Mass reconstruction methods for PM2.5: a review

Air Quality, Atmosphere and Health 8, 243-263 DOI: 10.1007/s11869-015-0338-3

Citation Report

#	Article	IF	CITATIONS
1	Seasonal contribution of mineral dust and other major components to particulate matter at two remote sites in Central Asia. Atmospheric Environment, 2015, 119, 11-20.	4.1	23
2	Characterization of PM _{2.5} and PM ₁₀ fugitive dust source profiles in the Athabasca Oil Sands Region. Journal of the Air and Waste Management Association, 2015, 65, 1421-1433.	1.9	57
3	Characteristics of PM10 Chemical Source Profiles for Geological Dust from the South-West Region of China. Atmosphere, 2016, 7, 146.	2.3	7
4	Particulate Matter in the Air of the Underground Chamber Complex of the Wieliczka Salt Mine Health Resort. Advances in Experimental Medicine and Biology, 2016, 955, 9-18.	1.6	14
5	Chemical characterization and source apportionment of size-resolved particles in Hong Kong sub-urban area. Atmospheric Research, 2016, 170, 112-122.	4.1	29
6	Field performance of a semi-continuous monitor for ambient PM2.5 water-soluble inorganic ions and gases at a suburban site. Atmospheric Environment, 2016, 144, 376-388.	4.1	54
7	Ambient aerosol composition by infrared spectroscopy and partial least-squares in the chemical speciation network: Organic carbon with functional group identification. Aerosol Science and Technology, 2016, 50, 1096-1114.	3.1	20
8	Chemical characterisation of total suspended particulate matter from a remote area in Amazonia. Atmospheric Research, 2016, 182, 102-113.	4.1	19
9	Source identification and apportionment of PM2.5 and PM2.5â~'10 in iron and steel scrap smelting factory environment using PMF, PCFA and UNMIX receptor models. Environmental Monitoring and Assessment, 2016, 188, 574.	2.7	48
10	Assessing the contribution of water to the mass closure of PM10. Atmospheric Environment, 2016, 140, 555-564.	4.1	20
11	Factors, origin and sources affecting PM 1 concentrations and composition at an urban background site. Atmospheric Research, 2016, 180, 262-273.	4.1	62
12	Study of carbonaceous fractions associated with indoor PM2.5/PM10 during Asian cultural and ritual burning practices. Building and Environment, 2016, 106, 229-236.	6.9	12
13	Explaining the high PM10 concentrations observed in Polish urban areas. Air Quality, Atmosphere and Health, 2016, 9, 517-531.	3.3	80
14	Emissions and source profiles of PM2.5 for coal-fired boilers in the Shanghai megacity, China. Atmospheric Pollution Research, 2016, 7, 577-584.	3.8	39
15	Status and characteristics of ambient PM2.5 pollution in global megacities. Environment International, 2016, 89-90, 212-221.	10.0	287
16	Fine aerosol particles (PM1): natural and anthropogenic contributions and health risk assessment. Air Quality, Atmosphere and Health, 2016, 9, 621-629.	3.3	25
17	Atmospheric aerosols local–regional discrimination for a semi-urban area in India. Atmospheric Research, 2016, 168, 13-23.	4.1	17
18	Characteristics of an open-cut coal mine fire pollution event. Atmospheric Environment, 2017, 151, 140-151.	4.1	37

#	Article	IF	CITATIONS
19	Ionic Composition of Fine Particulate Matter from Urban and Regional Background Sites in Poland. Environmental Engineering Science, 2017, 34, 236-250.	1.6	4
20	A simple method for determination of total water in PM 1 on quartz fiber filters. Microchemical Journal, 2017, 132, 327-332.	4.5	8
21	Sources and composition of PM _{2.5} in the Colorado Front Range during the DISCOVERâ€AQ study. Journal of Geophysical Research D: Atmospheres, 2017, 122, 566-582.	3.3	11
22	Source apportionment of urban air pollutants using constrained receptor models with a priori profile information. Environmental Pollution, 2017, 227, 323-333.	7.5	27
23	Enhanced Ion Chromatographic Speciation of Water-Soluble PM\$\$_{2.5}\$\$ to Improve Aerosol Source Apportionment. Aerosol Science and Engineering, 2017, 1, 7-24.	1.9	21
24	Refined 2013-based vehicle emission inventory and its spatial and temporal characteristics in Zhengzhou, China. Science of the Total Environment, 2017, 599-600, 1149-1159.	8.0	71
25	Air quality measurements—From rubber bands to tapping the rainbow. Journal of the Air and Waste Management Association, 2017, 67, 637-668.	1.9	11
26	Background PM2.5 source apportionment in the remote Northwestern United States. Atmospheric Environment, 2017, 167, 298-308.	4.1	20
27	PM2.5 components and outpatient visits for asthma: A time-stratified case-crossover study in a suburban area. Environmental Pollution, 2017, 231, 1085-1092.	7.5	36
28	PM2.5 emissions and source profiles from open burning of crop residues. Atmospheric Environment, 2017, 169, 229-237.	4.1	50
29	Chemical Constituents of Carbonaceous and Nitrogen Aerosols over Thumba Region, Trivandrum, India. Archives of Environmental Contamination and Toxicology, 2017, 73, 456-473.	4.1	7
30	Efficacy of Recent Emissions Controls on Road Vehicles in Europe and Implications for Public Health. Scientific Reports, 2017, 7, 1152.	3.3	33
31	Filter Processing and Gravimetric Analysis for Suspended Particulate Matter Samples. Aerosol Science and Engineering, 2017, 1, 93-105.	1.9	45
32	Combustion-related organic species in temporally resolved urban airborne particulate matter. Air Quality, Atmosphere and Health, 2017, 10, 917-927.	3.3	1
33	Emissions and Partitioning of Intermediate-Volatility and Semi-Volatile Polar Organic Compounds (I/SV-POCs) During Laboratory Combustion of Boreal and Sub-Tropical Peat. Aerosol Science and Engineering, 2017, 1, 25-32.	1.9	10
34	Temporal and spatial distribution of PM2.5 chemical composition in a coastal city of Southeast China. Science of the Total Environment, 2017, 605-606, 337-346.	8.0	33
35	Carbonaceous particles and aerosol mass closure in PM2.5 collected in a port city. Atmospheric Research, 2017, 183, 245-254.	4.1	31
36	The impact of the 2016 Fort McMurray Horse River Wildfire on ambient air pollution levels in the Athabasca Oil Sands Region, Alberta, Canada. Science of the Total Environment, 2018, 618, 1665-1676.	8.0	72

#	Article	IF	CITATIONS
37	Trends on PM2.5 research, 1997–2016: a bibliometric study. Environmental Science and Pollution Research, 2018, 25, 12284-12298.	5.3	27
38	Coarse particle (PM10–2.5) source profiles for emissions from domestic cooking and industrial process in Central India. Science of the Total Environment, 2018, 627, 1137-1145.	8.0	41
39	Ambient PM10 impacts brought by the extreme flooding event of March 24–26, 2015, in Copiapó, Chile. Air Quality, Atmosphere and Health, 2018, 11, 341-351.	3.3	4
40	Chemical nature of PM2.5 and PM10 in Xi'an, China: Insights into primary emissions and secondary particle formation. Environmental Pollution, 2018, 240, 155-166.	7.5	100
41	Temporal and spatial variations of PM2.5 organic and elemental carbon in Central India. Environmental Geochemistry and Health, 2018, 40, 2205-2222.	3.4	18
42	Hong Kong vehicle emission changes from 2003 to 2015 in the Shing Mun Tunnel. Aerosol Science and Technology, 2018, 52, 1085-1098.	3.1	24
43	Chemical Compositions of PM2.5 Emitted from Diesel Trucks and Construction Equipment. Aerosol Science and Engineering, 2018, 2, 51-60.	1.9	17
44	A hybrid source apportionment strategy using positive matrix factorization (PMF) and molecular marker chemical mass balance (MM-CMB) models. Environmental Pollution, 2018, 238, 39-51.	7.5	51
45	Chemical characterisation and source identification of atmospheric aerosols in the Snowy Mountains, south-eastern Australia. Science of the Total Environment, 2018, 630, 432-443.	8.0	15
46	Chemical characteristics and source apportionment of PM 2.5 between heavily polluted days and other days in Zhengzhou, China. Journal of Environmental Sciences, 2018, 66, 188-198.	6.1	42
47	Measurements of PM10 ions and trace gases with the online system MARGA at the research station Melpitz in Germany – A five-year study. Journal of Atmospheric Chemistry, 2018, 75, 33-70.	3.2	37
48	Chemical composition and source apportionment of PM10 at an urban background site in a high–altitude Latin American megacity (Bogota, Colombia). Environmental Pollution, 2018, 233, 142-155.	7.5	64
49	Insights into extinction evolution during extreme low visibility events: Case study of Shanghai, China. Science of the Total Environment, 2018, 618, 793-803.	8.0	10
50	Source, health risk and composition impact of outdoor very fine particles (VFPs) to school indoor environment in Xi'an, Northwestern China. Science of the Total Environment, 2018, 612, 238-246.	8.0	36
51	Particle size distribution, chemical composition and meteorological factor analysis: A case study during wintertime snow cover in Zhengzhou, China. Atmospheric Research, 2018, 202, 140-147.	4.1	19
52	Characteristics of mass concentration, chemical composition, source apportionment of PM 2.5 and PM 10 and health risk assessment in the emerging megacity in China. Atmospheric Pollution Research, 2018, 9, 309-321.	3.8	54
53	Dry Deposition of Reactive Nitrogen From Satellite Observations of Ammonia and Nitrogen Dioxide Over North America. Geophysical Research Letters, 2018, 45, 1157-1166.	4.0	62
54	Feasibility of coupling a thermal/optical carbon analyzer to a quadrupole mass spectrometer for enhanced PM2.5 speciation. Journal of the Air and Waste Management Association, 2018, 68, 463-476.	1.9	5

#	Article	IF	CITATIONS
55	Short review on PM-bound water. Its presence in the atmosphere, forms of occurrence and determination by Karl Fischer coulometric titration. E3S Web of Conferences, 2018, 44, 00187.	0.5	1
56	Molecular and physical characteristics of aerosol at a remote free troposphere site: implications for atmospheric aging. Atmospheric Chemistry and Physics, 2018, 18, 14017-14036.	4.9	39
57	Constraining chemical transport PM _{2.5} modeling outputs using surface monitor measurements and satellite retrievals: application over the San Joaquin Valley. Atmospheric Chemistry and Physics, 2018, 18, 12891-12913.	4.9	12
58	Measuring the Organic Carbon to Organic Matter Multiplier with Thermal/Optical Carbon-Quadrupole Mass Spectrometer Analyses. Aerosol Science and Engineering, 2018, 2, 165-172.	1.9	3
59	Anthropogenic fine aerosols dominate the wintertime regime over the northern Indian Ocean. Tellus, Series B: Chemical and Physical Meteorology, 2022, 70, 1464871.	1.6	19
60	PM10 oxidative potential at a Central Mediterranean Site: Association with chemical composition and meteorological parameters. Atmospheric Environment, 2018, 188, 97-111.	4.1	44
61	Emission Characteristics of PM2.5 and Trace Gases from Household Wood Burning in Guanzhong Plain, Northwest China. Aerosol Science and Engineering, 2018, 2, 130-140.	1.9	12
62	The Use of Principal Component Analysis for Source Identification of PM2.5 from Selected Urban and Regional Background Sites in Poland. E3S Web of Conferences, 2018, 28, 01001.	0.5	4
63	Chemical composition and oxidative potential of atmospheric coarse particles at an industrial and urban background site in the alpine region of northern Italy. Atmospheric Environment, 2018, 191, 340-350.	4.1	34
64	Airborne particulate matter biotoxicity estimated by chemometric analysis on bacterial luminescence data. Science of the Total Environment, 2018, 640-641, 1512-1520.	8.0	14
65	Chemical composition and source apportionment of ambient, household, and personal exposures to PM2.5 in communities using biomass stoves in rural China. Science of the Total Environment, 2019, 646, 309-319.	8.0	55
66	Design and evaluation of a portable PM _{2.5} monitor featuring a low-cost sensor in line with an active filter sampler. Environmental Sciences: Processes and Impacts, 2019, 21, 1403-1415.	3.5	21
67	Mapping sources of atmospheric pollution: integrating spatial and cluster bibliometrics. Environmental Reviews, 2019, , 1-11.	4.5	1
68	Spatial and temporal variations of PM2.5 mass closure and inorganic PM2.5 in the Southeastern U.S Environmental Science and Pollution Research, 2019, 26, 33181-33191.	5.3	10
69	Changes in PM _{2.5} peat combustion source profiles with atmospheric aging in an oxidation flow reactor. Atmospheric Measurement Techniques, 2019, 12, 5475-5501.	3.1	16
70	Identifying and Quantifying the Impacts of Advected North African Dust on the Concentration and Composition of Airborne Fine Particulate Matter in Houston and Galveston, Texas. Journal of Geophysical Research D: Atmospheres, 2019, 124, 12282-12300.	3.3	23
71	Atmospheric particulate matter characterization by Fourier transform infrared spectroscopy: a review of statistical calibration strategies for carbonaceous aerosol quantification in US measurement networks. Atmospheric Measurement Techniques, 2019, 12, 525-567.	3.1	17
72	Trends in remote PM2.5 residual mass across the United States: Implications for aerosol mass reconstruction in the IMPROVE network. Atmospheric Environment, 2019, 203, 141-152.	4.1	37

#	Article	IF	CITATIONS
73	Characterization of smoke for spacecraft fire safety. Journal of Aerosol Science, 2019, 136, 36-47.	3.8	14
74	A Laboratory Assessment of 120 Air Pollutant Emissions from Biomass and Fossil Fuel Cookstoves. Environmental Science & Technology, 2019, 53, 7114-7125.	10.0	58
75	Evaluation of MERRAero PM2.5 over Indian cities. Advances in Space Research, 2019, 64, 328-334.	2.6	16
76	Characterization of PM2.5 source profiles from typical biomass burning of maize straw, wheat straw, wood branch, and their processed products (briquette and charcoal) in China. Atmospheric Environment, 2019, 205, 36-45.	4.1	55
77	Redistribution of PM _{2.5} â€associated nitrate and ammonium during outdoorâ€ŧoâ€indoor transport. Indoor Air, 2019, 29, 460-468.	4.3	19
78	Chemical Characteristics of Fine Particulate Matter in Poland in Relation with Data from Selected Rural and Urban Background Stations in Europe. Applied Sciences (Switzerland), 2019, 9, 98.	2.5	14
79	Biomass burning in the northern peninsular Southeast Asia: Aerosol chemical profile and potential exposure. Atmospheric Research, 2019, 224, 180-195.	4.1	66
80	Quantifying organic matter and functional groups in particulate matter filter samples from the southeastern United States – Part 1: Methods. Atmospheric Measurement Techniques, 2019, 12, 5391-5415.	3.1	12
81	Relations between indoor and outdoor PM2.5 and constituent concentrations. Frontiers of Environmental Science and Engineering, 2019, 13, 1.	6.0	34
82	Seasonal variations of PM1-bound water concentration in urban areas in Poland. Atmospheric Pollution Research, 2019, 10, 267-273.	3.8	13
83	The influence of local emissions and regional air pollution transport on a European air pollution hot spot. Environmental Science and Pollution Research, 2019, 26, 1675-1692.	5.3	36
84	Household solid fuel burning emission characterization and activity levels in India. Science of the Total Environment, 2019, 654, 493-504.	8.0	17
85	PM2.5 in a megacity of Asia (Karachi): Source apportionment and health effects. Atmospheric Environment, 2019, 202, 223-233.	4.1	27
86	Composition and origin of PM2.5 in Mediterranean Countryside. Environmental Pollution, 2019, 246, 294-302.	7.5	9
87	Sources of pollution and interrelationships between aerosol and precipitation chemistry at a central California site. Science of the Total Environment, 2019, 651, 1776-1787.	8.0	42
88	Characterization of aerosol chemical composition and the reconstruction of light extinction coefficients during winter in Wuhan, China. Chemosphere, 2020, 241, 125033.	8.2	29
89	Contributions of aerosol composition and sources to particulate optical properties in a southern coastal city of China. Atmospheric Research, 2020, 235, 104744.	4.1	15
90	A high-time resolution study of PM2.5, organic carbon, and elemental carbon at an urban traffic site in Istanbul. Atmospheric Environment, 2020, 223, 117241.	4.1	16

#	Article	IF	Citations
91	Hybrid multiple-site mass closure and source apportionment of PM2.5 and aerosol acidity at major cities in the Po Valley. Science of the Total Environment, 2020, 704, 135287.	8.0	41
92	Source apportionment of fine particulate matter in a Middle Eastern Metropolis, Tehran-Iran, using PMF with organic and inorganic markers. Science of the Total Environment, 2020, 705, 135330.	8.0	30
93	Impact of wood combustion on indoor air quality. Science of the Total Environment, 2020, 705, 135769.	8.0	33
94	PM2.5 on the London Underground. Environment International, 2020, 134, 105188.	10.0	57
95	Characteristics and source apportionment of PM2.5 on an island in Southeast China: Impact of sea-salt and monsoon. Atmospheric Research, 2020, 235, 104786.	4.1	17
96	Vehicular non-exhaust particulate emissions in Chinese megacities: Source profiles, real-world emission factors, and inventories. Environmental Pollution, 2020, 266, 115268.	7.5	57
97	Long term characteristics of atmospheric particulate matter and compositions in Jakarta, Indonesia. Atmospheric Pollution Research, 2020, 11, 2215-2225.	3.8	16
98	Source Apportionment of Aerosol at a Coastal Site and Relationships with Precipitation Chemistry: A Case Study over the Southeast United States. Atmosphere, 2020, 11, 1212.	2.3	14
99	Understanding air and water borne transmission and survival of coronavirus: Insights and way forward for SARS-CoV-2. Science of the Total Environment, 2020, 749, 141486.	8.0	45
100	Water Sorption by Different Types of Filter Media Used for Particulate Matter Collection Under Varying Temperature and Humidity Conditions. International Journal of Environmental Research and Public Health, 2020, 17, 5180.	2.6	8
101	Characteristics of Carbonaceous Matter in Aerosol from Selected Urban and Rural Areas of Southern Poland. Atmosphere, 2020, 11, 687.	2.3	10
102	Indoor aerosol water content and phase state in U.S. residences: impacts of relative humidity, aerosol mass and composition, and mechanical system operation. Environmental Sciences: Processes and Impacts, 2020, 22, 2031-2057.	3.5	20
103	Volatility Distribution of Organic Compounds in Sewage Incineration Emissions. Environmental Science & amp; Technology, 2020, 54, 14235-14245.	10.0	10
104	Stabilization for the secondary species contribution to PM2.5 in the Pearl River Delta (PRD) over the past decade, China: A meta-analysis. Atmospheric Environment, 2020, 242, 117817.	4.1	28
105	Utilization of road dust chemical profiles for source identification and human health impact assessment. Scientific Reports, 2020, 10, 14259.	3.3	9
106	Assessment of particulate toxic metals at an Environmental Justice community. Atmospheric Environment: X, 2020, 6, 100070.	1.4	6
107	Changing Nature of Organic Carbon over the United States. Environmental Science & Technology, 2020, 54, 10524-10532.	10.0	11
108	Chemical Composition of PM10 in 16 Urban, Industrial and Background Sites in Italy. Atmosphere, 2020, 11, 479.	2.3	16

#	Article	IF	CITATIONS
109	Winter Urban Particulate Chemistry and Denver's "Brown Cloud― Part II. Air Chemistry and Meteorology. Aerosol Science and Engineering, 2020, 4, 80-100.	1.9	2
110	Investigating size-segregated sources of elemental composition of particulate matter in the South China Sea during the 2011 <i>Vasco</i> cruise. Atmospheric Chemistry and Physics, 2020, 20, 1255-1276.	4.9	23
111	Characteristics and sources analysis of PM2.5 in a major industrial city of northern Xinjiang, China. SN Applied Sciences, 2020, 2, 1.	2.9	4
112	Impact of vacuum cleaning on indoor air quality. Building and Environment, 2020, 180, 107059.	6.9	28
113	Measurement report: Vertical distribution of atmospheric particulate matter within the urban boundary layer in southern China – size-segregated chemical composition and secondary formation through cloud processing and heterogeneous reactions. Atmospheric Chemistry and Physics, 2020, 20, 6435-6453.	4.9	29
114	Impact of air transport and secondary formation on haze pollution in the Yangtze River Delta: In situ online observations in Shanghai and Nanjing. Atmospheric Environment, 2020, 225, 117350.	4.1	35
115	Contrasts in chemical composition and oxidative potential in PM10 near flares in oil extraction and refining areas in Ecuador. Atmospheric Environment, 2020, 223, 117302.	4.1	13
116	Satellite-Derived PM2.5 Composition and Its Differential Effect on Children's Lung Function. Remote Sensing, 2020, 12, 1028.	4.0	13
117	Characteristics, Secondary Formation and Regional Contributions of PM2.5 Pollution in Jinan during Winter. Atmosphere, 2020, 11, 273.	2.3	6
118	Sources, frequency, and chemical nature of dust events impacting the United States East Coast. Atmospheric Environment, 2020, 231, 117456.	4.1	22
119	PM _{2.5} pollution in China's Guanzhong Basin and the USA's San Joaquin Valley mega-regions. Faraday Discussions, 2021, 226, 255-289.	3.2	5
120	An evaluation of source apportionment of fine OC and PM _{2.5} by multiple methods: APHH-Beijing campaigns as a case study. Faraday Discussions, 2021, 226, 290-313.	3.2	12
121	Spatial distribution of fine and coarse particulate matter during a southwest monsoon in Peninsular Malaysia. Chemosphere, 2021, 262, 127767.	8.2	23
122	Credibility and statistical characteristics of CAMSRA and MERRA-2 AOD reanalysis products over the Sichuan Basin during 2003–2018. Atmospheric Environment, 2021, 244, 117980.	4.1	23
123	Review of online source apportionment research based on observation for ambient particulate matter. Science of the Total Environment, 2021, 762, 144095.	8.0	21
124	Plasma-based technique applied to the determination of 21 elements in ten size fractions of atmospheric aerosols. Microchemical Journal, 2021, 160, 105736.	4.5	4
125	Formation of droplet-mode secondary inorganic aerosol dominated the increased PM2.5 during both local and transport haze episodes in Zhengzhou, China. Chemosphere, 2021, 269, 128744.	8.2	14
126	Chemical composition and source attribution of PM2.5 and PM10 in Delhi-National Capital Region (NCR) of India: results from an extensive seasonal campaign. Journal of Atmospheric Chemistry, 2021, 78, 35-58.	3.2	13

#	Article	IF	CITATIONS
127	Particulate matter emission sources and meteorological parameters combine to shape the airborne bacteria communities in the Ligurian coast, Italy. Scientific Reports, 2021, 11, 175.	3.3	6
128	PM2.5 and Trace Elements in Underground Shopping Districts in the Seoul Metropolitan Area, Korea. International Journal of Environmental Research and Public Health, 2021, 18, 297.	2.6	11
129	Evaluations of Surface PM10 Concentration and Chemical Compositions in MERRA-2 Aerosol Reanalysis over Central and Eastern China. Remote Sensing, 2021, 13, 1317.	4.0	9
130	Decreasing concentrations of carbonaceous aerosols in China from 2003 to 2013. Scientific Reports, 2021, 11, 5352.	3.3	8
131	Strong link between coronavirus count and bad air: a case study of India. Environment, Development and Sustainability, 2021, 23, 16632-16645.	5.0	33
132	Source identification and exposure assessment to PM10 in the Eastern Carpathians, Romania. Journal of Atmospheric Chemistry, 2021, 78, 77-97.	3.2	3
133	Impact of Municipal, Road Traffic, and Natural Sources on PM10: The Hourly Variability at a Rural Site in Poland. Energies, 2021, 14, 2654.	3.1	5
134	Source apportionment of fine organic carbon at an urban site of Beijing using a chemical mass balance model. Atmospheric Chemistry and Physics, 2021, 21, 7321-7341.	4.9	23
135	Improving Predictions of Indoor Aerosol Concentrations of Outdoor Origin by Considering the Phase Change of Semivolatile Material Driven by Temperature and Mass-Loading Gradients. Environmental Science & Technology, 2021, 55, 9000-9011.	10.0	10
136	Monitoring of air pollutants using a stratospheric balloon. , 2021, , .		1
137	Improved estimation of PM2.5 brown carbon contributions to filter light attenuation. Particuology, 2021, 56, 1-9.	3.6	10
138	Impact of various air mass types on cloud condensation nuclei concentrations along coastal southeast Florida. Atmospheric Environment, 2021, 254, 118371.	4.1	10
139	Chemical source profiles of fine particles for five different sources in Delhi. Chemosphere, 2021, 274, 129913.	8.2	25
140	Wintertime chemical characteristics of aerosol and their role in light extinction during clear and polluted days in rural Indo Gangetic plain. Environmental Pollution, 2021, 282, 117034.	7.5	19
141	Comparative analysis of the chemical characteristics and sources of fine atmospheric particulate matter (PM2.5) at two sites in Changzhou, China. Atmospheric Pollution Research, 2021, 12, 101124.	3.8	12
142	Impact of different sources on the oxidative potential of ambient particulate matter PM10 in Riyadh, Saudi Arabia: A focus on dust emissions. Science of the Total Environment, 2022, 806, 150590.	8.0	18
143	Measurement report: Receptor modeling for source identification of urban fine and coarse particulate matter using hourly elemental composition. Atmospheric Chemistry and Physics, 2021, 21, 14471-14492.	4.9	7
144	Chemiluminescent fingerprints from airborne particulate matter: A luminol-based assay for the characterization of oxidative potential with kinetical implications. Science of the Total Environment, 2021, 789, 148005.	8.0	3

#	Article	IF	CITATIONS
145	High contribution of vehicle emissions to fine particulate pollutions in Lanzhou, Northwest China based on high-resolution online data source appointment. Science of the Total Environment, 2021, 798, 149310.	8.0	26
146	Influence of local meteorology on the chemical characteristics of fine particulates in Metropolitan Manila in the Philippines. Atmospheric Pollution Research, 2020, 11, 1359-1369.	3.8	12
147	Source Apportionment: Principles and Methods. Issues in Environmental Science and Technology, 2016, , 72-125.	0.4	14
148	Chemical Characterization and Seasonality of Ambient Particles (PM2.5) in the City Centre of Addis Ababa. International Journal of Environmental Research and Public Health, 2020, 17, 6998.	2.6	16
149	Chemical Characterization and Source Apportionment of PM2.5 in Rabigh, Saudi Arabia. Aerosol and Air Quality Research, 2016, 16, 3114-3129.	2.1	34
150	Evaluation of PM2.5 Surface Concentrations Simulated by Version 1 of NASA's MERRA Aerosol Reanalysis over Israel and Taiwan. Aerosol and Air Quality Research, 2017, 17, 253-261.	2.1	34
151	China Source Profile Shared Service (CSPSS): The Chinese PM2.5 Database for Source Profiles. Aerosol and Air Quality Research, 2017, 17, 1501-1514.	2.1	24
152	Chemical Characteristics and Source Apportionment by Two Receptor Models of Size-segregated Aerosols in an Emerging Megacity in China. Aerosol and Air Quality Research, 2018, 18, 1375-1390.	2.1	13
153	Analysis of functional groups in atmospheric aerosols by infrared spectroscopy: method development for probabilistic modeling of organic carbon and organic matter concentrations. Atmospheric Measurement Techniques, 2020, 13, 1517-1538.	3.1	9
154	Development and application of a mass closure PM _{2.5} composition online monitoring system. Atmospheric Measurement Techniques, 2020, 13, 5407-5422.	3.1	15
155	Biomass Burning Over the United States East Coast and Western North Atlantic Ocean: Implications for Clouds and Air Quality. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD034916.	3.3	10
156	Aerosol Loading and Radiation Budget Perturbations in Densely Populated and Highly Polluted Indoâ€Gangetic Plain by COVIDâ€19: Influences on Cloud Properties and Air Temperature. Geophysical Research Letters, 2021, 48, e2021GL093796.	4.0	14
157	Chemical Mass Composition of Ambient Aerosol over Jeju City. Journal of Environmental Science International, 2020, 29, 495-506.	0.2	1
159	Characteristics, sources and health risk assessment of PM2.5 in China's coal and coking heartland: Insights gained from the regional observations during the heating season. Atmospheric Pollution Research, 2021, 12, 101237.	3.8	10
160	Characterization of temporal PM2.5, nitrate, and sulfate using deep learning techniques. Atmospheric Pollution Research, 2022, 13, 101260.	3.8	11
161	A machine learning model for predicting PM2.5 and nitrate concentrations based on long-term water-soluble inorganic salts datasets at a road site station. Chemosphere, 2022, 289, 133123.	8.2	12
162	Combination of PM optical and chemical properties to estimate the contribution of non-BC absorbers to light absorption at a remote site. Atmospheric Research, 2022, 268, 106000.	4.1	0
163	An online technology for effectively monitoring inorganic condensable particulate matter emitted from industrial plants. Journal of Hazardous Materials, 2022, 428, 128221.	12.4	9

#	Article	IF	CITATIONS
164	Spatial Characteristics of PM1 Aerosol Chemical Composition over the Greater Athens Area. Environmental Sciences Proceedings, 2021, 4, 7.	0.3	0
165	Estimation of Atmospheric Dry and Wet Deposition of Particulate Elements at Four Monitoring Sites in the Canadian Athabasca Oil Sands Region. Journal of Geophysical Research D: Atmospheres, 2022, 127,	3.3	6
166	Effect of aerosol sampling conditions on PM2.5 sampling accuracy. Journal of Aerosol Science, 2022, 162, 105968.	3.8	4
167	Online Chemical Characterization and Sources of Submicron Aerosol in the Major Mediterranean Port City of Piraeus, Greece. Atmosphere, 2021, 12, 1686.	2.3	7
168	Significant contribution of secondary particulate matter to recurrent air pollution: Evidence from in situ observation in the most polluted city of Fen-Wei Plain of China. Journal of Environmental Sciences, 2022, 114, 422-433.	6.1	5
169	Carbonaceous aerosols in five European cities: Insights into primary emissions and secondary particle formation. Atmospheric Research, 2022, 274, 106180.	4.1	6
170	Assessment of the link between atmospheric dispersion and chemical composition of PM10 at 2-h time resolution. Chemosphere, 2022, 298, 134272.	8.2	0
171	Chemical profiles of PM2.5 emitted from various anthropogenic sources of the Eastern Mediterranean: Cooking, wood burning, and diesel generators. Environmental Research, 2022, 211, 113032.	7.5	14
172	Partitioning of NH3-NH4+ in the Southeastern U.S Atmosphere, 2021, 12, 1681.	2.3	2
173	Insights into aerosol chemical composition and optical properties at Lulin Atmospheric Background Station (2862 m asl) during two contrasting seasons. Science of the Total Environment, 2022, 834, 155291.	8.0	4
174	Sources and uncertainties of health risks for PM2.5-bound heavy metals based on synchronous online and offline filter-based measurements in a Chinese megacity. Environment International, 2022, 164, 107236.	10.0	9
175	Understanding the Sources of Ambient Fine Particulate Matter (PM2.5) in Jeddah, Saudi Arabia. Atmosphere, 2022, 13, 711.	2.3	2
176	Characterization of carbonaceous substances emitted from residential solid fuel combustion using real-world data from the Beijing-Tianjin-Hebei region. Science of the Total Environment, 2022, 837, 155529.	8.0	5
177	Fine Particulate Pollution Driven by Nitrogen Dioxide and Ozone in the Moisture Urban Atmospheric Environment in Pearl River Delta Region of South China. SSRN Electronic Journal, 0, , .	0.4	0
178	Measurement report: The importance of biomass burning in light extinction and direct radiative effect of urban aerosol during the COVID-19 lockdown in Xi'an, China. Atmospheric Chemistry and Physics, 2022, 22, 8369-8384.	4.9	3
179	Understanding aerosol composition in a tropical inter-Andean valley impacted by agro-industrial and urban emissions. Atmospheric Chemistry and Physics, 2022, 22, 8473-8495.	4.9	8
180	Changes in physical and chemical properties of urban atmospheric aerosols and ozone during the COVID-19 lockdown in a semi-arid region. Atmospheric Environment, 2022, 287, 119270.	4.1	7
181	Indoor PM10 in university classrooms: Chemical composition and source behaviour. Atmospheric Environment, 2022, 287, 119260.	4.1	2

#	Article	IF	CITATIONS
182	Comprehensive chemical characterization of PM2.5 in the large East Mediterranean-Middle East city of Beirut, Lebanon. Journal of Environmental Sciences, 2023, 133, 118-137.	6.1	7
183	Evaluation of organic aerosol filter sampling artefacts and implications to gravimetric PM2.5 mass at a COALESCE network site - Bhopal, India. Journal of Environmental Management, 2022, 319, 115749.	7.8	5
184	Fine Particulate Pollution Driven by Nitrate in the Moisture Urban Atmospheric Environment in Pearl River Delta Region of South China. SSRN Electronic Journal, 0, , .	0.4	0
185	Spatial heterogeneity in boundary layer dynamism and PM2.5 surface concentration over the complex terrain of Brahmaputra valley. Remote Sensing Applications: Society and Environment, 2022, 28, 100828.	1.5	0
186	Five-year Ground-based Observation Trend of PM2.5 and PM10, and Comparison with MERRA-2 Data over India. Asian Journal of Atmospheric Environment, 2022, 16, 12-33.	1.1	2
187	A Global cale Mineral Dust Equation. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	3
188	Aerosols in Northern Morocco-2: Chemical Characterization and PMF Source Apportionment of Ambient PM2.5. Atmosphere, 2022, 13, 1701.	2.3	6
189	Review of Filters for Air Sampling and Chemical Analysis in Mining Workplaces. Minerals (Basel,) Tj ETQq1 1 0.78	34314 rgBT 2.0	- /gverlock 1
190	Factors influencing aerosol and precipitation ion chemistry in urban background of Moscow megacity. Atmospheric Environment, 2023, 294, 119458.	4.1	7
191	Identifying and quantifying PM2.5 pollution episodes with a fusion method of moving window technique and constrained Positive Matrix Factorization. Environmental Pollution, 2022, 315, 120382.	7.5	4
192	Potential influence of fine aerosol chemistry on the optical properties in a semi-arid region. Environmental Research, 2023, 216, 114678.	7.5	8
193	Fine particulate pollution driven by nitrate in the moisture urban atmospheric environment in the Pearl River Delta region of south China. Journal of Environmental Management, 2023, 326, 116704.	7.8	3
194	Atmospheric Abundance of PM _{2.5} Carbonaceous Matter and Their Potential Sources at Three High-Altitude Glacier Sites over the Indian Himalayan Range. ACS Earth and Space Chemistry, 2022, 6, 2919-2928.	2.7	4
195	Evidence of non-tailpipe emission contributions to PM2.5 and PM10 near southern California highways. Environmental Pollution, 2023, 317, 120691.	7.5	5
196	Small contributions of dust to PM2.5 and PM10 concentrations measured downwind of Oceano Dunes. Atmospheric Environment, 2023, 294, 119515.	4.1	5
197	Spatiotemporal differences on the real-time physicochemical characteristics of PM2.5 particles in four Northeast Asian countries during Winter and Summer 2020–2021. Atmospheric Research, 2023, 283, 106581.	4.1	4
198	Correlation analysis of multi-angle simultaneous polarization measurements with the concentration of suspended atmospheric particles. , 2023, , .		0
199	Real-world emission for in-use non-road construction machinery in Wuhan, China. Environmental Science and Pollution Research, 2023, 30, 46414-46425.	5.3	1

#	Article	IF	CITATIONS
200	Characterization and Source Apportionment of PM in Handan—A Case Study during the COVID-19. Atmosphere, 2023, 14, 680.	2.3	0
201	Nighttime–daytime PM10 source apportionment and toxicity in a remoteness inland city of the Iberian Peninsula. Atmospheric Environment, 2023, 303, 119771.	4.1	4
202	Source apportionment and potential source regions of size-resolved particulate matter at a heavily polluted industrial city in the Indo-Gangetic Plain. Atmospheric Environment, 2023, 298, 119614.	4.1	10
203	PM10 Resuspension of Road Dust in Different Types of Parking Lots: Emissions, Chemical Characterisation and Ecotoxicity. Atmosphere, 2023, 14, 305.	2.3	6
204	Chemical composition and potential sources of PM2.5 in Hanoi. Atmospheric Environment, 2023, 299, 119650.	4.1	8
205	Airborne particulate matter in Southeast Asia: a review on variation, chemical compositions and source apportionment. Environmental Chemistry, 2023, 19, 401-431.	1.5	0
206	Determination of atmospheric aerosol components in an urban area to evaluate the air quality and identify the sources of contamination. Journal of Radioanalytical and Nuclear Chemistry, 0, , .	1.5	1
207	Interannual evolution of the chemical composition, sources and processes of PM2.5 in Chengdu, China: Insights from observations in four winters. Journal of Environmental Sciences, 2024, 138, 32-45.	6.1	5
208	Quantifying the Source Attribution of PM10 Measured Downwind of the Oceano Dunes State Vehicular Recreation Area. Atmosphere, 2023, 14, 718.	2.3	0
209	Insight into the contributions of primary emissions of sulfate, nitrate, and ammonium from residential solid fuels to ambient PM2.5. Atmospheric Research, 2023, 290, 106790.	4.1	0
210	Exploring Sources and Health Risks in Beijing PM2.5 in 2019 and 2020. Atmosphere, 2023, 14, 1060.	2.3	0
211	Maritime and coastal observations of ambient PM2.5 and its elemental compositions in the Bohai Bay of China during spring and summer: Levels, spatial distribution and source apportionment. Atmospheric Research, 2023, 293, 106897.	4.1	4
212	Spatiotemporal analysis of fine particulate matter for India (1980–2021) from MERRA-2 using ensemble machine learning. Atmospheric Pollution Research, 2023, 14, 101834.	3.8	1
213	An assessment of four decades atmospheric PM2.5 trends in urban locations over Southern Africa using MERRA-2 reanalysis. Air Quality, Atmosphere and Health, 0, , .	3.3	0
214	Real world emission characteristics of Chinese fleet and the current situation of underestimated ship emissions. Journal of Cleaner Production, 2023, 418, 138107.	9.3	1
216	High-time-resolution chemical composition and source apportionment of PM _{2.5} in northern Chinese cities: implications for policy. Atmospheric Chemistry and Physics, 2023, 23, 9455-9471.	4.9	4
217	Surface Radiative Forcing as a Climate-Change Indicator in North India due to the Combined Effects of Dust and Biomass Burning. Fire, 2023, 6, 365.	2.8	0
219	A PM10 chemically characterized nation-wide dataset for Italy. Geographical influence on urban air pollution and source apportionment. Science of the Total Environment, 2024, 908, 167891.	8.0	1

#	Article	IF	CITATIONS
220	Seasonal variations of metals and metalloids in atmospheric particulate matter (PM2.5) in the urban megacity Hanoi. Atmospheric Pollution Research, 2024, 15, 101961.	3.8	1
221	Comparative source apportionment of PM2.5 for 2014/2019Âat a plateau city: Implications for air quality improvement in high-altitude areas. Atmospheric Pollution Research, 2024, 15, 101964.	3.8	0
222	Source Apportionment and Analysis of Spatial Representativeness of Fine Particle Pollution for an Urban Residential Area in Lucknow, India. Environmental Engineering Science, 2023, 40, 678-688.	1.6	1
223	Spatiotemporal trends in PM2.5 chemical composition in the conterminous U.S. during 2006–2020. Atmospheric Environment, 2024, 316, 120188.	4.1	0
224	Response of surface ozone to atmospheric aerosol absorption is more sensitive than to scattering in a semi-arid region. Atmospheric Environment, 2024, 316, 120172.	4.1	2
225	Effect of industrialization on the differences in sources and composition of ambient PM2.5 in two Southern Ontario locations. Environmental Pollution, 2024, 341, 123007.	7.5	Ο
226	Significantly alleviated PM2.5 pollution in cold seasons in the Beijing-Tianjin-Hebei and surrounding area: Insights from regional observation. Atmospheric Research, 2024, 298, 107136.	4.1	0
227	Spatiotemporal empirical analysis of particulate matter PM2.5 pollution and air quality index (AQI) trends in Africa using MERRA-2 reanalysis datasets (1980–2021). Science of the Total Environment, 2024, 912, 169027.	8.0	0
228	Dust Under the Radar: Rethinking How to Evaluate the Impacts of Dust Events on Air Quality in the United States. GeoHealth, 2023, 7, .	4.0	0
229	Isotopic Evidence Unveils Fossil Fuels Contribution to Atmospheric Iodine. Environmental Science & Technology, 2023, 57, 20773-20780.	10.0	1
230	Reduction of Outdoor and Indoor PM2.5 Source Contributions via Portable Air Filtration Systems in a Senior Residential Facility in Detroit, Michigan. Toxics, 2023, 11, 1019.	3.7	0
231	Fugitive Dust Associated with Scrap Metal Processing. Environments - MDPI, 2023, 10, 223.	3.3	0
232	Chemically speciated air pollutant emissions from open burning of household solid waste from South Africa. Atmospheric Chemistry and Physics, 2023, 23, 15375-15393.	4.9	0
233	Aerosols in Northern Morocco (Part 3): the application of three complementary approaches towards a better understanding of PM10 sources. Journal of Atmospheric Chemistry, 2024, 81, .	3.2	0
234	Aerosol Thermodynamics: Nitrate Loss from Regulatory PM _{2.5} Filters in California. , 0, , .		0
235	Oxidative potential of fine particulate matter emitted from traditional and improved biomass cookstoves. Environmental Science Atmospheres, 2024, 4, 202-213.	2.4	0
236	Source profile of PM2.5 emissions from different primary sources in the coal capital city Dhanbad, India. Atmospheric Environment: X, 2024, 21, 100235.	1.4	0
237	Sources of atmospheric light-absorbing fine aerosols: Insights from optical source apportionment utilizing measurements made during COVID-19 lockdowns at a COALESCE network site - Bhopal, India. Atmospheric Environment, 2024, 321, 120343.	4.1	0

#	Article	IF	CITATIONS
238	Source apportionment of suspended particulate matter (PM1, PM2.5 and PM10) collected in road and tram tunnels in Krakow, Poland. Environmental Science and Pollution Research, 2024, 31, 14690-14703.	5.3	0
239	Source apportionment of PM _{2.5} in Montréal, Canada, and health risk assessment for potentially toxic elements. Atmospheric Chemistry and Physics, 2024, 24, 1193-1212.	4.9	0
240	Insights into PM2.5 pollution of four small and medium-sized cities in Chinese representative regions: Chemical compositions, sources and health risks. Science of the Total Environment, 2024, 918, 170620.	8.0	0
241	Evaluation of WRF-Chem-simulated meteorology and aerosols over northern India during the severe pollution episode of 2016. Atmospheric Chemistry and Physics, 2024, 24, 2239-2266.	4.9	0
242	Tropical tropospheric aerosol sources and chemical composition observed at high altitude in the Bolivian Andes. Atmospheric Chemistry and Physics, 2024, 24, 2837-2860.	4.9	0
243	Organic tracers in fine and coarse aerosols at an urban Mediterranean site: contribution of biomass burning and biogenic emissions. Environmental Science and Pollution Research, 2024, 31, 25216-25226.	5.3	0
244	Elemental Characterization of Ambient Particulate Matter for a Globally Distributed Monitoring Network: Methodology and Implications. , 2024, 1, 283-293.		0
245	Cs3Cu2I5 perovskite nanocrystals embedded in room temperature curable deep eutectic solvents for sensing NH3 gas, Journal of Alloys and Compounds, 2024, 986, 174155	5.5	Ο