
178	Amorphous Phosphorus-Incorporated Cobalt Molybdenum Sulfide on Carbon Cloth: An Efficient and Stable Electrocatalyst for Enhanced Overall Water Splitting over Entire pH Values. ACS Applied Materials & Interfaces, 2017, 9, 37739-37749.	4.0	122
179	High-Performance Oxygen Evolution Anode from Stainless Steel via Controlled Surface Oxidation and Cr Removal. ACS Sustainable Chemistry and Engineering, 2017, 5, 10072-10083.	3.2	80
180	Active Role of Phosphorus in the Hydrogen Evolving Activity of Nickel Phosphide (0001) Surfaces. ACS Catalysis, 2017, 7, 7718-7725.	5.5	104
181	Two Are Better than One: Heterostructures Improve Hydrogen Evolution Catalysis. Joule, 2017, 1, 220-221.	11.7	32
182	Perovskite Precursors Get a pH Tune-Up. Joule, 2017, 1, 221-223.	11.7	5
183	Highly Stable Molybdenum Disulfide Protected Silicon Photocathodes for Photoelectrochemical Water Splitting. ACS Applied Materials & Interfaces, 2017, 9, 36792-36798.	4.0	73
184	Recent advances in cobalt phosphide based materials for energy-related applications. Journal of Materials Chemistry A, 2017, 5, 22913-22932.	5.2	121
185	Precious metal-free approach to hydrogen electrocatalysis for energy conversion: From mechanism understanding to catalyst design. Nano Energy, 2017, 42, 69-89.	8.2	157
186	A nanohybrid consisting of NiPS ₃ nanoparticles coupled with defective graphene as a pH-universal electrocatalyst for efficient hydrogen evolution. Journal of Materials Chemistry A, 2017, 5, 23536-23542.	5.2	118
187	Symmetric synergy of hybrid CoS ₂ –WS ₂ electrocatalysts for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2017, 5, 15552-15558.	5.2	81
188	Pyrite-Type Nanomaterials for Advanced Electrocatalysis. Accounts of Chemical Research, 2017, 50, 2194-2204.	7.6	130
189	Enhanced Catalytic Activity in Nitrogen-Anion Modified Metallic Cobalt Disulfide Porous Nanowire Arrays for Hydrogen Evolution. ACS Catalysis, 2017, 7, 7405-7411.	5.5	152
190	Hydrogen generation by water splitting using MoS2 and other transition metal dichalcogenides. Nano Energy, 2017, 41, 49-65.	8.2	248
191	Acid promoted Ni/NiO monolithic electrode for overall water splitting in alkaline medium. Science China Materials, 2017, 60, 918-928.	3.5	32
192	Heterogeneous Bimetallic Phosphide/Sulfide Nanocomposite for Efficient Solar-Energy-Driven Overall Water Splitting. ACS Nano, 2017, 11, 10303-10312.	7.3	187
193	Ultrafine Pt Nanoparticle-Decorated Co(OH) ₂ Nanosheet Arrays with Enhanced Catalytic Activity toward Hydrogen Evolution. ACS Catalysis, 2017, 7, 7131-7135.	5.5	195

#	Article	IF	CITATIONS
194	An efficient Co3S4/CoP hybrid catalyst for electrocatalytic hydrogen evolution. Scientific Reports, 2017, 7, 11891.	1.6	45
195	Surface anion-rich NiS ₂ hollow microspheres derived from metal–organic frameworks as a robust electrocatalyst for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2017, 5, 20985-20992.	5.2	257
196	Sulfur Incorporated CoFe2O4/Multiwalled Carbon Nanotubes toward Enhanced Oxygen Evolution Reaction. Electrochimica Acta, 2017, 247, 843-850.	2.6	36
197	Ternary Porous Cobalt Phosphoselenide Nanosheets: An Efficient Electrocatalyst for Electrocatalytic and Photoelectrochemical Water Splitting. Advanced Materials, 2017, 29, 1701589.	11.1	219
198	Significantly Enhanced Hydrogen Evolution Activity of Freestanding Pdâ€Ru Distorted Icosahedral Clusters with less than 600 Atoms. Chemistry - A European Journal, 2017, 23, 18203-18207.	1.7	24
199	Defect Engineering of Chalcogenâ€Tailored Oxygen Electrocatalysts for Rechargeable Quasiâ€Solidâ€State Zinc–Air Batteries. Advanced Materials, 2017, 29, 1702526.	11.1	171
200	Nanocrystalline Co0.85Se as a highly efficient non-noble-metal electrocatalyst for hydrogen evolution reaction. Electrochimica Acta, 2017, 247, 468-474.	2.6	57
201	Structure and magnetic properties of a Co6 cluster based on high-spin Coll ions. Journal of Molecular Structure, 2017, 1148, 196-200.	1.8	5
202	Three-dimensional graphene-based macrostructures for sustainable energy applications and climate change mitigation. Progress in Materials Science, 2017, 90, 224-275.	16.0	60
203	In Situ Electrochemical Production of Ultrathin Nickel Nanosheets for Hydrogen Evolution Electrocatalysis. CheM, 2017, 3, 122-133.	5.8	214
204	Use of an intermediate solid-state electrode to enable efficient hydrogen production from dilute organic matter. Nano Energy, 2017, 39, 499-505.	8.2	7
205	FeS ₂ Nanoparticles Embedded in Reduced Graphene Oxide toward Robust, Highâ€Performance Electrocatalysts. Advanced Energy Materials, 2017, 7, 1700482.	10.2	144
206	Nickel Diselenide Ultrathin Nanowires Decorated with Amorphous Nickel Oxide Nanoparticles for Enhanced Water Splitting Electrocatalysis. Small, 2017, 13, 1701487.	5.2	99
207	Copper dopants improved the hydrogen evolution activity of earth-abundant cobalt pyrite catalysts by activating the electrocatalytically inert sulfur sites. Journal of Materials Chemistry A, 2017, 5, 17601-17608.	5.2	61
208	Hydrogen evolution reaction catalyzed by ruthenium ion-complexed graphitic carbon nitride nanosheets. Journal of Materials Chemistry A, 2017, 5, 18261-18269.	5.2	136
209	Universal, In Situ Transformation of Bulky Compounds into Nanoscale Catalysts by High-Temperature Pulse. Nano Letters, 2017, 17, 5817-5822.	4.5	29
210	CoP nanoparticles embedded in P and N co-doped carbon as efficient bifunctional electrocatalyst for water splitting. Journal of Energy Chemistry, 2017, 26, 1223-1230.	7.1	98
211	Graphite oxide and molybdenum disulfide composite for hydrogen evolution reaction. Chemical Physics Letters, 2017, 685, 451-456.	1.2	26

#	Article	IF	CITATIONS
212	Universal Surface Engineering of Transition Metals for Superior Electrocatalytic Hydrogen Evolution in Neutral Water. Journal of the American Chemical Society, 2017, 139, 12283-12290.	6.6	207
213	Hierarchical (Ni,Co)Se 2 /Carbon Hollow Rhombic Dodecahedra Derived from Metal-Organic Frameworks for Efficient Water-Splitting Electrocatalysis. Electrochimica Acta, 2017, 250, 167-173.	2.6	63
214	Molybdenum dichalcogenide nanotube arrays for hydrogen-evolution-reaction catalysis: Synergistic effects of sulfur and selenium in a core-shell tube wall. Electrochemistry Communications, 2017, 82, 112-116.	2.3	11
215	Are Metal Chalcogenides, Nitrides, and Phosphides Oxygen Evolution Catalysts or Bifunctional Catalysts?. ACS Energy Letters, 2017, 2, 1937-1938.	8.8	894
216	A highly efficient electrocatalyst based on amorphous Pd–Cu–S material for hydrogen evolution reaction. Journal of Materials Chemistry A, 2017, 5, 18793-18800.	5.2	70
217	Stabilizing Silicon Photocathodes by Solution-Deposited Ni–Fe Layered Double Hydroxide for Efficient Hydrogen Evolution in Alkaline Media. ACS Energy Letters, 2017, 2, 1939-1946.	8.8	61
218	Electrocatalytic hydrogen evolution reaction activity comparable to platinum exhibited by the Ni/Ni(OH) ₂ /graphite electrode. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 8986-8990.	3.3	93
219	More than 10% efficiency and one-week stability of Si photocathodes for water splitting by manipulating the loading of the Pt catalyst and TiO ₂ protective layer. Journal of Materials Chemistry A, 2017, 5, 18744-18751.	5.2	61
220	An amorphous dual action electrocatalyst based on oxygen doped cobalt sulfide for the hydrogen and oxygen evolution reactions. RSC Advances, 2017, 7, 54995-55004.	1.7	41
221	Influence of Phosphidation on CoSe ₂ Catalyst for Hydrogen Evolution Reaction. ChemistrySelect, 2017, 2, 10661-10667.	0.7	9
222	Conductive Tungsten Oxide Nanosheets for Highly Efficient Hydrogen Evolution. Nano Letters, 2017, 17, 7968-7973.	4.5	195
223	Enhanced photoelectrochemical properties of copper-assisted catalyzed etching black silicon by electrodepositing cobalt. Applied Physics Letters, 2017, 111, .	1.5	14
224	Rational Bottom-Up Engineering of Electrocatalysts by Atomic Layer Deposition: A Case Study of Fe _{<i>x</i>} Co _{1–<i>x</i>} S _{<i>y</i>} -Based Catalysts for Electrochemical Hydrogen Evolution. ACS Energy Letters, 2017, 2, 2778-2785.	8.8	61
225	Mechanistic Probes of Zeolitic Imidazolate Framework for Photocatalytic Application. ACS Catalysis, 2017, 7, 8446-8453.	5.5	56
226	Engineering transition metal phosphide nanomaterials as highly active electrocatalysts for water splitting. Dalton Transactions, 2017, 46, 16770-16773.	1.6	28
227	Tuning Mixed Nickel Iron Phosphosulfide Nanosheet Electrocatalysts for Enhanced Hydrogen and Oxygen Evolution. ACS Catalysis, 2017, 7, 8549-8557.	5.5	268
228	Evolution of dealloyed PdBi ₂ nanoparticles as electrocatalysts with enhanced activity and remarkable durability in hydrogen evolution reactions. Journal of Materials Chemistry A, 2017, 5, 15950-15960.	5.2	52
229	Improving the intrinsic electrocatalytic hydrogen evolution activity of few-layer NiPS ₃ by cobalt doping. Chemical Communications, 2017, 53, 8199-8202.	2.2	64

#	Article	IF	CITATIONS
230	Metal–organic framework derived hollow CoS ₂ nanotube arrays: an efficient bifunctional electrocatalyst for overall water splitting. Nanoscale Horizons, 2017, 2, 342-348.	4.1	247
231	A Ni-P@NiCo LDH core–shell nanorod-decorated nickel foam with enhanced areal specific capacitance for high-performance supercapacitors. Dalton Transactions, 2017, 46, 10064-10072.	1.6	71
232	Tailoring catalytic activities of transition metal disulfides for water splitting. FlatChem, 2017, 4, 68-80.	2.8	24
233	Strategies for developing transition metal phosphides as heterogeneous electrocatalysts for water splitting. Nano Today, 2017, 15, 26-55.	6.2	560
234	Graphene Dots Embedded Phosphide Nanosheet-Assembled Tubular Arrays for Efficient and Stable Overall Water Splitting. ACS Applied Materials & Interfaces, 2017, 9, 24600-24607.	4.0	52
235	Sulfur-doped cobalt phosphide nanotube arrays for highly stable hybrid supercapacitor. Nano Energy, 2017, 39, 162-171.	8.2	273
236	Sponge-like nickel phosphide–carbon nanotube hybrid electrodes for efficient hydrogen evolution over a wide pH range. Nano Research, 2017, 10, 415-425.	5.8	73
237	Ternary Transitional Metal Chalcogenide Nanosheet with Significantly Enhanced Electrocatalytic Hydrogen-Evolution Activity. Catalysis Letters, 2017, 147, 215-220.	1.4	12
238	Efficient Electrochemical and Photoelectrochemical Water Splitting by a 3D Nanostructured Carbon Supported on Flexible Exfoliated Graphene Foil. Advanced Materials, 2017, 29, 1604480.	11.1	157
239	Fullereneâ€Like Nickel Oxysulfide Hollow Nanospheres as Bifunctional Electrocatalysts for Water Splitting. Small, 2017, 13, 1602637.	5.2	39
240	Superb Alkaline Hydrogen Evolution and Simultaneous Electricity Generation by Ptâ€Đecorated Ni ₃ N Nanosheets. Advanced Energy Materials, 2017, 7, 1601390.	10.2	225
241	Advances in Transitionâ€Metal Phosphide Applications in Electrochemical Energy Storage and Catalysis. ChemElectroChem, 2017, 4, 20-34.	1.7	155
242	Wire-on-flake heterostructured ternary Co _{0.5} Ni _{0.5} P/CC: an efficient hydrogen evolution electrocatalyst. Journal of Materials Chemistry A, 2017, 5, 982-987.	5.2	48
243	Self-supported Co-Ni-P ternary nanowire electrodes for highly efficient and stable electrocatalytic hydrogen evolution in acidic solution. Catalysis Today, 2017, 287, 122-129.	2.2	105
244	Engineering Pyrite-Type Bimetallic Ni-Doped CoS2 Nanoneedle Arrays over a Wide Compositional Range for Enhanced Oxygen and Hydrogen Electrocatalysis with Flexible Property. Catalysts, 2017, 7, 366.	1.6	28
245	Ultrathin two-dimensional materials for photo- and electrocatalytic hydrogen evolution. Materials Today, 2018, 21, 749-770.	8.3	228
246	Carbon nanotube-induced phase and stability engineering: a strained cobalt-doped WSe ₂ /MWNT heterostructure for enhanced hydrogen evolution reaction. Journal of Materials Chemistry A, 2018, 6, 4793-4800.	5.2	56
247	Highly efficient and stable bifunctional electrocatalyst for water splitting on Fe–Co3O4/carbon nanotubes. International Journal of Hydrogen Energy, 2018, 43, 5522-5529.	3.8	26

#	Article	IF	CITATIONS
248	High Crystal Quality 2D Manganese Phosphorus Trichalcogenide Nanosheets and their Photocatalytic Activity. Advanced Functional Materials, 2018, 28, 1800548.	7.8	116
249	A Roomâ€Temperature Postsynthetic Ligand Exchange Strategy to Construct Mesoporous Feâ€Doped CoP Hollow Triangle Plate Arrays for Efficient Electrocatalytic Water Splitting. Small, 2018, 14, e1704233.	5.2	244
250	Synergistic Nanotubular Copperâ€Đoped Nickel Catalysts for Hydrogen Evolution Reactions. Small, 2018, 14, e1704137.	5.2	111
251	Loading Amorphous NiMoO _{4–<i>x</i>} S _{<i>x</i>} Nanosheet Cocatalyst to Improve Performance of <i>p</i> -Silicon Wafer Photocathode. ACS Applied Energy Materials, 2018, 1, 1286-1293.	2.5	9
252	Accelerated Hydrogen Evolution Reaction in CoS ₂ by Transition-Metal Doping. ACS Energy Letters, 2018, 3, 779-786.	8.8	231
253	Precious Versus Non-precious Electrocatalyst Centers. Nanostructure Science and Technology, 2018, , 101-168.	0.1	0
254	Amorphous NiFe layered double hydroxide nanosheets decorated on 3D nickel phosphide nanoarrays: a hierarchical core–shell electrocatalyst for efficient oxygen evolution. Journal of Materials Chemistry A, 2018, 6, 13619-13623.	5.2	169
255	Construction of amorphous interface in an interwoven NiS/NiS ₂ structure for enhanced overall water splitting. Journal of Materials Chemistry A, 2018, 6, 8233-8237.	5.2	159
256	Co Nanoparticles@N-doped carbon coated on carbon Nanotube@Defective silica as non-noble photocathode for efficient photoelectrochemical hydrogen generation. International Journal of Hydrogen Energy, 2018, 43, 9279-9286.	3.8	5
257	An Earthâ€Abundant Catalystâ€Based Seawater Photoelectrolysis System with 17.9% Solarâ€ŧoâ€Hydrogen Efficiency. Advanced Materials, 2018, 30, e1707261.	11.1	189
258	Vanadiumâ€Đoped WS ₂ Nanosheets Grown on Carbon Cloth as a Highly Efficient Electrocatalyst for the Hydrogen Evolution Reaction. Chemistry - an Asian Journal, 2018, 13, 1438-1446.	1.7	49
259	Controllable Synthesis of Ni _{<i>x</i>} Se (0.5 ≤i>x ≤) Nanocrystals for Efficient Rechargeable Zinc–Air Batteries and Water Splitting. ACS Applied Materials & Interfaces, 2018, 10, 13675-13684.	4.0	116
260	Phase transformation of iron phosphide nanoparticles for hydrogen evolution reaction electrocatalysis. International Journal of Hydrogen Energy, 2018, 43, 11326-11334.	3.8	43
261	Spatial control of cocatalysts and elimination of interfacial defects towards efficient and robust CIGS photocathodes for solar water splitting. Energy and Environmental Science, 2018, 11, 2025-2034.	15.6	114
262	Self-supported Ni3S2@MoS2 core/shell nanorod arrays via decoration with CoS as a highly active and efficient electrocatalyst for hydrogen evolution and oxygen evolution reactions. International Journal of Hydrogen Energy, 2018, 43, 8794-8804.	3.8	53
263	Transitionâ€Metalâ€Based Electrocatalysts as Cocatalysts for Photoelectrochemical Water Splitting: A Mini Review. Small, 2018, 14, e1704179.	5.2	182
264	Hydrogen evolution reaction: The role of arsenene nanosheet and dopant. International Journal of Hydrogen Energy, 2018, 43, 21634-21641.	3.8	39
265	Self-supported NiMo-based nanowire arrays as bifunctional electrocatalysts for full water splitting. Journal of Materials Chemistry A, 2018, 6, 8479-8487.	5.2	134

#	Article	IF	CITATIONS
266	Exfoliation of ultrathin FePS ₃ layers as a promising electrocatalyst for the oxygen evolution reaction. Chemical Communications, 2018, 54, 4481-4484.	2.2	63
267	Wâ€Doped MoO ₂ /MoC Hybrids Encapsulated by Pâ€Doped Carbon Shells for Enhanced Electrocatalytic Hydrogen Evolution. Energy Technology, 2018, 6, 1707-1714.	1.8	21
268	One-pot synthesized boron-doped RhFe alloy with enhanced catalytic performance for hydrogen evolution reaction. Applied Catalysis B: Environmental, 2018, 230, 58-64.	10.8	112
269	Highly efficient hydrogen evolution by self-standing nickel phosphide-based hybrid nanosheet arrays electrocatalyst. Materials Today Physics, 2018, 4, 1-6.	2.9	72
270	Specially designed B4C/SnO2 nanocomposite for photocatalysis: traditional ceramic with unique properties. Applied Nanoscience (Switzerland), 2018, 8, 1-9.	1.6	56
271	Dynamic Photoelectrochemical Device Using an Electrolyte-Permeable NiO _{<i>x</i>} /SiO ₂ /Si Photocathode with an Open-Circuit Potential of 0.75 V. ACS Applied Materials & Interfaces, 2018, 10, 7955-7962.	4.0	30
272	Nanocatalysts for hydrogen evolution reactions. Physical Chemistry Chemical Physics, 2018, 20, 6777-6799.	1.3	100
273	Anion–Cation Double Substitution in Transition Metal Dichalcogenide to Accelerate Water Dissociation Kinetic for Electrocatalysis. Advanced Energy Materials, 2018, 8, 1702139.	10.2	70
274	Bifunctional Heterostructure Assembly of NiFe LDH Nanosheets on NiCoP Nanowires for Highly Efficient and Stable Overall Water Splitting. Advanced Functional Materials, 2018, 28, 1706847.	7.8	584
275	The formation of (NiFe)S ₂ pyrite mesocrystals as efficient pre-catalysts for water oxidation. Chemical Science, 2018, 9, 2762-2767.	3.7	60
276	Template-directed synthesis of sulphur doped NiCoFe layered double hydroxide porous nanosheets with enhanced electrocatalytic activity for the oxygen evolution reaction. Journal of Materials Chemistry A, 2018, 6, 3224-3230.	5.2	170
277	A Novel CoO _{1.6} C _{0.7} Nanocomposite with Enhanced Photocatalytic Activity and Stability for Hydrogen Evolution Achieved by Carbon Dots. ChemistrySelect, 2018, 3, 904-910.	0.7	10
278	Accelerated Hydrogen Evolution Kinetics on NiFe‣ayered Double Hydroxide Electrocatalysts by Tailoring Water Dissociation Active Sites. Advanced Materials, 2018, 30, 1706279.	11.1	601
279	Interface Engineering of Anchored Ultrathin TiO ₂ /MoS ₂ Heterolayers for Highly-Efficient Electrochemical Hydrogen Production. ACS Applied Materials & Interfaces, 2018, 10, 6084-6089.	4.0	47
280	Nanoceria-Supported Ruthenium(0) Nanoparticles: Highly Active and Stable Catalysts for Hydrogen Evolution from Water. ACS Applied Materials & Interfaces, 2018, 10, 6299-6308.	4.0	80
281	Fabrication of ternary GO/g-C3N4/MoS2 flower-like heterojunctions with enhanced photocatalytic activity for water remediation. Applied Catalysis B: Environmental, 2018, 228, 103-112.	10.8	183
282	Defect-rich O-incorporated 1T-MoS2 nanosheets for remarkably enhanced visible-light photocatalytic H2 evolution over CdS: The impact of enriched defects. Applied Catalysis B: Environmental, 2018, 229, 227-236.	10.8	176
283	Dynamic traction of lattice-confined platinum atoms into mesoporous carbon matrix for hydrogen evolution reaction. Science Advances, 2018, 4, eaao6657.	4.7	460

#	Article	IF	CITATIONS
284	High Activity Hydrogen Evolution Catalysis by Uniquely Designed Amorphous/Metal Interface of Core–shell Phosphosulfide/Nâ€Đoped CNTs. Advanced Energy Materials, 2018, 8, 1702806.	10.2	39
285	Facile Integration between Si and Catalyst for High-Performance Photoanodes by a Multifunctional Bridging Layer. Nano Letters, 2018, 18, 1516-1521.	4.5	93
286	Synergistic conversion and removal of total Cr from aqueous solution by photocatalysis and capacitive deionization. Chemical Engineering Journal, 2018, 337, 398-404.	6.6	79
287	Controlled Synthesis of a Three-Segment Heterostructure for High-Performance Overall Water Splitting. ACS Applied Materials & Interfaces, 2018, 10, 1771-1780.	4.0	22
288	Threeâ€Dimensional Graphene Networks with Abundant Sharp Edge Sites for Efficient Electrocatalytic Hydrogen Evolution. Angewandte Chemie, 2018, 130, 198-203.	1.6	41
289	Charge Transfer Kinetics of Photoâ€Electrochemical Hydrogen Evolution Improved by Nonstoichiometric Niâ€rich NiO <i>_{x}</i> 倀oated Si Photocathode in Alkaline Electrolyte. Advanced Sustainable Systems, 2018, 2, 1700138.	2.7	12
290	11.5% efficiency of TiO ₂ protected and Pt catalyzed n ⁺ np ⁺ -Si photocathodes for photoelectrochemical water splitting: manipulating the Pt distribution and Pt/Si contact. Chemical Communications, 2018, 54, 543-546.	2.2	35
291	Highly active and stable electrocatalytic hydrogen evolution catalyzed by nickel, iron doped cobalt disulfide@reduced graphene oxide nanohybrid electrocatalysts. Materials Today Energy, 2018, 7, 44-50.	2.5	39
292	Nanoporous Sulfur-Doped Copper Oxide (Cu ₂ O _{<i>x</i>} S _{1–<i>x</i>}) for Overall Water Splitting. ACS Applied Materials & Interfaces, 2018, 10, 745-752.	4.0	83
293	Crystallographic Facet Dependence of the Hydrogen Evolution Reaction on CoPS: Theory and Experiments. ACS Catalysis, 2018, 8, 1143-1152.	5.5	71
294	Molybdenum Sulphoselenophosphide Spheroids as an Effective Catalyst for Hydrogen Evolution Reaction. Small, 2018, 14, 1703862.	5.2	37
295	3D hierarchical CMF/MoSe2 composite foam as highly efficient electrocatalyst for hydrogen evolution. Electrochimica Acta, 2018, 263, 94-101.	2.6	30
296	First-Principles Computational Screening of Highly Active Pyrites Catalysts for Hydrogen Evolution Reaction through a Universal Relation with a Thermodynamic Variable. Journal of Physical Chemistry C, 2018, 122, 2107-2112.	1.5	18
297	Highly Efficient Photoelectrochemical Hydrogen Generation Reaction Using Tungsten Phosphosulfide Nanosheets. ACS Applied Materials & Interfaces, 2018, 10, 17280-17286.	4.0	19
298	A porous nickel cyclotetraphosphate nanosheet as a new acid-stable electrocatalyst for efficient hydrogen evolution. Nanoscale, 2018, 10, 9856-9861.	2.8	29
299	Ultrafine CoPS nanoparticles encapsulated in N, P, and S tri-doped porous carbon as an efficient bifunctional water splitting electrocatalyst in both acid and alkaline solutions. Journal of Materials Chemistry A, 2018, 6, 10433-10440.	5.2	72
300	Transforming Nickel Hydroxide into 3D Prussian Blue Analogue Array to Obtain Ni ₂ P/Fe ₂ P for Efficient Hydrogen Evolution Reaction. Advanced Energy Materials, 2018, 8, 1800484.	10.2	186
301	TMD-based highly efficient electrocatalysts developed by combined computational and experimental approaches. Chemical Society Reviews, 2018, 47, 4332-4356.	18.7	232

#	Article	IF	CITATIONS
302	Tunable electronic coupling of cobalt sulfide/carbon composites for optimizing oxygen evolution reaction activity. Journal of Materials Chemistry A, 2018, 6, 10304-10312.	5.2	86
303	Ni–Mo–O nanorod-derived composite catalysts for efficient alkaline water-to-hydrogen conversion <i>via</i> urea electrolysis. Energy and Environmental Science, 2018, 11, 1890-1897.	15.6	599
304	Ionic Layer Epitaxy of Nanometer-Thick Palladium Nanosheets with Enhanced Electrocatalytic Properties. Chemistry of Materials, 2018, 30, 3308-3314.	3.2	29
305	Cobalt incorporated MoS2 hollow structure with rich out-of-plane edges for efficient hydrogen production. Electrochimica Acta, 2018, 276, 81-91.	2.6	31
306	Electrodeposition of Cobalt Phosphosulfide Nanosheets on Carbon Fiber Paper as Efficient Electrocatalyst for Oxygen Evolution. ChemElectroChem, 2018, 5, 1677-1682.	1.7	11
307	Defects and impurities induced structural and electronic changes in pyrite CoS ₂ : first principles studies. Physical Chemistry Chemical Physics, 2018, 20, 11649-11655.	1.3	5
308	Hollow Mo-doped CoP nanoarrays for efficient overall water splitting. Nano Energy, 2018, 48, 73-80.	8.2	608
309	Multifunctional (Fe0.5Ni0.5)S2 nanocrystal catalysts with high catalytic activities for reduction of I3â^' and electrochemical water splitting. Research on Chemical Intermediates, 2018, 44, 4307-4322.	1.3	6
310	Microwave-assisted synthesis of graphene-like cobalt sulfide freestanding sheets as an efficient bifunctional electrocatalyst for overall water splitting. Journal of Materials Chemistry A, 2018, 6, 7592-7607.	5.2	108
311	Theoretical insights into the effective hydrogen evolution on Cu3P and its evident improvement by surface-doped Ni atoms. Physical Chemistry Chemical Physics, 2018, 20, 10407-10417.	1.3	29
312	Bioinspired Engineering of Cobalt-Phosphonate Nanosheets for Robust Hydrogen Evolution Reaction. ACS Catalysis, 2018, 8, 3895-3902.	5.5	69
313	Construction of Polarized Carbon–Nickel Catalytic Surfaces for Potent, Durable, and Economic Hydrogen Evolution Reactions. ACS Nano, 2018, 12, 4148-4155.	7.3	121
314	Chemical strain formation through anion substitution in Cu ₂ WS ₄ for efficient electrocatalysis of water dissociation. Journal of Materials Chemistry A, 2018, 6, 7786-7793.	5.2	51
315	Metal organic framework-derived CoPS/N-doped carbon for efficient electrocatalytic hydrogen evolution. Nanoscale, 2018, 10, 7291-7297.	2.8	107
316	A transition metal oxysulfide cathode for the proton exchange membrane water electrolyzer. Applied Catalysis B: Environmental, 2018, 232, 93-100.	10.8	40
317	Imidazole modified g-C 3 N 4 photocatalyst: Structural characterization and versatile energy applications. Applied Surface Science, 2018, 430, 316-324.	3.1	23
318	Solarâ€ŧoâ€Hydrogen Energy Conversion Based on Water Splitting. Advanced Energy Materials, 2018, 8, 1701620.	10.2	429
319	N-Doped Porous Molybdenum Carbide Nanobelts as Efficient Catalysts for Hydrogen Evolution Reaction. Applied Catalysis B: Environmental, 2018, 224, 533-540.	10.8	358

#	Article	IF	CITATIONS
320	Advanced catalysts for sustainable hydrogen generation and storage via hydrogen evolution and carbon dioxide/nitrogen reduction reactions. Progress in Materials Science, 2018, 92, 64-111.	16.0	195
321	A Delaminated Defectâ€Rich ZrO ₂ Hierarchical Nanowire Photocathode for Efficient Photoelectrochemical Hydrogen Evolution. Advanced Energy Materials, 2018, 8, 1701234.	10.2	27
322	Cobalt Intercalated Layered NiFe Double Hydroxides for the Oxygen Evolution Reaction. Journal of Physical Chemistry B, 2018, 122, 847-854.	1.2	78
323	Structure–Activity Relationships for Ptâ€Free Metal Phosphide Hydrogen Evolution Electrocatalysts. Chemistry - A European Journal, 2018, 24, 7298-7311.	1.7	83
324	<i>In situ</i> synthesis of novel Cu ₂ CO ₃ (OH) ₂ decorated 2D TiO ₂ nanosheets with efficient photocatalytic H ₂ evolution activity. Dalton Transactions, 2018, 47, 348-356.	1.6	25
325	MoS ₂ –MoP heterostructured nanosheets on polymer-derived carbon as an electrocatalyst for hydrogen evolution reaction. Journal of Materials Chemistry A, 2018, 6, 616-622.	5.2	104
326	Generalized Synthesis of Ultrathin Cobaltâ€Based Nanosheets from Metallophthalocyanineâ€Modulated Selfâ€Assemblies for Complementary Water Electrolysis. Small, 2018, 14, 1702896.	5.2	34
327	SURFACE ENGINEERING OF SEMICONDUCTORS FOR PHOTOELECTROCHEMICAL WATER SPLITTING. , 2018, , 223-249.		0
328	Ruthenium Ionâ€Complexed Graphitic Carbon Nitride Nanosheets Supported on Reduced Graphene Oxide as Highâ€Performance Catalysts for Electrochemical Hydrogen Evolution. ChemSusChem, 2018, 11, 130-136.	3.6	76
329	Facile one-step synthesis of phosphorus-doped CoS2 as efficient electrocatalyst for hydrogen evolution reaction. Electrochimica Acta, 2018, 259, 955-961.	2.6	92
330	Facile formation of 2D Co 2 P@Co 3 O 4 microsheets through in-situ toptactic conversion and surface corrosion: Bifunctional electrocatalysts towards overall water splitting. Journal of Power Sources, 2018, 374, 142-148.	4.0	102
331	Electrocatalysts for Hydrogen Evolution in Alkaline Electrolytes: Mechanisms, Challenges, and Prospective Solutions. Advanced Science, 2018, 5, 1700464.	5.6	1,022
332	Flower-like CoP microballs assembled with (002) facet nanowires via precursor route: Efficient electrocatalysts for hydrogen and oxygen evolution. Electrochimica Acta, 2018, 259, 830-840.	2.6	33
333	Threeâ€Dimensional Graphene Networks with Abundant Sharp Edge Sites for Efficient Electrocatalytic Hydrogen Evolution. Angewandte Chemie - International Edition, 2018, 57, 192-197.	7.2	106
334	Hierarchical CoNiSe2 nano-architecture as a high-performance electrocatalyst for water splitting. Nano Research, 2018, 11, 1331-1344.	5.8	153
335	From Enzymes to Functional Materials—Towards Activation of Small Molecules. Chemistry - A European Journal, 2018, 24, 1471-1493.	1.7	55
336	C ₂ N: an excellent catalyst for the hydrogen evolution reaction. Physical Chemistry Chemical Physics, 2018, 20, 27970-27974.	1.3	37
337	Integration of Theory and Experiment on Mesoporous Nickel Sulfide Microsphere for Hydrogen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2018, 6, 15995-16000.	3.2	45

#	Article	IF	CITATIONS
338	Modification of Carbon Nanotubes via Birch Reaction for Enhanced HER Catalyst by Constructing Pearl Necklaceâ€Like NiCo ₂ P ₂ –CNT Composite. Small, 2018, 14, e1804388.	5.2	15
339	A New Class of Zn ₁ <i>_{â€x}</i> Fe <i>_x</i> –Oxyselenide and Zn _{1â€} <i>_x</i> Fe <i>_x</i> –LDH Nanostructured Material with Remarkable Bifunctional Oxygen and Hydrogen Evolution Electrocatalytic Activities for Overall Water Splitting, Small. 2018. 14. e1803638.	5.2	56
340	Low-Loading of Pt Nanoparticles on 3D Carbon Foam Support for Highly Active and Stable Hydrogen Production. Frontiers in Chemistry, 2018, 6, 523.	1.8	26
341	Structurally Engineered Hyperbranched NiCoP Arrays with Superior Electrocatalytic Activities toward Highly Efficient Overall Water Splitting. ACS Applied Materials & Interfaces, 2018, 10, 41237-41245.	4.0	110
342	Nickel-Doped Silver Sulfide: An Efficient Air-Stable Electrocatalyst for Hydrogen Evolution from Neutral Water. ACS Omega, 2018, 3, 17070-17076.	1.6	18
343	Recent developments in earth-abundant and non-noble electrocatalysts for water electrolysis. Materials Today Physics, 2018, 7, 121-138.	2.9	203
344	Recent progress in transition metal phosphides with enhanced electrocatalysis for hydrogen evolution. Nanoscale, 2018, 10, 21617-21624.	2.8	312
345	Phosphorized MXene-Phase Molybdenum Carbide as an Earth-Abundant Hydrogen Evolution Electrocatalyst. ACS Applied Energy Materials, 2018, 1, 7206-7212.	2.5	88
346	Sulfur-Doped Dicobalt Phosphide Outperforming Precious Metals as a Bifunctional Electrocatalyst for Alkaline Water Electrolysis. Chemistry of Materials, 2018, 30, 8861-8870.	3.2	71
347	Toward Bifunctional Overall Water Splitting Electrocatalyst: General Preparation of Transition Metal Phosphide Nanoparticles Decorated N-Doped Porous Carbon Spheres. ACS Applied Materials & Interfaces, 2018, 10, 44201-44208.	4.0	71
348	Bifunctional hydrogen evolution and oxygen evolution catalysis using CoP-embedded N-doped nanoporous carbon synthesized via TEOS-assisted method. Energy, 2018, 165, 537-548.	4.5	19
349	3D Architectures of Quaternary Coâ€Niâ€Sâ€P/Graphene Hybrids as Highly Active and Stable Bifunctional Electrocatalysts for Overall Water Splitting. Advanced Energy Materials, 2018, 8, 1802319.	10.2	107
350	Layered Trichalcogenidophosphate: A New Catalyst Family for Water Splitting. Nano-Micro Letters, 2018, 10, 67.	14.4	65
351	A bifunctional and stable Ni–Co–S/Ni–Co–P bistratal electrocatalyst for 10.8%-efficient overall solar water splitting. Journal of Materials Chemistry A, 2018, 6, 20297-20303.	5.2	47
352	2D layered transition metal dichalcogenides (MoS2): Synthesis, applications and theoretical aspects. Applied Materials Today, 2018, 13, 242-270.	2.3	139
353	Quaternary bimetallic phosphosulphide nanosheets derived from prussian blue analogues: Origin of the ultra-high activity for oxygen evolution. Journal of Power Sources, 2018, 403, 90-96.	4.0	87
354	Amorphous Phosphorus-Doped Cobalt Sulfide Modified on Silicon Pyramids for Efficient Solar Water Reduction. ACS Applied Materials & amp; Interfaces, 2018, 10, 37142-37149.	4.0	27
355	Ultrathin-Nanosheets-Composed CoSP Nanobrushes as an All-pH Highly Efficient Catalyst toward Hydrogen Evolution. ACS Sustainable Chemistry and Engineering, 2018, 6, 15618-15623.	3.2	14

#	Article	IF	CITATIONS
356	Recent Advances in the Electro-Oxidation of Urea for Direct Urea Fuel Cell and Urea Electrolysis. Topics in Current Chemistry, 2018, 376, 42.	3.0	140
357	Fabrication of sandwich structured C/NiO/TiO2 nanotube arrays for enhanced electrocatalytic activity towards hydrogen evolution. Electrochemistry Communications, 2018, 97, 68-72.	2.3	22
358	Tuning Sulfur Doping for Bifunctional Electrocatalyst with Selectivity between Oxygen and Hydrogen Evolution. ACS Applied Energy Materials, 2018, 1, 5822-5829.	2.5	21
359	Activating p-Blocking Centers in Perovskite for Efficient Water Splitting. CheM, 2018, 4, 2902-2916.	5.8	99
360	Hollow Bimetallic Zinc Cobalt Phosphosulfides for Efficient Overall Water Splitting. Chemistry - A European Journal, 2019, 25, 621-626.	1.7	29
361	Synergetic Optimization via Composition-Dependent Nanostructuring in Co-Mo-S Electrocatalysts for Efficient Hydrogen Evolution in Alkaline Solution. International Journal of Electrochemical Science, 2018, 13, 3501-3515.	0.5	4
362	Interfacing nickel nitride and nickel boosts both electrocatalytic hydrogen evolution and oxidation reactions. Nature Communications, 2018, 9, 4531.	5.8	410
363	Synthesis of FeS ₂ –CoS ₂ Core–Frame and Core–Shell Hybrid Nanocubes. Chemistry of Materials, 2018, 30, 8121-8125.	3.2	17
364	Surface Modifications of Ti ₂ CO ₂ for Obtaining High Hydrogen Evolution Reaction Activity and Conductivity: A Computational Approach. ChemPhysChem, 2018, 19, 3380-3387.	1.0	20
365	Harvesting Electronic Waste for the Development of Highly Efficient Ecoâ€Design Electrodes for Electrocatalytic Water Splitting. Advanced Energy Materials, 2018, 8, 1802615.	10.2	80
366	Rational constructing free-standing Se doped nickel-cobalt sulfides nanotubes as battery-type electrode for high-performance supercapattery. Journal of Power Sources, 2018, 407, 6-13.	4.0	110
367	Fe/Co Double Hydroxide/Oxide Nanoparticles on Nâ€Doped CNTs as Highly Efficient Electrocatalyst for Rechargeable Liquid and Quasiâ€Solidâ€State Zinc–Air Batteries. Advanced Energy Materials, 2018, 8, 1801836.	10.2	94
368	Mechanochemically Assisted Synthesis of a Ru Catalyst for Hydrogen Evolution with Performance Superior to Pt in Both Acidic and Alkaline Media. Advanced Materials, 2018, 30, e1803676.	11.1	173
369	Dynamic Photoelectrochemical Device with Open-Circuit Potential Insensitive to Thermodynamic Voltage Loss. Journal of Physical Chemistry Letters, 2018, 9, 5412-5418.	2.1	13
370	Synergistic modulation in MX ₂ (whereÂM = Mo or W or V, and X = S or Se) for an enhanced hydrogen evolution reaction. Journal of Materials Chemistry A, 2018, 6, 21847-21858.	5.2	39
371	Sulphur edge and vacancy assisted nitrogen–phosphorus co-doped exfoliated tungsten disulfide: a superior electrocatalyst for hydrogen evolution reaction. Journal of Materials Chemistry A, 2018, 6, 19712-19726.	5.2	40
372	Surface phosphorsulfurization of NiCo2O4 nanoneedles supported on carbon cloth with enhanced electrocatalytic activity for hydrogen evolution. Electrochimica Acta, 2018, 290, 339-346.	2.6	30
373	Amorphous Multi-elements Electrocatalysts with Tunable Bifunctionality toward Overall Water Splitting. ACS Catalysis, 2018, 8, 9926-9935.	5.5	121

#	Article	IF	CITATIONS
374	Oxygen-Incorporated NiMoP ₂ Nanowire Arrays for Enhanced Hydrogen Evolution Activity in Alkaline Solution. ACS Applied Energy Materials, 0, , .	2.5	6
375	Bifunctional sulfur-doped cobalt phosphide electrocatalyst outperforms all-noble-metal electrocatalysts in alkaline electrolyzer for overall water splitting. Nano Energy, 2018, 53, 286-295.	8.2	184
376	A self-supported Ni–Co perselenide nanorod array as a high-activity bifunctional electrode for a hydrogen-producing hydrazine fuel cell. Journal of Materials Chemistry A, 2018, 6, 17763-17770.	5.2	81
377	Cobalt phosphosulfide in the tetragonal phase: a highly active and durable catalyst for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2018, 6, 12353-12360.	5.2	43
378	Nitrogenâ€Ðoped CoP Electrocatalysts for Coupled Hydrogen Evolution and Sulfur Generation with Low Energy Consumption. Advanced Materials, 2018, 30, e1800140.	11.1	336
379	Structure and Electrocatalytic Reactivity of Cobalt Phosphosulfide Nanomaterials. Topics in Catalysis, 2018, 61, 958-964.	1.3	18
380	Metal–Organic Framework-Derived CoWP@C Composite Nanowire Electrocatalyst for Efficient Water Splitting. ACS Energy Letters, 2018, 3, 1434-1442.	8.8	141
381	Hierarchical CoP/Ni ₅ P ₄ /CoP microsheet arrays as a robust pH-universal electrocatalyst for efficient hydrogen generation. Energy and Environmental Science, 2018, 11, 2246-2252.	15.6	306
382	2D Ternary Chalcogenides. Advanced Optical Materials, 2018, 6, 1800058.	3.6	114
383	Stepwise synthesis of CoS ₂ –C@CoS ₂ yolk–shell nanocages with much enhanced electrocatalytic performances both in solar cells and hydrogen evolution reactions. Journal of Materials Chemistry A, 2018, 6, 12056-12065.	5.2	49
384	Water splitting by electrolysis at high current densities under 1.6 volts. Energy and Environmental Science, 2018, 11, 2858-2864.	15.6	438
385	Structure-optimized CoP-carbon nanotube composite microspheres synthesized by spray pyrolysis for hydrogen evolution reaction. Journal of Alloys and Compounds, 2018, 763, 652-661.	2.8	32
386	Prediction of Enhanced Catalytic Activity for Hydrogen Evolution Reaction in Janus Transition Metal Dichalcogenides. Nano Letters, 2018, 18, 3943-3949.	4.5	267
387	Intercalation Synthesis of Prussian Blue Analogue Nanocone and Their Conversion into Fe-Doped Co _{<i>x</i>} P Nanocone for Enhanced Hydrogen Evolution. ACS Sustainable Chemistry and Engineering, 2018, 6, 8150-8158.	3.2	40
388	Electrochromic-Tuned Plasmonics for Photothermal Sterile Window. ACS Nano, 2018, 12, 6895-6903.	7.3	76
389	An Electrocatalyst for a Hydrogen Evolution Reaction in an Alkaline Medium: Threeâ€Dimensional Graphene Supported CeO ₂ Hollow Microspheres. European Journal of Inorganic Chemistry, 2018, 2018, 3952-3959.	1.0	27
390	A Polyoxometalate-Based Metal–Organic Framework-Derived FeP/MoP Hybrid Encapsulated in N/P Dual-Doped Carbon as Efficient Electrocatalyst for Hydrogen Evolution. Crystal Growth and Design, 2018, 18, 4265-4269.	1.4	29
391	Skutterudite-Type Ternary Co _{1–<i>x</i>} Ni _{<i>x</i>} P ₃ Nanoneedle Array Electrocatalysts for Enhanced Hydrogen and Oxygen Evolution. ACS Energy Letters, 2018, 3, 1744-1752.	8.8	160

#	Article	IF	CITATIONS
392	Reduced Graphene Oxide-Supported MoP@P-Doped Porous Carbon Nano-octahedrons as High-Performance Electrocatalysts for Hydrogen Evolution. ACS Sustainable Chemistry and Engineering, 2018, 6, 10252-10259.	3.2	42
393	High-performance bifunctional porous non-noble metal phosphide catalyst for overall water splitting. Nature Communications, 2018, 9, 2551.	5.8	812
394	Efficient hydrogen evolution performance of phase-pure NiS electrocatalysts grown on fluorine-doped tin oxide-coated glass by facile chemical bath deposition. International Journal of Hydrogen Energy, 2018, 43, 13022-13031.	3.8	15
395	Molybdenum disulfide (MoS2) as a co-catalyst for photocatalytic degradation of organic contaminants: A review. Chemical Engineering Research and Design, 2018, 118, 40-58.	2.7	121
396	Transition-metal-doped NiSe2 nanosheets towards efficient hydrogen evolution reactions. Nano Research, 2018, 11, 6051-6061.	5.8	72
397	Multicomponent electrocatalyst with ultralow Pt loading and high hydrogen evolution activity. Nature Energy, 2018, 3, 773-782.	19.8	542
398	Efficient electrocatalytic CO2 reduction on a three-phase interface. Nature Catalysis, 2018, 1, 592-600.	16.1	336
399	Designing effective Si/Ag interface <i>via</i> controlled chemical etching for photoelectrochemical CO ₂ reduction. Journal of Materials Chemistry A, 2018, 6, 21906-21912.	5.2	50
400	Electrical Behavior and Electron Transfer Modulation of Nickel–Copper Nanoalloys Confined in Nickel–Copper Nitrides Nanowires Array Encapsulated in Nitrogenâ€Doped Carbon Framework as Robust Bifunctional Electrocatalyst for Overall Water Splitting. Advanced Functional Materials, 2018, 28, 1803278.	7.8	84
401	Highâ€Efficient, Stable Electrocatalytic Hydrogen Evolution in Acid Media by Amorphous Fe <i>_x</i> P Coating Fe ₂ N Supported on Reduced Graphene Oxide. Small, 2018, 14, e1801717.	5.2	72
402	Alumina-Supported CoPS Nanostructures Derived from LDH as Highly Active Bifunctional Catalysts for Overall Water Splitting. ACS Sustainable Chemistry and Engineering, 2018, 6, 10087-10096.	3.2	35
403	FeP Nanocrystals Embedded in N-Doped Carbon Nanosheets for Efficient Electrocatalytic Hydrogen Generation over a Broad pH Range. ACS Sustainable Chemistry and Engineering, 2018, 6, 11587-11594.	3.2	56
404	Phase-selective synthesis of self-supported RuP films for efficient hydrogen evolution electrocatalysis in alkaline media. Nanoscale, 2018, 10, 13930-13935.	2.8	67
405	Iron Vacancies Induced Bifunctionality in Ultrathin Feroxyhyte Nanosheets for Overall Water Splitting. Advanced Materials, 2018, 30, e1803144.	11.1	225
406	Sulfur-Doped Nickel Phosphide Nanoplates Arrays: A Monolithic Electrocatalyst for Efficient Hydrogen Evolution Reactions. ACS Applied Materials & Interfaces, 2018, 10, 26303-26311.	4.0	97
407	Boosting the oxygen evolution reaction performance of CoS ₂ microspheres by subtle ionic liquid modification. Chemical Communications, 2018, 54, 8765-8768.	2.2	49
408	FeCoNi sulphide-derived nanodots as electrocatalysts for efficient oxygen evolution reaction. Functional Materials Letters, 2018, 11, 1850058.	0.7	4
409	Electron density modulation of NiCo2S4 nanowires by nitrogen incorporation for highly efficient hydrogen evolution catalysis. Nature Communications, 2018, 9, 1425.	5.8	356

#	Article	IF	CITATIONS
410	Electrodeposited molybdenum sulfide as a cathode for proton exchange membrane water electrolyzer. Journal of Power Sources, 2018, 392, 69-78.	4.0	37
411	Atomicâ€Scale Core/Shell Structure Engineering Induces Precise Tensile Strain to Boost Hydrogen Evolution Catalysis. Advanced Materials, 2018, 30, e1707301.	11.1	148
412	Surface engineering-modulated porous N-doped rod-like molybdenum phosphide catalysts: towards high activity and stability for hydrogen evolution reaction over a wide pH range. RSC Advances, 2018, 8, 26871-26879.	1.7	20
413	Promoting the water reduction reaction of transition metal dichalcogenides in a basic electrolyte by interface engineering. Journal of Materials Chemistry A, 2018, 6, 17488-17494.	5.2	13
414	Strained Nickel Phosphide Nanosheet Array. ACS Applied Materials & Interfaces, 2018, 10, 30029-30034.	4.0	20
415	Dopedâ€MoSe ₂ Nanoflakes/3d Metal Oxide–Hydr(Oxy)Oxides Hybrid Catalysts for pHâ€Universal Electrochemical Hydrogen Evolution Reaction. Advanced Energy Materials, 2018, 8, 1801764.	10.2	67
416	Anion-Induced Size Selection of β-Mo ₂ C Supported on Nitrogen-Doped Carbon Nanotubes for Electrocatalytic Hydrogen Evolution. ACS Sustainable Chemistry and Engineering, 2018, 6, 11922-11929.	3.2	38
417	Hydrothermal synthesis of Co-doped-MoS2/reduced graphene oxide hybrids with enhanced electrochemical lithium storage performances. Materials Chemistry and Physics, 2018, 219, 399-410.	2.0	19
418	Half-metallic carbon nitride nanosheets with micro grid mode resonance structure for efficient photocatalytic hydrogen evolution. Nature Communications, 2018, 9, 3366.	5.8	219
419	P-Doped NiCo ₂ S ₄ nanotubes as battery-type electrodes for high-performance asymmetric supercapacitors. Dalton Transactions, 2018, 47, 8771-8778.	1.6	75
420	Preparation of 1T′-Phase ReS _{2<i>x</i>} Se _{2(1-<i>x</i>)} (<i>x</i> = 0–1) Nanodots for Highly Efficient Electrocatalytic Hydrogen Evolution Reaction. Journal of the American Chemical Society, 2018, 140, 8563-8568.	6.6	104
421	Rapid flame doping of Co to WS ₂ for efficient hydrogen evolution. Energy and Environmental Science, 2018, 11, 2270-2277.	15.6	74
422	Highly active and stable electrocatalyst of Ni ₂ P nanoparticles supported on 3D ordered macro-/mesoporous Co–N-doped carbon for acidic hydrogen evolution reaction. Journal of Materials Chemistry A, 2018, 6, 12751-12758.	5.2	42
423	Threeâ€Dimensional Cathode Constructed through Confinedâ€Growth of FeP Nanocrystals in Ordered Mesoporous Carbon Film Coated on Carbon Cloth for Efficient Hydrogen Production. ChemCatChem, 2018, 10, 3441-3446.	1.8	7
424	Superhydrophilic amorphous Co–B–P nanosheet electrocatalysts with Pt-like activity and durability for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2018, 6, 22062-22069.	5.2	156
425	Efficient n+p-Si photocathodes for solar H2 production catalyzed by Co-W-S and stabilized by Ti buffer layer. Applied Catalysis B: Environmental, 2018, 237, 158-165.	10.8	32
426	Metal Organic Framework Derived Fe-Doped CoSe ₂ Incorporated in Nitrogen-Doped Carbon Hybrid for Efficient Hydrogen Evolution. ACS Sustainable Chemistry and Engineering, 2018, 6, 8672-8678.	3.2	74
427	Ultrafine Co Nanoparticles Encapsulated in Carbonâ€Nanotubesâ€Grafted Graphene Sheets as Advanced Electrocatalysts for the Hydrogen Evolution Reaction. Advanced Materials, 2018, 30, e1802011.	11.1	453

#	Article	IF	CITATIONS
428	Anion Engineering on 3D Ni ₃ S ₂ Nanosheets Array toward Water Splitting. ACS Applied Energy Materials, 2018, 1, 3488-3496.	2.5	25
429	2D graphdiyne materials: challenges and opportunities in energy field. Science China Chemistry, 2018, 61, 765-786.	4.2	123
430	Improvement of the photocatalytic hydrogen production activity of g-C3N4 by doping selenides as cocatalysts. Materials Science in Semiconductor Processing, 2018, 85, 76-82.	1.9	11
431	Face-to-face engineering of ultrathin Pd nanosheets on amorphous carbon nitride for efficient photocatalytic hydrogen production. Science China Materials, 2019, 62, 351-358.	3.5	48
432	The P/NiFe doped NiMoO4 micro-pillars arrays for highly active and durable hydrogen/oxygen evolution reaction towards overall water splitting. International Journal of Hydrogen Energy, 2019, 44, 24546-24558.	3.8	28
433	Electrocatalytic Hydrogen Evolution in Neutral pH Solutions: Dual-Phase Synergy. ACS Catalysis, 2019, 9, 8712-8718.	5.5	103
434	The enhanced co-catalyst free photocatalytic hydrogen evolution and stability based on indenofluorene-containing donor-acceptor conjugated polymer dots/g-C3N4 nanosheets heterojunction. Applied Catalysis B: Environmental, 2019, 259, 118067.	10.8	51
435	Ultrathin MoS ₂ Nanosheets Vertically Grown on CoS ₂ Acicular Nanorod Arrays: A Synergistic Three-Dimensional Shell/Core Heterostructure for High-Efficiency Hydrogen Evolution at Full pH. ACS Applied Energy Materials, 2019, 2, 6751-6760.	2.5	34
436	In Situ Modification of a Delafossite-Type PdCoO ₂ Bulk Single Crystal for Reversible Hydrogen Sorption and Fast Hydrogen Evolution. ACS Energy Letters, 2019, 4, 2185-2191.	8.8	34
437	In Situ Electrochemical Oxidation of Cu ₂ S into CuO Nanowires as a Durable and Efficient Electrocatalyst for Oxygen Evolution Reaction. Chemistry of Materials, 2019, 31, 7732-7743.	3.2	131
438	In Situ Synthesis of Nano CuS-Embedded MOF Hierarchical Structures and Application in Dye Adsorption and Hydrogen Evolution Reaction. ACS Applied Energy Materials, 2019, 2, 5698-5706.	2.5	28
439	Phosphorus Doped MoS ₂ Nanosheet Promoted with Nitrogen, Sulfur Dual Doped Reduced Graphene Oxide as an Effective Electrocatalyst for Hydrogen Evolution Reaction. ACS Applied Energy Materials, 2019, 2, 6184-6194.	2.5	78
440	Continuous Network of Phase-Tuned Nickel Sulfide Nanostructures for Electrocatalytic Water Splitting. ACS Applied Nano Materials, 2019, 2, 5061-5070.	2.4	48
441	High-performance alkaline hydrogen evolution of NiMoP2 nanowire boosted by bimetallic synergic effect. International Journal of Hydrogen Energy, 2019, 44, 23066-23073.	3.8	21
442	Ni/Fe Codoped In ₂ S ₃ Nanosheet Arrays Boost Photoâ€Electrochemical Performance of Planar Si Photocathodes. Advanced Energy Materials, 2019, 9, 1902135.	10.2	47
443	Construction of Hierarchical Co–Fe Oxyphosphide Microtubes for Electrocatalytic Overall Water Splitting. Advanced Science, 2019, 6, 1900576.	5.6	208
444	Anionic Effects on Metal Pair of Se-Doped Nickel Diphosphide for Hydrogen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2019, 7, 14247-14255.	3.2	30
445	Chemical Doped Ternary and Quaternary Transitionâ€Metalâ€Based Electrocatalysts for Hydrogen Evolution Reaction. ChemCatChem, 2019, 11, 4998-5012.	1.8	7

#	Article	IF	CITATIONS
446	P-Doped Iron–Nickel Sulfide Nanosheet Arrays for Highly Efficient Overall Water Splitting. ACS Applied Materials & Interfaces, 2019, 11, 27667-27676.	4.0	155
447	Synthesis and mechanism investigation of three-dimensional porous CoP3 nanoplate arrays as efficient hydrogen evolution reaction electrocatalyst. Applied Surface Science, 2019, 494, 179-186.	3.1	14
448	Construction of NiFeP/CoP nanosheets/nanowires hierarchical array as advanced electrocatalysts for water oxidation. International Journal of Hydrogen Energy, 2019, 44, 19986-19994.	3.8	40
449	A universal synthesis strategy to make metal nitride electrocatalysts for hydrogen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 19728-19732.	5.2	114
450	Ultrasonicâ€Assisted Synthesis of Amorphous Polyelemental Hollow Nanoparticles as Efficient and Stable Bifunctional Electrocatalysts for Overall Water Splitting. Advanced Materials Interfaces, 2019, 6, 1900586.	1.9	24
451	Microstructural Engineering of Heterogeneous Pâ^'Sâ^'Co Interface for Oxygen and Hydrogen Evolution. ChemElectroChem, 2019, 6, 3708-3713.	1.7	5
452	Modulation of HCHO, H2O and H adsorption on AgPd cocatalyst by optimizing of selective exposed facet to enhancing the efficiency of conversion toxic formaldehyde into hydrogen driven by visible light. Journal of Catalysis, 2019, 375, 493-506.	3.1	12
453	Nanowire Photoelectrochemistry. Chemical Reviews, 2019, 119, 9221-9259.	23.0	158
454	Constructing Bifunctional 3D Holey and Ultrathin CoP Nanosheets for Efficient Overall Water Splitting. ACS Applied Materials & Interfaces, 2019, 11, 29879-29887.	4.0	50
455	Algorithm screening to accelerate discovery of 2D metal-free electrocatalysts for hydrogen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 19290-19296.	5.2	48
456	One-Dimensional Single-Chain Nb ₂ Se ₉ as Efficient Electrocatalyst for Hydrogen Evolution Reaction. ACS Applied Energy Materials, 2019, 2, 5785-5792.	2.5	18
457	CoSe2 nanocrystals embedded into carbon support as coralline-like catalysts for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2019, 44, 22787-22795.	3.8	9
458	Simple and cost effective fabrication of 3D porous core–shell Ni nanochains@NiFe layered double hydroxide nanosheet bifunctional electrocatalysts for overall water splitting. Journal of Materials Chemistry A, 2019, 7, 21722-21729.	5.2	129
459	Phosphorous Modified Metal Boride as High Efficiency HERElectrocatalyst. International Journal of Electrochemical Science, 2019, 14, 6123-6132.	0.5	5
460	Inverted Pyramid Textured p-Silicon Covered with Co ₂ P as an Efficient and Stable Solar Hydrogen Evolution Photocathode. ACS Energy Letters, 2019, 4, 1755-1762.	8.8	35
461	Amorphous Bimetallic Cobalt Nickel Sulfide Cocatalysts for Significantly Boosting Photocatalytic Hydrogen Evolution Performance of Graphitic Carbon Nitride: Efficient Interfacial Charge Transfer. ACS Applied Materials & Interfaces, 2019, 11, 26898-26908.	4.0	110
462	Ce-doped CoS ₂ pyrite with weakened O ₂ adsorption suppresses catalyst leaching and stabilizes electrocatalytic H ₂ evolution. Journal of Materials Chemistry A, 2019, 7, 17775-17781.	5.2	35
463	Recent Advances in Metal–Organic Frameworks for Photoâ€∤Electrocatalytic CO ₂ Reduction. Chemistry - A European Journal, 2019, 25, 14026-14035.	1.7	50

#	Article	IF	CITATIONS
464	Mo/Mo2C encapsulated in nitrogen-doped carbon nanofibers as efficiently integrated heterojunction electrocatalysts for hydrogen evolution reaction in wide pH range. Applied Surface Science, 2019, 496, 143672.	3.1	49
465	CdS Nanorod-Amorphous Molybdenum Oxide Nanocomposite for Photocatalytic Hydrogen Evolution. ACS Applied Nano Materials, 2019, 2, 6783-6792.	2.4	24
466	Porous Mo–Co–S Nanosheets on Carbon Cloth for Allâ€Solidâ€State Flexible Asymmetric Supercapacitors. Advanced Materials Interfaces, 2019, 6, 1901138.	1.9	21
467	Phosphorus Incorporation into Co ₉ S ₈ Nanocages for Highly Efficient Oxygen Evolution Catalysis. Small, 2019, 15, e1904507.	5.2	75
468	Importance of Oxygen Measurements during Photoelectrochemical Water-Splitting Reactions. ACS Energy Letters, 2019, 4, 2712-2718.	8.8	21
469	Optimizing interfacial electronic coupling with metal oxide to activate inert polyaniline for superior electrocatalytic hydrogen generation. , 2019, 1, 77-84.		50
470	Pore Surface Engineering of Covalent Triazine Frameworks@MoS ₂ Electrocatalyst for the Hydrogen Evolution Reaction. ChemSusChem, 2019, 12, 5032-5040.	3.6	38
471	Rational design of phosphorus-doped cobalt sulfides electrocatalysts for hydrogen evolution. Nano Research, 2019, 12, 2960-2965.	5.8	59
472	Selenium vacancy and phosphorus-doping-induced phase transition engineering of cobalt diselenide as bi-functional catalyst for water electrolysis. International Journal of Hydrogen Energy, 2019, 44, 28566-28577.	3.8	7
473	Nesting Co ₃ Mo Binary Alloy Nanoparticles onto Molybdenum Oxide Nanosheet Arrays for Superior Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2019, 11, 9002-9010.	4.0	74
474	Study on Stability Theoretical of Bank Slope under Coupled Conditions. IOP Conference Series: Earth and Environmental Science, 2019, 304, 042039.	0.2	1
475	Non-noble metal-nitride based electrocatalysts for high-performance alkaline seawater electrolysis. Nature Communications, 2019, 10, 5106.	5.8	742
476	From All-Triazine C ₃ N ₃ Framework to Nitrogen-Doped Carbon Nanotubes: Efficient and Durable Trifunctional Electrocatalysts. ACS Applied Nano Materials, 2019, 2, 7969-7977.	2.4	49
477	1D Composite Nanorods of Cobalt Phosphideâ€Cobalt Sulfide with Improved Electrocatalyst Performance. ChemCatChem, 2019, 11, 6099-6104.	1.8	16
478	Cobalt Phosphide Ultrathin and Freestanding Sheets Prepared through Microwave Chemical Vapor Deposition: A Highly Efficient Oxygen Evolution Reaction Catalyst. ChemElectroChem, 2019, 6, 5469-5478.	1.7	16
479	Ni Nanoparticles on Ultrathin Mo2C Interconnected Nanonet: An Efficient 3D Hydrogen-Evolving Electrocatalyst with Superior Durability. Journal of the Electrochemical Society, 2019, 166, F1128-F1133.	1.3	3
480	Theoretical Study of Ternary CoSP Semiconductor: A Candidate for Photovoltaic Applications. Advanced Theory and Simulations, 2019, 2, 1900111.	1.3	1
481	Triplet–Triplet Annihilation Upconversion for Photocatalytic Hydrogen Evolution. Chemistry - A European Journal, 2019, 25, 16270-16276.	1.7	36

ARTICLE IF CITATIONS # Platinum Oxide Nanoparticles for Electrochemical Hydrogen Evolution: Influence of Platinum 482 1.7 12 Valence State. Chemistry - A European Journal, 2019, 26, 4136. Online monitoring and assessment of energy efficiency for copper smelting process. Journal of Central South University, 2019, 26, 2149-2159. 483 1.2 Facile Synthesis of Nâ€Doped Hollow Carbon Spheres @MoS 2 via Polymer Microspheres Template Method and Oneâ€Step Calcination for Enhanced Hydrogen Evolution Reaction. ChemElectroChem, 2019, 484 1.7 18 6,1101-1106. Monolithic semi-polar (\$1ar{1}01\$) InGaN/GaN near white light-emitting diodes on micro-striped Si 485 (100) substrate. Chinese Physics B, 2019, 28, 087802. Mesoporous CoP Nanowire Arrays for Hydrogen Evolution. ACS Applied Nano Materials, 2019, 2, 486 2.4 32 5922-5930. First-principles investigation of the hydrogen evolution reaction on different surfaces of pyrites MnS₂, FeS₂, CoS₂, NiS₂. Physical Chemistry Chemical Physics, 2019, 21, 21561-21567. 1.3 One-pot synthesis of manganese oxides and cobalt phosphides nanohybrids with abundant 488 heterointerfaces in an amorphous matrix for efficient hydrogen evolution in alkaline solution. 5.2 32 Journal of Materials Chemistry A, 2019, 7, 22530-22538. One-pot Synthesis of Coral-like Ru/Carbon Composites as Superior Electrocatalysts for the Hydrogen Evolution Reaction. International Journal of Electrochemical Science, 2019, , 8097-8109. MoS<i>_x</i> Ouantum Dot-Modified Black Silicon for Highly Efficient 490 Photoelectrochemical Hydrogen Evolution. ACS Sustainable Chemistry and Engineering, 2019, 7, 3.2 17 17598-17605. Highly dispersed Pd nanoparticles hybridizing with 3D hollow-sphere g-C3N4 to construct 0D/3D 3.1 composites for efficient photocatalytic hydrogen evolution. Journal of Catalysis, 2019, 378, 331-340. Tuning the electron status of urchin-like CoS2 nanowires by selenium doping toward highly efficient 492 1.3 11 hydrogen evolution reaction. Materials Letters, 2019, 257, 126673. Highly stable single Pt atomic sites anchored on aniline-stacked graphene for hydrogen evolution 15.6 392 reaction. Energy and Environmental Science, 2019, 12, 1000-1007 Creating stable interfaces between reactive materials: titanium nitride protects photoabsorberâ€"catalyst interface in water-splitting photocathodes. Journal of Materials Chemistry 494 5.2 25 A, 2019, 7, 2400-2411. 3D porous Ni-Co-P nanosheets on carbon fiber cloth for efficient hydrogen evolution reaction. Electrochimica Acta, 2019, 300, 217-224. 2.6 Theoretical design of a series of 2D TMâ€"C₃N₄ and TM–C₃N₄@graphene (TM = V, Nb and Ta) nanostructures with highly efficient 496 1.3 27 catalytic activity for the hydrogen evolution reaction. Physical Chemistry Chemical Physics, 2019, 21, 1773-1783. Metallic CoO/Co heterostructures stabilized in an ultrathin amorphous carbon shell for high-performance electrochemical supercapacitive behaviour. Journal of Materials Chemistry A, 2019, 7, 372-380. Textile-based high-performance hydrogen evolution of low-temperature atomic layer deposition of 498 2.8 17 cobalt sulfide. Nanoscale, 2019, 11, 844-850. In-situ synthesis of porous Ni2P nanosheets for efficient and stable hydrogen evolution reaction. 499 3.8 International Journal of Hydrogen Energy, 2019, 44, 5739-5747.

	Cı	CITATION REPORT	
#	Article	IF	CITATIONS
500	Non-Monotonic Trends of Hydrogen Adsorption on Single Atom Doped g-C3N4. Catalysts, 2019, 9, 8	4. 1.6	19
501	Photoinduced semiconductor-metal transition in ultrathin troilite FeS nanosheets to trigger efficient hydrogen evolution. Nature Communications, 2019, 10, 399.	5.8	133
502	Amorphous Ni <i>_x</i> Co <i>_y</i> P-supported TiO ₂ nanotube arrays as an efficient hydrogen evolution reaction electrocatalyst in acidic solution. Beilstein Journal of Nanotechnology, 2019, 10, 62-70.	1.5	14
503	Rational Design of Grapheneâ€6upported Single Atom Catalysts for Hydrogen Evolution Reaction. Advanced Energy Materials, 2019, 9, 1803689.	10.2	279
504	Computational Approaches to Photoelectrode Design through Molecular Functionalization for Enhanced Photoelectrochemical Water Splitting. ChemSusChem, 2019, 12, 1858-1871.	3.6	8
505	Fe/P dual doping boosts the activity and durability of CoS ₂ polycrystalline nanowires for hydrogen evolution. Journal of Materials Chemistry A, 2019, 7, 5195-5200.	5.2	78
506	Enhancing photoelectrochemical hydrogen production of a n ⁺ p-Si hetero-junction photocathode with amorphous Ni and Ti layers. Inorganic Chemistry Frontiers, 2019, 6, 527-532.	3.0	10
507	In situ construction of surface defects of carbon-doped ternary cobalt-nickel-iron phosphide nanocubes for efficient overall water splitting. Science China Materials, 2019, 62, 1285-1296.	3.5	92
508	Novel Graphene Hydrogel/Bâ€Đoped Graphene Quantum Dots Composites as Trifunctional Electrocatalysts for Znâ^'Air Batteries and Overall Water Splitting. Advanced Energy Materials, 2019, 1900945.	9, 10.2	150
509	A Molecular Cobalt Hydrogen Evolution Catalyst Showing High Activity and Outstanding Tolerance to CO and O 2. Angewandte Chemie, 2019, 131, 11039-11043.	1.6	9
510	Self-Supported Ni/NiSP _{<i>x</i>} Microdendrite Structure for Highly Efficient and Stable Overall Water Splitting in Simulated Industrial Environment. ACS Sustainable Chemistry and Engineering, 2019, 7, 11778-11786.	3.2	18
511	Recent advances in metal sulfides: from controlled fabrication to electrocatalytic, photocatalytic and photoelectrochemical water splitting and beyond. Chemical Society Reviews, 2019, 48, 4178-428	80. ^{18.7}	810
512	Porous Organic Polymer-Driven Evolution of High-Performance Cobalt Phosphide Hybrid Nanosheets as Vanillin Hydrodeoxygenation Catalyst. ACS Applied Materials & Interfaces, 2019, 11, 24140-2	4153. 4.0	57
513	Neutral-pH overall water splitting catalyzed efficiently by a hollow and porous structured ternary nickel sulfoselenide electrocatalyst. Journal of Materials Chemistry A, 2019, 7, 16793-16802.	5.2	60
514	Direct Growth of CNTs@CoS _{<i>x</i>} Se _{2(1â^'<i>x</i>)} on Carbon Cloth for Overall Water Splitting. ChemSusChem, 2019, 12, 3792-3800.	. 3.6	44
515	Novel phosphidated MoS2 nanosheets modified CdS semiconductor for an efficient photocatalytic Harvey evolution. Chemical Engineering Journal, 2019, 375, 122053.	2 6.6	94
516	Monodispersed platinum nanoparticles embedded in Ni3S2-containing hollow carbon spheres with ultralow Pt loading and high alkaline hydrogen evolution activity. Electrochimica Acta, 2019, 318, 590-596.	2.6	12
517	Electrochemical exfoliation of ultrathin ternary molybdenum sulfoselenide nanosheets to boost the energy-efficient hydrogen evolution reaction. Nanoscale, 2019, 11, 16200-16207.	2.8	25

#	Article	IF	CITATIONS
518	Facile preparation of large-area self-supported porous nickel phosphide nanosheets for efficient electrocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2019, 44, 17974-17984.	3.8	24
519	C ₆₀ -Adsorbed Single-Walled Carbon Nanotubes as Metal-Free, pH-Universal, and Multifunctional Catalysts for Oxygen Reduction, Oxygen Evolution, and Hydrogen Evolution. Journal of the American Chemical Society, 2019, 141, 11658-11666.	6.6	220
520	Structural defects on converted bismuth oxide nanotubes enable highly active electrocatalysis of carbon dioxide reduction. Nature Communications, 2019, 10, 2807.	5.8	456
521	Phosphorous doped cobalt-iron sulfide/carbon nanotube as active and robust electrocatalysts for water splitting. Electrochimica Acta, 2019, 318, 892-900.	2.6	43
522	Tungsten oxide nanostructures and nanocomposites for photoelectrochemical water splitting. Nanoscale, 2019, 11, 18968-18994.	2.8	168
523	An anion exchange reaction: an effective approach to prepare alloyed Co–Fe bimetallic disulfide for improving the electrocatalytic activity. Chemical Communications, 2019, 55, 7615-7618.	2.2	3
524	Cobalt Based Nanoparticles Embedded Reduced Graphene Oxide Aerogel for Hydrogen Evolution Electrocatalyst. Particle and Particle Systems Characterization, 2019, 36, 1900090.	1.2	11
525	Electrodeposited amorphous cobalt phosphosulfide on Ni foams for highly efficient overall water splitting. Journal of Power Sources, 2019, 431, 182-188.	4.0	54
526	Effect of Interlayer Co ²⁺ on Structure and Charge Transfer in NiFe Layered Double Hydroxides. Journal of Physical Chemistry C, 2019, 123, 13593-13599.	1.5	11
527	In situ metal–organic framework-derived c-doped Ni3S4/Ni2P hybrid co-catalysts for photocatalytic H2 production over g-C3N4 via dye sensitization. International Journal of Hydrogen Energy, 2019, 44, 16336-16347.	3.8	36
528	Integration of electrocatalysts with silicon microcone arrays for minimization of optical and overpotential losses during sunlight-driven hydrogen evolution. Sustainable Energy and Fuels, 2019, 3, 2227-2236.	2.5	7
529	Multiplex compounds of Ni, Cu, Co-based oxyphosphide nanowire arrays grown on Ni foam: A well-designed free-standing anode for high-capacity lithium storage. Journal of Alloys and Compounds, 2019, 799, 406-414.	2.8	4
530	Surface-engineered cobalt oxide nanowires as multifunctional electrocatalysts for efficient Zn-Air batteries-driven overall water splitting. Energy Storage Materials, 2019, 23, 1-7.	9.5	48
531	Three-Dimensional Co–S–P Nanoflowers as Highly Stable Electrode Materials for Asymmetric Supercapacitors. ACS Sustainable Chemistry and Engineering, 2019, 7, 11448-11454.	3.2	35
532	A Molecular Cobalt Hydrogen Evolution Catalyst Showing High Activity and Outstanding Tolerance to CO and O ₂ . Angewandte Chemie - International Edition, 2019, 58, 10923-10927.	7.2	47
533	Engineering hierarchical NiFe-layered double hydroxides derived phosphosulfide for high-efficiency hydrogen evolving electrocatalysis. International Journal of Hydrogen Energy, 2019, 44, 16378-16386.	3.8	19
534	Nanoporous Palladium–Silver Surface Alloys as Efficient and pH-Universal Catalysts for the Hydrogen Evolution Reaction. ACS Energy Letters, 2019, 4, 1379-1386.	8.8	72
535	Enhanced electrochemical properties of cellular CoPS@C nanocomposites for HER, OER and Li-ion batteries. RSC Advances, 2019, 9, 14859-14867.	1.7	10

#	Article	IF	CITATIONS
536	Combination of Theory and Experiment Achieving a Rational Design of Electrocatalysts for Hydrogen Evolution on the Hierarchically Mesoporous CoS ₂ Microsphere. Journal of Physical Chemistry C, 2019, 123, 13428-13433.	1.5	14
537	Rationally engineered active sites for efficient and durable hydrogen generation. Nature Communications, 2019, 10, 2281.	5.8	59
538	Enhanced the Hydrogen Evolution Performance by Ruthenium Nanoparticles Doped into Cobalt Phosphide Nanocages. ACS Sustainable Chemistry and Engineering, 2019, 7, 9737-9742.	3.2	33
539	Nanoporous Ni3S2 Film on Ni Foam as Highly Efficient Electrocatalyst for Hydrogen Evolution in Acidic Electrolyte. Russian Journal of Electrochemistry, 2019, 55, 88-96.	0.3	5
540	Amine-assisted exfoliation and electrical conductivity modulation toward few-layer FePS ₃ nanosheets for efficient hydrogen evolution. Journal of Materials Chemistry A, 2019, 7, 13928-13934.	5.2	36
541	Enhancing the Performance of Si-Based Photocathodes for Solar Hydrogen Production in Alkaline Solution by Facilely Intercalating a Sandwich N-Doped Carbon Nanolayer to the Interface of Si and TiO ₂ . ACS Applied Materials & Interfaces, 2019, 11, 19132-19140.	4.0	22
542	Beyond 1Tâ€phase? Synergistic Electronic Structure and Defects Engineering in 2Hâ€MoS _{2x} Se _{2(1â€x)} Nanosheets for Enhanced Hydrogen Evolution Reaction and Sodium Storage. ChemCatChem, 2019, 11, 3200-3211.	1.8	21
543	Confined distribution of platinum clusters on MoO2 hexagonal nanosheets with oxygen vacancies as a high-efficiency electrocatalyst for hydrogen evolution reaction. Nano Energy, 2019, 62, 127-135.	8.2	143
544	The Holy Grail in Platinumâ€Free Electrocatalytic Hydrogen Evolution: Molybdenumâ€Based Catalysts and Recent Advances. ChemElectroChem, 2019, 6, 3570-3589.	1.7	72
545	Ru-RuO2/CNT hybrids as high-activity pH-universal electrocatalysts for water splitting within 0.73†V in an asymmetric-electrolyte electrolyzer. Nano Energy, 2019, 61, 576-583.	8.2	151
546	Triggering Catalytic Active Sites for Hydrogen Evolution Reaction by Intrinsic Defects in Janus Monolayer MoSSe. Journal of Physical Chemistry C, 2019, 123, 12261-12267.	1.5	49
547	Photothermal coupling electrolysis on Ni–W–B toward practical overall water splitting. Journal of Materials Chemistry A, 2019, 7, 12440-12445.	5.2	31
548	Computational Screening of Defective Group IVA Monochalcogenides as Efficient Catalysts for Hydrogen Evolution Reaction. Journal of Physical Chemistry C, 2019, 123, 11791-11797.	1.5	24
549	Efficiency and stability of narrow-gap semiconductor-based photoelectrodes. Energy and Environmental Science, 2019, 12, 2345-2374.	15.6	88
550	Single Atoms and Clusters Based Nanomaterials for Hydrogen Evolution, Oxygen Evolution Reactions, and Full Water Splitting. Advanced Energy Materials, 2019, 9, 1900624.	10.2	538
551	Single platinum atoms embedded in nanoporous cobalt selenide as electrocatalyst for accelerating hydrogen evolution reaction. Nature Communications, 2019, 10, 1743.	5.8	430
552	Ultrasmall MoP encapsulated in nitrogen-doped carbon hybrid frameworks for highly efficient hydrogen evolution reaction in both acid and alkaline solutions. Inorganic Chemistry Frontiers, 2019, 6, 1482-1489.	3.0	26
553	Liquid–Solid Interfacial Assemblies of Soft Materials for Functional Freestanding Layered Membrane–Based Devices toward Electrochemical Energy Systems. Advanced Energy Materials, 2019, 9, 1804005.	10.2	18

#	Article	IF	CITATIONS
554	Nonenzymatic Electrochemical Determination of Paraoxon Ethyl in Water and Fruits by Graphene-Based NiFe Bimetallic Phosphosulfide Nanocomposite as a Superior Sensing Layer. Food Analytical Methods, 2019, 12, 1545-1555.	1.3	30
555	NiCoMo Hydroxide Nanosheet Arrays Synthesized via Chloride Corrosion for Overall Water Splitting. ACS Energy Letters, 2019, 4, 952-959.	8.8	243
556	Nickel Nanocrystal Assemblies as Efficient Electrocatalysts for Hydrogen Evolution from pHâ€Neutral Aqueous Solution. ChemElectroChem, 2019, 6, 2100-2106.	1.7	16
557	Preparation of Porous CoS ₂ Nanostructures for Highly Efficient Electrocatalytic Hydrogen Evolution. Materials Science Forum, 2019, 944, 643-649.	0.3	1
558	Hierarchical flower-like cobalt phosphosulfide derived from Prussian blue analogue as an efficient polysulfides adsorbent for long-life lithium-sulfur batteries. Nano Research, 2019, 12, 1115-1120.	5.8	24
559	A Combined experimental and theoretical study of the accelerated hydrogen evolution kinetics over wide pH range on porous transition metal doped tungsten phosphide electrocatalysts. Applied Catalysis B: Environmental, 2019, 251, 162-167.	10.8	58
560	Effect of visible light irradiation on hydrogen production by CoNi2S4/CdWO4 controllable flower spherical photocatalyst. Applied Surface Science, 2019, 481, 692-701.	3.1	26
561	Support and Interface Effects in Waterâ€Splitting Electrocatalysts. Advanced Materials, 2019, 31, e1808167.	11.1	531
562	Atomically dispersed nickel–nitrogen–sulfur species anchored on porous carbon nanosheets for efficient water oxidation. Nature Communications, 2019, 10, 1392.	5.8	424
563	Engineering Ternary Pyriteâ€Type CoPS Nanosheets with an Ultrathin Porous Structure for Efficient Electrocatalytic Water Splitting. ChemElectroChem, 2019, 6, 2852-2859.	1.7	13
564	Toward practical solar hydrogen production – an artificial photosynthetic leaf-to-farm challenge. Chemical Society Reviews, 2019, 48, 1908-1971.	18.7	781
565	NiP ₂ : A Story of Two Divergent Polymorphic Multifunctional Materials. Chemistry of Materials, 2019, 31, 3407-3418.	3.2	52
566	Tailoring the Porosity in Iron Phosphosulfide Nanosheets to Improve the Performance of Photocatalytic Hydrogen Evolution. ChemSusChem, 2019, 12, 2651-2659.	3.6	35
567	Boosting photocatalytic hydrogen evolution achieved by rationally designed/constructed carbon nitride with ternary cobalt phosphosulphide. Journal of Colloid and Interface Science, 2019, 548, 303-311.	5.0	23
568	Self-supported nanoporous cobalt phosphosulfate electrodes for efficient hydrogen evolution reaction. Applied Catalysis B: Environmental, 2019, 251, 213-219.	10.8	45
569	Hydrogen Evolution and Oxidation: Mechanistic Studies and Material Advances. Advanced Materials, 2019, 31, e1808066.	11.1	418
570	Nanostructured Rhenium–Carbon Composites as Hydrogen-Evolving Catalysts Effective over the Entire pH Range. ACS Applied Nano Materials, 2019, 2, 2725-2733.	2.4	24
571	Self-reconstruction in 2D nickel thiophosphate nanosheets to boost oxygen evolution reaction. Applied Surface Science, 2019, 484, 54-61.	3.1	23

#	Article	IF	CITATIONS
572	Single-atom ruthenium based catalyst for enhanced hydrogen evolution. Applied Catalysis B: Environmental, 2019, 249, 91-97.	10.8	146
573	Rational Design of Nanoarray Architectures for Electrocatalytic Water Splitting. Advanced Functional Materials, 2019, 29, 1808367.	7.8	298
574	Millisecond synthesis of CoS nanoparticles for highly efficient overall water splitting. Nano Research, 2019, 12, 2259-2267.	5.8	85
575	Synergistic effect of charge transfer and short H-bonding on nanocatalyst surface for efficient oxygen evolution reaction. Nano Energy, 2019, 59, 443-452.	8.2	28
576	Dinuclear Manganese Carbonyl Complexes: Electrocatalytic Reduction of Protons to Dihydrogen. ChemistrySelect, 2019, 4, 1789-1794.	0.7	6
577	Facile in-situ growth of Ni2P/Fe2P nanohybrids on Ni foam for highly efficient urea electrolysis. Journal of Colloid and Interface Science, 2019, 541, 279-286.	5.0	113
578	Urchin-like ternary cobalt phosphosulfide as high-efficiency and stable bifunctional electrocatalyst for overall water splitting. Journal of Catalysis, 2019, 371, 126-134.	3.1	32
579	Interface Engineering of Co(OH) ₂ /Ag/FeP Hierarchical Superstructure as Efficient and Robust Electrocatalyst for Overall Water Splitting. ACS Applied Materials & Interfaces, 2019, 11, 7936-7945.	4.0	68
580	Ultrathin Co9S8 nanosheets vertically aligned on N,S/rGO for low voltage electrolytic water in alkaline media. Scientific Reports, 2019, 9, 1951.	1.6	36
581	Tailoring the geometric and electronic structure of tungsten oxide with manganese or vanadium doping toward highly efficient electrochemical and photoelectrochemical water splitting. Journal of Materials Chemistry A, 2019, 7, 6161-6172.	5.2	61
582	Heteroatom-Doped Transition Metal Electrocatalysts for Hydrogen Evolution Reaction. ACS Energy Letters, 2019, 4, 805-810.	8.8	323
583	Constituent-tunable ternary CoM _{2x} Se _{2(1â^'x)} (M = Te, S) sandwich-like graphitized carbon-based composites as highly efficient electrocatalysts for water splitting. Nanoscale, 2019, 11, 6108-6119.	2.8	10
584	A new metal–organic open framework enabling facile synthesis of carbon encapsulated transition metal phosphide/sulfide nanoparticle electrocatalysts. Journal of Materials Chemistry A, 2019, 7, 7168-7178.	5.2	50
585	Promoting electrocatalytic CO2 reduction to formate via sulfur-boosting water activation on indium surfaces. Nature Communications, 2019, 10, 892.	5.8	446
586	An efficient and stable photoelectrochemical system with 9% solar-to-hydrogen conversion efficiency via InGaP/GaAs double junction. Nature Communications, 2019, 10, 5282.	5.8	98
587	Promoting Electrocatalytic Oxygen Evolution over Transition-Metal Phosphide-Based Nanocomposites via Architectural and Electronic Engineering. ACS Applied Materials & Interfaces, 2019, 11, 46825-46838.	4.0	34
588	Single-atom cobalt array bound to distorted 1T MoS2 with ensemble effect for hydrogen evolution catalysis. Nature Communications, 2019, 10, 5231.	5.8	371
589	Hydrogen evolution reaction from bare and surface-functionalized few-layered MoS2 nanosheets in acidic and alkaline electrolytes. Materials Today Chemistry, 2019, 14, 100207.	1.7	33

#	Article	IF	CITATIONS
590	Characterization and Stability of Janus TiXY (X/Y = S, Se, and Te) Monolayers. Journal of Physical Chemistry C, 2019, 123, 29922-29931.	1.5	30
591	Metal-organic Framework-driven Porous Cobalt Disulfide Nanoparticles Fabricated by Gaseous Sulfurization as Bifunctional Electrocatalysts for Overall Water Splitting. Scientific Reports, 2019, 9, 19539.	1.6	23
592	Anionic P-substitution toward ternary Ni–S–P nanoparticles immobilized graphene with ultrahigh rate and long cycle life for hybrid supercapacitors. Journal of Materials Chemistry A, 2019, 7, 24374-24388.	5.2	77
593	Yolk–shell hierarchical catalyst with tremella-like molybdenum sulfide on transition metal (Co, Ni) Tj ETQq1 1 0	.784314 r 2.2	gBT /Overloo 22
594	Transition Metal-Free Alkyne Hydrogenation Catalysis with BaGa ₂ , a Hydrogen Absorbing Layered Zintl Phase. Journal of the American Chemical Society, 2019, 141, 19969-19972.	6.6	29
595	Overall electrochemical splitting of water at the heterogeneous interface of nickel and iron oxide. Nature Communications, 2019, 10, 5599.	5.8	475
596	Enhancement of the hydrogen evolution performance by finely tuning the morphology of Co-based catalyst without changing chemical composition. Nano Research, 2019, 12, 191-196.	5.8	18
597	Cu-Ni-CoSex quaternary porous nanocubes as enhanced Pt-free electrocatalysts for highly efficient dye-sensitized solar cells and hydrogen evolution in alkaline medium. Chemical Engineering Journal, 2019, 357, 11-20.	6.6	47
598	Carbonâ€Based Photocathode Materials for Solar Hydrogen Production. Advanced Materials, 2019, 31, e1801446.	11.1	83
599	Hierarchical "nanoroll―like MoS2/Ti3C2Tx hybrid with high electrocatalytic hydrogen evolution activity. Applied Catalysis B: Environmental, 2019, 241, 89-94.	10.8	214
600	Metallic FePSe3 nanoparticles anchored on N-doped carbon framework for All-pH hydrogen evolution reaction. Nano Energy, 2019, 57, 222-229.	8.2	115
601	Ultrahigh length-to-diameter ratio nickel phosphide nanowires as pH-wide electrocatalyst for efficient hydrogen evolution. Electrochimica Acta, 2019, 298, 943-949.	2.6	23
602	Applications of 2D MXenes in energy conversion and storage systems. Chemical Society Reviews, 2019, 48, 72-133.	18.7	1,354
603	Chemically prepared Polypyrrole/ZnWO4 nanocomposite electrodes for electrocatalytic water splitting. International Journal of Hydrogen Energy, 2019, 44, 757-767.	3.8	36
604	Synthesis of silk-like FeS2/NiS2 hybrid nanocrystals with improved reversible oxygen catalytic performance in a Zn-air battery. Chinese Journal of Catalysis, 2019, 40, 43-51.	6.9	34
605	Poor crystalline MoS2 with highly exposed active sites for the improved hydrogen evolution reaction performance. Journal of Alloys and Compounds, 2019, 777, 514-523.	2.8	47
606	Zn-doped MoSe2 nanosheets as high-performance electrocatalysts for hydrogen evolution reaction in acid media. Electrochimica Acta, 2019, 296, 701-708.	2.6	70
607	Plasma Hydrogenated TiO ₂ /Nickel Foam as an Efficient Bifunctional Electrocatalyst for Overall Water Splitting. ACS Sustainable Chemistry and Engineering, 2019, 7, 885-894.	3.2	40

#	Article	IF	CITATIONS
608	Enhanced hydrogen evolution reaction of WS2–CoS2 heterostructure by synergistic effect. International Journal of Hydrogen Energy, 2019, 44, 809-818.	3.8	60
609	Dendritic core-shell Ni@Ni(Fe)OOH metal/metal oxyhydroxide electrode for efficient oxygen evolution reaction. Applied Surface Science, 2019, 469, 731-738.	3.1	34
610	Three-Dimensional Nanoporous Co ₉ S ₄ P ₄ Pentlandite as a Bifunctional Electrocatalyst for Overall Neutral Water Splitting. ACS Applied Materials & Interfaces, 2019, 11, 3880-3888.	4.0	73
611	Sub-5 nm Ultra-Fine FeP Nanodots as Efficient Co-Catalysts Modified Porous g-C ₃ N ₄ for Precious-Metal-Free Photocatalytic Hydrogen Evolution under Visible Light. ACS Applied Materials & Interfaces, 2019, 11, 5651-5660.	4.0	208
612	Earth abundant materials beyond transition metal dichalcogenides: A focus on electrocatalyzing hydrogen evolution reaction. Nano Energy, 2019, 58, 244-276.	8.2	298
613	Highly Efficient Hydrogen Evolution from a Mesoporous Hybrid of Nickel Phosphide Nanoparticles Anchored on Cobalt Phosphosulfide/Phosphide Nanosheet Arrays. Small, 2019, 15, e1804272.	5.2	87
614	Bimetallic Nickel Cobalt Sulfide as Efficient Electrocatalyst for Zn–Air Battery and Water Splitting. Nano-Micro Letters, 2019, 11, 2.	14.4	179
615	Efficient Photoelectrochemical Hydrogen Evolution Using Pseudocapacitive NiOx/Si Junction with Misaligned Energy Levels. Journal of Physical Chemistry C, 2019, 123, 1660-1668.	1.5	8
616	Theoretical Expectation and Experimental Implementation of In Situ Al-Doped CoS ₂ Nanowires on Dealloying-Derived Nanoporous Intermetallic Substrate as an Efficient Electrocatalyst for Boosting Hydrogen Production. ACS Catalysis, 2019, 9, 1489-1502.	5.5	112
617	g-C3N4 photoanode for photoelectrocatalytic synergistic pollutant degradation and hydrogen evolution. Applied Surface Science, 2019, 467-468, 658-665.	3.1	82
618	2D Transition Metal Dichalcogenide Thin Films Obtained by Chemical Gas Phase Deposition Techniques. Advanced Materials Interfaces, 2019, 6, 1800688.	1.9	21
619	High-efficiency hydrogen evolution from seawater using hetero-structured T/Td phase ReS2 nanosheets with cationic vacancies. Nano Energy, 2019, 55, 42-48.	8.2	102
620	Synergistic effect of porous phosphosulfide and antimony nanospheres anchored on 3D carbon foam for enhanced long-life sodium storage performance. Energy Storage Materials, 2019, 20, 446-454.	9.5	21
621	Efficient hydrogen generation on graphdiyne-based heterostructure. Nano Energy, 2019, 55, 135-142.	8.2	59
622	Energy level engineering in transition-metal doped spinel-structured nanosheets for efficient overall water splitting. Journal of Materials Chemistry A, 2019, 7, 827-833.	5.2	52
623	When MoS2 meets FeOOH: A "one-stone-two-birds'' heterostructure as a bifunctional electrocatalyst for efficient alkaline water splitting. Applied Catalysis B: Environmental, 2019, 244, 1004-1012.	10.8	144
624	Partial Surface Selenization of Cobalt Sulfide Microspheres for Enhancing the Hydrogen Evolution Reaction. ACS Catalysis, 2019, 9, 456-465.	5.5	71
625	Rational Design of Transition Metalâ€Based Materials for Highly Efficient Electrocatalysis. Small Methods, 2019, 3, 1800211	4.6	250

#	Article	IF	CITATIONS
626	Low-loading of oxidized platinum nanoparticles into mesoporous titanium dioxide for effective and durable hydrogen evolution in acidic media. Arabian Journal of Chemistry, 2020, 13, 2257-2270.	2.3	16
627	Carbon dots modified WO2-NaxWO3 composite as UV-Vis-NIR broad spectrum-driven photocatalyst for overall water splitting. Catalysis Today, 2020, 340, 152-160.	2.2	14
628	Selfâ€Supported Transitionâ€Metalâ€Based Electrocatalysts for Hydrogen and Oxygen Evolution. Advanced Materials, 2020, 32, e1806326.	11.1	986
629	Phosphorous-doped molybdenum disulfide anchored on silicon as an efficient catalyst for photoelectrochemical hydrogen generation. Applied Catalysis B: Environmental, 2020, 263, 118259.	10.8	40
630	Enhancing hydrogen evolution reaction by strain engineering in free-standing doped FeS monolayer. Materials Chemistry and Physics, 2020, 239, 122046.	2.0	6
631	Multifunctional Transition Metalâ€Based Phosphides in Energyâ€Related Electrocatalysis. Advanced Energy Materials, 2020, 10, 1902104.	10.2	322
632	Letter to the Editor: Lipoprotein Subparticles and Cardiovascular Risk in Liver Transplantation: More Details, More Significance. Hepatology, 2020, 71, 400-401.	3.6	0
633	Efficient electrocatalytic proton reduction on CoP nanocrystals embedded in microporous P, N Co-doped carbon spheres with dual active sites. Carbon, 2020, 156, 529-537.	5.4	22
634	Highly efficient Ni nanotube arrays and Ni nanotube arrays coupled with NiFe layered-double-hydroxide electrocatalysts for overall water splitting. Journal of Power Sources, 2020, 448, 227434.	4.0	41
635	Hydrogen evolution over N-doped CoS2 nanosheets enhanced by superaerophobicity and electronic modulation. Applied Surface Science, 2020, 504, 144490.	3.1	50
636	Ultrathin nickel phosphide nanosheet aerogel electrocatalysts derived from Ni-alginate for hydrogen evolution reaction. Journal of Alloys and Compounds, 2020, 817, 152727.	2.8	9
637	Engineered porous Co–Ni alloy on carbon cloth as an efficient bifunctional electrocatalyst for glucose electrolysis in alkaline environment. Journal of Alloys and Compounds, 2020, 823, 153784.	2.8	34
638	Enhanced electrochemical hydrogen evolution performance of WS2 nanosheets by Te doping. Journal of Catalysis, 2020, 382, 204-211.	3.1	51
639	Recent advances in transition metal based compound catalysts for water splitting from the perspective of crystal engineering. CrystEngComm, 2020, 22, 1531-1540.	1.3	32
640	Mo, Co co-doped NiS bulks supported on Ni foam as an efficient electrocatalyst for overall water splitting in alkaline media. Sustainable Energy and Fuels, 2020, 4, 1654-1664.	2.5	23
641	Detecting structural transformation of cobalt phosphonate to active bifunctional catalysts for electrochemical water-splitting. Journal of Materials Chemistry A, 2020, 8, 2637-2643.	5.2	80
642	Electronic structure and hydrogen evolution reaction in Janus monolayer MoSSe regulated by strain engineering. Journal Physics D: Applied Physics, 2020, 53, 125502.	1.3	14
643	Unique Size of Co Nanoparticles Encapsulated in N-Rich Carbon Structure Derived from Electrochemical Etching for Enhanced Electrocatalytic Hydrogen Evolution. ACS Applied Energy Materials, 2020, 3, 687-694.	2.5	7

#	Article	IF	CITATIONS
644	Hierarchical Zn-Co-P nanoneedle arrays supported on three-dimensional framework as efficient electrocatalysts for hydrogen evolution reaction in alkaline condition. Journal of Electroanalytical Chemistry, 2020, 858, 113803.	1.9	7
645	Highly reversible water splitting cell building from hierarchical 3D nickel manganese oxyphosphide nanosheets. Nano Energy, 2020, 69, 104432.	8.2	74
646	Robust Hydrogen-Evolving Electrocatalyst from Heterogeneous Molybdenum Disulfide-Based Catalyst. ACS Catalysis, 2020, 10, 1511-1519.	5.5	88
647	Confining Subâ€Nanometer Pt Clusters in Hollow Mesoporous Carbon Spheres for Boosting Hydrogen Evolution Activity. Advanced Materials, 2020, 32, e1901349.	11.1	255
648	Boronâ€Induced Electronicâ€Structure Reformation of CoP Nanoparticles Drives Enhanced pHâ€Universal Hydrogen Evolution. Angewandte Chemie, 2020, 132, 4183-4189.	1.6	23
649	Boronâ€Induced Electronicâ€Structure Reformation of CoP Nanoparticles Drives Enhanced pHâ€Universal Hydrogen Evolution. Angewandte Chemie - International Edition, 2020, 59, 4154-4160.	7.2	221
650	Pyrite-type cobalt phosphosulphide bifunctional catalyst for aqueous and gel-based rechargeable zinc-air batteries. Journal of Power Sources, 2020, 450, 227661.	4.0	23
651	Crystal plane dependent electrocatalytic performance of NiS2 nanocrystals for hydrogen evolution reaction. Journal of Catalysis, 2020, 381, 63-69.	3.1	25
652	Stable Fe ₂ P ₂ S ₆ Nanocrystal Catalyst for Highâ€Efficiency Water Electrolysis. Small Methods, 2020, 4, 1900632.	4.6	29
653	Boosted hydrogen evolution from α-MoC1-x-MoP/C heterostructures. Electrochimica Acta, 2020, 334, 135624.	2.6	34
654	A layer-by-layer strategy for the scalable preparation of uniform interfacial electrocatalysts with high structural tunability: a case study of a CoNP/N,P-graphene catalyst complex. Nanoscale, 2020, 12, 145-154.	2.8	1
655	One-step synthesis of CoPSe–CoSe2/CNTs as efficient electrocatalyst for oxygen evolution reaction. Electrochimica Acta, 2020, 331, 135362.	2.6	19
656	Accelerating water dissociation kinetics on Ni3S2 nanosheets by P-induced electronic modulation. Journal of Catalysis, 2020, 381, 493-500.	3.1	37
657	Performance modulation of energy storage devices: A case of Ni-Co-S electrode materials. Chemical Engineering Journal, 2020, 392, 123651.	6.6	97
658	Photoelectrochemical hydrogen production at neutral pH phosphate buffer solution using TiO2 passivated InAs Nanowire/p-Si heterostructure photocathode. Chemical Engineering Journal, 2020, 392, 123688.	6.6	23
659	Ruthenium Nanoparticles Anchored on Graphene Hollow Nanospheres Superior to Platinum for the Hydrogen Evolution Reaction in Alkaline Media. Inorganic Chemistry, 2020, 59, 930-936.	1.9	24
660	General Strategy for Preparation of Porous Nickel Phosphide Nanosheets on Arbitrary Substrates toward Efficient Hydrogen Generation. ACS Applied Energy Materials, 2020, 3, 1036-1045.	2.5	24
661	Design Guidelines of Insulator for Improving Stability and Performance of Nanoelectrocatalyst/Insulator/Semiconductor Photoelectrochemical Cells. ACS Applied Energy Materials, 2020, 3, 1046-1053.	2.5	10

#	Article	IF	Citations
662	Efficient hydrogen production via urea electrolysis with cobalt doped nickel hydroxide-riched hybrid films: Cobalt doping effect and mechanism aspect. Journal of Catalysis, 2020, 381, 454-461.	3.1	62
663	Spontaneous Formation of >90% Optically Transmissive, Electrochemically Active CoP Films for Photoelectrochemical Hydrogen Evolution. Journal of Physical Chemistry Letters, 2020, 11, 14-20.	2.1	8
664	CoP nanowires coupled with CoMoP nanosheets as a highly efficient cooperative catalyst for hydrogen evolution reaction. Nano Energy, 2020, 68, 104332.	8.2	202
665	Enhanced electrocatalytic performance of Mo–Ni encapsulated in onion-like carbon nano-capsules. Journal of Applied Electrochemistry, 2020, 50, 207-216.	1.5	6
666	N-induced lattice contraction generally boosts the hydrogen evolution catalysis of P-rich metal phosphides. Science Advances, 2020, 6, eaaw8113.	4.7	211
667	Synthesis of the rod-like NiS2@C for hydrogen evolution reaction in acidic solution. Functional Materials Letters, 2020, 13, 2050009.	0.7	2
668	Fabrication of NiSx/C with a tuned S/Ni molar ratio using Ni2+ ions and Amberlyst for hydrogen evolution reaction (HER). International Journal of Hydrogen Energy, 2020, 45, 24567-24572.	3.8	3
669	Boosting Electrocatalytic HER Activity of 3D Interconnected CoSP via Metal Doping: Active and Stable Electrocatalysts for pH-Universal Hydrogen Generation. Chemistry of Materials, 2020, 32, 9591-9601.	3.2	39
670	Unveiling the Promotion of Surfaceâ€Adsorbed Chalcogenate on the Electrocatalytic Oxygen Evolution Reaction. Angewandte Chemie, 2020, 132, 22656-22660.	1.6	32
671	Iron-regulated NiPS for enhanced oxygen evolution efficiency. Journal of Materials Chemistry A, 2020, 8, 23580-23589.	5.2	30
672	In situ synthesis of cobalt triphosphate on carbon paper for efficient electrocatalyst in dye-sensitized solar cell. Solar Energy, 2020, 208, 289-295.	2.9	17
673	All Boron Atoms in a ScB ₁₂ Monolayer Contribute to the Hydrogen Evolution Reaction. Journal of Physical Chemistry C, 2020, 124, 23221-23229.	1.5	14
674	Rational design of Co-S-P nanosheet arrays as bifunctional electrocatalysts for both ethanol oxidation reaction and hydrogen evolution reaction. Inorganic Chemistry Frontiers, 2020, 7, 4498-4506.	3.0	20
675	Interface Engineering of Binderâ€Free Earthâ€Abundant Electrocatalysts for Efficient Advanced Energy Conversion. ChemSusChem, 2020, 13, 4795-4811.	3.6	28
676	Fabrication of CuO _x nanowires@NiMnO _x nanosheets core@shell-type electrocatalysts: crucial roles of defect modification and valence states for overall water electrolysis. Journal of Materials Chemistry A, 2020, 8, 16463-16476.	5.2	40
677	Hydrogen evolution on non-metal oxide catalysts. JPhys Energy, 2020, 2, 042002.	2.3	16
678	Aluminum doped nickel-molybdenum oxide for both hydrogen and oxygen evolution reactions. Electrochimica Acta, 2020, 355, 136777.	2.6	22
679	Realizing optimal hydrogen evolution reaction properties via tuning phosphorous and transition metal interactions. Green Energy and Environment, 2020, 5, 506-512.	4.7	19

#	Article	IF	CITATIONS
680	Efficiency and sustainable leaching process of manganese from pyrolusite-pyrite mixture in sulfuric acid systems enhanced by microwave heating. Hydrometallurgy, 2020, 198, 105519.	1.8	24
681	Electro- and photoelectro-catalysts derived from bimetallic amorphous metal–organic frameworks. Catalysis Science and Technology, 2020, 10, 8265-8282.	2.1	13
682	Cobalt Oxide Nanofilms on n-GaN Working Electrodes for Photoelectrochemical Water Splitting. Journal of Physical Chemistry C, 2020, 124, 25196-25201.	1.5	2
683	MoS2/graphene composites: Fabrication and electrochemical energy storage. Energy Storage Materials, 2020, 33, 470-502.	9.5	85
684	Advancing Applications of Black Phosphorus and BPâ€Analog Materials in Photo/Electrocatalysis through Structure Engineering and Surface Modulation. Advanced Science, 2020, 7, 2001431.	5.6	51
685	Two-Dimensional Nanostructures for Advanced Applications. ACS Symposium Series, 2020, , 1-31.	0.5	2
686	Pyrite-type electrocatalysts for hydrogen evolution. MRS Bulletin, 2020, 45, 555-561.	1.7	2
687	CoP@NRGO composite as a high-efficiency water electrolysis catalyst for hydrogen generation. Journal of Solid State Chemistry, 2020, 290, 121596.	1.4	12
688	Temperature differentiated synthesis of hierarchically structured N,S-Doped carbon nanotubes/graphene hybrids as efficient electrocatalyst for hydrogen evolution reaction. Journal of Alloys and Compounds, 2020, 848, 156528.	2.8	8
689	Nanoporous V-Doped Ni ₅ P ₄ Microsphere: A Highly Efficient Electrocatalyst for Hydrogen Evolution Reaction at All pH. ACS Applied Materials & Interfaces, 2020, 12, 37092-37099.	4.0	40
690	Hydrothermally/electrochemically decorated FeSe on Ni-foam electrode: An efficient bifunctional electrocatalysts for overall water splitting in an alkaline medium. International Journal of Hydrogen Energy, 2020, 45, 27182-27192.	3.8	20
691	Spontaneous solar water splitting with decoupling of light absorption and electrocatalysis using silicon back-buried junction. Nature Communications, 2020, 11, 3930.	5.8	45
692	Superb Hydrogen Evolution by a Pt Nanoparticle-Decorated Ni ₃ S ₂ Microrod Array. ACS Applied Materials & Interfaces, 2020, 12, 39163-39169.	4.0	41
693	Preparation of a bifunctional ultrathin nickel phosphide nanosheet electrocatalyst for full water splitting. Sustainable Energy and Fuels, 2020, 4, 5294-5300.	2.5	16
694	Stable and selective electrosynthesis of hydrogen peroxide and the electro-Fenton process on CoSe ₂ polymorph catalysts. Energy and Environmental Science, 2020, 13, 4189-4203.	15.6	134
695	Tensile-strained ruthenium phosphide by anion substitution for highly active and durable hydrogen evolution. Nano Energy, 2020, 77, 105212.	8.2	39
696	Promising functional two-dimensional lamellar metal thiophosphates: synthesis strategies, properties and applications. Materials Horizons, 2020, 7, 3131-3160.	6.4	26
697	Alkaline Water Oxidation Using a Bimetallic Phosphoâ€Boride Electrocatalyst. ChemSusChem, 2020, 13, 6534-6540.	3.6	8

#	Article	IF	CITATIONS
698	Enhancing photoelectrochemical performance of Znln ₂ S ₄ by phosphorus doping for sensitive detection of miRNA-155. Chemical Communications, 2020, 56, 14275-14278.	2.2	15
699	Highly active and stable electrocatalytic transition metal phosphides (<scp> Ni ₂ P </scp>) Tj ETQq1 current density. International Journal of Energy Research, 2020, 44, 11894-11907.	1 0.7843 2.2	14 rgBT /0 7
700	Alkaliâ€Etched Ni(II)â€Based Metal–Organic Framework Nanosheet Arrays for Electrocatalytic Overall Water Splitting. Small, 2020, 16, e1906564.	5.2	84
701	P-doped nickel sulfide nanosheet arrays for alkaline overall water splitting. Catalysis Science and Technology, 2020, 10, 7581-7590.	2.1	18
702	Boosting Solar Hydrogen Production of Molybdenum Tungsten Sulfide-Modified Si Micropyramids by Introducing Phosphate. ACS Applied Materials & Interfaces, 2020, 12, 41515-41526.	4.0	10
704	Vanadium sulfide based materials: synthesis, energy storage and conversion. Journal of Materials Chemistry A, 2020, 8, 20781-20802.	5.2	73
705	Unveiling the Promotion of Surfaceâ€Adsorbed Chalcogenate on the Electrocatalytic Oxygen Evolution Reaction. Angewandte Chemie - International Edition, 2020, 59, 22470-22474.	7.2	257
706	Density Functional Theory Study on the Hydrogen Evolution Reaction in the S-rich SnS2 Nanosheets. Electrocatalysis, 2020, 11, 604-611.	1.5	17
707	2D Nanomaterials with Hierarchical Architecture for Flexible Sensor Application. ACS Symposium Series, 2020, , 93-116.	0.5	5
708	The Applications of 2D Nanomaterials in Energy-Related Process. ACS Symposium Series, 2020, , 219-251.	0.5	1
709	Nanocomposites Based on Biopolymer for Biomedical and Antibacterial Applications. ACS Symposium Series, 2020, , 375-391.	0.5	4
710	2D Materials for Supercapacitor and Supercapattery Applications. ACS Symposium Series, 2020, , 33-47.	0.5	6
711	Recent Advancements and Key Challenges of Graphene for Flexible Supercapacitors. ACS Symposium Series, 2020, , 49-77.	0.5	7
712	2D Nanostructured Materials for High Performance Electrochemical Supercapacitors. ACS Symposium Series, 2020, , 79-92.	0.5	3
713	Application of 2D Nanomaterials as Fluorescent Biosensors. ACS Symposium Series, 2020, , 117-141.	0.5	10
714	Functionalized Two-Dimensional Nanomaterials for Biosensing and Bioimaging. ACS Symposium Series, 2020, , 143-165.	0.5	1
715	Electrocatalysts Derived from 2D Mxenes for Oxygen Reduction and Hydrogen Evolution Reactions. ACS Symposium Series, 2020, , 167-189.	0.5	0
716	Application of 2D Graphene-Based Nanomaterials for Pollutant Removal from Advanced Water and Wastewater Treatment Processes. ACS Symposium Series, 2020, , 191-217.	0.5	10

#	Article	IF	Citations
717	State-of-the-Art Applications of 2D Nanomaterials in Energy Storage. ACS Symposium Series, 2020, , 253-293.	0.5	5
718	2D Layered Structure of Bismuth Oxyhalides for Advanced Applications. ACS Symposium Series, 2020, , 295-315.	0.5	7
719	Cutting Edge Materials of Two-Dimensional Platinum Diselenide. ACS Symposium Series, 2020, , 317-345.	0.5	1
720	Metal and Metal Matrix 2D Nanomaterial Composites: Attractive Alternatives for EMI Shielding Applications. ACS Symposium Series, 2020, , 347-373.	0.5	2
721	Synthesis of Sustainable Carbon Nanospheres from Natural Bioresources and Their Diverse Applications. ACS Symposium Series, 2020, , 393-420.	0.5	3
722	Enhanced hydrogen evolution reactivity on \$\${mathrm{Mo}}_2{mathrm{C}}\$\$–\$\${mathrm{Mo}}_2{mathrm{N}}\$\$ composites. Bulletin of Materials Science, 2020, 43, 1.	0.8	4
723	Sulfur vacancies-doped Sb2S3 nanorods as high-efficient electrocatalysts for dinitrogen fixation under ambient conditions. Green Energy and Environment, 2020, , .	4.7	7
724	Mesoporous Thin-Film NiS ₂ as an Idealized Pre-Electrocatalyst for a Hydrogen Evolution Reaction. ACS Catalysis, 2020, 10, 15114-15122.	5.5	58
725	Copper phosphosulfides as a highly active and stable photocatalyst for hydrogen evolution reaction. Applied Catalysis B: Environmental, 2020, 273, 118927.	10.8	28
726	In-plane intergrowth CoS ₂ /MoS ₂ nanosheets: binary metal–organic framework evolution and efficient alkaline HER electrocatalysis. Journal of Materials Chemistry A, 2020, 8, 11435-11441.	5.2	74
727	Recent Advancement of p―and dâ€Block Elements, Single Atoms, and Grapheneâ€Based Photoelectrochemical Electrodes for Water Splitting. Advanced Energy Materials, 2020, 10, 2000280.	10.2	88
728	Implanting Isolated Ru Atoms into Edgeâ€Rich Carbon Matrix for Efficient Electrocatalytic Hydrogen Evolution. Advanced Energy Materials, 2020, 10, 2000882.	10.2	144
729	<i>In situ</i> confinement of Pt within three-dimensional MoO ₂ @porous carbon for efficient hydrogen evolution. Journal of Materials Chemistry A, 2020, 8, 10409-10418.	5.2	35
730	Activation strategies of water-splitting electrocatalysts. Journal of Materials Chemistry A, 2020, 8, 10096-10129.	5.2	67
731	Phosphate Ionâ€Functionalized CoS with Hexagonal Bipyramid Structures from a Metal–Organic Framework: Bifunctionality towards Supercapacitors and Oxygen Evolution Reaction. Chemistry - A European Journal, 2020, 26, 14903-14911.	1.7	21
732	Advances and Challenges of Fe-MOFs Based Materials as Electrocatalysts for Water Splitting. Applied Materials Today, 2020, 20, 100692.	2.3	35
733	Sulfur-Doped CoSe ₂ Porous Nanosheets as Efficient Electrocatalysts for the Hydrogen Evolution Reaction. ACS Applied Materials & amp; Interfaces, 2020, 12, 28288-28297.	4.0	86
734	Nanostructured Tungsten Oxysulfide as an Efficient Electrocatalyst for Hydrogen Evolution Reaction. ACS Catalysis, 2020, 10, 6753-6762.	5.5	43

#	Article	IF	CITATIONS
735	Improving catalysis for electrochemical water splitting using a phosphosulphide surface. Inorganic Chemistry Frontiers, 2020, 7, 2388-2395.	3.0	28
736	Ag2â°O with highly exposed {111} crystal facets for efficient electrochemical oxygen evolution: Activity and mechanism. Chinese Journal of Catalysis, 2020, 41, 1706-1714.	6.9	4
737	Synergistic Modulation of Non-Precious-Metal Electrocatalysts for Advanced Water Splitting. Accounts of Chemical Research, 2020, 53, 1111-1123.	7.6	315
738	Tailoring the ruthenium reactive sites on N doped molybdenum carbide nanosheets via the anti-Ostwald ripening as efficient electrocatalyst for hydrogen evolution reaction in alkaline media. Applied Catalysis B: Environmental, 2020, 277, 119236.	10.8	85
739	Hydrogen evolution reaction at extreme pH conditions of copper sulfide micro-hexagons. Journal of Science: Advanced Materials and Devices, 2020, 5, 361-367.	1.5	15
740	Favorable role of heterojunction in trimetallic Fe–Co–Cu phosphides on nitrogen-doped carbon materials for hydrogen evolution. Materials Today Energy, 2020, 17, 100464.	2.5	5
741	Cobalt doping of FePS ₃ promotes intrinsic active sites for the efficient hydrogen evolution reaction. Nanoscale, 2020, 12, 14459-14464.	2.8	34
742	Ultralow Ru Loading Transition Metal Phosphides as Highâ€Efficient Bifunctional Electrocatalyst for a Solarâ€toâ€Hydrogen Generation System. Advanced Energy Materials, 2020, 10, 2000814.	10.2	174
743	MOF-derived hollow spherical Co2P@C composite with micro-nanostructure for highly efficient oxygen evolution reaction in alkaline solution. Journal of Solid State Chemistry, 2020, 288, 121456.	1.4	15
744	Tunable Photoâ€Electrochemistry of Patterned TiO ₂ /BDD Heterojunctions. Small Methods, 2020, 4, 2000257.	4.6	26
745	Compositional engineering of sulfides, phosphides, carbides, nitrides, oxides, and hydroxides for water splitting. Journal of Materials Chemistry A, 2020, 8, 13415-13436.	5.2	124
746	Inert basal plane activation of two-dimensional ZnIn ₂ S ₄ <i>via</i> Ni atom doping for enhanced co-catalyst free photocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2020, 8, 13376-13384.	5.2	79
747	Bipolar Energetics and Bifunctional Catalytic Activity of a Nanocrystalline Ru Thin-Film Enable High-Performance Photoelectrochemical Water Reduction and Oxidation. ACS Applied Materials & Interfaces, 2020, 12, 16402-16410.	4.0	2
748	First-Principles Mechanistic Insights into the Hydrogen Evolution Reaction on Ni2P Electrocatalyst in Alkaline Medium. Catalysts, 2020, 10, 307.	1.6	8
749	Modification Structure of CoS2 Electrocatalysts towards Enhanced Oxygen Evolution by Nitrogen Doping. International Journal of Electrochemical Science, 2020, 15, 1169-1186.	0.5	4
750	Recent progress in electrode fabrication for electrocatalytic hydrogen evolution reaction: A mini review. Chemical Engineering Journal, 2020, 393, 124726.	6.6	150
751	Ruthenium anchored on carbon nanotube electrocatalyst for hydrogen production with enhanced Faradaic efficiency. Nature Communications, 2020, 11, 1278.	5.8	340
752	Transition Metal Phosphideâ€Based Materials for Efficient Electrochemical Hydrogen Evolution: A Critical Review. ChemSusChem, 2020, 13, 3357-3375.	3.6	218

#	Article	IF	CITATIONS
753	Red phosphorus confined in hierarchical hollow surface-modified Co ₉ S ₈ for enhanced sodium storage. Sustainable Energy and Fuels, 2020, 4, 2208-2219.	2.5	12
754	Self-supported molybdenum selenide nanosheets grown on urchin-like cobalt selenide nanowires array for efficient hydrogen evolution. International Journal of Hydrogen Energy, 2020, 45, 13282-13289.	3.8	13
755	Metal–Organic Frameworks in Heterogeneous Catalysis: Recent Progress, New Trends, and Future Perspectives. Chemical Reviews, 2020, 120, 8468-8535.	23.0	1,001
756	Ternary NiFeTiOOH Catalyst for the Oxygen Evolution Reaction: Study of the Effect of the Addition of Ti at Different Loadings. ACS Catalysis, 2020, 10, 4879-4887.	5.5	21
757	An earth-abundant bimetallic catalyst coated metallic nanowire grown electrode with platinum-like pH-universal hydrogen evolution activity at high current density. Chemical Science, 2020, 11, 3893-3902.	3.7	42
758	Optimized Metal Chalcogenides for Boosting Water Splitting. Advanced Science, 2020, 7, 1903070.	5.6	190
759	Novel CoS2/MoS2@Zeolite with excellent adsorption and photocatalytic performance for tetracycline removal in simulated wastewater. Journal of Cleaner Production, 2020, 260, 121047.	4.6	76
760	2D graphdiyne loading ruthenium atoms for high efficiency water splitting. Nano Energy, 2020, 72, 104667.	8.2	91
761	Highly Robust Nonâ€Noble Alkaline Hydrogenâ€Evolving Electrocatalyst from Seâ€Doped Molybdenum Disulfide Particles on Interwoven CoSe ₂ Nanowire Arrays. Small, 2020, 16, e1906629.	5.2	70
762	Metal-free hydrophilic D-A conjugated polyelectrolyte dots/g-C3N4 nanosheets heterojunction for efficient and irradiation-stable water-splitting photocatalysis. Applied Catalysis B: Environmental, 2020, 270, 118852.	10.8	46
763	Engineering Mo-O-C interface in MoS2@rGO via charge transfer boosts hydrogen evolution. Chemical Engineering Journal, 2020, 399, 126018.	6.6	49
764	Highly Crystalline Hollow Toroidal Copper Phosphosulfide <i>via</i> Anion Exchange: A Versatile Cation Exchange Nanoplatform. ACS Nano, 2020, 14, 11205-11214.	7.3	24
765	0.03 V Electrolysis Voltage Driven Hydrazine Assisted Hydrogen Generation on NiCo phosphide Nanowires Supported NiCoHydroxide Nanosheets. ChemElectroChem, 2020, 7, 3089-3097.	1.7	10
766	Hierarchical Nanorods of MoS ₂ /MoP Heterojunction for Efficient Electrocatalytic Hydrogen Evolution Reaction. Small, 2020, 16, e2002482.	5.2	85
767	Nickel Phosphide Electrocatalysts for Hydrogen Evolution Reaction. Catalysts, 2020, 10, 188.	1.6	53
768	Hollow nanosheet array of phosphorus-anion-decorated cobalt disulfide as an efficient electrocatalyst for overall water splitting. Chemical Engineering Journal, 2020, 390, 124556.	6.6	84
769	Mechanochemical-assisted synthesis of ternary Ru-Ni-S pyrite analogue for enhanced hydrogen evolution performance. Carbon, 2020, 162, 172-180.	5.4	17
770	Hydrogen evolution reaction in full pH range on nickel doped tungsten carbide nanocubes as efficient and durable non-precious metal electrocatalysts. International Journal of Hydrogen Energy, 2020, 45, 8695-8702.	3.8	36

#	Article	IF	CITATIONS
771	Li _{<i>x</i>} NiO/Ni Heterostructure with Strong Basic Lattice Oxygen Enables Electrocatalytic Hydrogen Evolution with Pt-like Activity. Journal of the American Chemical Society, 2020, 142, 12613-12619.	6.6	103
772	Electrocatalyst engineering and structure-activity relationship in hydrogen evolution reaction: From nanostructures to single atoms. Science China Materials, 2020, 63, 921-948.	3.5	76
773	Nonâ€Nobleâ€Metalâ€Based Electrocatalysts toward the Oxygen Evolution Reaction. Advanced Functional Materials, 2020, 30, 1910274.	7.8	760
774	N, Ru Codoped Pellet Drum Bundle-Like Sb ₂ S ₃ : An Efficient Hydrogen Evolution Reaction and Hydrogen Oxidation Reaction Electrocatalyst in Alkaline Medium. ACS Applied Materials & Interfaces, 2020, 12, 7057-7070.	4.0	28
775	Nanoporous 6H-SiC Photoanodes with a Conformal Coating of Ni–FeOOH Nanorods for Zero-Onset-Potential Water Splitting. ACS Applied Materials & Interfaces, 2020, 12, 7038-7046.	4.0	17
776	Improved performance and stability of photoelectrochemical water-splitting Si system using a bifacial design to decouple light harvesting and electrocatalysis. Nano Energy, 2020, 70, 104478.	8.2	37
777	Engineering Substrate Interaction To Improve Hydrogen Evolution Catalysis of Monolayer MoS ₂ Films beyond Pt. ACS Nano, 2020, 14, 1707-1714.	7.3	97
778	Pt-O bond as an active site superior to Pt0 in hydrogen evolution reaction. Nature Communications, 2020, 11, 490.	5.8	184
779	Plasmonic ternary hybrid photocatalyst based on polymeric g-C3N4 towards visible light hydrogen generation. Scientific Reports, 2020, 10, 721.	1.6	53
780	Magnetism modulation of Co ₃ S ₄ towards the efficient hydrogen evolution reaction. Molecular Systems Design and Engineering, 2020, 5, 565-572.	1.7	8
781	Recent Advances on Waterâ€Splitting Electrocatalysis Mediated by Nobleâ€Metalâ€Based Nanostructured Materials. Advanced Energy Materials, 2020, 10, 1903120.	10.2	560
782	Strategies for Semiconductor/Electrocatalyst Coupling toward Solarâ€Driven Water Splitting. Advanced Science, 2020, 7, 1902102.	5.6	110
783	Synergetic effect between MoS2 and N, S- doped reduced graphene oxide supported palladium nanoparticles for hydrogen evolution reaction. Materials Chemistry and Physics, 2020, 251, 123106.	2.0	23
784	Catalyzed Hydrolysis of Tetrahydroxydiboron by Graphene Quantum Dot-Stabilized Transition-Metal Nanoparticles for Hydrogen Evolution. ACS Sustainable Chemistry and Engineering, 2020, 8, 7513-7522.	3.2	64
785	Enhanced electrocatalytic hydrogen evolution on a plasmonic electrode: the importance of the Ti/TiO2 adhesion layer. Journal of Materials Chemistry A, 2020, 8, 13980-13986.	5.2	10
786	Hierarchically Structured Bifunctional Electrocatalysts of Stacked Core–Shell CoS _{1â^'} <i>_x</i> P <i>_x</i> Heterostructure Nanosheets for Overall Water Splitting. Small Methods, 2020, 4, 2000043.	4.6	43
788	F dopants triggered active sites in bifunctional cobalt sulfide@nickel foam toward electrocatalytic overall water splitting in neutral and alkaline media: Experiments and theoretical calculations. Journal of Catalysis, 2020, 385, 129-139.	3.1	47
789	MoSe ₂ -Amorphous CNT Hierarchical Hybrid Core–Shell Structure for Efficient Hydrogen Evolution Reaction. ACS Applied Energy Materials, 2020, 3, 5067-5076.	2.5	24

#	Article	IF	CITATIONS
790	Electrokinetic Analysis of Poorly Conductive Electrocatalytic Materials. ACS Catalysis, 2020, 10, 4990-4996.	5.5	43
791	An <i>in situ</i> grown lanthanum sulfide/molybdenum sulfide hybrid catalyst for electrochemical hydrogen evolution. Catalysis Science and Technology, 2020, 10, 3247-3254.	2.1	19
792	Porous Monolithic Electrode of Ni ₃ FeN on 3D Graphene for Efficient Oxygen Evolution. Journal of Nanoscience and Nanotechnology, 2020, 20, 5175-5181.	0.9	8
793	Atomically thin defect-rich Ni-Se-S hybrid nanosheets as hydrogen evolution reaction electrocatalysts. Nano Research, 2020, 13, 2056-2062.	5.8	39
794	Hierarchical 3D Oxygenated Cobalt Molybdenum Selenide Nanosheets as Robust Trifunctional Catalyst for Water Splitting and Zinc–Air Batteries. Small, 2020, 16, e2000797.	5.2	52
795	Efficient Co-doped pyrrhotite Fe0.95S1.05 nanoplates for electrochemical water splitting. Chemical Engineering Journal, 2020, 402, 125069.	6.6	49
796	Recent progress of precious-metal-free electrocatalysts for efficient water oxidation in acidic media. Journal of Energy Chemistry, 2020, 51, 113-133.	7.1	66
797	Metallophthalocyanine-Based Polymer-Derived Co ₂ P Nanoparticles Anchoring on Doped Graphene as High-Efficient Trifunctional Electrocatalyst for Zn-Air Batteries and Water Splitting. ACS Sustainable Chemistry and Engineering, 2020, 8, 6422-6432.	3.2	63
798	Crystallographic facet selective HER catalysis: exemplified in FeP and NiP ₂ single crystals. Chemical Science, 2020, 11, 5007-5016.	3.7	51
799	Hot-carrier transfer at photocatalytic silicon/platinum interfaces. Journal of Chemical Physics, 2020, 152, 144705.	1.2	8
800	2D mesoporous ultrathin Cd0.5Zn0.5S nanosheet: Fabrication mechanism and application potential for photocatalytic H2 evolution. Chinese Journal of Catalysis, 2021, 42, 152-163.	6.9	119
801	2D Transition Metal Dichalcogenides: Design, Modulation, and Challenges in Electrocatalysis. Advanced Materials, 2021, 33, e1907818.	11.1	284
802	Highly Efficient Perovskiteâ€Based Electrocatalysts for Water Oxidation in Acidic Environments: A Mini Review. Advanced Energy Materials, 2021, 11, 2002428.	10.2	92
803	Anion-mediated transition metal electrocatalysts for efficient water electrolysis: Recent advances and future perspectives. Coordination Chemistry Reviews, 2021, 427, 213552.	9.5	66
804	Amorphous cobalt-manganese sulfide electrode for efficient water oxidation: Meeting the fundamental requirements of an electrocatalyst. Chemical Engineering Journal, 2021, 405, 126993.	6.6	31
805	Phaseâ€Junction Electrocatalysts towards Enhanced Hydrogen Evolution Reaction in Alkaline Media. Angewandte Chemie, 2021, 133, 263-271.	1.6	24
806	Fe–Co coatings electrodeposited from eutectic mixture of choline chloride-urea: Physical characterizations and evaluation as electrocatalysts for the hydrogen evolution reaction. Journal of Alloys and Compounds, 2021, 851, 156330.	2.8	10
807	Construction of Mo2C/W2C heterogeneous electrocatalyst for efficient hydrogen evolution reaction. International Journal of Hydrogen Energy, 2021, 46, 9699-9706.	3.8	11

#	Article	IF	CITATIONS
808	Sprout-shaped Mo-doped CoP with maximized hydrophilicity and gas bubble release for high-performance water splitting catalyst. Chemical Engineering Journal, 2021, 408, 127331.	6.6	47
809	Battery-type phosphorus doped FeS2 grown on graphene as anode for hybrid supercapacitor with enhanced specific capacity. Journal of Alloys and Compounds, 2021, 854, 157114.	2.8	38
810	Highâ€Entropy Metal Sulfide Nanoparticles Promise Highâ€Performance Oxygen Evolution Reaction. Advanced Energy Materials, 2021, 11, 2002887.	10.2	226
811	A review: Target-oriented transition metal phosphide design and synthesis for water splitting. International Journal of Hydrogen Energy, 2021, 46, 5131-5149.	3.8	80
812	Highly active non-noble electrocatalyst from Co2P/Ni2P nanohybrids for pH-universal hydrogen evolution reaction. Materials Today Physics, 2021, 16, 100314.	2.9	70
813	Interface-engineered silicon photocathodes with a NiCoP catalyst-modified TiO2 nanorod array outlayer for photoelectrochemical hydrogen production in alkaline solution. Journal of Power Sources, 2021, 484, 229272.	4.0	8
814	Oneâ€Pot Hydrothermal Synthesis of Ni ₃ S ₂ /MoS ₂ /FeOOH Hierarchical Microspheres on Ni Foam as a Highâ€Efficiency and Durable Dualâ€Function Electrocatalyst for Overall Water Splitting. ChemElectroChem, 2021, 8, 665-674.	1.7	14
815	Modification strategies on transition metal-based electrocatalysts for efficient water splitting. Journal of Energy Chemistry, 2021, 58, 446-462.	7.1	88
816	Synergistic two- and three-dimensional morphology engineering of pyrite-type CoPS to boost hydrogen evolution over wide pH range. Journal of Power Sources, 2021, 484, 229144.	4.0	7
817	Three-dimensional CoMoMg nanomesh based on the nanoscale Kirkendall effect for the efficient hydrogen evolution reaction. Journal of Alloys and Compounds, 2021, 857, 158086.	2.8	17
818	Hierarchical few-layer fluorine-free Ti ₃ C ₂ T _X (T = O,) Tj ETQq0 0 0 rgBT /Ov Chemistry A, 2021, 9, 922-927.	verlock 10 5.2	Tf 50 347 Tc 29
819	Carbon supported nickel phosphide as efficient electrocatalyst for hydrogen and oxygen evolution reactions. International Journal of Hydrogen Energy, 2021, 46, 622-632.	3.8	39
820	Cobalt phosphide embedded N-doped carbon nanopolyhedral as an efficient cathode electrocatalyst in microbial fuel cells. Journal of Environmental Chemical Engineering, 2021, 9, 104582.	3.3	6
821	A highly active selenized nickel–iron electrode with layered double hydroxide for electrocatalytic water splitting in saline electrolyte. Materials Today Energy, 2021, 19, 100575.	2.5	25
822	Electronic structure modulation of isolated Co-N4 electrocatalyst by sulfur for improved pH-universal hydrogen evolution reaction. Nano Energy, 2021, 80, 105544.	8.2	37
823	Phaseâ€Junction Electrocatalysts towards Enhanced Hydrogen Evolution Reaction in Alkaline Media. Angewandte Chemie - International Edition, 2021, 60, 259-267.	7.2	91
824	Noble-Metal Based Random Alloy and Intermetallic Nanocrystals: Syntheses and Applications. Chemical Reviews, 2021, 121, 736-795.	23.0	269
825	Surface and Interface Engineering: Molybdenum Carbide–Based Nanomaterials for Electrochemical Energy Conversion. Small, 2021, 17, e1903380.	5.2	87

#	Article	IF	CITATIONS
826	Siliconâ€Based Photocatalysis for Green Chemical Fuels and Carbon Negative Technologies. Advanced Sustainable Systems, 2021, 5, 2000242.	2.7	12
827	Bifunctional PGM-free metal organic framework-based electrocatalysts for alkaline electrolyzers: trends in the activity with different metal centers. Nanoscale, 2021, 13, 4576-4584.	2.8	8
828	Confinement of Pt NPs by hollow-porous-carbon-spheres <i>via</i> pore regulation with promoted activity and durability in the hydrogen evolution reaction. Nanoscale, 2021, 13, 18273-18280.	2.8	8
829	Heteroatomâ€Doping of Nonâ€Noble Metalâ€Based Catalysts for Electrocatalytic Hydrogen Evolution: An Electronic Structure Tuning Strategy. Small Methods, 2021, 5, e2000988.	4.6	165
830	Electrochemical oxidation of boron-doped nickel–iron layered double hydroxide for facile charge transfer in oxygen evolution electrocatalysts. RSC Advances, 2021, 11, 8198-8206.	1.7	10
831	Design strategies toward transition metal selenide-based catalysts for electrochemical water splitting. Sustainable Energy and Fuels, 2021, 5, 1347-1365.	2.5	30
832	<i>In situ</i> coating amorphous boride on ternary pyrite-type boron sulfide for highly efficient oxygen evolution. Journal of Materials Chemistry A, 2021, 9, 12283-12290.	5.2	8
833	Electrocatalysis in confined spaces: interplay between well-defined materials and the microenvironment. Nanoscale, 2021, 13, 1515-1528.	2.8	18
834	Tuning of structural and optical properties with enhanced catalytic activity in chemically synthesized Co-doped MoS ₂ nanosheets. RSC Advances, 2021, 11, 1303-1319.	1.7	29
835	Reaping the catalytic benefits of both surface (NiFe ₂ O ₄) and underneath (Ni ₃ Fe) layers for the oxygen evolution reaction. Sustainable Energy and Fuels, 2021, 5, 2704-2714.	2.5	4
836	Recent progress of MXenes and MXene-based nanomaterials for the electrocatalytic hydrogen evolution reaction. Journal of Materials Chemistry A, 2021, 9, 6089-6108.	5.2	128
837	Solid-state synthesis of single-phase nickel monophosphosulfide for the oxygen evolution reaction. Dalton Transactions, 2021, 50, 12870-12878.	1.6	4
838	Nanoporous Cubic Silicon Carbide Photoanodes for Enhanced Solar Water Splitting. ACS Nano, 2021, 15, 5502-5512.	7.3	34
839	In Situ Identifying the Dynamic Structure behind Activity of Atomically Dispersed Platinum Catalyst toward Hydrogen Evolution Reaction. Small, 2021, 17, e2005713.	5.2	38
840	The Combined Role of Faceting and Heteroatom Doping for Hydrogen Evolution on a WC Electrocatalyst in Aqueous Solution: A Density Functional Theory Study. Journal of Physical Chemistry C, 2021, 125, 4602-4613.	1.5	13
841	Accelerating water dissociation kinetic in Co9S8 electrocatalyst by mn/N Co-doping toward efficient alkaline hydrogen evolution. International Journal of Hydrogen Energy, 2021, 46, 7989-8001.	3.8	23
843	Highly efficient nanoporous CoBP electrocatalyst for hydrogen evolution reaction. Rare Metals, 2021, 40, 1031-1039.	3.6	42
844	Integration of Earthâ€Abundant Catalysts on Si Solar Cells for Overall Solar Hydrogen Production. Advanced Energy and Sustainability Research, 2021, 2, 2100012.	2.8	3

#	Article	IF	CITATIONS
845	CoPSe: A New Ternary Anode Material for Stable and Highâ€Rate Sodium/Potassiumâ€lon Batteries. Advanced Materials, 2021, 33, e2007262.	11.1	133
846	Optically and Electrocatalytically Decoupled Si Photocathodes with a Porous Carbon Nitride Catalyst for Nitrogen Reduction with Over 61.8% Faradaic Efficiency. Advanced Materials, 2021, 33, e2100812.	11.1	46
847	From Monolayers to Nanotubes: Toward Catalytic Transition-Metal Dichalcogenides for Hydrogen Evolution Reaction. Energy & Fuels, 2021, 35, 6282-6288.	2.5	10
848	Material Design and Surface/Interface Engineering of Photoelectrodes for Solar Water Splitting. Solar Rrl, 2021, 5, 2100100.	3.1	33
849	Efficient Hydrogen Evolution on Nanoscale Graphdiyne. Small, 2021, 17, e2006136.	5.2	36
850	Designing a novel cactus-like nickel cobalt phosphide based electrocatalyst for hydrogen evolution. Applied Surface Science, 2021, 543, 148726.	3.1	24
851	Rareâ€Earth Incorporated Alloy Catalysts: Synthesis, Properties, and Applications. Advanced Materials, 2021, 33, e2005988.	11.1	84
852	Cathodic pre-polarization studies on the carbon felt/KOH interface: An efficient metal-free electrocatalyst for hydrogen generation. Electrochimica Acta, 2021, 375, 137981.	2.6	8
853	Ni _{1â^'} <i>_x</i> Co <i>_x</i> Se ₂ C/ZnIn ₂ S _{4 Hybrid Nanocages with Strong 2D/2D Heteroâ€Interface Interaction Enable Efficient H₂â€Releasing Photocatalysis. Advanced Functional Materials, 2021, 31, 2100923.}	↓ 7.8	104
854	Computational high-throughput screening of alloy nanoclusters for electrocatalytic hydrogen evolution. Npj Computational Materials, 2021, 7, .	3.5	46
855	Facile synthesis of flower-like P-doped nickel-iron disulfide microspheres as advanced electrocatalysts for the oxygen evolution reaction. Journal of Power Sources, 2021, 490, 229552.	4.0	32
856	Bridging localized electron states of pyrite-type CoS2 cocatalyst for activated solar H2 evolution. Nano Research, 0, , 1.	5.8	12
857	Facile Synthesis of Twoâ€Dimensional Iron/Cobalt Metal–Organic Framework for Efficient Oxygen Evolution Electrocatalysis. Angewandte Chemie, 2021, 133, 12204-12209.	1.6	15
858	NiCo Nanoneedles on 3D Carbon Nanotubes/Carbon Foam Electrode as an Efficient Bi-Functional Catalyst for Electro-Oxidation of Water and Methanol. Catalysts, 2021, 11, 500.	1.6	5
859	Ampere-hour-scale zinc–air pouch cells. Nature Energy, 2021, 6, 592-604.	19.8	149
860	Facile Synthesis of Twoâ€Ðimensional Iron/Cobalt Metal–Organic Framework for Efficient Oxygen Evolution Electrocatalysis. Angewandte Chemie - International Edition, 2021, 60, 12097-12102. 	7.2	206
861	Activating sulfur sites of CoS2 electrocatalysts through tin doping for hydrogen evolution reaction. Applied Surface Science, 2021, 546, 149101.	3.1	37
862	Proximity Enhanced Hydrogen Evolution Reactivity of Substitutional Doped Monolayer WS ₂ . ACS Applied Materials & Interfaces, 2021, 13, 19406-19413.	4.0	24

#	Article	IF	CITATIONS
863	Transition Metal-Based 2D Layered Double Hydroxide Nanosheets: Design Strategies and Applications in Oxygen Evolution Reaction. Nanomaterials, 2021, 11, 1388.	1.9	24
864	Amorphous phase induced high phosphorous-doping in dandelion-like cobalt sulfides for enhanced battery-supercapacitor hybrid device. Journal of Electroanalytical Chemistry, 2021, 889, 115231.	1.9	17
865	Solar-driven self-powered alkaline seawater electrolysis via multifunctional earth-abundant heterostructures. Chemical Engineering Journal, 2021, 411, 128538.	6.6	37
866	Interfacial Engineering of Nickel Hydroxide on Cobalt Phosphide for Alkaline Water Electrocatalysis. Advanced Functional Materials, 2021, 31, 2101578.	7.8	101
867	Atomicâ€Precision Tailoring of Au–Ag Core–Shell Composite Nanoparticles for Direct Electrochemicalâ€Plasmonic Hydrogen Evolution in Water Splitting. Advanced Functional Materials, 2021, 31, 2102517.	7.8	21
868	Dual anions engineering on nickel cobalt-based catalyst for optimal hydrogen evolution electrocatalysis. Journal of Colloid and Interface Science, 2021, 589, 127-134.	5.0	30
869	Modifying redox properties and local bonding of Co3O4 by CeO2 enhances oxygen evolution catalysis in acid. Nature Communications, 2021, 12, 3036.	5.8	262
870	Tuning structure, electronic, and catalytic properties of non-metal atom doped Janus transition metal dichalcogenides for hydrogen evolution. Applied Surface Science, 2021, 552, 149146.	3.1	33
871	Atomic Layer Deposition of Iron, Cobalt, and Nickel Chalcogenides: Progress and Outlook. Chemistry of Materials, 2021, 33, 6251-6268.	3.2	23
872	Mo ₂ C Cocatalysts Supported Si Nanowire Photoanode for Solar Water Oxidation. Journal of the Electrochemical Society, 2021, 168, 066519.	1.3	3
873	MXene decorated by phosphorus-doped TiO2 for photo-enhanced electrocatalytic hydrogen evolution reaction. Renewable Energy, 2021, 170, 858-865.	4.3	37
874	Structureâ€Tailored Nonâ€Noble Metalâ€based Ternary Chalcogenide Nanocrystals for Ptâ€like Electrocatalytic Hydrogen Production. ChemSusChem, 2021, 14, 3074-3083.	3.6	5
875	Oneâ€step synthesis of anionic Sâ€substitution toward <scp> Ni ₂ P </scp> (S) nanowires on nickel foam for enhanced hydrogen evolution reaction. International Journal of Energy Research, 2021, 45, 16973-16983.	2.2	4
876	3D nickel molybdenum oxyselenide (Ni1-xMoxOSe) nanoarchitectures as advanced multifunctional catalyst for Zn-air batteries and water splitting. Applied Catalysis B: Environmental, 2021, 286, 119909.	10.8	72
877	Iron Phthalocyanine/Two-Dimensional Metal–Organic Framework Composite Nanosheets for Enhanced Alkaline Hydrogen Evolution. Inorganic Chemistry, 2021, 60, 9987-9995.	1.9	32
878	PdCo alloys@N-doped porous carbon supported on reduced graphene oxide as a highly efficient electrocatalyst for hydrogen evolution reaction. Journal of Materials Science, 2021, 56, 14222-14233.	1.7	15
879	Review on Solar Hydrogen: Its Prospects and Limitations. Energy & amp; Fuels, 2021, 35, 11613-11639.	2.5	48
880	Coreâ€shell architecture of <scp> NiSe ₂ </scp> nanoparticles@nitrogenâ€doped carbon for hydrogen evolution reaction in acidic and alkaline media. International Journal of Energy Research, 2021, 45, 20463-20473.	2.2	18

#	Article	IF	CITATIONS
881	Electronic Coupling of Single Atom and FePS ₃ Boosts Water Electrolysis. Energy and Environmental Materials, 2022, 5, 899-905.	7.3	16
882	Unveiling Role of Sulfate Ion in Nickelâ€Iron (oxy)Hydroxide with Enhanced Oxygenâ€Evolving Performance. Advanced Functional Materials, 2021, 31, 2102772.	7.8	158
883	Template-free synthesis of 1D hollow Fe doped CoP nanoneedles as highly activity electrocatalysts for overall water splitting. International Journal of Hydrogen Energy, 2021, 46, 28053-28063.	3.8	18
884	Tuning Interfacial Active Sites over Porous Mo ₂ N-Supported Cobalt Sulfides for Efficient Hydrogen Evolution Reactions in Acid and Alkaline Electrolytes. ACS Applied Materials & Interfaces, 2021, 13, 41573-41583.	4.0	30
885	Origin of the Electrical Barrier in Electrolessly Deposited Platinum Nanoparticles on p-Si Surfaces. Journal of Physical Chemistry C, 2021, 125, 17660-17670.	1.5	6
886	Engineering cobalt sulfide/oxide heterostructure with atomically mixed interfaces for synergistic electrocatalytic water splitting. Nano Research, 2022, 15, 1246-1253.	5.8	43
887	Phosphateâ€Assisted Dispersion of Iron Phosphide in Carbon Nanosheets towards Efficient and Durable ORR Catalysts in Acidic and Alkaline Media. ChemCatChem, 2021, 13, 4431-4441.	1.8	8
888	Synthesis of Co-Doped Tungsten Phosphide Nanoparticles Supported on Carbon Supports as High-Efficiency HER Catalysts. ACS Sustainable Chemistry and Engineering, 2021, 9, 12311-12322.	3.2	26
889	Engineering unique Fe(SexS1â^'x)2 nanorod bundles for boosting oxygen evolution reaction. Chemical Engineering Journal, 2021, 418, 129426.	6.6	29
890	Facile Fabrication of Robust Hydrogen Evolution Electrodes under High Current Densities via Pt@Cu Interactions. Advanced Functional Materials, 2021, 31, 2105579.	7.8	45
891	Boosting the Local Temperature of Hybrid Prussian Blue/NiO Nanotubes by Solar Light: Effect on Energy Storage. ACS Sustainable Chemistry and Engineering, 2021, 9, 11837-11846.	3.2	7
892	Recent advances on two-dimensional NiFe-LDHs and their composites for electrochemical energy conversion and storage. Journal of Alloys and Compounds, 2021, 872, 159649.	2.8	56
893	Palladium Nanoparticles Hardwired in Carbon Nanoreactors Enable Continually Increasing Electrocatalytic Activity During the Hydrogen Evolution Reaction. ChemSusChem, 2021, 14, 4973-4984.	3.6	6
894	Titanium Vacancies in TiO ₂ Nanofibers Enable Highly Efficient Photodriven Seawater Splitting. Chemistry - A European Journal, 2021, 27, 14202-14208.	1.7	16
895	Rational design of free-standing 3D Cu-doped NiS@Ni2P/NF nanosheet arrays for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2021, 46, 33078-33086.	3.8	10
896	Plasma-assisted synthesis of nickel-cobalt nitride–oxide hybrids for high-efficiency electrochemical hydrogen evolution. Materials Today Energy, 2021, 21, 100784.	2.5	16
897	A stable and active three-dimensional carbon based trimetallic electrocatalyst for efficient overall wastewater splitting. International Journal of Hydrogen Energy, 2021, 46, 30762-30779.	3.8	9
898	Sub-2 nm Ultrasmall High-Entropy Alloy Nanoparticles for Extremely Superior Electrocatalytic Hydrogen Evolution. Journal of the American Chemical Society, 2021, 143, 17117-17127.	6.6	202

#	Article	IF	CITATIONS
899	Revealing the genuine stability of the reference Pt/C electrocatalyst toward the ORR. Electrochimica Acta, 2021, 391, 138963.	2.6	9
900	Atomic interactions of two-dimensional PtS2 quantum dots/TiC heterostructures for hydrogen evolution reaction. Applied Catalysis B: Environmental, 2021, 293, 120227.	10.8	21
901	Carbon-coated MoSe2/Mo2CTx (MXene) heterostructure for efficient hydrogen evolution. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 271, 115239.	1.7	10
902	Using phosphorus-doped molybdenum sulfide with (1 0 0)-facet-exposed and enlarged interlayer spacing to enhance hydrogen evolution. Journal of Electroanalytical Chemistry, 2021, 897, 115545.	1.9	1
903	Engineering the synergistic effect of carbon dotsâ€stabilized atomic and subnanometric ruthenium as highly efficient electrocatalysts for robust hydrogen evolution. SmartMat, 2022, 3, 249-259.	6.4	38
904	Facile synthesis of highly efficient bifunctional electrocatalyst by vanadium oxysulfide spheres on cobalt-cobalt sulfonitride nanosheets for oxygen and hydrogen evolution reaction. Electrochimica Acta, 2021, 391, 138948.	2.6	8
905	Metal-substituted zirconium diboride (Zr1-TMB2; TMÂ=ÂNi, Co, and Fe) as low-cost and high-performance bifunctional electrocatalyst for water splitting. Electrochimica Acta, 2021, 389, 138789.	2.6	22
906	Multicomponent nonprecious hydrogen evolution catalysts for high performance and durable proton exchange membrane water electrolyzer. Journal of Power Sources, 2021, 506, 230200.	4.0	17
907	In-situ construction of sequential heterostructured CoS/CdS/CuS for building "electron-welcome zone―to enhance solar-to-hydrogen conversion. Applied Catalysis B: Environmental, 2022, 300, 120763.	10.8	38
908	Titanium Vacancies in TiO ₂ Nanofibers Enable Highly Efficient Photodriven Seawater Splitting. Chemistry - A European Journal, 2021, 27, 14142-14142.	1.7	1
909	Material libraries for electrocatalytic overall water splitting. Coordination Chemistry Reviews, 2021, 444, 214049.	9.5	123
910	Phosphorus substitution into Co3S4 nanoneedle arrays for efficient hydrogen evolution catalysis. Journal of Materials Science and Technology, 2021, 89, 52-58.	5.6	9
911	Ultrathin Ti2NTx MXene-wrapped MOF-derived CoP frameworks towards hydrogen evolution and water oxidation. Electrochimica Acta, 2021, 393, 139068.	2.6	51
912	Defect-enriched multistage skeleton morphology Ni-Fe-P-Ni3S2 heterogeneous catalyst on Ni foam for efficient overall water splitting. Chemical Engineering Journal, 2021, 424, 130390.	6.6	40
913	Facile synthesis of P-doped NiCo2S4 nanoneedles supported on Ni foam as highly efficient electrocatalysts for alkaline oxygen evolution reaction. Electrochimica Acta, 2021, 396, 139236.	2.6	25
914	Synergistic coupling ensuing cobalt phosphosulfide encapsulated by heteroatom-doped two-dimensional graphene shell as an excellent catalyst for oxygen electroreduction. Chemical Engineering Journal, 2021, 423, 130233.	6.6	10
915	Leaching kinetics of manganese from pyrolusite using pyrite as a reductant under microwave heating. Separation and Purification Technology, 2021, 277, 119472.	3.9	36
916	1ÂT-Phase Enriched P doped WS2 nanosphere for highly efficient electrochemical hydrogen evolution reaction. Chemical Engineering Journal, 2022, 429, 132187.	6.6	42

#	ARTICLE A chainmail effect of ultrathin N-doped carbon shell on Ni2P nanorod arrays for efficient hydrogen	IF	CITATIONS
917	evolution reaction catalysis. Journal of Colloid and Interface Science, 2022, 607, 281-289.	5.0	37
918	3D electrocatalyst for overall water splitting. Sustainable Energy and Fuels, 2021, 5, 2537-2544.	2.5	8
919	Hole-rich CoP nanosheets with an optimized d-band center for enhancing pH-universal hydrogen evolution electrocatalysis. Journal of Materials Chemistry A, 2021, 9, 8561-8567.	5.2	66
920	Effects of anionic substitution in molybdenum oxysulfide supported on reduced graphene oxide sheets for the hydrogen evolution reaction and supercapacitor application. Sustainable Energy and Fuels, 2021, 5, 3836-3846.	2.5	3
921	In situ construction of MoS2@CoS2 spherical hydrangea-shaped clusters for enhanced visible-light photocatalytic degradation of sulfamethoxazole. New Journal of Chemistry, 2021, 45, 5645-5653.	1.4	8
922	Sacrificial ZnO nanorods drive N and O dual-doped carbon towards trifunctional electrocatalysts for Zn–air batteries and self-powered water splitting devices. Catalysis Science and Technology, 2021, 11, 4149-4161.	2.1	7
923	A review of the research status of CO2 photocatalytic conversion technology based on bibliometrics. New Journal of Chemistry, 2021, 45, 2315-2325.	1.4	18
925	Activating Basal Planes of NiPS ₃ for Hydrogen Evolution by Nonmetal Heteroatom Doping. Advanced Functional Materials, 2020, 30, 1908708.	7.8	96
926	Regulating the Interfacial Electronic Coupling of Fe ₂ N via Orbital Steering for Hydrogen Evolution Catalysis. Advanced Materials, 2020, 32, e1904346.	11.1	86
927	Catalyst Engineering for Electrochemical Energy Conversion from Water to Water: Water Electrolysis and the Hydrogen Fuel Cell. Engineering, 2020, 6, 653-679.	3.2	75
928	Conformally Coated Nickel Phosphide on 3D, Ordered Nanoporous Nickel for Highly Active and Durable Hydrogen Evolution. ACS Sustainable Chemistry and Engineering, 2020, 8, 17116-17123.	3.2	24
929	Doping-induced structural phase transition in cobalt diselenide enables enhanced hydrogen evolution catalysis. Nature Communications, 2018, 9, 2533.	5.8	356
930	Silicon based photoelectrodes for photoelectrochemical water splitting. Optics Express, 2019, 27, A51.	1.7	62
931	Highly Efficient and Stable Hydrogen Production in All pH Range by Two-Dimensional Structured Metal-Doped Tungsten Semicarbides. Research, 2019, 2019, 4029516.	2.8	35
932	A General Method for the Synthesis of Hybrid Nanostructures Using MoSe ₂ Nanosheet-Assembled Nanospheres as Templates. Research, 2019, 2019, 6439734.	2.8	7
933	Synthesis of PdS _x -Mediated Polydymite Heteronanorods and Their Long-Range Activation for Enhanced Water Electroreduction. Research, 2019, 2019, 8078549.	2.8	9
934	Design principles of noble metal-free electrocatalysts for hydrogen production in alkaline media: combining theory and experiment. Nanoscale Advances, 2021, 3, 6797-6826.	2.2	23
935	Ultrathin, Porous CoPS Nanosheets: GO Self-Sacrificing Template Synthesis as Bifunctional Catalysts for Overall Water Splitting. ACS Applied Energy Materials, 2021, 4, 10976-10985.	2.5	3

#	Article	IF	CITATIONS
936	Efficient <scp>Mnâ€Ni o</scp> nanocomposite–based electrocatalyst for oxygen evolution reaction in alkaline media. Journal of the Chinese Chemical Society, 2021, 68, 2254-2263.	0.8	3
937	Recent advances in Co-based co-catalysts for efficient photocatalytic hydrogen generation. Journal of Colloid and Interface Science, 2022, 608, 1553-1575.	5.0	15
939	Constructing Hierarchical Fluffy CoO–Co ₄ N@NiFe-LDH Nanorod Arrays for Highly Effective Overall Water Splitting and Urea Electrolysis. ACS Sustainable Chemistry and Engineering, 2021, 9, 14180-14192.	3.2	48
940	Highâ€Performance Si Photocathode Enabled by Spatial Decoupling Multifunctional Layers for Water Splitting. Advanced Functional Materials, 2022, 32, 2107164.	7.8	15
943	Role of Earth-Abundant/Carbonaceous Electrocatalysts as Cocatalyst for Solar Water Splitting. , 2020, , 201-220.		0
948	Intermetallic Cu ₅ Zr Clusters Anchored on Hierarchical Nanoporous Copper as Efficient Catalysts for Hydrogen Evolution Reaction. Research, 2020, 2020, 2987234.	2.8	21
949	The Synergetic Effect of MoSO ₂ /Graphite Nanosheets as Highly Efficient for Electrochemical Water Splitting in Acidic Media. Science of Advanced Materials, 2021, 13, 1574-1583.	0.1	0
950	Modulating Interband Energy Separation of Boronâ€Doped Fe ₇ S ₈ /FeS ₂ Electrocatalysts to Boost Alkaline Hydrogen Evolution Reaction. Advanced Functional Materials, 2022, 32, 2107802.	7.8	53
951	Self-reconstruction of cationic activated Ni-MOFs enhanced the intrinsic activity of electrocatalytic water oxidation. Inorganic Chemistry Frontiers, 2021, 9, 179-185.	3.0	13
952	Metal-organic framework-derived FeS2/CoNiSe2 heterostructure nanosheets for highly-efficient oxygen evolution reaction. Applied Surface Science, 2022, 578, 152016.	3.1	17
953	Recent advances in biological applications of nanomaterials through defect engineering. Science of the Total Environment, 2022, 816, 151647.	3.9	4
954	A new hyperbranched water-splitting technique based on Co3O4/MoS2 nano composite catalyst for High-Performance of hydrogen evolution reaction. International Journal of Hydrogen Energy, 2022, 47, 2124-2133.	3.8	5
955	Engineering Inâ€Plane Nickel Phosphide Heterointerfaces with Interfacial sp HP Hybridization for Highly Efficient and Durable Hydrogen Evolution at 2 A cm ^{â^'2} . Small, 2022, 18, e2105642.	5.2	57
956	A synergetic strategy to construct anti-reflective and anti-corrosive Co-P/WSx/Si photocathode for durable hydrogen evolution in alkaline condition. Applied Catalysis B: Environmental, 2022, 304, 120954.	10.8	6
957	Low-dimensional non-metal catalysts: principles for regulating p-orbital-dominated reactivity. Npj Computational Materials, 2021, 7, .	3.5	41
958	Vanadium-phosphorus incorporation induced interfacial modification on cobalt catalyst and its super electrocatalysis for water splitting in alkaline media. Applied Catalysis B: Environmental, 2022, 304, 120985.	10.8	29
959	Ternary Mo ₂ NiB ₂ as a Superior Bifunctional Electrocatalyst for Overall Water Splitting. Small, 2022, 18, e2104303.	5.2	70
960	Recent Progress and Viability of PGM-Free Catalysts for Hydrogen Evolution Reaction and Hydrogen Oxidation Reaction. ACS Catalysis, 2022, 12, 1082-1089.	5.5	49

#	Article	IF	CITATIONS
961	Shining Light on Anion-Mixed Nanocatalysts for Efficient Water Electrolysis: Fundamentals, Progress, and Perspectives. Nano-Micro Letters, 2022, 14, 43.	14.4	62
962	Droplet Flow Assisted Electrocatalytic Oxidation of Selected Alcohols under Ambient Condition. Molecules, 2022, 27, 382.	1.7	1
963	Enhanced electrocatalytic activity of a layered triple hydroxide (LTH) by modulating the electronic structure and active sites for efficient and stable urea electrolysis. Sustainable Energy and Fuels, 2022, 6, 474-483.	2.5	36
964	Plasma-regulated two-dimensional high entropy oxide arrays for synergistic hydrogen evolution: From theoretical prediction to electrocatalytic applications. Journal of Power Sources, 2022, 520, 230873.	4.0	22
965	Construction of Novel Bimetallic Oxyphosphide as Advanced Anode for Potassium Ion Hybrid Capacitor. Advanced Science, 2022, 9, e2105193.	5.6	14
966	Accelerating pH-universal hydrogen-evolving activity of a hierarchical hybrid of cobalt and dinickel phosphides by interfacial chemical bonds. Materials Today Physics, 2022, 22, 100589.	2.9	20
967	Interfacial Engineering to Construct Antioxidative Pd ₄ S/Pd ₃ P _{0.95} Heterostructure for Robust Hydrogen Production at High Current Density. Advanced Energy Materials, 2022, 12, .	10.2	37
968	Applications of MXenes and their composites in catalysis and photoelectrocatalysis. , 2022, , 449-498.		0
969	Oxides free nanomaterials for (photo)electrochemical water splitting. , 2022, , 369-408.		1
970	Direct solar to hydrogen conversion enabled by silicon photocathodes with carrier selective passivated contacts. Sustainable Energy and Fuels, 2022, 6, 349-360.	2.5	3
971	Two-dimensional B7P2: Dual-purpose functional material for hydrogen evolution reaction/hydrogen storage. International Journal of Hydrogen Energy, 2022, 47, 8338-8347.	3.8	6
972	Bimetallic Selenide Decorated Nanoreactor Synergizing Confinement and Electrocatalysis of Se Species for 3D-Printed High-Loading K–Se Batteries. ACS Nano, 2022, 16, 3373-3382.	7.3	25
073			
975	An insight to catalytic synergic effect of Pd-MoS2 nanorods for highly efficient hydrogen evolution reaction. Arabian Journal of Chemistry, 2022, 15, 103735.	2.3	13
973 974	An insight to catalytic synergic effect of Pd-MoS2 nanorods for highly efficient hydrogen evolution reaction. Arabian Journal of Chemistry, 2022, 15, 103735. Effective synergy between palladium nanoparticles and nitrogen-doped porous carbon fiber for hydrogen evolution reaction. Electrochimica Acta, 2022, 409, 139959.	2.3 2.6	13 6
974 975	An insight to catalytic synergic effect of Pd-MoS2 nanorods for highly efficient hydrogen evolution reaction. Arabian Journal of Chemistry, 2022, 15, 103735. Effective synergy between palladium nanoparticles and nitrogen-doped porous carbon fiber for hydrogen evolution reaction. Electrochimica Acta, 2022, 409, 139959. Biofilm response and removal via the coupling of visible-light-driven photocatalysis and biodegradation in an environment of sulfamethoxazole and Cr(VI). Journal of Environmental Sciences, 2022, 122, 50-61.	2.3 2.6 3.2	13 6 12
974 975 976	An insight to catalytic synergic effect of Pd-MoS2 nanorods for highly efficient hydrogen evolution reaction. Arabian Journal of Chemistry, 2022, 15, 103735. Effective synergy between palladium nanoparticles and nitrogen-doped porous carbon fiber for hydrogen evolution reaction. Electrochimica Acta, 2022, 409, 139959. Biofilm response and removal via the coupling of visible-light-driven photocatalysis and biodegradation in an environment of sulfamethoxazole and Cr(VI). Journal of Environmental Sciences, 2022, 122, 50-61. Zn Dopants Synergistic Oxygen Vacancy Boosts Ultrathin CoO Layer for CO ₂ Photoreduction. Advanced Functional Materials, 2022, 32, .	2.3 2.6 3.2 7.8	13 6 12 47
974 975 976 977	An insight to catalytic synergic effect of Pd-MoS2 nanorods for highly efficient hydrogen evolution reaction. Arabian Journal of Chemistry, 2022, 15, 103735. Effective synergy between palladium nanoparticles and nitrogen-doped porous carbon fiber for hydrogen evolution reaction. Electrochimica Acta, 2022, 409, 139959. Biofilm response and removal via the coupling of visible-light-driven photocatalysis and biodegradation in an environment of sulfamethoxazole and Cr(VI). Journal of Environmental Sciences, 2022, 122, 50-61. Zn Dopants Synergistic Oxygen Vacancy Boosts Ultrathin CoO Layer for CO ₂ Photoreduction. Advanced Functional Materials, 2022, 32, . A facile and simple microwave-assisted synthesis method for mesoporous ultrathin iron sulfide nanosheets as an efficient bifunctional electrocatalyst for overall water splitting. Dalton Transactions, 2022, 51, 6285-6292.	2.3 2.6 3.2 7.8 1.6	13 6 12 47 5

#	Article	IF	CITATIONS
979	Pt- and Pd-modified transition metal nitride catalysts for the hydrogen evolution reaction. Physical Chemistry Chemical Physics, 2022, 24, 12149-12157.	1.3	9
980	Two-Dimensional High-Entropy Metal Phosphorus Trichalcogenides for Enhanced Hydrogen Evolution Reaction. ACS Nano, 2022, 16, 3593-3603.	7.3	77
981	Reversing the Nucleophilicity of Active Sites in CoP ₂ Enables Exceptional Hydrogen Evolution Catalysis. Small, 2022, 18, e2106870.	5.2	27
982	Deciphering the Dynamic Structure Evolution of Fe- and Ni-Codoped CoS ₂ for Enhanced Water Oxidation. ACS Catalysis, 2022, 12, 3743-3751.	5.5	59
983	Cation/Anion Dualâ€Vacancy Pair Modulated Atomicallyâ€Thin Se <i>_x</i> â€Co ₃ S ₄ Nanosheets with Extremely High Water Oxidation Performance in Ultralowâ€Concentration Alkaline Solutions. Small, 2022, 18, e2108097.	5.2	26
984	Perspective of hydrogen energy and recent progress in electrocatalytic water splitting. Chinese Journal of Chemical Engineering, 2022, 43, 282-296.	1.7	75
985	General synthesis of Pt and Ni co-doped porous carbon nanofibers to boost HER performance in both acidic and alkaline solutions. Chinese Chemical Letters, 2023, 34, 107359.	4.8	17
986	Modulation of the B4N monolayer as an efficient electrocatalyst for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2022, 47, 11511-11519.	3.8	1
987	Synergistic regulation of hydrogen adsorption/desorption via dual interfaces of Cu/Ni/Ni(OH)2 toward efficient hydrogen evolution reaction. International Journal of Hydrogen Energy, 2022, 47, 14053-14062.	3.8	4
988	In-situ construction of ultrathin MoP-MoS2 heterostructure on N, P and S co-doped hollow carbon spheres as nanoreactor for efficient hydrogen evolution. Chemical Engineering Journal, 2022, 438, 135544.	6.6	23
989	<scp> RuO ₂ </scp> as promoter in <scp> Ptâ€RuO ₂ ―</scp> nanostructures/carbon composite, a <scp>pH</scp> â€universal catalyst for hydrogen evolution/oxidation reactions. International Journal of Energy Research, 2022, 46, 6406-6420.	2.2	7
990	Manipulation on active electronic states of metastable phase β-NiMoO4 for large current density hydrogen evolution. Nature Communications, 2021, 12, 5960.	5.8	86
991	Amorphous Carbon Interconnected Ultrafine CoMnP with Enhanced Co Electron Delocalization Yields Pt‣ike Activity for Alkaline Water Electrolysis. Advanced Functional Materials, 2022, 32, .	7.8	29
992	Highâ€entropy alloy stabilized and activated Pt clusters for highly efficient electrocatalysis. SusMat, 2022, 2, 186-196.	7.8	41
993	S-doped multilayer niobium carbide (Nb4C3Tx) electrocatalyst for efficient hydrogen evolution in alkaline solutions. International Journal of Hydrogen Energy, 2022, 47, 17233-17240.	3.8	20
994	IrO2 modified Crystalline-PdO nanowires based bi-functional electro-catalyst for HOR/HER in acid and base. Renewable Energy, 2022, 191, 151-160.	4.3	8
995	A heterostructured WS2/WSe2 catalyst by heterojunction engineering towards boosting hydrogen evolution reaction. Chemical Engineering Journal, 2022, 443, 136348.	6.6	33
997	Deciphering the Role of Substitution in Transitionâ€Metal Phosphorous Trisulfide (100) Surface: A Highly Efficient and Durable Ptâ€free ORR Electrocatalyst. ChemPhysChem, 2022, 23, .	1.0	1

#	Article	IF	CITATIONS
998	Sulfur-Modified Copper Synergizing with Nitrogen-Defect Sites for the Electroreduction of Co2 to Formate at Low Overpotentials. SSRN Electronic Journal, 0, , .	0.4	0
999	Ws2 Nanosheets Integrated with Ti3c2 Mxene for Electrocatalytic Hydrogen Evolution Reaction. SSRN Electronic Journal, 0, , .	0.4	0
1000	Ternary-phase nanostructure W ₃ P/WP/W for high-performance pH-universal water/seawater electrolysis. Materials Advances, 0, , .	2.6	2
1001	Atomic manganese coordinated to nitrogen and sulfur for oxygen evolution. Nano Research, 2022, 15, 6019-6025.	5.8	53
1002	Electrocatalytic hydrogen evolution performance of modified Ti3C2O2 doped with non-metal elements: A DFT study. ChemPhysMater, 2022, 1, 321-329.	1.4	3
1003	Selfâ€Supported Goldâ€Silkâ€Chrysanthemumâ€Like Superstructures Arrays Derived from Mnâ€doped CoPS Nanowires with Superhydrophilic and Superaerophobic Surface for Enhanced Oxygen Evolution. Advanced Materials Interfaces, 2022, 9, .	1.9	4
1004	Enhancement of the Efficiency of g-C ₃ N ₄ for Hydrogen Evolution by Bifunctionality of RuSe ₂ . ACS Applied Energy Materials, 2022, 5, 6080-6090.	2.5	7
1005	Developments and Perspectives on Robust Nano―and Microstructured Binderâ€Free Electrodes for Bifunctional Water Electrolysis and Beyond. Advanced Energy Materials, 2022, 12, .	10.2	63
1006	Regulating local charges of atomically dispersed Mo+ sites by nitrogen coordination on cobalt nanosheets to trigger water dissociation for boosted hydrogen evolution in alkaline media. Journal of Energy Chemistry, 2022, 72, 125-132.	7.1	17
1007	Binder-free P-doped Ni-Se nanostructure electrode toward highly active and stable hydrogen production in wide pH range and seawater. Journal of Electroanalytical Chemistry, 2022, 916, 116379.	1.9	11
1008	Coordination anchoring synthesis of high-density single-metal-atom sites for electrocatalysis. Coordination Chemistry Reviews, 2022, 466, 214603.	9.5	21
1009	Sulfur-modified copper synergy with nitrogen-defect sites for the electroreduction of CO2 to formate at low overpotentials. Electrochimica Acta, 2022, 422, 140557.	2.6	6
1010	Engineering FeP4/CoFe2O4 heterostructure with balanced proton adsorption ability for efficient hydrogen evolution reaction. Applied Surface Science, 2022, 598, 153738.	3.1	8
1011	Ws2 Nanosheets Integrated with Ti3c2 Mxene for Electrocatalytic Hydrogen Evolution Reaction. SSRN Electronic Journal, 0, , .	0.4	0
1012	Synergistically boosting the elementary reactions over multiheterogeneous ordered macroporous Mo ₂ C/NCâ€Ru for highly efficient alkaline hydrogen evolution. , 2022, 4, 856-866.		27
1013	Potential transition and post-transition metal sulfides as efficient electrodes for energy storage applications: review. RSC Advances, 2022, 12, 18041-18062. & It-P Class="Standard1" Style="Margin: Ocm: Font-Size: 11 pt: Font-Family: Calibri: Sans-Serif:	1.7	27
1014	Caret-Color: Rgb(0, 0, 0); Color: Rgb(0, 0, 0); Text-Align: Justify; Line-Height: 29.333335876464844px;"> <span lang="En-Us" style="Font-Size: 16pt; Line-Height:
42.66667175292969px; Font-Family: &Quot;Times New Roman&Quot;, Serif;">Boosting the Overall Electrochemical Water Splitting Performance of Pentlandites Through Non-Metallic	0.4	0
1015	Heteroatom Incorporation&Nbsp <o:p></o:p> . SSRN Electronic Journal, 0, , . Immobilization and Stabilization of Ni–Co Ore Mining Mullock by Mechanochemical Activation: Novel Perspective of Low-Power and Sustainable Utilization. SSRN Electronic Journal, 0, , .	0.4	0

		CITATION REPORT		
#	Article		IF	CITATIONS
1016	Dos and don'ts in screening water splitting electrocatalysts. Energy Advances, 202	2, 1, 511-523.	1.4	23
1017	Ni ₂ P nanowire arrays grown on Ni foam as an efficient monolithic cocatab light dye-sensitized H ₂ evolution. Dalton Transactions, 2022, 51, 11029-1	vst for visible 1039.	1.6	2
1018	Tuning the hydrogen and hydroxyl adsorption on Ru nanoparticles for hydrogen electro via size controlling. Chinese Chemical Letters, 2023, 34, 107622.	de reactions	4.8	7
1019	Understanding the structure-performance relationship of active sites at atomic scale. N 2022, 15, 6888-6923.	ano Research,	5.8	391
1020	Phosphorus-doped NiS2 electrocatalyst with a hybrid structure for hydrogen evolution. China Technological Sciences, 0, , .	Science	2.0	2
1021	Transition Metal Nonâ€Oxides as Electrocatalysts: Advantages and Challenges. Small, 2	.022, 18, .	5.2	47
1023	Highly Efficient and Stable Saline Water Electrolysis Enabled by Self‣upported Nickel Phosphosulfide Nanotubes With Heterointerfaces and Underâ€Coordinated Metal Activ Advanced Functional Materials, 2022, 32, .	â€lron ve Sites.	7.8	60
1024	Co-axial hierarchical structures composed of Mo-S-Ni nanosheets on carbon nanotube accelerating electrocatalytic hydrogen evolution. Applied Surface Science, 2022, 600, 1	backbone for 54066.	3.1	4
1025	Three-dimensional nitrogen-doped MXene as support to form high-performance platinu water-electrolysis to produce hydrogen. Chemical Engineering Journal, 2022, 446, 1374	m catalysts for 143.	6.6	18
1026	Two-dimensional conductive π-conjugated metal-organic frameworks as promising electric for highly efficient hydrogen evolution reaction. Applied Surface Science, 2022, 601, 15	trocatalysts 4241.	3.1	7
1027	Modified Co electronic states in double-anionic CoPS nanocrystals induce highly efficie electrocatalytic hydrogen evolution. Journal of Alloys and Compounds, 2022, 922, 166	nt 114.	2.8	0
1028	An integrated Si photocathode with lithiation-activated molybdenum oxide nanosheets ammonia synthesis. Nano Energy, 2022, 102, 107639.	for efficient	8.2	11
1029	Interfacial Engineering of Heterostructured Co(OH) ₂ /NiP _x Na Enhanced Oxygen Evolution Reaction. Advanced Functional Materials, 2022, 32, .	inosheets for	7.8	43
1030	Synthesis of Ultrathin Porous Bimetallic Nickel–Cobalt Phosphide Nanosheets as an E Bifunctional Electrocatalyst for Overall Water Splitting. Energy Technology, 2022, 10, .	ixcellent	1.8	3
1031	Dynamic coordination structure evolutions of atomically dispersed metal catalysts for electrocatalytic reactions. Materials Reports Energy, 2022, , 100145.		1.7	0
1032	Electronegativity Enhanced Strong Metal–Support Interaction in Ru@F–Ni _{3 Enhanced Alkaline Hydrogen Evolution. ACS Applied Materials & Interfaces, 2022,}	/sub>N for 14, 36688-36699.	4.0	14
1033	Recent advances in polydopamine and its derivatives assisted electrocatalysis and phot International Journal of Hydrogen Energy, 2023, 48, 7004-7018.	ocatalysis.	3.8	5
1034	Integration of plasmonic AgPd alloy nanoparticles with single-layer graphitic carbon nite Mott-Schottky junction toward photo-promoted H2 evolution. Scientific Reports, 2022	ide as , 12, .	1.6	17

#	Article	IF	CITATIONS
1035	High Performance Bifunctional Electrocatalysts Designed Based on Transitionâ€Metal Sulfides for Rechargeable Zn–Air Batteries. Chemistry - A European Journal, 2022, 28, .	1.7	9
1036	Realization of transition metal selenide active facets via synergistic sulfur doping for bifunctional alkaline water splitting applications: A comparative study. Applied Surface Science, 2022, 605, 154804.	3.1	9
1037	TiO2-promoted electron-tunneling of COF-based MIS nanostructures for efficient photocatalytic hydrogen production. Materials Today Chemistry, 2022, 26, 101150.	1.7	6
1038	Preparation of Nd2o3-Nise-Nc Nanosheets and its Electrocatalytic Oxidation of Methanol and Urea. SSRN Electronic Journal, 0, , .	0.4	Ο
1039	Facile fabrication of self-supporting porous CuMoO ₄ @Co ₃ O ₄ nanosheets as a bifunctional electrocatalyst for efficient overall water splitting. Dalton Transactions, 2022, 51, 12736-12745.	1.6	3
1040	Photoelectrochemical water splitting with a triazine based covalent organic framework. Sustainable Energy and Fuels, 2022, 6, 4248-4255.	2.5	6
1041	Mixed Anion Materials. , 2022, , .		0
1043	Gradient Heating Epitaxial Growth Well Latticeâ€Matched Mo2Câ€Mo2N Heterointerfaces Boost Both Electrocatalytic Hydrogen Evolution and Water Vapor Splitting. Angewandte Chemie, 0, , .	1.6	0
1044	Gradient Heating Epitaxial Growth Gives Well Latticeâ€Matched Mo ₂ Câ^'Mo ₂ N Heterointerfaces that Boost Both Electrocatalytic Hydrogen Evolution and Water Vapor Splitting. Angewandte Chemie - International Edition, 2022, 61, .	7.2	17
1045	Mixed-Metal Nickel–Iron Oxide Aerogels for Oxygen Evolution Reaction. ACS Catalysis, 2022, 12, 12162-12169.	5.5	16
1047	Boosting the overall electrochemical water splitting performance of pentlandites through non-metallic heteroatom incorporation. IScience, 2022, 25, 105148.	1.9	10
1048	Insights into the multifunctional applications of strategically Co doped MoS ₂ nanoflakes. Materials Advances, 2022, 3, 8740-8759.	2.6	1
1049	Highly dispersed platinum-anchored g-C3N4 nanotubes for photocatalytic hydrogen generation. International Journal of Hydrogen Energy, 2023, 48, 943-952.	3.8	7
1050	Advances in nonprecious metal catalysts for efficient water oxidation in alkaline media. Ionics, 2023, 29, 9-32.	1.2	3
1051	Heterostructured bimetallic phosphide nanowire arrays with lattice-torsion interfaces for efficient overall water splitting. Journal of Energy Chemistry, 2023, 77, 420-427.	7.1	27
1052	Interfacial water engineering boosts neutral water reduction. Nature Communications, 2022, 13, .	5.8	56
1053	Transition Metalâ€Based Electrocatalysts for Seawater Oxidation. Advanced Materials Interfaces, 2022, 9, .	1.9	11
1054	Core–Shell Carbon Nanofibersâ€NiFe Structure on 3D Porous Carbon Foam: Facilitating a Promising Trajectory toward Decarbonizing Energy Production. Advanced Sustainable Systems, 2022, 6, .	2.7	3

#	Article	IF	CITATIONS
1055	Tuning Mass Transport in Electrocatalysis Down to Subâ€5 nm through Nanoscale Grade Separation. Angewandte Chemie - International Edition, 2023, 62, .	7.2	101
1056	Tuning Mass Transport in Electrocatalysis Down to Subâ€5nm Through Nanoscale Grade Separation. Angewandte Chemie, 0, , .	1.6	2
1057	Electro-(Photo)catalysis for Concurrent Evolution of Hydrogen and High Value-Added Chemicals. , 0, 1, .		0
1058	Constructing sulfide/phosphide heterostructure boosts the activity of iron-manganese bimetallic electrocatalysts for oxygen evolution reaction at large current densities. Electrochimica Acta, 2023, 438, 141563.	2.6	1
1059	Rhenium anchored Ti ₃ C ₂ T _{<i>x</i>} (MXene) nanosheets for electrocatalytic hydrogen production. Nanoscale Advances, 2023, 5, 349-355.	2.2	5
1060	NiFe-mixed metal porphyrin aerogels as oxygen evolution reaction catalysts in alkaline electrolysers. Nanoscale, 2022, 14, 18033-18040.	2.8	0
1061	Surface/Interface Engineering of Si-Based Photocathodes for Efficient Hydrogen Evolution. ACS Photonics, 2022, 9, 3786-3806.	3.2	2
1062	Ternary Synergism of Heterogeneous M ¹ N ₄ â€Câ€M ² N ₄ â€Câ€M ^{N₄â€Câ€M^{N₄Si Sites to Manipulate the Electrocatalytic Pathway for Znâ€Air Battery and Water Splitting. Advanced Energy Materials, 2023, 13}}	ngleâ€Ato 10.2	^m 6
1063	Rational Design of Transition Metal Phosphideâ€Based Electrocatalysts for Hydrogen Evolution. Advanced Functional Materials, 2023, 33, .	7.8	66
1064	High-Entropy Materials: Controllable Synthesis, Deep Characterization, Electrochemical Energy Application, and Outlook. Energy & Fuels, 2023, 37, 36-57.	2.5	7
1065	Recent advances in cobalt disulfide for electrochemical hydrogen evolution reaction. International Journal of Hydrogen Energy, 2023, 48, 9231-9243.	3.8	10
1066	Dynamic Coordination Structure Evolutions of Atomically Dispersed Metal Catalysts for Electrocatalytic Reactions. Advanced Materials Interfaces, 2023, 10, .	1.9	8
1067	Etching-Induced Surface Reconstruction of NiMoO4 for Oxygen Evolution Reaction. Nano-Micro Letters, 2023, 15, .	14.4	39
1068	Cobalt Sulfide (Co9S8)-Based Materials with Different Dimensions: Properties, Preparation and Applications in Photo/Electric Catalysis and Energy Storage. Photochem, 2023, 3, 15-37.	1.3	0
1069	Single Cobalt Atoms Immobilized on Palladiumâ€Based Nanosheets as 2D Singleâ€Atom Alloy for Efficient Hydrogen Evolution Reaction. Small, 2023, 19, .	5.2	10
1070	Controllable synthesis of nanostructured nickel phosphosulfide by reduction of mixtures of Na4P2S6 and NiCl2 with low P/Ni ratios in hydrogen plasma. Catalysis Today, 2023, 423, 113999.	2.2	2
1071	Earth-abundant photoelectrodes for water splitting and alternate oxidation reactions: Recent advances and future perspectives. Progress in Materials Science, 2023, 134, 101073.	16.0	15
1072	Graft-growth of CoCo-PBA on defect-rich Cu1.94S arrays for high-current-density water splitting. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 660, 130823.	2.3	3

#	Article	IF	CITATIONS
1073	Ni and O co-modified MoS2 as universal SERS substrate for the detection of different kinds of substances. Journal of Colloid and Interface Science, 2023, 635, 1-11.	5.0	7
1074	Efficient Hydrogen and Oxygen Evolution Catalysis Using 3D-Structured Nickel Phosphosulfide Nanosheets in Alkaline Media. Molecules, 2023, 28, 315.	1.7	2
1075	Superaerophilic/superaerophobic cooperative electrode for efficient hydrogen evolution reaction via enhanced mass transfer. Science Advances, 2023, 9, .	4.7	36
1076	The synthesis, properties, and potential applications of CoS2 as a transition metal dichalcogenide (TMD). International Journal of Hydrogen Energy, 2023, 48, 15831-15878.	3.8	15
1077	Structure, materials, and preparation of photoelectrodes. , 2023, , 83-174.		1
1078	MXene Derivatives for Energy Storage and Conversions. Small Methods, 2023, 7, .	4.6	12
1079	Graphdiyneâ€Based Singleâ€Atom Catalysts with Different Coordination Environments. Angewandte Chemie, 2023, 135, .	1.6	1
1080	Hierarchical phosphorus-oxygen incorporated cobalt sulfide hollow micro/nano-reactor for highly-efficient electrocatalytic overall water splitting. Chemical Engineering Journal, 2023, 465, 142853.	6.6	7
1081	Cr-added nickel sulfides as electrocatalysts for oxygen evolution reaction. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2023, 290, 116295.	1.7	0
1082	A flow-through electrode for hydrogen production from water splitting by mitigating bubble induced overpotential. Journal of Power Sources, 2023, 561, 232733.	4.0	8
1083	Graphdiyneâ€Based Singleâ€Atom Catalysts with Different Coordination Environments. Angewandte Chemie - International Edition, 2023, 62, .	7.2	25
1084	Nanoarchitectonics of Layered Metal Chalcogenides-Based Ternary Electrocatalyst for Water Splitting. Energies, 2023, 16, 1669.	1.6	3
1085	Nanosized amorphous nickel-boron alloy electrocatalysts for hydrogen evolution reaction under alkaline conditions. Journal of Fuel Chemistry and Technology, 2023, 51, 197-204.	0.9	2
1086	Preparation of 3D Nd2O3-NiSe-Modified Nitrogen-Doped Carbon and Its Electrocatalytic Oxidation of Methanol and Urea. Nanomaterials, 2023, 13, 814.	1.9	1
1087	In Situ Surface Restructuring of Amorphous Ni-Doped CoMo Phosphate-Based Three-Dimensional Networked Nanosheets: Highly Efficient and Durable Electrocatalyst for Overall Alkaline Water Splitting. ACS Applied Materials & Interfaces, 2023, 15, 16571-16583.	4.0	5
1088	Recent Advancements in Photoelectrochemical Water Splitting for Hydrogen Production. Electrochemical Energy Reviews, 2023, 6, .	13.1	16
1089	Designing electrocatalysts for seawater splitting: surface/interface engineering toward enhanced electrocatalytic performance. Green Chemistry, 2023, 25, 3767-3790.	4.6	20
1090	Revealing the In Situ Evolution of Tetrahedral NiMoO ₄ Micropillar Array for Energyâ€Efficient Alkaline Hydrogen Production Assisted by Urea Electrolysis. Small Structures, 2023, 4,	6.9	12

#	Article	IF	CITATIONS
1091	Dopant triggered atomic configuration activates water splitting to hydrogen. Nature Communications, 2023, 14, .	5.8	11
1094	Recent advances in interface engineering of Fe/Co/Ni-based heterostructure electrocatalysts for water splitting. Materials Horizons, 2023, 10, 2312-2342.	6.4	13
1104	Heterointerface promoted trifunctional electrocatalysts for all temperature high-performance rechargeable Zn–air batteries. Nanoscale Horizons, 2023, 8, 921-934.	4.1	5
1109	2D transition metal-based phospho-chalcogenides and their applications in photocatalytic and electrocatalytic hydrogen evolution reactions. Journal of Materials Chemistry A, 2023, 11, 16933-16962.	5.2	9
1112	Research and Development trend of Utilizing Solar Energy in GCC countries. , 2023, , .		0