New concept ultraviolet photodetectors

Materials Today 18, 493-502 DOI: 10.1016/j.mattod.2015.06.001

Citation Report

#	Article	IF	CITATIONS
1	The Influence of Different Partial Pressure on the Fabrication of InGaO Ultraviolet Photodetectors. Sensors, 2016, 16, 2145.	2.1	14
2	Si(C≡C)4-Based Single-Crystalline Semiconductor: Diamond-like Superlight and Superflexible Wide-Bandgap Material for the UV Photoconductive Device. ACS Applied Materials & Interfaces, 2016, 8, 16551-16554.	4.0	17
3	An organic–inorganic broadband photodetector based on a single polyaniline nanowire doped with quantum dots. Nanoscale, 2016, 8, 15529-15537.	2.8	60
4	Active Adoption of Void Formation in Metal-Oxide for All Transparent Super-Performing Photodetectors. Scientific Reports, 2016, 6, 25461.	1.6	52
5	High-temperature ultraviolet detection based on surface photovoltage effect in SiN passivated n-GaN films. Applied Physics Letters, 2016, 109, .	1.5	5
6	Flexible, self-powered, visible-light detector characterized using a battery-operated, 3D-printed microplasma operated as a light source. , 2016, , .		7
7	Deuterium incorporation and diffusivity in plasma-exposed bulk Ga2O3. Applied Physics Letters, 2016, 109, .	1.5	16
8	Exploring a Leadâ€free Semiconducting Hybrid Ferroelectric with a Zeroâ€Dimensional Perovskiteâ€like Structure. Angewandte Chemie, 2016, 128, 12033-12037.	1.6	20
9	Flexible Photodiodes Based on Nitride Core/Shell p–n Junction Nanowires. ACS Applied Materials & Interfaces, 2016, 8, 26198-26206.	4.0	66
10	Ultrasensitive Selfâ€Powered Solarâ€Blind Deepâ€Ultraviolet Photodetector Based on Allâ€Solidâ€State Polyaniline/MgZnO Bilayer. Small, 2016, 12, 5809-5816.	5.2	268
11	Large scale, highly efficient and self-powered UV photodetectors enabled by all-solid-state n-TiO ₂ nanowell/p-NiO mesoporous nanosheet heterojunctions. Journal of Materials Chemistry C, 2016, 4, 10032-10039.	2.7	168
12	Controllable growth of ZnO nanorods via electrodeposition technique: towards UV photo-detection. Journal Physics D: Applied Physics, 2016, 49, 355103.	1.3	33
13	A surface oxide thin layer of copper nanowires enhanced the UV selective response of a ZnO film photodetector. Journal of Materials Chemistry C, 2016, 4, 8416-8421.	2.7	111
14	Exploring a Leadâ€free Semiconducting Hybrid Ferroelectric with a Zeroâ€Dimensional Perovskiteâ€like Structure. Angewandte Chemie - International Edition, 2016, 55, 11854-11858.	7.2	128
15	Quasi-two-dimensional β-gallium oxide solar-blind photodetectors with ultrahigh responsivity. Journal of Materials Chemistry C, 2016, 4, 9245-9250.	2.7	111
16	Broadband Photoresponse Enhancement of a Highâ€Performance <i>t</i> â€6e Microtube Photodetector by Plasmonic Metallic Nanoparticles. Advanced Functional Materials, 2016, 26, 6641-6648.	7.8	118
17	Scalable-Production, Self-Powered TiO ₂ Nanowell–Organic Hybrid UV Photodetectors with Tunable Performances. ACS Applied Materials & Interfaces, 2016, 8, 33924-33932.	4.0	136
18	Mechanism of Polyfluorene Interlayer in Ultraviolet Photodetector: Barrier-Blocking Electron Transport and Light-Inducing Hole Injection. Journal of Physical Chemistry C, 2016, 120, 26103-26109.	1.5	7

	Сітатіс	CITATION REPORT	
# 19	ARTICLE Nanostructured Photodetectors: From Ultraviolet to Terahertz. Advanced Materials, 2016, 28, 403-433.	IF 11.1	Citations
20	Microstructure, surface morphology and optical properties of Na x Cu y Zn1â^'xâ^'y O thin films. Journal of Materials Science: Materials in Electronics, 2016, 27, 4019-4025.	1.1	4
21	A self-powered sensitive ultraviolet photodetector based on epitaxial graphene on silicon carbide. Chinese Physics B, 2016, 25, 067205.	0.7	15
22	Synthesis and characterization of ZnO flower-like structures. Smart Science, 2016, 4, 8-13.	1.9	6
23	Two-dimensional layered material/silicon heterojunctions for energy and optoelectronic applications. Nano Research, 2016, 9, 72-93.	5.8	62
24	Present perspectives of broadband photodetectors based on nanobelts, nanoribbons, nanosheets and the emerging 2D materials. Nanoscale, 2016, 8, 6410-6434.	2.8	233
25	Ag/ZnO/p-Si/Ag heterojunction and their optoelectronic characteristics under different UV wavelength illumination. Sensors and Actuators A: Physical, 2016, 242, 50-57.	2.0	47
26	Energy band modification for UV photoresponse improvement in a ZnO microrod-quantum dot structure. RSC Advances, 2016, 6, 687-691.	1.7	7
27	Influence of Ti doping on the performance of a ZnO-based photodetector. Materials Research Express, 2017, 4, 024001.	0.8	19
28	Preparation of large scale and highly ordered vanadium pentoxide (V2O5) nanowire arrays towards high performance photodetectors. Journal of Materials Chemistry C, 2017, 5, 1471-1478.	2.7	31
29	Photodetector with superior functional capabilities based on monolayer WO3 developed by atomic layer deposition. Sensors and Actuators B: Chemical, 2017, 245, 954-962.	4.0	30
30	Emerging Trends in Phosphorene Fabrication towards Next Generation Devices. Advanced Science, 2017, 4, 1600305.	5.6	285
31	Wafer-scaled monolayer WO3 windows ultra-sensitive, extremely-fast and stable UV-A photodetection. Applied Surface Science, 2017, 405, 169-177.	3.1	54
32	A self-powered solar-blind ultraviolet photodetector based on a Ag/ZnMgO/ZnO structure with fast response speed. RSC Advances, 2017, 7, 13092-13096.	1.7	39
33	Bandgap Narrowing of Lead-Free Perovskite-Type Hybrids for Visible-Light-Absorbing Ferroelectric Semiconductors. Journal of Physical Chemistry Letters, 2017, 8, 2012-2018.	2.1	71
34	A self-powered high-performance graphene/silicon ultraviolet photodetector with ultra-shallow junction: breaking the limit of silicon?. Npj 2D Materials and Applications, 2017, 1, .	3.9	211
35	Novel Structure for High Performance UV Photodetector Based on BiOCl/ZnO Hybrid Film. Small, 2017, 13, 1700156.	5.2	81
36	Recent progress of ZnMgO ultraviolet photodetector. Chinese Physics B, 2017, 26, 047308.	0.7	35

#	Article	IF	CITATIONS
37	Excitonic metal oxide heterojunction (NiO/ZnO) solar cells for all-transparent module integration. Solar Energy Materials and Solar Cells, 2017, 170, 246-253.	3.0	104
38	High Operating Temperature and Low Power Consumption Boron Nitride Nanosheets Based Broadband UV Photodetector. Scientific Reports, 2017, 7, 42973.	1.6	58
39	Zero-Power-Consumption Solar-Blind Photodetector Based on β-Ga ₂ O ₃ /NSTO Heterojunction. ACS Applied Materials & Interfaces, 2017, 9, 1619-1628.	4.0	308
40	Binary response Se/ZnO pâ€n heterojunction UV photodetector with high on/off ratio and fast speed. Laser and Photonics Reviews, 2017, 11, 1600257.	4.4	177
41	Self-Powered UV-B Photodetector Based on Hybrid Al:MgZnO/PEDOT:PSS Schottky Diode. IEEE Electron Device Letters, 2017, 38, 79-82.	2.2	20
42	Transparent NiO/ZnO heterojunction for ultra-performing zero-bias ultraviolet photodetector on plastic substrate. Journal of Alloys and Compounds, 2017, 729, 796-801.	2.8	84
43	Highly Desirable Photodetectors Derived from Versatile Plasmonic Nanostructures. Advanced Functional Materials, 2017, 27, 1704181.	7.8	54
44	Novel BeZnO Based Selfâ€Powered Dualâ€Color UV Photodetector Realized via a Oneâ€Step Fabrication Method. Laser and Photonics Reviews, 2017, 11, 1700222.	4.4	53
45	ZnO Film UV Photodetector with Enhanced Performance: Heterojunction with CdMoO ₄ Microplates and the Hot Electron Injection Effect of Au Nanoparticles. Small, 2017, 13, 1702177.	5.2	109
46	A study of Al:ZnO based MSM UV sensors with Ni metal electrodes. Optik, 2017, 145, 576-581.	1.4	13
47	Flexible Photodetectors Based on Novel Functional Materials. Small, 2017, 13, 1701822.	5.2	259
48	Selfâ€Powered Ultraviolet Photodetectors Driven by Builtâ€In Electric Field. Small, 2017, 13, 1701687.	5.2	245
49	An air-stable ultraviolet photodetector based on mesoporous TiO ₂ /spiro-OMeTAD. Journal of Materials Chemistry C, 2017, 5, 10543-10548.	2.7	26
50	Solar-Blind Metal-Semiconductor-Metal Photodetectors Based on an Exfoliated β-Ga ₂ O ₃ Micro-Flake. ECS Journal of Solid State Science and Technology, 2017, 6, Q79-Q83.	0.9	91
51	Multi-band visible photoresponse study of Co ²⁺ doped ZnO nanoparticles. RSC Advances, 2017, 7, 39657-39665.	1.7	20
52	Theoretical and Experimental Study of UV Detection Characteristics of Pd/ZnO Nanorod Schottky Diodes. Nano, 2017, 12, 1750137.	0.5	4
53	A self-powered deep-ultraviolet photodetector based on an epitaxial Ga ₂ O ₃ /Ga:ZnO heterojunction. Journal of Materials Chemistry C, 2017, 5, 8688-8693.	2.7	167
54	The effect of self-depleting in UV photodetector based on simultaneously fabricated TiO ₂ /NiO pn heterojunction and Ni/Au composite electrode. Nanotechnology, 2017, 28, 365505.	1.3	20

#	ARTICLE	IF	CITATIONS
55	Influence of electron beam and ultraviolet irradiations on graphene field effect transistors. Optical Materials, 2017, 72, 496-500.	1.7	7
56	Carbon Photodetectors: The Versatility of Carbon Allotropes. Advanced Energy Materials, 2017, 7, 1601574.	10.2	44
57	High-performance, flexible graphene/ultra-thin silicon ultra-violet image sensor. , 2017, , .		28
58	High-Performance and Self-Powered Deep UV Photodetectors Based on High Quality 2D Boron Nitride Nanosheets. Nanomaterials, 2017, 7, 454.	1.9	25
59	Self-powered SBD solar-blind photodetector fabricated on the single crystal of β-Ga ₂ O ₃ . RSC Advances, 2018, 8, 6341-6345.	1.7	51
60	Efficiency enhancement of TiO ₂ self-powered UV photodetectors using a transparent Ag nanowire electrode. Journal of Materials Chemistry C, 2018, 6, 3334-3340.	2.7	71
61	Silver-Nanowire-Embedded Transparent Metal-Oxide Heterojunction Schottky Photodetector. ACS Applied Materials & Interfaces, 2018, 10, 14292-14298.	4.0	52
62	Graphene–silver hybrid devices for sensitive photodetection in the ultraviolet. Nanoscale, 2018, 10, 7685-7693.	2.8	32
63	Fast-Response Single-Nanowire Photodetector Based on ZnO/WS ₂ Core/Shell Heterostructures. ACS Applied Materials & Interfaces, 2018, 10, 13869-13876.	4.0	60
64	Enhanced performance of ultraviolet photodetector modified by quantum dots with high responsivity and narrow detection region. Journal of Alloys and Compounds, 2018, 751, 117-123.	2.8	13
65	Nanostructural dependence of photoluminescence and photosensing properties in hydrothermally synthesized Mg-doped ZnO nanorod arrays. Thin Solid Films, 2018, 649, 75-80.	0.8	7
66	Novel Transparent and Selfâ€Powered UV Photodetector Based on Crossed ZnO Nanofiber Array Homojunction. Small, 2018, 14, e1703754.	5.2	332
67	Fabrication of Bi ₁₉ S ₂₇ I ₃ nanorod cluster films for enhanced photodetection performance. Dalton Transactions, 2018, 47, 3408-3416.	1.6	18
68	Doping controlled pyro-phototronic effect in self-powered zinc oxide photodetector for enhancement of photoresponse. Nanoscale, 2018, 10, 3451-3459.	2.8	54
69	UV photodetector based on energy bandgap shifted hexagonal boron nitride nanosheets for high-temperature environments. Journal Physics D: Applied Physics, 2018, 51, 045102.	1.3	12
70	Ferroelectric Localized Field–Enhanced ZnO Nanosheet Ultraviolet Photodetector with High Sensitivity and Low Dark Current. Small, 2018, 14, e1800492.	5.2	85
71	Low-voltage-worked photodetector based on Cu2O/GaOOH shell-core heterojunction nanorod arrays. Journal of Alloys and Compounds, 2018, 755, 199-205.	2.8	21
72	The Effect of Oxygen Vacancy Concentration on Indium Gallium Oxide Solar Blind Photodetector. IEEE Transactions on Electron Devices, 2018, 65, 1817-1822.	1.6	30

#	Article	IF	CITATIONS
73	Enhanced UV Flexible Photodetectors and Photocatalysts Based on TiO2 Nanoplatforms. Topics in Catalysis, 2018, 61, 1591-1606.	1.3	24
74	GaN-UV photodetector integrated with asymmetric metal semiconductor metal structure for enhanced responsivity. Journal of Materials Science: Materials in Electronics, 2018, 29, 8958-8963.	1.1	49
75	Visualized UV Photodetectors Based on Prussian Blue/TiO ₂ for Smart Irradiation Monitoring Application. Advanced Materials Technologies, 2018, 3, 1700288.	3.0	63
76	Reactive sputtering growth of Co3O4 thin films for all metal oxide device: a semitransparent and self-powered ultraviolet photodetector. Materials Science in Semiconductor Processing, 2018, 74, 74-79.	1.9	35
77	Sizeâ€Controlled Graphene Nanodot Arrays/ZnO Hybrids for Highâ€Performance UV Photodetectors. Advanced Science, 2018, 5, 1700334.	5.6	70
78	Advanced electro-optical smart window based on PSLC using a photoconductive TiOPc electrode. Liquid Crystals, 2018, 45, 864-871.	0.9	19
79	New Directions in Science Technology—Atomically-Thin Metal Dichalcogenides. , 2018, , 181-250.		1
80	Surface conversion of ZnO nanorods to ZIF-8 to suppress surface defects for a visible-blind UV photodetector. Nanoscale, 2018, 10, 21168-21177.	2.8	22
81	Amorphous-MgGaO Film Combined with Graphene for Vacuum-Ultraviolet Photovoltaic Detector. ACS Applied Materials & Interfaces, 2018, 10, 42681-42687.	4.0	33
82	Stimuli-responsive switchable organic-inorganic nanocomposite materials. Nano Today, 2018, 23, 97-123.	6.2	61
83	An Overview of the Ultrawide Bandgap Ga2O3 Semiconductor-Based Schottky Barrier Diode for Power Electronics Application. Nanoscale Research Letters, 2018, 13, 290.	3.1	155
84	UV photodetector based on polycrystalline SnO2 nanotubes by electrospinning with enhanced performance. Journal of Nanoparticle Research, 2018, 20, 1.	0.8	9
85	Recent Progress on Photomultiplication Type Organic Photodetectors. Laser and Photonics Reviews, 2019, 13, 1800204.	4.4	190
86	Self-Powered Ultraviolet Photodetector with Superhigh Photoresponsivity (3.05 A/W) Based on the GaN/Sn:Ga ₂ O ₃ pn Junction. ACS Nano, 2018, 12, 12827-12835.	7.3	405
87	The Interaction between Quantum Dots and Graphene: The Applications in Grapheneâ€Based Solar Cells and Photodetectors. Advanced Functional Materials, 2018, 28, 1804712.	7.8	69
88	Fabrication and performance evaluation of ultraviolet photodetector based on organic /inorganic heterojunction. Current Applied Physics, 2018, 18, 1496-1506.	1.1	24
89	A self-powered solar-blind photodetector based on a MoS ₂ /l̂2-Ga ₂ O ₃ heterojunction. Journal of Materials Chemistry C, 2018, 6, 10982-10986.	2.7	166
90	High Responsivity, Low Dark Current Ultraviolet Photodetectors Based on Two-Dimensional Electron Gas Interdigitated Transducers. ACS Photonics, 2018, 5, 4277-4282.	3.2	65

ARTICLE IF CITATIONS Recent progress in photodetectors based on low-dimensional nanomaterials. Nanotechnology 2.6 34 91 Reviews, 2018, 7, 393-411. Realization of in-Plane GaN Microwire Array Based Ultraviolet Photodetector with High Responsivity 3.2 19 on a Si(100) Substrate. ACS Photonics, 2018, 5, 4810-4816. Narrowband Ultraviolet Photodetectors Based on Nanocomposite Thin Films with High Gain and Low 93 4.0 31 Driving Voltage. ACS Applied Materials & amp; Interfaces, 2018, 10, 41552-41561. A Realâ€Time Wearable UVâ€Radiation Monitor based on a Highâ€Performance pâ€CuZnS/nâ€TiO₂ 11.1 94 300 Photodetector. Advanced Materials, 2018, 30, e1803165. Simulation study of ZnO nanowire FET arrays for photosensitivity enhancement of UV 95 1.4 18 photodetectors. Superlattices and Microstructures, 2018, 122, 18-27. Improvement in Self-Powered GaN-based Symmetric Metal-Semiconductor-Metal Ultraviolet Photodetectors by Using Phenol-Functionalized Porphyrin Organic Molecules. , 2018, , . Spectrum Selectivity and Responsivity of ZnO Nanoparticles Coated Ag/ZnO QDs/Ag UV 97 1.3 20 Photodetectors. IEEE Photonics Technology Letters, 2018, 30, 1147-1150. Direct In Situ Hybridized Interfacial Quantification to Stimulate Highly Flexile Self-Powered 1.5 16 Photodetector. Journal of Physical Chemistry C, 2018, 122, 12177-12184. Solution-processed ZnO/SnO₂ bilayer ultraviolet phototransistor with high responsivity 99 2.7 28 and fast photoresponse. Journal of Materials Chémistry C, 2018, 6, 6014-6022. Photovoltaic Action in Graphene–Ga₂O₃ Heterojunction with 1.2 Deepâ€Ultraviolet Irradiation. Physica Status Solidi - Rapid Research Letters, 2018, 12, 1800198. Ultrahigh Performance of Self-Powered Î²-Ga₂O₃ Thin Film Solar-Blind Photodetector Grown on Cost-Effective Si Substrate Using High-Temperature Seed Layer. ACS 101 3.2 255 Photonics, 2018, 5, 2391-2401. Selfâ€Powered nâ€SnO₂/pâ€CuZnS Coreâ€"Shell Microwire UV Photodetector with Optimized 3.6 Performance. Advanced Optical Materials, 2018, 6, 1800213. Structural, Optical, and Electrical Characterization of <i>¹/₂</i>-Ga₂O₃ Thin Films Grown by Plasma-Assisted Molecular Beam Epitaxy Suitable for UV Sensing. Advances in Materials 103 1.0 18 Science and Engineering, 2018, 2018, 1-6. Design Principles and Material Engineering of ZnS for Optoelectronic Devices and Catalysis. Advanced 104 Functional Materials, 2018, 28, 1802029 Self-powered nanodevices for fast UV detection and energy harvesting using core-shell nanowire 105 8.2 39 geometry. Nano Energy, 2018, 51, 294-299. All metal oxide-based transparent and flexible photodetector. Materials Science in Semiconductor Processing, 2018, 88, 86-92. Nanodiamond enhanced ZnO nanowire based UV photodetector with a high photoresponse 107 1.315 performance. Physica E: Low-Dimensional Systems and Nanostructures, 2018, 104, 314-319. Vertically trigonal WS2 layer embedded heterostructure for enhanced ultraviolet–visible 2.8 photodetector. Journal of Alloys and Compounds, 2018, 768, 143-149.

#	Article	IF	CITATIONS
109	Determination of valence and conduction band offsets in Zn0.98Fe0.02O/ZnO hetero-junction thin films grown in oxygen environment by pulsed laser deposition technique: A study of efficient UV photodetectors. Journal of Alloys and Compounds, 2018, 768, 978-990.	2.8	29
110	Ultraviolet Detectors Based on Wide Bandgap Semiconductor Nanowire: A Review. Sensors, 2018, 18, 2072.	2.1	222
111	Effect of Metal Contacts on a GaN/Sapphire-Based MSM Ultraviolet Photodetector. Journal of Electronic Materials, 2018, 47, 6086-6090.	1.0	26
112	Self-powered ultraviolet photodetection realized by GaN/Si nanoheterostructure based on silicon nanoporous pillar array. Journal of Alloys and Compounds, 2018, 767, 368-373.	2.8	21
113	Self-powered diamond/β-Ga ₂ O ₃ photodetectors for solar-blind imaging. Journal of Materials Chemistry C, 2018, 6, 5727-5732.	2.7	270
114	Deposition and characterization of epitaxial Ta-doped TiO2 films for ultraviolet photoelectric detectors. Ceramics International, 2018, 44, 21114-21119.	2.3	20
115	UV Photodetectors Based on BiOCl Nanosheet Arrays: The Effects of Morphologies and Electrode Configurations. Small, 2018, 14, e1801611.	5.2	38
116	Pairing of Luminescent Switch with Electrochromism for Quasi-Solid-State Dual-Function Smart Windows. ACS Applied Materials & Interfaces, 2018, 10, 31697-31703.	4.0	32
117	A Dual-Band Multilayer InSe Self-Powered Photodetector with High Performance Induced by Surface Plasmon Resonance and Asymmetric Schottky Junction. ACS Nano, 2018, 12, 8739-8747.	7.3	206
118	High-Performance Graphene/β-Ga ₂ O ₃ Heterojunction Deep-Ultraviolet Photodetector with Hot-Electron Excited Carrier Multiplication. ACS Applied Materials & Interfaces, 2018, 10, 22419-22426.	4.0	162
119	Performance Evaluation of GaN-based Selective UV Photodetector by Varying Metal-Semiconductor-Metal Geometry. , 2019, , .		1
120	Enhanced performance of ultraviolet photodetector based on sputtered ZnO/Au/ZnO multilayer structure. Superlattices and Microstructures, 2019, 134, 106225.	1.4	5
121	Amorphous MgInO Ultraviolet Solar-Blind Photodetectors. IEEE Access, 2019, 7, 103250-103254.	2.6	7
122	Acceptor-free photomultiplication-type organic photodetectors. Nanoscale, 2019, 11, 16406-16413.	2.8	24
123	Improved Detectivity of Flexible a-InGaZnO UV Photodetector via Surface Fluorine Plasma Treatment. IEEE Electron Device Letters, 2019, 40, 1646-1649.	2.2	28
124	High-Performance Metal-Organic Chemical Vapor Deposition Grown \$varepsilon\$ -Ga ₂ O ₃ Solar-Blind Photodetector With Asymmetric Schottky Electrodes. IEEE Electron Device Letters, 2019, 40, 1475-1478.	2.2	91
125	High sensitivity ultraviolet detection based on three-dimensional graphene field effect transistors decorated with TiO ₂ NPs. Nanoscale, 2019, 11, 14912-14920.	2.8	27
126	A study of ZnO/PEDOT:PSS based UV sensors with RF sputter. Japanese Journal of Applied Physics, 2019, 58, SDDE09.	0.8	0

ARTICLE IF CITATIONS # Optimization of All Figure-of-Merits in Well-Aligned GaN Microwire Array Based Schottky UV 127 3.2 25 Photodetectors by Si Doping. ACS Photonics, 2019, 6, 1972-1980. Evaluation of anticorrosive behaviour of ZnO nanotetra-pods on a AZ91-grade Mg alloy. Bulletin of 0.8 Materials Science, 2019, 42, 1. Gallium Nitride Photodetector Measurements of UV Emission from a Gaseous CH4/O2 Hybrid Rocket 129 3 Igniter Plume., 2019, , . High Responsivity and High Rejection Ratio of Self-Powered Solar-Blind Ultraviolet Photodetector Based on PEDOT:PSS/Î²-Ga₂O₃ Organic/Inorganic p–n Junction. Journal of Physical Chemistry Letters, 2019, 10, 6850-6856. Rectifying Effect of the Sr₃Al₂O₆/Ga₂O₃ 131 0.8 8 Heterojunction. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1900570. ZnOâ€Based Ultraviolet Photodetectors with Tunable Spectral Responses. Physica Status Solidi - Rapid 1.2 Research Letters, 2019, 13, 1900441. Low power consumption UV sensor based on n-ZnO/p-Si junctions. Journal of Materials Science: 133 1.1 6 Materials in Electronics, 2019, 30, 19639-19646. Characterization of ZnO thin films obtained by ultrasonic spray pyrolysis for application in UV photoconductive detectors. Materials Research Express, 2019, 6, 116450. 134 0.8 Thermoâ€Phototronicâ€Effectâ€Enhanced Photodetectors Based on Porous ZnO Materials. Advanced 135 2.6 19 Electronic Materials, 2019, 5, 1900776. Nanostructured tungsten oxide thin film devices: from optoelectronics and ionics to iontronics. Journal of Materials Chemistry C, 2019, 7, 12968-12990. Infrared plasmonic photodetectors: the emergence of high photon yield toroidal metadevices. 137 22 1.7 Materials Today Chemistry, 2019, 14, 100206. Wearable Gallium Oxide Solar-Blind Photodetectors on Muscovite Mica Having Ultrahigh Photoresponsivity and Detectivity with Added High-Temperature Functionalities. ACS Applied Electronic Materials, 2019, 1, 2463-2470. Postannealed Structural Relaxation and Phase Evolution of Quaternary Alloy BeMgZnO. ACS Applied 139 2.0 3 Electronic Materials, 2019, 1, 2061-2068. Catalystâ€Free Vapor–Solid Deposition Growth of βâ€Ga₂O₃ Nanowires for DUV 140 3.6 Photodetector and Image Sensor Application. Advanced Optical Materials, 2019, 7, 1901257. Back-to-back asymmetric Schottky-type self-powered UV photodetector based on ternary alloy MgZnO. 141 1.3 11 Journal Physics D: Applied Physics, 2019, 52, 505112. Rectifying characteristics and solar-blind photoresponse in î²-Ga₂O₃/ZnO 142 heterojunctions*. Chinese Physics B, 2019, 28, 088503. Flexible Visible-Blind Ultraviolet Photodetectors Based on ZnAl-Layered Double Hydroxide Nanosheet 143 4.0 32 Scroll. ACS Applied Materials & amp; Interfaces, 2019, 11, 35138-35145. Deep-ultraviolet Schottky photodetectors with high deep-ultraviolet/visible rejection based on a 144 3.1 ZnGa2O4 thin film. Applied Surface Science, 2019, 496, 143670.

#	Article	IF	CITATIONS
145	Ultrasensitive, Superhigh Signal-to-Noise Ratio, Self-Powered Solar-Blind Photodetector Based on <i>n</i> -Ga ₂ O ₃ / <i>p</i> -CuSCN Core–Shell Microwire Heterojunction. ACS Applied Materials & Interfaces, 2019, 11, 35105-35114.	4.0	161
146	Photoelectrochemical Self-Powered Solar-Blind Photodetectors Based on Ga ₂ O ₃ Nanorod Array/Electrolyte Solid/Liquid Heterojunctions with a Large Separation Interface of Photogenerated Carriers. ACS Applied Nano Materials, 2019, 2, 6169-6177.	2.4	77
147	Electrocatalytic oxygen evolution and photoswitching functions of tungsten-titanium binary oxide nanostructures. Applied Surface Science, 2019, 496, 143652.	3.1	8
148	Low-cost writing method for self-powered paper-based UV photodetectors utilizing Te/TiO ₂ and Te/ZnO heterojunctions. Nanoscale Horizons, 2019, 4, 452-456.	4.1	64
149	Visible-blind wide-dynamic-range fast-response self-powered ultraviolet photodetector based on Cul/In-Ga-Zn-O heterojunction. Applied Materials Today, 2019, 15, 153-162.	2.3	46
150	Highly Narrow-Band Polarization-Sensitive Solar-Blind Photodetectors Based on β-Ga ₂ O ₃ Single Crystals. ACS Applied Materials & Interfaces, 2019, 11, 7131-7137.	4.0	55
151	Impact on photon-assisted charge carrier transport by engineering electrodes of GaN based UV photodetectors. Journal of Alloys and Compounds, 2019, 785, 883-890.	2.8	18
152	Native Surface Oxides Featured Liquid Metals for Printable Self-Powered Photoelectrochemical Device. Frontiers in Chemistry, 2019, 7, 356.	1.8	6
153	High performance, flexible and room temperature grown amorphous Ga ₂ O ₃ solar-blind photodetector with amorphous indium-zinc-oxide transparent conducting electrodes. Journal Physics D: Applied Physics, 2019, 52, 335103.	1.3	55
154	Solar-blind SnO2 nanowire photo-synapses for associative learning and coincidence detection. Nano Energy, 2019, 62, 393-400.	8.2	100
155	Femtosecond light pulse response of photodetectors based on Graphene/n-Si heterojunctions. Carbon, 2019, 152, 643-651.	5.4	9
156	Plasmonic Ag nanoparticles arbitrated enhanced photodetection in p-NiO/n-rGO heterojunction for future self-powered UV photodetectors. Nanotechnology, 2019, 30, 365201.	1.3	39
157	Self-powered solar-blind ultraviolet photodetector based on Au/ZnMgO/ZnO:Al with comb-shaped Schottky electrode. Sensors and Actuators A: Physical, 2019, 295, 623-628.	2.0	17
158	Novel UV Sensing and Photocatalytic Properties of DyCoO ₃ . Journal of Sensors, 2019, 2019, 1-12.	0.6	12
159	Solutionâ€Processed Visibleâ€Blind Ultraviolet Photodetectors with Nanosecond Response Time and High Detectivity. Advanced Optical Materials, 2019, 7, 1900506.	3.6	60
160	Plasmonic Ag nanoparticles and p-type CuO-modified ZnO nanorods for efficient photoelectrochemical water splitting. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	1.1	9
161	Solution Processed Highly Responsive UV Photodetectors from Carbon Nanodot/Silicon Heterojunctions. ACS Applied Nano Materials, 2019, 2, 3971-3976.	2.4	18
162	Robust Piezo-Phototronic Effect in Multilayer Î ³ -InSe for High-Performance Self-Powered Flexible Photodetectors. ACS Nano, 2019, 13, 7291-7299.	7.3	118

#	Article	IF	CITATIONS
163	Photovoltaic-pyroelectric effect coupled broadband photodetector in self-powered ZnO/ZnTe core/shell nanorod arrays. Nano Energy, 2019, 62, 310-318.	8.2	111
164	Photo sensing property of nanostructured CdS-porous silicon (PS):p-Si based MSM hetero-structure. Journal of Materials Science: Materials in Electronics, 2019, 30, 11239-11249.	1.1	5
165	Improved photoresponse performances of V ₂ O ₅ and rGO. Fullerenes Nanotubes and Carbon Nanostructures, 2019, 27, 566-571.	1.0	8
166	Effects of various types of hydrogen dopants on optical properties of ZnO. Optik, 2019, 187, 117-123.	1.4	3
167	Functional interlayer of In2O3 for transparent SnO2/SnS2 heterojunction photodetector. Sensors and Actuators A: Physical, 2019, 293, 215-221.	2.0	30
168	Self-Powered Fast-Response X-Ray Detectors Based on Vertical GaN p-n Diodes. IEEE Electron Device Letters, 2019, 40, 1044-1047.	2.2	22
169	Ultrahigh Deep-UV Sensitivity in Graphene-Gated β-Ga ₂ O ₃ Phototransistors. ACS Photonics, 2019, 6, 1026-1032.	3.2	80
170	Transparent and Flexible In ₂ O ₃ Thin Film for Multilevel Nonvolatile Photomemory Programmed by Light. ACS Applied Electronic Materials, 2019, 1, 437-443.	2.0	21
171	Giant UV Photoresponse of GaN-Based Photodetectors by Surface Modification Using Phenol-Functionalized Porphyrin Organic Molecules. ACS Applied Materials & Interfaces, 2019, 11, 12017-12026.	4.0	59
172	Enhanced UV Detection of Perovskite Photodetector Arrays via Inorganic CsPbBr ₃ Quantum Dot Down onversion Layer. Advanced Optical Materials, 2019, 7, 1801812.	3.6	55
173	Review of deep ultraviolet photodetector based on gallium oxide. Chinese Physics B, 2019, 28, 018501.	0.7	85
174	ZnO ultraviolet photodetectors with an extremely high detectivity and short response time. Applied Surface Science, 2019, 481, 437-442.	3.1	45
175	Chemical Vapor Deposition Method Grown All-Inorganic Perovskite Microcrystals for Self-Powered Photodetectors. ACS Applied Materials & amp; Interfaces, 2019, 11, 15804-15812.	4.0	66
176	Ultraviolet photodetectors based on wide bandgap oxide semiconductor films. Chinese Physics B, 2019, 28, 048503.	0.7	46
177	Surfactant-assisted synthesis of ultrathin two-dimensional Co3O4 nanosheets for applications in lithium-ion batteries and ultraviolet photodetector. Journal of Solid State Chemistry, 2019, 274, 124-133.	1.4	13
178	Zinc oxide ultraviolet photodetectors: rapid progress from conventional to self-powered photodetectors. Nanoscale Advances, 2019, 1, 2059-2085.	2.2	215
179	Enhancement-Mode \$eta\$ -Ga ₂ O ₃ Metal–Oxide–Semiconductor Field-Effect Solar-Blind Phototransistor With Ultrahigh Detectivity and Photo-to-Dark Current Ratio. IEEE Electron Device Letters, 2019, 40, 742-745.	2.2	55
180	Radial heterojunction based on single ZnO-CuxO core-shell nanowire for photodetector applications. Scientific Reports, 2019, 9, 5553.	1.6	57

#	Article	IF	CITATIONS
181	Recent Progress in Solarâ€Blind Deepâ€Ultraviolet Photodetectors Based on Inorganic Ultrawide Bandgap Semiconductors. Advanced Functional Materials, 2019, 29, 1806006.	7.8	334
182	Siliconâ€Compatible Photodetectors: Trends to Monolithically Integrate Photosensors with Chip Technology. Advanced Functional Materials, 2019, 29, 1808182.	7.8	198
183	Translucent Photodetector with Blended Nanowires–Metal Oxide Transparent Selective Electrode Utilizing Photovoltaic and Pyroâ€Phototronic Coupling Effect. Small, 2019, 15, e1804346.	5.2	32
184	Investigations of the effects of electrode geometry and mechanical stress on Antimony doped Zinc Oxide nanostructures based MSM UV photodetectors fabricated on flexible substrates. Solar Energy Materials and Solar Cells, 2019, 194, 207-214.	3.0	20
185	Materials and Designs for Wearable Photodetectors. Advanced Materials, 2019, 31, e1808138.	11.1	279
186	Nanotubular Ta2O5 as ultraviolet (UV) photodetector. Journal of Materials Science: Materials in Electronics, 2019, 30, 4953-4966.	1.1	15
187	Self-powered MSM deep-ultraviolet β-Ga ₂ O ₃ photodetector realized by an asymmetrical pair of Schottky contacts. Optical Materials Express, 2019, 9, 1191.	1.6	79
188	ZnO ultraviolet photodetector based on flexible polyester fibre substrates by lowâ€ŧemperature hydrothermal approach. Micro and Nano Letters, 2019, 14, 215-218.	0.6	7
189	Highly polarization-sensitive, visible-blind and self-powered ultraviolet photodetection based on two-dimensional wide bandgap semiconductors: a theoretical prediction. Journal of Materials Chemistry A, 2019, 7, 27503-27513.	5.2	42
190	A high-performance ultraviolet solar-blind photodetector based on a β-Ga ₂ O ₃ Schottky photodiode. Journal of Materials Chemistry C, 2019, 7, 13920-13929.	2.7	88
191	Performance-enhanced solar-blind photodetector based on a CH ₃ NH ₃ Pbl ₃ /l̂2-Ga ₂ O ₃ hybrid structure. Journal of Materials Chemistry C, 2019, 7, 14205-14211.	2.7	45
192	Exploiting supramolecular assemblies for filterless ultra-narrowband organic photodetectors with inkjet fabrication capability. Journal of Materials Chemistry C, 2019, 7, 14639-14650.	2.7	24
193	Reduction of dark current density in organic ultraviolet photodetector by utilizing an electron blocking layer of TAPC doped with MoO3. Organic Electronics, 2019, 65, 150-155.	1.4	25
194	Enhancing the Photoelectric Performance of Photodetectors Based on Metal Oxide Semiconductors by Chargeâ€Carrier Engineering. Advanced Functional Materials, 2019, 29, 1807672.	7.8	313
195	Solution-Processed Transparent CuO Thin Films for Solar-Blind Photodetection. IEEE Electron Device Letters, 2019, 40, 255-258.	2.2	19
196	Ga2O3 nanobelt devices. , 2019, , 331-368.		2
197	The effect of morphology and functionalization on UV detection properties of ZnO networked tetrapods and single nanowires. Vacuum, 2019, 166, 393-398.	1.6	22
198	Lowâ€Temperature Fabrication and Performance of Polycrystalline Cul Films as Transparent pâ€Type Semiconductors. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1700782.	0.8	39

#	Article	IF	CITATIONS
199	Ultraviolet Sensing in WBG: SiC. , 2020, , 397-425.		0
200	Highâ€Performance Flexible Broadband Photodetectors Based on 2D Hafnium Selenosulfide Nanosheets. Advanced Electronic Materials, 2020, 6, 1900794.	2.6	24
201	Deep-ultraviolet sensing characteristics of transparent and flexible IGZO thin film transistors. Journal of Alloys and Compounds, 2020, 817, 152788.	2.8	37
202	Defect and strain modulated highly efficient ZnO UV detector: Temperature and low-pressure dependent studies. Applied Surface Science, 2020, 505, 144365.	3.1	46
203	Polyfluorene copolymer /Al Schottky junction for UV-A photodetector with relatively high stability and photocurrent density. Optics Communications, 2020, 458, 124809.	1.0	9
204	Study of the Optoelectronic Properties of Ultraviolet Photodetectors Based on Znâ€Doped CuGaO ₂ Nanoplate/ZnO Nanowire Heterojunctions. Physica Status Solidi (B): Basic Research, 2020, 257, 1900684.	0.7	11
205	All-metal oxide transparent photodetector for broad responses. Sensors and Actuators A: Physical, 2020, 303, 111835.	2.0	24
206	A mixed-dimensional 1D Se–2D InSe van der Waals heterojunction for high responsivity self-powered photodetectors. Nanoscale Horizons, 2020, 5, 564-572.	4.1	88
207	A self-powered solar-blind photodetector with large <i>V</i> _{oc} enhancing performance based on the PEDOT:PSS/Ga ₂ O ₃ organic–inorganic hybrid heterojunction. Journal of Materials Chemistry C, 2020, 8, 1292-1300.	2.7	94
208	Catalyst-free growth of dense <i>î³</i> -ln ₂ Se ₃ nanosheet arrays and their application in photoelectric detectors. Nanotechnology, 2020, 31, 195601.	1.3	7
209	Probing bias and power dependency of high-performance broadband Mg/ZnSnP2/Sn back-to-back Schottky junction photodetectors. Solar Energy Materials and Solar Cells, 2020, 208, 110386.	3.0	7
210	Controllable 3D plasmonic nanostructures for high-quantum-efficiency UV photodetectors based on 2D and 0D materials. Materials Horizons, 2020, 7, 905-911.	6.4	16
211	An ultrahigh responsivity self-powered solar-blind photodetector based on a centimeter-sized β-Ga ₂ O ₃ /polyaniline heterojunction. Nanoscale, 2020, 12, 1406-1413.	2.8	76
212	UV-detecting dual-responsive strips based on dicyanoacetate-containing hexaphenylbutadiene with aggregation-induced emission characteristic. Dyes and Pigments, 2020, 175, 108169.	2.0	8
213	Self-powered photodetectors based on β-Ga2O3/4H–SiC heterojunction with ultrahigh current on/off ratio and fast response. Journal of Alloys and Compounds, 2020, 821, 153532.	2.8	108
214	Enhancement of UV Photodetection Properties of Hierarchical Core–Shell Heterostructures of a Natural Sericin Biopolymer with the Addition of ZnO Fabricated on Ultra-Nanocrystalline Diamond Layers. ACS Applied Materials & Interfaces, 2020, 12, 3254-3264.	4.0	5
215	Structural Engineering of Dispersed Graphene Flakes into ZnO Nanotubes on Discontinues Ultraâ€Nanocrystalline Diamond Substrates for Highâ€Performance Photodetector with Excellent UV Light to Dark Current Ratios. Advanced Materials Interfaces, 2020, 7, 1901694.	1.9	7
216	Recent advances in lowâ€dimensional semiconductor nanomaterials and their applications in highâ€performance photodetectors. InformaÄnÃ-Materiály, 2020, 2, 291-317.	8.5	103

#	Article	IF	CITATIONS
217	Comparison of optoelectrical characteristics between Schottky and Ohmic contacts to <i>l²</i> -Ga ₂ O ₃ thin film. Journal Physics D: Applied Physics, 2020, 53, 085105.	1.3	40
218	Highly stable and spectrum-selective ultraviolet photodetectors based on lead-free copper-based perovskites. Materials Horizons, 2020, 7, 530-540.	6.4	164
219	Trilayered Lead Chloride Perovskite Ferroelectric Affording Self-Powered Visible-Blind Ultraviolet Photodetection with Large Zero-Bias Photocurrent. Journal of the American Chemical Society, 2020, 142, 55-59.	6.6	93
220	Gallium oxide-based solar-blind ultraviolet photodetectors. Semiconductor Science and Technology, 2020, 35, 023001.	1.0	73
221	Surface acoustic wave-based ultraviolet photodetectors: a review. Science Bulletin, 2020, 65, 587-600.	4.3	30
222	Formation and properties of thin Mo and Mo oxide nanoparticle films. Materials Letters, 2020, 262, 127044.	1.3	1
223	A Review on Practical Considerations and Solutions in Underwater Wireless Optical Communication. Journal of Lightwave Technology, 2020, 38, 421-431.	2.7	126
224	Reliable Tin dioxide based nanowire networks as ultraviolet solar radiation sensors. Sensors and Actuators A: Physical, 2020, 302, 111825.	2.0	11
225	Cyclomatrix-type polyphosphazene optical film coating: Preparation, characterization and properties. Progress in Organic Coatings, 2020, 149, 105933.	1.9	1
226	Enhancement of optoelectronic parameters of Nd-doped ZnO nanowires for photodetector applications. Optical Materials, 2020, 109, 110396.	1.7	129
227	High response organic UV-blue photodetector with low operating voltage using chemical vapor deposited poly(p-phenylenevinylene). Organic Electronics, 2020, 87, 105975.	1.4	6
228	Organometallic-Based Hybrid Perovskite Piezoelectrics with a Narrow Band Gap. Journal of the American Chemical Society, 2020, 142, 17787-17794.	6.6	83
229	Si-embedded metal oxide transparent solar cells. Nano Energy, 2020, 77, 105090.	8.2	32
230	Aluminum Plasmonics Enriched Ultraviolet GaN Photodetector with Ultrahigh Responsivity, Detectivity, and Broad Bandwidth. Advanced Science, 2020, 7, 2002274.	5.6	65
231	Self-powered solar-blind ZnGa2O4 UV photodetector with ultra-fast response speed. Sensors and Actuators A: Physical, 2020, 315, 112354.	2.0	41
232	Ag Nanowire-Plasmonic-Assisted Charge Separation in Hybrid Heterojunctions of Ppy-PEDOT:PSS/GaN Nanorods for Enhanced UV Photodetection. ACS Applied Materials & Interfaces, 2020, 12, 54181-54190.	4.0	44
233	High-speed, low-bias operated, broadband (Vis-NIR) photodetector based on sputtered Cu2ZnSn(S, Se)4 (CZTSSe) thin films. Sensors and Actuators A: Physical, 2020, 314, 112231.	2.0	21
234	Surface plasmon-enhanced p-type MSM UV photodetector using gold quantum dots. Optik, 2020, 222, 165332.	1.4	1

#	Article	IF	CITATIONS
235	3Dâ€toâ€2D Dimensional Reduction for Exploiting a Multilayered Perovskite Ferroelectric toward Polarizedâ€Light Detection in the Solarâ€Blind Ultraviolet Region. Angewandte Chemie - International Edition, 2020, 59, 21693-21697.	7.2	55
236	Carbon-based fully printable self-powered ultraviolet perovskite photodetector: Manganese-assisted electron transfer and enhanced photocurrent. Nanomaterials and Nanotechnology, 2020, 10, 184798042092567.	1.2	6
237	Enhanced performance of solar-blind photodetector of hexagonal boron nitride with bottom-contact electrodes. AIP Advances, 2020, 10, .	0.6	5
238	Photodetecting properties of single CuO–ZnO core–shell nanowires with p–n radial heterojunction. Scientific Reports, 2020, 10, 18690.	1.6	33
239	A 3D UV Photodetector Based on TiO2 Nanoparticles Decorated Microtubular Graphene FET. , 2020, , .		0
240	Mechanically Compatible UV Photodetectors Based on Electrospun Freeâ€Standing Y ³⁺ â€Doped TiO ₂ Nanofibrous Membranes with Enhanced Flexibility. Advanced Functional Materials, 2020, 30, 2005291.	7.8	51
241	Realization of Deep UV Plasmonic Enhancement to Photo Response through Al Mesh. Materials, 2020, 13, 3252.	1.3	1
242	3Dâ€ŧoâ€2D Dimensional Reduction for Exploiting a Multilayered Perovskite Ferroelectric toward Polarizedâ€Light Detection in the Solarâ€Blind Ultraviolet Region. Angewandte Chemie, 2020, 132, 21877-21881.	1.6	16
243	Flexible crystalline β-Ga ₂ O ₃ solar-blind photodetectors. Journal of Materials Chemistry C, 2020, 8, 14732-14739.	2.7	34
244	Effect of a Single Threading Dislocation on Electrical and Single Photon Detection Characteristics of 4H-SiC Ultraviolet Avalanche Photodiodes. Chinese Physics Letters, 2020, 37, 068502.	1.3	2
245	III-Nitrides Resonant Cavity Photodetector Devices. Materials, 2020, 13, 4428.	1.3	4
246	Polar CsPbBr ₃ -based Dion–Jacobson hybrid for promising UV photodetection. Chemical Communications, 2020, 56, 14381-14384.	2.2	16
247	Electronic structure investigation of wide band gap semiconductors—Mg2PN3 and Zn2PN3: experiment and theory. Journal of Physics Condensed Matter, 2020, 32, 405504.	0.7	2
248	2D-SnS\$_2\$ Nanoflakes Based Efficient Ultraviolet Photodetector. IEEE Nanotechnology Magazine, 2020, 19, 301-307.	1.1	5
249	Ultra-thin GaN nanostructures based self-powered ultraviolet photodetector via non-homogeneous Au-GaN interfaces. Optical Materials, 2020, 102, 109820.	1.7	36
250	Performance improvement of amorphous Ga2O3 ultraviolet photodetector by annealing under oxygen atmosphere. Journal of Alloys and Compounds, 2020, 840, 155585.	2.8	54
251	Polarization detection in deep-ultraviolet light with monoclinic gallium oxide nanobelts. Nanoscale Advances, 2020, 2, 2705-2712.	2.2	18
252	All-Oxide NiO/Ga ₂ O ₃ p–n Junction for Self-Powered UV Photodetector. ACS Applied Electronic Materials, 2020, 2, 2032-2038.	2.0	135

#	Article	IF	CITATIONS
253	Low power ZnO nanorod-based ultraviolet photodetector: Effect of alcoholic growth precursor. Optics and Laser Technology, 2020, 129, 106310.	2.2	5
254	Transparent Co3O4/ZnO photovoltaic broadband photodetector. Materials Science in Semiconductor Processing, 2020, 117, 105192.	1.9	38
255	Bipolar photoresponse ultraviolet photodetectors based on ZnO nanowires. Materials Research Express, 2020, 7, 056203.	0.8	7
256	Extremely low dark current and detection range extension of Ga ₂ O ₃ UV photodetector using Sn alloyed nanostructures. Nanotechnology, 2020, 31, 294002.	1.3	32
257	Influence of Al doping on the crystal structure, optical properties, and photodetecting performance of ZnO film. Progress in Natural Science: Materials International, 2020, 30, 28-34.	1.8	48
258	Ultrafast and Sensitive Self-Powered Photodetector Featuring Self-Limited Depletion Region and Fully Depleted Channel with van der Waals Contacts. ACS Nano, 2020, 14, 9098-9106.	7.3	120
259	Tuning the responsivity of monoclinic \$({In}_x{Ga}_{1-x})_2{O}_3\$ solar-blind photodetectors grown by metal organic chemical vapor deposition. Journal Physics D: Applied Physics, 2020, 53, 454001.	1.3	21
260	Performance Investigation of Ga ₂ O ₃ semiconductor based schottky diode for RF application. , 2020, , .		1
261	Self-Powered, Self-Healed, and Shape-Adaptive Ultraviolet Photodetectors. ACS Applied Materials & Interfaces, 2020, 12, 9755-9765.	4.0	34
262	High-responsivity (In0.26Ga0.74)2O3 UV detectors on sapphire realized by microwave irradiation-assisted deposition. Journal of Alloys and Compounds, 2020, 828, 154337.	2.8	11
263	Recent Advances and a Roadmap to Wearable UV Sensor Technologies. Advanced Materials Technologies, 2020, 5, 1901036.	3.0	78
264	Recent Progress of Heterojunction Ultraviolet Photodetectors: Materials, Integrations, and Applications. Advanced Functional Materials, 2020, 30, 1909909.	7.8	264
265	Giant Photoâ€Induced Current Enhancement in a Core–Shellâ€Type Quantumâ€Dot Thin Film. Advanced Electronic Materials, 2020, 6, 1901069.	2.6	5
266	The role of Ge2Sb2Te5 in enhancing the performance of functional plasmonic devices. Materials Today Physics, 2020, 12, 100178.	2.9	82
267	Broadband photoresponse of flexible textured reduced graphene oxide films. Thin Solid Films, 2020, 697, 137785.	0.8	7
268	Atomically Thin Oxyhalide Solarâ€Blind Photodetectors. Small, 2020, 16, e2000228.	5.2	31
269	UV activated visible-blind Ga:ZnO photodetectors using the GLAD technique: a comparative study in different gas atmospheres and temperatures. Journal of Materials Chemistry C, 2020, 8, 7837-7846.	2.7	11
270	Selfâ€Powered Flexible TiO ₂ Fibrous Photodetectors: Heterojunction with P3HT and Boosted Responsivity and Selectivity by Au Nanoparticles. Advanced Functional Materials, 2020, 30, 2001604.	7.8	81

#	Article	IF	CITATIONS
271	Impact of nitrogen induced defect dynamics on UV response of diamond photodetectors. Superlattices and Microstructures, 2020, 142, 106504.	1.4	4
272	Graphene quantum dots doped ZnO superstructure (ZnO superstructure/GQDs) for weak UV intensity photodetector application. Ceramics International, 2020, 46, 17800-17808.	2.3	31
273	Improved Photoresponse of UV Photodetectors by the Incorporation of Plasmonic Nanoparticles on GaN Through the Resonant Coupling of Localized Surface Plasmon Resonance. Nano-Micro Letters, 2020, 12, 91.	14.4	68
274	Novel ultraviolet photodetector with ultrahigh photosensitivity employing SILAR-deposited ZnS film on MgZnO. Journal of Alloys and Compounds, 2020, 832, 155022.	2.8	22
275	Improving the photoelectrical characteristics of self-powered p-GaN film/n-ZnO nanowires heterojunction ultraviolet photodetectors through gallium and indium co-doping. Materials Science in Semiconductor Processing, 2021, 121, 105295.	1.9	34
276	An experimental and theoretical understanding of a UV photodetector based on Ag nanoparticles decorated Er-doped TiO2 thin film. Ceramics International, 2021, 47, 14879-14891.	2.3	7
277	Optimized synthesis temperature and doping concentration of copper in zinc sulphide nanoparticles for green emission. Materials Science in Semiconductor Processing, 2021, 121, 105317.	1.9	12
278	Transparent photovoltaic cells and self-powered photodetectors by TiO2/NiO heterojunction. Journal of Power Sources, 2021, 481, 228865.	4.0	71
279	UV-photocurrent response of zinc oxide based devices: Application to ZnO/PEDOT:PSS hydrid Schottky diodes. Materials Science in Semiconductor Processing, 2021, 121, 105339.	1.9	33
280	Ultrahigh-performance planar β-Ga2O3 solar-blind Schottky photodiode detectors. Science China Technological Sciences, 2021, 64, 59-64.	2.0	32
281	Patterned growth of β-Ga2O3 thin films for solar-blind deep-ultraviolet photodetectors array and optical imaging application. Journal of Materials Science and Technology, 2021, 72, 189-196.	5.6	81
282	Self-powered photodetector with improved and broadband multispectral photoresponsivity based on ZnO-ZnS composite. Journal of Alloys and Compounds, 2021, 859, 158242.	2.8	47
283	Solution-processed and self-powered photodetector in vertical architecture using mixed-halide perovskite for highly sensitive UVC detection. Journal of Materials Chemistry A, 2021, 9, 1269-1276.	5.2	54
284	Atomically Thin Hexagonal Boron Nitride and Its Heterostructures. Advanced Materials, 2021, 33, e2000769.	11.1	71
285	Self-catalyst β-Ga ₂ O ₃ semiconductor lateral nanowire networks synthesis on the insulating substrate for deep ultraviolet photodetectors. RSC Advances, 2021, 11, 28326-28331.	1.7	11
286	Fibre electronics: towards scaled-up manufacturing of integrated e-textile systems. Nanoscale, 2021, 13, 12818-12847.	2.8	37
287	Epitaxial growth of ε-(AlGa) ₂ O ₃ films on sapphire substrate by PLD and the fabrication of photodetectors. Optical Materials Express, 2021, 11, 219.	1.6	8
288	Polymer Nanofibers via Electrospinning for Flexible Devices. Springer Series on Polymer and Composite Materials, 2021, , 53-86.	0.5	1

#	Article	IF	CITATIONS
289	Enhanced performance of ZnO nanorod array/CuSCN ultraviolet photodetectors with functionalized graphene layers. RSC Advances, 2021, 11, 7682-7692.	1.7	28
290	Enhanced deep-ultraviolet sensing by an all-inorganic p-PZT/n-Ga ₂ O ₃ thin-film heterojunction. Journal Physics D: Applied Physics, 2021, 54, 195104.	1.3	11
291	A Paperâ€Based Wearable Photodetector for Simultaneous UV Intensity and Dosage Measurement. Advanced Functional Materials, 2021, 31, 2100026.	7.8	58
292	Extended Exposure of Gallium Nitride Heterostructure Devices to a Simulated Venus Environment. , 2021, , .		7
293	Stable and Self-Powered Solar-Blind Ultraviolet Photodetectors Based on a Cs ₃ Cu ₂ I ₅ /β-Ga ₂ O ₃ Heterojunction Prepared by Dual-Source Vapor Codeposition. ACS Applied Materials & Interfaces, 2021, 13, 15409-15419.	4.0	55
294	Research on photosensitive gate ferroelectric integrated GaN HEMT photodetector. AIP Advances, 2021, 11, 035019.	0.6	6
295	High-Performance and Self-Powered Alternating Current Ultraviolet Photodetector for Digital Communication. ACS Applied Materials & amp; Interfaces, 2021, 13, 12241-12249.	4.0	53
296	Structural, morphological, optical and enhanced photodetection activities of CdO films: An effect of Mn doping. Sensors and Actuators A: Physical, 2021, 319, 112531.	2.0	22
297	Effect of the Length of TiO ₂ Nanotube Arrays on Responsivity of Photoelectrochemical-Based Ultraviolet Photodetectors. International Journal of Nanoscience, 2021, 20, 2150024.	0.4	0
298	Superflexible, Self-Biased, High-Voltage-Stable, and Seal-Packed Office-Paper Based Gallium-Oxide Photodetector. ACS Applied Electronic Materials, 2021, 3, 1852-1863.	2.0	19
299	Detección de descargas parciales a través de radiación ultravioleta en redes de media y alta tensión en Colombia. Tecnura, 2021, 25, 63-78.	0.1	0
300	Transient photodetection studies on 2D ZnO nanostructures prepared by simple organic-solvent assisted route. Sensors and Actuators A: Physical, 2021, 321, 112600.	2.0	33
301	Enhanced Performance of WO ₃ Photodetectors Through Hybrid Graphene-Layer Integration. ACS Applied Electronic Materials, 2021, 3, 2056-2066.	2.0	28
302	Rapid In Situ Ligandâ€Exchange Process Used to Prepare 3D PbSe Nanocrystal Superlattice Infrared Photodetectors. Small, 2021, 17, e2101166.	5.2	4
303	Self-powered ZnO/SrCoOx flexible ultraviolet detectors processed at room temperature. Materials and Design, 2021, 203, 109616.	3.3	19
304	Facile fabrication of heterostructure with p-BiOCl nanoflakes and n-ZnO thin film for UV photodetectors. Journal of Semiconductors, 2021, 42, 052301.	2.0	29
305	A Study of Visible-Blind Properties of a SnO2's Nanowires Network Photodetector. Engineering Proceedings, 2021, 6, .	0.4	0
306	Two-Dimensional Gallium Sulfide Nanoflakes for UV-Selective Photoelectrochemical-type Photodetectors. Journal of Physical Chemistry C, 2021, 125, 11857-11866.	1.5	41

#	Article	IF	CITATIONS
307	Electrically Excited Plasmonic Ultraviolet Light Sources. Small, 2021, 17, 2100819.	5.2	3
308	High responsivity solar-blind metal-semiconductor-metal photodetector based on α-Ga2O3. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2021, 39, .	0.9	23
309	Improved sensitivity in self-powered photoelectrochemical UV photodetector by application of graphene quantum dots. European Physical Journal Plus, 2021, 136, 1.	1.2	9
310	High-responsivity solar-blind photodetector based on MOCVD-grown Si-doped β-Ga ₂ O ₃ thin film*. Chinese Physics B, 2021, 30, 057301.	0.7	11
311	2D/3D Hybrid of MoS ₂ /GaN for a High-Performance Broadband Photodetector. ACS Applied Electronic Materials, 2021, 3, 2407-2414.	2.0	70
312	Self-powered solar-blind ultraviolet photodetector based on α-Ga ₂ O ₃ nanorod arrays fabricated by the water bath method. Optical Materials Express, 2021, 11, 2089.	1.6	15
313	Multispectral photodetection using low-cost sputtered NiO/Ag/ITO heterostructure: From design concept to elaboration. Ceramics International, 2021, 47, 15703-15709.	2.3	8
314	Electrodeâ€Dependent Electrical Properties of Detectionâ€Band Tunable Ultraviolet Photodetectors Based on Ga 2 O 3 /GaN Heterostructures. Physica Status Solidi (A) Applications and Materials Science, 2021, 218, 2100166.	0.8	1
315	Epitaxial Growth and Stoichiometry Control of Ultrawide Bandgap ZnGa2O4 Films by Pulsed Laser Deposition. Coatings, 2021, 11, 782.	1.2	5
317	TCAD-Based Investigation of Double Gate JunctionLess Transistor for UV Photodetector. IEEE Transactions on Electron Devices, 2021, 68, 2841-2847.	1.6	14
318	Reduced graphene oxide on silicon-based structure as novel broadband photodetector. Scientific Reports, 2021, 11, 13015.	1.6	29
319	Progress in light-to-frequency conversion circuits based on low dimensional semiconductors. Nano Research, 2021, 14, 2938-2964.	5.8	4
320	Modeling and computation of thermal and optical properties in silicene supported honeycomb bilayer and heterobilayer nanostructures. Materials Science in Semiconductor Processing, 2021, 129, 105776.	1.9	10
321	Self-powered fine-pattern flexible SiC single nanowire ultraviolet photodetector. Journal of Alloys and Compounds, 2021, 868, 159255.	2.8	27
322	Enhanced-Performance Self-Powered Solar-Blind UV-C Photodetector Based on n-ZnO Quantum Dots Functionalized by p-CuO Micro-pyramids. ACS Applied Materials & Interfaces, 2021, 13, 33335-33344.	4.0	44
323	Modified interfaces of twisted root-like 2D configured ZnO hierarchical nanostructures through surface lattice coating of NiO/graphene and their enhanced UV photodetection properties. Journal of Alloys and Compounds, 2021, 868, 159240.	2.8	10
324	Electromagnetic absorber converting radiation for multifunction. Materials Science and Engineering Reports, 2021, 145, 100627.	14.8	169
325	Cube-Shaped GaN UV Photodetectors Using 3D-Printed Panels for Omnidirectional Detection. IEEE Sensors Journal, 2021, 21, 16403-16408.	2.4	12

#	Article	IF	CITATIONS
326	Multilayered PdTeâ,,/GaN Heterostructures for Visible-Blind Deep-Ultraviolet Photodetection. IEEE Electron Device Letters, 2021, 42, 1192-1195.	2.2	18
327	Azobenzene-containing liquid crystalline composites for robust ultraviolet detectors based on conversion of illuminance-mechanical stress-electric signals. Nature Communications, 2021, 12, 4875.	5.8	37
328	A simple and efficient visible light photodetector based on Co3O4/ZnO composite. Optical and Quantum Electronics, 2021, 53, 1.	1.5	8
329	Ultrasensitive self-powered UV photodetector based on a novel p-n heterojunction of solution-processable organic semiconductors. Synthetic Metals, 2021, 278, 116830.	2.1	12
330	Absorption enhancement of ultraviolet detector in plasmonic nanoparticles-decorated GaN/AlGaN nanostructures. Optics Communications, 2021, 492, 126972.	1.0	6
331	Kirigami and Mogulâ€Patterned Ultraâ€Stretchable Highâ€Performance ZnO Nanowiresâ€Based Photodetector. Advanced Materials Technologies, 2022, 7, 2100804.	3.0	27
332	Challenges and recent advances in photodiodes-based organic photodetectors. Materials Today, 2021, 51, 475-503.	8.3	94
333	A broadband self-powered UV photodetector of a β-Ga ₂ O ₃ /γ-Cul p-n junction. Chinese Physics B, 2022, 31, 024205.	0.7	10
334	Visible-blind and flexible metal-semiconductor-metal ultraviolet photodetectors based on sub-10-nm thick silver interdigital electrodes. Optics Letters, 2021, 46, 4666.	1.7	5
335	Enhanced Ultraviolet Photoresponse Characteristics of Indium Gallium Zinc Oxide Photo-Thin-Film Transistors Enabled by Surface Functionalization of Biomaterials for Real-Time Ultraviolet Monitoring. ACS Applied Materials & Interfaces, 2021, 13, 47784-47792.	4.0	6
336	Preparation of hexagonal nanoporous Al2O3/TiO2/TiN as a novel photodetector with high efficiency. Scientific Reports, 2021, 11, 17572.	1.6	55
337	Alloying induced disorder and localized excitonic states in ternary BexZn1â^'xO thin films. Journal of Alloys and Compounds, 2021, 874, 159867.	2.8	4
338	Improved UV photodetector performance of NiO films by substitutional incorporation of Li. Materials Letters, 2021, 301, 130296.	1.3	15
339	Tunable and high-performance self-powered ultraviolet detectors using leaf-like nanostructural arrays in ternary tin zinc sulfide system. Microelectronics Journal, 2021, 116, 105237.	1.1	3
340	Fast-response self-powered solar-blind photodetector based on Pt/ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e251" altimg="si18.svg"><mml:mi>î²</mml:mi>-Ga2O3 Schottky barrier diodes. Optik, 2021, 245, 167715.</mml:math 	1.4	8
341	High-performance self-powered photodetectors achieved through the pyro-phototronic effect in Si/SnOx/ZnO heterojunctions. Nano Energy, 2021, 89, 106347.	8.2	39
342	Highly responsive and low-cost ultraviolet sensor based on ZnS/p-Si heterojunction grown by chemical bath deposition. Sensors and Actuators A: Physical, 2021, 331, 112988.	2.0	52
343	Two-dimensional Al2O3 with ultrawide bandgap and large exciton binding energy for solar-blind ultraviolet photodetectors. Computational Materials Science, 2021, 200, 110775.	1.4	8

#	Article	IF	CITATIONS
344	Post-annealing effects on RF sputtered all-amorphous ZnO/SiC heterostructure for solar-blind highly-detective and ultralow dark-noise UV photodetector. Journal of Non-Crystalline Solids, 2021, 574, 121168.	1.5	20
345	Extraordinarily high ultraviolet photodetection by defect tuned phosphorus doped ZnO thin film on flexible substrate. Materials Research Bulletin, 2021, 144, 111490.	2.7	12
346	Superior UV photodetector performance of TiO2 films using Nb doping. Journal of Physics and Chemistry of Solids, 2022, 160, 110350.	1.9	24
347	The catalyst-free growth of layer-structured CuInSe ₂ /β-In ₂ Se ₃ microwires for ultrasensitive self-powered photodetectors based on a lateral p–n junction. Journal of Materials Chemistry C, 2021, 9, 9484-9491.	2.7	8
348	A simple, repeatable and highly stable self-powered solar-blind photoelectrochemical-type photodetector using amorphous Ga ₂ O ₃ films grown on 3D carbon fiber paper. Journal of Materials Chemistry C, 2021, 9, 10354-10360.	2.7	40
349	Dual-functional ultraviolet photodetector with graphene electrodes on AlGaN/GaN heterostructure. Scientific Reports, 2020, 10, 22059.	1.6	33
350	Highly selective ozone-treated <i>l²</i> -Ga2O3 solar-blind deep-UV photodetectors. Applied Physics Letters, 2020, 117, .	1.5	34
351	Flexible and highly stable solar-blind photodetector based on room-temperature synthesis of amorphous Ga ₂ O ₃ film. Journal Physics D: Applied Physics, 2020, 53, 484004.	1.3	11
352	New highly efficient 2D SiC UV-absorbing material with plasmonic light trapping. Journal of Physics Condensed Matter, 2020, 32, 025701.	0.7	20
353	Recent progress of SiC UV single photon counting avalanche photodiodes. Journal of Semiconductors, 2019, 40, 121802.	2.0	8
354	Impact of channel scaling on performance of single SiC nanowire UV photodetector. Journal of Nanophotonics, 2019, 13, 1.	0.4	3
355	A review of the growth, doping, and applications of Beta-Ga2O3 thin films. , 2018, , .		31
356	Localized surface plasmon enhanced Ga ₂ O ₃ solar blind photodetectors. Optics Express, 2020, 28, 5731.	1.7	42
357	Solar-blind ultraviolet photodetector based on vertically aligned single-crystalline β-Ga ₂ O ₃ nanowire arrays. Nanophotonics, 2020, 9, 4497-4503.	2.9	35
358	Suppressing Nitrogen-Vacancy Centers to Enhance Performance of Diamond Ultraviolet Photodetector via Growing With Tungsten. IEEE Transactions on Electron Devices, 2021, 68, 6228-6232.	1.6	2
359	Nanoporous TiN/TiO2/Alumina Membrane for Photoelectrochemical Hydrogen Production from Sewage Water. Nanomaterials, 2021, 11, 2617.	1.9	26
360	Antisolvent-Processed One-Dimensional Ternary Rubidium Copper Bromine Microwires for Sensitive and Flexible Ultraviolet Photodetectors. ACS Applied Materials & amp; Interfaces, 2021, 13, 49007-49016.	4.0	12
361	Vertically Stacked Full Color Quantum Dots Phototransistor Arrays for Highâ€Resolution and Enhanced Colorâ€Selective Imaging. Advanced Materials, 2022, 34, e2106215.	11.1	23

#	Article	IF	CITATIONS
362	Preparation of all-oxide β-Ga ₂ O ₃ /α-MoO ₃ heterojunction towards self-driven deep ultraviolet photosensor. Physica Scripta, 2021, 96, 125844.	1.2	13
363	Controlled growth of gallium nitride nanowires on silicon and their utility in high performance Ultraviolet‑A photodetectors. Sensors and Actuators A: Physical, 2021, 332, 113189.	2.0	13
364	A Ga ₂ O ₃ /AlN heterojunction for self-powered solar-blind photodetection with high photo-to-dark current ratio and fast response speed. Physica Scripta, 2021, 96, 125835.	1.2	8
365	Self-powered solar-blind α-Ga2O3 thin-film UV-C photodiode grown by halide vapor-phase epitaxy. APL Materials, 2021, 9, .	2.2	18
366	Zero-biased and visible-blind UV photodetectors based on nitrogen-doped ultrananocrystalline diamond nanowires. Ceramics International, 2022, 48, 3757-3761.	2.3	5
367	Transparent nanostructured ZnS films by low-temperature sputtering for flexible optoelectronic devices. , 2019, , .		0
368	UV nanophotodetector based on a single ZnO:Au nanowire functionalized with Au-nanoparticles. , 2020, , .		0
369	Biyo–Seramik Bileşimine Silisyum Katkısının Osteokondüktif ve Osteoindüktif Özelliklere Etkisi. E Journal of Science and Engineering, 0, , .	-Cezeri 0.1	0
370	Toroidal Metadevices. Engineering Materials, 2021, , 123-142.	0.3	0
371	Antioxidant assessment of agricultural produce using fluorescence techniques: a review. Critical Reviews in Food Science and Nutrition, 2023, 63, 3704-3715.	5.4	3
372	Highâ€Performing Selfâ€Powered Photosensing and Reconfigurable Pyroâ€photoelectric Memory with Ferroelectric Hafnium Oxide. Advanced Materials, 2022, 34, e2106881.	11.1	18
373	The Electronic and Optical Properties of Thin Nanocluster Mo Films for Single-Photon UV Detectors. Physics of Atomic Nuclei, 2020, 83, 1607-1610.	0.1	1
374	Enhanced Responsivity of Diamond UV Detector Based on Regrown Lens Structure. IEEE Electron Device Letters, 2020, 41, 1829-1832.	2.2	19
375	Advances in ZnO-Material Based UV Photodetectors. , 2022, , 200-223.		2
376	Large-area fabrication of homogeneous octahedral Bi2O3 nanoblocks on ITO substrate for UV detection. Materials Science in Semiconductor Processing, 2022, 137, 106245.	1.9	8
377	Recent Progress in the Energy Harvesting Technology—From Self-Powered Sensors to Self-Sustained IoT, and New Applications. Nanomaterials, 2021, 11, 2975.	1.9	60
378	Thin Film Metal Oxides for Displays and Other Optoelectronic Applications. Environmental Chemistry for A Sustainable World, 2021, , 185-250.	0.3	5
379	Preparation and characterization of a high-efficiency photoelectric detector composed of hexagonal Al2O3/TiO2/TiN/Au nanoporous array. Materials Science in Semiconductor Processing, 2022, 139, 106348.	1.9	26

#	Article	IF	CITATIONS
380	High power impulse magnetron sputtering growth processes for copper nitride thin film and its highly enhanced UV - visible photodetection properties. Journal of Alloys and Compounds, 2022, 896, 162924.	2.8	8
381	A transparent, self-powered photodetector based on p-CuI/n-TiO ₂ heterojunction film with high on–off ratio. Nanotechnology, 2022, 33, 105202.	1.3	20
382	Practical Demonstration of Deep-Ultraviolet Detection with Wearable and Self-Powered Halide Perovskite-Based Photodetector. ACS Applied Materials & Interfaces, 2021, 13, 57609-57618.	4.0	28
383	Self-driven solar-blind ultraviolet photodetectors based on p-Zn1â^'xSbxO/n-Siâ^' (x = 0.03, 0.05) heterojunction diodes. Journal of Materials Science: Materials in Electronics, 2022, 33, 920.	1.1	2
384	Enhancement-mode normally-off β-Ga ₂ O ₃ :Si metal-semiconductor field-effect deep-ultraviolet phototransistor. Semiconductor Science and Technology, 2022, 37, 015001.	1.0	13
385	Solar-blind ultraviolet photodetectors with thermally reduced graphene oxide formed on high-Al-content AlGaN layers. AIP Advances, 2021, 11, .	0.6	7
386	Reversible Manipulation of Photoconductivity Caused by Surface Oxygen Vacancies in Perovskite Stannates with Ultraviolet Light. Advanced Materials, 2022, 34, e2107650.	11.1	17
387	Exploring the Ruddlesden–Popper layered organic–inorganic hybrid semiconducting perovskite for visible-blind ultraviolet photodetection. CrystEngComm, 2022, 24, 2258-2263.	1.3	2
388	Polycrystalline Ga ₂ O ₃ Nanostructure-Based Thin Films for Fast-Response Solar-Blind Photodetectors. ACS Applied Nano Materials, 2022, 5, 351-360.	2.4	16
389	Chemical growth and study of low intensity sensing ability of nanobranch and nanorod structured SnO2 UV detector. Journal of Environmental Chemical Engineering, 2022, 10, 106981.	3.3	7
390	UV sensitivity enhancement in ZnO:Cu films through simple post-annealing treatment. Physica B: Condensed Matter, 2022, 628, 413603.	1.3	5
391	Desenvolvimento de um protótipo de sensor óptico para medição de parâmetros de óleos para transformadores. Research, Society and Development, 2020, 9, e3099108273.	0.0	0
392	Zinc oxide-paper based sensor for photoconductive ultraviolet detection. Indonesian Journal of Electrical Engineering and Computer Science, 2020, 20, 60.	0.7	0
393	The efficiency of M (M = Li, Na, or Cs) doped <scp>CdS</scp> nanomaterials in optoelectronic applications. International Journal of Energy Research, 2022, 46, 8443-8451.	2.2	24
394	Utilizing zinc oxide nanorods/polyaniline heterojunction as a flexible self-powered ultraviolet photodetector. Optical Materials, 2022, 123, 111902.	1.7	7
395	Local Avalanche Effect of 4H-SiC p-i-n Ultraviolet Photodiodes With Periodic Micro-Hole Arrays. IEEE Electron Device Letters, 2022, 43, 64-67.	2.2	7
396	The suppression of dark current for achieving high-performance Ga2O3 nanorod array ultraviolet photodetector. Ceramics International, 2022, 48, 12112-12117.	2.3	6
397	Simply equipped ε-Ga ₂ O ₃ film/ZnO nanoparticle heterojunction for self-powered deep UV sensor. Physica Scripta, 2022, 97, 015808.	1.2	9

#	Article	IF	CITATIONS
398	Solution-processed flexible broadband ZnO photodetector modified by Ag nanoparticles. Solar Energy, 2022, 232, 1-11.	2.9	15
399	Application of Nanostructured TiO ₂ in UV Photodetectors: A Review. Advanced Materials, 2022, 34, e2109083.	11.1	145
400	Innovative all-silicon based a-SiNx:O/c-Si heterostructure solar-blind photodetector with both high responsivity and fast response speed. APL Photonics, 2022, 7, .	3.0	5
401	Enhanced UV photosensing properties by field-induced polarization in ZnO-modified (Bi0.93Gd0.07)FeO3 ceramics. Journal of Alloys and Compounds, 2022, 902, 163779.	2.8	7
402	Enhanced Photoresponse Performance of Selfâ€Powered PTAA/GaN Microwire Heterojunction Ultraviolet Photodetector Based on Piezoâ€Phototronic Effect. Advanced Materials Interfaces, 2022, 9, .	1.9	5
403	Achieving self-powered photoresponse in mono layered SnO2 nanostructure array UV photodetector through the tailoring of electrode configuration. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 428, 113860.	2.0	1
404	Two-dimensional hexagonal LaOF with ultrawide bandgap, large exciton energy, and low lattice thermal conductivity. Physica E: Low-Dimensional Systems and Nanostructures, 2022, 140, 115195.	1.3	1
405	id="2-20220216211654">egin{document}\${oldsymbol{eta}} \$end{document} <alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="4-20211744_Z-20220216211654.jpg"/><graphic< td=""><td>0.2</td><td>1</td></graphic<></graphic </alternatives>	0.2	1
406	Photoelectric Characteristics of Al-Doped Zno/P-Si Diode Prepared by Radio Frequency Magnetron Sputtering. SSRN Electronic Journal, 0, , .	0.4	0
407	Boosting Selfâ€Powered Ultraviolet Photoresponse of TiO ₂ â€Based Heterostructure by Flexoâ€Phototronic Effects. Advanced Optical Materials, 2022, 10, .	3.6	4
408	Band-engineered quasi-AlGaN/GaN high-electron-mobility-avalanche-transit-time (HEMATT) oscillator: electro-optical interaction study in sub-mm frequency domain. European Physical Journal Plus, 2022, 137, 1.	1.2	2
409	Hydrothermal growth of single-crystalline Ga-doped ZnO microrods for ultraviolet detection. , 2022, , 207214.		1
410	A 4×4 metal-semiconductor-metal rectangular deep-ultraviolet detector array of Ga ₂ O ₃ photoconductor with high photo response. Chinese Physics B, 2022, 31, 088503.	0.7	11
411	Sunlight-Responsive Titania–Hydrated Tungsten Oxide Heteronanoparticles/Paper-Based Color-Switching Film for Solar Ultraviolet Radiation Monitors. ACS Applied Nano Materials, 2022, 5, 4009-4017.	2.4	6
412	Ultralow-power deep-ultraviolet photodetection using oxide-nitride heterojunctions integrated on silicon. , 2022, , .		0
413	Ultrasensitive Self-Powered Deep-Ultraviolet Photodetector Based on <i>In Situ</i> Epitaxial Gaâ,,Oâ,f/Biâ,,Seâ,f Heterojunction. IEEE Transactions on Electron Devices, 2022, 69, 1894-1899.	1.6	7
414	Highly-detective tunable band-selective photodetector based on RF sputtered amorphous SiC thin-film: Effect of sputtering power. Journal of Alloys and Compounds, 2022, 907, 164464.	2.8	13
415	Excellent photo-detection properties of cerium doped ZnO device fabricated by spray pyrolysis technique. Inorganic Chemistry Communication, 2022, 140, 109439.	1.8	8

#	Article	IF	CITATIONS
417	A high-responsivity CsPbBr ₃ nanowire photodetector induced by CdS@Cd _{<i>x</i>} Zn _{1â^'<i>x</i>} S gradient-alloyed quantum dots. Nanoscale Horizons, 2022, 7, 644-654.	4.1	6
418	Photoelectric Characteristics of Al-Doped Zno/P-Si Diode Prepared by Radio Frequency Magnetron Sputtering. SSRN Electronic Journal, 0, , .	0.4	0
419	Surmounting the interband threshold limit by the hot electron excitation of multi-metallic plasmonic AgAuCu NPs for UV photodetector application. CrystEngComm, 2022, 24, 4134-4143.	1.3	3
420	Polarization-sensitive UVA photodetector based on heterojunction of ITO and rare-earth doped bismuth ferrite ceramics. Ceramics International, 2022, , .	2.3	4
421	Carbon Nitride Thin Filmâ€Sensitized Graphene Fieldâ€Effect Transistor: A Visibleâ€Blind Ultraviolet Photodetector. Advanced Materials Interfaces, 2022, 9, .	1.9	4
422	Integratable photodetectors based on photopolymerized conductive polymer via femtosecond laser direct writing. Optics Letters, 2022, 47, 2630.	1.7	4
423	Fabrication of n-TiO2/p-Si Photo-Diodes for Self-Powered Fast Ultraviolet Photodetectors. Silicon, 2022, 14, 11891-11901.	1.8	8
424	High responsivity n-ZnO/p-CuO heterojunction thin film synthesised by low-cost SILAR method for photodiode applications. Optical Materials, 2022, 128, 112410.	1.7	21
425	Nonâ€Ultrawide Bandgap Semiconductor GaSe Nanobelts for Sensitive Deep Ultraviolet Light Photodetector Application. Small, 2022, 18, e2200594.	5.2	13
426	Large-area large-grain CsPbCl ₃ perovskite films by confined re-growth for violet photodetectors. Nanotechnology, 2022, 33, 33LT01.	1.3	2
427	Ag ₂ 0/l̂2-Ga ₂ O ₃ Heterojunction-Based Self-Powered Solar Blind Photodetector with High Responsivity and Stability. ACS Applied Materials & Interfaces, 2022, 14, 25648-25658.	4.0	18
428	Flexible assembly of the PEDOT: PSS/ exfoliated β-Ga ₂ O ₃ microwire hybrid heterojunction for high-performance self-powered solar-blind photodetector. Optics Express, 2022, 30, 21822.	1.7	9
429	High-performance solar-blind photodetector arrays constructed from Sn-doped Ga2O3 microwires via patterned electrodes. Nano Research, 2022, 15, 7631-7638.	5.8	26
430	Aqueousâ€Printed Ga ₂ O ₃ Films for Highâ€Performance Flexible and Heatâ€Resistant Deep Ultraviolet Photodetector and Array. Advanced Optical Materials, 2022, 10, .	3.6	24
431	An ultraviolet sensor based on surface plasmon resonance in no-core optical fiber deposited by Ag and ZnO film. Surfaces and Interfaces, 2022, 31, 102074.	1.5	2
432	First-principle study on the stability, mechanical, electronic, and optical properties of two-dimensional scandium oxyhalides. Materials Chemistry and Physics, 2022, 287, 126306.	2.0	3
433	A Highly Responsive Hydrogen-Terminated Diamond-Based Phototransistor. IEEE Electron Device Letters, 2022, 43, 1271-1274.	2.2	7
434	High-performance DUV-C Solar-Blind n-ZnO Quantum Dot/p-CuO Micro-pyramid Photodetector Arrays. , 2022, , .		0

ARTICLE IF CITATIONS # Controllable Coupling Effects Enhance the Performance of Ionic-Polymer-Gated Graphene 435 2.4 1 Photodetectors. ACS Applied Nano Materials, 2022, 5, 9034-9041. Recent developments in optoelectronic and photonic applications of metal oxides., 2022, , 33-57. High Stability Flexible Deep-UV Detector Based on All-Oxide Heteroepitaxial Junction. ACS Applied 437 2.0 9 Electronic Materials, 2022, 4, 3099-3106. Properties, Synthesis, and Device Applications of 2D Layered InSe. Advanced Materials Technologies, 3.0 2022, 7, . Low-Power Operating Aluminum Nitride Nanowire-Film Ultraviolet Photodetector. Journal of Nano 439 0.8 1 Research, 0, 74, 25-34. Boosting the performance of crossed ZnO microwire UV photodetector by mechanical contact homo-interface barrier. Chinese Physics B, 0, , . Bendingâ€Insensitive Intrinsically Flexible Ultraviolet Encoding Devices Based on Piezoelectric 441 5.2 6 Nanogeneratorâ€Supplied Liquid Crystalline Polymer Fabrics. Small, 2022, 18, . Fabrication and UV photoresponse of ordered ZnO nanonets using monolayer colloidal crystal 449 1.4 template. Micro and Nano Engineering, 2022, 16, 100160. Self-Powered Photodetector Based on FTO/n-TiO2/p-CuMnO2 Transparent Thin Films. Materials, 2022, 444 1.3 4 15, 5229. Rollable Ultraviolet Photodetector Based on ZnAlâ€Layered Double Hydroxide/Polyvinylidene Fluoride 445 Membrane. Advanced Materials Interfaces, 2022, 9, . Visibleâ€Blind Deep Ultraviolet Photomultiplication Organic Photodetectors with Ultrahigh Gain for 446 7.8 8 UVB and UVC Light Detection. Advanced Functional Materials, 2022, 32, . Selective Area Growth of GaN Nanowire: Partial Pressures and Temperature as the Key Growth 1.4 Parameters. Crystal Growth and Design, 2022, 22, 5345-5353. A deep-ultraviolet photodetector of a l2-Ga2O3/CuBil4 heterojunction highlighting ultra-high 448 0.8 7 sensitivity and responsivity. Thin Solid Films, 2022, 757, 139397. <i>ì²</i>-Ga₂O₃-Based Solar-Blind Photodetector With Ultrahigh Responsivity via Optimizing Interdigital Electrode Parameters. IEEE Electron Device Letters, 2022, 43, 1511-1514. 449 2.2 Plasmonic enhanced ultraviolet photodetection performance of n-TiO2/p-Si anisotype heterojunction 450 1.9 6 with aluminum patterned array. Journal of Physics and Chemistry of Solids, 2022, 170, 110943. Flexible transparent photovoltaics for ultra-UV photodetection and functional UV-shielding based on Ga2O3/Cu2O heterojunction. Applied Materials Today, 2022, 29, 101620. Robust and fast response solar-blind UV photodetectors based on the transferable 4H-SiC 452 2.0 8 free-standing nanowire arrays. Sensors and Actuators A: Physical, 2022, 346, 113878. High performance broad-band ultraviolet-B to visible photodetection based on planar Al-Zn2SnO4-Al structure. Sensors and Actuators A: Physical, 2022, 347, 113898.

#	Article	IF	CITATIONS
454	Fabrication of manganese ferrite on laser scribed carbon electrode for carbon-semiconductor-carbon based Infrared Photodetectors. Materials Science in Semiconductor Processing, 2022, 152, 107055.	1.9	1
455	Efficient ultraviolet–visible-near infrared self-powered photodetector based on hexagonal YMnO3-based ferroelectric thin film by multiscale polarity structure optimization. Chemical Engineering Journal, 2023, 452, 139040.	6.6	16
456	Progress in ultraviolet photodetectors based on Il–VI group compound semiconductors. Journal of Materials Chemistry C, 2022, 10, 12929-12946.	2.7	31
457	Self-powered ZnO-based pyro-phototronic photodetectors: impact of heterointerfaces and parametric studies. Journal of Materials Chemistry C, 2022, 10, 12487-12510.	2.7	16
458	Two-dimensional wide-bandgap GeSe ₂ vertical ultraviolet photodetectors with high responsivity and ultrafast response speed. Nanoscale Advances, 2022, 4, 5297-5303.	2.2	2
459	Real-Time Quantitative Detection of Ultraviolet Radiation Dose Based on Photochromic Hydrogel and Photo-Resistance. Chemistry of Materials, 2022, 34, 7947-7958.	3.2	12
460	Doping Engineering in the MoS ₂ /SnSe ₂ Heterostructure toward Highâ€Rejectionâ€Ratio Solarâ€Blind UV Photodetection. Advanced Materials, 2022, 34, .	11.1	23
461	Water engineering in lead free CsCu2I3 perovskite for high performance planar heterojunction photodetector applications. Ceramics International, 2023, 49, 1970-1979.	2.3	7
462	Quasiâ€2D Ruddlesden–Popper Perovskites with Low Trapâ€States for High Performance Flexible Selfâ€Powered Ultraviolet Photodetectors. Advanced Optical Materials, 2022, 10, .	3.6	7
463	Self-powered silicon carbide ultraviolet photodetector via gold nanoparticle plasmons for sustainable optoelectronic applications. Physica Scripta, 2022, 97, 115804.	1.2	0
464	Anisotropic dependence of radiation from excitons in Ga ₂ O ₃ /MoS ₂ heterostructure. RSC Advances, 2022, 12, 30322-30327.	1.7	2
465	High-Performance Schottky Junction for Self-Powered, Ultrafast, Broadband Alternating Current Photodetector. Korean Journal of Materials Research, 2022, 32, 333-338.	0.1	0
466	A Review on Gallium Oxide Materials from Solution Processes. Nanomaterials, 2022, 12, 3601.	1.9	13
467	Correlation of crystalline and optical properties with UV photodetector characteristics of GaN grown by laser molecular beam epitaxy on a-sapphire. Applied Physics A: Materials Science and Processing, 2022, 128, .	1.1	6
468	High-index-contrast photonic structures: a versatile platform for photon manipulation. Light: Science and Applications, 2022, 11, .	7.7	8
469	Heterojunction structure for suppressing dark current toward high-performance ZnO microrod metal-semiconductor-metal ultraviolet photodetectors. , 2022, 171, 207422.		3
470	Anisotropic performances and bending stress effects of the flexible solar-blind photodetectors based on β-Ga2O3 (1 0 0) surface. Applied Surface Science, 2023, 610, 155318.	3.1	6
471	High-performance ultraviolet photodetector based on p-PEDOT:PSS film/p-ZnO:Sb microwire/n-Si double heterojunction. Ceramics International, 2023, 49, 8302-8312.	2.3	8

#	Article	IF	CITATIONS
472	Review of self-powered solar-blind photodetectors based on Ga2O3. Materials Today Physics, 2022, 28, 100883.	2.9	60
473	Electronic properties and photo-gain of UV-C photodetectors based on high-resistivity orthorhombic κ-Ga2O3 epilayers. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2022, 286, 116056.	1.7	6
474	Ultrafast response solar-blind UV sensor based on ZnGa2O4 nanowire bridge arrays. Physica E: Low-Dimensional Systems and Nanostructures, 2023, 146, 115505.	1.3	4
475	Dual-band and dual-mode ultraviolet photodetection characterizations of the Ga ₂ 0 ₃ /Al _{0.1} Ga _{0.9} 1 homo-type heterojunction. Wuli Xuebao/Acta Physica Sinica, 2023, .	N0.2	0
476	Highly responsive photodetection based on bismuth ferrite ceramics: The roles of depolarization field and domain network. Materials Research Bulletin, 2023, 158, 112075.	2.7	1
477	Patterned Ga2O3 nanowires synthesized by CVD method for High-performance self-powered ultraviolet photodetector. Journal of Alloys and Compounds, 2023, 934, 168070.	2.8	8
478	Ga ₂ O ₃ /GaN Heterointerface-Based Self-Driven Broad-Band Ultraviolet Photodetectors with High Responsivity. ACS Applied Electronic Materials, 2022, 4, 5641-5651.	2.0	14
479	Bias-Switchable Photodetector from Broad-Band to UV-Selective Detection Mode Leveraging Nanolayered Dual-Schottky Junction. ACS Applied Nano Materials, 2022, 5, 17891-17899.	2.4	0
480	High performance amorphous Ga ₂ O ₃ thin film solar blind ultraviolet photodetectors decorated with Al nanoparticles. Wuli Xuebao/Acta Physica Sinica, 2023, 72, 038501.	0.2	3
481	ZnO hole blocking layer induced highly UV responsive p-NiO/n-ZnO/n-Si heterojunction photodiodes. Sensors and Actuators A: Physical, 2023, 349, 114087.	2.0	3
482	Self-powered solar-blind deep-UV photodetector based on CuI/Ga2O3 heterojunction with high sensitivity. Sensors and Actuators A: Physical, 2023, 349, 114068.	2.0	7
483	Organic and quantum dot hybrid photodetectors: towards full-band and fast detection. Chemical Communications, 2023, 59, 260-269.	2.2	7
484	Review on metal sulfide-based nanostructures for photodetectors: From ultraviolet to infrared regions. Sensors and Actuators A: Physical, 2023, 349, 114051.	2.0	11
485	Enhancing UV photodetection performance of an individual ZnO microwire p–n homojunction <i>via</i> interfacial engineering. Nanoscale, 2023, 15, 2292-2304.	2.8	18
486	Boron carbonitride (BxCyNz) nanosheets based single electrode triboelectric nanogenerator for wearable UV photodetectors. Applied Materials Today, 2023, 30, 101686.	2.3	4
487	Emerging Chalcohalide Materials for Energy Applications. Chemical Reviews, 2023, 123, 327-378.	23.0	34
488	Fabrication of ultra-violet photodetector on laser MBE grown epitaxial GaN nanowalls on sapphire (11–20). Journal of Materials Research, 2023, 38, 429-438.	1.2	4
489	Ultraviolet photodetectors based on ferroelectric depolarization field. Journal of Energy Chemistry, 2023, 77, 487-498.	7.1	8

#	Article	IF	CITATIONS
490	Cu3N thin film synthesized by selective in situ substrate heating during high power impulse magnetron sputtering for augmenting UV photodetection. Sensors and Actuators A: Physical, 2023, 350, 114137.	2.0	4
491	Graphene/MoSi2X4: A class of van der Waals heterojunctions with unique mechanical and optical properties and controllable electrical contacts. Applied Surface Science, 2023, 614, 156095.	3.1	5
492	CuO Nanosheets for Use in Photoelectrochemical Photodetectors. ACS Applied Nano Materials, 2023, 6, 784-791.	2.4	8
493	Performance Enhancement of Ga ₂ O ₃ Solar-Blind UV Photodetector by the Combination of Oxygen Annealing and Plasma Treatment. Journal of Physical Chemistry C, 2022, 126, 21839-21846.	1.5	8
494	Simple Water-Assisted Synthesis of Ce-Doped Lead-Free Cesium Metal Halides for Visible-Blind UV Photodetectors. ACS Sustainable Chemistry and Engineering, 2023, 11, 92-100.	3.2	3
495	Electrical Characterization in Ultra-Wide Band Gap III-Nitride Heterostructure IMPATT/HEMATT Diodes: A Room-Temperature Sub-Millimeter Wave Power Source. Journal of Electronic Materials, 2023, 52, 1552-1563.	1.0	1
496	Enhanced Photoresponse of a Self-Powered Gallium Nitride Photodetector via Sequentially-Deposited Gold Nanoparticles for Sustainable Optoelectronics. Journal of Electronic Materials, 2023, 52, 2372-2379.	1.0	3
497	Fast all-fiber ultraviolet photodetector based on an Ag-decorated ZnO micro-pillar. Optics Express, 2023, 31, 5102.	1.7	2
498	3D printed ZnO-Polyurethane acrylate resin composite for wide spectral photo response optical detectors. Sensors and Actuators A: Physical, 2023, 351, 114165.	2.0	3
499	Electric and optoelectronic balances of silicon photodetectors coupled with colloid carbon nanodots. Materials Letters, 2023, 336, 133857.	1.3	1
500	A review of Ga ₂ O ₃ deep-ultraviolet metal–semiconductor Schottky photodiodes. Journal Physics D: Applied Physics, 2023, 56, 093002.	1.3	27
501	Deep Ultraviolet Photodetector with Ultrahigh Responsivity based on a Nitrogenâ€Đoped Grapheneâ€Modified Polypyrrole/SnO ₂ Organic/Inorganic p–n Heterojunction. Advanced Materials Interfaces, 2023, 10, .	1.9	4
502	Ultraâ€Stable and Sensitive Ultraviolet Photodetectors Based on Monocrystalline Perovskite Thin Films. Advanced Functional Materials, 2023, 33, .	7.8	7
503	Spectroscopic Techniques: Ultraviolet. Springer Handbooks, 2023, , 667-682.	0.3	0
504	A Versatile Photochromic Dosimeter Enabling Detection of Xâ€Ray, Ultraviolet, and Visible Photons. Laser and Photonics Reviews, 2023, 17, .	4.4	12
505	Tree Ring-Inspired Fibrous Helix for UV Shielding and Warning Based on Photo-electricity-Acoustic Energy Conversion. Advanced Fiber Materials, 2023, 5, 681-693.	7.9	4
506	Emerging Trends in 2D TMDs Photodetectors and Piezoâ€Phototronic Devices. Small, 2023, 19, .	5.2	29
507	Synthesis of polycrystalline gallium oxide solar-blind ultraviolet photodetector by Aerosol Deposition, Journal of the European Ceramic Society, 2023, 43, 2534-2540.	2.8	3

#	ARTICLE	IF	CITATIONS
508	Ultraviolet detectors for harsh environments. , 2023, , 267-291.		0
509	Ultraviolet photodetectors and readout based on aâ€IGZO semiconductor technology. Journal of the Society for Information Display, 0, , .	0.8	0
510	Enhanced Responsivity and Optoelectronic Properties of Self-Powered Solar-Blind Ag2O/β-Ga2O3 Heterojunction-Based Photodetector with Ag:AZO Co-Sputtered Electrode. Nanomaterials, 2023, 13, 1287.	1.9	1
511	High external quantum efficiency in ZnO/Au/Ga2O3 sandwich–structured photodetector. Applied Surface Science, 2023, 618, 156705.	3.1	7
512	High-performance self-powered ultraviolet photodetector based on Ga2O3/GaN heterostructure for optical imaging. Journal of Alloys and Compounds, 2023, 945, 169274.	2.8	15
513	Multicolor sensing of organic-inorganic hybrid heterostructure: From visible to invisible colors. Materials Today Advances, 2023, 18, 100362.	2.5	1
514	Self-powered solar-blind UV photodetectors based on Zn:NiO/p-Si heterojunction devices. Applied Physics A: Materials Science and Processing, 2023, 129, .	1.1	2
515	3D Printed Lattice Template by Material Extrusion Technique for Fabrication of Pixelated Photodetector. 3D Printing and Additive Manufacturing, 2023, 10, 1394-1404.	1.4	1
516	Recent advances in one-dimensional electrospun semiconductor nanostructures for UV photodetector applications: A review. Journal of Alloys and Compounds, 2023, 948, 169718.	2.8	5
517	Picoampere Dark Current and Electroâ€Optoâ€Coupled Subâ€toâ€Superâ€linear Response from Mottâ€Transitio Enabled Infrared Photodetector for Nearâ€Sensor Vision Processing. Advanced Materials, 2023, 35, .	n 11.1	7
518	Fabrication of ZnMn2O4 spinel thin film devices for solar-blind ultraviolet photodetectors: Effect of Zn2+ concentration. Journal of Materials Science: Materials in Electronics, 2023, 34, .	1.1	2
519	Near Ultraviolet Photoresponse of a Silicon Carbide and Tantalum Boride Heterostructure. IEEE Photonics Journal, 2023, 15, 1-7.	1.0	1
520	A strategy of high-sensitivity solar-blind photodetector for fabricating graphene surface modification ZnGa2O4/Ga2O3 core-shell structure nanowire networks. Ceramics International, 2023, 49, 18248-18254.	2.3	2
521	Nanowires for photodetection. , 2023, , 139-197.		0
522	Incorporating Photochromic Viologen Derivative to Unprecedentedly Boost UV Sensitivity in Photoelectrochromic Hydrogel. ACS Sensors, 2023, 8, 1609-1615.	4.0	5
523	Hexagonal Boron Nitride for Photonic Device Applications: A Review. Materials, 2023, 16, 2005.	1.3	6
524	Design of the fast-speed ultraviolet-visible photodetector based on an amorphous-Ga2O3/p-Si heterojunction. , 2023, , .		0
525	ZnO Nanowire Based Flexible Transient Ultraviolet Photodetectors. , 2023, , 85-96.		0

#	Article	IF	CITATIONS
526	Study of Nonthermal-Equilibrium Carrier Recombination and Transport in β–Ga ₂ O ₃ Metal–Semiconductor–Metal Deep-Ultraviolet Photodetectors. IEEE Transactions on Electron Devices, 2023, 70, 2336-2341.	1.6	7
528	Modeling and simulation of Ga2O3 thin film solar blind UV photodetector. Materials Today: Proceedings, 2023, , .	0.9	0
529	Novel P-type wide bandgap manganese oxide quantum dots for self-powered solar-blind deep UV devices. , 2023, , .		0
530	Tailoring photodetection performance of self-powered Ga ₂ O ₃ UV solar-blind photodetectors through asymmetric electrodes. Journal of Materials Chemistry C, 2023, 11, 5371-5377.	2.7	7
531	Fluorine Plasma Treatment for AlGaN/GaN HEMT-Based Ultraviolet Photodetector With High Responsivity and High Detectivity. IEEE Electron Device Letters, 2023, 44, 781-784.	2.2	4
532	Highly Sensitive Ultraviolet Photodetector Based on an AlGaN/GaN HEMT with Grapheneâ€Onâ€pâ€GaN Mesa Structure. Advanced Materials Interfaces, 2023, 10, .	1.9	4
533	Large‣cale, Uniformâ€Patterned CsCu ₂ 1 ₃ Films for Flexible Solarâ€Blind Photodetectors Array with Ultraweak Light Sensing. Small, 2023, 19, .	5.2	8
534	Fabrication of High-Performance Visible-Blind Ultraviolet Photodetectors Using Electro-ionic Conducting Supramolecular Nanofibers. ACS Applied Materials & Interfaces, 2023, 15, 19270-19278.	4.0	3
535	Some Aspects of Novel Materials from Optical to THz Engineering. Progress in Optical Science and Photonics, 2023, , 59-80.	0.3	1
536	Tuning the Bandgaps of (Al <i>_x</i> Ga _{1â~} <i>_x</i>) ₂ O ₃ Alloyed Thin Films for Highâ€Performance Solarâ€Blind Ultraviolet Fully Covered Photodetectors. Advanced Optical Materials, 2023, 11	3.6	1
537	Tunable defect-engineered nanohybrid heterostructures: exfoliated 2D WSe ₂ –MoS ₂ nanohybrid sheet covered on 1D ZnO nanostructures for self-powered UV photodetectors. Journal of Materials Chemistry C, 2023, 11, 6082-6088.	2.7	2
538	Lamb Wave Resonator for UV Photodetection and Impact of Induced Piezopotential on Schottky Barrier Height Toward Enhanced Sensitivity. IEEE Sensors Journal, 2023, 23, 10568-10576.	2.4	0
539	High detectivity solar blind photodetector based on mechanical exfoliated hexagonal boron nitride films. Nanotechnology, 2023, 34, 285204.	1.3	1
540	Introduction in II-VI Semiconductors. , 2023, , 3-19.		1
541	Stable and Sensitive Ultraviolet Photodetectors Based on High-Quality CsCu ₂ 1 ₃ Films. ACS Applied Electronic Materials, 2023, 5, 2829-2837.	2.0	5
542	Tetrachromatic vision-inspired neuromorphic sensors with ultraweak ultraviolet detection. Nature Communications, 2023, 14, .	5.8	17
590	Low-dimensional wide-bandgap semiconductors for UV photodetectors. Nature Reviews Materials, 2023, 8, 587-603.	23.3	124
593	Sustainable and CMOS compatible plasmonics. , 2024, , 103-137.		0

#	Article	IF	Citations
632	Effect of the forming gas annealing on the Zinc Gallium Oxide based Deep UV photodetector characteristics grown by metalorganic chemical vapor deposition. , 2023, , .		0
638	All metal oxide-based photodetectors. , 2024, , 277-300.		Ο
643	Study on gallium oxide UV detector based on vanadium dioxide phase transition regulation. , 2024, , .		0