Six enzymes from mayapple that complete the biosynth aglycone

Science 349, 1224-1228 DOI: 10.1126/science.aac7202

Citation Report

#	ARTICLE	IF	CITATIONS
2	Discovery of Unclustered Fungal Indole Diterpene Biosynthetic Pathways through Combinatorial Pathway Reassembly in Engineered Yeast. Journal of the American Chemical Society, 2015, 137, 13724-13727.	6.6	90
3	Fighting cancer while saving the mayapple. Science, 2015, 349, 1167-1168.	6.0	6
4	Molecular Approaches to Screen Bioactive Compounds from Endophytic Fungi. Frontiers in Microbiology, 2016, 7, 1774.	1.5	61
5	De Novo Transcriptomes of Forsythia koreana Using a Novel Assembly Method: Insight into Tissue- and Species-Specific Expression of Lignan Biosynthesis-Related Gene. PLoS ONE, 2016, 11, e0164805.	1.1	26
6	Canola engineered with a microalgal polyketide synthase-like system produces oil enriched in docosahexaenoic acid. Nature Biotechnology, 2016, 34, 881-887.	9.4	101
8	A Workflow for Studying Specialized Metabolism in Nonmodel Eukaryotic Organisms. Methods in Enzymology, 2016, 576, 69-97.	0.4	18
9	Comparative Biochemistry and In Vitro Pathway Reconstruction as Powerful Partners in Studies of Metabolic Diversity. Methods in Enzymology, 2016, 576, 1-17.	0.4	9
10	Plant metabolism, the diverse chemistry set of the future. Science, 2016, 353, 1232-1236.	6.0	180
11	Transcriptome-wide identification and characterization of CAD isoforms specific for podophyllotoxin biosynthesis from Podophyllum hexandrum. Plant Molecular Biology, 2016, 92, 1-23.	2.0	18
12	Mining Enzyme Diversity of Transcriptome Libraries through DNA Synthesis for Benzylisoquinoline Alkaloid Pathway Optimization in Yeast. ACS Synthetic Biology, 2016, 5, 1505-1518.	1.9	19
13	Metabolic Engineering of Lignan Biosynthesis Pathways for the Production of Transgenic Plant-Based Foods. , 2016, , 1-26.		2
14	Plant metabolic clusters – from genetics to genomics. New Phytologist, 2016, 211, 771-789.	3.5	288
15	Building Bridges: Biocatalytic C–C-Bond Formation toward Multifunctional Products. ACS Catalysis, 2016, 6, 4286-4311.	5.5	155
16	Functional Promiscuity of Two Divergent Paralogs of Type III Plant Polyketide Synthases. Plant Physiology, 2016, 171, 2599-2619.	2.3	35
17	Computational genomic identification and functional reconstitution of plant natural product biosynthetic pathways. Natural Product Reports, 2016, 33, 951-962.	5.2	77
18	Chilling temperature stimulates growth, gene over-expression and podophyllotoxin biosynthesis in Podophyllum hexandrum Royle. Plant Physiology and Biochemistry, 2016, 107, 197-203.	2.8	25
19	Extending the biosynthetic repertoires of cyanobacteria and chloroplasts. Plant Journal, 2016, 87, 87-102.	2.8	52
20	Biocatalysts from alkaloid producing plants. Current Opinion in Chemical Biology, 2016, 31, 22-30.	2.8	38

#	Article	IF	CITATIONS
21	Computational strategies for genome-based natural product discovery and engineering in fungi. Fungal Genetics and Biology, 2016, 89, 29-36.	0.9	75
22	Recent advances in biosynthesis of bioactive compounds in traditional Chinese medicinal plants. Science Bulletin, 2016, 61, 3-17.	4.3	103
23	Orthogonal Assays Clarify the Oxidative Biochemistry of Taxol P450 CYP725A4. ACS Chemical Biology, 2016, 11, 1445-1451.	1.6	35
24	The Amaryllidaceae alkaloids: biosynthesis and methods for enzyme discovery. Phytochemistry Reviews, 2016, 15, 317-337.	3.1	60
25	Integrated omics analysis of specialized metabolism in medicinal plants. Plant Journal, 2017, 90, 764-787.	2.8	185
26	Biosynthesis of cabbage phytoalexins from indole glucosinolate. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1910-1915.	3.3	72
27	Reference genes for quantitative RT-PCR of the pilocarpine producer Pilocarpus microphyllus and two other Pilocarpus species. Theoretical and Experimental Plant Physiology, 2017, 29, 51-59.	1.1	1
28	A Global Coexpression Network Approach for Connecting Genes to Specialized Metabolic Pathways in Plants. Plant Cell, 2017, 29, 944-959.	3.1	225
29	Small Cells for Big Ideas: The Cytotoxic Podophyllotoxin and the Long Journey in Discovering Its Biosynthetic Pathway. , 2017, , 177-199.		2
30	Metabolic Engineering of Lignan Biosynthesis Pathways for the Production of Transgenic Plant-Based Foods. Reference Series in Phytochemistry, 2017, , 373-398.	0.2	1
31	The C-Domain of Oleuropein <i>β</i> -Glucosidase Assists in Protein Folding and Sequesters the Enzyme in Nucleus. Plant Physiology, 2017, 174, 1371-1383.	2.3	14
32	Harnessing plant metabolic diversity. Current Opinion in Chemical Biology, 2017, 40, 24-30.	2.8	56
33	Meeting Proceedings ICBS2016—Translating the Power of Chemical Biology to Clinical Advances. ACS Chemical Biology, 2017, 12, 869-877.	1.6	2
34	Oxidative Cyclization in Natural Product Biosynthesis. Chemical Reviews, 2017, 117, 5226-5333.	23.0	288
35	Synthesis of Câ€Glucosylated Octaketide Anthraquinones in <i>Nicotiana benthamiana</i> by Using a Multispeciesâ€Based Biosynthetic Pathway. ChemBioChem, 2017, 18, 1893-1897.	1.3	24
36	Ethnophytotechnology: Harnessing the Power of Ethnobotany with Biotechnology. Trends in Biotechnology, 2017, 35, 802-806.	4.9	12
37	Biotechnological interventions for harnessing podophyllotoxin from plant and fungal species: current status, challenges, and opportunities for its commercialization. Critical Reviews in Biotechnology, 2017, 37, 739-753.	5.1	27
38	Engineering biosynthesis of high-value compounds in photosynthetic organisms. Critical Reviews in Biotechnology, 2017, 37, 779-802.	5.1	15

#	Article	IF	CITATIONS
39	Lignan Biosynthesis for Food Bioengineering. , 2017, , 351-379.		1
40	Computational Studies and Biosynthesis of Natural Products with Promising Anticancer Properties. , 2017, , .		5
41	Engineering microbial cell factories for the production of plant natural products: from design principles to industrial-scale production. Microbial Cell Factories, 2017, 16, 125.	1.9	95
42	Towards Metabolic Engineering of Podophyllotoxin Production. , 0, , .		5
43	Expanding the roles for 2-oxoglutarate-dependent oxygenases in plant metabolism. Natural Product Reports, 2018, 35, 721-734.	5.2	33
44	Engineering yeast for the production of breviscapine by genomic analysis and synthetic biology approaches. Nature Communications, 2018, 9, 448.	5.8	146
45	Herbal genomics as tools for dissecting new metabolic pathways of unexplored medicinal plants and drug discovery. Biochimie Open, 2018, 6, 9-16.	3.2	66
46	Cytotoxic Deoxypodophyllotoxin Can Be Extracted in High Purity from Anthriscus sylvestris Roots by Supercritical Carbon Dioxide. Planta Medica, 2018, 84, 544-550.	0.7	4
47	Amazing Diversity in Biochemical Roles of Fe(II)/2-Oxoglutarate Oxygenases. Trends in Biochemical Sciences, 2018, 43, 517-532.	3.7	147
48	A pathway for every product? Tools to discover and design plant metabolism. Plant Science, 2018, 273, 61-70.	1.7	18
49	Transcriptomes of Podophyllum hexandrum unravel candidate miRNAs and their association with the biosynthesis of secondary metabolites. Journal of Plant Biochemistry and Biotechnology, 2018, 27, 46-54.	0.9	9
50	Natural product modulators of human sensations and mood: molecular mechanisms and therapeutic potential. Chemical Society Reviews, 2018, 47, 1592-1637.	18.7	28
51	In perspective: Potential medicinal plant resources of Kashmir Himalayas, their domestication and cultivation for commercial exploitation. Journal of Applied Research on Medicinal and Aromatic Plants, 2018, 8, 10-25.	0.9	21
52	Tropinone synthesis via an atypical polyketide synthase and P450-mediated cyclization. Nature Communications, 2018, 9, 5281.	5.8	71
53	D ₂ 0 Labeling to measure active biosynthesis of natural products in medicinal plants. AICHE Journal, 2018, 64, 4319-4330.	1.8	14
54	Mechanistic Elucidation of Two Catalytically Versatile Iron(II)- and α-Ketoglutarate-Dependent Enzymes: Cases Beyond Hydroxylation. Comments on Inorganic Chemistry, 2018, 38, 127-165.	3.0	4
55	Transcriptomics-based identification and characterization of 11 CYP450 genes of <italic>Panax ginseng</italic> responsive to MeJA. Acta Biochimica Et Biophysica Sinica, 2018, 50, 1094-1103.	0.9	13
56	Characterization of gossypol biosynthetic pathway. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E5410-E5418.	3.3	105

#	Article	IF	CITATIONS
57	Engineering terpenoid production through transient expression in Nicotiana benthamiana. Plant Cell Reports, 2018, 37, 1431-1441.	2.8	86
58	Modern approaches to study plant–insect interactions in chemical ecology. Nature Reviews Chemistry, 2018, 2, 50-64.	13.8	97
59	High-elevation cultivation increases anti-cancer podophyllotoxin accumulation in Podophyllum hexandrum. Industrial Crops and Products, 2018, 121, 338-344.	2.5	23
60	The Integration of Metabolomics and Next-Generation Sequencing Data to Elucidate the Pathways of Natural Product Metabolism in Medicinal Plants. Planta Medica, 2018, 84, 855-873.	0.7	47
61	Adaptive mechanisms of medicinal plants along altitude gradient: contribution of proteomics. Biologia Plantarum, 2018, 62, 630-640.	1.9	12
62	Discovery of UDP-Glycosyltransferases and BAHD-Acyltransferases Involved in the Biosynthesis of the Antidiabetic Plant Metabolite Montbretin A. Plant Cell, 2018, 30, 1864-1886.	3.1	41
63	Plastome organization, genome-based phylogeny and evolution of plastid genes in Podophylloideae (Berberidaceae). Molecular Phylogenetics and Evolution, 2018, 127, 978-987.	1.2	44
64	Metalloenzymes in natural product biosynthetic pathways. Natural Product Reports, 2018, 35, 612-614.	5.2	4
65	Mapping podophyllotoxin biosynthesis and growth-related transcripts with high elevation in Sinopodophyllum hexandrum. Industrial Crops and Products, 2018, 124, 510-518.	2.5	23
66	Development of Photoaffinity Probe for the Discovery of Steviol Glycosides Biosynthesis Pathway in <i>Stevia rebuadiana</i> and Rapid Substrate Screening. ACS Chemical Biology, 2018, 13, 1944-1949.	1.6	28
67	Synthetic biology strategies toward heterologous phytochemical production. Natural Product Reports, 2018, 35, 902-920.	5.2	45
68	Genetics and Genomics of Linum. Plant Genetics and Genomics: Crops and Models, 2019, , .	0.3	14
69	The biosynthetic origin of psychoactive kavalactones in kava. Nature Plants, 2019, 5, 867-878.	4.7	58
70	Nanotubes Effectively Deliver siRNA to Intact Plant Cells and Protect siRNA Against Nuclease Degradation. SSRN Electronic Journal, 2019, , .	0.4	6
71	Asymmetric Chemoenzymatic Synthesis of (â^')â€Podophyllotoxin and Related Aryltetralin Lignans. Angewandte Chemie, 2019, 131, 11783-11786.	1.6	10
72	Plant Networks as Traits and Hypotheses: Moving Beyond Description. Trends in Plant Science, 2019, 24, 840-852.	4.3	43
73	Repeated evolution of cytochrome P450-mediated spiroketal steroid biosynthesis in plants. Nature Communications, 2019, 10, 3206.	5.8	110
74	Gene Silencing and Over-Expression Studies in Concurrence With Promoter Specific Elicitations Reveal the Central Role of WsCYP85A69 in Biosynthesis of Triterpenoids in Withania somnifera (L.) Dunal. Frontiers in Plant Science, 2019, 10, 842.	1.7	7

#	Article	IF	CITATIONS
75	<i>De novo</i> transcriptome analysis of needles of <i>Thujopsis dolabrata</i> var. <i>hondae</i> . Plant Biotechnology, 2019, 36, 113-118.	0.5	3
76	The Sweet Side of Plant-Specialized Metabolism. Cold Spring Harbor Perspectives in Biology, 2019, 11, a034744.	2.3	45
77	A sterically encumbered photoredox catalyst enables the unified synthesis of the classical lignan family of natural products. Chemical Science, 2019, 10, 7746-7754.	3.7	20
78	Engineering New Branches of the Kynurenine Pathway To Produce Oxo-(2-aminophenyl) and Quinoline Scaffolds in Yeast. ACS Synthetic Biology, 2019, 8, 2735-2745.	1.9	5
80	Identification and analysis of full-length transcripts involved in the biosynthesis of insecticidal lignan (+)-haedoxan A in Phryma leptostachya. Industrial Crops and Products, 2019, 142, 111868.	2.5	7
81	Harnessing evolutionary diversification of primary metabolism for plant synthetic biology. Journal of Biological Chemistry, 2019, 294, 16549-16566.	1.6	27
82	Unleashing the Synthetic Power of Plant Oxygenases: From Mechanism to Application. Plant Physiology, 2019, 179, 813-829.	2.3	28
83	Asymmetric Chemoenzymatic Synthesis of (â^')â€Podophyllotoxin and Related Aryltetralin Lignans. Angewandte Chemie - International Edition, 2019, 58, 11657-11660.	7.2	54
84	Synthetic biology strategies for microbial biosynthesis of plant natural products. Nature Communications, 2019, 10, 2142.	5.8	254
85	Flavonol Biosynthesis Genes and Their Use in Engineering the Plant Antidiabetic Metabolite Montbretin A. Plant Physiology, 2019, 180, 1277-1290.	2.3	39
86	Friedelaneâ€ŧype triterpene cyclase in celastrol biosynthesis from <i>Tripterygium wilfordii</i> and its application for triterpenes biosynthesis in yeast. New Phytologist, 2019, 223, 722-735.	3.5	80
87	Pinoresinol–lariciresinol reductases, key to the lignan synthesis in plants. Planta, 2019, 249, 1695-1714.	1.6	46
88	Chemoenzymatic Total Synthesis of Deoxyâ€; <i>epi</i> â€; and Podophyllotoxin and a Biocatalytic Kinetic Resolution of Dibenzylbutyrolactones. Angewandte Chemie - International Edition, 2019, 58, 8226-8230.	7.2	56
89	Recent Advances in Lignan OMT Studies. Mokuzai Gakkai Shi, 2019, 65, 1-12.	0.2	5
90	Sustainable production of natural phenolics for functional food applications. Journal of Functional Foods, 2019, 57, 233-254.	1.6	80
91	Evaluation of reference genes for normalizing RT-qPCR in leaves and suspension cells of Cephalotaxus hainanensis under various stimuli. Plant Methods, 2019, 15, 31.	1.9	22
92	Chemoenzymatische Totalsynthese von Deoxyâ€, <i>epi</i> ―und Podophyllotoxin sowie biokatalytische kinetische Racematspaltung von Dibenzylbutyrolactonen. Angewandte Chemie, 2019, 131, 8310-8315.	1.6	14
93	The Molecular and Structural Basis of O-methylation Reaction in Coumarin Biosynthesis in Peucedanum praeruptorum Dunn. International Journal of Molecular Sciences, 2019, 20, 1533.	1.8	19

#	Article	IF	CITATIONS
94	Complete biosynthetic pathways of ascofuranone and ascochlorin in <i>Acremonium egyptiacum</i> . Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 8269-8274.	3.3	63
95	An Automated Data-Driven Pipeline for Improving Heterologous Enzyme Expression. ACS Synthetic Biology, 2019, 8, 474-481.	1.9	24
96	High aspect ratio nanomaterials enable delivery of functional genetic material without DNA integration in mature plants. Nature Nanotechnology, 2019, 14, 456-464.	15.6	393
97	Insights into Lignan Composition and Biosynthesis in Stinging Nettle (Urtica dioica L.). Molecules, 2019, 24, 3863.	1.7	9
98	Enzymatic <i>O</i> -Glycosylation of Etoposide Aglycone by Exploration of the Substrate Promiscuity for Glycosyltransferases. ACS Synthetic Biology, 2019, 8, 2718-2725.	1.9	6
99	Total Biosynthesis for Milligram-Scale Production of Etoposide Intermediates in a Plant Chassis. Journal of the American Chemical Society, 2019, 141, 19231-19235.	6.6	62
101	The gene expression and enzymatic activity of pinoresinol-lariciresinol reductase during wood formation in <i>Taiwania cryptomerioides</i> Hayata. Holzforschung, 2019, 73, 197-208.	0.9	7
102	Reaction Mechanism of a Nonheme Iron Enzyme Catalyzed Oxidative Cyclization via C–C Bond Formation. Organic Letters, 2019, 21, 228-232.	2.4	36
103	De novo biosynthesis of liquiritin in Saccharomyces cerevisiae. Acta Pharmaceutica Sinica B, 2020, 10, 711-721.	5.7	19
104	Functional genomics analysis reveals two novel genes required for littorine biosynthesis. New Phytologist, 2020, 225, 1906-1914.	3.5	52
105	Computational Tools for Discovering and Engineering Natural Product Biosynthetic Pathways. IScience, 2020, 23, 100795.	1.9	44
106	Beyond the semi-synthetic artemisinin: metabolic engineering of plant-derived anti-cancer drugs. Current Opinion in Biotechnology, 2020, 65, 17-24.	3.3	42
107	High-throughput metabolomic and transcriptomic analyses vet the potential route of cerpegin biosynthesis in two varieties of Ceropegia bulbosa Roxb Planta, 2020, 251, 28.	1.6	1
108	Assembly of Plant Enzymes in <i>E. coli</i> for the Production of the Valuable (â^')-Podophyllotoxin Precursor (â^')-Pluviatolide. ACS Synthetic Biology, 2020, 9, 3091-3103.	1.9	13
109	Molecules from nature: Reconciling biodiversity conservation and global healthcare imperatives for sustainable use of medicinal plants and fungi. Plants People Planet, 2020, 2, 463-481.	1.6	88
110	Coexpression network analysis reveals an MYB transcriptional activator involved in capsaicinoid biosynthesis in hot peppers. Horticulture Research, 2020, 7, 162.	2.9	49
111	Discovery and engineering of colchicine alkaloid biosynthesis. Nature, 2020, 584, 148-153.	13.7	152
112	Radicalâ€Cation Cascade to Aryltetralin Cyclic Ether Lignans Under Visibleâ€Light Photoredox Catalysis. Angewandte Chemie, 2020, 132, 21381-21388.	1.6	2

		CITATION REPORT		
#	Article		IF	CITATIONS
113	Biocatalytic Oxidative Cyclization with 2-ODD-PH. Trends in Chemistry, 2020, 2, 954-9.	55.	4.4	0
114	Networkâ€based approaches for understanding gene regulation and function in plants 2020, 104, 302-317.	. Plant Journal,	2.8	35
115	Quinovic acid purified from medicinal plant Fagonia indica mediates anticancer effects receptor 5. Molecular and Cellular Biochemistry, 2020, 474, 159-169.	via death	1.4	5
116	Radical ation Cascade to Aryltetralin Cyclic Ether Lignans Under Visible‣ight Phot Angewandte Chemie - International Edition, 2020, 59, 21195-21202.	oredox Catalysis.	7.2	18
117	Synthetic biology for natural product drug production and engineering. Current Opinio Biology, 2020, 58, 137-145.	n in Chemical	2.8	21
118	Transcriptome Analysis of Different Tissues Reveals Key Genes Associated With Galantl Biosynthesis in Lycoris longituba. Frontiers in Plant Science, 2020, 11, 519752.	namine	1.7	13
119	Candidate genes involved in the biosynthesis of lignan in Schisandra chinensis fruit bas transcriptome and metabolomes analysis. Chinese Journal of Natural Medicines, 2020,	ed on 18, 684-695.	0.7	8
120	Broadening the scope of biocatalytic C–C bond formation. Nature Reviews Chemistry	y, 2020, 4, 334-346.	13.8	71
121	Temperature-regulated anatomical and gene-expression changes in Sinopodophyllum h seedlings. Industrial Crops and Products, 2020, 152, 112479.	lexandrum	2.5	12
122	A novel podophyllotoxin derivative with higher anti-tumor activity produced via 4′-demethylepipodophyllotoxin biotransformation by Penicillium purpurogenum. Pro Biochemistry, 2020, 96, 220-227.	ocess	1.8	4
123	Cyperus articulatus L. (Cyperaceae) Rhizome Essential Oil Causes Cell Cycle Arrest in th and Cell Death in HepG2 Cells and Inhibits the Development of Tumors in a Xenograft I Molecules, 2020, 25, 2687.	ne G2/M Phase Model.	1.7	14
124	Exploring Uncharted Territories of Plant Specialized Metabolism in the Postgenomic Era Review of Plant Biology, 2020, 71, 631-658.	a. Annual	8.6	87
125	Towards the Microbial Production of Plant-Derived Anticancer Drugs. Trends in Cancer, 444-448.	2020, 6,	3.8	38
126	<i>In Vivo</i> Production of Five Crocins in the Engineered <i>Escherichia coli</i> . ACS Biology, 2020, 9, 1160-1168.	Synthetic	1.9	17
127	Discovery and modification of cytochrome P450 for plant natural products biosynthesi and Systems Biotechnology, 2020, 5, 187-199.	s. Synthetic	1.8	47
128	Carbon nanocarriers deliver siRNA to intact plant cells for efficient gene knockdown. So Advances, 2020, 6, eaaz0495.	cience	4.7	147
129	Current advances in acteoside biosynthesis pathway elucidation and biosynthesis. $F\tilde{A}_{\neg 1}$ 142, 104495.	toterapìâ, 2020,	1.1	24
130	Spatial transcriptional dynamics of geographically separated genotypes revealed key re podophyllotoxin biosynthesis in Podophyllum hexandrum. Industrial Crops and Product 112247.	gulators of s, 2020, 147,	2.5	11

		CITATION REPORT		
#	Article		IF	CITATIONS
131	Advanced Strategies for Production of Natural Products in Yeast. IScience, 2020, 23, 1	00879.	1.9	107
132	Harnessing the biocatalytic potential of iron- and α-ketoglutarate-dependent dioxygen product total synthesis. Natural Product Reports, 2020, 37, 1065-1079.	ases in natural	5.2	47
133	Identifying Missing Biosynthesis Enzymes of Plant Natural Products. Trends in Pharmac Sciences, 2020, 41, 142-146.	ological	4.0	37
134	Green production of silybin and isosilybin by merging metabolic engineering approache catalysis. Metabolic Engineering, 2020, 59, 44-52.	es and enzymatic	3.6	47
135	Controllable one-pot synthesis for scaffold diversity <i>via</i> visible-light photoredox- Giese reaction and further transformation. Chemical Communications, 2020, 56, 2873	catalyzed -2876.	2.2	12
136	Pinoresinolâ€lariciresinol reductase: Substrate versatility, enantiospecificity, and kineti Chirality, 2020, 32, 770-789.	c properties.	1.3	5
137	Genome mining as a biotechnological tool for the discovery of novel marine natural pro Critical Reviews in Biotechnology, 2020, 40, 571-589.	oducts.	5.1	26
138	Biotechnological Exploration of Transformed Root Culture for Value-Added Products. T Biotechnology, 2021, 39, 137-149.	rends in	4.9	71
139	An Introduction to the Process of Cell, Tissue, and Organ Differentiation, and Production Secondary Metabolites. Reference Series in Phytochemistry, 2021, , 1-22.	on of	0.2	4
140	Biosynthetic Intermediate Probes for Visualizing and Identifying the Biosynthetic Enzyr Metabolites. ChemBioChem, 2021, 22, 982-984.	nes of Plant	1.3	2
141	Effect of UVâ€B radiation on growth, flavonoid and podophyllotoxin accumulation, and expression in <i>Sinopodophyllum hexandrum</i> . Plant Biology, 2021, 23, 202-209.	l related gene	1.8	22
142	Contribution of phenylpropanoid metabolism to plant development and plant–enviro interactions. Journal of Integrative Plant Biology, 2021, 63, 180-209.	onment	4.1	509
143	Mimicking oxidative radical cyclizations of lignan biosynthesis using redox-neutral phot Nature Chemistry, 2021, 13, 24-32.	cocatalysis.	6.6	20
144	Deciphering Pyrrolidine and Olefin Formation Mechanism in Kainic Acid Biosynthesis. A 2021, 11, 278-282.	CS Catalysis,	5.5	17
145	Biocatalytic routes to anti-viral agents and their synthetic intermediates. Chemical Soc 2021, 50, 1968-2009.	iety Reviews,	18.7	39
146	Rerouting plant terpene biosynthesis enables momilactone pathway elucidation. Natur Biology, 2021, 17, 205-212.	e Chemical	3.9	77
147	Higher Plant Sources of Cancer Chemotherapeutic Agents and the Potential Role of Bic Approaches for Their Supply. Sustainable Development and Biodiversity, 2021, , 545-58	otechnological 31.	1.4	0
148	Using Gene Expression to Study Specialized Metabolism—A Practical Guide. Frontiers 2020, 11, 625035.	in Plant Science,	1.7	24

#	ARTICLE	IF	CITATIONS
149	Biosynthesis and synthetic biology of psychoactive natural products. Chemical Society Reviews, 2021, 50, 6950-7008.	18.7	32
150	Lignans of Sesame (Sesamum indicum L.): A Comprehensive Review. Molecules, 2021, 26, 883.	1.7	92
151	Derivatives of Deoxypodophyllotoxin Induce Apoptosis through Bcl-2/Bax Proteins Expression. Anti-Cancer Agents in Medicinal Chemistry, 2021, 21, 611-620.	0.9	7
152	Tandem UGT71B5s Catalyze Lignan Glycosylation in Isatis indigotica With Substrates Promiscuity. Frontiers in Plant Science, 2021, 12, 637695.	1.7	8
154	Dirigent Proteins Guide Asymmetric Heterocoupling for the Synthesis of Complex Natural Product Analogues. Journal of the American Chemical Society, 2021, 143, 5011-5021.	6.6	21
155	Color variation in young and senescent leaves of Formosan sweet gum (<i>Liquidambar) Tj ETQq1 1 0.784314 rg 1750-1763.</i>	gBT /Overlo 2.6	ock 10 Tf 50 13
156	Versatility in acyltransferase activity completes chicoric acid biosynthesis in purple coneflower. Nature Communications, 2021, 12, 1563.	5.8	45
157	Quality markers based on phytochemical analysis and anti-inflammatory screening: An integrated strategy for the quality control of Dalbergia odorifera by UHPLC-Q-Orbitrap HRMS. Phytomedicine, 2021, 84, 153511.	2.3	17
158	Physiological and Transcriptomic Analysis Provide Insight into Low Temperature Enhancing Hypericin Biosynthesis in Hypericum perforatum. Molecules, 2021, 26, 2294.	1.7	5
159	Identification and selection of reference genes for gene expression analysis by quantitative real-time PCR in Suaeda glauca's response to salinity. Scientific Reports, 2021, 11, 8569.	1.6	13
160	Podophyllotoxin: History, Recent Advances and Future Prospects. Biomolecules, 2021, 11, 603.	1.8	80
161	Computationally Prospecting Potential Pathways from Lignin Monomers and Dimers toward Aromatic Compounds. ACS Synthetic Biology, 2021, 10, 1064-1076.	1.9	4
162	Structure-based engineering of substrate specificity for pinoresinol-lariciresinol reductases. Nature Communications, 2021, 12, 2828.	5.8	16
163	Biochemistry of Terpenes and Recent Advances in Plant Protection. International Journal of Molecular Sciences, 2021, 22, 5710.	1.8	96
164	Crosstalk of Multi-Omics Platforms with Plants of Therapeutic Importance. Cells, 2021, 10, 1296.	1.8	16
165	Mining genomes to illuminate the specialized chemistry of life. Nature Reviews Genetics, 2021, 22, 553-571.	7.7	111
166	Co-expression of hydrolase genes improves seed germination of Sinopodophyllum hexandrum. Industrial Crops and Products, 2021, 164, 113414.	2.5	10
167	A metabolic regulon reveals early and late acting enzymes in neuroactive Lycopodium alkaloid biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	38

#	Article	IF	CITATIONS
168	State-of-the-Art Biocatalysis. ACS Central Science, 2021, 7, 1105-1116.	5.3	59
169	Enzymatic Friedelâ€Crafts Alkylation Using Squaleneâ€Hopene Cyclases. ChemCatChem, 2021, 13, 3405-3409.	1.8	9
170	Engineering cellular metabolite transport for biosynthesis of computationally predicted tropane alkaloid derivatives in yeast. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	32
171	Integrated transcriptomic and metabolomic analysis provides insight into the regulation of leaf senescence in rice. Scientific Reports, 2021, 11, 14083.	1.6	12
172	Practical Enzymatic Production of Carbocycles. Chemistry - A European Journal, 2021, 27, 11773-11794.	1.7	3
173	Characterization of two closely related citrus cultivars using UPLC-ESI-MS/MS-based widely targeted metabolomics. PLoS ONE, 2021, 16, e0254759.	1.1	7
174	Recent Advances in the Synthetic Biology of Natural Drugs. Frontiers in Bioengineering and Biotechnology, 2021, 9, 691152.	2.0	12
175	Deep sequencing unravels methyl jasmonate responsive novel miRNAs in Podophyllum hexandrum. Journal of Plant Biochemistry and Biotechnology, 0, , 1.	0.9	4
176	Adaptive mechanisms of plant specialized metabolism connecting chemistry to function. Nature Chemical Biology, 2021, 17, 1037-1045.	3.9	54
177	A plant host, Nicotiana benthamiana, enables the production and study of fungal lignin-degrading enzymes. Communications Biology, 2021, 4, 1027.	2.0	5
178	Biofoundry-assisted expression and characterization of plant proteins. Synthetic Biology, 2021, 6, ysab029.	1.2	14
179	Synthetic biology of plant natural products: From pathway elucidation to engineered biosynthesis in plant cells. Plant Communications, 2021, 2, 100229.	3.6	37
180	Synthesis of (â^')â^'deoxypodophyllotoxin and (â^')â^'epipodophyllotoxin via a multi-enzyme cascade in E. coli. Microbial Cell Factories, 2021, 20, 183.	1.9	8
181	Evaluation of Angelica decursiva reference genes under various stimuli for RT-qPCR data normalization. Scientific Reports, 2021, 11, 18993.	1.6	10
182	Cytochrome P450 catalyses the 29-carboxyl group formation of celastrol. Phytochemistry, 2021, 190, 112868.	1.4	8
183	Comprehensive study of Anthriscus sylvestris lignans. Phytochemistry, 2021, 192, 112958.	1.4	12
184	Non-Heme Mono-Iron Enzymes: Co-Substrate-Dependent Dioxygen Activation. , 2021, , 269-300.		2
185	Medicinal Plants Domestication, Cultivation, Improvement, and Alternative Technologies for the Production of High Value Therapeutics: An Overview. Sustainable Development and Biodiversity, 2021, , 1-29.	1.4	10

#	Article	IF	CITATIONS
186	Metabolic engineering for plant natural products biosynthesis: new procedures, concrete achievements and remaining limits. Natural Product Reports, 2021, 38, 2145-2153.	5.2	48
187	Bioproduction of Anticancer Podophyllotoxin and Related Aryltretralin-Lignans in Hairy Root Cultures of Linum Flavum L Reference Series in Phytochemistry, 2020, , 1-38.	0.2	1
188	An Introduction to the Process of Cell, Tissue, and Organ Differentiation, and Production of Secondary Metabolites. Reference Series in Phytochemistry, 2019, , 1-22.	0.2	4
192	Recent advances in the elucidation of enzymatic function in natural product biosynthesis. F1000Research, 2015, 4, 1399.	0.8	3
193	Recent advances in the elucidation of enzymatic function in natural product biosynthesis. F1000Research, 2015, 4, 1399.	0.8	5
194	Factors Affecting the Metabolite Productions in Endophytes: Biotechnological Approaches for Production of Metabolites. Current Medicinal Chemistry, 2020, 27, 1855-1873.	1.2	12
195	Natural variation of <i>ZmCGT1</i> is responsible for isoorientin accumulation in maize silk. Plant Journal, 2022, 109, 64-76.	2.8	13
197	Quality evaluation of Sinopodophyllum hexandrum (Royle) Ying based on active compounds, bioactivities and RP-HPLC fingerprint. Industrial Crops and Products, 2021, 174, 114159.	2.5	7
199	Bioenergy: Plants and Products. , 2019, , 335-418.		0
200	Linum Lignan and Associated Biochemical Pathways in Human Health and Plant Defense. Plant Genetics and Genomics: Crops and Models, 2019, , 167-193.	0.3	1
201	Strategies that Influence the Production of Secondary Metabolites in Plants. Concepts and Strategies in Plant Sciences, 2019, , 231-270.	0.6	3
203	Characterization of Natural Product Biosynthetic Pathways by In Vitro Reconstitution. , 2020, , 307-317.		1
204	Bioproduction of Anticancer Podophyllotoxin and Related Aryltretralin-Lignans in Hairy Root Cultures of Linum flavum L Reference Series in Phytochemistry, 2021, , 503-540.	0.2	5
205	Genome mining for identification of gene clusters encoding important fungal metabolites. , 2020, , 47-55.		0
206	Dissection of full-length transcriptome and metabolome of <i>Dichocarpum</i> (Ranunculaceae): implications in evolution of specialized metabolism of Ranunculales medicinal plants. PeerJ, 2021, 9, e12428.	0.9	9
207	Supplying plant natural products by yeast cell factories. Current Opinion in Green and Sustainable Chemistry, 2022, 33, 100567.	3.2	14
208	Plant Copper Metalloenzymes As Prospects for New Metabolism Involving Aromatic Compounds. Frontiers in Plant Science, 2021, 12, 692108.	1.7	12
209	Using interdisciplinary, phylogeny-guided approaches to understand the evolution of plant metabolism. Plant Molecular Biology, 2021, , 1.	2.0	7

#	Article	IF	CITATIONS
210	Marine drugs: Biology, pipelines, current and future prospects for production. Biotechnology Advances, 2022, 54, 107871.	6.0	37
211	Toward the Heterologous Biosynthesis of Plant Natural Products: Gene Discovery and Characterization. ACS Synthetic Biology, 2021, 10, 2784-2795.	1.9	12
212	Morus alba L. Leaves – Integration of Their Transcriptome and Metabolomics Dataset: Investigating Potential Genes Involved in Flavonoid Biosynthesis at Different Harvest Times. Frontiers in Plant Science, 2021, 12, 736332.	1.7	10
213	Long-read transcriptome sequencing provides insight into lignan biosynthesis during fruit development in Schisandra chinensis. BMC Genomics, 2022, 23, 17.	1.2	10
214	Recent advances in the total synthesis of 2,7′-cyclolignans. Organic and Biomolecular Chemistry, 2022, 20, 1623-1636.	1.5	6
215	Multi-Omics Data Mining: A Novel Tool for BioBrick Design. , 0, , .		1
216	Natural history–guided omics reveals plant defensive chemistry against leafhopper pests. Science, 2022, 375, eabm2948.	6.0	40
217	Identification of Cyclopropane Formation in the Biosyntheses of Hormaomycins and Belactosins: Sequential Nitration and Cyclopropanation by Metalloenzymes. Angewandte Chemie, 2022, 134, .	1.6	3
219	Fruity, sticky, stinky, spicy, bitter, addictive, and deadly: evolutionary signatures of metabolic complexity in the Solanaceae. Natural Product Reports, 2022, 39, 1438-1464.	5.2	12
220	Structural basis for an unprecedented enzymatic alkylation in cylindrocyclophane biosynthesis. ELife, 2022, 11, .	2.8	7
221	Transcriptome analyses reveal the expression profile of genes related to lignan biosynthesis in Anthriscus sylvestris L. Hoffm. Gen. Physiology and Molecular Biology of Plants, 2022, 28, 333-346.	1.4	1
222	Transcriptomic Analysis Reveals Potential Candidate Pathways and Genes Involved in Toxin Biosynthesis in True Toads. Journal of Heredity, 2022, 113, 311-324.	1.0	3
223	The ease and complexity of identifying and using specialized metabolites for crop engineering. Emerging Topics in Life Sciences, 2022, 6, 153-162.	1.1	3
224	<i>De novo</i> Transcriptome Analysis Revealed the Putative Pathway Genes Involved in Biosynthesis of Moracins in <i>Morus alba</i> L. ACS Omega, 2022, 7, 11343-11352.	1.6	2
225	Exploiting plant transcriptomic databases: Resources, tools, and approaches. Plant Communications, 2022, 3, 100323.	3.6	20
226	Using genome and transcriptome analysis to elucidate biosynthetic pathways. Current Opinion in Biotechnology, 2022, 75, 102708.	3.3	13
227	Identification of Cyclopropane Formation in the Biosyntheses of Hormaomycins and Belactosins: Sequential Nitration and Cyclopropanation by Metalloenzymes. Angewandte Chemie - International Edition, 2022, 61, e202113189.	7.2	18
228	Mechanistic analysis of carbon–carbon bond formation by deoxypodophyllotoxin synthase. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	11

#	Article	IF	CITATIONS
229	A Chromosome-Level Genome of the Camphor Tree and the Underlying Genetic and Climatic Factors for Its Top-Geoherbalism. Frontiers in Plant Science, 2022, 13, 827890.	1.7	9
230	Effect of ploidy level on podophyllotoxin content and expression of genes related to its biosynthesis in callus cultures of Linum album. , 0, , 1.		1
243	Fungal Endophytes: As a Store House of Bioactive Compound. Mini-Reviews in Medicinal Chemistry, 2022, 22, .	1.1	0
244	Investigating Plant Biosynthetic Pathways Using Heterologous Gene Expression: Yeast as a Heterologous Host. Methods in Molecular Biology, 2022, 2489, 369-393.	0.4	3
245	Mechanism of Methyldehydrofosmidomycin Maturation: Use Olefination to Enable Chain Elongation. Journal of the American Chemical Society, 2022, 144, 8257-8266.	6.6	5
246	Engineering the Entrance of a Flavonoid Glycosyltransferase Promotes the Glycosylation of Etoposide Aglycone. ACS Synthetic Biology, 2022, 11, 1874-1880.	1.9	2
247	Research Progress on the Synthetic Biology of Botanical Biopesticides. Bioengineering, 2022, 9, 207.	1.6	7
248	Mushrooms Do Produce Flavonoids: Metabolite Profiling and Transcriptome Analysis of Flavonoid Synthesis in the Medicinal Mushroom Sanghuangporus baumii. Journal of Fungi (Basel, Switzerland), 2022, 8, 582.	1.5	15
250	Identification, Molecular Cloning, and Functional Characterization of a Coniferyl Alcohol Acyltransferase Involved in the Biosynthesis of Dibenzocyclooctadiene Lignans in Schisandra chinensis. Frontiers in Plant Science, 0, 13, .	1.7	7
251	Transgenic Forsythia plants expressing sesame cytochrome P450 produce beneficial lignans. Scientific Reports, 2022, 12, .	1.6	2
252	Taming the radical cation intermediate enabled one-step access to structurally diverse lignans. Nature Communications, 2022, 13, .	5.8	8
253	Plant-based engineering for production of high-valued natural products. Natural Product Reports, 2022, 39, 1492-1509.	5.2	9
254	Metabolome analysis of genus Forsythia related constituents in Forsythia suspensa leaves and fruits using UPLC-ESI-QQQ-MS/MS technique. PLoS ONE, 2022, 17, e0269915.	1.1	3
255	Review of lignans from 2019 to 2021: Newly reported compounds, diverse activities, structure-activity relationships and clinical applications. Phytochemistry, 2022, 202, 113326.	1.4	19
256	Phylogeny and functional characterization of the cinnamyl alcohol dehydrogenase gene family in Phryma leptostachya. International Journal of Biological Macromolecules, 2022, 217, 407-416.	3.6	3
257	Biosynthesis of strychnine. Nature, 2022, 607, 617-622.	13.7	49
258	Making small molecules in plants: A chassis for synthetic biologyâ€based production of plant natural products. Journal of Integrative Plant Biology, 2023, 65, 417-443.	4.1	14
259	Functional diversity and metabolic engineering of plant specialized metabolites. , 0, , .		2

#	Article	IF	CITATIONS
260	Dissection of transcriptome and metabolome insights into the isoquinoline alkaloid biosynthesis during stem development in Phellodendron amurense (Rupr.). Plant Science, 2022, 325, 111461.	1.7	5
261	Deciphering chemical logic of fungal natural product biosynthesis through heterologous expression and genome mining. Natural Product Reports, 2023, 40, 89-127.	5.2	17
262	Biosynthesis, total synthesis, and pharmacological activities of aryltetralin-type lignan podophyllotoxin and its derivatives. Natural Product Reports, 2022, 39, 1856-1875.	5.2	15
263	Integrative omics approaches for biosynthetic pathway discovery in plants. Natural Product Reports, 2022, 39, 1876-1896.	5.2	20
264	Omics in medicinal plants. , 2022, , 561-572.		0
265	Transcriptional Reactivation of Lignin Biosynthesis for the Heterologous Production of Etoposide Aglycone in <i>Nicotiana benthamiana</i> . ACS Synthetic Biology, 2022, 11, 3379-3387.	1.9	7
266	Reconstitution of monoterpene indole alkaloid biosynthesis in genome engineered Nicotiana benthamiana. Communications Biology, 2022, 5, .	2.0	27
267	Metabolomics-centered mining of plant metabolic diversity and function: Past decade and future perspectives. Molecular Plant, 2023, 16, 43-63.	3.9	50
269	Heterologous biosynthesis of isobavachalcone in tobacco based on in planta screening of prenyltransferases. Frontiers in Plant Science, 0, 13, .	1.7	1
270	Biosynthesis Investigations of Terpenoid, Alkaloid, and Flavonoid Antimicrobial Agents Derived from Medicinal Plants. Antibiotics, 2022, 11, 1380.	1.5	17
271	Production of beneficial lignans in heterologous host plants. Frontiers in Plant Science, 0, 13, .	1.7	0
272	Functional characterization of a Colchicum autumnale L. double-bond reductase (CaDBR1) in colchicine biosynthesis. Planta, 2022, 256, .	1.6	2
273	Phenolic profiles and antioxidant activity in different organs of Sinopodophyllum hexandrum. Frontiers in Plant Science, 0, 13, .	1.7	1
274	Two <i>O</i> -Methyltransferases from Phylogenetically Unrelated Cow Parsley (<i>Anthriscus) Tj ETQq1 1 0.784 Lineage-Specific Evolution in Lignan Biosynthesis. Plant and Cell Physiology, 2023, 64, 124-147.</i>	314 rgBT 1.5	Overlock 1 4
275	Gene coexpression networks allow the discovery of two strictosidine synthases underlying monoterpene indole alkaloid biosynthesis in Uncaria rhynchophylla. International Journal of Biological Macromolecules, 2023, 226, 1360-1373.	3.6	2
276	Combinatorial transient gene expression strategies to enhance terpenoid production in plants. Frontiers in Plant Science, 0, 13, .	1.7	2
278	Integration of high-throughput omics technologies in medicinal plant research: The new era of natural drug discovery. Frontiers in Plant Science, 0, 14, .	1.7	1
279	Multi-Omics Approaches for Breeding in Medicinal Plants. , 2023, , 165-191.		1

TION

#	Article	IF	CITATIONS
280	Manipulation of IME4 expression, a global regulation strategy for metabolic engineering in Saccharomyces cerevisiae. Acta Pharmaceutica Sinica B, 2023, 13, 2795-2806.	5.7	2
282	Podophyllotoxin and its derivatives: Potential anticancer agents of natural origin in cancer chemotherapy. Biomedicine and Pharmacotherapy, 2023, 158, 114145.	2.5	24
283	Leveraging synthetic biology and metabolic engineering to overcome obstacles in plant pathway elucidation. Current Opinion in Plant Biology, 2023, 71, 102330.	3.5	10
284	Organocatalytic enantioselective construction of bicyclic Î ³ -butrolactones. Chinese Chemical Letters, 2023, 34, 108121.	4.8	0
285	Plant-derived Anticancer Drugs and Research Trends of Plant Synthetic Biology for Production Improvement. Korean Journal of Medicinal Crop Science, 2022, 30, 462-480.	0.1	0
286	Natural Products in the Post Genomic Era. , 2017, , 690-740.		0
287	Natural Products in the Post-genomic Era. , 2022, , 740-775.		0
288	Illuminating the biosynthesis pathway genes involved in bioactive specific monoterpene glycosides in Paeonia veitchii Lynch by a combination of sequencing platforms. BMC Genomics, 2023, 24, .	1.2	0
289	liUGT71B2 catalyzes lignan glycosylation in Isatis indigotica with substrates specificity. Industrial Crops and Products, 2023, 195, 116483.	2.5	3
290	Changes in growth characteristics and secondary metabolites in Sinopodophyllum hexandrum with increasing age. Industrial Crops and Products, 2023, 196, 116509.	2.5	1
291	Resolving metabolic interaction mechanisms in plant microbiomes. Current Opinion in Microbiology, 2023, 74, 102317.	2.3	4
293	Phenylpropanoid Natural Product Biosynthesis. , 2017, , 356-410.		0
294	Phenylpropanoid Natural Product Biosynthesis. , 2022, , 360-411.		0
295	Tandemly duplicated CYP82Ds catalyze 14-hydroxylation in triptolide biosynthesis and precursor production in Saccharomyces cerevisiae. Nature Communications, 2023, 14, .	5.8	8
296	Deciphering the network of cholesterol biosynthesis in Paris polyphylla laid a base for efficient diosgenin production in plant chassis. Metabolic Engineering, 2023, 76, 232-246.	3.6	4
298	Lateâ€6tage Functionalization for the Divergent Synthesis of Podophyllotoxin Derivatives by Rhodium Catalysis. Chemistry - A European Journal, 2023, 29, .	1.7	0
310	Current Status of Metabolic Engineering of Medicinal Plants for Production of Plant-Derived Secondary Metabolites. Sustainable Development and Biodiversity, 2023, , 819-869.	1.4	0
311	Strategies for Conservation and Sustainable Use of Medicinal Plants. Sustainable Development and Biodiversity, 2023, , 251-263.	1.4	0

#	Article	IF	CITATIONS
326	Hairy root culture: a reliable bioreactor from transgenic plants. , 2024, , 25-50.		0
328	Bacterial cytochrome P450 enzymes: Semi-rational design and screening of mutant libraries in recombinant Escherichia coli cells. Methods in Enzymology, 2023, , .	0.4	0
330	Polyamine-containing natural products: structure, bioactivity, and biosynthesis. Natural Product Reports, 0, , .	5.2	0
337	Carbon–Carbon Bond Formation Via Biocatalytic Transformations. , 2023, , .		0
340	Medicinal Plants and Molecular Techniques. , 2023, , 111-127.		0
356	Engineering biology fundamental for plant-derived bioactive compounds: challenges and prospects. , 2024, , 285-313.		0